

•
Table of

Contents

• Index

• Reviews

• CD-ROM

•
Reader

Reviews

• Errata

VB.NET Language in a Nutshell, 2nd Edition

By Paul Lomax, Ron Petrusha, Steven Roman, Ph.D.

Publisher: O'Reilly

Pub Date: May 2002

ISBN: 0-596-00308-0

Pages: 682

Slots: 1

VB.NET Language in a Nutshell begins with a brief overview of the new Visual
Basic .NET language, covering basic programming concepts and introduces
the .NET Framework Class Library and programming with attributes. The bulk
of the book presents an alphabetical reference to Visual Basic .NET
statements, procedures, functions, and objects. Also included is a CD-ROM
that allows the reference section of the book to integrate with Visual Studio
.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

•
Table of

Contents

• Index

• Reviews

• CD-ROM

•
Reader

Reviews

• Errata

VB.NET Language in a Nutshell, 2nd Edition

By Paul Lomax, Ron Petrusha, Steven Roman, Ph.D.

Publisher: O'Reilly

Pub Date: May 2002

ISBN: 0-596-00308-0

Pages: 682

Slots: 1

 Copyright

 Preface

 Why Another VB Book?

 Who This Book Is For

 How This Book Is Structured

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Part I: The Basics

 Chapter 1. Introduction

 Section 1.1. Why VB.NET?

 Section 1.2. What Is VB.NET?

 Section 1.3. What Can You Do with VB.NET?

 Chapter 2. Program Structure

 Section 2.1. Getting a VB Program to Run

 Section 2.2. The Structure of a VB Program

 Chapter 3. Variables and Data Types

 Section 3.1. Variables

 Section 3.2. Declaring Variables and Constants

 Section 3.3. Data Types

 Section 3.4. Arrays

 Section 3.5. Object Variables and Their Binding

 Section 3.6. The Collection Object

 Section 3.7. Parameters and Arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 4. Introduction to Object-Oriented Programming

 Section 4.1. Why Learn Object-Oriented Techniques?

 Section 4.2. Principles of Object-Oriented Programming

 Section 4.3. Classes and Objects

 Section 4.4. Inheritance

 Section 4.5. Interfaces, Abstract Members, and Classes

 Section 4.6. Polymorphism and Overloading

 Section 4.7. Accessibility in Class Modules

 Chapter 5. The .NET Framework: General Concepts

 Section 5.1. Namespaces

 Section 5.2. Common Language Runtime (CLR), Managed Code, and Managed Data

 Section 5.3. Managed Execution

 Section 5.4. Assemblies

 Section 5.5. Assemblies and VB.NET

 Chapter 6. The .NET Framework Class Library

 Section 6.1. The System Namespace

 Section 6.2. Other Namespaces

 Chapter 7. Delegates and Events

 Section 7.1. Delegates

 Section 7.2. Events and Event Binding

 Chapter 8. Attributes

 Section 8.1. Syntax and Use

 Section 8.2. Defining a Custom Attribute

 Section 8.3. Using a Custom Attribute

 Chapter 9. Error Handling in VB.NET

 Section 9.1. Error Detection and Error Handling

 Section 9.2. Runtime Error Handling

 Section 9.3. Dealing with Logical Errors

 Section 9.4. Error Constants

 Part II: Reference

 Chapter 10. The Language Reference

 #Const Directive

 #If . . . Then . . . #Else Directive

 #Region...#End Region Directive

 Abs Function

 Acos Function

 AddHandler Statement

 AddressOf Operator

 AppActivate Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Application Class

 Application.CompanyName Property

 Application.DoEvents Method

 Application.ExecutablePath Property

 Application.ProductName Property

 Application.ProductVersion Property

 Array Class

 Array.BinarySearch Method

 Array.Copy Method

 Array.IndexOf Method

 Array.LastIndexOf Method

 Array.Reverse Method

 Array.Sort Method

 Asc, AscW Functions

 AssemblyVersion Attribute

 Asin Function

 Atan Function

 Atan2 Function

 AttributeUsage Attribute

 Beep Procedure

 Call Statement

 CallByName Function

 CBool Function

 CByte Function

 CChar Function

 CDate Function

 CDbl Function

 CDec Function

 Ceiling Function

 ChDir Procedure

 ChDrive Procedure

 Choose Function

 Chr, ChrW Functions

 CInt Function

 Class Statement

 Clipboard Class

 Clipboard.GetDataObject Method

 Clipboard.SetDataObject Method

 CLng Function

 CLSCompliant Attribute

 CObj Function

 Collection Class

 Collection.Add Method

 Collection.Count Property

 Collection.Item Method

 Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ColorDialog Class

 COMClass Attribute

 Command Function

 Const Statement

 Cos Function

 Cosh Function

 CreateObject Function

 CShort Function

 CSng Function

 CStr Function

 CType Function

 CurDir Function

 DateAdd Function

 DateDiff Function

 DatePart Function

 DateSerial Function

 DateString Property

 DateValue Function

 Day Function

 DDB Function

 Debug Class

 Debug.Assert Method

 Debug.AutoFlush Property

 Debug.Close Method

 Debug.Flush Method

 Debug.Indent Method

 Debug.IndentLevel Property

 Debug.IndentSize Property

 Debug.Listeners Property

 Debug.Unindent Method

 Debug.Write Method

 Debug.WriteIf Method

 Debug.WriteLine Method

 Debug.WriteLineIf Method

 Declare Statement

 DefaultMember Attribute

 Delegate Statement

 DeleteSetting Procedure

 Dim Statement

 Dir Function

 DirectCast Function

 Directory Class

 Directory.CreateDirectory Method

 Directory.Delete Method

 Directory.Exists Method

 Directory.GetCreationTime Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Directory.GetDirectories Method

 Directory.GetDirectoryRoot Method

 Directory.GetFiles Method

 Directory.GetFileSystemEntries Method

 Directory.GetLogicalDrives Method

 Directory.GetParent Method

 Directory.Move Method

 Do...Loop Statement

 E Field

 End... Statement

 Enum Statement

 Environ Function

 EOF Function

 Erase Statement

 Erl Property

 Err Object

 Err.Clear Method

 Err.Description Property

 Err.GetException Method

 Err.HelpContext Property

 Err.HelpFile Property

 Err.LastDLLError Property

 Err.Number Property

 Err.Raise Method

 Err.Source Property

 Error Statement

 ErrorToString Function

 Event Statement

 Exception Class

 Exit Statement

 Exp Function

 File Class

 File.Exists Method

 FileAttr Function

 FileClose Procedure

 FileCopy Procedure

 FileDateTime Function

 FileGet, FileGetObject Procedures

 FileLen Function

 FileOpen Procedure

 FilePut, FilePutObject Procedures

 FileWidth Procedure

 Filter Function

 Fix Function

 Flags Attribute

 Floor Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FontDialog Class

 For...Next Statement

 For Each...Next Statement

 Format Function

 FormatCurrency, FormatNumber, FormatPercent Functions

 FormatDateTime Function

 FreeFile Function

 Friend Keyword

 Function Statement

 FV Function

 Get Statement

 GetAllSettings Function

 GetAttr Function

 GetChar Function

 GetObject Function

 GetSetting Function

 GetTimer Function

 GetType Operator

 GoTo Statement

 Guid Attribute

 Handles Keyword

 Hashtable Class

 Hashtable.Add Method

 Hashtable.Clear Method

 Hashtable.ContainsKey Method

 Hashtable.ContainsValue Method

 Hashtable.CopyTo Method

 Hashtable.Count Property

 Hashtable.Item Property

 Hashtable.Keys Property

 Hashtable.Remove Method

 Hashtable.Values Property

 Hex Function

 Hour Function

 IDataObject Interface

 IDataObject.GetData Method

 IDataObject.GetDataPresent Method

 IDataObject.GetFormats Method

 IEEERemainder Function

 If...Then...Else Statement

 IIf Function

 Implements Keyword

 Implements Statement

 Imports Statement

 Inherits Statement

 Input Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 InputBox Function

 InputString Function

 InStr Function

 InStrRev Function

 Int Function

 Interface Statement

 IPmt Function

 IRR Function

 Is Operator

 IsArray Function

 IsDate Function

 IsDBNull Function

 IsError Function

 IsNothing Function

 IsNumeric Function

 IsReference Function

 Join Function

 Kill Procedure

 LBound Function

 LCase Function

 Left Function

 Len Function

 Like Operator

 LineInput Function

 Loc Function

 Lock Procedure

 LOF Function

 Log Function

 Log10 Function

 LSet Function

 LTrim Function

 MarshalAs Attribute

 Max Function

 Me Operator

 Mid Function

 Mid Statement

 Min Function

 Minute Function

 MIRR Function

 MkDir Procedure

 Mod Operator

 Module...End Module Statement

 Month Function

 MonthName Function

 MsgBox Function

 MTAThread Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MyBase Keyword

 MyClass Keyword

 Namespace Statement

 Now Property

 NPer Function

 NPV Function

 Obsolete Attribute

 Oct Function

 On Error Statement

 OpenFileDialog Class

 Option Compare Statement

 Option Explicit Statement

 Option Strict Statement

 Out Attribute

 ParamArray Attribute

 Partition Function

 Pi Field

 Pmt Function

 Pow Function

 PPmt Function

 Print, PrintLine Procedures

 Private Statement

 Property Statement

 Protected Keyword

 Public Statement

 PV Function

 QBColor Function

 Queue Class

 Queue.Clear Method

 Queue.Contains Method

 Queue.CopyTo Method

 Queue.Count Property

 Queue.Dequeue Method

 Queue.Enqueue Method

 Queue.Peek Method

 Queue.ToArray Method

 RaiseEvent Statement

 Randomize Procedure

 Rate Function

 ReDim Statement

 Rem Statement

 RemoveHandler Statement

 Rename Procedure

 Replace Function

 Reset Procedure

 Resume Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Return Statement

 RGB Function

 Right Function

 RmDir Procedure

 Rnd Function

 Round Function

 RSet Function

 RTrim Function

 SaveFileDialog Class

 SaveSetting Procedure

 ScriptEngine Property

 ScriptEngineBuildVersion Property

 ScriptEngineMajorVersion Property

 ScriptEngineMinorVersion Property

 Second Function

 Seek Function

 Seek Procedure

 Select Case Statement

 Send, SendWait Methods

 Set Statement

 SetAttr Procedure

 Shadows Keyword

 Shell Function

 Sign Function

 Sin Function

 Sinh Function

 SLN Function

 Space Function

 Spc Function

 Split Function

 Sqrt Function

 Stack Class

 Stack.Clear Method

 Stack.Contains Method

 Stack.CopyTo Method

 Stack.Count Property

 Stack.Peek Method

 Stack.Pop Method

 Stack.Push Method

 Stack.ToArray Method

 STAThread Attribute

 Static Statement

 Stop Statement

 Str Function

 StrComp Function

 StrConv Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 StrDup Function

 StrReverse Function

 Structure...End Structure Statement

 Sub Statement

 Switch Function

 SYD Function

 SyncLock Statement

 SystemTypeName Function

 Tab Function

 Tan Function

 Tanh Function

 ThreadStatic Attribute

 Throw Statement

 TimeOfDay Property

 Timer Property

 TimeSerial Function

 TimeString Property

 TimeValue Function

 Today Property

 Trim Function

 Try...Catch...Finally Statement

 TypeName Function

 UBound Function

 UCase Function

 Unlock Procedure

 Val Function

 ValDec Function

 VarType Function

 VBFixedArray Attribute

 VBFixedString Attribute

 VbTypeName Function

 WebMethod Attribute

 WebService Attribute

 Weekday Function

 WeekdayName Function

 While...End While Statement

 With Statement

 WithEvents Keyword

 Write Procedure

 WriteLine Procedure

 Year Function

 Part III: Appendixes

 Appendix A. What's New and Different in VB.NET

 Section A.1. Language Changes for VB.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section A.2. Changes to Programming Elements

 Section A.3. Obsolete Programming Elements

 Section A.4. Structured Exception Handling

 Section A.5. Changes in Object-Orientation

 Appendix B. Language Elements by Category

 Section B.1. Array Handling

 Section B.2. Clipboard

 Section B.3. Collection Objects

 Section B.4. Common Dialogs

 Section B.5. Conditional Compilation

 Section B.6. Conversion

 Section B.7. Date and Time

 Section B.8. Debugging

 Section B.9. Declaration

 Section B.10. Error Handling

 Section B.11. Filesystem

 Section B.12. Financial

 Section B.13. IDataObject Interface

 Section B.14. Information

 Section B.15. Input/Output

 Section B.16. Integrated Development Environment

 Section B.17. Interaction

 Section B.18. Mathematics

 Section B.19. Program Structure and Flow

 Section B.20. Programming

 Section B.21. Registry

 Section B.22. String Manipulation

 Appendix C. Operators

 Section C.1. Arithmetic Operators

 Section C.2. Assignment Operators

 Section C.3. Concatenation Operators

 Section C.4. Comparison Operators

 Section C.5. Logical and Bitwise Operators

 Section C.6. Operator Precedence

 Appendix D. Constants and Enumerations

 Section D.1. Visual Basic Intrinsic Constants

 Section D.2. ControlChars Class

 Section D.3. Visual Basic Enumerations

 Appendix E. The VB.NET Command-Line Compiler

 Section E.1. Compiler Basics

 Section E.2. Command-Line Switches

 Section E.3. Using a Response File

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Appendix F. VB 6 Language Elements Not Supported by VB.NET

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2002, 2001 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (safari.oreilly.com). For more information contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. The association of the image of a catfish and the topic of VB.NET language is a
trademark of O'Reilly & Associates, Inc. ActiveX, IntelliSense, JScript, Microsoft, MS-DOS, Outlook, Visual
Basic, Visual C++, Visual Studio, Win32, Windows, and Windows NT are registered trademarks, and
Visual C# is a trademark of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher and author(s) assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface

Microsoft Visual Basic began its life just eleven years ago as a kind of amalgamation of Microsoft's QBasic
programming language and a graphical interface design program developed in part by Alan Cooper. Since
then, it has become by far the most popular programming language in the world, with an installed base
that is estimated at five to eight million developers worldwide.

The tenth anniversary of Visual Basic coincided with the announcement of Microsoft's new .NET platform,
and with a totally revised and revamped version of VB named Visual Basic .NET. The language has been
streamlined and modernized, and many old "compatibility" elements have been dropped from the
language, while other language elements that were implemented as statements are now either functions
or procedures.

In addition, many of you will be glad to hear that Visual Basic is now a fully object-oriented programming
language, with the inclusion of the long sought-after class inheritance, as well as other OOP features.

We suspect that many of you will greet with mixed emotions, as do we, the fact that Microsoft's
Component Object Model (COM), the technology that was at the core of Visual Basic since the release of
Version 4.0, has been abandoned in favor of the .NET platform. On the one hand, we find this to be a
great relief, because COM can be so complex and confusing. On the other hand, we find this somewhat
irritating, because we have invested so much time and effort in learning and using COM. Finally, we find
this change somewhat frightening; who knows what pitfalls await us as we become more familiar with this
new technology?

The best news of all is that, whereas in the past, Visual Basic served as a "wrapper" that simplified and hid
much of the complexity of Windows and the Windows operating system, at long last Visual Basic is an
"equal player" in the .NET Framework; Visual Basic programmers have full and easy access to the
features of the .NET platform, just as Visual C++ and C# programmers do.

The extensive changes to the language and the introduction of the .NET platform make a reference guide
to the Visual Basic language more essential than ever. At the same time, they make it easy to delineate
this book's subject matter. This is a book that focuses on the language elements of Visual Basic .NET -
on its statements, functions, procedures, directives, and objects (notably the Err and Collection objects).

While it's important to emphasize that this book focuses on the Visual Basic language components for the
.NET platform, it's also important to emphasize what this book is not:

It is not a reference guide to Visual Basic for Applications (VBA), the programming language used in
all of the major applications in the Microsoft Office suite, as well as in dozens of other third-party
applications. As you probably know, VBA is the programming language in previous versions of Visual
Basic and in the major Office applications. However, VBA is not the programming language for
VB.NET. Indeed, until VB.NET is incorporated into a release of Microsoft Office for .NET, the two
languages will differ significantly.

It is not a reference guide to the .NET Framework Class Library. To be sure, the Framework Class
Library is discussed in these pages, and a number of its classes and their members are documented
in this book's reference section. But that documentation just scratches the surface; the Framework
Class Library consists of over 90 namespaces (one of which, incidentally, is Microsoft.VisualBasic,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the namespace that defines the objects of the Visual Basic language), several thousand types
(classes, interfaces, delegates, and enumerations), and an enormous number of members. In
selecting the .NET Framework classes to document in this book, we've tried to focus on .NET
elements that replace commonly used features in previous versions of Visual Basic, as well as on
.NET elements that expand and enhance the functionality of existing Visual Basic .NET elements in
significant ways.

It is not a reference guide to the attributes that you can apply to program elements. To be sure,
Chapter 8 introduces attribute-based programming, and there are entries for important language-
based attributes in the reference section. But of the more than 200 attributes available in the .NET
Framework Class Library, only language-related attributes and the general-purpose attributes VB
developers are most likely to use are documented in this book.

It is not a guide to developing applications or components using Visual Basic .NET. In documenting
the language, we'll show you some simple code fragments that illustrate the relevant issues and
show you how a language element works. On the other hand, we won't show you, for example, how
to use the Windows Forms package to build a Windows application, how to develop a web
application using ASP.NET, or how to implement a web service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Why Another VB Book?

There are literally hundreds of books lining the shelves on how to program using Visual Basic, and they
will no doubt be joined by a flood of books on how to program in VB.NET. The majority of these books
assume that you're a complete novice and slowly introduce you to such concepts as variables, arrays, and
looping structures.

This is a different kind of book, however. It is a detailed, professional reference to the VB.NET language -
a reference that you can turn to if you want to jog your memory about a particular language element or a
particular parameter. You're also looking for a reference that you can turn to when you're having difficulty
programming and need to review the rules for using a particular language element, or when you want to
check that there isn't some "gotcha" you've overlooked that is associated with a particular language
element.

In addition, we believe this book will serve as the main reference for VB 6 programmers who are
upgrading to VB.NET. To this end, we have devoted considerable space to the extensive language
differences between VB 6 and VB.NET. For each relevant language entry, we have included a
"VB.NET/VB 6 Differences" section that details the differences in the operation of the language element
between VB 6 and VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Who This Book Is For

Just like any reference (such as a dictionary), this book will be useful to many types of readers:

Developers who have used previous versions of Visual Basic

Developers who are new to Visual Basic, but who have been developing applications in other
programming languages, such as C++

Those who are learning VB.NET as their first language and would like to have a definitive language
reference on their shelf

Readers New to Visual Basic

If you are new to the Visual Basic language, then you will want to pay particular attention to the first half of
the book, which discusses many important areas of programming under VB.NET, including variables, data
types, the basic principles of object-oriented programming, and error-handling techniques.

VB and VBScript Developers New to VB.NET

Some critics have argued that VB.NET is an entirely new language. While we wouldn't go quite that far, we
do agree not only that the language changes have been extensive, but that the new .NET platform will
result in a paradigm shift that affects the way we think about application development. So in many ways,
as a VB or VBScript developer new to VB.NET, you may find yourself in a position similar to that of a
developer who is new to all forms of VB.NET.

However, one of our goals was to develop a book that will ease the thorny transition to VB.NET from
earlier versions of VB. In particular, the first nine chapters of the book offer a rapid introduction to VB.NET
and its new features. Appendix A discusses many of the major language changes between VB 6 and
VB.NET, while Appendix F lists VB 6 language elements that are no longer supported in VB.NET. Finally,
if version differences exist in a language element, we include a "VB.NET/ VB 6 Differences" section that
shows you precisely how the behavior of that element has changed from VB 6 to VB.NET.

Existing VB.NET Developers

As we write the second edition of this book, VB.NET is brand new (the initial version of the .NET
Framework and Visual Studio .NET have just been released to manufacturing), so existing VB.NET
developers are a rarity. But we believe that, given the strengths of VB.NET, this situation will change
quickly. As you continue to develop in VB.NET, we believe you will find that VB.NET Language in a
Nutshell retains its value. As an experienced developer, you can delve into the book to get the lowdown on
a language element that interests you or that seems to be behaving erratically or unexpectedly in your
code. Appendix B details all of the language elements by category to help you find the relevant entry in the
language reference more easily.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How This Book Is Structured

VB.NET Language in a Nutshell is divided into three parts. The first part of the book, The Basics, is an
introduction to the main features and concepts of Visual Basic programming. Given the newness of
VB.NET, even seasoned VB professionals should find items of interest here. If you're new to VB, this part
of the book is essential reading. It's divided into the following chapters:

Chapter 1

In this chapter, you'll see how Visual Basic has evolved into the VB.NET language of today and get
some sense of how and why VB.NET is different from previous versions of Visual Basic.

Chapter 2

This chapters discusses the entry points that allows the .NET runtime to execute your code and
shows how to structure the code in a Visual Basic program.

Chapter 3

This chapter looks at the standard Visual Basic data types and how you use them. Behind the
scenes, Visual Basic takes advantage of the .NET Framework's common type system, so the
chapter also examines the .NET data types and the way in which VB wraps these data types.

Chapter 4

With the release of its .NET version, Visual Basic finally becomes a fully object-oriented
programming language. This chapter discusses the basic concepts of object-orientated
programming and shows how you implement VB's object-oriented features in your programming.

Chapter 5

This chapter surveys some of the new features of the .NET Framework that most impact the VB
developer. These include namespaces, the Common Language Runtime (CLR), and assemblies.

Chapter 6

The .NET Framework Class Library replaces portions of the Win32 API, as well as many of the
individual object models that VB programmers have worked with over the past five years, with a
single class library. This chapter offers a very fast-paced overview of the Framework Class Library
and some of its features.

Chapter 7

While handling events was more or less automatic in previous versions of VB and even in VBScript,
you typically have to "wire" events to your code in VB.NET. This chapter shows how to do that.

Chapter 8

The .NET Framework supports attributes, an extensible mechanism that allows you to store
customized items of information about a particular program element in an assembly's metadata.
This makes it possible to modify the behavior of the compiler, of a design time environment, or of
the runtime environment if a particular attribute is present. This chapter explains what attributes are
in greater detail, introduces the syntax of attribute-based programming, and shows you how to
define and consume custom attributes.

Chapter 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic now offers two techniques for error handling. The first, which uses the On Error
statement, is termed unstructured error handling and is a traditional part of VB. The second, which
uses the Try...Catch... Finally construct, is termed structured exception handling and is new to
VB.NET. In this chapter, we'll show you how to use both.

The second part of this book, Part II, consists of one large chapter, Chapter 10, which thoroughly details all
the functions, statements, directives, objects, and object members that make up the VB.NET language.

The third and final section consists of the following appendixes:

Appendix A

A discussion of language changes from VB 6 to VB.NET.
Appendix B

A listing of all VB.NET functions, statements, and major keywords by category.
Appendix C

A list of the operators supported by VB.NET, along with a slightly more detailed treatment of the
Boolean and bitwise operators.

Appendix D

A list of VB.NET intrinsic constants, as well as VB.NET enumerations and their members.
Appendix E

For the first time, Visual Basic includes a command-line compiler - you can actually use NotePad
as your primary "development environment" for Visual Basic (although we are not necessarily
recommending this approach) and use the compiler to compile your code. This appendix documents
the operation of the Visual Basic command-line compiler.

Appendix F

A list of the language elements that have dropped out of the Visual Basic language as a result of its
transition to the .NET Framework.

The Format of the Language Reference

The following template has been used in preparing the entries for functions, procedures, statements,
properties, and methods that appear in Chapter 10:

Class

For functions, procedures, classes, or class members, the class to which the item belongs.
Named Arguments

Typically, we indicate if a function, procedure, or method does not accept named arguments.
Otherwise, you can assume that the language element supports both named and positional
arguments.

Syntax

This section uses standard conventions to give a synopsis of the syntax used for the language item.
It also lists parameters and replaceable items (and indicates whether they're optional or not), lists
their data types, and provides a brief description.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Return Value

For functions, this section provides a brief description of the value or data type returned by the
function. For properties, it describes the data type of the property.

Description

A short description of what the language element does, and when and why it should be used.
Rules at a Glance

This section describes the main points of how to use the function. The dos and don'ts are presented
in the form of a bulleted list to let you quickly scan through the list of rules. In the vast majority of
cases, this section goes well beyond the basic details found in the VB documentation.

Example

We've tried to avoid the kind of gratuitous examples commonly found in documentation that only
manage to illustrate the obvious. Instead, we've used short code fragments that help to enhance
your understanding of how the language element is used.

Programming Tips and Gotchas

This is the most valuable section of Chapter 10, in our opinion, and it is gained from years of
experience using the VB language in a variety of projects and applications. The information included
here will save you countless hours of head scratching and experimentation. Often, this is the stuff
Microsoft doesn't tell you!

See Also

A simple cross-reference list of related or complimentary language elements.

A modified version of the template has been used for statements and attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

Throughout this book, we've used the following typographic conventions:

Constant width

Constant width in body text indicates a language construct, such as a VB.NET statement (like For or
Do While), an enumeration, an intrinsic or user- defined constant, a structure (i.e., a user-defined
type), an operator, a declaration, a directive, or an expression (like dblElapTime = Timer -
dblStartTime). Code fragments and code examples appear exclusively in constant-width text. In
syntax statements and prototypes, text set in constant width indicates such language elements as
the function or procedure name and any invariable elements required by the syntax.

Constant width italic

Constant width italic in body text indicates parameter names. In syntax statements or prototypes,
constant width italic indicates replaceable parameters. In addition, constant width italic is used in
both body text and code fragments to denote variables.

Italic

Italicized words in the text indicate intrinsic or user-defined functions and procedure names. Many
system elements, such as paths and filenames, are also italicized. In addition, URLs and email
address are italicized. Finally, italics are used the first time a term is used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes). Please let us know about any errors you
find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

It's our hope that as the Visual Basic language continues to grow and evolve, so too will VB.NET
Language in a Nutshell, and that the book will come to be seen by VB developers as the official (so to
speak) unofficial documentation on the Visual Basic language. To do that, we need your help. If you see
errors here, we'd like to hear about them. If you're looking for information on some VB language feature
and can't find it in this book, we'd like to hear about that, too. And finally, if you would like to contribute
your favorite programming tip or gotcha, we'll do our best to include it in the next edition of this book. You
can request these fixes, additions, and amendments to the book at our web site, http://www.oreilly.com/
catalog/vbdotnetnut2/.

In addition, Steven Roman maintains a web site at www.romanpress.com that includes information on his
other books published by O'Reilly (and others), articles on VB/VBA and VB.NET, and a variety of software.

http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

Writing a book always requires a substantial commitment of time and effort, and for that we are grateful to
our spouses and families for their support in helping to bring this project through to completion. Steve
would like to thank Donna; Ron would like to thank Vanessa, Sean and Ami; and Paul would like to thank
Deb, Russel, and Victoria.

In commemorating the tenth anniversary of Visual Basic, we would also like to acknowledge the
contributions of the designers and developers who transformed Visual Basic from an idea into a reality.
Truly, it has been a monumental accomplishment that has transformed the way in which applications are
created.

We'd also like to thank the book's technical reviewers, Daniel Creeron, Budi Kurniawan, and Matt Childs,
for their thoughtful, careful reviews of our work. We'd also like to thank Alan Carter, Chris Dias, Amanda
Silver, and Sam Spencer at Microsoft for their help in answering our annoying questions and for reviewing
portions of the manuscript.

The on-line Visual Studio .NET edition of this book was made possible by the work of many individuals.
Mike Sierra of O'Reilly converted the Language Reference to Microsoft Help 2.0 format and did the work
necessary to make its content available through the Visual Studio .NET dynamic help system. Kipper York,
Shane McRoberts, and Etka Mittal of the Microsoft Help team provided invaluable technical assistance at
crucial moments in the project, and Eric Promislow and Vladimir Baikalov of ActiveState built the install
package that plugs our Help collection into Visual Studio .NET. Frank Gocinski of the Visual Studio .NET
Integration Program was instrumental in helping us become full partners in the program. A special tip of
the hat to Rob Howard of Microsoft who supported our original vision and helped us make the right
connections with the Visual Studio .NET team to get this project off the ground.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part I: The Basics

This section serves as a general introduction to Visual Basic .NET, Microsoft's version of Visual
Basic for the .NET platform. Taken together, these chapters form an extremely fast-paced
introduction to the most critical VB.NET programming topics. If you're an experienced programmer
who is learning VB.NET as a second (or additional) programming language, the material should
familiarize you with VB.NET in as short a time as possible.

In addition to its role as a tutorial, Chapter 3 is an essential reference to the data types supported by
VB.NET.

Part I consists of the following chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction

Since its introduction in 1991, Microsoft Visual Basic has enjoyed unprecedented success. In fact, in
slightly more than a decade, it has become the world's most widely used programming language, with an
installed base of somewhere between three and five million developers (depending on the particular
source you use and whether the estimate includes only the retail versions of the Visual Basic product or
the hosted version of Visual Basic for Applications (VBA) as well).

The reason for this success is twofold. First, Visual Basic has excelled as a rapid application development
(RAD) environment for corporate and commercial applications. Second, Visual Basic offers a
programming language and development environment noted for its simplicity and ease of use, making it
an extremely attractive choice for those new to programming.

With the release of its new .NET platform, Microsoft also released a new version of the Visual Basic
language, Visual Basic .NET. VB.NET is a from-the-ground-up rewrite of Visual Basic that not only adds a
number of new features, but also differs significantly from previous versions of Visual Basic. From a high-
level view, two of these differences are especially noteworthy:

Until the release of VB.NET, Microsoft focused on creating a unified version of VBA, the language
engine used in Visual Basic, which could serve as a "universal batch language" for Windows and
Windows applications. With Version 6 of Visual Basic, this goal was largely successful: VB 6.0
featured VBA 6.0, the same language engine that drives the individual applications in the Microsoft
Office 2000 suite, Microsoft Project, Microsoft FrontPage, Microsoft Visio, and a host of popular third-
party applications such as AutoDesk's AutoCAD and Corel's WordPerfect Office 2000. With the
release of VB.NET, this emphasis on a unified programming language has, for the moment at least,
faded into the background, as the hosted version of Visual Basic continues to be VBA rather than
VB.NET.

Since Version 4, Visual Basic had increasingly been used as a kind of "glue language" to access
COM components and their object models, such as ActiveX Data Objects (ADO), Collaborative Data
Objects (CDO), or the Outlook object model. Although VB.NET supports COM for reasons of
backward compatibility, VB.NET is designed primarily to work with the .NET Framework rather than
with COM.

You may be wondering why Microsoft would totally redesign a programming language and development
environment that is so wildly successful. As we shall see, there is some method to this madness.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1 Why VB.NET?

When Visual Basic was introduced in 1991, Windows 3.0 was a fairly new operating system in need of
application and utility software. Although Windows 3.0 itself had proven successful, the graphical
applications that offered native support for Windows - and upon whose release the ultimate success or
failure of Windows would depend - were slow in coming. The major problem was that C and C++
programmers, who had produced the majority of applications for the MS-DOS operating system, were
faced with a substantial learning curve in writing Windows applications and adapting to Windows' event-
driven programming model.

The introduction of Visual Basic immediately addressed this problem by offering a programming model
that was thoroughly consistent with Windows' graphical nature. Although Windows marked a radical
change in the way programs were written, C and C++ programmers continued to produce code as they
always had: a text editor was used to write source code, the source code was compiled into an executable,
and the executable was finally run under Windows. Visual Basic programmers, on the other hand, worked
in a programming environment that its critics derisively labeled a "drawing program." Visual Basic
automatically created a form (or window) whenever the developer began a new project. The developer
would then "draw" the user interface by dragging and dropping controls from a toolbox onto the form.
Finally, the developer would write code snippets that responded to particular events (such as the window
loading or the window being resized). In other words, Visual Basic's initial success was due to its ease of
use, which in turn reflected that Visual Basic offered a graphical programming environment that was
entirely consistent with the graphical character of Windows itself.

To get some sense of the revolutionary character of Visual Basic, it is instructive to compare a simple
"Hello World" program for Windows 3.0 written in C (see Example 1-1) with one written in Visual Basic
(see Example 1-2). While the former program is over two pages long, its Visual Basic counterpart takes
only three lines of code - and two of them are provided automatically by the Visual Basic environment
itself.

Example 1-1. "Hello World" in C

// "Hello World" example

//

// The user clicks a command button, and a "Hello World"

// message box appears.

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

 PSTR szCmdLine, int iCmdShow)

 {

 static char szAppName[] = "SayHello" ;

 HWND hwnd ;

 MSG msg ;

 WNDCLASSEX wndclass ;

 wndclass.cbSize = sizeof (wndclass) ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;

 wndclass.lpfnWndProc = WndProc ;

 wndclass.cbClsExtra = 0 ;

 wndclass.cbWndExtra = 0 ;

 wndclass.hInstance = hInstance ;

 wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION) ;

 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW) ;

 wndclass.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH) ;

 wndclass.lpszMenuName = NULL ;

 wndclass.lpszClassName = szAppName ;

 wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION) ;

 RegisterClassEx(&wndclass) ;

 hwnd = CreateWindow(szAppName, "Hello World",

 WS_OVERLAPPEDWINDOW,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CW_USEDEFAULT, CW_USEDEFAULT,

 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow(hwnd, iCmdShow) ;

 UpdateWindow(hwnd) ;

 while (GetMessage(&msg, NULL, 0, 0))

 {

 TranslateMessage(&msg) ;

 DispatchMessage(&msg) ;

 }

 return msg.wParam ;

 }

LRESULT CALLBACK WndProc(HWND hwnd, UINT iMsg, WPARAM wParam,

 LPARAM lParam)

 {

 int wNotifyCode ;

 HWND hwndCtl ;

 static HWND hwndButton ;

 static RECT rect ;

 static int cxChar, cyChar ;

 HDC hdc ;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PAINTSTRUCT ps ;

 TEXTMETRIC tm ;

 switch (iMsg)

 {

 case WM_CREATE :

 hdc = GetDC(hwnd) ;

 SelectObject(hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

 GetTextMetrics(hdc, &tm) ;

 cxChar = tm.tmAveCharWidth ;

 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC(hwnd, hdc) ;

 GetClientRect(hwnd, &rect) ;

 hwndButton = CreateWindow("BUTTON", "&Say Hello",

 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

 (rect.right-rect.left)/20*9,

 (rect.bottom-rect.top)/10*4,

 14 * cxChar, 3 * cyChar,

 (HWND) hwnd, 1,

 ((LPCREATESTRUCT) lParam) -> hInstance, NULL) ;

 return 0 ;

 case WM_SIZE :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rect.left = 24 * cxChar ;

 rect.top = 2 * cyChar ;

 rect.right = LOWORD (lParam) ;

 rect.bottom = HIWORD (lParam) ;

 return 0 ;

 case WM_PAINT :

 InvalidateRect(hwnd, &rect, TRUE) ;

 hdc = BeginPaint(hwnd, &ps) ;

 EndPaint(hwnd, &ps) ;

 return 0 ;

 case WM_DRAWITEM :

 case WM_COMMAND :

 wNotifyCode = HIWORD(wParam) ;

 hwndCtl = (HWND) lParam ;

 if ((hwndCtl == hwndButton) && (wNotifyCode == BN_CLICKED))

 MessageBox(hwnd, "Hello, World!", "Greetings", MB_OK) ;

 ValidateRect(hwnd, &rect) ;

 break ;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 case WM_DESTROY :

 PostQuitMessage (0) ;

 return 0 ;

 }

 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

 }

Example 1-2. "Hello World" in Visual Basic

Private Sub Command1_Click()

MsgBox "Hello, World", vbOKOnly Or vbExclamation, "Hi!"

End Sub

While Version 1.0 of Visual Basic was relatively underpowered, Microsoft displayed a firm commitment to
Visual Basic and worked very hard to increase its power and flexibility with each new release. By the time
Version 3.0 was released, Visual Basic offered a programming paradigm that was completely intuitive,
making it easy for novice programmers to get started and produce simple applications very quickly. At the
same time, particularly through its ability to access the Windows Application Programming Interface (API)
and through its support for add-on controls, Visual Basic had become a programming tool capable of
creating applications of considerable sophistication and complexity.

Like VB.NET, Visual Basic Version 4.0, which was released in 1995 to support Microsoft's 32-bit family of
operating systems, was a complete rewrite of Visual Basic. It featured limited support for object-oriented
programming in the form of class modules (CLS files) and the ability to generate not only Windows
executables, but ActiveX DLLs (also known as COM components) as well.

In the periods shortly before and after the release of VB 4, the character of programming changed
dramatically. The rise of the Internet as an application platform meant that standalone Windows
applications were becoming less and less necessary. The increased prominence of distributed
applications that assumed the presence of the Internet marked another change in programming
paradigms. Yet Visual Basic's real strength remained as it always had been: a great platform for
developing standalone Windows applications.

This disparity between Visual Basic's strengths and the prevailing programming paradigm, which
emphasized distributed applications and the Internet, created something of a contradiction. On the one
hand, Visual Basic excelled at graphically depicting the Windows interface. On the other hand, developers
were creating fewer and fewer Windows interfaces. Instead, they were now using Visual Basic primarily to
write source code that would eventually be compiled into middle-tier components. Ironically, a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programming environment whose real strength and point of departure was its graphical character was now
being used as a text editor, in very much the same way the first generation of Windows programmers used
text editors to create C source code for Windows applications.

Moreover, as the popularity of the Internet grew, it became clearer that Visual Basic was not a particularly
good platform for developing Internet applications. With VB 6, Microsoft introduced Web Classes as the
preferred technology for Internet application development. Yet, the metaphor presented by Web Classes
(which focused on separating a web application's presentation from its programmatic functionality) was
confusing to developers, and, as a result, Web Classes never became popular. While VB remained
critically important for developing middle-tier components for distributed applications, both it and the Visual
Basic community that grew up around it remained strangely isolated from the Internet as an application
platform.

Numerous detractors have labeled VB.NET as an entirely new language with little relationship to previous
versions of Visual Basic - a dubious innovation foisted on the Visual Basic community by Microsoft in an
attempt to sell a new version of its development products. However, we don't agree. Instead, we view the
introduction of VB.NET as a logical and even necessary step forward in the development of Visual Basic
as a premier programming language. The goal of VB.NET is to address the limitations of Visual Basic as a
development environment and bring it into the Internet age so that it can remain the major platform for
developing applications of all kinds. Very much like Visual Basic 1.0 offered a graphical interface that was
suitable for Windows applications, VB.NET and Visual Studio .NET aim to provide a graphical interface
that is suitable for developing web applications and for taking full advantage of the Internet as an
application-development platform, as well as for developing Windows applications and components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2 What Is VB.NET?

VB.NET is a programming language designed to create applications that work with Microsoft's new .NET
Framework. The .NET platform in turn addresses many of the limitations of "classic" COM, Microsoft's
Component Object Model, which provided one approach toward application and component
interoperability. These limitations included type incompatibilities when calling COM components,
versioning difficulties ("DLL hell") when developing new versions of COM components, and the need for
developers to write a certain amount of code (mostly in C++) to handle the COM "plumbing." In contrast to
VB, with its reliance on COM, VB.NET offers a number of new features and advantages. Let's take a look
at some of these.

1.2.1 Object Orientation

With the release of Version 4, Visual Basic added support for classes and class modules and in the
process became an object-oriented programming language. Yet the debate persists about whether Visual
Basic is a "true" object-oriented language or whether it only supports limited features of object orientation.

The debate centers around Visual Basic's support for inheritance, an object- oriented programming
concept that allows a class to derive its properties and its functionality from another class. Proponents of
the view that Visual Basic is object- oriented point to Visual Basic's support for interface-based
programming and the use of virtual base classes. Yet relatively few VB programmers take advantage of
interface-based programming. And interface-based programming itself does not allow a derived class to
inherit the functionality of a base class; only virtual base classes can be inherited using the Implements
keyword.

While the object-oriented character of previous versions of VB may be in doubt, there is no question that
VB.NET is an object-oriented programming language. In fact, even if VB.NET is used to write what
appears to be procedural code, it is object-oriented "under the hood," so to speak. Let's take as a simple
example the clearly procedural, nonobject-oriented program shown in Example 1-3. If we use ILDASM
(.NET's intermediate language disassembler) to look at the IL generated for this source code (see Figure
1-1), we see that internally, modMain is in fact defined as a class that has two methods, Increment and
Main.

Figure 1-1. A procedural program shown using ILDASM

Example 1-3. A procedural program for VB.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Module modMain

Public Sub Main()

 Dim x As Integer

 x = 10

 MsgBox(Increment(x))

End Sub

Private Function Increment(iVar As Integer)

 Return(iVar+1)

End Function

End Module

1.2.2 A Common Type System

Traditionally, one of the problems of calling routines written in other languages from Visual Basic or of
calling Visual Basic routines from other languages is that such inter-language calls presuppose a common
type system. This is the case when calling Win32 API functions from Visual Basic, but it is also applies to
attempts to call methods in a VB COM component from other languages or to call methods in a non-VB
COM component from VB.

For instance, until the addition of the AddressOf operator, which allows us to pass a pointer to a function or
subroutine, there was no way to provide a callback function, which is required by most Win32 API
enumeration functions. As another example, it is expected that members of structures passed to Win32
API functions be aligned on their natural boundaries, something that VB programmers had great difficulty
accomplishing.

Problems of type compatibility tended to occur most often when scripted applications were used to call and
pass arguments to COM components. An excellent example is the attempt to pass an array from a script
written in JScript to a COM component, since COM sees JScript arrays as a string of comma-delimited
values rather than a COM-compatible array (called a SafeArray).

The .NET platform removes these difficulties by providing a common type system. Ultimately, all data
types are either classes or structures defined by or inherited from the .NET Framework Class Library. This
common type system means that .NET components will be truly language-independent and that a .NET
component written in one language will be seamlessly interoperable with .NET components written in any
other .NET language. The problem of incompatible types simply disappears.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On the surface, VB has retained its old type system. VB still supports the Long data type, for instance,
although it is now a 64-bit data type instead of the 32-bit data type of VB 4 through VB 6. Casual
inspection of the code shown in Example 1-4 suggests that VB has retained its type system. However, if
we use ILDASM to examine the IL generated from this Visual Basic code, we see that VB data types are
merely wrappers for data types provided by the .NET Framework. (See Figure 1-2.)

Figure 1-2. Wrapping the .NET type system

Example 1-4. Using the Visual Basic type system

Public Module modMain

Public Sub Main()

Dim s As String = "This is a string."

Dim l As Long = 12344

Dim i As Integer = 10

End Sub

End Module

The simple program in Example 1-5 also supports this conclusion. The program instantiates an integer of
type Long, a standard Visual Basic data type. It then calls the ToString method - a method of the Int64

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class - to convert that number to its string representation. In other words, the variable l in Example 1-5 is
really an Int64 data type masquerading as a traditional VB Long data type.

Example 1-5. Calling .NET type methods from a VB data type

Public Module modMain

Public Sub Main()

Dim l As Long = 64.31245

Dim s As String

s = l.ToString

MsgBox(s)

End Sub

End Module

1.2.3 Access to System Services: The Framework Class Library

Ever since VB added support for calls to routines in the Windows and Win32 APIs, many Visual Basic
programmers came to regard API programming as a kind of black art. Not only was there a confusing and
seemingly limitless array of functions that might be called, but also passing parameters to routines and
receiving their return values often seemed to be a mysterious process. Moreover, with the growing
emphasis on object-oriented programming, the Win32 API, with its function-based approach to
programming, seemed more and more archaic.

Although the Declare statement remains in VB and programmers can still call the Win32 API and routines
in other external Windows DLLs, many of the common system services provided by the Win32 API, as
well as by some COM components, are now provided by the .NET Framework Class Library. The
Framework Class Library is a collection of types (classes, structures, interfaces, delegates, and
enumerations) organized into namespaces.

To get some sense of the difference in programming style between the Win32 API and the .NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Framework Class Library, as well as to appreciate the simplicity and ease with which the Framework Class
Library can be accessed, compare Examples 1-6 and 1-7. Example 1-6 is a VB 6 routine that creates a
value entry in the registry to load a particular program on Windows startup. Note that all API constants
must be defined, as must the API functions themselves.

In addition, the API functions must be called correctly. In particular, to avoid passing a BSTR rather than a
C null-terminated string to the RegSetValueEx function, the string must be passed using the ByVal
keyword. This is a common oversight that usually causes an application crash. In contrast, Example 1-7
shows the comparable VB.NET code that uses the RegistryKey class in the Microsoft.Win32 namespace
of the .NET Framework Class Library. Note that the code is short and simple and, therefore, far less error-
prone.

Example 1-6. Writing to the registry using the Win32 API

Private Const ERROR_SUCCESS = 0&

Private Const HKEY_CLASSES_ROOT = &H80000000

Private Const HKEY_CURRENT_CONFIG = &H80000005

Private Const HKEY_CURRENT_USER = &H80000001

Private Const HKEY_DYN_DATA = &H80000006

Private Const HKEY_LOCAL_MACHINE = &H80000002

Private Const HKEY_PERFORMANCE_DATA = &H80000004

Private Const HKEY_USERS = &H80000003

Private Const REG_SZ = 1

Private Const KEY_SET_VALUE = &H2

Private Declare Function RegCloseKey Lib "advapi32.dll" _

 (ByVal hKey As Long) As Long

Private Declare Function RegOpenKeyEx Lib "advapi32.dll" _

 Alias "RegOpenKeyExA" _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (ByVal hKey As Long, ByVal lpSubKey As String, _

 ByVal ulOptions As Long, ByVal samDesired As Long, _

 phkResult As Long) As Long

Private Declare Function RegSetValueEx Lib "advapi32.dll" _

 Alias "RegSetValueExA" _

 (ByVal hKey As Long, ByVal lpValueName As String, _

 ByVal Reserved As Long, ByVal dwType As Long, lpData As Any, _

 ByVal cbData As Long) As Long

Private Sub LoadByRegistry()

 Const cPGM As String = "C:\Test\TestStartup.exe"

 Dim hKey As Long, nResult As Long

 nResult = RegOpenKeyEx(HKEY_CURRENT_USER, _

 "Software\Microsoft\Windows\CurrentVersion\Run", 0, _

 KEY_SET_VALUE, hKey)

 If nResult = ERROR_SUCCESS Then

 RegSetValueEx hKey, "MyVBApp", 0, REG_SZ, ByVal cPGM, Len(cPGM)

 RegCloseKey hKey

 End If

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 1-7. -Writing to the registry using the Framework Class Library

Private Const cPGM As String = "C:\VB Forum\startup\TestStartup.exe"

Private Shared Sub LoadByRegistry()

 Dim oReg As RegistryKey = Registry.CurrentUser

 Dim oKey as RegistryKey = _

 oReg.OpenSubKey("Software\Microsoft\Windows\CurrentVersion\Run", _

 True)

 oKey.SetValue("MyVBApp", cPGM)

End

Sub

1.2.4 A Common Runtime Environment

Although VB had traditionally shielded the developer from many of the intricacies of Windows as an
operating system or of COM as a method for interoperability, nevertheless, some slight knowledge of how
the system worked was essential, or the developer was sure to run into trouble sooner or later. For
instance, consider the following code fragment for VB 6:

Dim oObj As New cSimpleClass

Set oObj = Nothing

If oObj Is Nothing Then

 ' Perform cleanup

End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because of an idiosyncrasy of VB, objects declared and instantiated using the New keyword on the same
line of code are not actually created until the first reference to that object. As a result, our attempt to
determine if the object oObj is Nothing instead recreates the object, and our cleanup code never executes.

This, at least, is usually a relatively benign error. Much more pernicious, however, are circular object
references, where COM objects hold references to one another and therefore cannot be released, even
though they've been set to Nothing in code. This situation creates a memory leak that eventually can result
in a General Protection Fault.

Under .NET, many problems like these are eliminated because of the .NET platform's Common Language
Runtime (CLR). The CLR, as its name clearly implies, provides a variety of services to applications and
processes running under the .NET platform, regardless of the language in which they were originally
written. These services include memory management and garbage collection. They also include a unified
system of exception handling, which makes it possible to use the same set of debugging tools on all code,
regardless of the particular .NET language in which it was written.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3 What Can You Do with VB.NET?

With its language enhancements and its tight integration into the .NET Framework, Visual Basic is a
thoroughly modernized language that will likely become the premier development tool for creating a wide
range of .NET applications. In the past, Visual Basic was often seen as a "lightweight" language that could
be used for particular kinds of tasks, but was wholly unsuitable for others. (It was often argued, sometimes
incorrectly, that you couldn't create such things as Windows dynamic link libraries or shell extensions
using Visual Basic.) In the .NET Framework, VB.NET emerges as an equal player; Microsoft's claim of
language independence - that programming language should be a lifestyle choice, rather than a choice
forced on the developer by the character of a project - is realized in the .NET platform.

This means that VB.NET can be used to create a wide range of applications and components, including
the following:

Windows console mode applications

Standard Windows applications

Windows services

Windows controls and Windows control libraries

Web (ASP.NET) applications

Web services

Web controls and web control libraries

.NET classes and namespaces

Accessing application object models (such as those of the individual applications in the Microsoft
Office suite) using COM automation

Most importantly, for the first time with the release of VB.NET, Visual Basic becomes an all-purpose
development environment for building Internet applications, an area in which it has traditionally been weak.
This means that the release of this newest version should revitalize Visual Basic, allowing it to remain the
tool of choice for developing state-of-the-art software for the next generation of software development.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Program Structure

VB.NET, unlike previous versions of Visual Basic, is fully object-oriented. Also unlike previous versions,
VB.NET is fully integrated with its underlying platform, the .NET Framework and the .NET Common
Language Runtime. As shown in this chapter, these two factors, perhaps more than any others, influence
the structure of a VB.NET program.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1 Getting a VB Program to Run

Any Visual Basic executable - i.e., a Windows Forms or Windows console application - has a single
application-level entry point, a subroutine named Main. Main must be a method of the executed class.

The web applications (either ASP.NET applications or web service applications)
that you develop with Visual Studio are not executables. They exist as dynamic link
libraries (DLLs) in the system's disk storage. ASP.NET applications may also rely
on just-in-time compilation and be resident solely in memory.

Main must not only exist, it must also be:

A public routine

In VB 6, Main could be either public or private. In VB.NET, it must be public to be visible as an entry
point.

A static or shared routine

Its declaration must include the Shared keyword. A single Main method must be shared by all
application instances; it cannot be an instance method. Thus, all methods called by Main must also
be static (or shared) methods; a shared method is unable to invoke an instance method.

This section focuses on executable programs. These programs exclude code
libraries, as well as ASP.NET applications and web service applications, all of
which are compiled as dynamic link libraries.

2.1.1 Console Applications

The requirement that there must be a subroutine named Main capable of serving as the executable's entry
point is clear in a console application like the one shown in Example 2-1. The routine creates a module
named modMain; that module in turn contains a subroutine named Main, which is the sole executable
routine in the application. At runtime, Main serves as the program entry point; the Common Language
Runtime finds the Main procedure, displays a message to the console, and then terminates the program.

Example 2-1. A simple console application

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Public Module modMain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub Main

 Console.WriteLine("This is a console application.")

End Sub

End Module

The code in Example 2-1 should be familiar to Visual Basic programmers, since it depicts one of the
methods used to define a program entry point in VB 6. In VB 6, this program would be stored in a separate
standard module (.bas) file, which is shown in Example 2-2. As long as Main is identified as the startup
point for the Visual Basic project, the VB runtime would find Main and execute it.

Example 2-2. A VB 6 version of a simple console application

Option Explicit

Private Sub Main()

 MsgBox "A simple console application."

End Sub

Although the VB.NET program in Example 2-1 seems similar to the VB 6 program in Example 2-2, under
the hood, we would find important differences. If we use ILDASM to graphically depict the members of the
VB.NET console application, as Figure 2-1 shows, we see that the VB.NET compiler translates our code
module into a public class and gives it a single method, Main. If we examine the intermediate language (or
IL) for Main (see Figure 2-2), we see that it is marked as the program entry point and that it is a shared
method, rather than an instance method. The VB.NET compiler and the .NET Common Language
Runtime, it would seem, have transformed our simple code module into a self-executing class.

Figure 2-1. The modMain module in ILDASM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-2. IL for the Main procedure

2.1.2 Windows Forms Applications

The notion of a self-executing class is novel. [1] However, if we use Visual Studio .NET to create the simple
Windows Forms application shown in Example 2-3, it is unclear exactly how the application is able to start,
since the only entry point appears to be New, the class constructor. Because New executes when the New
keyword is encountered (and as a result, the class is instantiated), it clearly cannot serve as a program
entry point.

[1] If you designate a form as an application's startup object, previous versions of Visual Basic appear to create self-executing forms. This

appearance applies only to forms, not to other Visual Basic classes (.cls files). In fact, it's not really true of forms; Visual Basic supplies the

startup code, which includes the code used to instantiate the startup form. The program entry point is not located in the form.

Example 2-3. A simple Windows Forms application

Public Class Form1

 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer generated code "

 Public Sub New()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Friend WithEvents Button1 As System.Windows.Forms.Button

 <System.Diagnostics.DebuggerStepThrough()> _

 Private Sub InitializeComponent()

 Me.Button1 = New System.Windows.Forms.Button()

 Me.SuspendLayout()

 '

 'Button1

 '

 Me.Button1.Location = New System.Drawing.Point(104, 48)

 Me.Button1.Name = "Button1"

 Me.Button1.Size = New System.Drawing.Size(88, 48)

 Me.Button1.TabIndex = 0

 Me.Button1.Text = "Button1"

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(292, 165)

 Me.Controls.AddRange(New System.Windows.Forms.Control() {Me.Button1})

 Me.Name = "Form1"

 Me.Text = "Form1"

 Me.ResumeLayout(False)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

#End Region

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 MsgBox("This is a Windows Forms application.")

 End Sub

End Class

However, ILDASM gives a slightly different picture of this Windows Forms application. In Figure 2-3, we
see that in addition to the methods defined in the source code either by us or in the code autogenerated by
Visual Studio, the VB.NET compiler has generated a Main method automatically and transparently.

When examining the IL for the Main method (see Example 2-4), it becomes clear why code for the Main
method is not more obvious and how the method itself works. As Example 2-4 shows, the method is
declared public but is marked as hidden. Once again, the method is declared static or shared. The method
operates by invoking the class constructor, then calling the Application object's Run method to launch an
instance of the form. Note that the Application object's Run method is a shared or static method, rather
than an instance method.

Figure 2-3. The Windows Forms application in ILDASM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-4. IL for the Main method

.method public hidebysig static void Main() cil managed

{

 .entrypoint

 .custom instance void

 [mscorlib]System.STAThreadAttribute::.ctor() = (01 00 00 00)

 // Code size 14 (0xe)

 .maxstack 8

 IL_0000: nop

 IL_0001: newobj instance void WinApp1.Form1::.ctor()

 IL_0006: call void

 [System.Windows.Forms]System.Windows.Forms.Application::Run(

 class [System.Windows.Forms]System.Windows.Forms.Form)

 IL_000b: nop

 IL_000c: nop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IL_000d: ret

} // end of method Form1::Main

We can simplify our Windows Forms application by coding outside of Visual Studio. The result is shown in
Example 2-5.

Example 2-5. A simple Windows forms application created without Visual Studio

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.ComponentModel

Imports System.Windows.Forms

Public Class MyForm

 Inherits Form

 Public Shared Sub Main()

 Application.Run(New MyForm)

 End Sub

 Public Sub New()

 MyBase.New()

 End Sub

 Public Sub Form_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox("The Windows Forms application.")

 End Sub

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2 The Structure of a VB Program

Broadly speaking, programs can be either procedure driven or event driven. In a procedure-driven
program, program flow is predefined. A classic example is a console application: program flow begins at
the program entry point (in the case of a .NET console application, it begins with the Main routine) and
proceeds along a predictable path until it reaches program termination. In an event-driven program, on the
other hand, program flow is not predetermined and is instead controlled by external events (i.e., by the
program's interaction with the user and the system), and possibly by internal events as well.

From the perspective of program structure, the difference between procedure-driven and event-driven
programs is less sharp than is usually thought. Both rely on a procedure as an entry point, which in turn
can call other functions and subroutines that are visible to it. The major difference is that a procedure-
driven program has a single entry point, whereas an event-driven program has multiple entry points. For
event-driven programs, these entry points (in addition to the required Main procedure) are event handlers,
which are invoked automatically by the .NET Common Language Runtime in response to an event within
the code itself or in its environment.

Therefore, regardless of whether an application is procedure driven or event driven, Visual Basic code can
be divided into three main categories:

Entry point code

For procedural applications, this code is a routine named Main. For an event-driven application, it is
a routine named Main, supplemented by code that you write to handle events such as a button
being clicked by the user. These latter procedures are called event handlers.

Custom procedures

In these procedures, you create the main functionality of your application. When these custom
procedures are located within a class, they are termed methods and are typically used to perform an
operation.

Property procedures

These procedures are used in form and class modules, typically to retrieve or set the value of a
class attribute.

For the rest of this section, we'll discuss program structure by focusing on applications that fire events,
which ultimately control program flow.

2.2.1 Events: The Starting Point

Aside from the obligatory Sub Main, which serves as the initial entry point for an application, an event
provides an entry point into your code for any event-driven program. In other words, once the application is
launched and the code in the application entry point has executed, an application can have numerous
entry points that are invoked by the Common Language Runtime in response to particular events. An
event can be system generated, such as the Load event of a form or a Timer control event, or it can be a
user-generated event, such as the Click event on a command button. In can also be a custom event that
you define in your code. For example, a stock monitoring application might generate a Positive event when

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a stock's value changes from negative to positive, and a Negative event when its value changes from
positive to negative.

For a discussion of events and the way in which procedures can be defined to
handle events, see Chapter 7.

2.2.1.1 Windows Forms events

For a Windows Form application in which a form serves as the startup object, the order of execution of
code is as follows:

The Main procedure
The New constructor
The Load event
The Activated event
The Closing event
The Closed event
The Dispose event

Individual controls also expose events.

2.2.1.2 ASP.NET events

ASP.NET exposes a more complex event model, in which events can be trapped at the application,
session, and page level. Table 2-1 illustrates the sequence of application, session, and page events for an
ASP.NET application.

Table 2-1. ASP.NET events

Event Type Description

Start Application Fired when the application starts. The event handler must reside in global.asaz.

Start Session
Fired when a user session is created. The event handler must reside in
global.asaz.

Init Page Fired when the page is initialized.

Load Page Fired when the page is loaded.

PreRender Page Fired when the page is about to be rendered.

Unload Page Fired when the page is unloaded.

Disposed Page Fired when the page is released from memory.

End Session Fired when a user session ends or times out.

End Application Fired when an application ends. The event handler must reside in global.asaz.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Individual controls also expose events.

For a full discussion of the events that fire when an object reference becomes null
or when an application ends, see Section 4.3.8 in Chapter 4.

2.2.1.3 Event arguments

Typically, when an event is fired, the CLR passes two arguments to the event handler:

sender

An object of type Object that represents the instance of the class raising the event
e

An object of type EventArgs or of a type derived from EventArgs that contains information about the
event

For example, Example 2-6 shows an event handler for a Button object's Click event in a Windows
application.

Example 2-6. A Button object's event handler

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.Drawing

Imports System.Windows.Forms

Public Class CEvent

 Inherits System.Windows.Forms.Form

Friend WithEvents oBtn As Button

Private Sub New()

 oBtn = New Button

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim x As Integer = CInt(Me.Width/2 - oBtn.Width / 2)

 Dim y As Integer = CInt(Me.Height/2 - oBtn.Height / 2)

 Me.oBtn.Location = New System.Drawing.Point(x, y)

 Me.oBtn.Text = "Event Information"

 Me.Controls.Add(oBtn)

End Sub

Public Shared Sub Main

 Application.Run(New CEvent)

End Sub

Private Sub oBtn_Click(sender As Object, e As EventArgs) _

 Handles oBtn.Click

 MsgBox(sender.GetType.ToString & vbCrLf & _

 e.GetType.ToString)

End Sub

End Class

When the event is fired, the dialog shown in Figure 2-4 is displayed.

Figure 2-4. A dialog box displaying event information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The EventArgs class itself has no useful members; all of its members are inherited from the Object class.
Most event handlers are passed an instance of the EventArgs class. Sometimes, however, the event
handler is passed useful information about the event. In this case, the event handler's second parameter is
an instance of a class derived from EventArgs; its added members provide information about the event.
For example, the Button and ImageButton controls in the System.Web.UI.WebControls namespace raise a
Command event that is fired when the control is clicked. Instead of an instance of the EventArgs class, the
CLR passes the event handler an instance of the CommandEventArgs class. It has the following
properties:

CommandName property

The name of the command to be executed. It corresponds to the Button or ImageButton control's
CommandName property.

CommandArgument property

Any optional arguments passed along with the command.

In some cases, an event's default action can be cancelled by modifying the member of the class instance
derived from EventArgs. For instance, the CancelEventArgs class is derived from EventArgs and is the
base class of InputLanguageChangingEventArgs, TreeViewCancelEventArgs, and PrintEventArgs. By
setting its Cancel property to True, you can cancel a pending application print job programmatically, cancel
a change of language, or cancel the checking, expansion, collapse, or selection of a TreeView item.

2.2.2 Calling Routines from Event Handlers

An event handler, in turn, can call methods, functions, or procedures and can set and retrieve property
values. These values can reside in the .NET Framework Class Library, or they can be custom functions in
code modules or methods in custom classes that you wrote. For example, in Example 2-7, the Click event
from a Button control named btnSave demonstrates this approach to event handling.

Example 2-7. Calling an external routine from an event handler

Private Sub btnSave_Click(sender As Object, e As EventArgs) _

 Handles btnSave.Click

Try

 If SaveDetails(strFileName) Then

 MsgBox("Details Saved OK", vbInformation)

 Else

 MsgBox("Details have not been saved", vbCritical)

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Catch ex As Exception

 MsgBox(ex.Message)

End Try

End Sub

Because the SaveDetails method contains all the code to actually save the details, the function can be
called from anywhere in the class.

2.2.3 Writing Custom Procedures

Placing all code in event handlers is often inconvenient. Particularly when more than one event handler
needs to execute the same code, it is preferable to write that code only once and call it from each event
handler or any other routine that needs to access it. For this purpose, Visual Basic supports custom
procedures. To create a new procedure, move to the bottom of the code window and type the Function or
Sub definition before the End Module or End Class statement.

The three main types of custom procedures in Visual Basic include:

Functions

Sub procedures

Properties

2.2.3.1 Functions

A function is a collection of related statements and expressions used to perform a particular task. When it
completes execution, the function returns a value to the calling statement. If you don't specify an explicit
return value for the function, the default value of the return data type is returned. If you write a custom
function in a class module and declare it as Public, it will become a class method.

Here's a quick example of a function used to provide a minimum number:

Private Function MinNumber(ByVal iNumber As Integer) As Integer

 If iNumber >= 500 Then

 MinNumber = iNumber

 Else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MinNumber = 500

 End If

End Function

Because functions return a value, you can use them as part of an expression in place of a value. In the
following snippet, the string passed to the VB Instr function is a custom function that returns the customer
name corresponding to a customer code:

If InStr(1, GetCustomerName(sCustCode), "P") > 0 Then

For full details on the syntax and use of functions, see the entry for the Function statement in Chapter 10.

2.2.3.2 Sub procedures

A Sub procedure is used just like a function, except it does not return a value and therefore cannot be
used as part of an argument. Visual Basic uses Sub procedures to provide event handling.

Generally, you should use functions rather than Subs to create custom procedures. Functions allow you to
return a value, which, minimally, could be a Boolean True or False, to inform the caller that the function
has succeeded or failed. Tests indicate that there is no performance hit for coding a routine as a function
instead of a procedure.

Like a function, if you write a custom Sub in a class module and declare it as Public, it will become a class
method.

For full details of the syntax and use of Sub procedures, see the entry for the Sub statement in Chapter
10.

2.2.3.3 Property procedures

Property procedures are specialized procedures used to assign and retrieve custom property values. They
can only be included in class definitions marked by the Class...End Class statement. Property procedures
are defined within a Property...End Property statement and can take either of two forms:

Property accessors

Retrieve the value of a property, returning it to the caller
Property mutators

Assign a value to or modify a property's value

Example 2-8, which defines a simple class with only one property, illustrates the syntax for property
procedures.

Example 2-8. A property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Class CPerson

Dim sName As String

Public Property Name As String

 Get ' Property accessor

 Return sName

 End Get

 Set ' Property mutator

 sName = Value

 End Set

End Property

End Class

Internally, properties are implemented as methods. Visual Basic implements each property accessor as a
get_propertyname method, while each mutator is implemented as a set_propertyname method. This
implementation is evident in Figure 2-5, in which ILDASM displays two additional methods for the CPerson
class that we created in Example 2-8, and Figure 2-6, in which ILDASM displays the IL for the Name
property and shows that property references are resolved as separate calls to the get_Name and
set_Name methods.

Figure 2-5. CPerson class members

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 2-6. IL for the Name property

2.2.4 Controlling Execution Flow

Now you've got your event handlers. These handlers will spring into life when the user clicks a button or a
form loads. You've also written some useful functions that do all the work behind the scenes. How do you
link the two together?

2.2.4.1 Calling sub and function procedures

Methods and functions or procedures can be called in one of two ways. In the case of a procedure, or in
the case of a method or function whose return value is to be discarded, the Call statement can be used.
Its syntax is:

Call routine([argumentlist])

where routine is the name of the function, procedure, or a class or class instance along with the name of
its method, and argumentlist is a comma-delimited list of arguments expected by the routine. The
argument list must always be enclosed in parentheses. For example:

Call Console.WriteLine("The Save operation completed successfully.")

or

Call SaveDetails(sFileName)

The Call statement can also be omitted. If it is omitted, the syntax for a method or function whose return
value is being stored to a variable is:

retval = routine([argumentlist[)

where retval is the function or method's return value, routine is the name of the function, procedure, or a
class (or class instance along with its method), and argumentlist is a comma-delimited list of arguments
expected by the routine. The argument list must always be enclosed in parentheses. The syntax for a
method or procedure that does not return a value is:

routine([argumentlist])

Note again that the argument list must be enclosed in parentheses. This requirement contrasts with VB 6,
which allows only a single parameter to be enclosed in parentheses in this instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.4.2 Setting and retrieving property values

Property values can be set using a simple assignment statement with the property on the left side of the
equals sign. The syntax is:

object.property = value

where object is the name of a shared class or an object instance, property is the property name, and
value is the value to be assigned to the property. When dealing with property arrays (an array or collection
of property values), an index into the property array is also required. The syntax is:

object.property(index) = value

where index is the zero-based ordinal position of the property array element whose value is to be
changed, or the key value if the property array supports access by keys.

Property values can also be retrieved by using a simple assignment statement with the property on the
right side of the equals sign. The syntax is:

value = object.property

where value is the value of the property, object is the name of a shared class or an object instance, and
property is the property name. When dealing with property arrays (an array or collection of property
values), an index into the property array is also required. The syntax is:

value = object.property(index)

where index is the zero-based ordinal position of the property array element whose value is to be
changed, or the key value if the property array supports access by keys.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Variables and Data Types

Many programmers take the concept of a variable for granted. In this chapter, we take a close look at
variables and their properties, discussing such things as the scope and lifetime of a variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1 Variables

A variable can be defined as an entity that has the following six properties:

Name

A variable's name is used to identify the variable in code. In VB.NET, a variable name can start with
a Unicode alphabetic character or an underscore, and can be followed by additional underscore
characters or various Unicode characters, such as alphabetic, numeric, formatting, or combined
characters.

Address

Every variable has an associated memory address, which is the location in memory at which the
variable's value is stored. Note that in many circumstances, the address of a variable will change
during its lifetime, so it would be dangerous to make any assumptions about this address.

Type

The type of a variable, also called its data type, determines the possible values that the variable can
assume. We discuss data types in detail later in the chapter.

Value

The value of a variable is the contents of the memory location at the address of the variable. This is
also sometimes referred to as the r-value of the variable, since it is what really appears on the right
side of an assignment statement. For instance, in the code:

Dim i As Integer

Dim j As Integer

i = 5

j = i

the final statement can be read as "assign the value of i to memory at the address of j." For similar
reasons, the address of a variable is sometimes called its l-value.

Scope

The scope of a variable determines where in a program that variable is visible to the code. Scope is
discussed in detail in the next section.

Lifetime

A variable's lifetime determines when and for how long a particular variable exists. It may or may not
be visible (that is, be in scope) for that entire period. For a detailed discussion of lifetime, see
Section 3.1.2 section later in this chapter.

3.1.1 Variable Scope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Variables (and constants) have a scope, which indicates where in the program the variable is recognized
or visible to the code - that is, where it can be referred to in code.

3.1.1.1 Local variables: block-level and procedure-level scope

If a variable is declared inside a code block (a set of statements that is terminated by an End..., Loop, or
Next statement), then the variable has block-level scope; that is, it is visible only within that block.

For example, consider the following code:

If x <> 0 Then

 Dim rec As Integer

 rec = 1/x

End If

MsgBox CStr(rec)

In this code, the variable rec is not recognized outside the block in which it is defined, so the final
statement produces an error.

It is important to note that the lifetime of a variable always refers to the entire procedure, even if the
variable's scope is block-level. (We discuss this in Section 3.1.2 later in this chapter.) This implies that if a
block is entered more than once, a block-level variable will retain its value from the previous time the block
code was executed.

A variable declared using the Dim keyword within a Visual Basic procedure but not within a code block has
procedure-level scope. Its scope consists of the procedure in which it is declared.

A variable that has block-level scope or procedure-level scope is called a local variable. One of the
advantages of local variables is that the same name can be used in different procedures without conflict,
since each variable is visible only to its own procedure. Another is that the memory allocated to the
variable can be released as soon as control leaves the procedure, making our code easier to maintain.

3.1.1.2 Module-level and project-level scope

There are differences in the way scope is handled for variables declared in the Declarations section of a
standard module and a class module. We restrict our discussion here to standard modules, postponing a
discussion of class modules until Chapter 4.

We first note that a standard module itself can be declared using one of the access modifiers Public,
Friend, or Private (this is the default). Using such a modifier simply restricts the individual members to
that level of access at most. Thus, for instance, a Public variable declared in a Friend module has only
Friend scope.

3.1.1.2.1 Private access

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A variable declared in the Declarations section of a standard module using the Private access modifier
has module-level scope; that is, it is visible in the entire module, but nowhere else. Using the Dim keyword
also gives the variable module-level scope, but its use is not as clear and should be avoided for readability
sake.

3.1.1.2.2 Friend access

A variable declared in the Declarations section of a standard module using the Friend access modifier is
visible in the entire project and thus has project-level scope. However, it is not visible to other projects.

3.1.1.2.3 Public access

A variable declared in the Declarations section of a Public standard module using the Public access
modifier is visible not only to the project in which it is declared, but also to any external project that holds a
reference to the project. For instance, consider the following module declared in Project1:

Public Module Module1

 Public iModulePublic As Integer

 Friend iModuleFriend As Integer

End Module

If Project2 has a reference to Project1, then we can write:

Project1.Module1.iModulePublic = 100

However, the code:

Project1.Module1.iModuleFriend = 100

generates a "not accessible" syntax error.

3.1.2 Variable Lifetime

Variables also have a lifetime. The difference between lifetime and scope is quite simple. Lifetime refers to
when, or at what time during program execution the variable is valid; scope refers to where in the program
the variable is recognized by (visible to) the code.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()

 Dim LocalVar As Integer = 0

 Call ProcedureB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LocalVar = 1

End Sub

Note that LocalVar is a local variable. When the line:

Call ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being executed, the
variable LocalVar is out of scope since it is local to ProcedureA. But it is still valid. In other words, the
variable still exists and has a value. It is simply not accessible to the code in ProcedureB. In fact,
ProcedureB could also have a local variable named LocalVar, which would have nothing to do with the
variable of the same name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

LocalVar = 1

which is a valid instruction, since the variable LocalVar is back in scope.

Thus, the lifetime of the local variable LocalVar extends from the moment ProcedureA is entered to the
moment it is terminated, including the period during which ProcedureB is being executed as a result of the
call to this procedure, even though during that period, LocalVar is out of scope.

We mention again that the lifetime of a block-level variable is the lifetime of the procedure in which it is
defined.

3.1.2.1 Static variables

We have seen that a variable may go in and out of scope during its lifetime. However, once the lifetime of
a variable expires, the variable is destroyed and its value is lost. It is the lifetime that determines the
existence of a variable; its scope determines its visibility.

Thus, consider the following procedures:

Sub ProcedureA()

 Call ProcedureB

 Call ProcedureB

 Call ProcedureB

 Call ProcedureB

 Call ProcedureB

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sub ProcedureB()

 Dim x As Integer

 x = 5

 . . .

End Sub

When ProcedureA is executed, it simply calls ProcedureB five times. Each time ProcedureB is called, the
local variable x is created anew and destroyed at the end of that call. Thus, x is created and destroyed five
times.

Normally, this is just what we want. However, there are times when we would like the lifetime of a local
variable to persist longer than the lifetime of the procedure in which it is declared. For example, we may
want a procedure to do something special the first time it is called, but not in subsequent times.

A static variable is a local variable whose lifetime is the lifetime of the entire program. The following VB
code shows how one might use a static variable:

Sub test()

Static bFirstTime As Boolean = True

If bFirstTime Then

 Debug.WriteLine("first time")

 bFirstTime = False

Else

 Debug.WriteLine("not first time")

End If

End Sub

Note that we can initialize a static variable, provided that we do so within the variable declaration . The
following code illustrates this point:

Sub StaticTest()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Static st As Boolean = True ' initialize static variable

 MsgBox(st)

 st = False

End Sub

Private Sub button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles button1.Click

 StaticTest()

End Sub

The first time we hit the button1 command button, StaticTest displays the message True, because the
static variable st has been initialized to True. However, all subsequent times we hit the button, StaticTest
returns False. This ability to initialize a static variable was missing and was a very annoying oversight in
earlier versions of VB.

We could accomplish the same effect by using a module-level variable to keep a record of whether the
procedure has been called, instead of a static local variable. However, it is considered better programming
style to use the most restrictive scope possible, which, in this case, is a local variable with an "extended"
lifetime. This helps prevent accidental alteration of the variable in other portions of the code. (Remember
that this code may be part of a much larger code module, with a lot of things going on.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2 Declaring Variables and Constants

A variable declaration is an association of a variable name with a data type. In and of itself, this does not
imply variable creation. However, for nonobject variables, a variable declaration does create a variable. A
declaration such as:

Dim x As Integer

creates an Integer variable named x. We can also write:

Dim x As Integer = New Integer()

which emphasizes the role of the constructor function for the Integer data type. (The constructor is the
function that VB.NET uses to create the variable.)

When multiple variables are declared on the same line, if a variable is not declared with an explicit type
declaration, then its type is that of the next variable with an explicit type declaration. Thus, in the line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type Variant, which
is VB 6's default data type.)

VB.NET permits the initialization of variables in the same line as their declaration (at long last!). Thus, we
may write:

Dim x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more than one
variable on a single line:

Dim x As Integer = 6, y As Integer = 9

Note that in this case, each variable that you declare must explicitly be assigned a data type. You cannot
assign each variable an explicit value without explicitly declaring the data type of each variable.

Object variables are declared in the same manner:

Dim obj As MyClass

However, this declaration does not create an object variable, and the variable is equal to Nothing at this
point. Object creation requires an explicit call to the object's constructor, as in:

Dim obj As New MyClass()

or:

Dim obj As MyClass = New Myclass()

or:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim obj As MyClass

obj = New MyClass()

Variables and constants can be declared with any of the following access modifiers:

Public

Private

Friend

Protected

Protected Friend

Note also that the Dim keyword can be used as well, but it often defaults to one of the previously
mentioned access modifiers. This is potentially confusing, so the Dim keyword should be used only when
required, as it is for local variables.

Access modifiers help to specify the scope and accessibility of the variable. We discuss the meaning of
these access variables in detail in Chapter 4.

Constant declarations are analogous to variable declarations and have the form:

AccessModifier Const Name As Type = Value

where AccessModifier is one of the access modifiers defined earlier. Note that when Option Strict is On
(the default), all constant declarations must have a declared type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3 Data Types

The .NET Common Language Runtime (CLR) includes the Common Type System (CTS), which defines
the data types that are supported by the CLR. Thus, each of the languages in the .NET Framework (VB,
C#, JScript, and Managed C++) implements a subset of a common set of data types. We say subset
because, unfortunately, not all of the CTS types are implemented by VB.NET. For instance, the CTS
includes some unsigned integer data types that are not implemented in VB.

As an aside, it is possible to use the VB-unsupported data types in VB by direct use of the corresponding
Framework Class Library class. Here is an example illustrating the ability to use the unsigned 16-bit
integer data type, whose range of values is 0 to 65,535. Note the use of the ToUInt16 method of the
Convert class to actually get an unsigned 16-bit integer:

Dim ui As UInt16

ui = Convert.ToUInt16(65535)

MsgBox(ui.ToString)

Thus, the native VB data types are wrappers for the CTS data types. To illustrate, the VB Integer data type
is a wrapper for the Int32 structure that is part of the .NET Framework's System namespace. One of the
members of the Int32 structure is MaxValue, which returns the maximum value allowed for this data type.
Thus, even though MaxValue is not officially part of VB.NET (nor is it mentioned in the VB documentation),
we can write:

Dim i As Integer

MsgBox(i.Maxvalue) ' Displays 2147483647

3.3.1 Value and Reference Types

The types defined in the CTS fall into three categories:

Value types

Reference types

Pointer types

However, pointer types are not implemented in VB, so we will not discuss these types.

The difference between value and reference types is how variables of the corresponding type represent
that type. When a value-type variable is defined, as in:

Dim int As Integer = 5

a memory location is set aside to hold the actual data (in this case the number 5). In contrast, when a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reference-type variable is defined, as in:

Dim obj As New CEmployee

the VB compiler creates the object in memory, but then sets the variable obj to a 4-byte memory location
that contains the address of the object.

In short, value-type variables contain the data, whereas reference-type variables point to the data.

The distinction between value type and reference type has several consequences, one of which is in the
way assignments work. To illustrate, consider the following class, which has a single property:

Public Class MyClass

 Public Age As Short

End Class

and the structure MyStruct, also with a single property:

Structure MyStruct

 Public Age As Short

End Structure

Classes are reference types, whereas structures are value types. Now consider the following code, which
is thoroughly commented:

' Declare two class variables and two structure variables.

Dim objRef1 As MyClass

Dim objRef2 As MyClass

Dim objValue1 As MyStruct

Dim objValue2 As MyStruct

' Instance the class.

objRef1 = New MyClass()

' Set the Age property to 20.

objRef1.Age = 20

' Set the second variable to the first variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' This is an equating of object *references* because

' classes are reference types.

objRef2 = objRef1

' Set the Age property of objRef2 to 30.

objRef2.Age = 30

' Check the values of the Age property.

Debug.WriteLine(objRef1.Age)

Debug.WriteLine(objRef2.Age)

' Do the same thing with the structure

' Instance the structure.

objValue1 = New MyStruct()

' Set the Age property to 20.

objValue1.Age = 20

' Set the second variable to the first variable.

' This is an equating of object *values* because

' structures are value types.

objValue2 = objValue1

' Set the Age property of objValue2 to 30.

objValue2.Age = 30

' Check the values of the Age property.

Debug.Writeline(objValue1.Age)

Debug.Writeline(objValue2.Age)

Now, the output is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30

30

20

30

To understand what is happening, we need to realize that the reference assignment:

objRef2 = objRef1

sets both variables to the same value. But that value is the address of the object, and so both variables
point to the same object. Hence, when we change the Age property using the second variable, this change
is also reflected in the first variable.

On the other hand, the value assignment:

objValue2 = objValue1

causes a second structure to be created, setting the new structure's properties to the same value as the
original structure. Thus, changing one structure's Age property does not affect the other structure's Age
property.

Note that the VB Array type is also a reference type. To illustrate, consider the following code:

Dim iArray1() As Integer = {1, 2, 3}

Dim iArray2() As Integer

iArray2 = iArray1

iArray1(0) = 100

msgbox(iArray2(0))

The message box displays 100, indicating that both array variables point to the same array.

The String data type is a reference type, implemented by the String class. However, it has some
characteristics of a value type. To illustrate, consider the following code:

Dim s1, s2 As String

s1 = "String 1"

s2 = s1

s2 = "String 2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MsgBox(s1)

Since this is a reference type, we would expect the last line to produce the message "String 2", but
instead we get "String 1". The reason can be found in Microsoft's documentation:

An instance of String is "immutable" because its value cannot be modified once it has been created.
Methods that appear to modify a String actually return a new instance of String containing the
modification.

Thus, the code:

s2 = s1

points s2 to the same string as s1, as is usual with reference types. Then the attempt to modify the string
in the code:

s2 = "String 2"

does not produce the expected result because strings are immutable. Instead, we get a new string pointed
to by s2, while s1 retains its value.

The following code supports this conclusion:

Dim s1, s2 As String

s1 = "String 1"

' s2 poitns to same string as s1

s2 = s1

' Show s2 before any changes to the string

MsgBox(s2) ' Displays "String1"

' Change the string

s2 = "String 2"

' Set s1 to Nothing

s1 = Nothing

' Now s1 is nothing and displays accordingly

MsgBox(s1) ' Displays nothing

' s2 is a new string

MsgBox(s2) ' Displays "String 2"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enjoy!

3.3.2 VB Data Types: A Summary

The following lists the data types supported by VB.NET, along with their underlying .NET type, storage
requirements, and range of values:

Boolean

.NET CTS type: System.Boolean

Type: Value (Structure)

Storage: 2 bytes

Value range: True or False
Byte

.NET CTS type: System.Byte

Type: Value (Structure)

Storage: 1 byte

Value range: 0 to 255 (unsigned)
Char

.NET CTS type: System.Char

Type: Value (Structure)

Storage: 2 bytes

Value range: A character code from 0 to 65,535 (unsigned)
Date

.NET CTS type: System.DateTime

Type: Value (Structure)

Storage: 8 bytes

Value range: January 1, 1 CE to December 31, 9999
Decimal

.NET CTS type: System.Decimal

Type: Value (Structure)

Storage: 12 bytes

Value range: +/-79,228,162,514,264,337,593,543,950,335 with no decimal point; +/-
7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest nonzero

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number is +/-0.0000000000000000000000000001
Double (double-precision floating point)

.NET CTS type: System.Double

Type: Value (Structure)

Storage: 8 bytes

Value range: -1.79769313486231E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Integer

.NET CTS type: System.Int32

Type: Value (Structure)

Storage: 4 bytes

Value range: -2,147,483,648 to 2,147,483,647
Long (long integer)

.NET CTS type: System.Int64

Type: Value (Structure)

Storage: 8 bytes

Value range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Object

.NET CTS type: System.Object

Type: Reference (Class)

Storage: 4 bytes

Value range: Any type can be stored in an Object variable.
Short

.NET CTS type: System.Int16

Type: Value (Structure)

Storage: 2 bytes

Value range: -32,768 to 32,767
Single (single precision floating point)

.NET CTS type: System.Single

Type: Value (Structure)

Storage: 4 bytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value range: -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to 3.402823E38
for positive values

String (variable-length)

.NET CTS type: System.String

Type: Reference (Class)

Storage: 10 bytes + (2 * string length)

Value range: 0 to approximately 2 billion Unicode characters
User-Defined Type (structure)

.NET CTS type: (inherits from System.ValueType)

Type: Value (Structure)

Storage: Sum of the sizes of its members

Value range: Each structure member has range determined by its data type and is independent of
the ranges of the other members.

Note that the CTS data types are either structures (which are value types) or classes (which are reference
types) and are located within the .NET System namespace.

3.3.3 Simple Data Types in Visual Basic

In this section, we discuss data types in general and VB.NET data types in particular.

Simple data types can be classified into groups as follows. Note that these groups are not mutually
exclusive:

Numeric data type

A data type in which the underlying set is a set of numbers and for which the set of operations
includes the arithmetic operations.

Integer data type

A numeric data type in which the underlying set is a set of integers. (As we will see, VB has several
integer data types.)

Floating-point data type

A noninteger data type whose underlying set is a subset of the rational numbers.
Boolean data type

A data type whose underlying set has size 2. This set is usually thought of as {True, False}.
Character data type

A data type whose underlying set is a set of characters. Of course, each value must be represented
in memory as a binary string, which can also be interpreted as a number. Nevertheless, this
interpretation is not part of a character data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let us consider the Visual Basic .NET data types individually.

3.3.3.1 Boolean data type

The Boolean is a 16-bit data type that can only represent two values: True and False. The VB keywords
True and False are used to assign these values to a Boolean variable.

When a numeric value is converted to Boolean, any nonzero value is converted to True, and zero is
converted to False. In the other direction, False is converted to zero, and True is converted to -1.
(Incidentally, in C, C#, and C++, True is converted to 1. This change was made in Beta 1 of VB.NET to
bring it in line with the other languages, but was subsequently changed back in Beta 2.)

The underlying .NET data type for Boolean is System.Boolean.

3.3.3.2 Byte data type

The Byte data type is an 8-bit unsigned data type whose range is the set of integers from 0 to 255.
According to the documentation, the Byte data type "is used for containing binary data." Since ordinary
arithmetic operations can be used with Byte variables, the data type is, in this sense, an integer data type.
Also, there do not appear to be any special operators, such as shift operators, that would give the type a
"binary data" flavor. Oh well.

The underlying .NET data type for Byte is System.Byte.

3.3.3.3 Char data type

The Char data type is a 16-bit character data type with a character code ranging from 0 to 65,535, which
represent a single Unicode character. As a data type, Char is new to VB.NET; there was no equivalent in
previous versions of Visual Basic.

It is important not to confuse the Char and String data types. (We discuss this data type in Section
3.3.3.12.) A string consisting of a single character is not the same as a Char. To illustrate, consider
defining a new string and initializing it to a sequence consisting of a repeated single character, for
example, "AAAAA." In earlier versions of VB, this was done as follows:

Dim s As String

s = String$(5, "A")

In VB.NET, this is done using the String class constructor, which has the syntax:

Dim variable As New String(Character, Integer)

If we turn strict type checking on with the Option Strict On statement, the code:

Dim s As New String("A",5)

produces the error message, "Option Strict disallows implicit conversions from String to Char."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To get a Char, we must append a c to the end of the string literal. Thus, the following works:

Dim s As New String("A"c, 5)

The underlying .NET data type for Char is System.Char.

3.3.3.4 Date data type

Date values are stored as IEEE 64-bit long integers that can represent dates in the range January 1, 0001
to December 31, 9999 (which should be plenty), and times from 0:00:00 to 23:59:59.

Literal strings must be enclosed in number signs (#) to be recognized as dates. The VB.NET compiler
changes date formats automatically. For instance, if we enter the code:

Dim d As Date

d = #November 9, 1948#

Msgbox(d)

the compiler changes the second line to:

d = #11/9/1948#

or whatever the regional settings on the host system dictate. The .NET equivalent of Date is
System.DateTime.

3.3.3.5 Decimal data type

Values of the Decimal data type are stored as 96-bit (12-byte) signed integers, along with an internal scale
factor ranging from 0 to 28, which is applied automatically when we set a value for a Decimal variable.
This allows us to enter values from a number of different ranges.

For instance, we can use integers (no decimal part) in the range:

+/-79,228,162,514,264,337,593,543,950,335

in which case the scale factor is set to 0. On the other extreme, we can use values in the range:

-7.9228162514264337593543950335 to -0.0000000000000000000000000001

on the negative side, or:

0.0000000000000000000000000001 to 7.9228162514264337593543950335

on the positive side. In this case, the scale factor is set to 28.

To write a literal Decimal, append a D, as in:

123456.789D

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The type identifier for Decimal is the symbol @, as in:

Dim dec@

The underlying .NET data type for Decimal is System.Decimal. This class has some useful members, such
as MaxValue and MinValue, which give the maximum and minimum values of the decimal type.

By the way, in previous versions of VB, the Decimal existed only as a Variant data subtype - there were
no variables of type Decimal.

3.3.3.6 Double data type

Values of type Double are IEEE 64-bit (8-byte) floating-point numbers with the range:

-1.79769313486231E308 to -4.94065645841247E-324

on the negative side, and:

4.94065645841247E-324 to 1.79769313486232E308

on the positive side.

To write a literal Double, we must append an R, as in:

12345.678R

The type identifier for a Double is #, as in:

Dim dbl#

The underlying .NET data type for Double is System.Double.

3.3.3.7 Integer data type

The Integer data type is a 32-bit data type that stores signed integers ranging from:

-2^31 to 2^31-1

or:

-2,147,483,648 to 2,147,483,647

Note that this is the native word size on a 32-bit processor, and so the Integer data type provides superior
performance as compared to integer data types of other sizes.

Note also that this data type size is new for VB.NET. In VB 6 and earlier, the Integer data type was a 16-bit
data type.

To define a literal Integer, append an I, as in:

123I

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Integer type identifier is the percent sign (%), as in:

Dim int%

The underlying .NET data type for Integer is System.Int32.

3.3.3.8 Long data type

The Long data type is a 64-bit integer data type that stores signed integers ranging from:

-2^63 to 2^63-1

or:

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Note that this data type size is new for VB.NET. In VB 6 and earlier, the Long data type was a 32-bit data
type.

To define a literal Long, append an L, as in:

123L

The Long type identifier is the ampersand sign (&), as in:

Dim lng&

The underlying .NET data type for Long is System.Int64.

3.3.3.9 Object data type

The Object data type is a pointer data type. That is, a value of type Object is an address that references
the object in memory. In VB.NET, the Object data type is the universal data type; an Object variable can
refer to (point to) data of any other data type. For instance, the following code places a Long value in an
Object variable:

Dim obj As Object

obj = 123L

The underlying .NET data type for Object is System.Object.

It is worth noting that when we use variables of type Object, we do pay a performance penalty because
VB.NET cannot bind the object's method invocations to the actual method code until runtime. This is
referred to as late binding. On the other hand, declaring variables of a specific object type allows early
binding at compile time, which is much more efficient. Thus, code such as:

Dim obj As Object

. . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obj.AMethod

is much less efficient than:

Dim obj As System.Data.DataSet

. . .

obj.AMethod

We revisit this issue in more detail later in this chapter.

As we have seen, the Object data type is universal. Just as in VB 6, in which you can use the VarType
function to determine the data subtype of a Variant, in VB.NET you can use the VarType function to
determine the data subtype of an object.

In addition, the Object class in the Framework Class Library's System namespace has a method named
GetType that returns an object of type Type. Thus, if obj is a variable of type Object, then the code:

obj.GetType

returns a Type object. In turn, the Type class, which is also a member of the Framework Class Library's
System namespace, has two methods that return information about the subtype of the object:

ToString returns a string that describes the subtype of the data. It is roughly equivalent to calling the
VB.NET TypeName function, except that the former method uses the data type name from the .NET
Framework Class Library, whereas the latter function uses the Visual Basic name.

GetTypeCode returns an enumeration value from the TypeCode enumeration. It is roughly equivalent
to calling the VB6 VarType function, which, as we have said, is no longer supported in VB.NET.

For reference, the following code generates the values in Table 3-1:

Dim obj As Object

obj = ???

debug.write(obj.GetType.ToString)

Debug.Write(TypeName(obj))

debug.writeline(Type.GetTypeCode(obj.GetType))

Table 3-1. Values of ToString and GetTypeCode

obj = ??? ToString TypeName GetType

obj = True System.Boolean Boolean 3

obj = CByte(100) System.Byte Byte 6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obj = ??? ToString TypeName GetType

obj = #1/1/2000# System.DateTime Date 16

obj = CDec(100) System.Decimal Decimal 15

obj = CDbl(100) System.Double Double 14

obj = CInt(100) System.Int32 Integer 9

obj = CLng(100) System.Int64 Long 11

obj = CShort(100) System.Int16 Short 7

obj = CSng(100) System.Single Single 13

obj = "Donna" System.String String 18

3.3.3.10 Short data type

The Short data type is a 16-bit integer data type that stores signed integers ranging from:

-2^15 to 2^15-1

or:

-32,768 to 32,767

Note that in earlier versions of Visual Basic, the Short data type is called the Integer data type.

To define a literal Short, append an S, as in:

123S

The underlying .NET data type for Short is System.Int16.

3.3.3.11 Single data type

Values of type Single are IEEE 32-bit (4-byte) floating-point numbers with the range:

-3.402823E38 to -1.401298E-45

on the negative side, and:

1.401298E-45 to 3.402823E38

on the positive side.

To write a literal Single, we must append an F (for floating point), as in:

12345.678F

The type identifier for a Single is an exclamation point (!), as in:

obj = #1/1/2000# System.DateTime Date 16

obj = CDec(100) System.Decimal Decimal 15

obj = CDbl(100) System.Double Double 14

obj = CInt(100) System.Int32 Integer 9

obj = CLng(100) System.Int64 Long 11

obj = CShort(100) System.Int16 Short 7

obj = CSng(100) System.Single Single 13

obj = "Donna" System.String String 18

3.3.3.10 Short data type

The Short data type is a 16-bit integer data type that stores signed integers ranging from:

-2^15 to 2^15-1

or:

-32,768 to 32,767

Note that in earlier versions of Visual Basic, the Short data type is called the Integer data type.

To define a literal Short, append an S, as in:

123S

The underlying .NET data type for Short is System.Int16.

3.3.3.11 Single data type

Values of type Single are IEEE 32-bit (4-byte) floating-point numbers with the range:

-3.402823E38 to -1.401298E-45

on the negative side, and:

1.401298E-45 to 3.402823E38

on the positive side.

To write a literal Single, we must append an F (for floating point), as in:

12345.678F

The type identifier for a Single is an exclamation point (!), as in:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim sng!

The underlying .NET data type for Single is System.Single.

3.3.3.12 String data type

The String data type represents Unicode strings of up to approximately 2 billion characters. The type
identifier for the string data type is a dollar sign ($). The underlying .NET data type for this type is
System.String.

To create a new string, we can declare a variable and assign it a string as follows:

Dim sName As String

sName = "Donna"

or equivalently, in one statement:

Dim sName As String = "Donna"

The type identifier for a String is a dollar sign ($), as in:

Dim str$

3.3.3.13 Structure data type: user-defined types

In VB.NET, the Structure type is a powerful data type that has many properties in common with classes.

To declare a structure, we use the Structure statement, whose syntax is:

[Public|Private|Friend] Structure StructureName

 Nonmethod member declarations

 Method member declarations

End Structure

The members of a structure can be variables, properties, methods, or events. Note, however, that each
member must be declared with an access modifier: Public (or Dim), Private, or Friend.

The simplest and most common use of structures is to encapsulate related variables. For instance, we
might define a structure as follows:

Structure strPerson

 Public Name As String

 Public Address As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public City As String

 Public State As String

 Public Zip As String

 Public Age As Short

End Structure

To define a variable of type strPerson, we write (as usual):

Dim APerson As strPerson

To access a member of a structure, we use the dot syntax, as in:

APerson.Name = "Beethoven"

Note that structure members can be other structures or other objects. Structures can also be passed as
arguments to functions, or as the return type of a function.

As mentioned, structures are similar to classes. For instance, consider the following structure:

Structure strTest

 ' A public nonmethod member

 Public Name As String

 ' A private member variable

 Private msProperty As String

 ' A public method member

 Public Sub AMethod()

 Msgbox("Structure method. Property is: " & msProperty)

 End Sub

 ' A public property member

 Public Property AProperty() As String

 Get

 AProperty = msProperty

 End Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Set

 msProperty = Value

 End Set

 End Property

End Structure

Now we can set the structure's property and invoke its method as follows:

Dim str As strTest

str.AProperty = "Donna"

str.AMethod()

Although structures are similar to classes, they do not support the following class features:

Structures cannot explicitly inherit, nor can they be inherited.

All constructors for a structure must be parameterized.

Structures cannot define destructors.

Member declarations cannot include initializers nor can they use the As New syntax or specify an
initial array size.

For a reference to the object-oriented terminology, see Chapter 4.

3.3.4 Data Type Conversion

The process of converting a value of one data type to another is called conversion or casting. A cast
operator can be applied to a literal value or to a variable of a given type. For instance, we have:

Dim lng As Long

Dim int As Integer = 6

' Cast an Integer variable to a Long

lng = CLng(Int)

' Cast a literal integer to a Long

lng = CLng(12)

A cast can be widening or narrowing. A widening cast is one in which the conversion is to a target data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type that can accommodate all values in the source data type, such as casting from Short to Integer or
Integer to Double. In such a case, no data is ever lost, and the cast will not generate an error. A narrowing
cast is one in which the target data type cannot accommodate all values in the source data type. In this
case, data may be lost, and the cast may not succeed.

Under VB.NET, conversions are made in two ways: implicitly and explicitly. An implicit conversion is done
by the compiler when circumstances warrant it (and if it is legal). For instance, if we write:

Dim lng As Long

lng = 54

then the compiler casts the Integer 54 as a Long.

The type of implicit conversion that the compiler will do depends in part on the setting of the Option Strict
value. For instance, if Option Strict is On, only widening casts can be implicit; so then the following code:

Dim b As Boolean

b = "True"

generates a type conversion error, whereas if we add the line:

Option Strict Off

to the beginning of the module, then the previous code executes without error.

Explicit conversion requires explicitly calling a conversion function (or cast operator). The type conversion
functions supported by VB.NET all have the form:

Cname(expression)

where expression is an expression that is in the range of the target data type. Specifically, we have the
following conversion functions:

CBool

Converts any valid String or numeric expression to Boolean. When a numeric value is converted to
Boolean, any nonzero value is converted to True, and zero is converted to False.

CByte

Converts any numeric expression in the range 0 to 255 to Byte, while rounding any fractional part.
CChar

Takes a string argument and returns the first character of the string as a Char data type.
CDate

Converts any valid representation of a date or time to Date.
CDbl

Converts any expression that can be evaluated to a number in the range of a Double to Double.
CDec

Converts any expression that can be evaluated to a number in the range of a Decimal to Decimal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CInt

Converts any numeric expression in the range of Integer (-2,147,483,648 to 2,147,483,647) to
Integer, while rounding any fractional part.

CLng

Converts any expression that can be evaluated to a number in the range of a Long to Long, while
rounding any fractional part.

CObj

Converts any expression that can be interpreted as an object to Object. For instance, the code:
Dim obj As Object

obj = CObj("test")

casts the string "test" to type Object and places it in the Object variable obj.

CShort

Converts any numeric expression in the range -32,768 to 32,767 to Short, while rounding any
fractional part.

CSng

Converts any expression that can be evaluated to a number in the range of a Single to Single. If the
numeric expression is outside the range of a Single, an error occurs.

CStr

If the expression input to CStr is Boolean, the function returns one of the strings "True" or "False."
For an expression that can be interpreted as a date, the return value is a string representation of
that date, in the date format defined by the regional settings of the host computer. For a numeric
expression, the return value is a string representing the number.

CType

A general-purpose conversion function, CType has the following syntax:
CType(expression, typename)

where expression is an expression or variable, and typename is the data type to which it will be converted.
The function supports conversions to and from the standard data types, as well as to and from object data
types, structures, and interfaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4 Arrays

The array data type is a fundamental data type in most languages, including Visual Basic. An array is used
to store a collection of similar data types or objects.

Many authors of programming books misuse the terms associated with arrays, so let's begin by
establishing the correct terminology. In fact, if you will indulge us, we would like to begin with a formal
definition of the term array.

3.4.1 Definition of Array

Let S1, S2 ..., SN be finite sets, and let T be a data type (such as Integer). Then an array of type T is a
function:

arr:S1 · S2 · ... · SN T

where S1 · S2 · ... · SN is the Cartesian product of the sets S1, S2 ..., SN. (This is the set of all n-tuples
whose coordinates come from the sets S i.)

For arrays in VB.NET (and the other languages that implement the Common Language Runtime), the sets
Si must have the form:

Si={0,1,...,Ki}

In other words, each set Si is a finite set of consecutive integers starting with 0.

Each position in the Cartesian product is referred to as a coordinate of the array. For each coordinate, the
integer Ki is called the upper bound of the coordinate. The lower bound is 0 for all arrays in VB.NET.

3.4.2 Dimension of an Array

The number N of coordinates in the domain of the function arr is called the dimension (or sometimes rank)
of the array. Thus, every array has a dimension (note the singular); it is not correct to refer to the
dimensions of an array (note the plural). An array of dimension 1 is called a one-dimensional array, an
array of dimension 2 is called a two-dimensional array, and so on.

3.4.3 Size of an Array

Along with a dimension, every array has a size. For instance, the one-dimensional array:

arr:{0,1,...,5} T

has size 6. The two-dimensional array:

arr:{0,1,...,5}·{0,1,...,8} T

http://lib.ommolketab.ir
http://lib.ommolketab.ir

has size 6·9. The three-dimensional array:

arr:{0,1,...,5}·{0,1,...,8}·{0,1} T

has size 6·9·2.

3.4.4 Arrays in VB.NET

In VB.NET, all arrays have lower bound 0. This is a change from earlier versions of VB, where we could
choose the lower bound of an array.

The following examples show various ways to declare a one-dimensional array:

' Implicit constructor: No initial size and no initialization

Dim Days() As Integer

' Explicit constructor: No initial size and no initialization

Dim Days() As Integer = New Integer() {}

' Implicit constructor: Initial size but no initialization

Dim Days(6) As Integer

' Explicit constructor: Initial size but no initialization

Dim Days() As Integer = New Integer(6) {}

' Implicit constructor: Initial size implied by initialization

Dim Days() As Integer = {1, 2, 3, 4, 5, 6, 7}

' Explicit constructor, Initial size and initialization

Dim Days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

Note that an array declaration can:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call the array's constructor implicitly or explicitly. (The constructor is the function that VB.NET uses
to create the array.)

Specify an initial size for each dimension or leave the initial size unspecified.

Initialize the elements of the array or not.

It is important to note that in the declaration:

Dim ArrayName(X) As ArrayType

the number X is the upper bound of the array. Thus, the array elements are ArrayName(0) through
ArrayName(X), and the array has X+1 elements.

Multidimensional arrays are declared similarly. For instance, the following example declares and initializes
a two-dimensional array:

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

and the following code displays the contents of the array:

Debug.Write(X(0, 0))

Debug.Write(X(0, 1))

Debug.Writeline(X(0, 2))

Debug.Write(X(1, 0))

Debug.Write(X(1, 1))

Debug.Write(X(1, 2))

123

456

In VB.NET, all arrays are dynamic; there is no such thing as a fixed-size array. The declared size should
be thought of simply as the initial size of the array, which is subject to change using the ReDim statement.
Note, however, that the dimension of an array cannot be changed.

Moreover, unlike with VB 6, the ReDim statement cannot be used for array declaration, but can be used
only for array redimensioning. All arrays must be declared initially using a Dim (or equivalent) statement.

3.4.4.1 Redimensioning arrays

The ReDim statement is used to change the size of an array. This is referred to as redimensioning - a term

http://lib.ommolketab.ir
http://lib.ommolketab.ir

no doubt invented by someone who didn't know the difference between the dimension of an array and the
size of an array! In any case, redimensioning changes the size of the array, not its dimension. In fact, as
we have already mentioned, the dimension of an array cannot be changed.

The UBound function returns the upper limit of an array coordinate. Its syntax is:

UBound(MyArray, CoordinateIndex)

where CoordinateIndex is the index of the coordinate for which we want the upper bound.

Here is an example of array redimensioning:

Dim MyArray(10, 10) As Integer

Msgbox(UBound(MyArray, 2)) ' Displays 10

ReDim MyArray(15, 20)

Msgbox(UBound(MyArray, 2)) ' Displays 20

When an array is redimensioned using the ReDim statement without qualification, all data in the array is
lost; that is, the array is reinitialized. However, the Preserve keyword, when used with ReDim, redimensions
the array while retaining all current values. Note that when using the Preserve keyword, only the last
coordinate of an array can be changed. Thus, referring to the array defined earlier, the following code
generates an error:

ReDim Preserve MyArray(50, 20)

You will probably not be surprised to learn that redimensioning an array is a time- intensive process.
Hence, when redimensioning, we face the ubiquitous dichotomy between saving space and saving time.
For instance, consider the code segment used to populate an array:

Dim MyArray(100) As Integer

Dim i As Integer, iNext As Integer

iNext = 0

Do While (Some condition)

 If (some condition here) Then

 ' Add element to array

 If ubound(MyArray) < iNext Then

 ReDim Preserve MyArray(iNext + 100)

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MyArray(iNext) = (whatever)

 iNext = iNext + 1

 End If

Loop

The key issue here is to decide how much to increase the size of the array each time resizing is
necessary. If we want to avoid using any extra space, we could increase the size of the array by 1 each
time:

ReDim Preserve MyArray(iNext + 1)

But this would be very inefficient. Alternatively, we could kick up the size by 1,000:

ReDim Preserve MyArray(iNext + 1000)

But this uses a lot of extra space. Sometimes experimentation is required to find the right compromise
between saving space and saving time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5 Object Variables and Their Binding

In VB.NET, classes and their objects are everywhere. Of course, there are the classes and objects that we
create in our own applications. There are also the classes in the .NET Framework Class Library. In
addition, many applications take advantage of the objects that are exposed by other applications, such as
ActiveX Data Objects (ADO), Microsoft Word, Excel, Access, various scripting applications, and more. The
point is that for each object we want to manipulate, we will need to declare a variable of that class type.
For instance, if we create a class named CPerson, then in order to instantiate a CPerson object, we must
declare a variable:

Dim APerson As CPerson

Similarly, if we decide to use the ADO Recordset object, we will need to declare a variable of type
ADO.Recordset:

Dim rs As ADO.Recordset

Even though object variables are declared in the same manner as nonobject variables, there are some
significant differences. In particular, the declaration:

Dim obj As MyClass

does not create an object variable - it only binds a variable name with a class name. To actually construct
an object and set the variable to refer to that object, we need to call the constructor of the class. This
function, discussed in detail in Chapter 4, is responsible for creating objects of the class.

Constructors are called using the New keyword, as in:

Dim obj As MyClass = New MyClass()

or:

Dim obj As MyClass

obj = New MyClass()

VB.NET also provides a shortcut that does not mention the constructor explicitly:

Dim obj As New MyClass()

(In earlier versions of VB, we use the Set statement, which is no longer supported.)

3.5.1 Late Binding Versus Early Binding

The object-variable declaration:

Dim obj As Class1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

explicitly mentions the class from which the object will be created (in this case it is Class1). Because of
this, VB can obtain and display information about the class members, as we can see in VB's Intellisense,
shown in Figure 3-1.

Figure 3-1. Intellisense showing member list

As you know, Intellisense also shows the signature of a method, as shown in Figure 3-2.

Figure 3-2. Intellisense showing method signature

Of course, Intellisense is very helpful during program development. However, more important is that the
previous object-variable declaration allows VB to bind the object's methods to actual function addresses at
compile time. This is known as early binding.

An alternative to using a declaration that specifically mentions that class is a generic object-variable
declaration that uses the As Object syntax:

Dim obj As Object

While it is true that obj can hold a reference to any object, we pay a major penalty for this privilege. VB
can no longer get information about the class and its members because it does not know which class the
object obj belongs to!

As a result, VB's Intellisense cannot help us with member syntax. More importantly, we pay a large
performance penalty because VB cannot bind any of the classes, properties, or methods at compile time
- it must wait until runtime. This is referred to as late binding.

In summary, explicit object-variable declarations allow for early binding and thus are much more efficient
than generic declarations, which use late binding. Hence, explicit object-variable declarations should be
used whenever possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6 The Collection Object

VB.NET implements a special object called the Collection object that acts as a container for objects of all
types. In fact, Collection objects can hold other objects, as well as nonobject data.

In some ways, the Collection object is an object-oriented version of the Visual Basic array. It supports the
following four methods:

Add

Adds an item to the collection. Along with the data itself, you can specify a key value by which the
member can be referenced.

Count

Returns the number of items in the collection.
Item

Retrieves a member from the collection either by its index (or ordinal position in the collection) or by
its key (assuming that a key was provided when the item was added to the collection).

Remove

Deletes a member from the collection using the member's index or key.

For example, the following code defines a collection object named colStates to hold information about U.S.
states and then adds two members to it, using the state's two-letter abbreviation as a key:

Dim colStates As New Collection

colStates.Add("New York", "NY")

colStates.Add("Michigan", "MI")

Like members of an array, the members of a collection can be iterated using the For Each...Next
construct. Also like arrays, collection members are accessible by their index value, although the lower
bound of a collection object's index is always 1.

Arrays and collections each have advantages and disadvantages. Some of the advantages of collections
over arrays are:

New collection members can be inserted before or after an existing member in index order.
Moreover, indexes are maintained automatically by VB, so we don't need to adjust the indexes
manually.

Collection members can be referenced by key value. This feature makes collections similar to
associative arrays (which are used by languages such as Perl).

Note that when deleting collection members by index, it is important to iterate though the indexes in
reverse order because member deletion changes the indexes of other members.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7 Parameters and Arguments

The terms parameter and argument are often used interchangeably, although they have entirely different
meanings. Let us illustrate with an example. Consider the following function, which replicates a string a
given number of times:

Function RepeatString(ByVal sInput As String, ByVal iCount As Integer) _

 As String

 Dim i As Integer

 For i = 1 To iCount

 RepeatString = RepeatString & sInput

 Next

End Function

The variables sInput and iCount are the parameters of this function. Note that each parameter has an
associated data type.

Now, when we call this function, we must replace the parameters by variables, constants, or literals, as in:

s = RepeatString("Donna", 4)

The items that we use in place of the parameters are called arguments.

3.7.1 Passing Arguments

Arguments can be passed to a function in one of two ways: by value or by reference. Incidentally,
argument passing is often called parameter passing, although it is the arguments and not the parameters
that are being passed.

The declaration of RepeatString given earlier contains the keyword ByVal in front of each parameter. This
specifies that arguments are passed by value to this function. Passing by value means that the actual
value of the argument is passed to the function. This is relevant when an argument is a variable. For
instance, consider the following code:

Sub Inc(ByVal x As Integer)

 x = x + 1

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim iAge As Integer = 20

Inc(iAge)

Msgbox(iAge)

The final line:

Msgbox(iAge)

actually displays the number 20. In other words, the line:

Inc(iAge)

does nothing. The reason is that the argument iAge is passed to the procedure Inc by value. Since only
the value (in this case 20) is passed, that value is assigned to a local variable named x within the
procedure. This local variable is increased to 21, but once the procedure ends, the local variable is
destroyed. The variable iAge is not passed to the procedure, so its value is not changed.

On the other hand, if we modify the definition of the procedure Inc, replacing ByVal with ByRef, the story is
different:

Sub Inc(ByRef x As Integer)

 x = x + 1

End Sub

In this case, what is passed to the procedure Inc is a reference to the argument iAge. Hence, the
procedure actually operates on the variable passed to it, incrementing the value of iAge to 21. Put another
way, the variable represented by the parameter x is actually the passed variable iAge.

In VB.NET, the default method of argument passing for arguments is by value. This is a change from
earlier versions of VB, in which the default method was by reference.

3.7.2 Passing Objects

There is a subtlety in argument passing with parameters of any object type. Actually, the subtlety occurs
because an object variable is a pointer ; that is, it contains a reference to (or the address of) the object.

If we pass an object variable by value, we are passing the contents of the variable, which is the address of
the object. Thus, any changes made in the called procedure affects the object itself, not a copy of the
object. This seems like passing by reference, but it is not. Think of it this way: passing the value of an
object's address is passing a reference to the object.

On the other hand, if we pass an object variable by reference, we are passing the address of the variable.
In other words, we are passing the address of the address of the object! In languages that support
pointers, this is referred to as a double pointer.

Let us illustrate with an example. Consider the following code, and imagine that the form containing this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code has two textboxes: TextBox1 with text "TextBox1" and TextBox2 with text "TextBox2":

Public Function GetText(ByVal txt As TextBox) As String

 ' Change reference to textbox

 txt = Textbox2

End Function

Sub Doit

 Dim t As TextBox

 t = TextBox1

 GetText(t)

 msgbox(t.Text) ' Displays TextBox1 when ByVal, _

 ' TextBox2 when ByRef

End Sub

Now, here is what happens when we execute DoIt. Note that the argument is passed to GetText by value
in this case.

The TextBox variable t is assigned to TextBox1, as shown in Figure 3-3.

Figure 3-3. Assigning an object reference

GetText is called, passing t by value. Since t contains the address aaaa of the TextBox1 object, the
local variable txt is given the value aaaa, as shown in Figure 3-4.

Figure 3-4. Passing an object by value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The single line of code in GetText is executed, which now causes txt to point to TextBox2, as shown
in Figure 3-5.

Figure 3-5. Assigning a new object reference

Upon return from GetText, t is unaffected, so the MsgBox function displays the string "TextBox1."

Now suppose we change the ByVal keyword to ByRef in GetText. Here is what happens:

The TextBox variable t is assigned to TextBox1, as shown previously in Figure 3-3.

GetText is called, passing t by reference. Hence, txt is t. This is quite different from txt and t
containing the same value, as in the ByVal case. The situation is shown in Figure 3-6.

Figure 3-6. Passing an object by reference

The single line of code in GetText is executed, which now causes txt (and hence t) to point to
TextBox2, as shown in Figure 3-7.

Figure 3-7. Assigning a new object reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Upon return from GetText, t is now pointing to TextBox2, so the MsgBox function displays the string
"TextBox2."

3.7.3 Optional Arguments

In VB.NET, parameters can be declared as optional using the Optional keyword, as shown in the
following code:

Sub Calculate(Optional ByVal Switch As Boolean = False)

In VB.NET, all optional parameters must declare a default value, which is passed to the procedure if the
calling program does not supply that parameter.

The following rules apply to optional arguments:

Every optional argument must specify a default value, and this default must be a constant expression
(not a variable).

Every argument following an optional argument must also be optional.

Note that in earlier versions of VB, you could omit the default value and, if the parameter was of type
Variant, you could use the IsMissing function to determine if a value was supplied. This is not possible in
VB.NET, and the IsMissing function is not supported.

3.7.4 ParamArray

Normally, a procedure definition specifies a fixed number of parameters. However, the ParamArray
keyword, which is short for Parameter Array, permits us to declare a procedure with an unspecified
number of parameters. Therefore, each call to the procedure can use a different number of parameters.

Suppose, for instance, that we want to define a function to take the average of a number of test scores, but
the number of scores may vary. Then we declare the function as follows:

Function GetAverage(ByVal ParamArray Scores() As Single) As Single

 Dim i As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For i = 0 To UBound(Scores)

 GetAverage = GetAverage + CSng(Scores(i))

 Next

 GetAverage = GetAverage / (UBound(Scores) + 1)

End Function

Now we can make calls to this function with a varying number of arguments:

Msgbox(GetAverage(1, 2, 3, 4, 5))

Msgbox(GetAverage(1, 2, 3))

The following rules apply to the use of ParamArray:

A procedure can only have one parameter array, and it must be the last parameter in the procedure.

The parameter array must be passed by value, and you must explicitly include ByVal in the
procedure definition.

The parameter array must be a one-dimensional array. If the type is not declared, it is assumed to be
Object.

The parameter array is automatically optional. Its default value is an empty one-dimensional array of
the parameter array's data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Introduction to Object-Oriented Programming

In this chapter, we present a brief and succinct introduction to object-oriented programming. Since this is
not a book on object-oriented programming per se, we will confine our attention to those topics that are
important to VB.NET programming.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1 Why Learn Object-Oriented Techniques?

As you may know, Visual Basic has implemented some features of object-oriented programming since
Version 4. However, in terms of object-orientation, the move from Version 6 to VB.NET has been dramatic.
Many people did not consider VB 6 (or earlier versions) to be a truly object-oriented programming
language. Whatever your thoughts may have been on this matter, it seems clear that VB.NET is an object-
oriented programming language by any reasonable definition of the term.

You may be saying to yourself: "I prefer not to use object-oriented techniques in my programming." This is
something you could easily have gotten away with in VB 6. But in VB.NET, the structure of the .NET
Framework - specifically the .NET Framework Class Library - as well as the documentation, is so
object-oriented that you can no longer avoid understanding the basics of object-orientation, even if you
decide not to use them in your applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2 Principles of Object-Oriented Programming

It is often said that there are four main concepts in the area of object-oriented programming:

Abstraction

Encapsulation

Inheritance

Polymorphism

Each of these concepts plays a significant role in VB.NET programming at one level or another.
Encapsulation and abstraction are "abstract" concepts providing motivation for object-oriented
programming. Inheritance and polymorphism are concepts that are directly implemented in VB.NET
programming.

4.2.1 Abstraction

Simply put, an abstraction is a view of an entity that includes only those aspects that are relevant for a
particular situation. For instance, suppose that we want to create a software component that provides
services for keeping a company's employee information. For this purpose, we begin by making a list of the
items relevant to our entity (an employee of the company). Some of these items are:

FullName

Address

EmployeeID

Salary

IncSalary

DecSalary

Note that we include not only properties of the entities in question, such as FullName, but also actions that
might be taken with respect to these entities, such as IncSalary, to increase an employee's salary. Actions
are also referred to as methods, operations, or behaviors. We will use the term methods, since this term is
used by VB.NET.

Of course, we would never think of including an IQ property, since this would not be politically correct, not
to mention discriminatory and therefore possibly illegal. Nor would we include a property called HairCount,
which gives the number of hairs on the employee's right arm, because this information is of absolutely no
interest to us, even though it is part of every person's being.

In short, we have abstracted the concept of an employee - we have included only those properties and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods of employees that are relevant to our needs. Once the abstraction is complete, we can proceed
to encapsulate these properties and methods within a software component.

4.2.2 Encapsulation

The idea of encapsulation is to contain (i.e., encapsulate) the properties and methods of an abstraction,
and expose only those portions that are absolutely necessary. Each property and method of an abstraction
is called a member of the abstraction. The set of exposed members of an abstraction is referred to
collectively as the public interface (or just interface) of the abstraction (or of the software component that
encapsulates the abstraction).

Encapsulation serves three useful purposes:

It permits the protection of these properties and methods from any outside tampering.

It allows the inclusion of validation code to help catch errors in the use of the public interface. For
instance, it permits us to prevent the client of the employee software component from setting an
employee's salary to a negative number.

It frees the user from having to know the details of how the properties and methods are implemented.

Let us consider an example that involves the Visual Basic Integer data type, which is nicely encapsulated
for us by VB. As you undoubtedly know, an integer is stored in the memory of a PC as a string of 0s and
1s called a binary string. In Visual Basic, integers are interpreted in a form called two's-complement
representation, which permits the representation of both negative and non-negative values.

For simplicity, let us consider 8-bit binary numbers. An 8-bit binary number has the form
a7a6a5a4a3a2a1a0, where each of the axs is a 0 or a 1. We can think of it as appearing in memory as
shown in Figure 4-1.

Figure 4-1. An 8-bit binary number

In the two's-complement representation, the leftmost bit, a7 (called the most significant bit), is the sign bit.
If the sign bit is 1, the number is negative. If the sign bit is 0, the number is positive.

The formula for converting a two's-complement representation a7a6a5a4a3a2a1a0 of a number to a decimal
representation is:

decimal rep. = -128a 7 + 64a6 + 32a5 + 16a4 + 8a3 + 4a2 + 2a1 + a0

To take the negative of a number when it is represented in two's-complement form, we must take the
complement of each bit (that is, change each 0 to a 1 and each 1 to a 0) and then add 1.

At this point you may be saying to yourself, "As a programmer, I don't have to worry about these details. I
just write code like:

x = -16

http://lib.ommolketab.ir
http://lib.ommolketab.ir

y = -x

and let the computer and the programming language worry about which representation to use and how to
perform the given operations."

This is precisely the point behind encapsulation. The details of how signed integers are interpreted by the
computer (and the compiler), as well as how their properties and operations are implemented, are
encapsulated in the integer data type itself and are thus hidden from us, the users of the data type. Only
those portions of the properties and operations that we need in order to work with integers are exposed
outside of the data type. These portions form the public interface for the Integer data type.

Moreover, encapsulation protects us from making errors. For instance, if we had to do our own negating by
taking Boolean complements and adding 1, we might forget to add 1! The encapsulated data type takes
care of this automatically.

Encapsulation has yet another important feature. Any code that is written using the exposed interface
remains valid even if the internal workings of the Integer data type are changed for some reason, as long
as the interface is not changed. For instance, if we move the code to a computer that stores integers in
one's-complement representation, then the internal procedure for implementing the operation of negation
in the integer data type will have to be changed. However, from the programmer's point of view, nothing
has changed. The code:

x = -16

y = -x

is just as valid as before.

4.2.3 Interfaces

As VB programmers, we must implement encapsulation through the use of software components. For
instance, we can create a software component to encapsulate the Employee abstraction discussed earlier.

In VB.NET, the methods of an interface are realized as functions. On the other hand, a property, as we see
later in this chapter, is realized as a private variable that stores the property's value together with a pair of
public functions - one to set the variable and one to retrieve the variable. These functions are sometimes
referred to as accessor methods of the property. It is the set of exposed functions (ordinary methods and
accessor methods) that constitute the interface for an abstraction.

In general, a software component may encapsulate and expose more than one abstraction - hence, more
than one interface. For example, in a more realistic setting, we might want a software component designed
to model employees to encapsulate an interface called IIdentification (the initial "I" is for interface) that
is used for identification purposes. This interface might have properties such as name, Social Security
number, driver's license number, age, birthmarks, and so on. Moreover, the software component might
also encapsulate an interface called IEducation for describing the employee's educational background.
Such an interface might implement properties such as education level, degrees, college attended, and so
on.

The interface of each abstraction exposed by a software component is also referred to as an interface of
the software component. Thus, the Employee component implements at least two interfaces:
IIdentification and IEducation. Note, however, that the term interface is often used to refer to the set of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

all exposed properties and methods of a software component, in which case a component has only one
interface.

Referring to our original Employee abstraction, its interface might consist of the functions shown in Table
4-1. (Of course, this interface is vastly oversimplified, but it is more than sufficient to illustrate the
concepts.)

Table 4-1. Members of the Employee interface

Type Name

Property FullName: GetFullName(), SetFullName()

Property Address: GetAddress(), SetAddress()

Property EmployeeID: GetEmployeeID(), SetEmployeeID()

Property Salary: GetSalary(), SetSalary()

Method IncSalary()

Method DecSalary()

Using the term interface as a set of functions, while quite common, poses a problem. Just listing the
functions of the interface by name (as done previously) does not provide enough information to call those
functions. Thus, a more useful definition of interface would be the set of signatures of the public functions
of a software component.

To clarify this, let us discuss one of the most important distinctions in object- oriented programming - the
distinction between a function declaration and an implementation of that function.

By way of example, consider the following sorting function:

Function Sort(a() as Integer, iSize as Integer) as Boolean

 For i = 1 to iSize

 For j = i+1 to iSize

 If a(j) < a(i) Then swap a(i), a(j)

 Next j

 Next I

 Sort = True

End Function

The first line in this definition:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Sort(a() as Integer, iSize as Integer) as Boolean

is the function declaration. It supplies information on the number and types of parameters and the return
type of the function. The body of the function:

For i = 1 to iSize

 For j = i+1 to iSize

 If a(j) < a(i) Then swap a(i), a(j)

 Next j

Next i

Sort = True

represents the implementation of the function. It describes how the function carries out its intended
purpose.

Note that it is possible to alter the implementation of the function without changing the declaration. In fact,
the current function implementation sorts the array a using a simple selection-sort algorithm, but we could
replace that sorting method with any one of a number of other methods (bubble sort, insertion sort, quick
sort, and so on).

Now consider a client of the Sort function. The client only needs to know the function declaration in order
to use the function. It need not know (and probably doesn't want to know) anything about the
implementation. Thus, it is the function declaration, and not the implementation, that forms the interface for
the function.

The signature of a function is the function name and return type, as well as the names, order, and types of
its parameters. A function declaration is simply a clear way of describing the function's signature. Note that
Microsoft does not consider the return type of a function to be part of the function's signature. By signature,
they mean what is generally termed the function's argument signature. The reasons for doing this become
clearer later in the chapter when we discuss overloading, although it would have been better (as usual) if
they were more careful with their terminology.

Under this more specific definition of interface, the interface for our employee component might be as
follows (in part):

Function GetFullName(lEmpID As Long) As String

Sub SetFullName(lEmpID As Long, sName As String)

. . .

Sub IncSalary(sngPercent As Single)

Sub DecSalary(sngPercent As Single)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3 Classes and Objects

Generally speaking, a class is a software component that defines and implements one or more interfaces.
(Strictly speaking, a class need not implement all the members of an interface. We discuss this later when
we talk about abstract members.) In different terms, a class combines data, functions, and types into a
new type. Microsoft uses the term type to include classes.

4.3.1 Class Modules in VB.NET

Under Visual Studio.NET, a VB class module is inserted into a project using the Add Class menu item on
the Project menu. This inserts a new module containing the code:

Public Class ClassName

End Class

Although Visual Studio stores each class in a separate file, this isn't a requirement. It is the Class...End
Class construct that marks the beginning and end of a class definition. Thus, the code for more than one
class as well as one or more code modules (which are similarly delimited by the Module...End Module
construct) can be contained in a single source code file.

The CPerson class defined in the next section is an example of a VB class module.

4.3.2 Class Members

In VB.NET, class modules can contain the following types of members:

Data members

This includes member variables (also called fields) and constants.
Event members

Events are procedures that are called automatically by the Common Language Runtime in response
to some action that occurs, such as an object being created, a button being clicked, a piece of data
being changed, or an object going out of scope.

Function members

This refers to both functions and subroutines. A function member is also called a method. A class'
constructor is a special type of method. We discuss constructors in detail later in this chapter.

Property members

A property member is implemented as a Private member variable together with a special type of VB
function that incorporates both accessor functions of the property. We discuss the syntax of this
special property function in Section 4.3.5 later in the chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type members

A class member can be another class, which is then referred to as a nested class.

The following CPerson class illustrates some of the types of members:

Public Class CPerson

 ' -------------

 ' Data Members

 ' -------------

 ' Member variables

 Private msName As String

 Private miAge As Integer

 ' Member constant

 Public Const MAXAGE As Short = 120

 ' Member event

 Public Event Testing()

 ' ----------------

 ' Function Members

 ' ----------------

 ' Method

 Public Sub Test()

 RaiseEvent Testing()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

 Property Age() As Integer

 Get

 Age = miAge

 End Get

 Set(ByVal Value As Integer)

 ' Some validation

 If Value < 0 Then

 MsgBox("Age cannot be negative.")

 Else

 miAge = Value

 End If

 End Set

 End Property

 ' Property

 Property Name() As String

 ' Accessors for the property

 Get

 Name = msName

 End Get

 Set(ByVal Value As String)

 msName = Value

 End Set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Property

 ' Overloaded constructor

 Overloads Sub New()

 End Sub

 ' Constructor that initializes name

 Overloads Sub New(ByVal sNewName As String)

 msName = sNewName

 End Sub

 Sub Dispose()

 ' Code here to clean up

 End Sub

End

Class

4.3.3 The Public Interface of a VB.NET Class

We have seen that, when speaking in general object-oriented terms, the exposed members of a software
component constitute the component's public interface (or just interface). Now, in VB.NET, each member
of a class module has an access type, which may be Public, Private, Friend, Protected, or Protected
Friend. We discuss each of these in detail later in this chapter. Suffice it to say, a VB.NET class module
may accordingly have Public, Private, Friend, Protected, and Protected Friend members.

Thus, we face some ambiguity in defining the concept of the public interface of a VB.NET class. The spirit
of the term might indicate that we should consider any member that is exposed outside of the class itself
as part of the public interface of the class. This would include the Protected, Friend, and Protected
Friend members, as well as the Public members. On the other hand, some might argue that the members

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the public interface must be exposed outside of the project in which the class resides, in which case
only the Public members would be included in the interface. Fortunately, we need not make too much
fuss over the issue of what exactly constitutes a VB.NET class' public interface, as long as we remain
aware that the term may be used differently by different people.

4.3.4 Objects

A class is just a description of some properties and methods and does not have a life of its own (with the
exception of shared members, which we discuss later). In general, to execute the methods and use the
properties of a class, we must create an instance of the class, officially known as an object. Creating an
instance of a class is referred to as instancing, or instantiating, theclass.

There are three ways to instantiate an object of a VB.NET class. One method is to declare a variable of
the class' type:

Dim APerson As CPerson

and then instantiate the object using the New keyword as follows:

APerson = New CPerson()

We can combine these two steps as follows:

Dim APerson As New CPerson()

or:

Dim APerson As CPerson = New CPerson()

The first syntax is considered shorthand for the second.

4.3.5 Properties

Properties are members that can be implemented in two different ways. In its simplest implementation, a
property is just a public variable, as in:

Public Class CPerson

 Public Age As Integer

End Class

The problem with this implementation of the Age property is that it violates the principle of encapsulation;
anyone who has access to a CPerson object can set its Age property to any Integer value, even negative
integers, which are not valid ages. In short, there is no opportunity for data validation. (Moreover, this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementation of a property does not permit its inclusion in the public interface of the class, as we have
defined that term.)

The "proper" object-oriented way to implement a property is to use a Private data member along with a
special pair of function members. The Private data member holds the property value; the pair of function
members, called accessors, are used to get and set the property value. This promotes data encapsulation,
since we can restrict access to the property via code in the accessor functions, which can contain code to
validate the data. The following code implements the Age property:

Private miAge As Integer

Property Age() As Integer

 Get

 Age = miAge

 End Get

 Set(ByVal Value As Integer)

 ' Some validation

 If Value < 0 Then

 MsgBox("Age cannot be negative.")

 Else

 miAge = Value

 End If

 End Set

End Property

As you can see from the previous code, VB has a special syntax for defining the property accessors. As
soon as we finish typing the line:

Property Age() As Integer

the VB IDE automatically creates the following template:

Property Age() As Integer

 Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Get

 Set(ByVal Value As Integer)

 End Set

End Property

Note the Value parameter that provides access to the incoming value. Thus, if we write:

Dim cp As New CPerson()

cp.Age = 20

then VB passes the value 20 into the Property procedure in the Value argument.

4.3.6 Instance and Shared Members

The members of a class fall into two categories:

Instance members

Members that can only be accessed through an instance of the class, that is, through an object of
the class. To put it another way, instance members "belong" to an individual object rather than to the
class as a whole.

Shared (static) members

Members that can be accessed without creating an instance of the class. These members are
shared among all instances of the class. More correctly, they are independent of any particular
object of the class. To put it another way, shared members "belong" to the class as a whole, rather
than to its individual objects or instances.

Instance members are accessed by qualifying the member name with the object's name. Here is an
example:

Dim APerson As New CPerson()

APerson.Age = 50

To access a shared member, we simply qualify the member with the class name. For instance, the String
class in the System namespace of the .NET Framework Class Library has a shared method called
Compare that compares two strings. Its syntax (in one form) is:

Public Shared Function Compare(String, String) As Integer

This function returns 0 if the strings are equal, -1 if the first string is less than the second, and 1 if the first
string is greater than the second. Since the method is shared, we can write:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim s As String = "steve"

Dim t As String = "donna"

MsgBox(String.Compare(s, t)) ' Displays 1

Note the way the Compare method is qualified with the name of the String class.

Shared members are useful for keeping track of data that is independent of any particular instance of the
class. For instance, suppose we want to keep track of the number of CPerson objects in existence at any
given time. Then we write code such as the following:

' Declare a Private shared variable to hold the instance count

Private Shared miInstanceCount As Integer

' Increment the count in the constructor

' (If there are additional constructors,

' this code must be added to all of them.)

Sub new()

 miInstanceCount += 1

End Sub

' Supply a function to retrieve the instance count

Shared Function GetInstanceCount() As Integer

 Return miInstanceCount

End Function

' Decrement the count in the destructor

Overrides Protected Sub Finalize()

 miInstanceCount -= 1

 MyBase.Finalize

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Now, code such as the following accesses the shared variable:

Dim steve As New CPerson()

MsgBox(CPerson.GetInstanceCount) ' Displays 1

Dim donna As New CPerson()

MsgBox(CPerson.GetInstanceCount) ' Displays 2

4.3.7 Class Constructors

When an object of a particular class is created, the compiler calls a special function called the class'
constructor or instance constructor. Constructors can be used to initialize an object when necessary.
(Constructors take the place of the Class_ Initialize event in earlier versions of VB.)

We can define constructors in a class module. However, if we choose not to define a constructor, VB uses
a default constructor. For instance, the line:

Dim APerson As CPerson = New CPerson()

invokes the default constructor of our CPerson class simply because we have not defined a custom
constructor.

To define a custom constructor, we just define a subroutine named New within the class module. For
instance, suppose we want to set the Name property to a specified value when a CPerson object is first
created. Then we can add the following code to the CPerson class:

' Custom constructor

Sub New(ByVal sName As String)

 Me.Name = sName

End Sub

Now we can create a CPerson object and set its name as follows:

Dim APerson As CPerson = New CPerson("fred")

or:

Dim APerson As New CPerson("fred")

Note that because VB.NET supports function overloading (discussed later in this chapter), we can define
multiple constructors in a single class, provided each constructor has a unique argument signature. We
can then invoke any of the custom constructors simply by supplying the correct number and type of
arguments for that constructor.

Note also that once we define one or more custom constructors, we can no longer invoke the default (that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is, parameterless) constructor with a statement such as:

Dim APerson As New CPerson()

Instead, to call a parameterless constructor, we must specifically add the constructor to the class module:

' Default constructor

Sub New()

 ...

End Sub

4.3.8 Finalize, Dispose, and Garbage Collection

In VB 6, a programmer can implement the Class_Terminate event to perform any clean up procedures
before an object is destroyed. For instance, if an object held a reference to an open file, it might be
important to close the file before destroying the object itself.

In VB.NET, the Terminate event no longer exists, and things are handled quite differently. To understand
the issues involved, we must first discuss garbage collection.

When the garbage collector determines that an object is no longer needed (which it does, for instance,
when the running program no longer holds a reference to the object), it automatically runs a special
destructor method called Finalize. However, it is important to understand that, unlike with the
Class_Terminate event, we have no way to determine exactly when the garbage collector will call the
Finalize method. We can only be sure that it will be called at some time after the last reference to the
object is released. Any delay is due to the fact that the .NET Framework uses a system called reference-
tracing garbage collection, which periodically releases unused resources.

Finalize is a Protected method. That is, it can be called from a class and its derived classes, but it is not
callable from outside the class, including by clients of the class. (In fact, since the Finalize destructor is
automatically called by the garbage collector, a class should never call its own Finalize method directly.) If
a class' Finalize method is present, then it should explicitly call its base class' Finalize method as well.
Hence, the general syntax and format of the Finalize method is:

Overrides Protected Sub Finalize()

 ' Cleanup code goes here

 MyBase.Finalize

End Sub

The benefits of garbage collection are that it is automatic and it ensures that unused resources are always
released without any specific interaction on the part of the programmer. However, it has the disadvantages
that garbage collection cannot be initiated directly by application code and some resources may remain in
use longer than necessary. Thus, in simple terms, we cannot destroy objects on cue.

We should note that not all resources are managed by the Common Language Runtime. These resources,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

such as Windows handles and database connections, are thus not subject to garbage collection without
specifically including code to release the resources within the Finalize method. But, as we have seen, this
approach does not allow us or clients of our class to release resources on demand. For this purpose, the
Framework Class Library defines a second destructor called Dispose. Its general syntax and usage is:

Class classname

 Implements IDisposable

Public Sub Dispose() Implements IDisposable.Dispose

 ' cleanup code goes here

 ' call child objects' Dispose methods, if necessary, here

End Sub

' Other class code

End Class

Note that classes that support this callable destructor must implement the IDisposable interface - hence
the Implements statement just shown. IDisposable has just one member, the Dispose method.

It is important to note that it is necessary to inform any clients of the class that they must call this method
specifically in order to release resources. (The technical term for this is the manual approach!)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4 Inheritance

Perhaps the best way to describe inheritance as it is used in VB.NET is to begin with an example.

The classes in a given application often have relationships to one another. Consider, for instance, our
Employee information application. The Employee objects in the class CEmployee represent the general
aspects common to all employees - name, address, salary, and so on.

Of course, the executives of the company will have different prerequisites than, say, the secretaries. So it
is reasonable to define additional classes named CExecutive and CSecretary, each with properties and
methods of its own. On the other hand, an executive is also an employee, and there is no reason to define
different Name properties in the two cases. This would be inefficient and wasteful.

This situation is precisely what inheritance is designed for. First, we define the CEmployee class, which
implements a Salary property and an IncSalary method:

' Employee class

Public Class CEmployee

 ' Salary property is read/write

 Private mdecSalary As Decimal

 Property Salary() As Decimal

 Get

 Salary = mdecSalary

 End Get

 Set

 mdecSalary = Value

 End Set

 End Property

 Public Overridable Sub IncSalary(ByVal sngPercent As Single)

 mdecSalary = mdecSalary * (1 + CDec(sngPercent))

 End Sub

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, we define the CExecutive class:

' Executive Class

Public Class CExecutive

 Inherits CEmployee

 ' Calculate salary increase based on 5% car allowance as well

 Overrides Sub IncSalary(ByVal sngPercent As Single)

 Me.Salary = Me.Salary * CDec(1.05 + sngPercent)

 End Sub

End Class

There are two things to note here. First, the line:

Inherits CEmployee

indicates that the CExecutive class inherits the members of the CEmployee class. Put another way, an
object of type CExecutive is also an object of type CEmployee. Thus, if we define an object of type
CExecutive:

Dim ceo As New CExecutive

then we can invoke the Salary property, as in:

ceo.Salary = 1000000

Second, the keyword Overrides in the IncSalary method means that the implementation of IncSalary in
CExecutive is called instead of the implementation in CEmployee. Thus, the code:

ceo.IncSalary

raises the salary of the CExecutive object ceo based on a car allowance. Note also the presence of the
Overridable keyword in the definition of IncSalary in the CEmployee class, which specifies that the class
inheriting from a base class is allowed to override the method of the base class.

Next, we define the CSecretary class, which also inherits from CEmployee but implements a different
salary increase for secretary objects:

' Secretary Class

Public Class CSecretary

 Inherits CEmployee

 ' Secretaries get a 2% overtime allowance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Overrides Sub IncSalary(ByVal sngPercent As Single)

 Me.Salary = Me.Salary * CDec(1.02 + sngPercent)

 End Sub

End Class

We can now write code to exercise these classes:

' Define new objects

Dim ThePresident As New CExecutive()

Dim MySecretary As New CSecretary()

' Set the salaries

ThePresident.Salary = 1000000

MySecretary.Salary = 30000

' Set Employee to President and inc salary

Debug.Writeline("Pres before: " & CStr(ThePresident.Salary))

ThePresident.IncSalary(0.4)

Debug.WriteLine("Pres after: " & CStr(ThePresident.Salary))

Debug.Writeline("Sec before: " & CStr(MySecretary.Salary))

MySecretary.IncSalary(0.3)

Debug.Writeline("Sec after: " & CStr(MySecretary.Salary))

The output in this case is:

Pres before: 1000000

Pres after: 1450000

Sec before: 30000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sec after: 39600

The notion of inheritance is quite simple, as put forth in Microsoft's documentation:

If Class B inherits from Class A, then any object of Class B is also an object of Class A and so
includes the public properties and methods (that is, the public interface) of Class A. In this case,
Class A is called the base class and Class B is called the derived class. On the other hand, in
general, the derived class can override the implementation of a member of the base class for its own
use.

We have seen in the previous example that inheritance is implemented using the Inherits keyword.

4.4.1 Permission to Inherit

There are two keywords used in the base class definition that affect the ability to inherit from a base class:

NotInheritable

When this is used to define a class, as in:
Public NotInheritable Class InterfaceExample

the class cannot be used as a base class.

MustInherit

When this is used to define a class, as in:
Public MustInherit Class InterfaceExample

objects of this class cannot be created directly. Objects of a derived class can be created, however. In
other words, MustInherit classes can be used as base classes and only as base classes.

4.4.2 Overriding

There are several keywords that control whether a derived class can override an implementation in the
base class. These keywords are used in the declaration of the member in question, rather than in the class
definition:

Overridable

Allows but does not require a member to be overridden. Note that the default for a Public member
is NotOverridable. Here is an example:

Public Overridable Sub IncSalary()
NotOverridable

Prohibits overriding of the member. This is the default for Public members of a class.
MustOverride

Must be overridden. When this keyword is used, the member definition is restricted to just the
declaration line, with no implementation and no End Sub or End Function line. For example:

Public MustOverride Sub IncSalary()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note also that when a class module contains a MustOverride member, then the class itself must be
declared as MustInherit.

Overrides

Unlike the other modifiers, this modifier belongs in the derived class and indicates that the modified
member is overriding a base class member. For example:

Overrides Sub IncSalary()

4.4.3 Rules of Inheritance

In many object-oriented languages, such as C++, a class can inherit directly from more than one base
class. This is referred to as multiple inheritance. VB.NET does not support multiple inheritance, and so a
class can inherit directly from at most one other class. Thus, code such as the following is not permitted:

' Executive Class

Public Class CExecutive 'INVALID

 Inherits CEmployee

 Inherits CWorker

 . . .

End Class

On the other hand, Class C can inherit from Class B, which, in turn, can inherit from Class A, thus forming
an inheritance hierarchy. Note also that a class can implement multiple interfaces through the Interface
keyword. We discuss this issue later in this chapter.

4.4.4 MyBase, MyClass, and Me

The keyword MyBase provides a reference to the base class from within a derived class. If you want to call
a member of the base class from within a derived class, you can use the syntax:

MyBase.MemberName

where MemberName is the name of the member. This will resolve any ambiguity if the derived class also has
a member of the same name.

The MyBase keyword can be used to call the constructor of the base class in order to instantiate a member
of that class, as in:

MyBase.New(...)

Note that MyBase cannot be used to call Private class members.

Visual Basic looks for the most immediate version in parent classes of the procedure in question. Thus, if

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class C derives from Class B, which derives from Class A, a call in Class C to:

MyBase.AProc

first looks in Class B for a matching procedure named AProc. If none is found, then VB looks in Class A for
a matching procedure. (By matching, we mean a method with the same argument signature.)

The keyword MyClass provides a reference to the class in which the keyword is used. It is similar to the Me
keyword, except when used to call a method. To illustrate the difference, consider a class named Class1
and a derived class named Class1Derived. Note that each class has an IncSalary method:

Public Class Class1

 Public Overridable Function IncSalary(ByVal sSalary As Single) _

 As Single

 IncSalary = sSalary * CSng(1.1)

 End Function

 Public Sub ShowIncSalary(ByVal sSalary As Single)

 MsgBox(Me.IncSalary(sSalary))

 MsgBox(MyClass.IncSalary(sSalary))

 End Sub

End Class

Public Class Class1Derived

 Inherits Class1

 Public Overrides Function IncSalary(ByVal sSalary As Single) _

 As Single

 IncSalary = sSalary * CSng(1.2)

 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Class

Now consider the following code, placed in a form module:

Dim c1 As New Class1()

Dim c2 As New Class1Derived()

Dim c1var As Class1

c1var = c1

c1var.IncSalary(10000) ' Shows 11000, 11000

c1var = c2

c1var.IncSalary(10000) ' Shows 12000, 11000

The first call to IncSalary is made using a variable of type Class1 that refers to an object of type Class1. In
this case, both of the following calls:

Me.IncSalary

MyClass.IncSalary

return the same value, because they both call IncSalary in the base class Class1.

However, in the second case, the variable of type Class1 holds a reference to an object of the derived
class, Class1Derived. In this case, Me refers to an object of type Class1Derived, whereas MyClass still
refers to the base class Class1 wherein the keyword MyClass appears. Thus,

Me.IncSalary

returns 12000 whereas the following:

MyClass.IncSalary

returns 10000.

4.4.5 Shadowing

VB.NET has a feature referred to as shadowing that is similar to overriding, but with some very important
differences. Shadowing can apply to element types associated with any of the following statements:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Statement
Constant Statement
Declare Statement
Delegate Statement
Dim Statement
Enum Statement
Event Statement
Function Statement
Interface Statement
Property Statement
Structure Statement
Sub Statement

The best way to illustrate shadowing and the differences between shadowing and overriding is with an
example. Consider two classes, Class1 and Class2, where Class2 derives from Class1:

Public Class Class1

 Public x As Integer = 1

 Public Overridable Sub TestOverride()

 MsgBox("Class1 method to override")

 End Sub

 Public Sub TestShadow()

 MsgBox("Class1 method to shadow")

 End Sub

End Class

Public Class Class2

 ' Derived class

 Inherits Class1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Shadows x As Integer = 2

 Public Overrides Sub TestOverride()

 MsgBox("Class2 method that overrides")

 End Sub

 Public Shadows Sub TestShadow()

 MsgBox("Class2 method that shadows")

 End Sub

End Class

Class1 has two methods, TestOverride and TestShadow. Note that TestOverride is declared with the
Overridable keyword. Class2 also defines two methods with the names TestOverride and TestShadow.
Note that TestOverride is declared with the Overrides keyword, and TestShadow is declared with the
Shadows keyword. Finally, note the presence of a public instance field, x, in each class.

Now, consider the following test code:

Dim c2 As Class2 = New Class2()

c2.TestOverride()

c2.TestShadow()

MsgBox("x=" & c2.x)

Because the object reference c2 is to an object of Class2, the calls to the TestOverride and TestShadow
methods, as well as the public variable x, all refer to code in Class2, so the output messages are as
expected:

Class2 method that overrides

Class2 method that shadows

x = 2

Now consider the code:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim c1 As Class1 = New Class2()

c1.TestOverride()

c1.TestShadow()

MsgBox("x=" & c1.x)

Here, we have a variable of type Class1 that refers to an object of Class2. The output in this case is:

Class2 method that overrides

Class1 method that shadows

x = 1

To explain this, note that overriding works as follows: the method that is called is the version that is
implemented not in the type (class) of the variable, but in the type (class) of the object to which that
variable refers. This is a key feature of overriding and is generally referred to as a form of polymorphism.
(The variable c1 takes on many forms, based on the type of object to which it refers, rather than its own
type.)

On the other hand, shadowing is different from overriding: the process is not polymorphic, and so it is the
type of the variable itself and not the referenced object that determines the implementation that is used.
Since the variable has type Class1, the VB.NET compiler ignores the "extra goodies" that exists because
c1 happens to point to a derived class object and looks only at the Class1 portion of the object, so to
speak. There is no polymorphism here.

Note that member variables, such as x, can only be shadowed; they cannot be overridden.

One other difference between shadowing and overriding is that any element type in the preceding list can
shadow any other element type. For instance, a method in the derived class can shadow a variable of the
same name in the base class.

Unfortunately, the Microsoft documentation makes this point at the expense of the real issue, that of
polymorphism. After all, it would seem to be bad programming practice to shadow elements of different
types. But shadowing methods may make some sense.

Shadowing occurs in another context that is referred to as shadowing by scope . For example, if a module
contains a Public variable declaration and one of the procedures within the module contains a variable
declaration of the same name but perhaps a different data type, then within the procedure, the local
variable will shadow the module-level variable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5 Interfaces, Abstract Members, and Classes

We have alluded to the fact that a class may implement all, some, or none of the members of the
interfaces that it defines. Any interface member that does not have an implementation is referred to as an
abstract member. The purpose of an abstract member is to provide a member signature (a template, if you
will) that can be implemented by one or more derived classes, generally in different ways.

Let us clarify this with an example. Recall from our discussion of inheritance that the CEmployee class
defines and implements an IncSalary method that increments the salary of an employee. Recall also that
the CExecutive and CSecretary derived classes override the implementation of the IncSalary method in
the base class CEmployee.

Suppose that, in a more complete employee model, there is a derived class for every type of employee.
Moreover, each of these derived classes overrides the implementation of the IncSalary method in the base
class CEmployee. In this case, the implementation of IncSalary in the base class will never need to be
called! So why bother to give the member an implementation that will never be used?

Instead, we can simply provide an empty IncSalary method, as shown here:

' Employee class

Public Class CEmployee

 . . .

 Public Overridable Sub IncSalary(ByVal sngPercent As Single)

 End Sub

End Class

Alternatively, if we want to require that all derived classes implement the IncSalary method, we can use
the MustOverride keyword, as shown here:

' Employee class

Public MustInherit Class CEmployee

 . . .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public MustOverride Sub IncSalary(ByVal sngPercent As Single)

End Class

As mentioned earlier, when using MustOverride, there is no End Sub statement associated with the
method. Note also that when using the MustOverride keyword, Microsoft requires that the class be
declared with the MustInherit keyword. This specifies that we cannot create objects of type CEmployee.

In each of the previous cases, the IncSalary member of the base class CEmployee is an abstract member.

Any class that contains at least one abstract member is termed an abstract class. (Thus, the CEmployee
class as defined earlier is an abstract class.) This terminology comes from the fact that it is not possible to
create an object from an abstract class because at least one of the object's methods would not have an
implementation.

There are also situations where we might want to define a class in which all members are abstract. In
other words, this is a class that only defines an interface. We might refer to such a class as a pure abstract
class, although this terminology is not standard.

For example, imagine a Shape class called CShape that is designed to model the general properties and
actions of geometric shapes (ellipses, rectangles, trapezoids, etc.). All shapes need a Draw method, but
the implementation of the method varies depending on the type of shape - circles are drawn quite
differently than rectangles, for example. Similarly, we want to include methods called Rotate, Translate,
and Reflect, but, as with the Draw method, each of these methods require a different implementation
based on the type of shape.

Thus, we can define the CShape class in either of the following ways:

Public Class Class2

 Public Overridable Sub Draw()

 End Sub

 Public Overridable Sub Rotate(ByVal sngDegrees As Single)

 End Sub

 Public Overridable Sub Translate(ByVal x As Integer, _

 ByVal y As Integer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

 Public Overridable Sub Reflect(ByVal iSlope As Integer, _

 ByVal iIntercept As Integer)

 End Sub

End Class

or:

Public MustInherit Class CShape

 Public MustOverride Sub Draw()

 Public MustOverride Sub Rotate(ByVal sngDegrees As Single)

 Public MustOverride Sub Translate(ByVal x As Integer, _

 ByVal y As Integer)

 Public MustOverride Sub Reflect(ByVal iSlope As Integer, _

 ByVal iIntercept As Integer)

End Class

Now we can define derived classes such as CRectangle, CEllipse, and CPolygon. Each of these derived
classes will (or must, in the latter case) implement the members of the base class CShape. (We won't go
into the details of such an implementation here, since it is not relevant to our discussion.)

4.5.1 Interfaces Revisited

We have seen that interfaces can be defined in class modules. VB.NET also supports an additional
method of defining an interface, using the Interface keyword. The following example defines the IShape
interface:

Public Interface IShape

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Sub Draw()

 Sub Rotate(ByVal sngDegrees As Single)

 Sub Translate(ByVal x As Integer, ByVal y As Integer)

 Sub Reflect(ByVal iSlope As Integer, _

 ByVal iIntercept As Integer)

End Interface

Note that we cannot implement any of the members of an interface defined using the Interface keyword
- that is, not within the module in which the interface is defined. However, we can implement the interface
using an ordinary class module. Note the use of the Implements statement (which was also available in VB
6, but could be applied only to external interfaces):

Public Class CRectangle

' Implement the interface IShape

Implements IShape

Public Overridable Sub Draw() Implements IShape.Draw

 ' code to implement Draw for rectangles

End Sub

Public Overridable Sub Spin() Implements IShape.Rotate

 ' code to implement Rotate for rectangles

End Sub

End Class

Note also the use of the Implements keyword in each function that implements an interface member. This
keyword allows us to give the implementing function any name - it does not need to match the name of
the method (see the Spin method earlier in this section, which implements the IShape interface's Rotate
method). However, it is probably less confusing (and better programming practice) to use the same name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The main advantage of using the Implements keyword approach to defining an interface is that a single
class can implement multiple interfaces, whereas VB.NET does not permit a single class to inherit directly
from multiple base classes. On the other hand, the main disadvantage of the Interface keyword approach
is that no implementation is possible in the module that defines the interface. Thus, all interface members
must be implemented in every class that implements the interface. This can mean code repetition if an
interface member has the same implementation in more than one implementing class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6 Polymorphism and Overloading

Fortunately, we don't need to go into the details of polymorphism and overloading, which is just as well,
because they tend to be both confusing and ambiguous. For instance, some computer scientists say that
overloading is a form of polymorphism, whereas others say it is not. We will discuss only those issues that
are directly relevant to the .NET Framework.

4.6.1 Overloading

Overloading refers to an item being used in more than one way. Operator names are often overloaded.
For instance, the plus sign (+) refers to addition of integers, addition of singles, addition of doubles, and
concatenation of strings. Thus, the plus symbol (+) is overloaded. It's a good thing, too; otherwise, we
would need separate symbols for adding integers, singles, and doubles.

Function names can also be overloaded. For instance, the absolute value function, Abs, can take an
integer parameter, a single parameter, or a double parameter. Because the name Abs represents several
different functions, it is overloaded. In fact, if you look at the documentation for the Abs member of the
Math class (in the System namespace of the Framework Class Library), you will find the following
declarations, showing the different functions using the Abs name:

Overloads Public Shared Function Abs(Decimal) As Decimal

Overloads Public Shared Function Abs(Double) As Double

Overloads Public Shared Function Abs(Integer) As Short

Overloads Public Shared Function Abs(Integer) As Integer

Overloads Public Shared Function Abs(Long) As Long

Overloads Public Shared Function Abs(SByte) As SByte

Overloads Public Shared Function Abs(Single) As Single

Note the use of the Overloads keyword, which tells VB that this function is overloaded.

Specifically, a function name is overloaded when two defined functions use the same name but have
different argument signatures. For instance, consider a function that retrieves a current account balance.
The account could be identified either by the person's name or by the account number. Thus, we might
define two functions, each called GetBalance:

Overloads Function GetBalance(sCustName As String) As Decimal

Overloads Function GetBalance(sAccountNumber As Long) As Decimal

Note also that VB.NET permits function overloading only because the argument signatures of the two

http://lib.ommolketab.ir
http://lib.ommolketab.ir

functions are different, so that no ambiguity can arise. The function calls:

GetBalance("John Smith")

GetBalance(123456)

are resolved by the compiler without difficulty, based on the data type of the argument. This type of
overloading is often referred to as overloading the function GetBalance. On the other hand, there are two
different functions here, so it seems more appropriate to say that the function name is being overloaded.
Overloading is very common and not exclusive to object-oriented programming.

4.6.2 Polymorphism

The term polymorphism means having or passing through many different forms. In the .NET Framework,
polymorphism is tied directly to inheritance. Again, let us consider our Employee example. The function
IncSalary is defined in three classes: the base class CEmployee and the derived classes CExecutive and
CSecretary. Thus, the IncSalary function takes on three forms. This is polymorphism, VB.NET style.

In case you are interested, many computer scientists would not consider this to be polymorphism. They
would argue that the function IncSalary takes on only one form. It is the implementation that differs, not the
function. They would refer to the situation described here for IncSalary as function overloading. The main
point here is that there is a lot of confusion as to how Microsoft and others use the terms overloading and
polymorphism, so you should be on guard when reading documentation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7 Accessibility in Class Modules

The notion of accessibility (or scope) in class modules is more involved than it is in standard modules. As
far as local variables (block-level and procedure-level) are concerned, there is no difference - we have
block scope and procedure-level scope.

However, members of a class module can be assigned one of the following access modifiers:

Public

Private

Friend

Protected

Protected Friend

(For standard modules, only Public, Private, and Friend are allowed.)

Actually, we can dispense with the Protected Friend modifier in one statement: Protected Friend is
equivalent to Protected or Friend. Put another way, if Protected sets a specific range of accessibility (or
inheritance - see below) and Friend sets a different range, then Protected Friend sets accessibility to
the union of those ranges - if a member falls into either range, it passes the accessibility (or inheritance)
criterion.

Note that class modules themselves can be declared with any one of the three access modifiers: Public,
Private, or Friend (Protected is not allowed). When a class module declaration specifies one of these
access modifiers, this simply restricts all of its members to that level of access, unless a member's access
is further restricted by the access modifier on the member declaration itself. For instance, if the class has
Friend access, no member can have Public access. (Put another way, the Public access is overridden by
the Friend class access.)

On the other hand, all four access modifiers apply to members of the class module - that is, to variable,
constant, enum, and procedure declarations within the class module.

To avoid confusion in discussing the access modifiers, it helps to separate the issue of accessibility of
members from that of inheritance of members.

4.7.1 Member Inheritance

Let us first address member inheritance. Suppose that a class named Class1 has a derived class named
Class1Derived, as shown in the following:

Public Class Class1

 Public pub As Integer = 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private priv As Integer = 1

 Protected p As Integer = 1

 Friend f As Integer = 1

 Protected Friend pf As Integer = 1

End Class

Public Class Class1Derived

 Inherits Class1

 Public Sub test()

 ' Not allowed - private members are not inherited

 Me.priv = 4

 ' Allowed only in derived classes in the same project as base class

 Me.f = 4

 ' Allowed in all derived classes

 Me.pub = 4

 Me.p = 4

 Me.fp = 4

 End Sub

End Class

Note that the Me. syntax is optional, and we could write, for instance, simply:

pub = 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

p = 4

f = 4

fp = 4

The fact that the code:

Me.p = 4

is valid in Class1Derived means that this class has inherited the member p. In other words, an object of
class Class1Derived has a member variable named p. The fact that:

Me.f

fails to work in Class1Derived if Class1Derived is in a different project than Class1 means that such
classes do not inherit the member f.

Now, the rules of inheritance are:

Private members are never inherited.

Public members are inherited by all derived classes.

Protected members are inherited by all derived classes (and therefore so are Protected Friend
members).

Friend members are inherited by all derived classes in the same project as the base class only.

4.7.2 Member Accessibility

Now we come to member accessibility. Unfortunately, the term accessibility is used quite loosely in most
documentation, but to make absolutely clear sense of the issue, we must be specific. Many writers simply
refer to a member's accessibility, but this is ambiguous. To illustrate, consider the code:

Public Class Class1

 Public x As Integer = 1

End Class

Public Class Class2

 Inherits Class1

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now, it makes sense to ask about the accessibility of the Public member x of Class1 or the (inherited)
Public member x of Class2. It does not make sense to ask about the accessibility of the member x alone,
without mention of the class involved. Indeed, we say that the Public member x of Class1 is accessible
from a class Class3 if the following is legal:

Public Class Class3

 Public Sub Test()

 Dim c1 As new Class1()

 c1.x = 5

 End Sub

End Class

On the other hand, the Public member x of class Class2 is accessible from Class3 if we can write:

Public Class Class3

 Public Sub Test()

 Dim c2 As new Class2()

 c2.x = 5

 End Sub

End Class

With this in mind, we can describe the accessibility rules clearly:

Private

If ClassA is a class with a Private member m, we cannot access the member m of ClassA from any
other class.

Public

If ClassA is a class with a Public member m, we can access the member m of ClassA from any
other class.

Friend

If ClassA is a class with a Friend member m, we can access the member m of ClassA from any
other class that is in the same project as ClassA.

Protected

Let m be a Protected member of ClassA. Then from any subclass ClassB of ClassA, we can access
the member m of ClassB or the member m of any subclass of ClassB. Another way to phrase this is
as follows. Let m be declared as Protected in a class ClassA. Let Class B be a subclass of ClassA.
Then the member m of ClassB is accessible in each class between ClassB and ClassA in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inheritance hierarchy.

Clearly, the definition of Protected needs clarification. To do so, consider a chain of derived classes
(that is, ClassN+1 is derived from ClassN):

Class1

Class2

.

.

.

ClassA

 ' This is the first appearance of the protected method MyMethod

 ' Thus, all classes below inherit MyMethod

 Protected Sub MyMethod()

.

.

.

ClassB

 ' ClassB can call MyMethod because it has been inherited

 ' This is accessibility of MyMethod for ClassB

 MyMethod()

 ' Note that this is equivalent to

 Me.MyMethod()

 ' Can access MyMethod for any Class at or below this class

 ' For example, the following are legal:

 Dim b As New ClassB

 b.MyMethod()

 Dim c As New ClassC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 c.MyMethod()

 ' But the following is not legal

 Dim a As New ClassA

 a.MyMethod()

.

.

.

ClassC

 ' Can access MyMethod for any Class at or below this class

 ' For example, the following are legal:

 Me.MyMethod()

 Dim c As New ClassC

 c.MyMethod()

 Dim d As New ClassD

 d.MyMethod()

 ' But the following is not legal

 Dim b As New ClassB

 b.MyMethod()

.

.

.

ClassD

.

.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

.

ClassN

As you can see, the rules for Protected mode access are a bit involved. Actually, Protected mode should
be used with some care. For instance, declaring a member variable Protected violates one of the principal
rules of good object-oriented programming, encapsulation, as does declaring the member Public. Thus, it
should be done only if you are certain that derived classes will be well behaved (or are willing to accept the
risk). The same applies to Protected methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. The .NET Framework: General Concepts

In this chapter, we discuss some of the main concepts in the .NET Framework. This is intended as a
general overview, just to give you the "lay of the .NET land," so to speak. For more information, see Thuan
Thai and Hoang Q. Lam's .NET Framework Essentials (O'Reilly, 2001).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1 Namespaces

The notion of a namespace plays a fundamental role in the .NET Framework. In general, a namespace is
a logical grouping of types for the purpose of identification. For example, imagine that in a certain business
there is an executive named John Smith, a secretary named John Smith, and a custodian named John
Smith.

In this case, the name John Smith is ambiguous. When the paymaster stands on a table and calls out the
names of people to receive their pay checks, the executive John Smith won't be happy if he rushes to the
table when the paymaster calls out his name and the envelope contains the custodian John Smith's pay
check.

To resolve the naming ambiguity, the business can simply define three namespaces: Executive,
Secretarial, and Custodial. Now the three individuals can be unambiguously referred to by their fully
qualified names:

Executive.John Smith

Secretarial.John Smith

Custodial.John Smith

The .NET Framework Class Library (FCL), which we look at in more detail in Chapter 6, consists of several
thousand classes and other types (such as interfaces, structures, and enumerations) that are divided into
over 90 namespaces. These namespaces provide basic system services, such as:

Basic and advanced data types and exception handling (the System namespace)

Data access (the System.Data namespace)

User-interface elements for standard Windows applications (the System.Windows.Forms
namespace)

User-interface elements for web applications (the System.Web.UI namespace)

In fact, the VB.NET language itself is implemented as a set of classes belonging to the
Microsoft.VisualBasic namespace. (The C# and JScript languages are also implemented as a set of
classes in corresponding namespaces.)

For information on accessing the members of a namespace, see Section 5.5 later in this chapter.

Namespaces are not necessarily unique to the Framework Class Library; you can also create your own
namespaces by using the Namespace statement at the beginning of a code file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2 Common Language Runtime (CLR), Managed Code, and Managed

Data

The Common Language Runtime (CLR) is an environment that manages code execution and provides
application-development services. Compilers such as VB.NET expose the CLR's functionality to enable
developers to create applications. Code that is created under this environment is called managed code.
Note that COM components are not managed code, although they (as well as other unmanaged code) can
be used in applications that are built under the CLR.

The output of a compiler includes metadata, which is information that describes the objects that are part of
an application, such as:

Data types and their dependencies

Objects and their members

References to required components

Information (including versioning information) about components and resources that were used to
build the application

Metadata is used by the CLR to do such things as:

Manage memory allocations

Locate and load class instances

Manage object references and perform garbage collection

Resolve method invocations

Generate native code

Make sure that the application has the correct versions of necessary components and resources

Enforce security

The metadata in a compiled software component makes the component self- describing. This implies that
components, even those written in another language, can interact with the given component directly.

Objects that are managed by the CLR are referred to as managed data. (It is also possible to use
unmanaged data in applications.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3 Managed Execution

Managed execution is the name given for the process of creating applications under the .NET Framework.
The steps involved are as follows:

Write code using one or more .NET compilers. Note that for software components to be useable by
components that are written in other languages, these components must be written using only
language features that are part of the Common Language Specification (CLS).

1.

Compile the code. The compiler translates source code to Microsoft Intermediate Language (MSIL)
and generates the necessary metadata for the application.

2.

Run the code. When code is executed, the MSIL is compiled into native code (which is CPU-specific
code that runs on the same computer architecture as the compiler) by a Just In Time (JIT) compiler.
If required, the JIT checks the code for type safety. If the type-safety check fails, an exception is
thrown.

3.

Code that cannot access invalid memory addresses or perform other illegal operations that may result in
an application crash is called type-safe code. Code that is verified to be type-safe by the JIT is called
verifiably type-safe code. Due to limitations in the verification process, code can be type-safe and yet not
be verifiably type-safe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4 Assemblies

The purpose of an assembly is to specify a logical unit, or building block, for .NET applications that
encapsulate certain properties.

The term assembly refers to both a logical construct and a set of physical files. To draw an analogy on the
logical side, we might use the term neighborhood to refer to a zip code, a neighborhood name, and a list of
street addresses. On the physical side, a neighborhood consists of the actual houses that are located at
those addresses. Thus, we can speak of physically moving (i.e., deploying) the neighborhood.

A .NET application consists of one or more assemblies. Logically speaking, an assembly is just a set of
specifications. In particular:

An assembly specifies the (MSIL) code that is associated with the assembly. This code lies in a
Portable Executable (PE) file. (PE files are the traditional file types for Microsoft's code, but the
format is extended for .NET applications.)

An assembly specifies security permissions for itself, if any.

An assembly specifies a list of data types and provides scoping for those types. Every data type in a
.NET application must specify the assembly to which it belongs. The scoping provided by an
assembly means that different types may have the same name, as long as they belong to different
assemblies and can therefore be distinguished by means of the assembly to which they belong.
Microsoft refers to this by saying that an assembly provides atype boundary.

An assembly specifies rules for resolving external types and external references, including
references to other assemblies. In this way, assemblies form a reference scope boundary. Included
in this information are any version dependencies for the external references.

An assembly specifies which of its parts are exposed outside the assembly and which are private to
the assembly itself.

In addition to these specifications listed, an assembly is an object (or logical unit) that possesses certain
properties:

An assembly has version properties. This includes a major and minor version number, as well as a
revision and build number. Indeed, an assembly is the smallest unit that has versioning properties.
Put another way, all elements of an assembly (types and resources) are versioned as a unit - they
are assigned the version numbers of the assembly to which they belong. In other words, an
assembly is a versioning unit.

An assembly forms a deployment unit. More specifically, at any given time, a .NET application only
needs access to the assemblies that specify the code under execution. Other assemblies that make
up the application need not be present if the code they specify is not currently needed for execution.
These assemblies can be retrieved upon demand, so that the downloading of applications can be
more efficient.

Finally, we note that multiple versions of a single assembly can be run at the same time, on the same

http://lib.ommolketab.ir
http://lib.ommolketab.ir

system, or even in the same process. This is referred to as side- by-side execution.

The specifications in an assembly are collectively referred to as the assembly's manifest. The data in the
manifest is also called metadata. Specifically, the manifest contains:

The name of the assembly

Version information for the assembly

Security information for the assembly

A list of all files that are part of the assembly

Type reference information for the types specified in the assembly

A list of other assemblies that are referenced by the assembly

Custom information, such as a user-friendly assembly title, description, and product information
(company name, copyright information, and so on)

Physically, an assembly consists of one or more files - files that contain code, as well as resources, such
as bitmaps. The assembly's manifest can be a separate file or part of another file in the assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5 Assemblies and VB.NET

To a VB.NET programmer, an assembly is similar to a traditional DLL or EXE file, except that it contains
additional information, such as reference and type information (which in COM was often contained in a
separate OLB or TLB file, called a type library). When a VB.NET application is compiled, the compiler
creates an assembly for the target EXE or DLL.

In the .NET environment, namespaces are part of assemblies. An assembly can contain many
namespaces, and namespaces can be nested.

For instance, the System namespace is the fundamental namespace in the .NET environment. This is not
the time to go into details, but one example will be useful. The System namespace identifies the Array
class (Microsoft likes to say that the namespace contains classes.) One of the members of the Array class
is the Copy method, which copies a portion of one array to another array. Thus, we can write code such as
the following:

Imports System ' Optional since System is always imported

Dim array1() As Integer = {1, 2, 3, 4}

Dim array2(3) As Integer

Array.Copy(array1, array2, 3)

To use an existing assembly in a VB.NET project, you must do two things:

Add a reference to the assembly to your project. There are two exceptions to this rule, however. A
reference to the assembly containing the System namespace (mscorlib.dll) is added automatically,
as is a reference to the assembly containing the language being used (for VB.NET, this is
Microsoft.VisualBasic.dll).

Access the member or members of the namespace, as described later in this section.

To access a member of a namespace, you can use its fully qualified name. For example, to create an
instance of the Timers class, which is found in the System. Timers namespace, you can use a code
fragment like the following:

Dim oTimer As New System.Timers.Timer(2000)

Since using fully qualified names tends to be relatively cumbersome, you can include an Imports
statement at the beginning of a code file, before any references to variables or classes. Its syntax is:

Imports [aliasname =] namespace

where aliasname is an optional alias for the namespace, and namespace is its fully qualified name. For
example, if you import the System.Timers namespace as follows:

Imports System.Timers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you do not have to qualify a reference to the Timer class, which can be instantiated as follows:

Dim oTimer As New Timer(2000)

In the event that there is a naming conflict (either two namespaces have identically named types, or a
named type conflicts with a name in your project), you can specify an alias for the namespace, as follows:

Imports TI = System.Timers

and then instantiate a Timer object as follows:

Dim oTimer As New TI.Timer(2000)

If you're using the Visual Basic command-line compiler, you have to explicitly import
the Microsoft.VisualBasic namespace, or your code will not compile. If you're using
Visual Studio, VB's language elements are accessed automatically without your
having to import the namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. The .NET Framework Class Library

VB.NET is about classes, classes, and more classes. Even something as simple as a string is
implemented in a class (the String class of the System namespace). As we mentioned in Chapter 5, the
.NET Framework defines an extensive network of classes and namespaces called the Framework Class
Library (FCL). This consists of a set of namespaces that provide basic system services (like the System
namespace, whose classes define .NET data types, provide exception handling, and handle garbage
collection, among other things). It also includes additional namespaces, such as System.Data,
System.Windows. Forms, and System.Web.UI, which provide application services. In total, there are over
90 namespaces containing several thousand classes, interfaces, structures, enumerations, and other
items (such as delegates) in the .NET Framework Class Library.

The System namespace is at the top of the namespace hierarchy, and the Object class is at the top of the
object hierarchy. All types in the .NET Framework Class Library derive from the Object class.

The .NET Framework Class Library is sufficiently extensive to require an entire book for its description. In
this chapter, we provide just a brief introduction and some examples. This should prepare you to dive into
the Microsoft Class Library documentation. Note also that the reference portion of this book, Chapter 10,
documents selected language elements from the Framework Class Library that seem particularly useful to
VB programmers. For more on which classes are included in the reference section, see its introduction.

Before becoming intimidated by the size of the Framework Class Library, we should also keep in mind that
VB.NET provides wrappers for some elements of the Framework Class Library, so we can often just call a
VB function rather than resort to accessing the classes in the Framework Class Library directly. More
generally, while the class library does have much to offer a VB programmer and should not be ignored, it
can be studied and used on an "as needed" basis.

Let us illustrate a simple case in which the FCL has something to offer. We mentioned in Chapter 3 that
the built-in VB data types are wrappers for a corresponding BCL class (for reference types) or structure
(for value types). However, the Visual Basic language typically does not implement all of the members of
the BCL class. For instance, if we want to verify that a user has entered a number that lies within the range
of type Integer, we can use code such as the following:

Dim s As String

Dim i As Integer

s = InputBox("Enter an integer")

If IsNumeric(s)

 If (CDbl(s) >= i.MinValue) And (CDbl(s) <= i.MaxValue) Then

 i = CInt(s)

 Else

 Debug.WriteLine("Invalid number")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

Else

 Debug.WriteLine("Non-numeric value")

End If

Because the VB Integer data type is a wrapper for the BCL's Int32 structure, the MinValue and MaxValue
properties of the Int32 data type are accessible to the Integer variable i. Incidentally, because the
MaxValue and MinValue members are shared, we could also have written:

If IsNumeric(s)

 If (CDbl(s) >= Integer.MinValue) _

 And (CDbl(s) <= Integer.MaxValue) Then

which, in my opinion, is more readable.

In order to prevent a compiler error when compiling this code with Option Strict On, we've converted the
String s to a Double before comparing its value with the Integer class's MinValue and MaxValue
properties. This is because a Double is the least restrictive numeric data type, and we want to be sure that
the numeric equivalent of the String s is within the range of a more restrictive numeric (integer) data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1 The System Namespace

The System namespace contains classes for such broad ranging things as:

Data types

Data type conversions

Method-parameter manipulation

Events and event handlers

Mathematics

Program invocation

Application-environment management

6.1.1 Data Type Conversion

To illustrate data type conversion, the System namespace defines a class called Convert. If you check the
documentation, you'll find that one of the methods of the Convert class is ToBoolean. The documentation
lists the following for ToBoolean:

Overloads Public Shared Function ToBoolean(String) As Boolean

Overloads Public Shared Function ToBoolean(Double) As Boolean

Overloads Public Shared Function ToBoolean(Single) As Boolean

Overloads Public Shared Function ToBoolean(Char) As Boolean

Overloads Public Shared Function ToBoolean(Byte) As Boolean

Overloads Public Shared Function ToBoolean(Object) As Boolean

Overloads Public Shared Function ToBoolean(Boolean) As Boolean

Overloads Public Shared Function ToBoolean(Long) As Boolean

Overloads Public Shared Function ToBoolean(Integer) As Boolean

As you can see, there are many ToBoolean functions - each one with a different argument signature -
to take care of converting various data types to Boolean.

Now, just for exercise, we can write:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim s As String

Dim b As Boolean

s = "false"

b = System.Convert.ToBoolean(s)

msgbox(b)

Because the System namespace is always available (or if we are programming outside of Visual Studio,
we can import it using the Imports statement), we can omit the System qualifier and write:

b = Convert.ToBoolean(s)

Of course, we can also use the built-in VB.NET function CBool.

The Convert class contains methods for converting data to the standard Visual Basic data types, as well
as to the data types supported by the .NET Framework but not wrapped by Visual Basic, such as the
unsigned-integer data types. The most important of these methods are shown in Table 6-1.

Table 6-1. Members of the System.Convert class

Method Description

ToBoolean Converts a value to a Boolean

ToByte Converts a value to a Byte

ToChar Converts a value to a Char

ToDateTime Converts a value to DateTime (Date in Visual Basic)

ToDecimal Converts a value to Decimal

ToDouble Converts a value to Double

ToInt16 Converts a value to Int16 (Short in Visual Basic)

ToInt32 Converts a value to Int32 (Integer in Visual Basic)

ToInt64 Converts a value to Int64 (Long in Visual Basic)

ToSByte Converts a value to SByte, the unsigned-byte data type in the BCL

ToSingle Converts a value to Single

ToString Converts a value to String

ToUInt16 Converts a value to UInt16, an unsigned 16-bit integer

ToUInt32 Converts a value to UInt32, an unsigned 32-bit integer

ToUInt64 Converts a value to UInt64, an unsigned 64-bit integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1.2 The Array Class

The Array class contains useful methods for dealing with arrays. For instance, the Array object has a Sort
method (at last) that sorts the elements of an array. Here is an example:

Sub sortArray()

Dim i As Integer

Dim intArray() As Integer = {9, 8, 12, 4, 5}

For i = 0 To 4

 console.WriteLine(CStr(intArray(i)))

Next

Array.Sort(intarray)

Console.WriteLine("Sorted:")

For i = 0 To 4

 console.WriteLine(intArray(i))

Next

End Sub

The output is:

9

8

12

4

5

Sorted:

4

5

8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9

12

Some of the more important methods of the Array class are shown in Table 6-2.

Table 6-2. Some members of the System.Array class

Method Description

BinarySearch Searches a sorted one-dimensional array for a value

IndexOf Returns the first occurrence of a particular value in a one-dimensional array

LastIndexOf Returns the last occurrence of a particular value in a one-dimensional array

Reverse
Reverses the order of the elements in a one-dimensional array or a portion of a one-
dimensional array

Sort Sorts a one-dimensional array

6.1.3 The Math Class

The Math class has a number of mathematical-function methods (such as trigonometric functions), as well
as some more useful methods, such as Max and Min. Therefore, we can just write:

MsgBox(Math.Max(4,7))

Table 6-3 shows the members of the Math class.

Table 6-3. The members of the Math class

Topic Description

Abs function Absolute value

Acos function Arccosine

Asin function Arcsine

Atan function Arctangent; returns the angle whose tangent is a specified number

Atan2 function
Arctangent; returns the angle whose tangent is the quotient of two specified
numbers

Ceiling function Returns the smallest integer greater than or equal to the argument number

Cos function Cosine

Cosh function Hyperbolic cosine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Topic Description

E field The natural number e

Exp function Exponential function

Floor function Returns the largest integer less than or equal to the argument number

IEEERemainder
function

Returns the remainder after dividing x by y

Log function Natural (base e) logarithm

Log10 function Common (base 10) logarithm

Max function Maximum

Min function Minimum

Mod operator
Returns the modulus, that is, the remainder when number1 is divided by
number2

Pi field Pi, the ratio of the circumference of a circle to its diameter

Pow function Generalized exponential function

Randomize statement Initializes the random number generator

Rnd function Returns a random number

Round function Rounds a given number to a specified number of decimal places

Sign function Determines the sign of a number

Sin function Sine

Sinh function Hyperbolic sine

Sqrt function Square root

Tan function Tangent

Tanh function Hyperbolic tangent

6.1.4 The String Class

The String class implements a collection of methods for string manipulation, including methods for locating
substrings, concatenation, replacement, padding, trimming, and so on. One interesting method is Insert,
which inserts a new string into an existing string.

The VB.NET String data type is equivalent to the System.String class, so we can apply the methods of
System.String directly to VB strings, as in:

Dim s As String = "To be to be"

msgbox(s.Insert(6, "or not "))

This displays the message "To be or not to be." Table 6-4 shows the members of the String class.

E field The natural number e

Exp function Exponential function

Floor function Returns the largest integer less than or equal to the argument number

IEEERemainder
function

Returns the remainder after dividing x by y

Log function Natural (base e) logarithm

Log10 function Common (base 10) logarithm

Max function Maximum

Min function Minimum

Mod operator
Returns the modulus, that is, the remainder when number1 is divided by
number2

Pi field Pi, the ratio of the circumference of a circle to its diameter

Pow function Generalized exponential function

Randomize statement Initializes the random number generator

Rnd function Returns a random number

Round function Rounds a given number to a specified number of decimal places

Sign function Determines the sign of a number

Sin function Sine

Sinh function Hyperbolic sine

Sqrt function Square root

Tan function Tangent

Tanh function Hyperbolic tangent

6.1.4 The String Class

The String class implements a collection of methods for string manipulation, including methods for locating
substrings, concatenation, replacement, padding, trimming, and so on. One interesting method is Insert,
which inserts a new string into an existing string.

The VB.NET String data type is equivalent to the System.String class, so we can apply the methods of
System.String directly to VB strings, as in:

Dim s As String = "To be to be"

msgbox(s.Insert(6, "or not "))

This displays the message "To be or not to be." Table 6-4 shows the members of the String class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 6-4. The members of the String class

Member Description

Chars property Returns the character at a specified character position in the string

Clone method Returns a reference to an instance of the string

Compare method A shared method that compares two string objects

CompareOrdinal
method

A shared method that compares two string objects without considering
localization

CompareTo method Compares a string with a designated object

Concat method Concatenates one or more instances of string

Copy method
A shared function that creates a new instance of a string with the same content
as a designated string

CopyTo method
Copies a number of characters from a string to a specified position in an array
of Unicode characters

Empty field A read-only field that represents an empty string.

EndsWith method Determines whether the end of a string matches a specified string

Equals method Determines whether the string is equal to another string

Format method Replaces a format specification with its textual equivalent

IndexOf method Returns the position of the first occurrence of a substring within a string

IndexOfAny method
Returns the position of the first occurrence in a string of any of a set of
characters

Insert method Inserts a substring into a string

Join method
A shared method that concatenates a string separator and the elements of a
string array

LastIndexOf method Returns the position of the last occurrence of a substring within a string

LastIndexOfAny
method

Returns the position of the last occurrence in a string of any of a set of
characters

Length property Returns the number of characters in the string

PadLeft method Right aligns the characters in a string

PadRight method Left aligns the characters in a string

Remove method
Deletes a specified number of characters from a string starting at a particular
position

Replace method Replaces all occurrences of a substring in a string with another substring

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Member Description

Split method Splits a delimited string into a string array

StartsWith method Determines whether the beginning of a string matches a particular substring

Substring method Extracts a substring from a string

ToCharArray method Copies the characters in a string to a character array

ToLower method Converts a string to lowercase

ToUpper method Converts a string to uppercase

Trim method
Removes all occurrences of a set of characters from the beginning and end of a
string

TrimEnd method Removes all occurrences of a set of characters from the end of a string

TrimStart method Removes all occurrences of a set of characters from the beginning of a string

Split method Splits a delimited string into a string array

StartsWith method Determines whether the beginning of a string matches a particular substring

Substring method Extracts a substring from a string

ToCharArray method Copies the characters in a string to a character array

ToLower method Converts a string to lowercase

ToUpper method Converts a string to uppercase

Trim method
Removes all occurrences of a set of characters from the beginning and end of a
string

TrimEnd method Removes all occurrences of a set of characters from the end of a string

TrimStart method Removes all occurrences of a set of characters from the beginning of a string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2 Other Namespaces

Nested just below the System namespace are a number of second-level namespaces, which contain such
classes as:

System.CodeDOM

Contains classes representing the elements and structure of a source code document.
System.Collections

Contains interfaces and classes that define various collections of objects, such as lists, queues,
arrays, hashtables, and dictionaries.

System.ComponentModel

Contains classes that are used to implement the runtime and design-time behavior of components
and controls.

System.Configuration

Contains classes that allow the creation of custom installers for software components.
System.Data

Consists mostly of the classes that constitute the ADO.NET architecture and are used for database
connectivity.

System.Diagnostics

Contains classes that allow debugging of applications and code tracing.
System.DirectoryServices

Contains classes that provide access to the Active Directory from managed code.
System.Drawing

Contains classes that provide access to GDI+ basic graphics functionality. (More advanced
functionality is provided in the System.Drawing.Drawing2D, System.Drawing.Imaging, and
System.Drawing.Text namespaces.)

System.IO

Contains classes that allow synchronous and asynchronous reading from and writing to data
streams and files.

System.Net

Contains classes that provide a simple programming interface to many of the common network
protocols, such as FTP and HTTP. (The System.Net.Sockets namespace provides lower-level
network access control.)

System.Reflection

Contains classes and interfaces that provide a managed view of loaded types, methods, and fields,
with the ability to create and invoke types dynamically.

System.Resources

Contains classes for managing resources (culture-specific resources and resource files).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Security

Contains classes that provide access to the underlying structure of the .NET Framework security
system.

System.ServiceProcess

Contains classes that allow us to install and run services. (Services are long- running executables
that run without a user interface.)

System.Text

Contains classes representing ASCII, Unicode, UTF-7, and UTF-8 character encodings, as well as
abstract base classes for converting blocks of characters to and from blocks of bytes, and more.

System.Text.RegularExpressions

Contains classes that provide access to the .NET Framework regular expression engine.
System.Threading

Provides classes and interfaces that enable multithreaded programming.
System.Timers

Contains classes that provide the Timer component, which allows you to raise an event on a
specified interval.

System.Web and related namespaces

Contain classes and interfaces that enable browser/server communication and that allow you to
develop ASP.NET applications and web services.

System.Windows.Forms

Contains classes for creating Windows-based applications that take full advantage of the rich user-
interface features available in the Microsoft Windows operating system. In this namespace, you will
find the Form class and many other controls that can be added to forms to create user interfaces.

System.Xml

Contains classes that provide standards-based support for processing XML.

Let's take a look at some of these other classes in the BCL.

6.2.1 System.Collections

This namespace contains classes for implementing a variety of collection types, such as stacks and
queues. As you may know, a queue is a first-in, first-out data structure. The following code illustrates the
use of the Queue class:

Dim s As String

Dim q As New Collections.Queue()

q.Enqueue("To")

q.Enqueue("be")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

q.Enqueue("or")

q.Enqueue("not")

Do While q.Count > 0

 s = s & " " & CStr(q.Dequeue)

Loop

msgbox(s)

The output is "To be or not".

6.2.2 System.Data

System.Data and its nested namespaces, notably System.Data.OleDb and System.Data.SqlClient, provide
data access using ADO.NET. The OleDb and SqlClient namespaces are responsible for defining data
providers that can connect to a data source, retrieve data from a data source, write data back to a data
source, and execute commands against the data source. The most important class in each of these
namespaces is a data adapter class (in the OleDb namespace, it's the OleDbDataAdapter class; in the
SqlClient namespace, it's the SqlDataAdapter class) which is responsible for retrieving data from a data
source and writing it to a dataset. A dataset in turn is a collection of related data that's disconnected from
its original data source.

ADO.NET is not the same thing as ADO, nor is ADO.NET a new version of ADO.
Instead, ADO (or ActiveX Data Objects) is a COM-based object model for data
access. ADO.NET is an entirely new model for data access that is based on the
disconnected dataset.

6.2.3 System.IO

The System.IO namespace contains classes that provide a variety of input/output functionality, such as:

Manipulating directories (Directory class) and files (File class)

Monitoring changes in directories and files (FileSystemWatcher class)

Reading and writing single bytes, mulitbyte blocks, or characters to and from streams

Reading and writing characters to and from strings (StringReader and StringWriter)

Writing and reading data types and objects to and from streams (BinaryWriter and BinaryReader)

Providing random access to files (FileStream)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It appears that, for VB programmers, the System.IO namespace and its classes are intended to take the
place of the FileSystemObject object model that is part of the Microsoft Scripting Runtime. The System.IO
namespace is certainly much more extensive. The File and Directory classes duplicate the functionality of
the FileSystemObject. For more on these classes, see their entries in this book's reference section.

6.2.4 System.Text.RegularExpressions

The System.Text.RegularExpressions namespace contains classes that provide access to the .NET
Framework's regular expression engine. This is not the place to go into details about regular expressions,
but we can make a few comments.

In its simplest form, a regular expression is a text string that represents a pattern that other strings may or
may not match. In this way, regular expressions form a very powerful method of string matching. In more
complicated forms, a regular expression is a kind of programming statement. For instance, the expression:

s/ab*c/def

says to match the given string against the regular expression ab*c (strings that start with ab and end with
c). If a match exists, then replace the given string with the string def. Here are some simple regular
expressions for pattern matching:

Single character

This is matched only by itself.
Dot (.)

This is matched by any character except the newline character.
[string of characters]

This matches any single character that belongs to the string of characters. For example, [abc]
matches the single character a, b, or c. A dash can also be used in the character list, for instance,
[0-9] matches any single digit. We can also write [0-9a-z] to match any single digit or any single
lowercase character, and [a-zA-Z] to match any single lower- or uppercase character.

The ^ symbol can be used to negate the match. For instance, [^0-9] matches any character except
a digit.

Special match abbreviations

\d matches any single digit; \D matches any single nondigit.

\w is equivalent to [a-zA-Z_], thus matching any letter or underscore; \W is the negation of \w.
Asterisk (*)

The occurrence of an asterisk within a regular expression gives a match if and only if there are zero
or more repeated instances of the single character preceding the asterisk. For example, the regular
expression \da*\d is matched by any string beginning with a single digit, continuing with zero or
more as and ending with a single digit, as with 01 or 0aaa1.

Plus sign (+)

The occurrence of a plus sign within a regular expression gives a match if and only if there are one
or more repeated instances of the single character preceding the plus sign. For example, the regular
expression \da+\d is matched by any string beginning with a single digit, continuing with one or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more as and ending with a single digit, as with 0aaa1 (but not 01).
Question mark (?)

The occurrence of a question mark within a regular expression gives a match if and only if there are
zero or one instances of the single character preceding the question mark. For example, the regular
expression \da?\d is matched by any string beginning with a single digit, continuing with zero or one
as and ending with a single digit, as with 01 and 0a1.

General multiplier

The occurrence of the substring {x,y}, where x and y are nonnegative integers within a regular
expression, gives a match if and only if there are at least x but at most y instances of the single
character preceding the opening bracket. For example, the regular expression \da{5,10}\d is
matched by any string beginning with a single digit, continuing with at least 5 but at most 10 as and
ending with a single digit, as with 0aaaaaa1.

Note that you can leave out one of x or y. Thus, {x,} means "at least x," and {,y} means "at most
y."

The System.Text.RegularExpressions namespace has a Regex class, whose objects represent regular
expressions. Here's a simple example of the use of the Regex class:

' Define a new Regex object with pattern \da{3,5}\d

Dim rx As New System.Text.RegularExpressions.Regex("\da{3,5}\d")

' Do some matching

MsgBox(rx.IsMatch("0a1")) ' Displays False

MsgBox(rx.IsMatch("0aaa1")) ' Displays True

The System.Text.RegularExpressions namespace contains classes for string replacement as well, but we
do not go into these matters in this brief introduction.

6.2.5 System.Windows.Forms

This namespace is the mother of all namespaces for creating Windows applications. To quote the
documentation:

The System.Windows.Forms namespace contains classes for creating Windows-based applications
that take full advantage of the rich user interface features available in the Microsoft Windows
operating system. In this namespace you will find the Form class and many other controls that can
be added to forms to create user interfaces.

In fact, each new form added to a VB.NET project contains the line:

Imports System.Windows.Forms

Fortunately, Visual Studio provides the functionality of the System.Windows.Forms namespace to us as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB programmers, so we don't need to program directly against this namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Delegates and Events

In this chapter, we discuss delegates and events, two additional .NET framework topics that are important
to VB programmers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1 Delegates

In a never-ending effort to deny VB programmers the right to use pointers, Microsoft has implemented a feature called delegates that, according
to the documentation, provide a safe alternative to function pointers.

As you may know, a pointer variable (or pointer) is simply a variable whose value is interpreted by the compiler as a memory address. The
address to which the pointer points is the target of the pointer, and we say that the pointer variable points to that target address. If the target
address is a variable of data type Integer, for example, then we say that the pointer is of type Integer or is an Integer pointer. Thus, the type of a
pointer is the type of the target variable. (We have seen that, as reference types, variables of type Object and String are both pointers; i.e., their
values point to the address of the data in memory.)

A pointer can also point to a function, that is, contain the address of a function. Even though a function is not a variable, it does have a physical
location in memory and so can be the target of a pointer. (Actually, it's reasonable to think of a function as a type of variable, but that is another
story.) In this case, we have a function pointer .

Function pointers are very useful in certain situations for calling or specifying functions. This is commonly done in the C++ programming
language, where function pointers are supported directly.

One area in which function pointers are used is in the context of callback functions . To illustrate, if we want to enumerate all of the fonts on a
given system, the Windows API provides a function called EnumFontFamiliesEx , defined as follows:

Public Declare Function EnumFontFamiliesEx Lib "gdi32" _

 Alias "EnumFontFamiliesExA" (_

 ByVal hdc As Long, _

 lpLogFont As LOGFONT, _

 ByVal lpEnumFontProc As Long, _

 ByVal lParam As Long, _

 ByVal dw As Long) _

As Long

The third parameter requires the address of a function we must declare, called a callback function. The reason for this term is that Windows will
call our callback function for each font in the system, passing information about the font in the parameters of the function. According to the
documentation, the callback function must have a particular form:

Public Function EnumFontFamExProc(ByVal lpelfe As Long, _

 ByVal lpntme As Long, _

 ByVal FontType As Long,

 ByRef lParam As Long) As Long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The point here is that to use EnumFontFamiliesEx , we need to pass the address of a function as one of the parameters. As you may know, this is
done in VB using the AddressOf operator. In earlier versions of VB, this operator is described as follows:

A unary operator that causes the address of the procedure it precedes to be passed to an API procedure that expects a function pointer at
that position in the argument list.

Put another way, the AddressOf operator is implemented in VB 6 for the express purpose of passing function addresses to API functions.

In VB.NET, the AddressOf operator returns a delegate, which is, as the documentation states:

A unary operator that creates a procedure delegate instance that references the specific procedure.

So let us discuss delegates. We begin with a rather unhelpful definition: a delegate is an object of a class derived from either the Delegate class
or the MulticastDelegate class. These two classes are abstract, so no objects of these classes can be created. Nevertheless, other classes can
be derived from these classes, and objects can be created from these derived classes.

In VB.NET, delegates can be used to call methods of objects or to supply callback functions. In addition, VB.NET uses delegates to bind event
handlers to events. Fortunately, VB.NET also supplies tools (such as the AddHandler method) to automate this process, so we don't need to use
delegates directly for this purpose.

A delegate object inherits a number of properties and methods from the Delegate or MulticastDelegate class. In particular, a delegate object has:

A Target property that references the object or objects whose method or methods are to be called

A Method property that returns a MethodInfo object that describes the method or methods associated with the delegate

An Invoke method that invokes the target method or methods

By now you have probably guessed that there are two delegate classes because delegates derived from the Delegate class can only call a single
method, whereas delegates derived from MulticastDelegate can call multiple methods.

7.1.1 Using a Delegate to Call a Method

To call a method using a delegate, we call the Invoke method of the delegate. To illustrate, consider the class module with a simple method:

Public Class Class1

 Public Sub AMethod(ByVal s As String)

 Msgbox(s)

 End Sub

End Class

Now, in a module with a Windows Form (referred to as a form module in earlier versions of VB), we declare a (single cast) delegate with the same
parameters as the target method we wish to call:

Delegate Sub AMethodDelegate(ByVal s As String)

The following code then uses the delegate to call the AMethod of Class1:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Click

 ' Object of type Class1 _

 Dim obj As New Class1()

 ' Declare a new delegate

 Dim delg As ADelegate

 ' Define the delegate, passing the address

 ' of the object's method

 delg = New ADelegate(AddressOf obj.AMethod)

 ' Now call the method using the delegate's Invoke method

 delg.Invoke("test")

End Sub

Note that the documentation describes the delegate constructor as taking two parameters, as in:

delg = New ADelegate(TargetObject, PointerToMethodOfObject)

However, Visual Basic is not capable of handling the second parameter, so VB supports the special syntax:

delg = New ADelegate(AddressOf obj.AMethod)

We point this out only to warn you about the documentation on the delegate class constructor.

7.1.2 Using a Delegate as a Function Pointer

The following example illustrates the use of a delegate in the context of a callback function. In this example, we want to create a generic sort
function for sorting integer arrays. The function uses the bubble sort algorithm for sorting, but it's generic in the sense that one of its parameters is
a compare function that is used to do the comparison of adjacent integers. Thus, by varying the external comparison function, we can change the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type of sorting (ascending, descending, or some other method) without changing the main sort function. The compare function is a callback
function, since it is a function we supply that is called by the main sort function. (In this case, the callback function is not supplying us with
information, as in the font enumeration case described earlier. Instead, it is called to help the sort function do its sorting.)

First, we declare a delegate. As part of the declaration of a delegate, we must specify the signature of the method that is associated with the
delegate, which, in our case, is the compare function. Since the compare function should take two (adjacent) integers and return True if and only
if we need to swap the integers in the bubble sort algorithm, we declare the delegate as follows:

' Returns True if need to swap

Delegate Function CompareFunc(ByVal x As Integer, _

 ByVal y As Integer) _

 As Boolean

Here are two alternative target methods for the delegate - one for an ascending sort and one for a descending sort:

Function SortAscending(ByVal x As Integer, ByVal y As Integer) As Boolean

 If y < x Then

 SortAscending = True

 End If

End Function

Function SortDescending(ByVal x As Integer, _

 ByVal y As Integer) As Boolean

 If y > x Then

 SortDescending = True

 End If

End Function

Now we can define the sort routine. Note the call to the Invoke method of the delegate:

Sub BubbleSort(ByVal CompareMethod As CompareFunc, _

 ByVal IntArray() As Integer)

 Dim i, j, temp As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For i = 0 To Ubound(IntArray)

 For j = i + 1 To Ubound(IntArray)

 If CompareMethod.Invoke(IntArray(i), IntArray(j)) Then

 Temp = IntArray(j)

 IntArray(j) = IntArray(i)

 IntArray(i) = Temp

 End If

 Next j

 Next i

End Sub

Here is some code to exercise this example:

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim i As Integer

 Dim iArray() As Integer = New Integer() {6, 2, 4, 9}

 BubbleSort(AddressOf SortAscending, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

 Next

 Debug.WriteLine

 BubbleSort(AddressOf SortDescending, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

 Next

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Alternatively, we can define delegate variables instead of using the Addressof operator directly:

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Dim i As Integer

 ' Instances of the delegate type CompareFunc

 Dim dlgAsc As New CompareFunc(AddressOf SortAscending)

 Dim dlgDesc As New CompareFunc(AddressOf SortDescending)

 Dim iArray() As Integer = New Integer() {6, 2, 4, 9}

 BubbleSort(dlgAsc, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

 Next

 Debug.WriteLine("")

 BubbleSort(dlgDesc, iArray)

 For i = 0 To 3

 Debug.WriteLine(CStr(iArray(i)))

 Next

 End Sub

The output is, as you would expect:

2

4

6

9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9

6

4

2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2 Events and Event Binding

An event is an action that occurs. This action can take place on the part of the user of an application (such
as when the user clicks a command button), on the part of application code (such as when a change is
made to a record in a recordset), or on the part of the operating system (such as a timer event). When an
event occurs, we say that the event is raised, or fired.

Each event has a source. This is the object to which the action is applied, such as the button that was
clicked. The source is responsible for alerting the operating system that an event has occurred. It does so
by sending an event notification message, generally to its parent or container window. For this reason,
Microsoft refers to the event source as the sender.

An event often has an event argument, which is simply data that pertains to the event. For instance, the
press of a keyboard key generates an event that includes event arguments describing the keycode of the
key pressed and information on the state of modifier keys (the Shift, Alt, and Ctrl keys). The event
arguments are part of the message sent by the event source.

An event handler is a procedure (or method) that is executed as a result of event notification. The process
of declaring an event handler for an event is called binding the procedure to the event.

7.2.1 Control-Related Events

Most controls have a large number of built-in events associated with them. For instance, the textbox
control has events associated with changing the text in the textbox, hitting a key while the textbox has the
focus, clicking on the textbox with the mouse, dragging the mouse over the textbox, and more.

The VB IDE can be used to insert an empty event handler, complete with the proper event parameters, for
any built-in control. The procedure is simply to select the control, then click the Events button in the
Properties window. This displays a list of built-in events for the control. Selecting one of these events
causes the VB IDE to insert an empty event handler for that event into the code editor window.

Note that each control has a default event. For instance, the default event for the command button is the
Click event. As a shortcut, we can get the VB IDE to insert an empty event handler for the default event
simply by double clicking the control. For instance, double clicking a command button produces the
following code:

Private Sub button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles button1.Click

End Sub

The sender variable is the source of the event. The second parameter is an object whose properties
describe the event arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note the Handles clause, which tells the compiler that this procedure handles the button1.Click event.
Using this clause, we can assign any procedure to handle this event. We will discuss this further when we
talk about AddHandler later in this chapter.

As another example, double clicking a Windows form causes the VB IDE to insert the following empty
event handler:

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

End Sub

7.2.2 WithEvents

To define a custom event in a class module, we can use the WithEvents keyword. To illustrate with a very
simple example, suppose we create the class module shown here:

Public Class Class1

 ' Declare an event

 Public Event AnEvent(ByVal EventParam As Integer)

 ' Method to raise the event

 Public Sub RaiseTheEvent(ByVal iEventNumber As Integer)

 RaiseEvent AnEvent(iEventNumber)

 End Sub

End Class

In a class module with a Windows form, we declare a variable of type Class1 using the WithEvents
keyword to hook the class' events:

Public WithEvents ev As Class1

This automatically causes the VB IDE to add the variable name ev to the left-hand drop-down list above
the code window. When we select this variable, the right- hand drop-down list displays the events for this
class. In this case, the list contains only the ev_AnEvent event. Selecting this event places an empty event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shell in the code editor window (to which we have added a single line of code):

Public Sub ev_AnEvent(ByVal EventParam As System.Integer) _

 Handles ev.AnEvent

 MsgBox("Event raised: " & EventParam)

End Sub

Finally, in a button click event, we can place code to implement our simple example:

Protected Sub Button1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 ' Define a new Class1 instance

 ev = New Class1()

 ' Raise the event

 ev.RaiseTheEvent(7)

End Sub

We should note that the WithEvents keyword approach to event handling has one slight drawback.
Namely, we cannot use the New keyword with WithEvents, as in:

Public WithEvents ev As New Class1

Thus, the object must be instantiated separately from the variable declaration, as we did in the previous
example.

7.2.3 AddHandler and RemoveHandler

The AddHandler statement can be used to bind an event handler to a built-in or custom event using code.
This makes it possible to bind several event handlers to a single event. To illustrate, proceed as follows.
Add the default event handler for a form's Click event:

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Click

 MsgBox("Default Click Event")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

Next, add another procedure with the same signature as the default event handler:

Protected Sub Form1Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 msgbox("Custom Click Event")

End Sub

Finally, we use the AddHandler statement, which must be executed in order to bind the custom Form1Click
event handler to the Click event:

AddHandler Form1.Click, AddressOf Me.Form1Click

This is actually shorthand for:

AddHandler Form1.Click, New EventHandler(AddressOf Me.Form1Click)

In general, the AddHandler statement has the following syntax:

AddHandler NameOfEventSender, AddressOf NameOfEventHandler

Note that the binding can also be accomplished using the Handles keyword, as shown in the default event
syntax. However, using AddHandler and RemoveHandler allows dynamic binding of event handlers to
events.

The syntax for RemoveHandler is the same as that of AddHandler:

RemoveHandler NameOfEventSender, AddressOf NameOfEventHandler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Attributes

Attributes are declarative tags that can be used to annotate types or class members, thereby modifying
their meaning or customizing their behavior. This descriptive information provided by the attribute is stored
as metadata in a .NET assembly and can be extracted either at design time or at runtime using reflection.

To see how attributes might be used, consider the <WebMethod> attribute, which might appear in code as
follows:

<WebMethod(Description:="Indicates the number of visitors to a page")> _

 Public Function PageHitCount(strULR As String) As Integer

Ordinarily, public methods of a class can be invoked locally from an instance of that class; they are not
treated as members of a web service. In contrast, the <WebMethod> attribute marks a method as a function
callable over the Internet as part of a web service. This <WebMethod> attribute also includes a single
property, Description, which provides the text that will appear in the page describing the web service.

You may wonder why attributes are used on the .NET platform and why they are not simply implemented
as language elements. The answer comes from the fact that attributes are stored as metadata in an
assembly, rather than as part of its executable code. As an item of metadata, the attribute describes the
program element to which it applies and is available through reflection both at design time (if a graphical
environment such as Visual Studio .NET is used), at compile time (when the compiler can use it to modify,
customize, or extend the compiler's basic operation), and at runtime (when it can be used by the Common
Language Runtime or by other executable code to modify the code's ordinary runtime behavior).

The behavior of interface objects (i.e., controls) in Visual Studio .NET illustrates the importance of
attributes. Since Visual Studio offers drag-and-drop placement of controls on forms or web pages, it is
necessary for controls to have a design time behavior in addition to their runtime behavior. For instance,
when you double click on a control in a designer, you ordinarily want the code or the code template for its
default event handler to be displayed. Note that the question posed here is not how the control should
respond to a double-click event, since the DoubleClick event occurs at runtime and, if an event handler is
present, causes that event handler's executable code to be executed. Because we're concerned with the
standard behavior of a control in its design time environment, an attribute provides an excellent solution.
Indeed, the .NET Framework provides the <DefaultEvent> attribute, which allows you to define a control's
default event. Since information on the attribute is stored in the assembly's metadata, Visual Studio can
simply look to see whether a <DefaultEvent> attribute is attached to a particular control when it is double-
clicked in a designer window.

The attribute-based system of programming implemented in .NET is extensible. In addition to the attributes
predefined by Visual Basic or by the .NET Framework, you can define custom attributes that you apply to
program elements. For an attribute to be meaningful, there must also be code that attempts to detect the
presence of the attribute at design time, at compile time, or at runtime, and accordingly that performs an
action dictated by the attribute's presence.

This chapter discusses the syntax and use of attributes, and then shows how to define and use custom
attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1 Syntax and Use

In Visual Basic, an attribute appears within angle brackets (a less-than (<) and a greater-than symbol (>)).
The attribute name is followed by parentheses, which are used to enclose arguments that might be passed
to the attribute. For example, the <Obsolete> attribute marks a type or type member as obsolete. We can
apply <Obsolete> as a parameter-less attribute as follows:

<Obsolete()>

If no arguments are assigned to the attribute, we can omit the trailing parentheses:

<Obsolete>

If more than one attribute is applied to a single program element, the attributes are enclosed in a single set
of angle brackets and delimited from one another by a comma. For example:

<Obsolete(), WebMethod()> Public Function PageCount(_

 strURL As String) As Integer

Each attribute corresponds to a class derived from System.Attribute. (In fact, the VB.NET compiler actually
treats an attribute as an instance of the attribute's class.) By convention, we drop the trailing string
"Attribute" from the class name to form the attribute name, although the attribute name can also be
identical to the class name. Thus, for example, the <WebMethod> attribute corresponds to the
WebMethodAttribute class in the System.Web.Services namespace, which in turn is found in
System.Web.Services.dll. Alternately, you can also specify the attribute as <WebMethodAttribute>. If the
namespace containing the attribute class is not automatically accessible to the Visual Basic compiler or to
Visual Studio, the Imports directive should be used, and a reference should be added to the project either
using the References dialog in Visual Studio or the /r switch in the command-line compiler.

If the shortened attribute name is a Visual Basic .NET keyword, use an attribute
name that's identical to the attribute's class name to prevent a compiler error. For
example, the following declaration produces an error because ParamArray is a
VB.NET keyword:

<ParamArray()> lScores As Long)

However, the following code compiles correctly:

<ParamArrayAttribute()> lScores As Long)

The attribute class constructor or constructors determine whether any arguments are required. For
example, the <VBFixedString> attribute corresponds to the VBFixedStringAttribute class, which has the
following constructor:

New(ByVal Size As Integer)

Hence, the <VBFixedString> attribute can be used as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<VBFixedString(10)> Private sID As String

Attribute constructors can be overloaded. Any required arguments must correspond
to those expected by one of the constructors in number and data type.

Required arguments must be supplied to the attribute as positional arguments only ; named arguments are
not accepted. A comma separates all arguments, whether named or positional.

Optional arguments correspond to class properties and can be supplied to the attribute as named
arguments. For example, in addition to its constructor, which indicates to what language elements the
attribute applies, the <AttributeUsage> attribute, which is used to define the language elements to which a
custom attribute applies, has a Boolean property, Inherited, that indicates whether the attribute is inherited
by derived classes and overridden members. Its default value is True. To set it to False, you could use the
attribute as follows:

<AttributeUsage(AttributeTargets.Class, Inherited:=False)> _

Public Class MyCustomClass

Be sure to recognize that attributes are evaluated at compile time, when their data is written to the
assembly's metadata. This means that only literal values can be passed as arguments to the attribute's
constructor.

Unless it has a modifier, an attribute immediately precedes the language element to which it applies and
must be on the same logical line as that language element. If they are on different lines, the Visual Basic
.NET line continuation character (the underscore, or _) must be used. This syntax is valid for attributes
applied to the following language elements:

Class
Constructor
Delegate
Enum
Event
Field
Interface
Method
Parameter
Property
Return Value
Structure

For example, the following Class statement illustrates this general usage of an attribute:

<AttributeUsage(AttributeTargets.All)> _

Public Class MyCustomAttrAttribute

The following statement indicates how attributes are used with parameter declarations:

Public Sub MyFunction(strName As String, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ParamArrayAttribute()> lValues As Long)

There are two exceptions to this rule. Some attributes must be prefaced with a modifier (either Assembly:
or Module:) indicating the program element to which the attribute applies. In that case, the attribute must
be placed at the top of the source file (i.e., immediately following any Option and Imports statements),
along with any other attributes that require a modifier. This syntax is valid for an attribute applied to an
assembly or a module only.

For example:

Option Strict On

Imports System.Data.SqlClient

<Assembly: AssemblyDescription("Supplementary data access library")>

Namespace SqlAccess

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2 Defining a Custom Attribute

An attribute is merely a class that inherits from System.Attribute, which makes it very easy to implement a
custom attribute. In this section, we'll build a custom attribute called <DeveloperNote>, which allows a
developer to add assorted information (the developer's name, the date, a comment, and whether a code
modification was a response to a bug) to code. The steps are as follows:

Define a public class that inherits from System.Attribute or another attribute class derived from
System.Attribute. For example:

1.

Public Class DeveloperNoteAttribute

 Inherits System.Attribute

Note that, by convention, the name of the class ends with the substring "Attribute".

Apply the <AttributeUsage> attribute, which defines the language elements to which the custom
attribute can be applied, to the class (as shown in the following code fragment). The attribute's only
required argument is one of the following members of the AttributeTargets enumeration:

All

Assembly

Class

Constructor

Delegate

Enum

Event

Field

Interface

Method

Module

Parameter

Property

ReturnValue

Struct

If an attribute applies to multiple programming elements, but not all elements, the relevant constants
can be ORed together. In the case of our <DeveloperNote> attribute, we want the attribute to apply to
all program elements. In addition, we want to make the <DeveloperNote> attribute extensible through
inheritance, so we set the <AttributeTarget> attribute's Inherited argument to True. Finally, we
want to allow the application of multiple attributes to the same program element; hence, we want to
set the AllowMultiple argument to True as well. In view of this setting, our code should look as
follows:

2.

<AttributeUsage(AttributeTargets.All, _

 Inherited:=True, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AllowMultiple:=True)> _

Public Class DeveloperNoteAttribute

 Inherits System.Attribute

Create the class constructor (the New subroutine), which is called when the attribute is applied to a
particular language element. The class constructor defines the attribute's required or positional
arguments. At a minimum, we'll want a developer to record his or her name, a comment, and the
date. Our constructor appears as follows:

3.

Public Sub New(Name As String, Comment As String, _

 DateRecorded As String)

 MyBase.New()

 strName = Name

 strComment = Comment

 datDate = CDate(DateRecorded)

End Sub

Note that the date is passed to the constructor as a String type. There is some restriction on the
data types that can be used as attribute parameters. Parameters can be any integral data type
(Byte, Short, Integer, Long) or floating point data type (Single and Double), as well as Char,
String, Boolean, an enumerated type, or System.Type. Thus, Date, Decimal, Object, and
structured types cannot be used as parameters.

Each required parameter also corresponds to a class property or field. These parameters are
added to the class in the next step.

Declare properties or fields. The attribute's public properties and fields correspond both to
parameters required by the class constructor and to optional parameters supplied when the attribute
is applied to a language element. In the case of our attribute, we'll want properties that correspond to
each attribute, as well as an additional Bugs property that indicates whether or not the comment
corresponds to a code modification that resulted from a bug. The code is:

4.

Public Property Name As String

 Get

 Return strName

 End Get

 Set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 strName = Value

 End Set

End Property

Public Property Comment As String

 Get

 Return strComment

 End Get

 Set

 strComment = Value

 End Set

End Property

Public Property DateRecorded As Date

 Get

 Return datDate

 End Get

 Set

 datDate = Value

 End Set

End Property

Public Property Bug As Boolean

 Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Return blnBug

 End Get

 Set

 blnBug = Value

 End Set

End Property

The complete code for the attribute class is shown in Example 8-1.

Example 8-1. The DeveloperNoteAttribute attribute class

Option Strict On

Imports System

Namespace Extensions.CustomAttributes

<AttributeUsage(AttributeTargets.All, _

 Inherited:=True, _

 AllowMultiple:=True)> _

Public Class DeveloperNoteAttribute

 Inherits System.Attribute

Protected strName, strComment As String

Protected blnBug As Boolean

Protected datDate As Date

Public Sub New(Name As String, Comment As String, DateRecorded As String)

 MyBase.New()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 strName = Name

 strComment = Comment

 datDate = CDate(DateRecorded)

End Sub

Public Property Name As String

 Get

 Return strName

 End Get

 Set

 strName = Value

 End Set

End Property

Public Property Comment As String

 Get

 Return strComment

 End Get

 Set

 strComment = Value

 End Set

End Property

Public Property DateRecorded As Date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Get

 Return datDate

 End Get

 Set

 datDate = Value

 End Set

End Property

Public Property Bug As Boolean

 Get

 Return blnBug

 End Get

 Set

 blnBug = Value

 End Set

End Property

End Class

End Namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3 Using a Custom Attribute

The Visual Basic compiler and .NET platform automatically recognize the meaning of the attributes based
on attribute classes in the .NET Framework Class Library. This recognition isn't true, however, for custom
attributes. Thus, not only must you define them, you must also develop a set of routines that will identify
the presence of an attribute so your code can handle them.

NET assemblies are self-describing; when the compiler creates the .NET assembly, it writes metadata
describing the assembly and its classes and methods to the assembly manifest. This metadata is then
accessed programmatically at runtime by using the .NET Framework's reflection classes.

An assembly's metadata is similar to a COM type library. In addition to their greater
accessibility through .NET Framework APIs, assembly metadata is always stored
along with the assembly. In contrast, although a type library can be stored in the
EXE or DLL containing the COM object (as did previous versions of Visual Basic), it
is most commonly stored in a file different from the file containing the COM objects
it describes.

The .NET Framework provides support for reflection in the Type class (in the System namespace) and in
the types found in the System.Reflection namespace. The following code creates a console mode
application that uses the reflection classes to extract information about the <DeveloperNote> custom
attribute and the program elements to which it is applied:

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.Reflection

Imports System.Text

Imports Extensions.CustomAttributes

Module modComments

Public Sub Main()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim strFile As String = Command()

 Dim sOutput As String

 If strFile = "" Then

 Console.WriteLine("Syntax is: " & vbCrLf & _

 " DevNotes <filename>")

 Exit Sub

 End If

 ' Load assembly

 Dim oAssem As System.Reflection.Assembly = _

 System.Reflection.Assembly.LoadFrom(strFile)

 ' Get any assembly-level attributes

 Dim oAttribs() As Attribute = Attribute.GetCustomAttributes(oAssem)

 if UBound(oAttribs) >= 0 Then

 sOutput = DisplayDeveloperNotes(oAttribs)

 if sOutput <> "" Then

 Console.WriteLine(oAssem.GetName.Name & _

 " Assembly Developer Notes:" & vbCrLf)

 Console.WriteLine(sOutput)

 End If

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Get any module-level attributes

 Dim oMod As System.Reflection.Module

 Dim oMods() As System.Reflection.Module = oAssem.GetModules()

 For Each oMod in oMods

 oAttribs = Attribute.GetCustomAttributes(oMod)

 If UBound(oAttribs) >= 0 Then

 sOutput = DisplayDeveloperNotes(oAttribs)

 If sOutput <> "" Then

 Console.WriteLine(oMod.Name & " Module Developer Notes: " _

 & vbCrLf)

 Console.WriteLine(sOutput)

 End If

 End If

 Next

 ' Enumerate types

 EnumerateTypes(oAssem)

End Sub

' Show information about each attribute

Public Function DisplayDeveloperNotes(oAttribs() As Object) As String

 Dim sMsg As New StringBuilder

 Dim oAttrib As Attribute

 Dim oNote As DeveloperNoteAttribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For Each oAttrib in oAttribs

 Try

 oNote = CType(oAttrib, DeveloperNoteAttribute)

 sMsg.Append(" Developer: " & oNote.Name & vbCrLf)

 sMsg.Append(" Comment: " & oNote.Comment & vbCrLf)

 sMsg.Append(" Date: " & oNote.DateRecorded & vbCrLf)

 sMsg.Append(" Bug: " & oNote.Bug & vbCrLf)

 Catch

 ' No need to do anything

 End Try

 Next

 Return sMsg.ToString

End Function

Private Sub EnumerateTypes(oObj As Object)

 Dim sOutput As String

 Dim oType, oTypes() As Type

 If oObj.GetType.ToString = "System.Reflection.Assembly" Then

 Dim oAssem As System.Reflection.Assembly = CType(oObj, _

 System.Reflection.Assembly)

 oTypes = oAssem.GetTypes()

 Else

 oTypes.SetValue(oObj, 0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 For each oType in oTypes

 Dim strType, strTypeAttr, strMeth As String

 If oType.IsClass Then

 strType = "Class"

 ElseIf oType.IsValueType Then

 strType = "Structure"

 ElseIf oType.IsInterface Then

 strType = "Interface"

 ElseIf oType.IsEnum Then

 strType = "Enum"

 End If

 sOutput = strType & " " & oType.Name & ":" & vbCrLf

 ' Get any type-level attributes

 Dim oCustAttribs() As Object = oType.GetCustomAttributes(False)

 If oCustAttribs.Length > 0 Then

 strTypeAttr = DisplayDeveloperNotes(oCustAttribs)

 End If

 strMeth = EnumerateTypeMembers(oType)

 ' Display Type and Member Info

 If strMeth <> "" Or strTypeAttr <> "" Then

 Console.WriteLine(sOutput)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If strTypeAttr <> "" Then

 Console.WriteLine(strTypeAttr)

 End If

 If strMeth <> "" Then

 Console.WriteLine(strMeth & vbCrLf)

 End If

 End If

 Next

End Sub

Private Function EnumerateTypeMembers(oType As Type) As String

 Dim strMeth, strRetVal As String

 Dim oAttribs() As Object

 ' Get members of type

 Dim oMembersInfo(), oMemberInfo As MemberInfo

 oMembersInfo = oType.GetMembers

 For Each oMemberInfo in oMembersInfo

 ' Determine if attribute is present

 oAttribs = oMemberInfo.GetCustomAttributes(False)

 If oAttribs.Length > 0 Then

 ' determine member type

 Select Case oMemberInfo.MemberType

 Case MemberTypes.All

 strMeth = " All "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Case MemberTypes.Constructor

 strMeth = " Constructor "

 Case MemberTypes.Custom

 strMeth = " Custom method "

 Case MemberTypes.Event

 strMeth = " Event "

 Case MemberTypes.Field

 strMeth = " Field "

 Case MemberTypes.Method

 strMeth = " Method "

 Case MemberTypes.NestedType

 strMeth = " Nested type "

 Case MemberTypes.Property

 strMeth = " Property"

 Case MemberTypes.TypeInfo

 strMeth = " TypeInfo"

 End Select

 If oMemberInfo.Name = ".ctor" Then

 strMeth = "New " & strMeth

 Else

 strMeth = oMemberInfo.Name & strMeth

 End If

 strMeth = strMeth & vbCrLf & DisplayDeveloperNotes(oAttribs) _

 & vbCrLf

 strRetVal = strRetVal & strMeth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 Next

 Return strRetVal

End Function

End Module

The program's entry point, the Main routine, first instantiates an Assembly object (in the System.Reflection
namespace) representing the assembly by calling the LoadFrom method and passing it the filename
containing the assembly. It then calls the Attribute class' shared GetCustomAttributes method, passing it a
reference to an Assembly object, which returns an array of Attribute objects representing each custom
attribute, if any exist. These attributes are then displayed by calling the DisplayDeveloperNotes method.

The shared GetCustomAttributes method of the Attribute class has several overloads that allow you to
retrieve custom attributes belonging to assemblies, modules, class members, and parameters.
(Unfortunately, the method does not retrieve the custom attributes belonging to types.) Since derived
classes call the base class implementation, you can also retrieve attributes of a specific custom type with
the following code:

Dim oAttribs() As Attribute = _

 DeveloperNoteAttribute.GetCustomAttributes(oAssem)

After listing any DeveloperNoteAttributes applied to the assembly, the code retrieves the modules in the
assembly by calling the Assembly object's GetModules method, which returns an array of Module objects.
The code then iterates these modules and again calls the Attribute class' shared GetCustomAttributes
method, this time passing it a Module object (to retrieve an array of custom Attribute objects belonging to
that module). These objects are also displayed by calling the DisplayDeveloperNotes method.

Finally, Main calls the EnumerateTypes method, a generic routine that it uses to iterate the types in the
Assembly object. (The routine could also be called from a type to extract information about custom
attributes in its nested types.) This iteration casts the generic object passed as a parameter to an
Assembly object, and then calls the Assembly object's GetTypes method to return an array of Type objects
(defined in the System namespace) containing information about each type (such as a class, interface,
delegate, structure, or num) in the assembly. Each Type object's GetCustomAttributes method is then
called and its custom attributes are displayed.

While iterating the type objects, the EnumerateTypes method also calls the EnumerateTypeMembers
method, which is responsible for iterating the members of each type and extracting their custom
DeveloperNoteAttribute attributes. The EnumerateTypeMembers method first extracts an array of
MemberInfo objects corresponding to each member by calling the GetMembers method of oType, the Type
object passed to it as a parameter. GetMembers returns an array of MemberInfo objects, each element of
which corresponds to a member of the type. The method then calls the MemberInfo object's
GetCustomAttributes method to extract information about any custom types. Instead, it could also have
called the Attribute object's GetCustomAttributes method, passing it a MemberInfo object representing the
member whose custom attribute information was to be retrieved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The program can be easily extended by adding recursion (allowing it to retrieve information about custom
attributes in a nested class and its members), as well as by retrieving information about custom attributes
applied to parameters belonging to individual methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Error Handling in VB.NET

In this chapter, we take a concise look at error-handling techniques in VB.NET. Note that the terms
exception and error are used synonymously throughout the VB.NET documentation, and so we use them
interchangeably in this chapter.

VB.NET supports the On Error Goto style of error handling, which is supported by earlier versions of Visual
Basic (with some new wrinkles). This type of error handling is referred to as unstructured error handling.
However, unlike earlier versions of Visual Basic, VB.NET also supports the structured exception handling
technique familiar to C++ programmers, which is now the preferred method of error handling in VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1 Error Detection and Error Handling

Let us begin by clarifying some terminology. We agree to say that handling an error means responding to
a detected error. Thus, there is a clear distinction between error detecting and error handling. The reason
for this distinction is that these processes can take place at different times and in different locations within
the code of an application. We also agree to refer to the procedure (or module) in which an error occurs as
the offending procedure (or module).

There are two types of errors that can occur in a running program. (We will not discuss compile-time or
syntax errors.) A runtime error occurs when Visual Basic attempts to perform an operation that is
impossible to perform, such as opening a file that does not exist or dividing by 0. Visual Basic
automatically takes care of error detection for runtime errors because it has no other choice. On the other
hand, proper error handling of runtime errors is up to the programmer, for otherwise Visual Basic itself
handles the error by presenting an error message and terminating the application, which is not a good
solution to the problem.

A logical error is often defined as the production of an unexpected result. It might be better to define it as
the production of an unexpected and incorrect result (although even this is still somewhat ambiguous). For
instance, consider a function that returns the IQ for an individual based on a set of IQ test scores. If the
individual is very smart, we might expect an IQ in the range of 120 or more. A result of 100 might be
unexpected, but it is not necessarily an error. On the other hand, if the function returns an IQ of -350, that
is a logical error.

Visual Basic (or, for that matter, any other language) does not provide error detection for logical errors,
because to Visual Basic, no error has occurred. However, a logical error may subsequently result in a
runtime error, which Visual Basic will certainly recognize. For instance, code that is intended to retrieve a
positive integer for later use in an integer variable may instead retrieve 0. This is a logical error. But if that
integer is later used as a denominator in some other part of the application, we can surely expect a
runtime error.

Thus, it is up to the programmer to anticipate logical errors and provide both error detection and error
handling. From this perspective, logical errors are far more serious and much more difficult to deal with
than runtime errors. After all, a runtime error won't be completely overlooked - at least Visual Basic will
do something about it, even if that consists only of presenting an error message to the user and
terminating the application.

The problem with an overlooked logical error is that it may give the user specious information (that is,
invalid information that looks valid). This is no doubt the most insidious behavior a program can produce. If
we are lucky, a logical error will generate a runtime error at some later time, but we may still have great
difficulty determining the location of the logical error from the runtime error message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2 Runtime Error Handling

As we have mentioned, VB currently supports both unstructured and structured error handling. Let us first
look at unstructured error handling.

9.2.1 Unstructured Error Handling

Error-handling techniques that revolve around the various On Error... statements are referred to as
unstructured error-handling techniques. These techniques generally use the Err object and the Visual
Basic call stack.

9.2.1.1 The Err object

Visual Basic's built-in error object, called Err, is one of the main tools for unstructured error handling. This
object has several properties and methods, as shown in Tables Table 9-1 and Table 9-2, respectively.

Table 9-1. Properties of the Err object

Property Description

Description A short string describing the error.

HelpContext The context ID for a help topic associated with the error.

HelpFile The fully qualified filename of the associated help file, if any.

LastDLLError

The return code from a call made to a function in an external DLL. Note, however, that
this property may change value at any time, so it is wise to store the current value in a
variable immediately upon return from the DLL call. Note also that even if the DLL call
resulted in an error, this is not considered an error by VB. (VB has no way of knowing the
meaning of return values from external functions, after all.)

Number This is the error number of the error.

Source

A string that specifies the object that generated the error. When the error is generated
within your application, the Source property is the project's name, which is more or less
useless. (It would have been nice to get the name of the offending procedure.) However,
when the error is generated by an external COM component, the Source property returns
the programmatic ID of that component, which has the form application.objectname, as
in Excel.Application, for example.

Table 9-2. Methods of the Err object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

Clear

Clears the values of all properties of the Err object. Its syntax is:

Err().Clear()

Note that the Clear method is called implicitly when any of the following statements is
executed: a Resume statement of any type; an Exit Sub, Exit Function, or Exit Property
statement; or any On Error statement.

Raise

Causes Visual Basic to generate a runtime error and sets the properties of the Err object to the
values given by the parameters of the Raise method. Its syntax is:

Err.Raise(Number, Source, Description, _

 HelpFile, HelpContext)

where all but the first named argument is optional. Each parameter corresponds to the property
of the same name.

9.2.1.2 Dealing with runtime errors

Visual Basic detects a runtime error as soon as it occurs, sets the properties of the Err object, and directs
the flow of execution to a location that the programmer has specified by the most recent On Error... line.
This location can be one of the following:

The line of code immediately following the line that caused the error.

Another location within the offending procedure.

The procedure that called the offending procedure, if there is one. If not, VB issues an error message
itself and terminates the application.

Let us take a closer look at each of these possibilities.

9.2.1.2.1 In-line error handling

Code execution will be "redirected" to the line following the offending line of code (that is, execution will
continue immediately following the offending line) if the most recent preceding On Error statement is:

On Error Resume Next

This is referred to as in-line error handling. Here is an example that involves renaming a file. Note the
typical use of a Select Case statement to handle the error based on the value of Err.Number. Incidentally,
one way to obtain error numbers is to deliberately invoke a particular error and break execution (with a
breakpoint) to examine Err.Number:

Dim sOldName, sNewName As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On Error Resume Next

' Ask for an existing file name

sOldName = InputBox("Enter the file name to rename")

' Ask for new name

sNewName = InputBox("Enter the new file name")

' Rename file

Rename("c:\" & sOldName, "c:\" & sNewName)

' Deal with error

If Err().Number = 53 Then

 ' File not found error

 MsgBox("File " & sOldName & " not found")

 Exit Sub

Else

 ' All other errors

 MsgBox(Err().Number & ": " & Err().Description)

 Exit Sub

End If

9.2.1.2.2 Centralized error handling

While in-line error handling does have its uses, there is much to be said for centralizing error handling
within a procedure. (This often improves readability and makes code maintenance easier.) We can direct
code execution to a central error handler using the code:

On Error Goto label

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is outlined in the following code shell:

Sub Example()

On Error Goto ErrHandler

'' If run-time error occurs here

'' Visual Basic directs execution to ErrHandler

Exit Sub

ErrHandler:

'' Code can be placed here to handle errors

'' or pass them up the calls list.

'' We have knowledge of Err().Number, Err().Description,

'' and Err().Source.

End Sub

Once the On Error Goto label line is executed, we say that the error handler beginning at the label
ErrHandler is active.

Once code execution is directed to the error handler, there are several possibilities for dealing with the
error. The most common possibility is simply to handle the error in the active error handler, perhaps by
displaying an error message asking the user to take corrective action.

Another common (and useful) approach is passing information about an error to the calling procedure with
parameters or with the return value of the offending function. For instance, if a function is designed to
rename a file, the function might return an integer error code indicating the success or failure of the
operation. This is quite common among the Win32 API functions. In particular, the error code might be 0
for success, -1 if the file does not exist, -2 if the new filename is invalid, and so on.

A third possibility is to pass the error to the calling procedure by invoking the Err.Raise method within the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

active error handler, as in:

Err.Raise(Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext)

This triggers the calling procedure's error handler (or more precisely, the next enabled error handler in the
calls list). This process is called regenerating or reraising the error.

Note that it is possible to deactivate an active error handler using the line:

On Error Goto 0

If there is no active error handler, then VB reacts to errors just as though no error handler existed in the
procedure. We describe this situation in the next section.

9.2.1.2.3 No enabled error-handler

If there is no enabled error handler in the offending procedure, either because there is no
OnErrorstatement in the procedure or because error handling has been disabled with an On Error Goto 0
statement, then Visual Basic automatically sends the error to the calling procedure's error handler. If the
calling procedure has no error handler, the error continues up the calls list until it reaches an enabled error
handler. If none is found, then Visual Basic handles the error by displaying an error message and
terminating the application.

9.2.2 Structured Exception Handling

Structured exception handling uses a Try...Catch...Finally structure to handle errors. As we will see,
VB.NET's structured exception handling is a much more object-oriented approach, involving objects of the
Exception class and its derived classes.

9.2.2.1 Try...Catch...Finally

The syntax of the Try...Catch...Finally construct is given here:

Try

 tryStatements

[Catch1 [exception [As type]] [When expression]

 catchStatements1

[Exit Try]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Catch2 [exception [As type]] [When expression]

 catchStatements2

[Exit Try]

. . .

Catchn [exception [As type]] [When expression]

 catchStatementsn]

[Exit Try]

[Finally

 finallyStatements]

End Try

The tryStatements (which are required) constitute the Try block and are the statements that are
monitored for errors by VB. Within the Try block, we say that error handling is active.

The Catch blocks (of which there can be more than one) contain code that is executed in response to VB
"catching" a particular type of error within the Try block. Thus, the Catch blocks consist of the error
handlers for the Try block.

The phrases exception [As type] and [When expression] are referred to as filters in the VB.NET
documentation. In the former case, exception is either a variable of type Exception, which is the base
class that "catches" all exceptions, or a variable of one of Exception's derived classes.

(We provide a list of these classes a bit later.) For instance, the variable declared as:

Catch e As Exception

will catch (that is, handle) any exception. The variable declared as:

Catch e As ArgumentNullException

catches (handles) any exception of class ArgumentNullException. In short, type is the name of one of the
exception classes.

The When filter is typically used with user-defined errors. For instance, the code in the following Try block
raises an error if the user does not enter a number. The Catch block catches this error:

Try

 Dim sInput As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sInput = Inputbox("Enter a number.")

 If Not IsNumeric(sInput) Then

 Err.Raise(1)

 End If

Catch When Err.Number = 1

 Msgbox("Error1")

End Try

Note that code such as:

Dim x As Integer

Try

 x = 5

Catch When x = 5

 MsgBox(x)

End Try

does not work (that is, the Catch statements are never executed) because no error was generated.

The Exit Try statement is used to break out of any portion of a Try...Catch... Finally block. The optional
finallyStatements code block is executed regardless of whether an error occurs (or is caught), unless an
Exit Try statement is executed. This final code can be used for cleanup in the event of an error. (By
placing an Exit Try at the end of the Try block, the finallyStatements are not executed if no error
occurs.)

As with unstructured error handling, VB may pass an error up the call stack when using structured error
handling. This happens in the following situations:

If an error occurs within a Try block that is not handled by an existing Catch block

If an error occurs outside any Try block (provided, of course, that no On Error-style error handlers
are active).

9.2.2.2 Exception classes

The System namespace contains the Exception class, which is the base class for a substantial collection
of derived exception classes, listed as follows. Note that the indentation indicates class inheritance. For
example, EntryPointNotFoundException (the fifth from the last entry in the list) inherits from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeLoadException.

 Exception

 ApplicationException

 SystemException

 AccessException

 FieldAccessException

 MethodAccessException

 MissingMemberException

 MissingFieldException

 MissingMethodException

 AppDomainUnloadedException

 AppDomainUnloadInProgressException

 ArgumentException

 ArgumentNullException

 ArgumentOutOfRangeException

 DuplicateWaitObjectException

 ArithmeticException

 DivideByZeroException

 NotFiniteNumberException

 OverflowException

 ArrayTypeMismatchException

 BadImageFormatException

 CannotUnloadAppDomainException

 ContextMarshalException

 CoreException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ExecutionEngineException

 IndexOutOfRangeException

 StackOverflowException

 ExecutionEngineException

 FormatException

 InvalidCastException

 InvalidOperationException

 MulticastNotSupportedException

 NotImplementedException

 NotSupportedException

 PlatformNotSupportedException

 NullReferenceException

 OutOfMemoryException

 RankException

 ServicedComponentException

 TypeInitializationException

 TypeLoadException

 EntryPointNotFoundException

 TypeUnloadedException

 UnauthorizedAccessException

 WeakReferenceException

URIFormatException

As Microsoft states: "Most of the exception classes that inherit from Exception do not implement additional
members or provide additional functionality." Thus, it is simply the class name that distinguishes one type
of exception from another. The properties and methods applied to an exception object are inherited from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Exception base class.

When writing Catch blocks, we always face the question of whether to simply trap the generic exception
class, as in:

Sub test()

 Try

 ...

 Catch e As Exception

 ...

 End Try

End Sub

or whether to trap specific exception classes. Of course, the time to trap specific exception classes is when
we want to handle errors differently based on their class. For instance, this may take the form of issuing
different custom error messages for different exception types.

Also, there are occasions when we may want to take advantage of members of a particular exception
class that are not implemented in the Exception base class. For instance, the ArgumentException class
has a ParamName property that returns the name of the parameter that causes the exception. Now, if we
simply trap the generic Exception class, as in the following code:

Sub test()

 Try

 Dim s, d As String

 s = "c:\temp.txt"

 ' Attempt to copy a file to a nonvalid target

 FileCopy(s, d)

 Catch e As Exception

 MsgBox(e.Message)

 End Try

End Sub

then we cannot take advantage of the ParamName property. On the other hand, if we specifically trap the
ArgumentException class, as in the following code:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sub test1()

 Try

 Dim s, d As String

 s = "c:\temp.txt"

 ' Attempt to copy a file to a nonvalid target

 FileCopy(s, d)

 Catch e As ArgumentException

 MsgBox(e.Message & " Parameter: " & e.ParamName)

 End Try

End Sub

then we can retrieve the name of the offending parameter.

Now let us take a look at some of the members of the Exception class:

Message property

A string containing an error message.
Source property

A string that describes the application or object that threw the exception.
StackTrace property

A string that contains the stack trace immediately before the exception was thrown. We provide an
example of this in a moment (although in this case its value is Nothing.

TargetSite property

A string that gives the method that threw the exception.
ToString method

A string that returns the fully qualified name of the exception, possibly the error message, the name
of the inner exception, and the stack trace. Its syntax is simply:

ToString()

The best way to get a feel for these members is with an example. Consider the following code, which
consists of three subroutines. The first subroutine, Exception0, contains a Try...Catch... statement. In the
Try code block, the subroutine Exception0 calls the subroutine Exception1, which simply calls Exception2.

Sub Exception0()

 Dim s As String

 Try

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Exception1()

 Catch e As Exception

 s = "Message: " & e.Message

 s = s & ControlChars.CrLf & "Source: " & e.Source

 s = s & ControlChars.CrLf & "Stack: " & e.StackTrace

 s = s & ControlChars.CrLf & "Target: " & e.TargetSite.Name

 s = s & ControlChars.CrLf & "ToString: " & e.ToString

 debug.writeline(s)

 End Try

End Sub

Sub Exception1()

 Exception2()

End Sub

Sub Exception2()

 Throw New ArgumentNullException()

End Sub

In Exception2, there is a single line of code that executes the Throw statement, which throws an exception.
This is similar to raising an error with the Err.Raise method. However, as you can see by the New keyword,
the Throw statement actually creates an object of one of the exception types.

The output from the call to Exception0 is:

Message: argument can't be null

Source:

Stack: at WindowsApplication3.Form1.Exception2()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 in C:\VBNET\Form1.vb:line 68

 at WindowsApplication3.Form1.Exception1()

 in C:\VBNET\Form1.vb:line 66

 at WindowsApplication3.Form1.Exception0()

 in C:\VBNET\Form1.vb:line 53

Target: Exception2

ToString: System.ArgumentNullException: argument can't be null

 at WindowsApplication3.Form1.Exception2()

 in C:\VBNET\Form1.vb:line 68

 at WindowsApplication3.Form1.Exception1()

 in C:\VBNET\Form1.vb:line 66

at WindowsApplication3.Form1.Exception0()

 in

C:\VBNET\Form1.vb:line 53

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3 Dealing with Logical Errors

Since Visual Basic makes the handling of runtime errors a relatively straightforward process, it seems
reasonable to try to mimic this process for logical errors.

9.3.1 Detecting Logical Errors

To detect a logical error, we place error-detection code immediately following the potential offender. For
instance, consider the following procedure shell for getting a sequence of positive integers from the user,
starting with the number of integers:

Public Sub GetSomeData()

Dim DataCt As Integer

DataCt = CInt(InputBox("Enter number of items."))

' Code here to get the individual data values ...

End Sub

The proper place for error-detecting code is immediately following the InputBox function, where we can
check for a nonpositive integer:

Public Sub GetSomeData()

Dim DataCt As Integer

DataCt = CInt(InputBox("Enter number of items."))

' Check for error

If DataCt < = 0 then

 ' something here

End If

' Code here to get the individual data values ...

End Sub

Note that the alternative to immediate detection of logical errors is to place the error-detecting code just
prior to using the value of DataCt, but this is both dangerous and inefficient. It is dangerous since we might
forget to place the code, and it is inefficient since we may use DataCt in a variety of locations in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

program, each of which would require error-detecting code.

9.3.2 Where to Handle a Logical Error

Once a logical error is detected, we have three choices as to where to handle that error.

9.3.2.1 Handling the error on the spot

A logical error can be handled at the location where it was detected. Here is an example:

Public Sub GetSomeData()

TryAgain:

DataCt = CInt(InputBox("Enter number of items."))

' Check for error

If DataCt < = 0 then

 If MsgBox("Number must be a positive integer." & _

 " Try again or cancel.", vbQuestion+vbOKCancel) _

 = vbOK then

 Goto TryAgain

 Else

 Exit Sub

 End If

End If

'' Code here to get the individual data values ...

End Sub

Handling a logical error on the spot may be appropriate when the required code is short. It is also
appropriate in Property procedures, which often amount to little more than a single line that sets a private
instance variable, preceded by data validation, which is essentially logical-error detection.

9.3.2.2 Handling the error in the offending procedure's error handler

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can duplicate the procedure that Visual Basic uses for runtime errors simply by raising our own
runtime error. Here is an example using structured exception handling:

Try

 Dim DataCt As Integer = CInt(InputBox("Enter number of items."))

 ' Check for error

 If DataCt <= 0 Then

 ' Throw an exception

 Throw New Exception("Must enter a positive number.")

 End If

Catch ex As Exception

 MsgBox(ex.Message)

End Try

Note that the Exception class constructor (in one of its overloaded forms) is:

Overloads Public Sub New(String)

where String is the error message to be associated with the error.

Here is an example of error raising using unstructured error handling:

Public Sub GetSomeData()

On Error Goto ErrGetSomeData

DataCt = CInt(InputBox("Enter number of items."))

' Check for error

If DataCt < = 0 then

 ' Raise an error

 Err().Raise Number:= ErrBadDataCt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

' Code here to get the individual data values ...

Exit Sub

' Error-handler

ErrGetSomeData:

Select Case Err().Number

 Case ErrBadDataCt

 '' Deal with this error by displaying

 '' message and getting help from user

 Case Else

 '' Deal with other errors

End Select

Exit Sub

End Sub

9.3.2.3 Passing the error to the calling procedure

As with runtime errors, passing the error to the calling procedure can be done in a parameter of the
offending procedure or as the return value of the offending function. Also, the calling procedure's error
handler can be called by throwing (or raising) an error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4 Error Constants

To raise our own errors using the Err.Raise method, we need error numbers that do not conflict with those
used by Visual Basic. The Visual Basic documentation says that error numbers in the range
vbObjectError to vbObjectError + 65535, where vbObjectError is a built-in constant whose value is the
signed integer -2147220991 (or &H80040000 as an unsigned hexadecimal integer), are designed to signal
an error generated by an object.

It further says that error numbers below vbObjectError + 512 may conflict with values reserved for OLE,
so these numbers are verboten. Thus, we are left with numbers in the range vbObjectError + 512 to
vbObjectError + 65535, which should be plenty.

Many programmers like to assign symbolic constants to error numbers, since it tends to improve
readability and cut down on the need for comments. For instance, we could add the line:

Public Const ErrBadDataCt = vbObjectError + 1024

in a standard module.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part II: Reference

This section consists only of one very long chapter (Chapter 10), which contains an alphabetic
reference to VB.NET language elements. The chapter documents the following:

Statements, such as AddHandler or Structure...End Structure.

Procedures, such as AppActivate or Rename. These were statements in previous versions of
Visual Basic, but now they are methods of one class or another within the
Microsoft.VisualBasic namespace. The official documentation describes them as functions, but
since they don't return a value, we've chosen to describe them as procedures.

Functions, such as Format or IsReference.

Compiler directives, such as #Const or #If.

Visual Basic classes and their members. The two intrinsic objects available in Visual Basic are
the Collection class and the Err object.

Selected classes in the .NET Framework Class Library, along with their members.
Documentation of the Framework Class Library, however, is highly selective; we've chosen
classes and their members either because they replace language elements that were present
in VB 6, or because they provide much needed functionality that supplements existing
language elements.

Attributes, such as <AttributeUsage> and <VBFixedString>. Of the approximately 100
attributes available in the .NET Framework, we've documented only those of greatest interest
to the VB programmer.

When you're looking for a particular language element but don't quite remember what it's called, an
alphabetic reference is of little value. For this reason, we've included Appendix B.

Finally, two language elements are covered in the appendixes rather than in Part II. With a few
exceptions (notably, Like and Is) that are documented in Part II, Visual Basic operators are covered
in Appendix C. And Visual Basic constants and enumerations are listed in Appendix D.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. The Language Reference

This long chapter documents VB.NET language elements. To help you speed the process of finding the
right element to perform a particular task, you can use Appendix B to determine what language elements
are available for the purpose you require. If you're using Visual Studio .NET, you can also make use of its
Object Browser to browse the Microsoft.VisualBasic namespace.

In documenting the VB.NET language, we've tried to provide a consistent and uniform treatment of
particular types of language elements. These language elements are:

Functions

The entry for each function provides the standard information that you'd expect for a function: its
syntax, parameters (if it has any), return value, and description. In addition, we list rules for using
the function (see the "Rules at a Glance" section), discuss tips and tricks related to the function (see
the "Programming Tips and Gotchas" section), frequently provide examples, and list related
language elements.

In addition, each VB.NET function is in fact a method, since it is a member of a particular class in
the Microsoft.VisualBasic namespace. In each case, we've listed the class to which the function
belongs.

For the first time, Visual Basic supports both named and positional arguments for all functions,
procedures, and methods, with just a few exceptions. Functions, procedures, or methods that
accept parameter arrays as arguments don't accept named arguments if the ParamArray parameter
is present. And "functions" that are actually resolved by the compiler at compile time (the conversion
functions fall into this category) do not accept named arguments. To see how named arguments
work, let's look at the syntax of the Mid function:

Mid(Str As String, Start As Integer, Length As Integer)

Using positional arguments, you might call the function as follows:

iPos = Mid(strName, 12, 10)

The same function call using named arguments might appear as follows:

iPos = Mid(start:=12, str:=strName, length:=10)

Since named arguments are nearly universally accepted, we only note when you can't use named
arguments with a particular function. The name of each argument is provided in the function's syntax
statement.

Finally, we've noted any differences between the operation of the function under previous versions of
Visual Basic and under VB.NET.

Procedures

Procedures are really functions that don't return a value to the caller. Consequently, except for the
absence of a return value, the same information is presented for procedures as for functions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Procedures are interesting as a separate language category. Under previous versions of Visual Basic, they
were statements. With the rationalization and streamlining of Visual Basic for its .NET version, they were
moved into classes in the Microsoft.VisualBasic namespace and became procedures. The official
documentation describes them as functions, although they do not return a value.

Statements

Visual Basic statements are not class members, don't support named arguments, and don't return a
value. Aside from these three items, the same information is presented for statements as for
procedures and functions.

Directives

Visual Basic directives are really statements that provide instructions to the VB.NET compiler or to a
.NET development environment like Visual Studio. Like statements, they are not class members,
don't support named arguments, and don't return a value. In general, the same information is
presented for directives as for statements.

Classes and Objects

Entries for classes and objects identify the namespace to which the class belongs (something that is
particularly important in the case of the Framework Class Library) and indicate whether the class is
createable. If a class is createable, a new instance of that class can be created by using the New
keyword, as in:

Dim colStates As New Collection()

In some cases, the entry for the class or object also includes a summary listing of the class' members,
along with their syntax and a brief description.

Class Members (Properties, Methods, and Events)

When the members of a class seem to be particularly interesting or important, we've devoted
separate entries to each. These contain the same items of information as functions.

Attributes

Attributes are classes derived from System.Attribute that allow us to store information with an
assembly's metadata. We've included only the attributes that VB programmers are most likely to
use. The standard format for presenting information about attributes include some standard
information (Class, Description, etc.), as well as the class constructors (these define the attribute's
required arguments) and properties (which define the attribute's optional arguments).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#Const Directive

Syntax

#Const constantname = expression
constantname (required; String literal)

Name of the constant
expression (required; literal)

Any combination of literal values, other conditional compilation constants defined with the #Const
directive, and arithmetic or logical operators except Is

Description

Defines a conditional compiler constant.

By using compiler constants to create code blocks that are included in the compiled application only when
a particular condition is met, you can create more than one version of the application using the same
source code. This is a two-step process:

Defining the conditional compiler constant. This step is optional; conditional compiler constants that
are not explicitly defined by the #Const directive, but are referenced in code, default to a value of
Nothing.

Evaluating the constant in the conditional compiler #If...Then statement block.

A conditional compiler constant can be assigned any string, numeric, or logical value returned by an
expression. However, the expression itself can only consist of literals, operators other than Is, and another
conditional compiler constant.

When the constant is evaluated, the code within the conditional compiler #If... Then block is compiled as
part of the application only when the expression using the conditional compiler constant evaluates to True.

Rules at a Glance

Conditional compiler constants are evaluated by the conditional compiler #If... Then statement
block.

You can use any arithmetic or logical operator in the expression except Is.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You cannot use other constants defined with the standard Const statement in the expression.

You cannot use intrinsic functions or variables in expression.

Constants defined with #Const can only be used in conditional code blocks.

You can place the #Const directive anywhere within a source file. If placed outside of all modules, the
defined constant is visible throughout the source file, but is not visible to any other source files in the
project. If placed in a module, the scope of the constant is that module. If placed in a procedure, the
scope is that procedure and all called procedures.

The #Const directive must be the first statement on a line of code. It can be followed only by a
comment. Note that the colon, which is used to combine two complete sets of statements onto a
single line, cannot be used on lines that contain #Const.

Programming Tips and Gotchas

Conditional compiler constants help you debug your code, as well as provide a way to create more
than one version of your application. You can include code that only operates when run in debug
mode. The code can be left in your final version and does not compile unless running in the
debugger. Therefore, you don't need to keep adding and removing debugging code.

Conditional compiler constants may be defined in terms of other conditional compiler constants. For
example, the following code fragment works as expected:
#Const Flag1 = 1

#Const Flag2 = 1

#Const Flags = Flag1 + Flag2

A conditional compiler constant can be defined at the command line using the /define or /d switch.

It is important to remember that the constant defined by #Const is evaluated at compile time and
therefore does not return information about the system on which the application is running.

See Also

#If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#If . . . Then . . . #Else Directive

Syntax

#If expression Then

 statements

[#ElseIf furtherexpression Then

 [elseifstatements]]

[#Else

 [elsestatements]]

#End If
expression (required)

An expression made up of literals, operators, and conditional compiler constants that will evaluate to
True or False

statements (required)

One or more lines of code or compiler directives, which is executed if expressionevaluates to True
furtherexpression (optional)

An expression made up of literals, operators, and conditional compiler constants that will evaluate to
True or False. furtherexpression is only evaluated if the preceding expression evaluates to False

elseifstatements (optional)

One or more lines of code or compiler directives, which is executed if furtherexpression evaluates
to True

elsestatements (optional)

One or more lines of code or compiler directives, which are executed if expression or
furtherexpression evaluates to False

Description

Defines a block or blocks of code that are only included in the compiled application when a particular
condition is met, allowing you to create more than one version of the application using the same source
code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conditionally including a block of code is a two-step process:

Use the #Const directive to assign a value to a conditional compiler constant.

Evaluate the conditional compiler constant using the #If...Then...#End If statement block.

Only code blocks whose expressions evaluate to True are included in the executable. You can use the
#Else statement to execute code when the #If...Then expression evaluates to False. You can also use
an #ElseIf statement to evaluate more expressions if previous expressions in the same block have
evaluated to False.

Some uses of conditional compilation code are:

To provide blocks of debugging code that can be left within the source code and switched on and off
using a conditional constant. Since debug statements such as Debug.Write have no effect in
compiled executables, they do not need to be included in conditional compilation code for the
purpose of removing them from the final executable.

To provide blocks of code that can perform different functions based on the build required by the
developer. For example, you may have a sample version of your application that offers less
functionality than the full product. This can be achieved using the same source code and wrapping
the code for menu options, etc., within conditional compiler directives.

To provide blocks of code that reference different components depending upon the build criteria of
the application.

Rules at a Glance

Unlike the normal If...Then statement, you cannot use a single-line version of the #If...Then
statement.

All expressions are evaluated using Option Compare Text, regardless of the setting of Option
Compare.

If a conditional compiler constant is undefined, comparing it to Nothing, 0, False, or an empty string
("") returns True.

Example

#Const ccVersion = 2.5

Private oTest as Object

Sub GetCorrectObject()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#If ccVersion = 2.5 Then

 Set oTest = New MyObject.MyClass

#Else

 Set oTest = New MyOtherObject.MyClass

#End If

End Sub

Programming Tips and Gotchas

You can negate the evaluation of the expression in the #If...Then or #ElseIf...Then statements by
placing the Not operator before the expression. For example, #If Not ccVersion = 5 Then forces the
code after this line to compile in all situations where ccVersion does not equal 5.

Conditional compilation helps you debug your code, as well as provides a way to create more than
one version of your application. You can include code that will only operate when run in debug mode.
The code can be left in your final version and will not compile unless running in the debugger;
therefore, you don't need to keep adding and removing code.

See Also

#Const Directive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#Region...#End Region Directive

Syntax

#Region "identifier_string"

' code goes here

#End Region
identifier_string (required; String literal)

The title of the code block (or region)

Description

Marks a block of code as an expandable and collapsible region or code block in the Visual Studio .NET
editor

Rules at a Glance

Code blocks delineated with the #Region...#End Region directive are collapsed by default.

identifier_string serves as the title to identify the region when it is collapsed.

Code blocks defined by other directives (such as #If) must be entirely contained within the
#Region...#End Region block.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Abs Function

Class

System.Math

Syntax

Math.Abs(value)
value (required; any valid numeric expression)

A number whose absolute value is to be returned

Return Value

The absolute value of value. The data type is the same as that of the argument passed to the function.

Description

Returns the absolute value of value. If value is an uninitialized variable, the return value is 0

Rules at a Glance

Only numeric values can be passed to the Abs function.

This is a Shared member of the Math class, so it can be used without creating any objects.

Example

In this example, the LineLength function is used to determine the length of a line on the screen. If the line
runs from left to right, X1 is less than X2, and the expression X2 - X1 returns the length of the line. If,
however, the line runs from right to left, X1 is greater than X2, and a negative line length is returned. As you
know, in most circumstances it does not matter which way a line is pointing; all you want to know is how
long it is. Using the Abs function allows you to return the same figure whether the underlying figure is
negative or positive:

Function LineLength(X2 as Integer) as Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim X1 As Integer

 X1 = 100

 LineLength = Math.Abs(X2 - X1)

End Function

Programming Tips and Gotchas

Because the Abs function can only accept numeric values, you may want to check the value you pass to
Abs using the IsNumeric function to avoid generating an error. This is illustrated in the following code
snippet:

If IsNumeric(sExtent) Then

 Math.Abs(sExtent)

 ...

End If

VB.NET/VB 6 Differences

In VB 6, Abs is an intrinsic VB function. In the .NET platform, it is a member of the Math class in the
System namespace, and so it is not part of the VB.NET language.

See Also

Sign Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acos Function

Class

System.Math

Syntax

Math.Acos(d)
d (required; Double or any valid numeric expression)

A cosine, which is a number greater than or equal to -1 and less than or equal to 1

Return Value

A Double between 0 and pi that is the arccosine of d in radians

Description

Returns the arccosine of d in radians

Rules at a Glance

If d is out of range (less than -1 or greater than 1), Acos returns NaN.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

To convert from radians to degrees, multiply by 180/pi.

VB.NET/VB 6 Differences

The Acos function did not exist in VB 6.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asin Function, Atan Function, Atan2 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AddHandler Statement

Syntax

AddHandler NameOfEventSender, AddressOf NameOfEventHandler
NameOfEventSender (required; String literal)

The name of a class or object instance and its event, such as Button1.Click
NameOfEventHandler (required; String literal)

The name of a subroutine that is to serve as the event handler for NameOfEventSender

Description

Binds an event handler to a built-in or custom event. This makes it possible to bind several event handlers
to a single event.

NameOfEventSender takes the form class.event or object.event.

You can stop handling events defined by the AddHandler statement by calling the RemoveHandler
statement.

Example

For an illustration, see Section 7.2.3 in Chapter 7.

Programming Tips and Gotchas

The Handles keyword can be used to receive event notification for the lifetime of an object. In contrast,
AddHandler and RemoveHandler can be used to dynamically add and remove event notification at runtime.

See Also

RemoveHandler Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AddressOf Operator

Syntax

AddressOf procedurename
procedurename (required)

The name of a procedure that is referenced by the procedure delegate

Description

The AddressOf operator returns a procedure delegate instance that references a specific procedure.

The AddressOf operator is used in the following situations:

If a parameter to a procedure (a VB procedure or a Win32 API function) requires a function pointer
(the address of a function), then we can pass the expression:
AddressOf functionname

where functionname is the name of the function. This function is called a callback function.

AddressOf is also used to create delegate objects, as in:
delg = New ADelegate(AddressOf obj.AMethod)

AddressOf is used to bind event handlers to events through the AddHandler statement:
AddHandler Form1.Click, AddressOf Me.Form1Click

Examples of all three applications of AddressOf can be found in Section 7.1 in Chapter 7.

VB.NET/VB 6 Differences

In VB 6, the AddressOf operator can only be used in a call to a Windows API function. Moreover, the
argument passed to AddressOf must be the name of a procedure in a standard code module. However, in
VB.NET these restrictions no longer apply.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AppActivate Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

[Interaction.]AppActivate(title)
title (required; String or Integer)

The name of the application as currently shown in the application window title bar. This can also be
the task ID returned from the Shell function.

Description

Activates a window based on its caption

Rules at a Glance

AppActivate performs a case-insensitive search on all top-level windows for a window caption that
matches title. If an exact match is found, the window is activated. If no match is found, then the
window captions are searched for a prefix match (title matches the beginning of the window
caption). For example, the title "Microsoft Word" matches "Microsoft Word - MyDocument.doc". If
a prefix match is found, the window is activated. Note that if multiple prefix matches are found, there
is no way to predict which matching window will be activated.

The window state (Maximized, Minimized, or Normal) of the activated application is not affected by
AppActivate.

If a matching application cannot be found, an exception of type System.ArgumentException is raised,
and runtime error 5, "Invalid procedure call or argument," is generated.

Example

Private Sub Button2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button2.Click

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim bVoid As Boolean

 bVoid = ActivateAnApp("Microsoft Excel")

End Sub

Function ActivateAnApp(vAppTitle As String) As Boolean

 On Error GoTo Activate_Err

 ActivateAnApp = False

 AppActivate(vAppTitle)

 ActivateAnApp = True

 Exit Function

Activate_Err:

 MsgBox ("Application " & vAppTitle & _

 " could not be activated")

End Function

Programming Tips and Gotchas

AppActivate searches only top-level windows.

You can also use the task ID returned by the Shell function with the AppActivate statement, as this
simple example demonstrates:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Explicit

Private vAppID

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 vAppID = Shell("C:\Program Files\Internet Explorer\IEXPLORE.EXE")

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button2.Click

 AppActivate vAppID

End Sub

AppActivate is very difficult to use with applications whose application titles change to reflect the
state or context of the application. Microsoft Outlook illustrates an excellent example of this problem.
If the user has Outlook in the Calendar section, the title bar reads "Calendar - Microsoft Outlook,"
whereas if in the Inbox section, the title bar reads "Inbox - Microsoft Outlook." In situations such as
this, we must resort to other techniques, such as using Win32 API methods, to enumerate all
windows and check the captions directly.

AppActivate is often used to give the focus to a particular window before keystrokes are sent to it
using the SendKeys statement, which sends keystrokes to the active window only.

VB.NET/VB 6 Differences

In VB 6, AppActivate has a second optional parameter, wait, a Boolean that determines whether the
application calling AppActivate must have the focus for the window indicated by title to be activated. In
VB.NET, wait is not supported.

See Also

Shell Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application Class

Namespace

System.Windows.Forms

Createable

No

Description

The Application object provides a diverse range of functionality, including support for multithreaded
programming, access to the system registry, and support for subclassing (intercepting messages sent to
application windows). It also includes a variety of informational functions, such as properties to retrieve the
company name, to retrieve the application's executable path, and to retrieve the application's name and
version.

Application objects can be created as follows:

Dim obj As Application

However, because all of the Application object's members are shared, you do not need to instantiate the
Application object to access its properties and methods. Hence, you can retrieve the executable path of
your application, for instance, with the code fragment:

Dim sPath As String = Application.ExecutablePath

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Properties

AllowQuit
CommonAppDataPath
CommonAppDataRegistry
CompanyName +
CurrentCulture
CurrentInputLanguage
ExecutablePath +
LocalUserAppDataPath
MessageLoop
ProductName +
ProductVersion +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SafeTopLevelCaptionFormat
StartupPath
UserAppDataPath
UserAppDataRegistry

Public Shared Methods

AddMessageFilter
DoEvents +
Exit
ExitThread
OleRequired
OnThreadException
RemoveMessageFilter
Run

Public Shared Events

ApplicationExit
Idle
ThreadException
ThreadExit

See Also

Application.CompanyName Property, Application.DoEvents Method, Application.ExecutablePath Property,
Application.ProductName Property, Application.ProductVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.CompanyName Property

Class

System.Windows.Forms.Application

Syntax

Application.CompanyName()

Return Value

A String containing the company name for the application

Description

Gets the company name for the application. This is a read-only property.

The value of the CompanyName property can be defined by including the <AssemblyCompany> attribute in
the AssemblyInfo file for the application. Its syntax is:

<Assembly: AssemblyCompany("sCompany")>

where sCompany is a string literal containing the company name.

See Also

Application Class, Application.ProductName Property, Application.ProductVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.DoEvents Method

Class

System.Windows.Forms.Application

Syntax

Application.DoEvents()

Description

Allows the operating system to process events and messages waiting in the message queue.

For example, you can allow a user to click a Cancel button while a processor- intensive operation is
executing. In this case, without DoEvents, the click event is not processed until after the operation had
completed. With DoEvents, Windows allocates time for the Cancel button's Click event to fire and the
event handler to execute.

Example

The following example uses a form with two command buttons to illustrate DoEvents. Suppose the user
clicks CommandButton1. Then the Do loop in the click event executes indefinitely. However, if the user
clicks CommandButton2, its click event is processed when the DoEvents statement in
CommandButton1_Click is executed. This sets the Boolean flag to False, which terminates the Do loop.

Option Explicit

Private lngCtr As Long

Private blnFlag As Boolean

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 blnFlag = True

 Do While blnFlag

 lngCtr = lngCtr + 1

 DoEvents()

 Loop

 MsgBox("Loop interrupted after " & lngCtr & _

 " iterations.")

End Sub

Private Sub CommandButton2_Click()

 blnFlag = False

End Sub

Programming Tips and Gotchas

While DoEvents can be indispensable for increasing the responsiveness of your application, it
should at the same time be used judiciously, since it entails an enormous performance penalty. For
example, the following table compares the number of seconds required for a simple For...Next loop
to iterate one million times when DoEvents isn't called, on the one hand, and when it's called on each
iteration of the loop, on the other.

Without DoEvents 0.01 seconds

With DoEvents 49.26 seconds

If most of a procedure's processing occurs inside of a loop, one way to avoid too many calls to
DoEvents is to call it conditionally every ten, hundred, or thousand iterations of the loop. For
example, the following code calls DoEvents every thousand iterations:
Dim lCtr As Long

For lCtr = 0 To 1000000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If (lCtr Mod 1000) = 0 Then

 DoEvents

 End If

Next

DoEvents should not be used in any event procedure or callback routine that is invoked automatically
by the operating system. Doing so causes re-entrance problems. (The event or routine may be called
again during the processing of the DoEvents method.) For the same reason, DoEvents should not be
used in in-process COM objects created with Visual Basic.

See Also

Application Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.ExecutablePath Property

Class

System.Windows.Forms.Application

Syntax

Application.ExecutablePath()

Return Value

A String containing the complete path of the executable file for the application

Description

Gets the complete path of the executable file for the application. This is a read- only property.

VB.NET/VB 6 Differences

The ExecutablePath property in the .NET Framework corresponds to the App.Path property in VB 6.

See Also

Application Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.ProductName Property

Class

System.Windows.Forms.Application

Syntax

Application.ProductName()

Return Value

A String containing the product name of the application

Description

Gets the product name of the application. This is a read-only property.

The value of the ProductName property can be defined by including the <AssemblyProduct> attribute in the
application's AssemblyInfo file. Its syntax is:

<Assembly: AssemblyProduct("sProduct")>

where sProduct is a string literal containing the product name.

VB.NET/VB 6 Differences

The ProductName property in the .NET Framework corresponds to the App. ProductName property in VB
6.

See Also

Application Class, Application.CompanyName Property, Application.ProductVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.ProductVersion Property

Class

System.Windows.Forms.Application

Syntax

Application.ProductVersion()

Return Value

A String containing the product version of the application

Description

Gets the product version of the application.

This is a read-only property. The product version typically has the form:

MajorVersionNumber.MinorVersionNumber.BuildNumber.PrivatePartNumber

Its default value is "1.0.*", which indicates that Visual Studio maintains default build and revision
numbers.

The value of the ProductVersion property can be defined by including the <AssemblyVersion> attribute in
the application's AssemblyInfo file. Its syntax is:

<Assembly: AssemblyVersion("maj.min.bld.rev")>

where maj is the major version number, min is the minor version number, bld is the build number, and rev
is the revision number.

VB.NET/VB 6 Differences

The ProductVersion property in the .NET Framework corresponds to the App. Major, App.Minor, and
App.Revision properties in VB 6.

See Also

Application Class, Application.CompanyName Property, Application.ProductName Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array Class

Namespace

System

Createable

Yes

Description

An Array object (that is, an instance of the Array class) that represents an array.

Arrays defined in VB.NET are Array objects, so they support the members of the Array class. Array class
members marked with a plus sign (+) are discussed in detail in their own entries.

Public Instance Properties

IsFixedSize
IsReadOnly
IsSynchronized
Length
Rank
SyncRoot

Public Shared Methods

BinarySearch +
Clear
Copy +
CreateInstance
IndexOf +
LastIndexOf +
Reverse +
Sort +

Public Instance Methods

Clone
CopyTo
Equals

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetEnumerator
GetHashCode
GetLength
GetLowerBound
GetType
GetUpperBound
GetValue
Initialize
SetValue
ToString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.BinarySearch Method

Class

System.Array

Syntax

Array.BinarySearch(array , value , [comparer])

Array.BinarySearch(array , index , length , value , [comparer])
array (required; any array)

The one-dimensional array to be searched
value (required in first overloaded function; any)

The value to search for in array
index (required in second overloaded version; Integer)

The array element at which the search is to start
length (required in second overloaded version; Integer)

The number of array elements to be searched
comparer (optional; IComparer)

A BCL or user-defined class implementing the IComparer interface that determines how two items
are compared for equality.

Return Value

An Integer representing the zero-based ordinal position of the element matching value

Description

This method provides a quick way to search for a value in a sorted one-dimensional array, returning the
smallest index whose element is that value. It uses a binary search algorithm, which tends to take log 2(n)
comparisons to find an item in an array of length n. For example, if n = 100,000, the number of
comparisons is on the order of 17.

To illustrate, if arr is an array of names in alphabetical order, then the code:

Array.BinarySearch(arr, "steve")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returns the smallest index with element "steve." If no such element exists, BinarySearch returns the
negative number whose bitwise complement is the index of the first element that is larger than "steve."

Rules at a Glance

The array must be a one-dimensional array sorted in ascending order.

If value is not found in the array, the method returns a negative number, which is the bitwise
complement of the index of the first element that is larger than value. To extract this value, you can
use the Not operator, as in the following code fragment:
iResult = Array.BinarySearch(lArr, lSearch)

if iResult >= 0 Then

 MsgBox(iResult)

Else

 MsgBox(iResult & vbcrlf & Not iResult)

End If

By default, the System.Collections.Comparer class is used to compare value with the members of
array. This means that string comparisons are case sensitive.

Programming Tips and Gotchas

If an array contains Boolean values, the method fails to correctly identify the position of the first
False value in the array.

In addition to the Comparer class, you can also pass an instance of the
System.Collections.CaseInsensitiveComparer class as the comparer argument. It provides for case-
insensitive comparisons. For example:
Dim sArr() As String = {"Alaska", "ALASKA", "Michigan", "MICHIGAN", _

 "New York", "NEW YORK"}

Dim sSearch As String

Dim lResult As Long

Dim oComp As New CaseInsensitiveComparer

sSearch = "MICHIGAN"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

iResult = Array.BinarySearch(sArr, sSearch, oComp)

In this case, because of the case-insensitive comparison, the value of lResult is 2.

See Also

Array.IndexOf Method, Array.LastIndexOf Method, Array.Sort Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.Copy Method

Class

System.Array

Syntax

Array.Copy(sourceArray, destinationArray, length)

Array.Copy(sourceArray, sourceIndex, destinationArray, _

 destinationIndex, length)
sourceArray (required; any array)

The array to be copied
sourceIndex (required in second overloaded version; integer)

The index in sourceArray at which copying begins
destinationArray (required; any array)

The target array
destinationIndex (required in second overloaded version; Integer)

The index in destinationArray where the first element is to be copied
length (required; Integer)

The number of elements to copy

Return Value

None

Description

Makes a copy of all or part of an array.

Since arrays are reference types, when we set one array variable equal to another, we are just assigning a
new reference to the same array. For instance, consider the following code:

Dim a() As Integer = {1, 2, 3}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim b() As Integer

' Array assignment

b = a

' Change b

b(0) = 10

' Check a

MsgBox(a(0)) 'Displays 10

The fact that changing b(0) also changes a(0) shows that a and b point to the same array.

Rules at a Glance

Using the first syntax, you can copy a range of values from the beginning of sourceArray to the
beginning of destinationArray. Using the second syntax, you can copy a range of values from
anywhere in destinationArray to anywhere in targetArray.

sourceArray and destinationArray must have the same number of dimensions.

length is the total number of elements to be copied. If sArr1 is a two- dimensional array, for
example, the statement:
Array.Copy(sArr1, 0, sArr2, 0, 3)

copies the values from sArr(0,0), sArr(0,1), and sArr(1,0) to sArr2.

To copy all elements, you can supply UBound(sourceArray) + 1 as an argument to length.

If sourceArray and destinationArray are the same, and destinationIndex lies within the range of
values being copied (that is, if the source and target ranges overlap), no data will be lost. The
method behaves as if it copies length elements from sourceArray to a temporary buffer, then copies
from the temporary buffer to destinationArray.

Example

Dim a() As Integer = {1, 2, 3}

Dim c() As Integer

' Array copy

ReDim c(UBound(a) + 1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.Copy(a, c, UBound(a) + 1)

'Change c

c(0) = 20

'Check a

MsgBox(a(0)) 'Displays 1

VB.NET/VB 6 Differences

Since arrays were not a reference type in VB 6, you could simply create a copy of an existing array
through assignment, thus eliminating the need for a Copy method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.IndexOf Method

Class

System.Array

Syntax

Array.IndexOf(Array, Value[, startIndex[, count]])
Array (required; any array)

The array to be searched
Value (required; any)

The object that is searched for
startIndex (optional; Integer)

The index at which to start the search
count (optional; Integer)

The number of items to search

Return Value

The index of the first occurrence of Value in Array, or -1

Description

Returns an Integer representing the index of the first occurrence of value in Array

Rules at a Glance

Array must be a one-dimensional array.

By default, the IndexOf method searches for Value from the beginning to the end of Array.

If startIndex is provided without count, IndexOf searches from startIndex to the last element of
Array.

If both startIndex and count are provided, the method searches count elements starting at
startIndex. In other words, it searches from array(startIndex) to array(startIndex + count - 1).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If startIndex is present and is outside of the range of the elements in Array, the method returns -1.

If count is present and startIndex + count - 1 exceeds the total number of elements in Array, the
method call generates an ArgumentOutOfRangeException exception.

Example

The following code searches for a value in an Integer array:

Dim i As Integer

Dim a(99999) As Integer

For i = 0 To 99999

 a(i) = CInt(Rnd() * 100000)

Next

MsgBox(Array.IndexOf(a, 36500))

You can also specify the starting index for the search, as well as the number of elements to search. For
example:

Array.IndexOf(array:=a, value:=136500, startIndex:=100, _

 count:=1000)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.LastIndexOf Method

Class

System.Array

Syntax

Array.LastIndexOf(Array, Value[, startIndex, count])
Array (required; any array)

The array to be searched
Value (required; any)

The object that is searched for
startIndex (optional; Integer)

The index at which to start the search
count (optional; Integer)

The number of elements to search

Return Value

An Integer containing the index of the last occurrence of Object in Array

Description

Returns the index of the last occurrence of Object in Array

Rules at a Glance

Array must be a one-dimensional array.

The LastIndexOf method has the same syntax as the IndexOf method and works the same way as
IndexOf, except that it searches from the end of the array and returns the largest index of a matching
element.

By default, the LastIndexOf method searches for Value from the end to the beginning of Array.

If startIndex is provided without count, LastIndexOf searches from startIndex to the first element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of Array.

If both startIndex and count are provided, the method searches count elements backward starting
at startIndex. In other words, it searches from array(startIndex) to array(startIndex - count +
1).

If startIndex is present and is outside of the range of the elements in array, the method returns -1.

If count is present and startIndex < count - 1, the method call generates an
ArgumentOutOfRangeException exception.

Example

The following code searches for a value in an Integer array:

Dim i As Integer

Dim a(100000) As Integer

For i = 0 To 99999

 a(i) = CInt(Rnd() * 100000)

Next

MsgBox(Array.LastIndexOf(a, 36500))

You can also specify the starting index for the search, as well as the number of elements to search. For
example:

Array.LastIndexOf(array:=a, value:=136500, startIndex:=100, _

 count:=50)

See Also

Array.IndexOf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.Reverse Method

Class

System.Array

Syntax

Array.Reverse(array[, startindex, endindex])
array (required; any array)

The array to be reversed
startIndex (optional; Integer)

The index at which to start the reversal process
endIndex (optional; Integer)

The index at which to end the reversal process

Return Value

None

Description

Reverses a portion of or all of the elements of an array

Example

Dim a() As Integer = {1, 2, 3, 4, 5}

Dim i As Integer

array.Reverse(a, 1, 3)

For i = 0 To 4

 debug.Write(a(i))

Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This code prints the sequence 14325, which is the original array 12345 with the middle section from index
1 to index 3 reversed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Array.Sort Method

Class

System.Array

Syntax

Array.Sort(array)

Array.Sort(array, comparer)

Array.Sort(array, index, length)

Array.Sort(array, index, length, comparer)

Array.Sort(keys, items)

Array.Sort(keys, items, comparer)

Array.Sort(keys, items, index, length)

Array.Sort(keys, items, index, length, comparer)
array (required; any array)

The array of objects to be sorted.
keys (required; any array)

The array of keys to use for sorting. This array is also sorted.
items (required; any array)

A parallel array of values to be sorted in the order of keys, their corresponding keys.
index (required; Integer)

The index at which to start the sort.
length (required; Integer)

The index at which to end the reversal process.
comparer (required; IComparer interface)

An object implementing the IComparer interface to be used for sorting. If Nothing, then the
IComparable implementation of each element (in the case of arrays of keys) or value type (in the
case of arrays).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Return Value

None

Description

Sorts a portion of, or sorts an entire one-dimensional array, with an optionally specified key array and an
optionally specified IComparer interface

Example

Sub sortArray()

Dim i As Integer

Dim intArray() As Integer = {9, 8, 12, 4, 5}

For i = 0 To 4

 console.WriteLine(CStr(intArray(i)))

Next

System.Array.Sort(intarray)

Console.WriteLine("Sorted:")

For i = 0 To 4

 console.WriteLine(CStr(intArray(i)))

Next

End Sub

The output is:

9

8

12

4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5

Sorted:

4

5

8

9

12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asc, AscW Functions

Class

Microsoft.VisualBasic.Strings

Syntax

Asc(string)

AscW(str)
string, str (required; String or Char)

Any expression that evaluates to a nonempty string

Return Value

An Integer that represents the character code of the first character of the string. The range for the returned
value is 0 - 255 on nonDBCS systems, and -32768 to 32767 on DBCS systems.

Description

Returns an Integer representing the character code for the first character of the string passed to it. All
other characters in the string are ignored

Rules at a Glance

The string expression passed to the function must contain at least one character or a runtime error is
generated.

Only the first character of the string is evaluated by Asc or AscW.

Example

Dim sChars As String

Dim iCharCode As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sChars = TextBox1.Text

If Len(sChars) > 0 Then

 iCharCode = Asc(sChars)

 If iCharCode >= 97 And iChar <= 122 Then

 MsgBox "The first character must be uppercase"

 End If

End If

Programming Tips and Gotchas

Check that the string you are passing to the function contains at least one character using the Len
function, as the following example shows:
If Len(sMyString) > 0 Then

 iCharCode = Asc(sMyString)

Else

 MsgBox("Cannot process a zero-length string")

End If

Use Asc within your data-validation routines to determine such conditions as whether the first
character is upper- or lowercase and whether it is alphabetic or numeric, as the following example
demonstrates:
Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

Dim sTest As String

Dim iChar As Integer

sTest = TextBox1.Text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Len(sTest) > 0 Then

 iChar = Asc(sTest)

 If iChar >= 65 And iChar <= 90 Then

 MsgBox "The first character is UPPERCASE"

 ElseIf iChar >= 97 And iChar <= 122 Then

 MsgBox "The first character is lowercase"

 Else

 MsgBox "The first character isn't alphabetical"

 End If

Else

 MsgBox "Please enter something in the text box"

End If

End Sub

Use the Asc function and the related Chr function to create rudimentary encryption methods. Once
you have obtained the character code for a particular character, you can perform calculations on this
code to come up with a different number and then convert this to a character using the Chr function.
To decrypt your string, simply reverse the calculation. You may want to avoid character codes less
than 20, however, since these can be interpreted as special nonprinting characters and cause
undesirable effects if displayed or printed.
Private Sub CommandButton2_Click()

Dim MyEncryptedString, MyDecryptedString As String

Dim MyName As String = "Paul Lomax"

Dim i As Integer

For i = 1 To Len(MyName)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MyEncryptedString = MyEncryptedString & _

 Chr(Asc(Mid(MyName, i, 1)) + 25)

Next i

MsgBox("Hello, my name is " & MyEncryptedString)

For i = 1 To Len(MyName)

 MyDecryptedString &= Chr(Asc(Mid(MyEncryptedString, i, 1)) - 25) Next i

MsgBox("Hello, my name is " & MyDecryptedString)

End Sub

See Also

Chr, ChrW Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AssemblyVersion Attribute

Class

System.Reflection.AssemblyVersionAttribute

Applies To

Assembly

Description

Specifies the version of the assembly. The version is represented as a four-part number, as follows:

<major_version>.<minor_version>.<build_number>.<revision>

Ordinarily, the .NET runtime considers a difference in any one of these four-part numbers to indicate a
different version.

A wildcard indicates that an assembly can be used with clients requesting any value for the wildcard
elements. For example, if the version is set to 1.0.*, the assembly can be used for clients requesting
version 1.0.1681.0, 1.0.1723.0, and 1.0.1723.2.

In Visual Studio .NET, the <AssemblyVersion> attribute is automatically added to
the AssemblyInfo.vb file and its value is set to 1.0.*.

Constructor

New(version)
version (String)

The version of the assembly

Properties

Version (String)

Read-only. The version of the assembly. Its value is set by the required version parameter of the
attribute's class constructor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Asin Function

Class

System.Math

Syntax

Math.Asin(d)
d (required; Double or any valid numeric expression)

A number representing a sine, which can range from -1 to 1

Return Value

A Double between -pi/2 and pi/2 that is the arcsine of d in radians

Description

Returns the arcsine of d, in radians

Rules at a Glance

If d is out of range, the function returns NaN.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

To convert from radians to degrees, multiply by 180/pi.

VB.NET/VB 6 Differences

The Asin function did not exist in VB 6.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acos Function, Atan Function, Atan2 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Atan Function

Class

System.Math

Syntax

Math.Atan(d)
d (required; Double or any valid numeric expression)

A number representing a tangent

Return Value

A Double that is the arctangent in radians of d, in the range -pi/2 to pi/2

Description

Takes the ratio of two sides of a right triangle (d) and returns the corresponding angle in radians. The ratio
is the length of the side opposite the angle divided by the length of the side adjacent to the angle.

Rules at a Glance

If d is out of range, the function returns NaN.

This is a Shared member, so it can be used without creating any objects.

Example

Private Sub Main()

 Dim dblSideAdj As Double

 Dim dblSideOpp As Double

 Dim dblRatio As Double

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim dblAtangent As Double

 dblSideAdj = 50.25

 dblSideOpp = 75.5

 dblRatio = dblSideOpp / dblSideAdj

 dblAtangent = Math.Atan(dblRatio)

 'convert from radians to degrees

 dblDegrees = dblAtangent * (180 / 3.142)

 MsgBox dblDegrees & " Degrees"

End Sub

Programming Tips and Gotchas

To convert radians to degrees, multiply radians by 180/pi.

Do not confuse Atan with the cotangent. Atan is the inverse trigonometric function of Tan, whereas
the cotangent is the reciprocal of the tangent.

VB.NET/VB 6 Differences

The Atan function corresponds to the VB 6 Atn intrinsic function.

See Also

Acos Function, Asin Function, Atan2 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Atan2 Function

Class

System.Math

Syntax

Math.Atan2(y, x)
x (required; Double)

The x coordinate of a point
y (required; Double)

The y coordinate of a point

Return Value

A Double that is the arctangent of the ratio x/y, in radians

Description

Returns the angle in the Cartesian plane formed by the x-axis and a vector starting from the origin (0,0)
and terminating at the point (x, y). More specifically, the return value q satisfies the following:

For (x, y) in quadrant 1, 0 < q < pi/2.

For (x, y) in quadrant 2, pi /2 < q < pi.

For (x, y) in quadrant 3, -pi < q < -pi /2.

For (x, y) in quadrant 4, -pi /2 < q < 0.

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Atan2 function does not exist in VB 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Acos Function, Asin Function, Atan Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AttributeUsage Attribute

Class

System.AttributeUsageAttribute

Applies to

Class

Description

Defines the program elements to which a custom attribute can be applied. Its use is required when
defining a custom attribute.

Constructor

New(validOn)
validOn (System.AttributeTargets)

Indicates the program elements to which a custom attribute can be applied. Possible values are All,
Assembly, Class, Constructor, Delegate, Enum, Event, Field, Interface, Struct, Method, Module,
Parameter, Property, and ReturnValue.

Properties

AllowMultiple (Boolean)

Indicates whether the attribute can be used more than once on a single program element. Its default
value is False.

Inherited (Boolean)

Indicates whether attribute is automatically inherited by derived classes and overridden members.
Its default value is True.

ValidOn (AttributeTargets enumeration)

Read-only. Indicates the program elements to which the attribute can be applied. Its value is set by
the required validon parameter of the class constructor.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Section 8.2 in Chapter 8 for more details and an example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Beep Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

Beep

Description

Sounds a tone through the computer's speaker

Example

Private Sub Main()

 iVoid = DoSomeLongFunction()

 Beep

 MsgBox "Finished!"

End Sub

Programming Tips and Gotchas

We have found the Beep statement to be completely unreliable, and therefore we never use it in
applications intended for distribution.

If you do decide to use the Beep statement, please remember that its overuse will not endear you to
your users!

The frequency and duration of the tone depends on the computer's hardware. Bear in mind that on
some systems, a mouse click is louder than the beep!

Since the successful operation of the Beep statement does not require the presence of any

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multimedia hardware (such as a sound card, for example), it can be used when a system is not
configured to support sound. For example, if the following is defined in the declarations section of a
code module:
Declare Function waveOutGetNumDevs Lib "winmm.dll" () As Long

Declare Function PlaySound Lib "winmm.dll" _

 Alias "PlaySoundA" (ByVal lpszName As String, _

 ByVal hModule As Long, ByVal dwFlags As Long) _

 As Long

Public Const SND_APPLICATION = &H80

Public Const SND_ASYNC = &H1

Public Const SND_FILENAME = &H20000

Public Const SND_NODEFAULT = &H2

Public HasSound As Boolean

Public Function IsSoundSupported() As Boolean

 If (waveOutGetNumDevs > 0) Then _

 IsSoundSupported = True

End Function

then the following procedure takes advantage of any existing sound hardware to play a wave file or
simply beeps the built-in PC speaker if no sound hardware is found.

Private Sub Form_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 Dim intCtr As Integer

 HasSound = IsSoundSupported()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If HasSound Then

 Call PlaySound("c:\windows\media\tada.wav", 0, _

 SND_FILENAME Or SND_NODEFAULT)

 Else

 For intCtr = 0 To 3

 Beep

 Next

 End If

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Call Statement

Syntax

[Call] procedurename[(argumentlist)]
procedurename (required; n/a)

The name of the subroutine being called
argumentlist (optional; any)

A comma-delimited list of arguments to pass to the subroutine being called

Description

Passes execution control to a procedure, function, or dynamic-link library (DLL) procedure or function

Rules at a Glance

Use of the Call keyword is optional.

Regardless of whether the Call keyword is used, argumentlist, if it is present, must be enclosed in
parentheses.

If you use Call to call a function, the function's return value is discarded.

Example

Call myProcedure(True, iMyInt)

Sub myProcedure(blnFlag as Boolean, iNumber as Integer)

...

End Sub

Programming Tips and Gotchas

To pass a whole array to a procedure, use the array name followed by empty parentheses.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some programmers suggest that code is more readable when the Call keyword is used to call
subroutines.

VB.NET/VB 6 Differences

In VB 6, parentheses had to be omitted if the Call keyword was omitted and procedurename had
more than one argument. In VB.NET, parentheses are required whenever arguments are present.

In VB 6, if argumentlist consisted of a single argument, enclosing it in parentheses and omitting the
Call statement reversed the method by which the argument was passed to the called function. Thus,
an argument ordinarily called by value would be called by reference, and vice versa. In VB.NET, this
confusing behavior is not supported.

In VB 6, when calling an external routine defined using the Declare statement, you can override the
default method of passing an argument by specifying the ByVal or ByRef keywords before the
argument. In VB.NET you cannot change whether an argument is passed by value or by reference in
the call to the routine.

See Also

CallByName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CallByName Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

Yes, if Args() is omitted

Syntax

CallByName(Object, ProcName, UseCallType, Args())
Object (required; Object)

A reference to the object containing the procedure being called.
ProcName (required; String)

The name of the procedure to call.
UseCallType (required; CallType constant)

A constant of the type CallType indicating what type of procedure is being called. CallType
constants are listed in the following table.

Constant Value Description

Method 1 The called procedure is a method.

Get 2 The called procedure retrieves a property value.

Let 4 The called procedure sets the value of a property.

Args (optional; any)

A ParamArray argument representing the arguments required by the procedure being called.

Return Value

Depends on the return value (if any) of the called procedure

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Provides a method for calling a class member by name.

Since ProcName is a string expression, rather than the literal name of a routine, it is possible to call routines
dynamically at runtime using a string variable to hold the various procedure names.

Rules at a Glance

The return type of CallByName is the return type of the called procedure.

ProcName is not case sensitive.

UseCallType can either be a numeric value or a constant of the CallType enumeration. In the latter
case, the enumeration name must be specified along with the constant name, as in
CallType.Method.

Args() must be a parameter array. A parameter array is an array used to contain function,
procedure, or property arguments that can have a variable number of elements.

Programming Tips and Gotchas

Since the member to be called is not known at compile time, the performance of CallByName is
inferior to calling members directly by literal name.

Using CallByName does not necessarily require that Option Strict be set Off.

Example

The following example uses a parameter array to call the Multiply method of a class named Math:

Imports Microsoft.VisualBasic

Imports System

Module modMain

Public Sub Main()

Dim oMath As New Math

Dim dArr() As Double = {1,2,3}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Call using ParamArray

MsgBox(CallByName(oMath, "Multiply", CallType.Method, dArr))

End Sub

End Module

Public Class Math

Public Function Multiply(a() As Double) As Double

Dim result as double = 1.0

Dim intCtr As Integer

Dim intIndex As Integer = 0

for intIndex = 0 to ubound(a)

 result = result * a(intIndex)

next

Multiply = result

End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Class

VB.NET/VB 6 Differences

In VB 6, you don't have to specify VbCallType as the name of the enumeration to access its constants. In
VB.NET, you must specify CallType as the name of the enumeration to access its constants.

See Also

Call Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CBool Function

Named Arguments

No

Syntax

CBool(expression)
expression (required; String or Numeric)

Any numeric expression or a string representation of a numeric value

Return Value

expression converted to Boolean data type (True or False)

Description

Casts expression as a Boolean data type

Rules at a Glance

When a numeric value is converted to Boolean, any nonzero value is converted to True, and zero is
converted to False.

If the expression to be converted is a string, the string must be capable of being evaluated as a number, or
it must be "True" or "False". Any other string generates a runtime error. For example, CBool("one")
results in a type mismatch error, whereas CBool("1") is converted to True, and CBool("True") is
converted to True.

Programming Tips and Gotchas

You can check the validity of the expression prior to using the CBool function by using the IsNumeric
function.

Like most of the conversion functions, CBool is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CByte Function

Named Arguments

No

Syntax

CByte(expression)
expression (required; String or Numeric)

A string or numeric expression that evaluates to a number between 0 and 255

Return Value

expression converted to Byte data type

Description

Converts expression to a Byte data type

Rules at a Glance

If the expression to be converted is a string, the string must be capable of conversion to a numeric
expression; this can be checked using the IsNumeric function.

If expression evaluates to less than 0 or more than 255, a runtime error is generated.

If the value of expression is not a whole number, CByte rounds the number prior to conversion.

Example

If IsNumeric(sMyNumber) Then

 If val(sMyNumber) >= 0 and val(sMyNumber) <= 255 Then

 BytMyNumber = CByte(sMyNumber)

 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

Programming Tips and Gotchas

Check that the value you pass to CByte is neither negative nor greater than 255.

Use IsNumeric to ensure that the value passed to CByte can be converted to a numeric expression.

When using CByte to convert floating point numbers, fractional values up to but not including .5 are
rounded down, while values above but not including .5 are rounded up. Values whose fractional
component is exactly equal to .5 are rounded up if their integral component is odd and down if their
integral component is even.

The CByte function converts an expression to an unsigned byte data type. To convert expression to
a signed byte data type, create an instance of the SByte class and call its Parse method.

Like most of the conversion functions, CByte is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CChar Function

Named Arguments

No

Syntax

CChar(expression)
expression (required; String)

Any string expression

Return Value

A value of type Char

Description

Converts the first character in a string expression to a Char data type

Rules at a Glance

CChar extracts the first character of expression and converts it to a Char data type.

Example

MsgBox(CChar("abc")) ' Displays a

MsgBox(CChar("56")) ' Displays 5

Programming Tips and Gotchas

If you wish to convert a numeric code to its corresponding Char data type, use the ChrW function.

Like most of the conversion functions, CChar is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Chr, ChrW Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CDate Function

Named Arguments

No

Syntax

CDate(expression)
expression (required; String or Numeric)

Any valid representation of a date and time

Return Value

expression converted into a Date data type

Description

Converts expression to a Date data type.

The format of expression - the order of day, month, and year - is determined by the locale setting of the
local computer. To be certain a date is recognized correctly by CDate, the month, day, and year elements
of expression must be in the same sequence as the local computer's regional settings; otherwise, the
CDate function has no idea, for example, that 4 was supposed to be the fourth day of the month, not the
month of April.

Rules at a Glance

You can use any of the date delimiters specified in your computer's regional settings; for most
systems, this includes ,, /, -, and .

The earliest date that can be handled by the Date data type is 01/01/100. The latest date that can be
handled by the Date data type is 12/31/9999.

Programming Tips and Gotchas

Use the IsDate function to determine if expression can be converted to a date or time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you pass an empty string to CDate, an error is generated.

A modicum of intelligence has been built into the CDate function. It can determine the day and month
from a string, regardless of their position in the string; this applies only where the day number is
larger than 12, which automatically distinguishes it from the number of the month. For example, if the
string "30/12/97" is passed into the CDate function on a system expecting a date format of mm/dd/yy,
CDate sees that 30 is too large to represent a month and thus treats it as the day. This can lead to
problems because if we accidentally pass a string such as "30/12/97" instead of the intended "3/12/
97," then VB does not issue an error message!

If we pass a string whose year specification is less than three characters in length, then VB interprets
the year as belonging to the twenty-first century. For instance, the string "1/1/1" is interpreted as
"1/1/2001."

If you do not specify a year, the CDate function uses the year from the current date on your
computer.

Like most conversion functions, CDate is not actually a function in the Microsoft. VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CDbl Function

Named Arguments

No

Syntax

CDbl(expression)
expression (required; Numeric or String)

-1.79769313486232E308 to -4.94065645841247E-324 for negative values, and
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Return Value

expression cast as a Double data type

Description

Converts expression to a Double data type

Rules at a Glance

If the value of expression is outside the range of the double data type, an overflow error is
generated.

expression must evaluate to a numeric value; otherwise, a type-mismatch error is generated.

Example

Dim dblMyNumber as Double

If IsNumeric(sMyNumber) then

 dblMyNumber = CDbl(sMyNumber)

End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

When converting a string representation of a number to a numeric value, the data type conversion
functions, such as CDbl, are preferable to the older function, Val. This is because the data type
conversion functions take account of the system's regional settings, whereas Val recognizes only the
period as a decimal separator. For example, if a user inputs a value of 6,231,532.11, CDbl correctly
converts it to a double with a value of 6231532.11, while Val returns a value of 6.

Use IsNumeric to test whether expression evaluates to a number.

Like most conversion functions, CDbl is not actually a function in the Microsoft. VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

See Also

CSng Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CDec Function

Named Arguments

No

Syntax

CDec(expression)
expression (required; Numeric or String)

The range is +/-79,228,162,514,264,337,593,543,950,335 for numbers with no decimal places. The
range is +/-7.9228162514264337593543950335 for numbers with up to 28 decimal places. The
smallest possible nonzero number is 0.0000000000000000000000000001.

Return Value

expression cast as a Decimal type

Description

This function casts expression as a Decimal value.

Rules at a Glance

If the value of expression is outside the range of the Decimal data type, an overflow error is
generated.

expression must evaluate to a numeric value; otherwise a type-mismatch error is generated. To
prevent this, it can be tested beforehand with the IsNumeric function.

Example

Dim decMyNumber As Decimal

If IsNumeric(sMyNumber) then

 decMyNumber = CDec(sMyNumber)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

Programming Tips and Gotchas

The Decimal data type replaces the VB 6 Currency data type and is appropriate for very large, very
small, or very high precision numbers.

Use IsNumeric to test whether expression evaluates to a number.

When converting a string representation of a number to a numeric, you should use the data type
conversion functions - such as CDec - instead of Val, because the data type conversion functions
take account of the system's regional settings. In particular, the CDec function recognizes the
thousands separator if it is encountered in the string representation of a number. For example, if the
user inputs the value 1,827,209.6654, CDec converts it to the decimal value 1827209.6654, while Val
converts it to a Double value of 1.

Like most of the conversion functions, CDec is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ceiling Function

Class

System.Math

Syntax

Math.Ceiling(a)
a (required; Double)

Return Value

A Double containing the smallest integer greater than or equal to the argument a

Description

Returns the smallest integer greater than or equal to the argument a

Example

Console.WriteLine(Math.Ceiling(12.1)) ' Returns 13

Console.WriteLine(Math.Ceiling(12.5)) ' Returns 13

Console.WriteLine(Math.Ceiling(-12.5)) ' Returns -12

Console.WriteLine(Math.Ceiling(-12.8)) ' Returns -12

Rules at a Glance

Because this function can accept only numeric values, you may want to check the value you pass
using the IsNumeric function to prevent generating an error.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Ceiling function is new to the .NET Framework.

See Also

Floor Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ChDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

ChDir(path)
path (required; String)

The path of the directory to set as the new default directory

Description

Changes the current working (default) directory.

Rules at a Glance

path can be an absolute or relative reference.

Changing the default directory does not change the default drive; it only changes a particular drive's
default directory.

Example

ChDir("c:\program files\my folder\")

ChDir("..") 'c:\program files is now the default directory.

Programming Tips and Gotchas

The single dot (".") represents the current directory and the double dot ("..") represents the parent
of the current directory. If the root directory is the current directory, the statement:
ChDir("..")

does not change the current directory and does not produce a syntax error.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If path is not found, or a FileNotFoundExeception exception, 76, "Path not found," is generated.
However, if path refers to another machine on the network, error 75, "Path/File access error," is
generated.

Although you can use a network path such as \\NTSERV1\d$\TestDir\ to change the current directory
on the network admin share \\NTSERV1\d$, you can't access this drive using ChDrive without having
the drive mapped to a drive letter, which makes using network paths with ChDir a little pointless!

Use CurDir to determine the current directory for a particular drive.

VB.NET/VB 6 Differences

In VB.NET, ChDir is implemented as a procedure (a method of the FileSystem class). In VB 6, it is
implemented as a statement. As a result, the VB.NET version requires parentheses around the path
argument.

See Also

ChDrive Procedure, CurDir Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ChDrive Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

ChDrive(drive)
drive (required; String or Char)

The letter of the drive (A-Z) to set as the new default drive

Description

Changes the current working (default) disk drive

Rules at a Glance

If a zero-length string is supplied, the drive is not changed.

If driveletter consists of more than one character, only the first character is used to determine the
drive.

Example

The following example demonstrates a utility function that uses ChDrive to determine if a given drive is
available. By centralizing the test, this reduces the amount of coding required each time you need to use
ChDrive.

Private Function IsAvailableDrive(sDrive As String) _

 As Boolean

 'if an error occurs goto to the next line of code

 On Error Resume Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim sCurDrv As String

 'get the letter of the current drive

 sCurDrv = Left$(CurDir, 1)

 'attempt to change the drive

 ChDrive(sDrive)

 'did an error occur?

 If Err.Number = 0 Then

 'no - this drive is OK to use

 IsAvailableDrive = True

 Else

 'yes - don't use this drive

 IsAvailableDrive = False

 End If

 'set the drive back to what it was

 ChDrive(sCurDrv)

End Function

The following code snippet shows how this function could be implemented within your application:

 If IsAvailableDrive(sDrv) Then

 ChDrive(sDrv)

 Else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox ("Cannot use Drive " & sDrv & ":\")

 End If

Programming Tips and Gotchas

The current directory is unaffected by the ChDrive procedure.

Since ChDrive only processes the first letter of the drive string, it's not possible to supply a piped
name as a network drive name (for example, \\NTServer\). Instead, the machine on which your
program runs must have a drive letter mapped to the network resource using Explorer or other
network commands. If drive is specified as a UNC path, the function raises error number 5, "Invalid
procedure call or argument," or generates an ArgumentException exception.

If drive is invalid, the function returns error number 68, "Device unavailable," or generates an
IOException exception.

To determine which drive is current, call the CurDir function with no arguments. Then use the Left
function to extract its first character, as the following code fragment illustrates:
Dim sDrive As String = Left(CurDir(), 1)

VB.NET/VB 6 Differences

In VB.NET, ChDrive is implemented as a procedure (a method of the FileSystem class). In VB 6, it is
implemented as a statement. As a result, the VB.NET version requires parentheses around the drive
argument.

See Also

ChDrive Procedure, CurDir Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choose Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax

Choose(index, item_1[,item_2, ...[, item_n]])
index (required; Single)

An expression that evaluates to the (1-based) index of the object to choose from the list
item_1-item_n (required; any)

A comma-delimited list of values from which to choose, or a ParamArray containing values from
which to choose

Return Value

The object chosen from the list.

Description

Programmatically selects an object from a predefined list of objects (which are passed as parameters to
the function) based on its ordinal position in the list. Using Choose is a simpler alternative to populating an
array with fixed values.

Rules at a Glance

The list of items is based from 1, rather than the more usual VB default base of 0.

Because the list consists of objects, you can mix data types within the list; you are not forced to use
the same data type for each item in the list. For example, item_1 can be a string, while item_2 can
be a long integer, and item_3 can be a floating point number.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the rounded value of index does not correspond to an item in the list, the function returns a null
string.

Programming Tips and Gotchas

If index is not a whole number, it is rounded before being used.

It is important to note that all items in the list are evaluated. Thus, if we use functions or expressions
as parameters, all of the functions are called or all of the expressions are evaluated.

By providing item_1 through item_n in the form of a ParamArray, the list of values can be expanded
or contracted programmatically at runtime.

You can save memory and create more efficient and self-documenting code by using the Choose
function instead of creating an array and populating it with fixed values each time the program
executes. As the following example illustrates, you can turn several lines of code into one:
Dim vMyArray(3)

vMyArray(1) = "This"

vMyarray(2) = "That"

vMyArray(3) = "The Other"

...

Sub chooseFromArray(iIndex as Integer)

 vResult = vMyArray(iIndex)

End Sub

Sub chooseFromChoose(sglIndex as Single)

 vResult = Choose(sglIndex, "This", "That", "The Other")

End Sub

VB.NET/VB 6 Differences

In VB 6, item_1 through item_n must only take the form of a comma-delimited list. In VB.NET, these
arguments can also take the form of an array. This allows the list of choices to be modified
dynamically at runtime.

In VB 6, idx must be greater than .5 and less than .5 plus the number of items in the list, or a runtime

http://lib.ommolketab.ir
http://lib.ommolketab.ir

error results. In VB.NET, if idx is out of range, the function returns a null string.

See Also

Switch Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chr, ChrW Functions

Class

Microsoft.VisualBasic.Strings

Syntax

Chr(charcode)

ChrW(charcode)
charcode (required; Integer)

An expression that evaluates to a Unicode character code

Return Value

A Char that contains the character represented by charcode

Description

Returns the character represented by the charcode

Programming Tips and Gotchas

Use Chr(34) to embed quotation marks inside a string, as shown in the following example:
sSQL = "SELECT * FROM myTable _

 where myColumn = " & Chr(34) & sValue & Chr(34)

The following table lists some of the more commonly used character codes that are supplied in the
call to the Chr function:

Code Constant Description

0 vbNullChar
For C/C++ string functions, the null character required to terminate
standard strings

8 vbBack A backspace character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Constant Description

9 vbTab A tab character

10 vbLf A linefeed character

13 vbCr A carriage return character

34 ControlChars.Quote A quotation mark

VB.NET/VB 6 Differences

The ChrB function is no longer supported.

The VB 6 version of the Chr function returns a String; the VB.NET version returns a Char.

See Also

Asc, AscW Functions

9 vbTab A tab character

10 vbLf A linefeed character

13 vbCr A carriage return character

34 ControlChars.Quote A quotation mark

VB.NET/VB 6 Differences

The ChrB function is no longer supported.

The VB 6 version of the Chr function returns a String; the VB.NET version returns a Char.

See Also

Asc, AscW Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CInt Function

Named Arguments

No

Syntax

CInt(expression)
expression (required; Numeric or String)

The range of expression is -2,147,483,648 to 2,147,483,647; fractions are rounded.

Return Value

expression cast as an Integer

Description

Converts expression to an Integer; any fractional portion of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is generated.

If the value of expression is outside the range of the Integer data type, an overflow error is
generated.

When the fractional part of expression is exactly .5, CInt always rounds it to the nearest even
number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example

Dim iMyNumber as Integer

If IsNumeric(sMyNumber) then

 iMyNumber = CInt(sMyNumber)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric data type, you should use the data
type conversion functions - such as CInt - instead of Val, because the data type conversion
functions take into account the system's regional settings. In particular, CInt recognizes the
thousands separator if it's present in expression, whereas Val does not. For example, if expression
is 1,234, then CInt successfully converts it to the integer value 1234, while Val converts it to 1.

Use IsNumeric to test whether expression evaluates to a number before performing the conversion.

CInt differs from the Fix and Int functions, which truncate, rather than round, the fractional part of a
number. Also, Fix and Int always return the same type of value as was passed in.

CInt converts an expression to a signed 32-bit integer. To convert an expression to an unsigned 32-
bit integer, create an instance of the UInt32 structure, and call its Parse method.

Like most of the conversion functions, CInt is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

VB.NET/VB 6 Differences

The VB.NET CInt function actually corresponds to the VB 6 CLng function, since both return 32-bit
integers.

See Also

CLng Function, CShort Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class Statement

Syntax

[accessmodifier] [Shadows] [inheritability] Class Name

 statements

End Class
accessmodifier (optional; Keyword)

The possible values of accessmodifier are Public, Private, and Friend. For more information, see
Section 4.7 in Chapter 4.

Shadows (optional; Keyword)

Indicates that the Name class shadows any element of this same name in a base class.
inheritability (optional; Keyword)

One of the keywords, MustInherit or NotInheritable, must be used. MustInherit specifies that
objects of this class cannot be created, but that objects of derived classes can be created.
NotInheritable specifies that this class cannot be used as a base class.

Name (required; String literal)

The name of the class.

Description

Defines a class and delimits the statements that define that class' variables, properties, and methods. For
a detailed discussion with examples, see Chapter 4.

Rules at a Glance

If the Inherits or Implements statements appear in a class module, they must appear before any
other statements in the module. Moreover, the Inherits keyword must appear before the
Implements keyword.

Name follows standard Visual Basic variable-naming conventions.

Within a class code block, members are declared as Public, Private, Protected, Friend, or
Protected Friend. The Dim keyword is equivalent to Private when used in class modules (but it is
equivalent to Public in structures). Property declarations are automatically Public.

The Class...End Class construct can include the following elements:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private variable or procedure declarations

These items are accessible within the class, but do not have scope outside of the class.
Public variable or procedure declarations

Public variables are public properties of the class; Public procedures are public methods of
the class.

Property declarations

These are the public properties of the class. Default properties can be declared by using the
Default keyword.

To define a custom constructor within a class module, define a subroutine called New. Note that the
New subroutine (like any other procedure) can be overloaded.

To define a destructor within a class module, define a function called Destruct. Destructors cannot be
overloaded.

To create an object of a class, use syntax such as:
Dim oObj As CClass

oObj = New CClass(arguments_for_constructor)

or:

Dim oObj = New CClass(arguments_for_constructor)

or:

Dim oObj As CClass = New CClass(arguments_for_constructor)

The Shadows keyword has the following meaning: If this class is derived from a base class and if Name
is used in the base class as the name of any element type (property, method, constant, enum, etc.),
then any use of Name in classes derived from the class Name refers to the Name class rather than the
Name element in the base class. For more on shadowing, see Chapter 4.

Programming Tips and Gotchas

A property defined as a simple public variable cannot be designated the class' default member.

According to accepted object-oriented programming practices, public properties should be defined
using the Property statement, since this allows the value of a property to be modified in a controlled
and predictable way. It allows you to validate data and allows your program to know when a property
value is being changed. Because this is not possible using simple public variables, defining a public
variable that is accessible outside of the class is considered poor programming practice.

The Me or MyClass keywords can be used within the Class...End Class construct to reference the
class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET/VB 6 Differences

The Class...End Class construct is new to VB.NET. In VB 6, each class was defined in its own class
module, which corresponded to a separate CLS file.

See Also

Property Statement, Structure...End Structure Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clipboard Class

Namespace

System.Windows.Forms

Createable

No

Description

The Clipboard object represents the Windows Clipboard, an object that allows data to be shared across
processes. The members of the Clipboard class allow data to be placed in and retrieved from the
Clipboard.

The Clipboard object can be created as follows:

Dim obj As Clipboard

However, because the Clipboard object's members are shared, you do not need to instantiate the
Clipboard object to access its properties and methods. Hence, you can place data on the Clipboard, for
instance, with the following code fragment:

Clipboard.SetDataObject(strData)

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Methods

GetDataObject +
SetDataObject +

See Also

Clipboard.GetDataObject Method, Clipboard.SetDataObject Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clipboard.GetDataObject Method

Class

System.Windows.Forms.Clipboard

Syntax

Clipboard.GetDataObject()

Return value

An IDataObject object that represents the data currently on the clipboard

Description

Retrieves data from the Clipboard

Rules at a Glance

If the Clipboard contains no data, the GetDataObject method returns Nothing.

Once you have an IDataObject object, you can use the members of the IDataObject class to get
information about the Clipboard data, as shown in the following example. The relevant IDataObject
members for Clipboard manipulation in VB are GetData, GetDataPresent, and GetFormats.

Example

The following example extracts the text that is currently on the Clipboard:

' Declare IDataObject variable and get clipboard IDataObject

Dim di As IDataObject = Clipboard.GetDataObject

Dim obj As Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Fire GetData method of IDataObject object to get clipboard data

obj = di.GetData(DataFormats.Text, False)

' Show the text, if any

If obj Is Nothing Then

 MsgBox("No text on clipboard.")

Else

 MsgBox(CStr(obj))

End If

VB.NET/VB 6 Differences

While the .NET Base Class Library uses the GetDataObject method to retrieve all data from the Clipboard,
the Clipboard object in VB 6 included the GetFormat, GetData, and GetText methods to retrieve Clipboard
data.

See Also

Clipboard Class, Clipboard.SetDataObject Method, IDataObject Interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clipboard.SetDataObject Method

Class

System.Windows.Forms.Clipboard

Syntax

SetDataObject(data)
data (required; any)

Data to place on the Clipboard

Description

Places data on the Clipboard

Example

The following example places text on the clipboard:

Dim s As String = "donna"

clipboard.SetDataObject(s)

VB.NET/VB 6 Differences

While the .NET Base Class Library uses the SetDataObject method to place all data on the Clipboard, the
Clipboard object in VB 6 includes two methods, SetData and SetText, depending on the format of the data
to be placed on the Clipboard.

See Also

Clipboard Class, Clipboard.GetDataObject Method, IDataObject Interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CLng Function

Named Arguments

No

Syntax

CLng(expression)
expression (required; Numeric or String)

Ranges from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807; fractions are rounded.

Return Value

expression cast as a Long data type

Description

Converts expression to a long integer; any fractional element of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is generated.

If the value of expression is outside the range of the Long data type, an overflow error is generated.

When the fractional part is exactly .5, CLng always rounds it to the nearest even number. For
example, .5 rounds to 0, and 1.5 rounds to 2.

Example

Dim lngMyNumber as Long

If IsNumeric(sMyNumber) then

 lngMyNumber = CLng(sMyNumber)

End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

When converting a string representation of a number to a numeric, you should use the data type
conversion functions - such as CLng - instead of Val, because the data type conversion function
takes into account the system's regional settings. In particular, CLng is able to recognize the
thousands separator if it's included in expression, while Val cannot. For example, if a user enters a
value of 1,098,234 into a textbox, CLng converts it to the long integer 1098234, but Val converts it to
a value of 1.

Use IsNumeric to test whether expression evaluates to a number.

CLng differs from the Fix and Int functions, which truncate, rather than round, the fractional part of a
number. Also, Fix and Int always return the same type of value as was passed in.

CLng converts an expression to a signed long integer. To convert an expression to an unsigned long
integer, create an instance of the UInt64 structure and call its Parse method.

Like most of the conversion functions, CLng is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

VB.NET/VB 6 Differences

The VB.NET CLng function returns a 64-bit integer, whereas the VB 6 CLng function returns a 32-bit
integer.

See Also

CInt Function, CShort Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CLSCompliant Attribute

Class

System.CLSCompliantAttribute

Applies to

All

Description

Indicates whether the program element compiles with the Common Language Specification. If the
CLSCompliant attribute is not present, the VB.NET compiler does not enforce CLS compliance. This can
prevent other languages from successfully accessing components written in VB.NET.

If a particular program element is marked as CLS-compliant, it is assumed that all contained program
elements are CLS-compliant as well unless they are explicitly marked otherwise.

By default, Visual Studio adds the <CLSCompliant> attribute to the AssemblyInfo.vb file and sets its value
to True.

Constructor

New(isCompliant)
isCompliant (Boolean)

Indicates whether the program element must be CLS-compliant

Property

IsCompliant (Boolean)

Read-only. Indicates whether the program element must be CLS-compliant. Its value is set by the
required isCompliant parameter of the class constructor.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CObj Function

Named Arguments

No

Syntax

CObj(expression)
expression (required; any)

Return Value

expression cast as an Object data type

Description

Converts any expression that can be interpreted as an object to Object

Rules at a Glance

expression can be any data type, including a strongly typed object, as the following code fragment
illustrates:

Dim oSomeClass As New CSomeClass

Dim oObj As Object

oObj = CObj(oSomeClass)

Example

The following code:

Dim obj As Object

obj = CObj("test")

casts the string "test" to type Object and places it in the Object variable obj.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

The operation of the CObj function is possible because all VB.NET data types are either structures
or objects.

Once a data type is converted to type Object, you can display its value by calling its ToString
method, as in the following code fragment:
Dim bFlag As Boolean = True

oObj = CObj(bFlag)

MsgBox(oObj.ToString)

Instead of using the CObj function to convert a strongly typed object to a generic Object data type,
you can also use simple assignment, as the following code fragment illustrates:
Dim oSomeClass As New CSomeClass

Dim oObj As Object

oObj = oSomeClass

Like most of the conversion functions, CObj is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

VB.NET/VB 6 Differences

The CObj function is new to VB.NET. The closest equivalent in VB 6 is CVar, which converts a data type to
a Variant.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection Class

Namespace

Microsoft.VisualBasic

Createable

Yes

Syntax

Dim objectvariable As [New] Collection
objectvariable (required; Collection)

The name of the Collection object

Description

A Collection object allows you to store members of any data type, including object data types or even other
collection objects, and to retrieve them using a unique key.

Collection objects allow us to create a form of associative array, which is an array whose members are
indexed by something more meaningful than an integer. The real power of a collection comes by using
collections with class objects. The Collection object is discussed in more detail in Chapter 3.

Collection objects are created in exactly the same way as other objects, as in:

Dim obj As New Collection

or:

Dim obj As Collection

obj = New Collection

In the former syntax, the Collection object is created at the time that the obj variable is declared, which
may be sooner than you actually need the Collection object. The latter syntax gives you more control over
the creation process.

Rules at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use a Collection object to store data of any data type, including object types and even other
Collection objects.

The Add method of the Collection object is used to add items to the collection (see the
Collection.Add entry).

Members of a collection can be accessed using either their ordinal number or their key, assuming
that one was assigned at the time that the member was added to the collection (see the
Collection.Item entry).

The first member in a collection is stored at ordinal position 1 (not at 0, as with arrays).

The Count method returns the number of members in the collection (see the Collection.Count entry).

The Remove method removes items from a collection (see the Collection.Remove entry).

Example

This example shows how you can nest one collection within another collection. We create 10 instances of
colSubCollection, each containing two integer values. These colSubCollection objects are stored in the
collection named colMainCollection. The code also shows how to read the values of colMainCollection
and colSubCollection:

Sub testCollection()

 'declare objects for the main and sub collections

 'creating a new instance of the main collection

 'in the process

 Dim colMainCollection As New Collection

 Dim colSubCollection As Collection

 Dim i As Integer

 For i = 1 To 10

 'create a new instance of the sub collection object

 colSubCollection = New Collection

 'populate the sub collection with two integer values

 colSubCollection.Add(Item:=i + 6, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Key:="MySixPlusVal")

 colSubCollection.Add(Item:=i + 3, _

 Key:="MyThreePlusVal")

 'now add the sub collection to the main collection

 'using the count converted to a string as the key

 colMainCollection.Add(Item:=colSubCollection, _

 Key:=CStr(i))

 'destroy the reference the sub collection

 colSubCollection = Nothing

 Next i

 MsgBox(colMainCollection.Count)

 For i = 1 To colMainCollection.Count

 'use the Item method to obtain a reference to the

 'subcollection

 colSubCollection = _

 colMainCollection.Item(CStr(i))

 'display the values held in the sub collection.

 Console.WriteLine("6 + " & i & " = " & _

 colSubCollection.Item("MySixPlusVal"))

 Console.WriteLine("3 + " & i & " = " & _

 colSubCollection.Item("MyThreePlusVal"))

 'destroy the reference to the sub collection

 colSubCollection = Nothing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next i

End Sub

Programming Tips and Gotchas

A highly efficient method of enumerating the members of a collection is to use the For Each...Next
loop, as the following example shows:
Dim colMyCollection As New Collection

Dim colSubCollection As Collection

For i = 1 To 10

 Set colSubCollection = New Collection

 colSubCollection.Add Item:=i + 6, _

 Key:="MySixPlusVal"

 colSubCollection.Add Item:=i + 3, _

 Key:="MyThreePlusVal"

 colMyCollection.Add Item:=colSubCollection, _

 Key:=CStr(i)

 Set colSubCollection = Nothing

Next i

For Each colSubCollection In colMyCollection

 MsgBox colSubCollection.Item("MySixPlusVal")

Next

Interestingly, although most Visual Basic data types are merely wrappers for data types in the Base
Class Library, the Collection object is a "native" VB data type that's derived from System.Object and
implements the ICollection, IEnumerable, and IList interfaces. This can be seen from the
following code fragment:
Dim oColl As New Collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim oType As Type, oInt As Type

oType = oColl.GetType()

Console.WriteLine("Type: " & oType.ToString)

Console.WriteLine("Base Type: " & oType.BaseType.ToString)

Dim oTypes() As Type = oType.GetInterfaces

For Each oInt in oTypes

 Console.WriteLine("Interface: " & oInt.ToString)

Next

See Also

Collection.Add Method, Collection.Count Property, Collection.Item Method, Collection.Remove Method,
Hashtable Class, Queue Class, Stack Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Add Method

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Add item [, key, before, after]
objectvariable (required; Collection Object)

The name of the Collection object to which an item is to be added
item (required; Object)

An object of any type that specifies the member to add to the collection
key (optional; String)

A unique string expression that specifies a key string that can be used, instead of a positional index,
to access a member of the collection

before (optional; Object)

The member to be added placed in the collection before the member identified by the before
argument (more on this in Section)

after (optional; Object)

The member to be added placed in the collection after the member identified by the after argument
(more on this in Section)

Description

Adds an object to a collection

Rules at a Glance

If you do not specify a before or after value, the member is appended to the end of the collection (in
index order).

If you do not specify a key value, you cannot access this member using a key, but instead must
access it either by using its ordinal number or by enumerating all the members of the collection with
the For Each...Next construct. Thus, keys are highly recommended.

The before or after argument can refer to an index or a key. For instance, consider the following

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code:
Dim c As New Collection()

c.Add("donna", "111")

c.Add("steve", "222")

'c.Add("bill", "333", "222")

'c.Add("bill", "333", 2)

MsgBox(c.Item(2))

Both of the commented lines of code adds the item "bill" between "donna" and "steve." The first line
uses the key to specify the before object, and the second line specifies the ordinal position of the
before object.

Key values must be unique or an error (runtime error 457, "This key is already associated with an
element of this collection") is generated.

You can specify a before or after position, but not both.

Example

colComposers.Add(Item:="Ludwig von Beethoven" _

 Key:="Beethoven")

Programming Tips and Gotchas

Using named parameters helps to self-document your code:
colMyCollection.Add Item:="VB.NET Language in a Nutshell" _

 Key:="Title"

If your key parameter is a value being brought in from outside your program, you must ensure that
each value is always unique. One method for doing this is illustrated in the entry for the
Collection.Item Method.

See Also

Collection Class, Collection.Count Property, Collection.Item Method, Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Count Property

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Count
objectvariable (required; Collection Object)

Object variable referring to a Collection object

Description

Returns an Integer containing the number of members in the collection

Rules at a Glance

Collections are 1-based; that is, the index of the first element of a collection is 1. In contrast, arrays are 0-
based; the index of the first element of an array is 0.

Example

For i = 1 To colMyCollection.Count

 Set colSubCollection = colMyCollection.Item(CStr(i))

 MsgBox colSubCollection.Item("Name")

 Set colSubCollection = Nothing

Next i

Programming Tips and Gotchas

Because collections are 1-based, you can iterate the members of a collection by using index values
ranging from 1 to the value of objectvariable.Count.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Collection Class, Collection.Add Method, Collection.Item Method, Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Item Method

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Item(index)
objectvariable (required; Collection Object)

An object variable of type Collection
index (required; Integer or String)

Either the index (the ordinal position) of the object in the collection, or the unique key name
belonging to the object

Description

Returns the member of the collection for the specified key or ordinal position

Programming Tips and Gotchas

When writing wrapper classes for collections, you can make your object model more readable by
making the name of the property that wraps the Item method the same as the name of the object
obtained from the collection. For example, if your collection class is called Employees and is a
collection of Employee records, your object model reads much better to have an Employee Property
procedure, as follows:
Public Property Employee(vKey as Object) As Boolean

 Get

 Employee = mcolEmployees.Item(vKey)

 End Get

. . .

End Property

Note that in the previous Property procedure, the parameter is passed as an object so that the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument can be either a string (the item's key) or an integer (the item's ordinal position).

There is no Exists method in the Collection object, so you cannot find out in advance if a particular
key exists within the collection. However, you can create an Exists function by calling the Item
method with a given key and returning an appropriate value based on whether an error occurred, as
the following code shows:
Public Function Exists(ByVal oKey As Object) As Boolean

 Try

 moValue = mCollection.Item(oKey)

 Exists = True

 Catch e As NullReferenceException

 Exists = False

 End Try

End Function

The Item method is the default member of the Collection object, and since it is parameterized, we do
not need to include an explicit call to the Item method. The following two statements, for example,
are identical to one another:
set objMember = objCollection.Item(6)

set objMember = objCollection(6)

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Collection.Remove Method

Class

Microsoft.VisualBasic.Collection

Syntax

objectvariable.Remove (index)

or:

objectvariable.Remove (key)
objectvariable (required; Collection Object)

An object variable of the Collection type
index (required; Integer)

The ordinal position of the item to remove
key (required; String)

The key of the item to remove

Description

Removes a member from a collection

Example

colMyCollection.Remove ("Name")

Programming Tips and Gotchas

Members of the collection that follow the removed member are automatically moved downward by
one ordinal position; therefore, no gaps are left in the collection.

Because the collection is reindexed after each deletion, you should be sure not to delete a member
of the collection based on a stored numeric value of index, since this value could change. Instead,
you should either delete the member by key or retrieve the index value just before calling the
Remove method.

If you are deleting multiple members of a collection by numeric index value, you should delete them

http://lib.ommolketab.ir
http://lib.ommolketab.ir

backwards - from highest index value to lowest - because the collection is reindexed after each
deletion.

If you are using a collection as the basis for a class module, or if you are using functions in your
application to wrap and enhance the limited functionality of a collection, you can include a Clear
method to remove all the members in your collection. The method should be written to remove the
member in position 1 until no members are left, as the following code demonstrates:
Public Sub Clear()

 Dim i As Integer

 For i = 1 To mcolMyCollection.Count

 mcolMyCollection.Remove(1)

 Next i

End Sub

Alternately, you could do the same thing by working from the end of the collection forward, as the
following code illustrates:

Dim intCtr As Integer

For intCtr = objCollec.Count To 1 Step -1

 objCollec.Remove(intCtr)

Next

When using named arguments, providing an index value with the key:= keyword or providing a key
name with the index:= keyword generates a runtime error.

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Item Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ColorDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting a color.

The ColorDialog object has properties for setting the initial appearance and functionality of the color dialog
box, a property for returning the color selected by the user, and a method for showing the dialog box.

Selected ColorDialog Members

The following provides a brief description of the more important members of the ColorDialog class:

AllowFullOpen property

Returns or sets a Boolean value indicating whether the user can use the dialog box to define
custom colors. The default is True.

AnyColor property

Returns or sets a Boolean value indicating whether the dialog box displays all available colors,
although in Beta 2 of VB.NET, this property seems to have no effect. The default is False.

Color property

Returns an instance of a Color structure, which contains information about the color selected by the
user. The Color structure, which is a type belonging to the System.Drawing namespace, has a
number of members, including:

Over 140 named color properties, from Red, Green, and Blue, to PapayaWhip, MistyRose,
and MediumSeagreen. These properties return a Color structure.

The Name property, which returns the name of the color, or its ARGB value for custom colors.
(The A component is the alpha component of the color, which determines the color's opacity.)

The R property, G property, and B property, which return a byte specifying the red, green, or
blue color component of the RGB color value, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IsKnownColor, IsNamedColor, and IsSystemColor properties, which give information
about the color.

CustomColors property

Represents an array of Integers used to set or return the set of custom colors that will be shown in
the ColorDialog dialog box.

FullOpen property

Represents a Boolean property that sets or retrieves the value indicating whether the dialog box is
opened with the controls used to create custom visible controls. (The default is False, but the user
can always click the Custom Colors button to display the custom colors controls.)

Reset method

Resets the dialog box by setting all options and custom colors to their default values and setting the
selected color to black.

SolidColorOnly property

For systems displaying 256 colors or less, if this property is set to True, restricts the dialog box to
solid colors only, that is, to colors that are not composites of other colors.

VB.NET/VB 6 Differences

While the ColorDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

Example

The following code asks the user for a color and displays that color:

Dim cd As New ColorDialog()

Dim c As New Color()

If cd.ShowDialog() = DialogResult.OK Then

 Console.WriteLine(cd.Color.ToString)

 Console.WriteLine(cd.Color.Name)

Else

 Console.WriteLine("No color chosen")

End If

Note the use of the DialogResult enumeration to check user action on the dialog box. Here is the precise
output if red is selected:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color [Alpha=255, Red=255, Green=0, Blue=0]

ffff0000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COMClass Attribute

Class

Microsoft.VisualBasic.COMClassAttribute

Applies to

Class

Description

Adds metadata that allows a .NET class to be exposed as a COM object. You can supply the attribute with
a class identifier, an interface identifier, and an event identifier. All are globally unique identifiers (GUIDs)
that can be generated either by using the guidgen.exe utility or automatically by using the COM Class
Wizard. They ensure that the COM component retains the same GUIDs when it is recompiled.

Constructor

New([[[classID], interfaceID], eventID])
classID (String)

The class identifier (CLSID) that will uniquely identify the COM class
interfaceID (String)

The interface identifier (IID) that uniquely identifies the class' default COM interface
eventID (String)

The event identifier that uniquely identifies an event

Properties

ClassID (String)

Read-only. Provides the class identifier (CLSID) that uniquely identifies a COM class. Its value is set
by the classID parameter of the class constructor.

EventID (String)

Read-only. Provides the GUID that uniquely identifies an event. Its value is set by the eventID
parameter of the class constructor.

InterfaceID (String)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Read-only. Provides the interface identifier (IID) that uniquely identifies a COM interface. Its value is
set by the interfaceID parameter of the class constructor.

InterfaceShadows (Boolean)

Indicates whether the COM interface name is the same as the name of another member of the class
or the base class. Its default value is False.

Example

The example defines a simple class named CContact that includes the <ComClass> attribute. Note that the
GUIDs are in standard registry format except for the beginning and closing brace.

<ComClass(CContact.ClassID, CContact.InterfaceID, CContact.EventID), _

Description("COM Contact Class")> Public Class CContact

Friend Const ClassID As String = _

 "C7BA6669-DCFB-43d6-9A74-B1BCC6EE467B"

Friend Const InterfaceID As String = _

 "72663B50-6A44-46e7-83B6-F1A4F149FF5F"

Friend Const EventID As String = _

 "BD2C0D5E-C0D7-4e1e-A9E8-AD29C8003D4B"

Private sName As String

Private sCity, sState, sZip As String

Public Property Name() As String

Get

 Return sName

End Get

Set(ByVal Value As String)

 sName = Value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Set

End Property

Public Sub New()

 MyBase.New()

End Sub

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Command()

Return Value

A String containing the command-line arguments

Description

Returns the arguments used when launching VB or an application created with VB

Rules at a Glance

For applications created with VB and compiled into an EXE, Command returns a string containing
everything entered after the executable filename.

If the executable has been launched with no command-line arguments, Command returns a null
string.

Programming Tips and Gotchas

Once you've used the Command function to retrieve the command-line arguments, you still have to
parse the string it returns. This should be as simple as a call to the Split function, as shown in the
following code fragment:
Dim sCmdLineStr, sCmdLine() As String

sCmdLineStr = Command()

If Not sCmdLineStr = "" Then

 sCmdLine = Split(Command, " ")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

Instead of calling the Command function, you may find it easier to use the shared
GetCommandLineArgs method of the System.Environment class. It returns a string array whose first
element is the program name and whose remaining elements are the command-line arguments. The
following code fragment determines whether any command-line arguments are present:
Dim sArgs() As String = System.Environment.GetCommandLineArgs()

If sArgs.Length > 1 Then

 ' handle the command line arguments

End If

Example

The following example demonstrates how to parse command-line arguments to set up a series of options
in your executable. This example (which is bereft of all error handling) looks for a hyphen or a forward
slash in the command-line arguments and assumes that the character following it is a command-line
switch. Given the command-line arguments:

-d:50 -f -g -k

the program displays the following in the Immediate window:

Got option d

Option d Parameter = 50

Got option f

Got option g

Got option k

The source code is as follows:

Private Sub ParseCommandLine()

 Dim i As Integer

 Dim s, sChar, sParam As String

 Dim sPattern As String = "[-/]"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 For i = 1 To Len(Command)

 sChar = mid(Command, i, 1)

 If sChar = "-" or sChar = "/" Then

 s = Mid(Command, i + 1, 1)

 Select Case s

 Case "d"

 Console.WriteLine("Got option d")

 sParam = Mid(Command, i + 3, 2)

 Console.WriteLine("Option d Parameter = " & _

 sParam)

 Case "f"

 Console.WriteLine("Got option f")

 Case "g"

 Console.WriteLine("Got option g")

 Case "k"

 Console.WriteLine("Got option k")

 Case "l"

 Console.WriteLine("Got option l")

 End Select

 End If

 Next I

End Sub

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

During the development phase, you can pass arguments to your program using the Command Line
Arguments textbox, which can be found on the Property Pages dialog box for the project (right-click
the project name in the Solution Explorer window). In particular, the textbox is found under Start
Options in the Debugging subnode of the Configuration Properties node.

To handle command-line arguments, you must write a routine similar to the one shown earlier to
parse the string returned by Command, since the function only returns a single string containing all
input after the name of the executable file.

Command-line arguments are ideal for specifying various options on unattended applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Const Statement

Syntax

[accessmodifier] Const constantname [As type] = constantvalue
accessmodifier (optional; Keyword)

One of the keywords Public, Private, Protected, Friend, or Protected Friend. For more
information, see Section 4.7 in Chapter 4.

constantname (required; String literal)

The name of the constant.
type (optional; Keyword)

The data type; it can be Byte, Boolean, Char, Short, Integer, Long, Single, Double, Decimal, Date,
or String, as well as any of the data types defined in the Base Class Library.

constantvalue (required; Numeric or String)

A literal, constant, or any combination of literals and constants that includes arithmetic or logical
operators, except Is.

Description

Associates a constant value with a name. This feature is provided to make code more readable. The name
is referred to as a symbolic constant.

Rules at a Glance

The rules for constantname are the same for those of any variable: the name can be up to 255
characters in length and can contain any alphanumeric character, although it must start with an
alphabetic character. In addition, the name can include almost any other character except a period or
any of the data type definition characters ($, &, %, !).

The constantvalue expression cannot include any of the built-in functions or objects, although it can
be a combination of absolute values and operators. The expression can also include previously
defined constants. For example:
Private Const CONST_ONE = 1

Private Const CONST_TWO = 2

Private Const CONST_THREE = CONST_ONE + CONST_TWO

Scoping rules are the same as for variables. For more on scope, see Chapter 4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Option Strict is on, the data type of the constant must be defined by using the As type clause.

Example

Private Const MY_CONSTANT = 3.1417

Programming Tips and Gotchas

Your code may be more readable if you take advantage of the fact that VB allows lengthy constant
(and variable) names. This allows you to choose these names in a more meaningful way.

If you are building a large application with many different modules, you may find your code easier to
maintain if you create a single separate code module to hold your Public constants.

If two or more constants are related, you should define them as members of an enumeration using
the Enum statement.

See Also

Enum Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cos Function

Class

System.Math

Syntax

Math.Cos(d)
d (required; Double or numeric expression)

An angle in radians

Return Value

A Double data type denoting the cosine of an angle

Description

Takes an angle specified in radians and returns a ratio representing the length of the side adjacent to the
angle divided by the length of the hypotenuse

Rules at a Glance

The cosine returned by the function is between -1 and 1.

This is a Shared member, so it can be used without creating any objects.

Example

Dim dblCosine as Double

dblCosine = Math.Cos(dblRadians)

Programming Tips and Gotchas

To convert degrees to radians, multiply degrees by pi/180.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To convert radians to degrees, multiply radians by 180/pi.

VB.NET/VB 6 Differences

In VB 6, Cos was an intrinsic VB function. In the .NET platform, it is a member of the Math class in the
System namespace, and so it is not part of the VB.NET language.

See Also

Cosh Function, Sin Function, Tan Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cosh Function

Class

System.Math

Syntax

Math.Cosh(value)
value (required; Double or numeric expression)

An angle in radians

Return Value

A Double denoting the hyperbolic cosine of the angle

Description

Returns the hyperbolic cosine of an angle

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Cosh function is new to the .NET platform; it did not exist in VB 6.

See Also

Cos Function, Sinh Function, Tanh Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateObject Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax

objectvariable = CreateObject(progid [, servername])
objectvariable (required; Object)

A variable to hold the reference to the instantiated object
progid (required; String)

The programmatic identifier (or ProgID) of the class of the object to create
servername (optional; String)

The name of the server on which the object resides

Return Value

A reference to a COM or ActiveX object

Description

Creates an instance of an OLE Automation (ActiveX) object.

Prior to calling the methods, functions, or properties of a COM or ActiveX object, you are required to create
an instance of that object. Once an object is created, reference it in code using the object variable you
defined.

Rules at a Glance

If your project does not include a reference to the object, you must declare the object variable type as
Object; this allows the variable to reference any type of object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If an instance of the ActiveX object is already running, CreateObject may start a new instance when it
creates an object of the required type.

CreateObject can only be used to create instances of COM (or ActiveX) objects; it cannot be used to
instantiate .NET components.

Example

The following routine defines a generic Object variable, as well as an Excel application object. It then uses
the Timer function to compare the performance of the code fragment that uses late binding to instantiate
the Excel application object with the one that uses early binding. (For a discussion of late and early
binding, see the second item under Section .)

Private Sub TestBinding()

Dim dblTime As Double

Dim strMsg As String

' Calculate time for late binding

dblTime = Timer()

Dim objExcelLate As Object

objExcelLate = CreateObject("excel.application")

objExcelLate = Nothing

strMsg &= "Late Bound: " & Timer() - dblTime

strMsg &= vbCrLf

' Calculate time for early binding

dblTime = Timer()

Dim objExcelEarly As Excel.Application

objExcelEarly = Excel.Application

objExcelEarly = Nothing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

strMsg &= "Early Bound: " & Timer() - dblTime

MsgBox (strMsg, vbOKOnly, "Late and Early Binding")

End Sub

Programming Tips and Gotchas

The ProgID is defined in the system registry and usually takes the form library.class or
application.class.

The Object data type is the most generic of Visual Basic objects. When an object variable has been
defined as type Object, CreateObject performs what is termed late binding. This means that,
because the precise object type is unknown at compile time, the object cannot be bound into your
program when it is compiled. Instead, this binding occurs only at runtime, when the program is run on
the target system and the CreateObject function is executed. This need to determine the object type
by referencing the relevant interfaces at runtime is time-consuming and results in poor performance.
You can vastly improve this performance by utilizing early binding. Early binding necessitates adding
a reference to the required object to your project.

The servername parameter permits the specification of the name of the server on which the ActiveX
object is registered. This means that you could even specify different servers depending upon
prevailing circumstances, as this short example demonstrates:
Dim sMainServer As String

Dim sBackUpServer As String

sMainServer = "NTPROD1"

sBackUpServer = "NTPROD2"

If IsOnline(sMainServer) Then

 CreateObject("Sales.Customer",sMainServer)

Else

 CreateObject("Sales.Customer",sBackUpServer)

End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To use a current instance of an already running ActiveX object, use the GetObject function.

If an object is registered as a single-instance object - i.e., an out-of-process ActiveX EXE - only
one instance of the object can be created. Regardless of the number of times CreateObject is
executed, you will obtain a reference to the same instance of the object.

It is considered good programming practice (and often a necessary one) to tidy up after you have
finished using an object by setting objectvariable to Nothing. This has the effect of freeing the
memory taken up by the instance of the object, and, if there are no other "live" references to the
object, shutting it down. For example:
objectvariable = Nothing

See Also

GetObject Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CShort Function

Named Arguments

No

Syntax

CShort(expression)
expression (required; Numeric or String)

The range of expression is -32,768 to 32,767; fractions are rounded.

Return Value

expression cast as a Short

Description

Converts expression to a Short value; any fractional portion of expression is rounded.

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is generated.

If the value of expression is outside the range of the Short data type, an overflow error is generated.

When the fractional part of expression is exactly .5, CShort always rounds it to the nearest even
number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example

Dim iMyNumber as Short

If IsNumeric(sMyNumber) then

 iMyNumber = CShort(sMyNumber)

End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

When converting a string representation of a number to a numeric, you should use the data type
conversion functions - such as CShort - instead of Val, because the data type conversion
functions take into account the system's regional settings. In particular, CShort recognizes the
thousands separator if it's present in expression, whereas Val does not. For example, if expression
is 1,234, CShort successfully converts it to the integer value 1234, while Val converts it to 1.

Use IsNumeric to test whether expression evaluates to a number before performing the conversion.

CShort differs from the Fix and Int functions, which truncate, rather than round, the fractional part of
a number. Also, Fix and Int always return the same type value as was passed in.

Like most of the conversion functions, CShort is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

VB.NET/VB 6 Differences

The CShort function is new to VB.NET. However, it corresponds directly to the VB 6 CInt function, since
both return 16-bit integers.

See Also

CInt Function, CLng Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CSng Function

Named Arguments

No

Syntax

CSng(expression)
expression (required; Numeric or String)

The range of expression is -3.402823E38 to -1.401298E-45 for negative values, and 1.401298E-45
to 3.402823E38 for positive values.

Return Value

expression cast as a Single data type

Description

Returns a single-precision number

Rules at a Glance

expression must evaluate to a numeric value; otherwise, a type-mismatch error is generated.

If the value of expression is outside the range of the Double data type, an overflow error is
generated.

Example

Dim sngMyNumber As Single

If IsNumeric(sMyNumber) Then

 sngMyNumber = CSng(sMyNumber)

End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

You can use IsNumeric to test an expression before passing it to CSng.

When converting a string representation of a number to a numeric, you should use the data type
conversion functions - such as CSng - instead of Val, because the data type conversion functions
take into account the computer's regional settings. The thousands separator is the most important of
these regional settings. For example, if the value of expression is the string 1,234.987, CSng
converts it to 1234.987, while Val incorrectly converts it to 1.

Like most of the conversion functions, CSng is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

See Also

CDbl Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CStr Function

Named Arguments

No

Syntax

CStr(expression)
expression (required; any)

Any numeric, date, string, or Boolean expression

Return Value

expression converted to a string

Description

Returns a string representation of expression

Rules at a Glance

If expression is Boolean, the function returns one of the strings "True" or "False". For an expression that
can be interpreted as a date, the return value is a string representation of that date, in the short date
format of the host computer. For a numeric expression, the return is a string representing the number.

Example

Dim sMyString as String

sMyString = CStr(100)

Programming Tips and Gotchas

The string representation of Boolean values is either "True" or "False", as opposed to their
underlying values of 0 and -1.

Uninitialized numeric data types passed to CStr return "0."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An uninitialized date variable passed to CStr returns "12:00:00AM."

Like most of the conversion functions, CStr is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

See Also

Str Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CType Function

Named Arguments

No

Syntax

CType(expression, typename)
expression (required; any)

The data item to be converted
typename (required; Keyword)

The data type, object type, structure, or interface to which expression is to be converted

Return Value

expression cast as a typename interface, object, structure, or data type

Description

Converts an expression to the specified data type if possible; otherwise, returns an error.

Rules at a Glance

expression can be any data, object, structure, or interface type.

typename can be any data type (such as Boolean, Byte, Decimal, Long, Short, String, etc.), structure
type, object type, or interface that can be used with the As clause in a Dim statement.

If the function fails, or if the converted value of expression is outside the range allowed by typename,
an InvalidCastException exception occurs.

When Option Strict is set to On, then implicit data type conversions can only be widening; that is,
implicit data type conversion only occurs from smaller data types to "wider" data types, such as from
Integer to Long. In this case, to perform a narrowing type conversion, we can use CType. For
instance, if Option Strict is On, the following code produces an error:
Dim iInteger As Integer = 1

Dim lLong As Long = 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

iInteger = lLong

On the other hand, the following code is fine:

Dim iInteger As Integer = 1

Dim lLong As Long = 2

iInteger = Ctype(lLong, Integer)

Example

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Interface IEmployee

 Property Name() As String

 Property Salary() As Decimal

End Interface

Public Class CSalaried

Implements IEmployee

Dim sName As String

Dim decSalary AS DEcimal

Public Property Name() As String Implements IEmployee.Name

 Get

 Name = sName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Get

 Set

 sName = Value

 End Set

End Property

Public Property Salary() As Decimal Implements IEmployee.Salary

 Get

 Salary = decSalary

 End Get

 Set

 decSalary = Value

 End Set

End Property

End Class

Module modMain

Public Sub Main()

Dim oSal As New CSalaried

Dim oSal2 As CSalaried

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim oEmp As IEmployee

oSal.Name = "John Doe"

oSal.Salary = 30000

console.writeline(oSal.Name)

oEmp = CType(oSal, IEmployee)

console.writeline(oEmp.Name)

oSal2 = CType(oEmp, CSalaried)

console.writeline(oSal2.name)

End Sub

End Module

Programming Tips and Gotchas

CType can perform the same conversions as the individual conversion functions and raises a
runtime error if it is asked to perform a conversion that an individual conversion function cannot
perform. For example, in the function call:
bVal = CType(Var1, Boolean)

Var1 can be any numeric value, any numeric string, or a string whose value is either "True" or
"False".

Like most of the conversion functions, CType is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function call into
inline code.

In part, CType is a "convenience function" that provides the functionality of the entire set of
conversion functions in a single function. Its real significance, however, comes when you want to
convert a derived object to the type of its base class, or when you want to convert an object to the
type of its virtual base class (that is, its interface).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Upcasting a derived object to its parent object type can be done implicitly. However, downcasting
back from the base class type to the derived object type cannot be done implicitly if Option Strict is
On. Instead, CType can be used to perform this conversion. This is illustrated in the example.

VB.NET/VB 6 Differences

The CType function is new to VB.NET.

See Also

CBool Function, CByte Function, CChar Function, CDate Function, CDbl Function, CDec Function, CInt
Function, CLng Function, CObj Function, CShort Function, CSng Function, CStr Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CurDir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

CurDir[(drive)]
drive (optional; String or Char)

The name of the drive

Return Value

A String containing the current path

Description

Returns the current directory of a particular drive or the default drive

Rules at a Glance

If no drive is specified or if drive is a zero-length string (""), CurDir returns the path for the current
drive.

drive can be the single-letter drive name with or without a colon (i.e., both "C" and "C:" are valid
values for drive).

If drive is invalid, the function will generate runtime error 68, "Device unavailable."

Because CurDir can only accept a single-character string, you cannot use network drive names,
share names, or UNC drive names.

Example

Sub TestCurDir()

 MsgBox CurDir("C")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

See Also

ChDir Procedure, ChDrive Procedure, MkDir Procedure, RmDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateAdd Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateAdd(interval, number, datevalue)
interval (required; String or DateInterval enum)

A String expression (see the first item in Section) or a member of the DateInterval enumeration
(see the second item in Section) that specifies the interval of time to add

number (required; Double)

An expression denoting the number of time intervals you want to add (it can be positive or negative)
datevalue (required; Date, or an expression capable of conversion to a date)

Date representing the starting date to which the interval is to be added

Return Value

A past or future Date that reflects the result of the addition

Description

Returns a Date representing the result of adding (or subtracting, if number is negative) a given number of
time periods to or from a given date. For instance, you can calculate the date 178 months before today's
date, or the date and time 12,789 minutes from now.

Rules at a Glance

interval can be one of the following literal strings:

String Description

yyyy Year

q Quarter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String Description

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

interval can also be a member of the DateInterval enum:
Enum DateInterval

 Day

 DayOfYear

 Hour

 Minute

 Month

 Quarter

 Second

 Week

 Weekday

 WeekOfYear

End Enum

If number is positive, the result will be in the future; if number is negative, the result will be in the past.
(The meaning of "future" and "past" here is relative to datevalue.)

The DateAdd function has a built-in calendar algorithm to prevent it from returning an invalid date.
For example, you can add 10 minutes to 31 December 1999 23:55, and DateAdd automatically
recalculates all elements of the date to return a valid date, in this case 1 January 2000 00:05. This
includes leap years; the calendar algorithm takes the presence of 29 February into account for leap
years.

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

interval can also be a member of the DateInterval enum:
Enum DateInterval

 Day

 DayOfYear

 Hour

 Minute

 Month

 Quarter

 Second

 Week

 Weekday

 WeekOfYear

End Enum

If number is positive, the result will be in the future; if number is negative, the result will be in the past.
(The meaning of "future" and "past" here is relative to datevalue.)

The DateAdd function has a built-in calendar algorithm to prevent it from returning an invalid date.
For example, you can add 10 minutes to 31 December 1999 23:55, and DateAdd automatically
recalculates all elements of the date to return a valid date, in this case 1 January 2000 00:05. This
includes leap years; the calendar algorithm takes the presence of 29 February into account for leap
years.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

DateAdd(DateInterval.Day, 120, #3/3/2001#) ' Returns 7/1/2001

Programming Tips and Gotchas

You can check that a date is valid using the IsDate function prior to passing it as a parameter to the
function.

To add a number of days to datevalue, use either the day of the year ("y" or
DateInterval.DayOfYear), the day ("d" or DateInterval.Day), or the weekday ("w" or
DateInterval.Weekday).

DateAdd generates an error if the result does not lie in the range of dates of the Date data type.

If number contains a fractional value, it is rounded to the nearest whole number before being used in
the calculation.

You can also use the members of the DateTime structure of the BCL to manipulate dates and times.

VB.NET/VB 6 Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the interval argument.

See Also

DateDiff Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateDiff Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateDiff(interval, date1, date2[, dayofweek[, weekofyear]])
interval (required; String or DateInterval enum)

A String expression (see the first item in Section) or a member of the DateInterval enumeration
(see the second item in Section) that specifies the units of time used to express the difference
between date1 and date2

date1, date2 (required; Date or a literal date)

The starting and ending dates, whose difference is computed as date2- date1
dayofweek (optional; FirstDayOfWeek enum)

A member of the FirstDayOfWeek enum
weekofyear (optional; FirstWeekOfYear enum)

A member of the FirstWeekOfYear enum

Return Value

A Long specifying the number of time intervals between the two dates

Description

Calculates the number of time intervals between two dates. For example, you can use the function to
determine how many days there are between 1 January 1980 and 31 May 1998.

Rules at a Glance

interval can be one of the following literal strings:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

interval can also be a member of the DateInterval enum:
Enum DateInterval

 Day

 DayOfYear

 Hour

 Minute

 Month

 Quarter

 Second

 Week

 Weekday

 WeekOfYear

End Enum

To calculate the number of days between date1 and date2, you can use either of the DateInterval
constants, DayOfYear or Day, or the string literals "y" or "d".

When interval is Weekday or "w", DateDiff returns the number of weeks between the two dates. If
date1 falls on a Monday, DateDiff counts the number of Mondays until date2. It counts date2, but not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

date1. If interval is Week or "ww", however, DateDiff returns the number of calendar weeks between
the two dates. It counts the number of Sundays between date1 and date2. DateDiff counts date2 if it
falls on a Sunday, but it doesn't count date1, even if it does fall on a Sunday.

The DayOfWeek argument affects calculations that use the Week or "w" and Weekday or "ww" interval
settings only.

Example

DateDiff(DateInterval.Day, #1/1/1945#, #3/3/2001#, _

 FirstDayOfWeek.System, FirstWeekOfYear.System)

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing
it as a function parameter.

If date1 or date2 is enclosed in double quotation marks (" ") and you omit the year, the current year
is inserted in your code each time the date1 or date2 expression is evaluated. This makes it possible
to write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year, DateDiff with
interval set equal to Year, or "yyyy", returns 1 even though only a day has elapsed.

DateDiff considers the four quarters of the year to be January 1-March 31, April 1-June 30, July 1-
September 30, and October 1-December 31. Consequently, when determining the number of
quarters between March 31 and April 1 of the same year, for example, DateDiff returns 1, even
though the latter date is only one day after the former.

If interval is Month or "m", DateDiff simply counts the difference in the months in which the
respective dates fall. For example, when determining the number of months between January 31 and
February 1 of the same year, DateDiff returns 1, even though the latter date is only one day after the
former.

In calculating the number of hours, minutes, or seconds between two dates, if an explicit time is not
specified, DateDiff provides a default value of midnight (00:00:00).

VB.NET/VB 6 Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the interval argument.

See Also

DateAdd Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatePart Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DatePart(interval, datevalue[,firstdayofweekvalue[, _

 firstweekofyearvalue]])
interval (required; String or a member of the DateInterval enum)

A String literal (see the second item in Section) or a constant of the DateInterval enum (see the
third item in Section) that defines the part of the date/time to extract from datevalue

datevalue (required; Date, literal date, or an expression capable of conversion to a date)

The Date value to evaluate
firstdayofweekvalue (optional; FirstDayOfWeek enum)

A member of the FirstDayOfWeek enum
firstweekofyearvalue (optional; FirstWeekOfYear enum)

A member of the FirstWeekOfYear enum

Return Value

An Integer containing the specified part

Description

Extracts an individual component of the date or time (like the month or the second) from a date/time value

Rules at a Glance

The DatePart function returns an Integer containing the specified portion of the given date. DatePart
is a single function encapsulating the individual Year, Month, Day, Hour, Minute, and Second
functions.

interval can be one of the following literal strings:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

interval can also be a member of the DateInterval enum:
Enum DateInterval

 Day

 DayOfYear

 Hour

 Minute

 Month

 Quarter

 Second

 Week

 Weekday

 WeekOfYear

End Enum

The firstdayofweekvalue argument can be any of the following members of the FirstDayOfWeek
enumeration:
Enum FirstDayOfWeek

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System 'uses first day of week setting on local system

 Sunday

 Monday

 Tuesday

 Wednesday

 Thursday

 Friday

 Saturday

End Enum

The firstdayofweekvalue argument affects only calculations that use either the Week (or "w") or
Weekday (or "ww") interval values.

The firstweekofyearvalue argument can be any of the following members of the FirstWeekOfYear
enumeration:

FirstWeekOfYear constant Value Description

System 0 Uses the local system setting

Jan1 1 Starts with the week in which January 1 occurs (the default value)

FirstFourDays 2 Starts with the first week that has at least four days in the new year

FirstFullWeek 3 Starts with the first full week of the year

Example

MsgBox("Current hour: " & DatePart(DateInterval.Hour, Now))

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing
it as a function parameter.

If you attempt to extract the hours, minutes, or seconds, but datevalue does not contain the
necessary time element, the function assumes a time of midnight (0:00:00).

If you specify datevalue within quotation marks (" ") and omit the year, the year is assumed to be
the current year taken from the computer's date. For example:
Console.WriteLine(DatePart(DateInterval.Year, cDate("01/03")))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET/VB 6 Differences

VB 6 lacks the DateInterval enumeration and therefore only accepts a string as the interval
argument.

VB 6 supports a number of constants beginning with vb... as values for the firstdayofweekvalue
and firstweekofyearvalue arguments. While these are still supported in VB.NET, VB.NET has also
added the FirstDayOfWeek and FirstWeekOfYear enumerations.

See Also

DateSerial Function, DateString Property, DateValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateSerial Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateSerial(year, month, day)
year (required; Integer)

Number between 100 and 9999, inclusive, or a numeric expression
month (required; Integer)

Any numeric expression to express the month between 1 and 12
day (required; Integer)

Any numeric expression to express the day between 1 and 31

Return Value

A Date representing the date specified by the arguments

Description

Returns a Date whose value is specified by the three date components (year, month, and day).

For the function to succeed, all three components must be present, and all must be numeric values. The
value returned by the function takes the short date format defined by the Regional Settings applet in the
Control Panel of the client machine.

Rules at a Glance

If the value of a particular element exceeds its normal limits, DateSerial adjusts the date accordingly.
For example, if you tried DateSerial(96,2,31) - February 31, 1996 - DateSerial returns March 2,
1996.

You can specify expressions or formulas that evaluate to individual date components as parameters
to DateSerial. For example, DateSerial(98,10+9,23) returns 23 March 1999. This makes it easier to
use DateSerial to form dates whose individual elements are unknown at design time or that are
created on the fly as a result of user input.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Dim iYear As Integer = 1987

Dim iMonth As Integer = 3 + 11

Dim iday As Integer = 16

MsgBox(DateSerial(iYear, iMonth, iday))

Programming Tips and Gotchas

If any of the parameters exceed the range of the Integer data type (-32,768 to 32,767), an error
(runtime error 6, "Overflow") is generated.

DateSerial handles two-digit years in the same way as other Visual Basic date functions. A year
argument between 0 and 29 is taken to be in the 21st century (2000 to 2029); year arguments
between 30 and 99 are taken to be in the 20th century (1930 to 1999). Of course, the safest way to
specify a year is to use the full four digits.

See Also

DatePart Function, DateString Property, DateValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateString()

Return Value

A String representing the current system date

Description

Returns or sets a string representing the current system date in the format "mm-dd- yyyy"

Rules at a Glance

The allowed formats for setting the date are "m-d-yyyy," "m-d-y," "m/d/yyyy," and "m/d/y."

Programming Tips and Gotchas

To get or set the current system time as a String, use the TimeString property.

To access the current system date as a Date, use the Today property.

VB.NET/VB 6 Differences

The DateString property is new to VB.NET. It is a replacement for the VB 6 Date statement, which sets the
system date, and the Date and Date$ functions, which retrieve the system date.

See Also

Now Property, TimeString Property, Today Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

DateValue(stringdate)
stringdate (required; String)

A string containing any of the date formats recognized by IsDate

Return Value

A Date that represents the date specified by the stringdate argument

Description

Returns a Date containing the date represented by stringdate.

The date value is formatted according to the short date setting defined by the Regional Settings applet in
the Control Panel. DateValue can successfully recognize a stringdate in any of the date formats
recognized by IsDate. DateValue does not return time values in a date/time string; they are simply
dropped. However, if stringdate includes a valid date value but an invalid time value, a runtime error
results.

Rules at a Glance

The order of the day, month, and year within stringdate must be the same as the sequence defined
by the computer's regional settings.

Only those date separators recognized by IsDate can be used.

If you don't specify a year in your date expression, DateValue uses the current year from the
computer's system date.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim sDateExpression As String

sDateExpression = 10 & "/" & "March" & "/" & 1998

If IsDate(sDateExpression) Then

 Console.WriteLine(DateValue(sDateExpression))

Else

 Console.WriteLine("invalid date")

End If

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing
it as a function argument.

If stringdate includes time information as well as date information, the time information is ignored;
however, if only time information is passed to DateValue, an error is generated.

DateValue handles two-digit years in the following manner: Year arguments between 0 and 29 are
taken to be in the 21st century (2000 to 2029), while year arguments between 30 and 99 are taken to
be in the 20th century (1930 to 1999). Of course, the safest way to specify a year is to use the full
four digits.

On Windows NT/2000 systems, the date formats are held as string values in the following registry
keys:

Date Separator

HKEY_CURRENT_USER\Control Panel\International, sDate value entry
Long Date

HKEY_CURRENT_USER\Control Panel\International, sLongDate value entry
Short Date

HKEY_CURRENT_USER\Control Panel\International, sShortDate value entry

The more common approach to date conversion is to use the CDate function. Microsoft also
recommends using the C... conversion functions due to their enhanced capabilities and their locale
awareness.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatePart Function, DateSerial Function, DateString Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Day Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Day(datevalue)
datevalue (required; Date or literal date)

Return Value

An Integer from 1 to 31, representing the day of the month

Description

Returns an Integer ranging from 1 to 31, representing the day of the month of datevalue

Rules at a Glance

The range of datevalue is 1/1/1 to 12/31/9999.

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to passing
it as a function parameter.

With Option Strict On, you must first convert datevalue to a Date data type before passing it to the
Day function. You can use the CDate function for this purpose.

If the day portion of datevalue is outside of its valid range, the function regenerates runtime error 13,
"Type mismatch." This is also true if the day and month portion of datevalue is 2/29 for a non-leap
year.

To return the day of the week, use the WeekDay function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

DatePart Function, WeekdayName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DDB Function

Class

Microsoft.VisualBasic.Financial

Syntax

DDB(cost, salvage, life, period[, factor])
cost (required; Double)

The initial cost of the asset.
salvage (required; Double)

The value of the asset at the end of life.
life (required; Double)

Length of life of the asset.
period (required; Double)

Period for which the depreciation is to be calculated.
factor (optional; Double)

The rate at which the asset balance declines. If omitted, 2 (double-declining method) is assumed.
However, the documentation doesn't mention what other values are supported or what they mean.

Return Value

Double representing the depreciation of an asset

Description

Returns a Double representing the depreciation of an asset for a specific time period. This is done using
the double-declining balance method or another method that you specify using the factor argument.

The double-declining balance calculates depreciation at a differential rate, which varies inversely with the
age of the asset. Depreciation is highest at the beginning of an asset's life and declines over time.

Rules at a Glance

life and period must be specified in the same time units. In other words, both must be expressed in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

units of months, or both must be years.

All arguments must be positive numbers.

Example

Dim dblInitialCost As Double = 2000

Dim dblSalvageValue As Double = 50

Dim dblUsefulLife As Double = 12

Dim dblTotDepreciation As Double = 0

Dim dblPeriod, dblThisPeriodDepr As Double

For dblPeriod = 1 To 12

 dblThisPeriodDepr = DDB(dblInitialCost, _

 dblSalvageValue, dblUsefulLife, dblPeriod)

 dblTotDepreciation = dblTotDepreciation + _

 dblThisPeriodDepr

 Console.WriteLine("Month " & dblPeriod & ": " & _

 dblThisPeriodDepr)

Next dblPeriod

Console.WriteLine("TOTAL: " & dblTotDepreciation)

Programming Tips and Gotchas

The double-declining balance depreciation method calculates depreciation at a higher rate in the
initial period and a decreasing rate in subsequent periods.

The DDB function uses the following formula to calculate depreciation for a given period:
Depreciation / period = ((cost - salvage) * factor) / life

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug Class

Namespace

System.Diagnostics

Createable

No

Description

The Debug object is used to send messages to the Output window (formerly called the Immediate window).
The Debug object can also send output to other targets, such as text files, referred to as listeners. See the
Debug.Listeners Property entry. The Debug class also allows you to check program logic with assertions.

Because the Debug class' members are shared, you do not need to instantiate the Debug object before
accessing its members. The following code fragment, for instance, illustrates a call to the Debug object's
WriteLine method:

Debug.WriteLine(intCount & " iteration through the loop")

Debug class members marked with an plus sign (+) are discussed in detail in their own entries.

Public Shared Properties

AutoFlush +
IndentLevel +
IndentSize +
Listeners +

Public Shared Methods

Assert +
Close +
Fail
Flush +
Indent +
Unindent +
Write +
WriteIf +
WriteLine +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WriteLineIf +

VB.NET/VB 6 Differences

The VB 6 Debug object has only two methods, Assert and Print. The VB.NET Assert method is similar to
the VB 6 method, except that the latter displays a message if an expression is False, while the former
suspends program execution. In VB.NET, the VB 6 Print method is gone, replaced by the Write, WriteIf,
WriteLine, and WriteLineIf methods.

See Also

Debug.Assert Method, Debug.Write Method, Debug.WriteLine Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Assert Method

Class

System.Diagnostics.Debug

Syntax

Debug.Assert(booleanexpression[[, string1], string2])
booleanexpression (required; Boolean)

Expression that evaluates to a Boolean value.
string1 (required; String)

String to output if booleanexpression is False.
string2 (required; String)

Detailed string to output. If booleanexpression is False, string2 is output to Output window.

Return Value

None

Description

Outputs messages to the Output window if the condition is False

Rules at a Glance

booleanexpression must evaluate to a Boolean value.

Programming Tips and Gotchas

Assert is typically used when debugging to test an expression that should evaluate to True.

Debug.Assert executes only when an application is run in the design-time environment; the
statement has no effect in a compiled application. This means that Debug.Assert will never produce
a runtime error if the call to it is inappropriate, nor will it suspend program execution outside of the
VB IDE. Because of this, you do not have to remove Debug.Assert statements from finished code or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

separate them with conditional #If...Then statements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.AutoFlush Property

Class

System.Diagnostics.Debug

Syntax

Debug.AutoFlush

Return Value

Boolean

Description

Sets or returns a Boolean value indicating whether each Write should be automatically followed by a Flush
operation. By default, its value is False.

See Also

Debug.Flush Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Close Method

Class

System.Diagnostics.Debug

Syntax

Debug.Close()

Return Value

None

Description

Flushes the output buffer and closes the listeners (except for the default Output window)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Flush Method

Class

System.Diagnostics.Debug

Syntax

Debug.Flush()

Return Value

None

Description

Flushes the output buffer, which causes all pending data to be written to the listeners

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Indent Method

Class

System.Diagnostics.Debug

Syntax

Debug.Indent()

Description

Increases the current IndentLevel by 1. The property is useful for improving the readability of output sent to
the Output window.

See Also

Debug.IndentLevel Property, Debug.IndentSize Property, Debug.Unindent Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.IndentLevel Property

Class

System.Diagnostics.Debug

Syntax

Debug.IndentLevel()

Return Value

An Integer specifying the indent level. The default is 0.

Description

Sets or retrieves the current indent level for the Debug object. The property is useful for improving the
readability of output sent to the Output window.

See Also

Debug.IndentSize Property, Debug.Unindent Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.IndentSize Property

Class

System.Diagnostics.Debug

Syntax

Debug.IndentSize

Return Value

An Integer specifying the number of spaces per indent level. The default is 4.

Description

Sets or retrieves the current indent-size setting, which is the number of spaces per indent level. The
property is useful for improving the readability of output sent to the Output window.

See Also

Debug.IndentLevel Property, Debug.Unindent Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Listeners Property

Class

System.Diagnostics.Debug

Syntax

Debug.Listeners

Description

Retrieves the TraceListenerCollection collection of all TraceListener objects that monitor the debug output.

Example

The following code adds a text file to the listeners collection. As a result, all Debug.Write... methods will
not only send the output to the Output window (the default listener) but also to the text file:

' Define a new TextWriterTraceListener

Dim trace As New TextWriterTraceListener()

' Define a new FileStream object

Dim fs As FileStream = New FileStream("c:\log.txt", FileMode.Append, _

 FileAccess.Write)

' Set the Writer property to a new StreamWriter for this FileStream

trace.Writer = New StreamWriter(fs)

' Add listener

Debug.Listeners.Add(trace)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Output

Debug.WriteLine("xxxxx")

Debug.WriteLine("yyyyy")

' Close up

Debug.Close()

fs.Close()

' Remove listener

Debug.Listeners.Remove(trace)

' This goes only to Output window

Debug.WriteLine("zzzzz")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Unindent Method

Class

System.Diagnostics.Debug

Syntax

Debug.Unindent()

Description

Decreases the current IndentLevel by 1. The property is useful for improving the readability of output sent
to the Output window.

See Also

Debug.Indent Method, Debug.IndentLevel Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.Write Method

Class

System.Diagnostics.Debug

Syntax

Debug.Write(Output[, Category])
Output (required; String or Object)

The string to be sent to the Output window, or the object whose name is to be sent to the Output
window

Category (optional; String)

A category name used to group output messages

Description

Prints text in the Output window in the design-time environment

Rules at a Glance

If Output is a string, the string is printed to the Output window.

If Output is a nonstring object, the ToString property of the Object object is invoked. This just outputs
a string version of the name of the object.

Supplying a Category argument is useful when you want to organize the output from several
Debug.Write statements by category. Output from the method then takes the form:
Category: Output

if Output is a string, and:

Category: Output.ToString

if Output is a nonstring object.

Programming Tips and Gotchas

In Visual Basic applications, Debug.Write executes only when an application is run in the design-time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

environment; the statement has no effect in a compiled application.

See Also

Debug.WriteIf Method, Debug.WriteLine Method, Debug.WriteLineIf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.WriteIf Method

Class

System.Diagnostics.Debug

Syntax

Debug.WriteIf(condition, message[, Category])

or:

Debug.WriteIf(condition, value[, Category])
condition (required; Boolean)

Condition required for output to proceed
message (required; String)

The string to be sent to the Output window, or the object whose name is to be sent to the Output
window

value (required; any)

An object whose name is to be sent to the Output window
Category (optional; String)

A category name used to group output messages

Description

Prints text in the Output window in the design-time environment, provided that condition is True

Rules at a Glance

This method behaves identically to Debug.Write, with the exception that nothing is output unless
condition is True.

See Also

Debug.Write Method, Debug.WriteLine Method, Debug.WriteLineIf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.WriteLine Method

Class

System.Diagnostics.Debug

Syntax

Debug.WriteLine(Output[, Category])
Output (required; String or Object)

The string to be sent to the Output window, or the object whose name is to be sent to the Output
window

Category (optional; String)

A category name used to group output messages

Description

Prints text, followed by a newline command, in the Output window in the design- time environment

Rules at a Glance

This method is identical to Debug.Write except that a newline command is sent to the Output window after
any text is written.

See Also

Debug.Write Method, Debug.WriteIf Method, Debug.WriteLineIf Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debug.WriteLineIf Method

Class

System.Diagnostics.Debug

Syntax

Debug.WriteLineIf(booleanexpression, Output[, Category])
booleanexpression (required; Boolean)

Condition required for output to be produced
Output (required; String or Object)

The string to be sent to the Output window, or the object whose name is to be sent to the Output
window

Category (optional; String)

A category name used to group output messages

Description

Prints text followed by a newline character in the Output window in the design- time environment, provided
that booleanexpression is True

Rules at a Glance

This method behaves identically to Debug.WriteLine, except that nothing is output unless
booleanexpression is True.

See Also

Debug.Write Method, Debug.WriteIf Method, Debug.WriteLine Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Declare Statement

Syntax

Syntax for subroutines:

[accessmodifier] Declare [Ansi|Unicode|Auto] Sub name Lib "libname" _

 [Alias "aliasname"] [([arglist])]

Syntax for functions:

[accessmodifier] Declare [Ansi|Unicode|Auto] Function name _

 Lib "libname" [Alias "aliasname"] [([arglist])] [As type]
accessmodifier (optional; Keyword)

accessmodifier can be any one of the following: Public, Private, Protected, Friend, or Protected
Friend. The following table describes the effects of the various access modifiers. Note that Direct
Access refers to accessing the member without any qualification, as in:

classvariable = 100

and Class/Object Access refers to accessing the member through qualification, either with the class name
or the name of an object of that class.

 Direct Access scope Class/Object Access scope

Private Declaring class Declaring class

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

Protected Friend All derived classes Declaring project

Public All derived classes All projects

For more information, see Section 4.7 in Chapter 4.

Ansi (optional; Keyword)

Converts all strings to ANSI values.
Unicode (optional; Keyword)

Converts all strings to Unicode values.
Auto (optional; Keyword)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Converts the strings according to .NET rules based on the name of the method (or the alias name, if
specified). If no modifier is specified, Auto is the default.

name (required; String literal)

Any valid procedure name. Note that DLL entry points are case sensitive. If the aliasname argument
is used, name represents the name by which the function or procedure is referenced in your code,
while aliasname represents the name of the routine as found in the DLL.

Lib (required; Keyword)

Indicates that a DLL or code resource contains the procedure being declared.
libname (required; String literal)

Name of the DLL or code resource that contains the declared procedure.
Alias (optional; Keyword)

Indicates that the procedure being called has another name in the DLL. This is useful when the
external procedure name is the same as a keyword. You can also use Alias when a DLL procedure
has the same name as a public variable, constant, or any other procedure in the same scope. Alias
is also useful if any characters in the DLL procedure name aren't allowed by VB.NET naming
conventions.

aliasname (optional; String literal)

Name of the procedure in the DLL or code resource. If the first character is not a number sign (#),
aliasname is the name of the procedure's entry point in the DLL. If # is the first character, all
characters that follow must indicate the ordinal number of the procedure's entry point.

arglist (optional)

List of variables representing arguments that are passed to the procedure when it is called.
type (optional; Keyword)

Data type of the value returned by a Function procedure; may be Byte, Boolean, Char, Short,
Integer, Long, Single, Double, Decimal, Date, String, Object, or any user-defined type. Arrays of
any type cannot be returned, but an Object containing an array can.

Description

Used at module level to declare references to external procedures in a dynamic- link library (DLL)

Rules at a Glance

arglist is optional and has the following syntax:
[ByVal | ByRef] varname[()] [As type]
ByVal (optional; Keyword)

The argument is passed by value; that is, a local copy of the variable is assigned the value of
the argument. ByVal is the default method of passing arguments.

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument being passed. All changes made to the local variable are reflected in the calling
argument.

varname (required; String literal)

The name of the local variable containing either the reference or value of the argument.
type (optional; Keyword)

The data type of the argument. Can be Byte, Boolean, Char, Short, Integer, Long, Single,
Double, Decimal, Date, String, Object, or any user- defined type, object type, or data type
defined in the BCL.

The number and type of arguments included in arglist are checked each time the procedure is
called.

The data type you use in the As clause following arglist must match that returned by the function.

Example

The following example retrieves the handle of a window from its title bar caption. This is done using the
FindWindow API function.

Declare Function FindWindow Lib "user32" Alias "FindWindowA" (_

 ByVal lpClassName As String, _

 ByVal lpWindowName As String _

) As Integer

Private Sub GetWindowHandle()

 MsgBox(FindWindow(vbNullString, "Document - WordPad"))

End Sub

Programming Tips and Gotchas

Using an Alias is useful when the name of an external procedure conflicts with a Visual Basic
keyword or with the name of a procedure within your project, or when the name of the procedure in
the code library is not allowed by Visual Basic naming conventions. In addition, aliasname is
frequently used with functions in the Win32 API that have string parameters, where the "official"
documented name of the function is used in code to call either of two "real" functions - one an ANSI
and the other a Unicode version. For example:
Declare Function ExpandEnvironmentStrings _

 Lib "kernel32" Alias "ExpandEnvironmentStringsA" _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (ByVal lpSrc As String, ByVal lpDst As String, _

 ByVal nSize As Long) As Long

defines the documented Win32 function ExpandEnvironmentStrings to a VB application. However,
although calls to the function take the form:

lngBytes = ExpandEnvironmentStrings(strOriginal, _

 strCopy, len(strCopy))

the actual name of the function as it exists in Kernel32.dll is ExpandEnvironmentStringsA. (Windows.
API functions ending in "A" are the ANSI string versions, and those ending in "W" (for Wide) are the
Unicode string versions.)

You can use the # symbol at the beginning of aliasname to denote that aliasname is in fact the
ordinal number of a procedure within the DLL or code library. In this case, all characters following the
sign and composing the aliasname argument must be numeric. For example:
Declare Function GetForegroundWindow Lib "user32" _

 Alias "#237" () As Long

Remember that DLL entry points are case sensitive. In other words, either name or aliasname (if it is
present and does not represent a routine's ordinal position) must correspond in case exactly to the
routine as it is defined in the external DLL. Otherwise, VB displays runtime error 453, "Specified DLL
function not found." If you aren't sure how the routine name appears in the DLL, use the
DumpBin.exe utility to view its export table. For instance, the following command displays the export
table of advapi32.dll, one of the Windows system files:
dumpbin /exports c:\windows\system32\advapi32.dll

libname can include an optional path that identifies precisely where the external library is located. If
the path is not included along with the library name, VB by default searches the current directory, the
Windows directory, the Windows system directory, and the directories in the path, in that order.

If the external library is one of the major Windows system DLLs (such as Kernel32. dll or
Advapi32.dll), libname can consist of only the root filename, rather than the complete filename and
extension.

One of the most common uses of the Declare statement is to make routines in the Win32 API
accessible to your programs. For more on this topic, see Win32 API Programming with Visual Basic
by Steven Roman (O'Reilly 1999).

In addition to the standard VB data types, you can also include BCL data types that are not wrapped
by VB in arglist. Most useful are the unsigned integers, UShort, UInt16, and UInt32.

In many cases, you can use routines available in the .NET Base Class Library or Framework Class
Library instead of calling the Win32 API.

VB.NET/VB 6 Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, it is possible to declare the data type of an argument as Any, which suspends typechecking
by the VB runtime engine. In VB.NET, this usage is not supported.

In VB 6, if ByVal or ByRef is not specified, an argument is passed to the calling procedure by
reference. In VB.NET, arguments are passed by value by default.

In VB 6, it is possible to override the method in which an argument is passed to an external function
within the call itself by specifying either ByVal or ByRef before the argument. In VB.NET, this usage is
not permitted.

The size of the integer data types in VB 6 and VB.NET are different, making it necessary to rewrite
any arglist that has a data type of Integer or Long in VB 6. The VB 6 Integer data type is equivalent
to the VB.NET Short data type. The VB 6 Long data type is equivalent to the VB.NET Integer data
type.

VB 6 lacks a signed 8-bit integer data type and unsigned data types to correspond to the Integer and
Long types. In the .NET platform, unsigned data types are available for 16-bit integers (UInt16), 32-
bit integers (UInt32), and 64-bit integers (UInt64). A signed byte data type (SByte) is also available.
All are BCL classes not wrapped by VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DefaultMember Attribute

Class

System.Reflection.DefaultMemberAttribute

Applies to

Class, Struct, or Interface

Description

Defines the default member of a structure, class, or interface. The default member is the member executed by the
Type object's InvokeMember method when a null string is supplied as the method's name argument.

The Visual Basic .NET Default keyword is ultimately translated by the Visual Basic .NET compiler into the
<DefaultMember> attribute. Visual Basic, however, requires that default members be parameterized. The use of the
default member then allows you to specify a particular array element without having to explicitly reference the
member. For instance, if the Items property is the default member of NewObject1, the statement

NewObject1.Items(10) = "Sleeping bag"

is functionally identical to

NewObject(10) = "Sleeping bag"

This works in VB.NET because the latter code statement is translated by the compiler into a call to the
InvokeMember method that looks something like the following:

Dim t As Type = GetType(NewClass1)

Dim iFlags As BindingFlags = BindingFlags.Public Or _

 BindingFlags.Instance Or _

 BindingFlags.SetProperty

Dim arr() As Object = { 10, "Sleeping bag" }

t.InvokeMember("", iFlags, Nothing, NewObject, arr)

Because the <DefaultMember> attribute, unlike the Default keyword, does not have to refer to a parameterized
property, you can use the <DefaultMember> attribute to define default members that are not parameterized.
However, this does not allow you to omit a reference to that member in code. For instance, if the default member of
the oCounter object is a member named Value, you cannot reference it implicitly as follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

oCounter = 10

You can, however, invoke that member using the InvokeMember method of the Type class without explicitly naming
it.

The <DefaultMember> attribute and Default keyword are incompatible in one other important respect. If you use
<DefaultMember> rather than Default to define a parameterized property as the default member of a class, at
runtime Visual Basic will be unable to resolve implicit references to the member. Hence, the sole capability that the
<DefaultMember> attribute affords you is the ability to explicitly invoke a default member using the InvokeMember
method of the Type class.

Note that if you use both the Default keyword and the <DefaultMember> attribute in the same class definition, even
if both reference the same member, an ExecutionEngineException exception results.

If memberName is not a member of the class, structure, or interface, the <DefaultMember>
attribute is ignored, and no error is raised.

Constructor

New(memberName)
memberName (String)

The name of the default member

Properties

MemberName (String)

Read-only. The name of the default member. Its value is set by the constructor's memberName parameter.

Example

Option Strict

Imports System

Imports System.Reflection

<DefaultMember("GetName")> Public Class CContact

Private sName As String

Private sCity As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private sComments() As String

Public Sub New()

 Me.New("John Doe", "Anywhere, U.S.A.")

End Sub

Public Sub New(strName As String, strCity As String)

 MyBase.New()

 sName = strName

 sCity = strCity

End Sub

Public Property Name As String

 Get

 Return sName

 End Get

 Set

 sName = Value

 End Set

End Property

Public Property Comments(index As Integer) As String

 Get

 Return sComments(index)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Get

 Set

 sComments(index) = Value

 End Set

End Property

Public Function GetName() As String

 Return sName

End Function

Public Function GetCity() As String

 Return sCity

End Function

End Class

Module modMain

 Public Sub Main

 Dim oContact As New CContact

 Dim t As Type = GetType(CContact)

 Dim iFlags As BindingFlags = BindingFlags.Instance Or _

 BindingFlags.Public Or _

 BindingFlags.InvokeMethod

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine(t.InvokeMember("", iFlags, Nothing, oContact, _

 Nothing))

 Console.WriteLIne(t.InvokeMember("GetName", iFlags, Nothing, _

 oContact, Nothing))

 Console.WriteLine(t.InvokeMember("GetCity", iFlags, Nothing, _

 oContact, Nothing))

 End Sub

End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Delegate Statement

Syntax

[AccessModifier] Delegate Sub name [([arglist])])

[AccessModifier] Delegate Function name [([arglist])]) As type
AccessModifier (optional; Keyword)

Specifies scope/accessibility the same as when declaring a subroutine or function. Can be one of
Public, Private, Protected, Friend, Protected Friend, or Shadows.

name (required; String literal)

The name of the delegate class.
arglist (optional)

The argument list; it has the same syntax as when defining a subroutine or function.

Description

Declares the parameters and return type of a delegate class. Note that the syntax is the same as that used
when declaring a subroutine or function, with the addition of the keyword Delegate.

Rules at a Glance

Any procedure whose argument list and return type matches that of a declared delegate class can be
used to create an instance of this delegate class, as the upcoming example illustrates.

For more information on delegates, see Section 7.1 in Chapter 7.

Example

Consider the following method:

Public Class Class1

 Public Sub AMethod(ByVal s As String)

 Msgbox(s)

 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Class

Consider the following delegate declaration:

Delegate Sub ADelegate(ByVal s As String)

The following code uses the delegate to call the AMethod of Class1:

Protected Sub Form1_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Click

 ' Object of type Class1

 Dim obj As New Class1()

 ' Declare a new delegate

 Dim delg As ADelegate

 ' Define the delegate, passing the address of the object's method

 delg = New ADelegate(AddressOf obj.AMethod)

 ' Call the method using the Invoke method of the delegate

 delg.Invoke("test")

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DeleteSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

DeleteSetting(appname[, section[, key]])
appname (required; String)

The name of the application. This must be a subkey of the HKEY_CURRENT_ USER\Software\VB and
VBA Program Settings registry key.

section (optional; String)

The name of the application key's subkey that is to be deleted. section can be a single key or a
registry path separated with backslashes.

key (optional; String)

The name of the value entry to delete.

Description

Deletes a complete application key, one of its subkeys, or a single value entry from the Windows registry

Rules at a Glance

section can contain a relative path (similar to that used to describe the folders on a hard drive) to
navigate from the application key to the subkey to be deleted. For example, to delete the value entry
named TestKey in the registry key HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\RegTester\BranchOne\BranchTwo, you would use:
DeleteSetting "RegTester", "BranchOne\BranchTwo", _

 "TestKey"

You cannot use DeleteSetting to delete entries from registry keys that are not subkeys of
HKEY_CURRENT_USER\Software\VB and VBA Program Settings.

If key is supplied, only the value entry named key and its associated value are deleted.

If key is omitted, the subkey named section is deleted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If section is omitted, the entire application key named appname is deleted.

Example

Sub TestTheReg()

 SaveSetting("MyRealGoodApp", _

 "TestBranch\SomeSection\AnotherSection", _

 "Testkey", "10")

 MsgBox("Now look in RegEdit")

End Sub

Sub TestDelete()

 If GetSetting("MyRealGoodApp", _

 "TestBranch\SomeSection\AnotherSection", _

 "TestKey") <> "" Then

 DeleteSetting("MyRealGoodApp", _

 "TestBranch\SomeSection\AnotherSection", _

 "TestKey")

 MsgBox("Look again!")

 End If

End Sub

Programming Tips and Gotchas

DeleteSetting was designed to operate on initialization files in 16-bit platforms and on the registry in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32-bit platforms. But the terminology used to describe the statement in the official documentation is
based on initialization files, rather than on the registry. In particular, what is described as a key is a
named key in an initialization file and a value entry in the registry.

The behavior of the DeleteSetting statement differs under Windows 95 and Windows NT when it is
used to remove a key from the registry. Under Windows 95, if the statement is used to delete either
appname or section, all subkeys belonging to the key to be deleted will also be deleted. Under
Windows NT, on the other hand, the keys appname and section are only deleted if they don't contain
subkeys.

DeleteSetting cannot be used to delete the default value (i.e., the unnamed value entry) belonging
to any key. If you're using only the VB registry functions, though, this isn't a serious limitation, since
SaveSetting does not allow you to create a default value.

Unless you are quite sure about what you're doing, you should only delete registry settings that have
been placed in the registry by your own code. Inadvertently deleting the wrong entries can have
disastrous consequences. However, because this statement only gives you access to the subkeys of
HKEY_CURRENT_USER\Software\VB and VBA Program Settings, the potential damage is minimized.

Never assume that the key you want to delete is necessarily present in the registry. DeleteSetting
deletes a user key (that is, a subkey of HKEY_ CURRENT_USER); except on Windows 95 systems that
are not configured to support multiple users, the user key is formed from a file that reflects only the
present user's settings. This means that when one user runs an application, user settings are stored
in his registry key. But when a second user runs the application for the first time, settings for that user
are not likely to be present. Attempting to delete a nonexistent key produces runtime error 5, "Invalid
procedure call or argument." To prevent the error, you should first test for the presence of the registry
key, as shown in the earlier example.

Rather than rely on the relatively underpowered registry-access functionality available in Visual
Basic, we highly recommend that you instead use the Registry and RegistryKey classes available in
the BCL's Microsoft.Win32 namespace.

See Also

GetAllSettings Function, GetSetting Function, SaveSetting Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim Statement

Syntax

[accessmodifier] [Shared] [Shadows] [readonly] Dim [WithEvents] _ varname[([subscripts])] _

 [As [New] type] [= initexpr]
accessmodifier (optional; Keyword)

Can be one of Public , Protected , Friend , Protected Friend , Private , or Static . If one of these is included, the
Dim keyword can be omitted.

Shared (optional; Keyword)

Indicates the the variable is not associated with any particular class instance but is accessible directly using the class
name and is therefore "shared" by all class instances.

Shadows (optional; Keyword)

Indicates that the variable shadows any programming elements (variables, procedures, enums, constants, etc.) of the
same name in a base class.

WithEvents (optional; Keyword)

In an object variable definition, indicates that the object will receive event notification
varname (required)

The name of the variable
subscripts (optional)

Dimensions of an array variable
New (optional; Keyword)

Keyword that creates an instance of an object
type (optional unless Option Strict is On)

The data type of varname
initexpr (optional)

Any expression that provides the initial value to assign to the variable; cannot be used if an As New clause is used

Description

Declares and allocates storage space in memory for variables. The Dim statement is used either at the start of a procedure
or the start of a module to declare a variable of a particular data type.

Rules at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public , Friend , Shared , Shadows , and ReadOnly can only be used at the module, namespace, or file level, not at the
procedure level.

Protected and Protected Friend can appear only at the class level.

Private can appear only at the module level.

Static can be used only at the procedure level.

Static and Shared cannot appear in the same Dim statement.

Static cannot appear with either Shared or Shadows .

If you use WithEvents , the variable type cannot be of type Object.

Object is the default data type created when no data type is explicitly declared.

The declaration of a nonobject variable actually creates the variable. For an object variable, the variable is not created
unless the optional New statement is used. If not, then the object variable is set to Nothing and must be assigned a
reference to an existing object at some later point in the code.

When multiple variables are declared on the same line, if a variable is not declared with an explicit type declaration,
then its type is that of the next variable with an explicit type declaration. Thus, in the line:
Dim x As Long, i, j, k As Integer, s As String

the variables i , j , and k have type Integer. (In VB 6, the variables i and j have type Variant.)

VB.NET permits the initialization of variables in the same line as their declaration (at long last!). Thus, we may write:
Dim x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more than one variable on a
single line:

Dim x As Integer = 6, y As Integer = 9

Variables that are not explicitly initialized by the Dim statement have the following default values:

Data type Initial value

All numeric types 0

Boolean False

Date 01/01/0001 12:00:00 AM

Decimal 0

Object Nothing

String Nothing

Local variables can have procedure-level scope or block-level scope . A variable that is declared using the Dim
keyword within a Visual Basic procedure but not within a code block has procedure-level scope; that is, its scope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

consists of the procedure in which it is declared. On the other hand, if a variable is declared inside a code block (i.e., a
set of statements that is terminated by an End... , a Loop , or a Next statement), then the variable has block-level
scope; that is, it is visible only within that block.

A variable cannot be declared using the Dim statement with WithEvents within a method, function, or procedure, since
this creates a local variable with procedure-level scope only.

In VB.NET, all arrays have a lower bound of 0. This is a change from earlier versions of VB, where we could choose
the lower bound of an array.

To declare a one-dimensional array variable, use one of the following example syntaxes:
'Implicit constructor: No initial size & no initialization

Dim Arrayname() As Integer

'Explicit constructor: No initial size & no initialization

Dim Arrayname() As Integer = New Integer() {}

'Implicit constructor: Initial size but no initialization

Dim Arrayname(6) As Integer

'Explicit constructor: Initial size but no initialization

Dim Arrayname() As Integer = New Integer(6) {}

'Implicit constructor: Initial size implied by initialization

Dim Arrayname() As Integer = {1, 2, 3, 4, 5, 6, 7}

'Explicit constructor, Initial size and initialization

Dim Arrayname() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

To declare a multidimensional array, use one of the following example syntaxes:
' Two-dimensional array of unknown size

Dim arrayname(,) As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Two-dimensional array of unknown size

Dim arrayname(,) As Integer = New Integer(,) {}

' Two-dimensional array of size 3 by 2

Dim arrayname(3, 2) As Integer

' Two-dimensional array of size 3 by 2

Dim arrayname(,) As Integer = New Integer(3, 2) {}

' Two-dimensional array of size 3 by 2, initialized

Dim arrayname(,) As Integer = {{1, 4}, {2, 5}, {3, 6}}

' Two-dimensional array of size 3 by 2, initialized

Dim arrayname(,) As Integer = New Integer(3, 2) {{1, 4}, _

 {2, 5}, {3, 6}}

The WithEvents keyword cannot be used when declaring an array.

You can set or change the number of elements of an array using the ReDim statement.

The maximum allowed dimensions for an array are 60.

Programming Tips and Gotchas

When you declare an object reference as WithEvents , that object's events can be handled within your application.
Object variables must be declared WithEvents at the module level to allow you to provide an error handler.

When you declare an object variable as WithEvents in the declarations section of the module, the name of the object
variable appears in the Object drop-down list at the top left of your code window. Select this and note that the events
exposed by the object are available in the Procedure drop-down list at the top right of the code window. You can then
add code to these event procedures in the normal way, as shown here:
Private WithEvents oEmp As Employee

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub oEmp_CanDataChange(EmployeeCode As String, _

 Cancel As Boolean)

 'event handling code goes here

End Sub

Private Sub oEmp_DataChanged(EmployeeCode As String)

 'event handling code goes here

End Sub

For a fuller description and discussion of the uses of WithEvents , Event , and RaiseEvent , see the Event,
RaiseEvent, and WithEvents entries.

One word of warning when using the WithEvents keyword: if you are building a client-server system using a
WithEvents object reference, you must ensure that the client machine gives permission for the server machine to
create processes on it. Otherwise, even though the client can create instances of the object on the server, the server
will not be able to call back to the client with event notifications. In fact, your application will not even launch before a
"Permission Denied" or similar error is generated. You can alter the permissions on the client using the DCOM Config
utility.

The way in which you declare an Object variable with the Dim statement dictates whether your application uses early
binding or late binding. Early binding allows object references to be resolved at compile time. Late binding resolves an
object reference at runtime, which has a negative impact on runtime efficiency. To optimize the performance, you
should use early binding whenever possible. For more information on this, see the discussion of binding in Chapter 3 .

When you declare an array without dimensioning it, you risk an ArgumentNullException exception if you attempt to
iterate the array, as in the following code fragment:
Dim aInts(), iCtr As Integer

For iCtr = 0 To UBound(aInts)

 Console.WriteLine(aInts(iCtr)) ' Raises exception

Next

One workaround is to declare an empty array as having -1 element, as

the following code fragment illustrates:

Dim aInts(-1) As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For iCtr = 0 to UBound(aInts) ' For loop never executed

 Console.WriteLine(aInts(iCtr))

Next

VB.NET/VB 6 Differences

In VB 6, all variables declared using Dim without specifying a specific data type are created as Variants. In VB.NET, all
variables whose data type is not specified are Objects.

When multiple variables are declared on a single line of code in VB 6, variables not explicitly assigned a data type are
cast as variants. For example, in the statement:
Dim Var1, Var2, Var3 As String

both Var1 and Var2 are variants rather than strings. In VB.NET, the type declaration applies to all undeclared
variables since the last explicit type declaration. So the previous statement in VB.NET would cast Var1 , Var2 , and
Var3 as strings.

In VB 6, variables cannot be initialized at the same time they are declared. In VB . NET, variables can be assigned an
initial value when they are declared.

In VB 6, all variables defined within a procedure using the Dim keyword have procedure-level scope. In VB.NET,
variables defined using Dim in code blocks (such as loops) have block-level scope and are not accessible throughout
the procedure. Hence, code such as the following works under VB6 but may fail to compile under VB.NET:
Dim iCtr As Integer

'Nested loop

For iCtr = 0 To 10000

 Dim iCtr2 As Integer

 For iCtr2 = 0 To 10000

 Next

Next

' Reinitialize iCtr2

iCtr2 = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

VB 6 supports fixed-length strings, but they are not supported in VB.NET.

In VB 6, if an object is instantiated using the New keyword as part of a Dim statement, testing for the validity of the
object reference with a statement such as:
If obj Is Nothing Then

always fails, since the statement itself reinstantiates the object if it is Nothing . In VB.NET, this undesirable behavior
has been changed, and setting the object to Nothing destroyes the object.

In VB 6, you could instantiate an object instantiated using the New keyword as part of a Dim statement, release the
object reference by setting it to nothing, then reinstantiate the object by referencing it or its members. In VB.NET,
setting the object reference to Nothing destroys the object; subsequent attempts to reference the object generate a
NullReferenceException exception.

In VB 6, arrays could be either fixed length or dynamic; in VB.NET, all arrays are dynamic.

VB 6 allows you to define the lower bound of an array when it is initialized. In VB.NET, all arrays have a lower bound of
0. For example, the VB 6 syntax:
Dim array(1 To 20) As String

is not supported in VB.NET.

In VB.NET, an array cannot be declared using the New keyword. Practically, this means that you cannot create an array
of creatable objects, and must instead use a collection. VB 6, in contrast, allows arrays of objects.

See Also

Private Statement , Public Statement , ReDim Statement , Static Statement , WithEvents Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Dir[(pathname[, attributes])]
pathname (optional; String)

A string expression that defines a path, which may contain a drive name, a folder name, and a
filename

attributes (optional; Numeric or Constant of the FileAttribute enumeration)

A FileAttribute enumeration constant or numeric expression specifying the file attributes to be
matched

Return Value

String

Description

Returns the name of a single file or folder matching the pattern and attribute passed to the function

Rules at a Glance

A zero-length string ("") is returned if a matching file is not found.

Possible values for attributes are:

FileAttribute enumeration Value Description

Normal 0 Normal (not hidden and not a system file)

ReadOnly 1 Read-only file

Hidden 2 Hidden

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileAttribute enumeration Value Description

System 4 System file

Volume 8 Volume label; if specified, all other attributes are ignored

Directory 16 Directory or folder

Archive 32 Archive

Alias 64 Alias or link

The attributes constants can be Ored together to create combinations of attributes to match; e.g.,
FileAttribute.Hidden Or FileAttribute. Directory will match hidden directories.

If attributes is not specified, files matching pathname are returned regardless of attributes.

You can use the wildcard characters * and ? within pathname to return multiple files.

Although pathname is optional, the first call you make to Dir must include it. pathname must also be
specified if you are specifying attributes. In addition, once Dir returns a zero-length string,
subsequent calls to Dir must specify pathname, or runtime error 5, "Invalid procedure call or
argument," results.

A call to Dir with no arguments continues the search for a file matching the last used pathname
argument (and attribute argument, if it was supplied).

Example

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 Dim sFileName As String

 Dim sPath As String = "c:\windows*.txt"

 sFileName = Dir(sPath)

 Do While sFileName > ""

 ListBox1.Items.Add(sFileName)

System 4 System file

Volume 8 Volume label; if specified, all other attributes are ignored

Directory 16 Directory or folder

Archive 32 Archive

Alias 64 Alias or link

The attributes constants can be Ored together to create combinations of attributes to match; e.g.,
FileAttribute.Hidden Or FileAttribute. Directory will match hidden directories.

If attributes is not specified, files matching pathname are returned regardless of attributes.

You can use the wildcard characters * and ? within pathname to return multiple files.

Although pathname is optional, the first call you make to Dir must include it. pathname must also be
specified if you are specifying attributes. In addition, once Dir returns a zero-length string,
subsequent calls to Dir must specify pathname, or runtime error 5, "Invalid procedure call or
argument," results.

A call to Dir with no arguments continues the search for a file matching the last used pathname
argument (and attribute argument, if it was supplied).

Example

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 Dim sFileName As String

 Dim sPath As String = "c:\windows*.txt"

 sFileName = Dir(sPath)

 Do While sFileName > ""

 ListBox1.Items.Add(sFileName)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sFileName = Dir()

 Loop

 End Sub

Programming Tips and Gotchas

Dir can only return one filename at a time. To create a list of more than one file that matches
pathname, you must first call the function using the required parameters, then make subsequent calls
using no parameters. When there are no more files matching the initial specification, a zero-length
string is returned. Once Dir has returned a zero-length string, you must specify a pathname in the
next call, or an error is generated.

In previous versions of Visual Basic, the Dir function was commonly employed to determine whether
a particular file existed. Although it can still be used for this purpose, the use of the BCL System.IO
namespace's File.Exists method is more straightforward. Since Exists is a shared public member of
the File class, it can be called as follows:
If File.Exists("c:\windows\network.txt")

The Dir function returns filenames in the order in which they appear in the file-allocation table. If you
need the files in a particular order, you should first store the names in an array before sorting. Note
that an array can be easily sorted using the Array object's Sort method; the Array class is part of the
BCL's System namespace.

The Dir function saves its state between invocations. This means that the function cannot be called
recursively. For example, if the function returns the name of the directory, you cannot then call the
Dir function to iterate the files in that directory and then return to the original directory.

If you are calling the Dir function to return the names of one or more files, you must provide an
explicit file specification. In other words, if you want to retrieve the names of all files in the Windows
directory, for instance, the function call:
strFile = Dir("C:\Windows", FileAttribute.Normal)

necessarily fails. Instead, the Dir function must be called with pathname defined as follows:

strFile = Dir("C:\Windows*.*", FileAttribute.Normal)

A major limitation of Dir is that it returns only the filename; it does not provide other information, such
as the size, date, and timestamp, or attributes of a file.

Many difficulties with the Dir function result from not fully understanding how various attributes
constants affect the file or files returned by the function. By default, Dir returns a "normal" file (i.e., a
file whose hidden or system attributes are not set). Hidden returns a normal file or a hidden file, but
not a system file and not a system file that is hidden. System returns a normal file or a system file, but
not a hidden file, including a system file that is hidden. FileAttribute.System Or
FileAttribute.Hidden returns any file, regardless of whether it is normal, hidden, system, or system
and hidden.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DirectCast Function

Named Arguments

No

Syntax

DirectCast(expression, typename)
expression (required; any)

The data item to be converted
typename (required; Keyword)

The data type, object type, structure, or interface to which expression is to be converted

Return Value

expression cast as a typename interface or object

Description

Converts an expression to its runtime data type, if possible; otherwise, returns an error.

Rules at a Glance

expression must be a reference type, typically a variable of type Object..

typename can be any data type (such as Boolean, Byte, Decimal, Long, Short, String, etc.), structure
type, object type, or interface.

If the function fails, an InvalidCastException exception occurs.

Programming Tips and Gotchas

In contrast to the CType function, DirectCast converts a reference type (i.e., an object) to its runtime
type. For instance,
Option Strict On

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System

Public Module modMain

 Public Sub Main

 Dim oVal As Object = "a"c

 Dim chVal As Char = DirectCast(oVal, Char)

 Console.WriteLine(chVal)

 End Sub

End Module

DirectCast can also be used to convert an object of a derived type to its base type. For example:
Option Strict On

Imports System

Public Class Person

 ' Implementation of Person

End Class

Public Class Worker

 Inherits Person

 ' Implementation of Worker

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Module modMain

 Public Sub Main

 ' Conversion of a derived to a base type

 Dim oWorker As New Worker()

 Dim oPerson As Person = oWorker

 Dim oPerson As Person = DirectCast(oWorker, Person)

 End Sub

End Module

Like most of the conversion functions, DirectCast is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

The DirectCast function is new to VB .NET.

See Also

CType Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory Class

Namespace

System.IO

Createable

No

Description

The Directory class represents a directory or folder. (It appears that Microsoft is retreating from the term
folder, in favor of the legacy term directory.) The Directory class has a number of methods that allow you to
retrieve information about the directory's system properties, to move and delete a directory, and to create a
new directory. (Unfortunately, however, the Directory class lacks a Copy method.)

All of the members of the Directory class are shared methods, so they can be called without instantiating
any objects. For example, you can call the CreateDirectory method as follows:

Directory.CreateDirectory("C:\projects\project1")

This syntax may seem a bit awkward, especially to those familiar with earlier version of VB. Rather than
the Directory object itself representing a directory, as it does in the case of a Folder object in the VB 6
FileSystemObject object model, the Directory class is simply a means to access a set of directory-related
functions.

Directory class members marked with a plus sign (+) are discussed in further detail in their own entries.

Public Shared Methods

CreateDirectory +
Delete +
Exists +
GetCreationTime +
GetCurrentDirectory
GetDirectories +
GetDirectoryRoot +
GetFiles +
GetFileSystemEntries +
GetLastAccessTime
GetLastWriteTime
GetLogicalDrives +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetParent +
Move +
SetCreationTime
SetCurrentDirectory
SetLastAccessTime
SetLastWriteTime

VB.NET/VB 6 Differences

The Directory object loosely corresponds to the Folder object in the FileSystemObject object model. (The
FileSystemObject object and its child objects are implemented in the Microsoft Scripting Runtime Library
in the file scrrun.dll.) There is, however, a significant difference in the members of each class, and in some
cases, methods with similar functionality have different names.

See Also

File Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.CreateDirectory Method

Class

System.IO.Directory

Syntax

Directory.CreateDirectory(path)
path (required; String)

The path of the new directory

Return Value

None

Description

Creates a new directory

Rules at a Glance

path must represent a legal path.

path can be an absolute or a relative path. For example:
Directory.CreateDirectory("C:\Temp")

specifies an absolute path (it begins with a drive's root directory), while:

Directory.CreateDirectory("..\Chapter2")

is a relative path that begins from the current directory. Relative paths can make use of the "." and
".." characters, which represent the current directory and the parent of the current directory,
respectively.

The CreateDirectory method creates all directories required to create a specified path. For example,
the code:
Directory.CreateDirectory("c:\NewDirectory\NewSubDirectory")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will create the NewDirectory folder if it does not exist and then the newSubDirectory folder if it does
not exist.

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

Programming Tips and Gotchas

The CreateDirectory method does not raise an error if the directory to be created already exists.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.Delete Method

Class

System.IO.Directory

Syntax

Directory.Delete(path [,recursive])
path (required; String)

The path of the folder to delete.
recursive (optional; Boolean)

Indicates whether the folder and its contents are to be deleted if the folder is not empty. Its default
value is False.

Return Value

None

Description

Removes or deletes an existing directory

Rules at a Glance

If path does not exist, the method generates a runtime error.

If recursive is set to False (its default value), the directory must be empty to be successfully
deleted; otherwise, a runtime error will be generated.

If recursive is set to True, the method will delete not only the final directory in path, but also of its
files and all of its subdirectories, as well as all nested subdirectories and nested files.

path can be either an absolute path (a complete path from the root directory to the directory whose
existence is to be confirmed) or a relative path (starting from the current directory to the path whose
existence is to be confirmed).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

path cannot contain wildcard characters.

Programming Tips and Gotchas

The Delete method permanently deletes directories and their contents. It doesn't move them to the
Recycle Bin.

Care must be taken when setting recursive to True due to the danger of accidentally removing files,
especially since the method does not prompt whether it should delete any folders or files.

If the user has adequate rights, the source or destination can be a network path or share name. For
example:
Directory.Delete("\\NTSERV1\d$\RootTwo")

Directory.Delete("\\RootTest")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.Exists Method

Class

System.IO.Directory

Syntax

Directory.Exists(path)
path (required; String)

The path of the directory whose existence is to be determined

Return Value

True if the specified path exists; False otherwise

Description

Determines whether a given directory exists

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the directory whose
existence is to be confirmed) or a relative path (starting from the current directory to the path whose
existence is to be confirmed).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

path cannot contain wildcard characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetCreationTime Method

Class

System.IO.Directory

Syntax

Directory.GetCreationTime(path)
path (required; String)

A valid path

Return Value

A Date value indicating the creation date and time of the directory

Description

Indicates when a given directory was created

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the directory whose
creation time is to be retrieved) or a relative path (starting from the current directory to the directory
whose creation time and existence is to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

path cannot contain wildcard characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetDirectories Method

Class

System.IO.Directory

Syntax

Directory.GetDirectories(path [, searchpattern])
path (required; String)

A valid path to a directory
searchpattern (optional; String)

A directory specification, including wildcard characters

Return Value

An array of strings, each element of which is the name of a subdirectory

Description

Returns the names of the subdirectories in a particular directory

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the directory whose
subdirectories are to be retrieved) or a relative path (starting from the current directory to the
directory whose subdirectories are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

path cannot contain wildcard characters.

If searchpattern is specified, the method returns only those directories whose names match the
string, which can contain wildcard characters. Otherwise, searchpattern returns the names of all the
subdirectories in the target directory specified by path.

If the directory specified by path has no subdirectories, or if no directories match searchpattern, an
empty array is returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following code displays all subdirectories of c:\ whose names start with the letter P:

Dim sDirs() As String

Dim i As Integer

sDirs = Directory.GetDirectories("c:\", "P*")

For i = 0 To UBound(sDirs)

 Console.WriteLine(sDirs(i))

Next

Programming Tips and Gotchas

Since GetDirectories can return an empty array, you can prevent an array access error in either of two
ways: you can iterate the returned array using the For Each...Next construct, or you can retrieve the value
of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetFiles Method, Directory.GetFileSystemEntries Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetDirectoryRoot Method

Class

System.IO.Directory

Syntax

Directory.GetDirectoryRoot(path)
path (required; String)

A valid path to a directory

Return Value

A String containing the name of the root directory of path

Description

Returns the name of the root directory of the drive on which path resides (assuming that path is valid). For
example, the code:

Directory.GetDirectoryRoot("c:\program files\accessories")

returns the string C:\ as the root directory.

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the target directory)
or a relative path (starting from the current directory to the target directory).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.
For example, the code:
Directory.GetDirectoryRoot("\\Pentium\C\AFolder")

returns \\Pentium\C, and if the folder \\Pentium\C\AFolder maps to the network drive Z, then:

Directory.GetDirectoryRoot("Z:\temp")

returns Z:\.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

path cannot contain wildcard characters.

See Also

Directory.GetParent Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetFiles Method

Class

System.IO.Directory

Syntax

Directory.GetFiles(path [, searchpattern])
path (required; String)

A valid path to a directory
searchpattern (optional; String)

A file specification, including the wildcard characters * and ?

Return Value

An array of strings, each element of which contains the name of a file

Description

Returns the names of the files in a specified directory

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the directory whose
filenames are to be retrieved) or a relative path (starting from the current directory to the directory
whose filenames are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

path cannot contain wildcard characters.

If searchpattern is specified, the method returns only those files whose names match the string,
which can contain wildcard characters. Otherwise, the function returns the names of all the files in
the path directory.

If the directory specified by path has no files, or if no files match searchpattern, an empty array is
returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following code displays all files in c:\ that have the extension .txt:

Dim sFiles() As String

Dim i As Integer

sFiles = Directory.GetFiles("c:\", "*.txt")

For i = 0 To UBound(sFiles)

 Console.WriteLine(sFiles(i))

Next

Programming Tips and Gotchas

Since GetFiles can return an empty array, you can prevent an array-access error in either of two ways: you
can iterate the returned array using the For Each... Next construct, or you can retrieve the value of the
UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFileSystemEntries Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetFileSystemEntries Method

Class

System.IO.Directory

Syntax

Directory.GetFileSystemEntries(path [, searchpattern])
path (required; String)

A valid path to a directory
searchpattern (optional; String)

A file specification, including wildcard characters

Return Value

An array of strings, each element of which contains the name of a filesystem entry (that is, a file or
directory) in the path directory

Description

Returns the names of the filesystem entries (that is, of files and directories) in a specified directory

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the directory whose
entries are to be retrieved) or a relative path (starting from the current directory to the directory
whose entries are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

path cannot contain wildcard characters.

If searchpattern is specified, the method returns only those filesystem entries whose names match
the string, which can contain wildcard characters. Otherwise, the function returns the names of all the
filesystem entries in the target directory specified by path.

If the directory specified by path has no filesystem entries, or if no filesystem entries match
searchpattern, an empty array is returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following code displays all filesystem entries in c:\:

Dim sEntries() As String

Dim i As Integer

sEntries = Directory.GetFileSystemEntries("c:\")

For i = 0 To UBound(sEntries)

 Console.WriteLine(sEntries (i))

Next

Programming Tips and Gotchas

The GetFileSystemEntries method combines the functionality of the GetDirectories and GetFiles
methods.

Since GetFileSystemEntries can return an empty array, you can prevent an array-access error in
either of two ways: you can iterate the returned array using the For Each...Next construct, or you
can retrieve the value of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFiles Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetLogicalDrives Method

Class

System.IO.Directory

Syntax

Directory.GetLogicalDrives()

Return Value

An array of strings, each element of which contains the name of the root directory on each logical drive on
a system

Description

Retrieves the names of all logical drives and root directories on a system

Rules at a Glance

In the case of a mapped network drive, GetLogicalDrives returns the letter to which the drive is mapped.
For instance, if the folder \\Pentium\C\AFolder is mapped to the Z drive, then GetLogicalDrives will return
Z:\ for this logical drive.

Example

Dim sDrives() As String

Dim i As Integer

sDrives = Directory.GetLogicalDrives()

For i = 0 To UBound(sDrives)

 Console.WriteLine(sDrives(i))

Next

On my system, this code displays the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A:\

C:\

D:\

E:\

F:\

G:\

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetParent Method

Class

System.IO.Directory

Syntax

GetParent(path)
path (required; String)

A valid path to a directory

Return Value

A DirectoryInfo object representing the parent directory of path (assuming that path is valid).

Rules at a Glance

path can be either an absolute path (a complete path from the root directory to the directory whose
filenames are to be retrieved) or a relative path (starting from the current directory to the directory
whose filenames are to be retrieved).

path can be either a path on the local system, the path of a mapped network drive, or a UNC path.

path cannot contain wildcard characters.

Programming Tips and Gotchas

The DirectoryInfo object has properties Name and ToString (among others). The Name property returns
only the name of the directory, while the ToString property returns its absolute path. Thus, the following
code displays the string program files:

MsgBox(Directory.GetParent("c:\program files\accessories").Name)

whereas the following code displays the string c:\program files:

MsgBox(Directory.GetParent("c:\program files\accessories").ToString)

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.GetDirectoryRoot Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Directory.Move Method

Class

System.IO.Directory

Syntax

Directory.Move(sourcedirname, destdirname)
sourcedirname (required; String)

The name of the directory to be moved
destdirname (required; String)

The location to which the source drive and its contents are to be moved

Return Value

None

Description

Moves a directory and all its contents, including nested subdirectories and their files, to a new location

Rules at a Glance

sourcedirname can be either an absolute path (a fully qualified path from the root directory to the
directory to be moved) or a relative path (starting from the current directory to the directory to be
moved).

sourcedirname and destdirname can be either a path on the local system, the path of a mapped
network drive, or a UNC path.

Neither sourcedirname nor destdirname can contain wildcard characters.

destdirname must be either a fully qualified path or a relative path.

destdirname can also be an absolute path or a relative path, except that it must include the name to
be assigned to the moved directory. This allows you to rename the directory at the same time as you
move it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the directory indicated by destdirname already exists, an error occurs.

Example

Suppose that the C drive contains the following folders:

c:\docs\letters

c:\Documents and Settings

Moving the letters folder to make it a subdirectory of c:\Documents and Settings is done by the following
code:

Directory.Move("c:\docs\letters", _

 "c:\Documents and Settings\letters")

Thus, the first argument is the fully qualified name of the folder to move. The second argument is the path
that results after the move is made, whereas one might have expected this argument to be the target folder
for letters, which is c:\ Documents and Settings.

See Also

Directory.Delete Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do...Loop Statement

Syntax

Do [{While | Until} condition]

 [statements]

[Exit Do]

 [statements]

Loop

or:

Do

 [statements]

[Exit Do]

 [statements]

Loop [{While | Until} condition]
condition (optional; Boolean expression)

An expression that evaluates to True or False
statements (optional)

Program statements that are repeatedly executed while, or until, condition is True

Description

Repeatedly executes a block of code while or until a condition becomes True

Rules at a Glance

On its own, Do...Loop infinitely executes the code that is contained within its boundaries. You
therefore need to specify within the code under what conditions the loop is to stop repeating. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

addition, if the loop executes more than once, the variable controlling loop execution must be
modified inside of the loop. For example:
Do

 intCtr = intCtr + 1 ' Modify loop control variable

 MsgBox("Iteration " & intCtr & " of the Do loop...")

 ' Compare to upper limit

 If intCtr = 10 Then Exit Sub

Loop

Failure to do this results in the creation of an endless loop.

Adding the Until keyword after Do instructs your program to Do something Until the condition is
True. Its syntax is:
Do Until condition

 'code to execute

Loop

If condition is True before your code gets to the Do statement, the code within the Do...Loop is
ignored.

Adding the While keyword after Do repeats the code while a particular condition is True. When the
condition becomes False, the loop is automatically exited. The syntax of the Do While statement is:
Do While condition

 'code to execute

Loop

Again, the code within the Do...Loop construct is ignored if condition is False when the program
arrives at the loop.

In some cases, you may need to execute the loop at least once. You might, for example, evaluate
the values held within an array and terminate the loop if a particular value is found. In that case, you
would need to execute the loop at least once. To accomplish this, you can place the Until or the
While keyword along with the condition after the Loop statement. Do...Loop Until always executes
the code in the loop at least once, and continues to loop until the condition is True. Likewise,
Do...Loop While always executes the code at least once, and continues to loop while the condition
is True. The syntax of these two statements is as follows:
Do

 'code to execute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Loop Until condition

Do

 'code to execute

Loop While condition

A Null condition is treated as False.

Your code can exit the loop at any point by executing the Exit Do statement.

Programming Tips and Gotchas

You'll also encounter situations in which you intend to execute the loop continually while or until a
condition is True, except in a particular case. This type of exception is handled using the Exit Do
statement. You can place as many Exit Do statements within a Do...Loop structure as you require. As with
any exit from a Do...Loop, whether it is exceptional or normal, the program continues execution on the line
directly following the Loop statement. The following code fragment illustrates the use of Exit Do:

Do Until condition1

 'code to execute

 If condition2 Then

 Exit Do

 End if

 'more code to execute - only if condition2 is false

Loop

See Also

While...End While Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E Field

Class

System.Math

Syntax

Math.E

Description

This field returns the approximate value of the irrational number e, which is the base of the natural
logarithm and the base of the natural exponential function. In particular:

Math.E = 2.71828182845905

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The E Field is new to VB.NET.

See Also

Pi Field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End... Statement

Syntax

End

End Class

End Enum

End Function

End Get

End If

End Interface

End Module

End Namespace

End Property

End Select

End Set

End Structure

End Sub

End SyncLock

End Try

End With

End While

Description

Ends a procedure or a block of code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rules at a Glance

The End statement is used as follows:

Statement Description

End Terminates program execution

End Class Marks the end of a class definition

End Enum Marks the end of a series of enumerated constants

End Function Marks the end of a Function procedure

End Get Marks the end of a Property Get definition

End If Marks the end of an If...Then...Else statement

End Interface Marks the end of an interface definition

End Module Marks the end of a code module

End Namespace Markes the end of a namespace definition

End Property Marks the end of a Property Let, PropertyGet, or Property Set procedure

End Select Marks the end of a Select Case statement

End Set Marks the end of a Property Set definition

End Structure Ends the definition of a structure or user-defined type

End Sub Marks the end of a Sub procedure

End SyncLock Terminates synchronization code

End Try Marks the end of a Try...Catch statement

End With Marks the end of a With statement

End While Marks the end of a While statement

Programming Tips and Gotchas

When used alone, the End statement wraps calls to the private FileSystem.CloseAllFiles function, as well
as to the System.Environment object's Exit method, making it relatively safe to call to terminate an
application. However, it does not release resources not automatically handled by the garbage collector,
and does not automatically call the Finalize destructor.

VB.NET/VB 6 Differences

In VB 6, the End statement used by itself was to be avoided, since it terminated program execution

http://lib.ommolketab.ir
http://lib.ommolketab.ir

abruptly without performing normal cleanup operations. In VB.NET, End is much safer, and is not to
be avoided.

A number of the End... statements are new to VB.NET. These include End Class (classes are defined
in separate CLS files in VB 6), End Get (Property Get statements are terminated with an End
Property statement in VB 6), End Interface (interfaces are implemented as virtual base classes in
VB 6), End Module (code modules are defined in separate BAS files in VB 6), End Namespace
(namespaces do not exist in VB 6), End Set (Property Set and Property Let statements are
terminated with an End Property statement in VB 6), End Try (VB 6 does not support structured
exception handling), and End While (VB 6 supports the Wend statement to terminate a While loop).

See Also

Exit Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Enum Statement

Syntax

accessmodifier Enum name [As type]

 membername [= constantexpression]

 membername [= constantexpression]

 ...

End Enum
accessmodifier (optional; Keyword)

The possible values of accessmodifier are Public, Private, Friend, Protected, or Protected
Friend. For more information, see Section 4.7 in Chapter 4.

name (required; String literal)

The name of the enumerated data type.
membername (required; String literal)

The name of a member of the enumerated data type.
constantexpression (optional; Long)

The value to be assigned to membername.
type (optional; Keyword)

The data type of the enumeration. All enumerated members must be integers; possible values are
Byte, Short, Integer, and Long.

Description

Defines an enumerated data type. All of the values of the data type are defined by the instances of
membername.

Rules at a Glance

The Enum statement can only appear at module level, in the declarations section of a form, code
module, or class module.

Access rules for Enums are the same as for variables and constants. In particular, the optional
accessmodifier can be any one of the following: Public, Private, Protected, Friend, or Protected

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Friend. The following table describes the effects of the various access modifiers:

 Direct access scope Class/object access scope

Private Declaring class Declaring class

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

Protected Friend All derived classes Declaring project

Public All derived classes All projects

constantexpression can be either a negative or a positive number. It can also be another member
of an enumerated data type or an expression that includes integers and enumerated data types.

If you assign a floating point value to constantexpression, it is automatically rounded and converted
to an integer only if Option Strict is off; otherwise, it generates a compiler error.

If you do not specify type, it defaults to Integer.

If constantexpression is omitted, the value assigned to membername is 0 if it is the first expression in
the enumeration. Otherwise, its value is 1 greater than the value of the preceding membername.

The values assigned to membername cannot be modified at runtime.

Programming Tips and Gotchas

Once you define an enumerated type, you can use name as the return value of a function. For
example, given the enumeration:
Public Enum enQuarter

 enQ1 = 1

 enQ2 = 2

 enQ3 = 3

 enQ4 = 4

End Enum

you can use it as the return value of a function, as illustrated by the following function declaration:

Public Function QuarterFromDate(datVar as Date) _

 As enQuarter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also use it in a procedure's parameter list when defining a parameter's data type, as in the
following code fragment:

Public Function GetQuarterlySales(intQ As enQuarter) _

 As Double

Although you can declare an enumerated type as the argument to a procedure or the return value of
a function, VB.NET does not provide type safety in these cases. That is, if the value of the argument
or the return value of the function is outside of the range of the enumerated type, VB.NET does not
generate an error. In cases such as these, you should rely on validation routines to make sure that
an input value is in fact within the range of an enumerated type.

Individual values of an enumerated type can be used in your program just like normal constants,
except that they must be prefaced with the name of the enumeration.

Enumerated types provide the advantage of allowing you to replace numeric values with more
mnemonic labels and of allowing you to select values using the Auto List Members feature in the
Visual Studio IDE.

If you want to retrieve or display the name of an enumerated member rather than its value, you can
use the member's ToString method. For example:
Public Module modMain

Public Enum WorkDayTypes

 Weekday = 0

 Weekend = 1

 Holiday = 2

 Floating = 3

 Personal = 4

 Vacation = 5

End Enum

Public Sub Main

 Dim enDay As WorkDayTypes = WorkDayTypes.Vacation

 Console.WriteLine(enDay.ToString()) ' Displays

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 '"Vacation"

End Sub

End Module

VB.NET/VB 6 Differences

In VB 6, members of an enumeration can be accessed without having to qualify them with the name
of the enumeration to which they belong. In VB.NET, this behavior is not permitted; all members of
an enumeration can only be accessed by referring to the name of their enumeration.

In VB 6, all enumerated members are Longs. In contrast, VB.NET allows you to define the integer
data type of the enumeration's members.

In VB 6, members of a public enumeration can be hidden from the Object Browser by adding a
leading underscore to the member name. For example, in the enumeration:
Public Enum Primes

 [_x0] = 0

 x1 = 1

 x2 = 3

End Enum

the constant _x0 is hidden in Intellisense and the Object Browser unless the Object Browser's Show
Hidden Members option is selected. In Visual Studio .NET, a leading underscore does not hide a
member.

See Also

Const Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Environ Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Environ(expression)
expression (required; String, or a numeric expression)

If expression is a string, it must be the name of the required environment variable; if expression is
numeric, it must be the 1-based ordinal number of the environment variable within the environment
table.

Return Value

A String containing the text assigned to expression

Description

Returns the value assigned to an operating-system environment variable

Rules at a Glance

A zero-length string ("") is returned if expression does not exist in the operating system's
environment-string table or if there is no environment string in the position specified by expression.

expression can be either a string or a numeric expression; that is, you can specify one or the other,
but not both.

Example

Public Module modMain

Public Structure env

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim strVarName As String

 Dim strValue As String

End Structure

Public Sub Main()

Dim intCtr, intPos As Integer

Dim strRetVal As String

Dim udtEnv As env

intCtr = 1

Do

 strRetVal = Environ(intCtr)

 If strRetVal <> "" Then

 intPos = InStr(1, strRetVal, "=")

 udtEnv.strVarName = Left(strRetVal, intPos - 1)

 udtEnv.strValue = Mid(strRetVal, intPos + 1)

 Console.Writeline(udtEnv.strVarName & ": " & udtEnv.strValue)

 Else

 Exit Do

 End If

 intCtr = intCtr + 1

Loop

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Module

Programming Tips and Gotchas

If expression is numeric, both the name and the value of the variable are returned. An equal sign (=)
is used to separate them. For example, the function call Environ(1) might return the string
TEMP=C:\WINDOWS\TEMP.

If you retrieve environment variables and their values by ordinal position, the first variable is in
position 1, not position 0.

Due to the flexibility offered, it is now accepted and recommended practice to use the registry for
variables needed by your application, rather than the environment-string table.

Environment variables can be defined in a variety of ways, including by the AUTOEXEC.BAT and
MSDOS.SYS files, as well as by the HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Control\SessionManager\ Environment and
HKEY_CURRENT_USER\Environment keys in the registry.

VB.NET/VB 6 Differences

In VB 6, the Environ function retrieved environmental variables and their values only from the
environment-string table. In VB.NET, the function retrieves values both from the environment-string
table and the system registry.

In VB 6, the function could be called using either the envstring named argument (if the argument
was the name of an environment variable) or the number named argument (if the number represented
the ordinal position of the variable in the environment table). VB.NET replaces these with a single
named argument, expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EOF Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

EOF(filenumber)
filenumber (required; Integer)

Any valid file number

Return Value

A Boolean indicating when the end of the file has been reached

Description

Returns a Boolean indicating when the end of the file has been reached. Applies to files opened for binary,
random, or sequential input.

Rules at a Glance

filenumber must be an Integer that specifies a valid file number.

If a file is opened for binary access, you cannot use EOF with the Input procedure. Instead, use LOF
and Loc. If you want to use EOF, you must use FileGet rather than Input. In this case, EOF returns
False until the previous FileGet procedure is unable to read an entire record.

Example

Dim fr As Integer = FreeFile()

Dim sLine As String

FileOpen(fr, "c:\data.txt", OpenMode.Input, OpenAccess.Read, _

 OpenShare.Default, -1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do While Not EOF(fr)

 sLine = LineInput(fr)

 Console.WriteLine(sLine)

Loop

Programming Tips and Gotchas

EOF allows you to test whether the end of a file has been reached without generating an error.

Because you always write data to sequential files at the end of the file, the file marker is always at
the end of the file, and EOF will therefore always return True when testing files opened with their
modes set equal to either Input or Append.

See Also

LOF Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Erase Statement

Syntax

Erase arraylist
arraylist (required; String literal)

A list of array variables to clear

Description

Releases an array object. This is equivalent to setting the array variable to Nothing.

Rules at a Glance

Specify more than one array to be erased by using commas to delimit arraylist.

The Erase statement causes all memory allocated to arrays to be released.

Programming Tips and Gotchas

Once you use Erase to clear an array, it must be redimensioned with ReDim before being used again. This
is because Erase releases the memory storage used by the array.

See Also

Dim Statement, ReDim Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Erl Property

Class

Microsoft.VisualBasic.Information

Syntax

Erl

Return Value

An Integer containing the line number

Description

Indicates the line number on which an error occurred

Rules at a Glance

Erl returns the line number only if one has been provided in the source code.

If the error occurs on a line that does not have a line number, Erl returns 0.

Programming Tips and Gotchas

Erl is not affected by compiler settings. Compiling with the /debug- switch does not prevent Erl from
accurately reporting the line number.

Line numbers are rarely used in modern VB code. In VB.NET, line numbers are labels that must be
followed by a colon.

Although programmers have been requesting an error-handling function that reports the line number
on which an error occurred, Erl has one major limitation: namely, it requires that the developer assign
a line number to source code lines in advance.

Erl is not new to VB.NET. It was an undocumented and little known function in previous versions of
Visual Basic (and of QBasic as well).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET/VB 6 Differences

In VB 6, line numbers are distinct from labels, and do not require that any symbol (other than white space)
separate them from their lines' source code. In VB.NET, line numbers are labels that must be followed by
a colon.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err Object

Class

Microsoft.VisualBasic.ErrObject

Createable

No

Description

The Err object contains properties and methods that allow you to obtain information about a single runtime
error in a Visual Basic program. The Err object also lets you generate errors and reset the error object.
Because the Err object is an intrinsic object with global scope (which means that it is part of every VB
project you create), you do not need to create an instance of it within your code.

When an error is generated in your application - whether it is handled or not - the properties of the Err
object are assigned values that you can then access to gain information about the error that occurred. You
can even generate your own errors explicitly using the Err.Raise method. You can also define your own
errors to unify the error-handling process.

When your program reaches an Exit Function, Exit Sub, Exit Property, Resume, or On Error statement,
the Err object is cleared and its properties reinitialized. This can also be done explicitly using the Err.Clear
method.

Public Instance Properties

Property
name

Description

Description The string associated with the given error number

HelpContext A context ID within a Visual Basic Help file

HelpFile The path to a Visual Basic Help file

LastDLLError The last error code generated by a DLL; available only on 32-bit Windows systems

Number A long integer used to describe an error (i.e., an error code)

Source
Either the name of the current project or the class name of the application that
generated the error

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Instance Methods

Method name Description

Clear Resets all the properties of the Err object

Raise Forces an error of a given number to be generated

Programming Tips and Gotchas

The Visual Basic Err object is not a collection; it contains information about the last error only, if one
occurred. You could, however, implement your own error collection class to store a number of errors
by copying error information from the Err object into an application-defined error collection object.

An Err object cannot be passed back from a class module to a standard code module.

VB also supports structured error-handling through the Try...Catch... Finally statement.

For a full description of error handling, see Chapter 9.

See Also

Err.Description Property, Err.HelpContext Property, Err.HelpFile Property, Err.Number Property,
Err.Source Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Clear Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Clear()

Description

Explicitly resets all the properties of the Err object after an error has been handled

Rules at a Glance

You need to clear the Err object only if you need to reference its properties for another error within the
same subroutine, or before another On Error statement within the same subroutine.

Example

On Error Resume Next

i = oObjectOne.MyFunction(iVar)

If Err.Number <> 0 Then

 MsgBox ("The Error : " & Err.Description & vbCrLf _

 & " was generated in " & Err.Source)

 Err.Clear

End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

j = oObjectTwo.YourFunction(iVar)

If Err.Number <> 0 Then

 MsgBox ("The Error : " & Err.Description & vbCrLf _

 & " was generated in " & Err.Source)

 Err.Clear

End If

Programming Tips and Gotchas

Resetting the Err object explicitly using the Clear method is necessary in situations where you are
using On Error Resume Next and are testing the value of Err.Number repeatedly. Unless you reset the
Err object, you run the very real risk of catching the previously handled error, the details of which are
still lurking in the Err object's properties.

The Err object is automatically reset when either a Resume, Exit Sub, Exit Function, Exit Property,
or On Error statement is executed.

You can achieve the same results by setting the Err.Number property to 0; however, your code will
be more readable if you use the Clear method.

VB also supports structured error-handling through the Try...Catch... Finally statement.

Internally, in VB.NET the Err object is an instance of the Microsoft.VisualBasic.ErrObject class. It is
returned by the Err property of the Microsoft.VisualBasic.Information class.

See Also

Err.Raise Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Description Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

To set the property:

Err.Description = string

To return the property value:

string = Err.Description
string (required; String)

Any string expression

Description

A read/write property containing a short string describing a runtime error

Rules at a Glance

When a runtime error occurs, the Description property is automatically assigned the standard
description of the error.

For application-defined errors, you must assign a string expression to the Description property, or the
error will not have an accompanying textual message.

You can override the standard description by assigning your own description to the Err object for
both VB errors and application-defined errors.

Programming Tips and Gotchas

If an error occurs within a class module, an ActiveX DLL, or an EXE - regardless of whether it is
running in or out of your application's process space - no error information from the component will
be available to your application unless you explicitly pass back an error code as part of the error-
handling routine within the component. This is done using the Err.Raise method, which allows you to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

raise an error on the client, passing custom arguments for Number, Source, and Description.

If you raise an error with the Err.Raise method and do not set the Description property, the
Description property will be automatically set to "Application- efined or Object-Defined Error."

You can also pass the Err.Description to a logging device, such as a log file in Windows 95 or the
application log in Windows NT, by using the App.LogEvent method, as the following code fragment
demonstrates:
EmployeesAdd_Err:

App.LogEvent "EmployeesAdd" & "; " & _

 Err.Description, vbLogEventTypeError

The best way to set the Description property for your own application-defined errors is to use the
named-description argument with the Raise method, as the following code shows:
Sub TestErr()

On Error GoTo TestErr_Err

 Err.Raise 65444, _

 Description="Meaningful Error Description"

TestErr_Exit:

 Exit Sub

TestErr_Err:

 MsgBox (Err.Description)

 Resume TestErr_Exit

End Sub

VB also supports structured error-handling through the Try...Catch... Finally statement.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.HelpContext Property, Err.HelpFile Property, Err.Number Property, Err.Source Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.GetException Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.GetException()

Return Value

A System.Exception object or an object inherited from it containing the current exception

Description

Returns the Exception object associated with the current exception

Rules at a Glance

The GetException method can be called at any time in a program.

If there is no exception, the method returns an uninitialized exception object (i.e., an object whose
value is Nothing).

Example

The following code renames a file:

Private Sub RenameFile()

Dim sOldName, sNewName As String

Try

 sOldName = InputBox("Enter the file name to rename")

 sNewName = InputBox("Enter the new file name")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Rename("c:\" & sOldName, "c:\" & sNewName)

Catch ex As Exception

 MsgBox(Err.GetException().ToString)

 Exit Sub

End Try

End Sub

If the user inputs an invalid filename in the first input box, the result is the following message that displays
information about the error:

System.IO.FileNotFoundException: File not found at

Microsoft.VisualBasic.FileSystem.Rename(String OldPath, String NewPath)

at WindowsApplication2.Form1.RenameFile() in

C:\Documents and Settings\sr\My Documents\Visual Studio Projects\

ClipboardSave2\WindowsApplication2\Form1.vb:line 59

Programming Tips and Gotchas

The Err.GetException method can be used with the unstructured On Error Resume Next statement as
well as with the Try...Catch...End Try structure.

Since GetException is a member of the Err object, its major application is to provide access to error
information stored to an instance of the Exception class from code that relies on unstructured
exception handling.

VB.NET/VB6 Differences

The GetException method is new to VB.NET.

See Also

Exception Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.HelpContext Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.HelpContext

Description

A read/write property that either sets or returns an Integer value containing the context ID of the
appropriate topic within a Help file.

Rules at a Glance

The Err object sets the HelpContext property automatically when an error is raised if Err.Number is a
standard VB.NET error.

If the error is user-defined and you don't explicitly set the HelpContext property yourself, the Err
object will set the value to 1000095, which corresponds to the "Application-defined or object-defined
error" help topic in the VB Help file. (The HelpContext property is set by the fifth parameter to the
Err.Raise method.)

HelpContext IDs are decided upon when writing and creating a Windows Help file. Once the Help file
has been compiled, the IDs cannot be changed. Each ID points to a separate Help topic.

Example

Sub TestErr()

On Error GoTo TestErr_Err

 Dim i

 i = 8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox(i / 0)

TestErr_Exit:

 Exit Sub

TestErr_Err:

 MsgBox(Err.Description, vbMsgBoxHelpButton, "ErrorVille", _

 Err.HelpFile, Err.HelpContext)

 Resume TestErr_Exit

End Sub

Programming Tips and Gotchas

You can display a topic from the Visual Basic Help file by using the MsgBox function with the
vbMsgBoxHelpButton constant and passing Err.HelpContext as the HelpContext argument (as
shown in the previous example). While this is a simple and very effective way to add much more
functionality to your applications, bear in mind that some of your users could find the explanations
within the VB Help file somewhat confusing. If time and budget allow, the best method is to create
your own help file (for which you will need the Help compiler and other Help file resources from the
full version of VB) and to pass both the HelpContext and HelpFileName to MsgBox.

Some objects that you may use within your application have their own help files, which you can
access using HelpContext to display highly focused help to your users.

See Also

Err.HelpFile Property, Err.Number Property, Err.Source Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.HelpFile Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.HelpFile

Description

A read/write String property that contains the fully qualified path of a Windows Help file.

Rules at a Glance

The HelpFile property is automatically set by the Err object when an error is raised.

Example

See Err.HelpContext Property.

Programming Tips and Gotchas

You can display a topic from the Visual Basic Help file by using the MsgBox function with the
vbMsgBoxHelpButton constant and passing Err.HelpFile as the HelpFile argument (as shown in
the example for the Err.HelpContext Property). While this is a simple and very effective way to add
more functionality to your applications, bear in mind that some of your users could find the
explanations within the VB Help file somewhat confusing. If time and budget allow, the best method
is to create your own help file (for which you will need the Help compiler and other Help file
resources from the full version of VB) and to pass both the HelpContext and HelpFileName to
MsgBox.

Some objects that you may use within your application have their own help files, which you can
access using HelpFile to display highly focused help to your users.

Remember that once the program encounters an Exit... statement or an On Error statement, all the
properties of the Err object are reset; this includes the Help file. You must therefore set the
Err.HelpFile property each time that your application needs to access the help file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Err.HelpContext Property, Err.Number Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.LastDLLError Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.LastDLLError

Description

A read-only property containing a system error code representing a system error produced within a DLL
called from a VB program.

Rules at a Glance

Only direct calls to a Windows system DLL from VB code will assign a value to LastDLLError.

The value of the LastDLLError property depends upon the particular DLL being called. Your code
must be able to handle the various codes that can be returned by the DLL you are calling.

Don't forget that a failed DLL call does not itself raise an error within your VB program. As a result,
the Err object's Number, Description, and Source properties are not filled.

Programming Tips and Gotchas

The LastDLLError property can be changed by VB at any time, so it is important to save the value in
an independent variable as soon as possible.

The LastDLLError property is only used by system DLLs, such as kernel32.dll. Therefore, errors that
occur within DLLs you may have created will not cause an error code to be assigned to the property.

Obtaining accurate documentation about the return values of system DLLs can be a challenging
experience! Most useful information can be found by studying the API documentation for Visual C++.
However, you can use the Win32 API FormatMessage function to return the actual Windows error
message string from within Kernel32.DLL, which incidentally will also be in the correct language. The
following is a brief example that you can use in your applications to display the actual Windows error
description:
Module modMain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Declare Function FormatMessage Lib "kernel32" _

 Alias "FormatMessageA" (_

 ByVal dwFlags as Integer, ByRef lpSource As Integer, _

 ByVal dwMessageId As Integer, _

 ByVal dwLanguageId As Integer, _

 ByVal lpBuffer As String, ByVal nSize As Integer, _

 By Ref Arguments As Integer) As Integer

Public Const FORMAT_MESSAGE_FROM_SYSTEM As Integer = &H1000

Public Const FORMAT_MESSAGE_IGNORE_INSERTS As Integer = &H200

Function apiErrDesc (iErrCode As Integer) As String

 Dim sErrDesc As String = Space(256)

 Dim iReturnLen, lpNotUsed As Integer

 iReturnLen = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM _

 Or FORMAT_MESSAGE_IGNORE_INSERTS, _

 lpNotUsed, iErrCode, 0&, sErrDesc, _

 Len(sErrDesc), lpNotUsed)

 if iReturnLen > 0 Then

 apiErrDesc = Left(sErrDesc, iReturnLen)

 End If

End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Module

Here's a snippet demonstrating how you can use this utility function:

lReturn = SomeAPICall(someparams)

If lReturn <> 0 then

 Err.Raise(Err.LastDLLError & vbObjectError, _

 "MyApp:Kernel32.DLL", _

 apiErrDesc(Err.LastDLLError))

End If

Note that some API calls return 0 to denote a successful function call, and others return 0 to denote
an unsuccessful call. You should also note that some API functions do not appear to set the
LastDLLError property. In most cases, these are functions that return an error code. You could
therefore modify the previous snippet to handle these cases:
lReturn = SomeAPICall(someparams)

If lReturn <> 0 then

 If Err.LastDLLError <> 0 Then

 Err.Raise(Err.LastDLLError & vbObjectError, _

 "MyApp:Kernel32.DLL", _

 apiErrDesc(Err.LastDLLError))

 Else

 Err.Raise(lReturn & vbObjectError, _

 "MyApp:Kernel32.DLL", _

 apiErrDesc(lReturn))

 End If

End If

See Also

Err Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Number Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Number

Description

A read/write property containing a numeric value that represents the error code for the last error generated

Rules at a Glance

When a runtime error is generated within the program, the error code is automatically assigned to
Err.Number.

The Number property is updated with an application-defined error whose code is passed as an
argument to the Err.Raise method.

When using the Err.Raise method in normal code, your user-defined error codes cannot be greater
than 65536 nor less that 0. (For an explanation, see the final note in Section of the Err.Raise Method
entry.)

VB reserves error numbers in the range of 1-1000 for its own trappable errors. In addition, error
numbers from 31001 to 31037 are also used for VB trappable errors. In implementing a series of
application-defined errors, your error handlers should either translate application errors into VB
trappable errors or, preferably, assign a unique range to application-defined errors.

When using the Err.Raise method in ActiveX objects, add the vbObjectError constant (-
2147221504) to your user-defined error code to distinguish OLE errors from local-application errors.

When control returns to the local application after an error has been raised by the OLE server, the
application can determine that the error originated in the OLE server and extract the error number
with a line of code like the following:
Dim lError as Long

If (Err.Number And vbObjectError) > 0 Then

 lError = Err.Number - ObjectError

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

Programming Tips and Gotchas

An error code is a useful method of alerting your program that a function within an ActiveX or class
object has failed. By returning a number based on the vbObjectError constant, you can easily
determine that an error has occurred. (vbObjectError is a constant that is defined in the Microsoft.
VisualBasic.Constants class.) By then subtracting vbObjectError from the value returned by the
object's function, you can determine the actual error code:
If Err.Number < 0 then

 Err.Number = Err.Number - ObjectError

End If

You can create a sophisticated multiresult error-handling routine by using the Err.Number property
as the Case statement within a Select Case block, taking a different course of action for different
errors, as this snippet demonstrates:
Select Case Err.Number

 Case < 0

 'OLE Object Error

 Set oObject = Nothing

 Resume DisplayErrorAndExit

 Case 5

 'increment the retry counter and try again

 iTries = iTries + 1

 If iTries < 5 Then

 Resume RetryFunctionCall

 Else

 Resume DisplayErrorAndExit

 End If

 Case 20

 'we almost expected this one!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Resume Next

 Case Else

 Resume DisplayErrorAndExit

End Select

Directly assigning a Visual Basic-defined error code to the Number property does not automatically
update the Description or other properties of the Err object.

See Also

Err.HelpContext Property, Err.HelpFile Property, Err.Source Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Raise Method

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Raise(number, source, description, _

 helpfile, helpcontext)
number (required; Long integer)

A numeric identifier of the particular error
source (optional; String)

The name of the object or application responsible for generating the error
description (optional; String)

A useful description of the error
helpfile (optional; String)

The fully qualified path of a Microsoft Windows Help file containing help or reference material about
the error

helpcontext (optional; Long)

The context ID within helpfile

Description

Generates a runtime error

Rules at a Glance

To use the Err.Raise method, you must specify an error number.

If you supply any of the number, source, description, helpfile, and helpcontext arguments when
you call the Err.Raise method, they are supplied as values to the Number, Source, Description,
HelpFile, and HelpContext properties, respectively. Refer to the entries for the individual properties
for full descriptions of and rules for each property.

The number argument is a Long integer that identifies the nature of the error. Visual Basic errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(both Visual Basic-defined and user-defined errors) are in the range 0-65535. The range 0-512 is
reserved for system errors; the range 513-65535 is available for user-defined errors. When setting
the Number property to your own error code in a class module, you add your error-code number to
the vbObjectError constant.

Programming Tips and Gotchas

The Err.Raise method replaces the older Error statement, which should not be used in new code.

The Raise method does not reinitialize the Err object prior to assigning the values you pass in as
arguments. This can mean that if you Raise an error against an Err object that has not been cleared
since the last error, any properties for which you don't specify values will still contain the values from
the last error.

As well as using Raise in a runtime scenario, you can put it to good use in the development stages of
your program to test the viability of your error-handling routines under various circumstances.

The fact that Err.Number only accepts numbers in the range 0-65536 may appear to be strange at
first because the data type of the Error Number parameter in the Raise event is a Long. However,
deep in the recesses of the Err object, the error code must be declared as an unsigned integer - a
data type not supported by VB.

See Also

Err.Clear Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Err.Source Property

Class

Microsoft.VisualBasic.ErrObject

Syntax

Err.Source

Description

A read/write string property containing the name of the application or the object that has generated the
error.

Rules at a Glance

When a runtime error occurs in your code, the Source property is automatically assigned the project
name (that is, the string that is assigned to the project's Name property). Note that this is not
necessarily the filename of the project file.

For clarity of your error messages, when you raise an error in a class module, the format of the
source parameter should be project.class.

Programming Tips and Gotchas

Knowing what type of error has occurred within a program without knowing where the error was generated
is often of little use to the programmer. However, if you enhance the standard Source by adding the name
of the procedure, you can cut your debugging time dramatically.

See Also

Err.HelpContext Property, Err.HelpFile Property, Err.Number Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Error Statement

Syntax

Error [errornumber]
errornumber (optional; Long)

Any valid error code

Description

Raises an error

Rules at a glance

The Error statement is included only for backward compatibility; instead, if you're using standard Visual
Basic error handling, you should use the Err.Raise method and the Err object. Otherwise, you should use
structured exception handling with the Try...Catch construct.

Programming Tips and Gotchas

The Error statement has been a "compatibility" statement for several versions of Visual Basic.
Interestingly, it managed to survive the general purge of outdated language elements. Despite its
persistence, we still recommend that its use be strictly avoided.

See Also

Err.Raise Method, Try...Catch...Finally Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ErrorToString Function

Class

Microsoft.VisualBasic.Conversion

Syntax

ErrorToString([errornumber])
errornumber (optional; Long)

A numeric error code

Return Value

A String containing an error message

Description

Returns the error message or error description corresponding to a particular error code

Rules at a Glance

If errornumber is present, the function returns the text of the error message corresponding to that
error code.

If no arguments are passed to the function, it returns the text of the error message corresponding to
the Description property of the Err Object.

See Also

Err.Description Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Event Statement

Syntax

[accessmodifier] [Shadows] Event eventName [(arglist)]

[Implements interfacename.interfaceeventname]
accessmodifier (optional; Keyword)

Can be one of Public, Private, Protected, Friend, and Protected Friend
Shadows (optional; Keyword)

Indicates that the event shadows any programming elements of the same name in a base class
eventName (required; String literal)

The name of the event

arglist is optional and has the following syntax:

[ByVal | ByRef] varname[()] [As type]
ByVal (optional; Keyword)

The argument is passed by value; that is, a local copy of the variable is assigned the value of the
argument.

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable are reflected in the calling
argument. ByRef is the default method of passing variables.

varname (required; String literal)

The name of the local variable containing either the reference or value of the argument.
type (optional; Keyword)

The data type of the argument. It can be Byte, Boolean, Char, Short, Integer, Long, Single, Double,
Decimal, Date, String, Object, or any user- defined type, object type, or data type defined in the
BCL.

Implements interfacename.interfaceeventname (optional)

Indicates that the event implements a particular event named interfaceeventname in the interface
named interfacename.

Description

Defines a custom event that the object can raise at any time using the RaiseEvent statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rules at a Glance

The event declaration must be Public so that it is visible outside the object module; it cannot be
declared as Friend or Private. However, the Public keyword can be omitted from the declaration,
since it is Public by default.

An Event statement can only appear in the Declarations section of an object module, that is, in a
form or class module.

Example

The following code snippet demonstrates how you can use an event to communicate a status message
back to the client application. To take advantage of this functionality, the client must declare a reference to
this class using the WithEvents keyword.

Public Event Status(Message As String)

Private Function UpdateRecords() as Boolean

...

 RaiseEvent Status("Opening the database...")

...

 RaiseEvent Status("Executing the query...")

...

 RaiseEvent Status("Records were updated...")

...

End Function

Programming Tips and Gotchas

To allow the client application to handle the event being fired, the object variable must be declared
using the WithEvents keyword.

VB custom events do not return a value; however, you can use a ByRef argument in arglist to
simulate a return value. For more details, see the RaiseEvent statement.

Unlike parameter lists used with other procedures, Event parameters lists cannot include Optional
or ParamArray arguments or default values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you use the Event statement in a standard interface class (i.e., a class in which only properties and
methods are defined, but no code is included in the procedures) for use with the Implements
statement, the Implements statement does not recognize the "outgoing interfaces" used by events,
and therefore the event will be ignored.

For more information about implementing your own custom events, see Section 7.2 in Chapter 7.

See Also

RaiseEvent Statement, Throw Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exception Class

Namespace

System

Createable

Yes

Description

The Exception class and its inherited (child) classes represent runtime exceptions.

Selected Exception Class Members

The following provides a brief description of the more important members of the Exception class:

HelpFile property

Sets or retrieves a link to the help file associated with the exception. Its value is a Uniform Resource
Name (URN) or Uniform Resource Locator (URL).

InnerException property

Returns a reference to the inner Exception object in the case of nested exceptions.
Message property

Returns the text of the error message.
Source property

Returns or sets a string containing the name of the application or the object that causes the error.
StackTrace property

Returns a string (the stack trace) consisting of a list of all methods that are currently in the stack.
The following shows a stack trace when the procedure DoArithmetic calls the procedure Arithmetic,
which generates an exception that is thrown up to DoArithmetic (the string has been formatted to fit
the margins of the page):

at WindowsApplication6.Form1.Arithmetic(String Action, Double x,

Double y) in C:\Projects\WindowsApplication6\Form1.vb:line 68

http://lib.ommolketab.ir
http://lib.ommolketab.ir

at WindowsApplication6.Form1.DoArithmetic() in

C:\Projects\WindowsApplication6\Form1.vb:line 87
TargetSite property

Returns a MethodBase object representing the method that throws the exception. For example, if e
is the exception whose stack trace is shown in the discussion of the StackTrace property, then the
code.

e.TargetSite.Name

will return the string Arithmetic.

GetBaseException Method

This method returns the exception object for the innermost exception. For instance, in the previous
example (see the discussion of the StackTrace property) the code:

e.GetBaseException.ToString

returns the string:

System.ArithmeticException: There was an overflow or

underflow in the arithmetic operation.

 at WindowsApplication6.Form1.Arithmetic(String Action,

Double x, Double y) in

C:\Projects\WindowsApplication6\Form1.vb:line 68

 at WindowsApplication6.Form1.DoArithmetic() in

C:\Projects\WindowsApplication6\Form1.vb:line 87///
ToString Method

Returns the fully qualified name of the exception and possibly the error message, the name of the
inner exception, and the stack trace.

Children of the Exception Class

The System namespace contains the Exception class, which is the base class for a substantial collection
of derived exception classes, listed as follows. Note that the indentation indicates class inheritance. For
example, EntryPointNotFoundException (the fifth from the last entry in the list) inherits from
TypeLoadException.

Exception

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ApplicationException

 SystemException

 AccessException

 FieldAccessException

 MethodAccessException

 MissingMemberException

 MissingFieldException

 MissingMethodException

 AppDomainUnloadedException

 AppDomainUnloadInProgressException

 ArgumentException

 ArgumentNullException

 ArgumentOutOfRangeException

 DuplicateWaitObjectException

 ArithmeticException

 DivideByZeroException

 NotFiniteNumberException

 OverflowException

 ArrayTypeMismatchException

 BadImageFormatException

 CannotUnloadAppDomainException

 ContextMarshalException

 CoreException

 ExecutionEngineException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IndexOutOfRangeException

 StackOverflowException

 ExecutionEngineException

 FormatException

 InvalidCastException

 InvalidOperationException

 MulticastNotSupportedException

 NotImplementedException

 NotSupportedException

 PlatformNotSupportedException

 NullReferenceException

 OutOfMemoryException

 RankException

 ServicedComponentException

 TypeInitializationException

 TypeLoadException

 EntryPointNotFoundException

 TypeUnloadedException

 UnauthorizedAccessException

 WeakReferenceException

URIFormatException

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As Microsoft states: "Most of the exception classes that inherit from Exception do not implement
additional members or provide additional functionality." Thus, it is simply the class name that
distinguishes one type of exception from another. The properties and methods applied to an
exception object are inherited from the Exception base class.

You can trap the generic Exception object, or you can trap a specific exception object. There are two
circumstances in particular when you may want to trap a specific exception, rather than the more
general Exception object:

You want to handle errors differently based on their class. For instance, you may want to issue
different custom error messages for different exception types.

You want to take advantage of members of a particular exception class that are not
implemented in the Exception base class. For instance, the ArgumentException class has a
ParamName property that returns the name of the parameter that causes the exception. If you
trap the Exception class rather than the ArgumentException class, this member is unavailable.

VB.NET/VB 6 Differences

The Exception class, along with Structured Exception Handling (SEH), is new to the .NET platform.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exit Statement

Syntax

Exit Do

Exit For

Exit Function

Exit Property

Exit Select

Exit Sub

Exit Try

Exit While

Description

Prematurely exits a block of code

Rules at a Glance

Exit Do

Exits a Do...Loop statement. If the current Do...Loop is within a nested Do...Loop, execution
continues with the next Loop statement wrapped around the current one. If, however, the Do...Loop
is standalone, program execution continues with the first line of code after the Loop statement.

Exit For

Exits a For...Next loop or a For Each...Next statement. If the current For...Next is within a
nested For...Next loop, execution continues with the next Next statement wrapped around the
current one. If, however, the For...Next loop is standalone, program execution continues with the
first line of code after the Next statement.

Exit Function

Exits the current function. Program execution is passed to the line following the call to the function.
Exit Property

Exits the current property procedure. Program execution is passed to the line following the call to
the property.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exit Select

Immediately exits a Select Case construct. Execution continues with the statement immediately
following the End Select statement.

Exit Sub

Exits the current sub procedure. Program execution is passed to the line following the call to the
procedure.

Exit Try

Immediately exits a Try...Catch block. Program execution proceeds with the Finally block, if it is
present, or with the statement following the End Try statement.

Exit While

Immediately exits a While loop. Program execution proceeds with the code following the End While
statement. If Exit While is within a nested While loop, it terminates the loop at the level of nesting in
which Exit While occurs.

Programming Tips and Gotchas

Using Exit Sub can save having to wrap lengthy code within an If...Then statement. Here is an example
with Exit Sub:

Sub MyTestSub(iNumber As Integer)

 If iNumber = 10 Then

 Exit Sub

 End If

 . . .'code

End Sub

and without Exit Sub:

Sub MyTestSub(iNumber As Integer)

 If iNumber <> 10 Then

 . . . 'code

 End If

End Sub

See Also

End... Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exp Function

Class

System.Math

Syntax

Math.Exp(d)
d (required; Numeric)

Any valid numeric expression

Return Value

Double

Description

A Double representing the natural number e raised to the power d. Note that the irrational number e is
approximately 2.7182818.

Rules at a Glance

The maximum value for d is 709.782712893.

Exp is the inverse of the Log function.

Because this function can accept numeric values only, you may want to check the value you pass
using the IsNumeric function to prevent generating an error.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

In VB 6, Exp was an intrinsic VB function. In VB.NET, it is a member of the Math class in the System
namespace. Hence, in VB.NET, calls to Exp must be prefaced with the Math class name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Log Function, Log10 Function, E Field, Pow Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File Class

Namespace

System.IO

Createable

No

Description

A File object represents a file. The members of the File class are listed in Section .

The Microsoft.VisualBasic.FileSystem class has members that duplicate much of the functionality of the
File class. One significant omission from the FileSystem class is that there is no Exists method.
Consequently, the File.Exists method is documented in its own entry.

All of the methods of the File class are shared. Consequently, you don't need to instantiate a File object
to access File class methods; you can simply reference the File class itself.

Public Static Methods

AppendText
Copy
Create
CreateText
Delete
Exists
GetAttributes
GetCreationTime
GetLastAccessTime
GetLastWriteTime
Move
Open
OpenRead
OpenText
OpenWrite
SetAttributes
SetCreationTime
SetLastAccessTime
SetLastWriteTime

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Directory Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File.Exists Method

Class

System.IO.File

Syntax

File.Exists(path)
path (required; String)

The file path

Return Value

A Boolean indicating whether the file exists

Description

Indicates whether a file exists

Rules at a Glance

path is a fully qualified filename or a relative path (which is interpreted as starting in the current
directory).

The Exists method returns True only if the specified file exists; otherwise, it returns False. Note that
Exists returns False if path describes a directory instead of a folder.

Programming Tips and Gotchas

Since the File class is shared, you don't have to instantiate any objects before calling the File.Exists
method.

See Also

Directory.Exists Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileAttr Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileAttr(filenumber)
filenumber (required; Integer)

Any valid file number

Return Value

An OpenMode constant, as shown in the following table:

Mode Value

Input 1

Output 2

Random 4

Append 8

Binary 32

Description

Returns the file-access mode for a file opened using the FileOpen procedure

VB.NET/VB 6 Differences

In VB 6, FileAttr includes a superfluous returntype parameter that must be set to 1 or an error results. In
VB.NET, the parameter has been eliminated.

See Also

FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileClose Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileClose([filenumber][, filenumber][,...])
filenumber (optional; Integer)

The file number (or numbers) of an open file (or files), opened using the FileOpen procedure

Description

Closes one or more files opened with the FileOpen procedure

Rules at a Glance

If filenumber is omitted, all open files are closed.

If the file you are closing was opened for Output or Append, the remaining data in the I/O buffer is
written to the file. The memory buffer is then reclaimed.

When the FileClose procedure is executed, the file number used is freed for further use.

filenumber can either be a literal number, a numeric constant, or a numeric variable.

Programming Tips and Gotchas

With the FileClose procedure, you can close more than one file at once by specifying the file
numbers as a comma-delimited list, as shown here:
FileClose(1, 3, 4)

The FileClose procedure does not check first to see if there is a file associated with the given file
number. Therefore, no error occurs if you use the FileClose procedure with a nonexistent file
number. The drawback to this is that you may inadvertently think you have closed a file, when in fact
you haven't.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET/VB 6 Differences

FileClose is new to VB.NET. It replaces the Close statement in VB 6.

See Also

FileOpen Procedure, Reset Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileCopy Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileCopy(source, destination)
source (required; String)

The name of the source file to be copied
destination (required; String)

The name and location of the file when copied

Return Value

None

Description

Copies a file

Rules at a Glance

The source and destination arguments may contain a drive name and a folder name, but they must
always contain the filename.

You cannot copy a file that is currently open.

Programming Tips and Gotchas

If you don't specify a drive or folder in either the source or destination, the file is assumed to be in
the current drive or folder.

Unlike copying a file from one folder to another from outside VB, when using the FileCopy
procedure, it is not sufficient to simply enter a path for destination. You must supply a filename,
even if it's the same as the source; otherwise, runtime error 75, "Path/File access error," results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileCopy is a procedure and not a function; there is no return value. You therefore have to assume
that, if there are no errors generated from calling the FileCopy procedure, the file has been
successfully copied. So be sure to wrap FileCopy in robust error handling.

Be aware that if the destination file already exists, it will be overwritten without warning.

A number of functions allow you to use the copy operation to rename a file. (Typically, this is done by
specifying the same path in the destination as in the source, along with a different filename.) The
FileCopy procedure, however, does not work in this way.

For the copy operation to succeed, source must not be open by another application; if it is, runtime
error 70, "Permission denied," is generated. If source has already been opened by the application,
the copy operation will still succeed if the file is not locked (i.e., has been opened with the Shared
keyword) or has been opened with a write lock only. If source has already been opened with either a
read lock or a read-write lock, the FileCopy operation will generate runtime error 70, "Permission
denied."

destination must not be open if the copy operation is to succeed. If it has been opened by another
application, runtime error 70, "Permission denied," is generated. If it has already been opened by the
application itself, runtime error 55, "File already open," is generated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileDateTime Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileDateTime(pathname)
pathname (required; String)

The filename, along with an optional drive and path

Return Value

A Date containing the date and time at which the specified file was created or last modified (whichever is
later)

Description

Obtains the date and time at which a particular file was created or last modified (whichever is later)

Rules at a Glance

If you don't specify a drive or folder with pathname, the file is assumed to be in the current drive or folder.

Programming Tips and Gotchas

Use the File.Exists method (in the System.IO namespace) to determine that the file exists before
calling FileDateTime. If pathname does not exist, your application generates runtime error 53, "File
not found."

If a file has not been modified, its creation date and last modified date will be identical. However, if
the file has been modified since its creation, the FileDateTime function returns only the last modified
date. To obtain the file's creation date, you have to resort to using the Window's API. The
GetFileTime API call returns not only the date last modified, but the file's creation date and last
access date as well.

You can also use FileDateTime on hidden files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

File.Exists Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileGet, FileGetObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileGet(FileNumber, Value, RecordNumber)

FileGetObject(FileNumber, Value, RecordNumber)
FileNumber (required; Integer)

Any valid file number
Value (required; any (see the first two items in Section)

Variable in which to place file contents
RecordNumber (optional; Integer)

The location at which reading begins

Description

Copies data from a file on disk into a variable

Rules at a Glance

For the FileGet procedure, the variable can have one of the following data types:

Array
Boolean
Byte
Char
Date
Decimal
Double
Integer
Long
Short
Single

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String

For the FileGetObject procedure, the variable must be of type Object.

For files opened in Random mode, RecordNumber refers to the record number in the file.

For files opened in Binary mode, RecordNumber refers to the byte number within the file.

The number of bytes read by the FileGet procedure is governed by the data type of Value. The
following is the number of bytes read by each data type:

Data type Bytes read

Boolean 2

Byte 1

Char 1

Date 8

Decimal 8

Double 16

Integer 4

Long 8

Short 2

Single 8

String Len(string)

Note that the number of bytes read by a String variable depends on the length of the string. Hence, a
string must be initialized to the desired size before calling the FileGet procedure.

The position of the first record or byte within a file is always 1.

When a record or a number of bytes is read from a file using FileGet, the file pointer automatically
moves to the record or byte following the one just read. You can therefore read all data sequentially
from a Random or Binary file by omitting RecordNumber, as this snippet shows:
Dim fr As Integer = FreeFile()

Dim sChar As Char

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

FileGet(fr, sChar, 1)

do while loc(fr) <> LOF(fr)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FileGet(fr, sChar)

 ' do something with sChar. . .

Loop

FileClose(fr)

FileGet is most commonly used to read data from files written with the FilePut function.

Example

This example illustrates the use of the Char data type to read and output each byte of a file:

Public Sub Main

Dim fr As Integer = FreeFile()

Dim sFile As String = Space(FileLen("C:\data.txt"))

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

FileGet(fr, sFile)

Console.WriteLine(sFile) ' Displays entire file

FileClose(fr)

End Sub

Programming Tips and Gotchas

With the increase in the power, flexibility, and ease of use of modern DBMSs, the use of external
standalone data files has fallen dramatically, which means that statements such as FileGet and FileOpen
are becoming much less important.

VB.NET/VB 6 Differences

The FileGet and FileGetObject procedures are new to VB.NET. They are replacements for the Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

statement in VB 6, whose syntax is similar to that of FileGet.

See Also

FileOpen Procedure, FilePut, FilePutObject Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileLen Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileLen(pathname)
pathname (required; String)

The filename, along with its path and drive name (optionally)

Return Value

A Long containing the length of the specified file in bytes

Description

Specifies the length of a file on disk

Rules at a Glance

If you don't specify a drive or folder with pathname, the file is assumed to be in the current drive or folder.

Programming Tips and Gotchas

Use the File.Exists method in the System.IO namespace to determine that the file exists before
calling FileLen. If the file does not exist, FileLen generates runtime error 53, "File not found."

Because FileLen returns the length of a file based on the file allocation table, the value returned by
FileLen will reflect the size of the file before it was opened. In the case of open files, you should
instead use the LOF function to determine the open file's current length.

See Also

LOF Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileOpen Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileOpen(filenumber, filename, mode, access, share, recordlength)
filenumber (required; Integer)

An available file number.
filename (required; String)

The name of the file to open, along with an optional path.
mode (optional; OpenMode enum)

The file-access mode. Options are: OpenMode.Append, OpenMode. Binary, OpenMode.Input,
OpenMode.Output, or OpenMode.Random (the default value).

access (optional; OpenAccess enum)

Specifies the allowable operations by the current process. Options are: OpenAccess.Default,
OpenAccess.Read, OpenAccess.ReadWrite (the default value), or OpenAccess.Write.

share (optional; OpenShare enum)

Specifies the allowable operations by other processes. Options are: OpenShare.Shared (the default
value), OpenShare.LockRead, OpenShare. LockWrite, or OpenShare.LockreadWrite.

recordlength (optional; Integer (at most, 32767)

The length of the record (for random access) or of the I/O buffer (for sequential access).

Description

Opens a disk file for reading and/or writing

Rules at a Glance

There are three modes of file access: sequential, binary, and random. The Input, Output, and
Append access modes are sequential access modes. Sequential access is designed for text files
consisting of individual Unicode characters (and control codes). Most of the file-manipulation
functions (LineInput, Print, PrintLine, and so on) apply to files opened for sequential access. Random
access is designed to be used with files that have a structure - more specifically, files that consist of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

records, each of which is made up of the same set of fields. For instance, a record might contain
name, address, and social security number fields. The binary access mode is for binary access,
where each byte in the file is accessible independently.

filename may include the directory or folder and drive; if these are omitted, the file is assumed to
reside in the current working directory. If filename does include drive and path information, this may
take the form of a path relative to the local system or a UNC path.

The default mode for opening a disk file (when mode is not specified) is OpenMode.Random.

If the specified file does not exist when opening in Input mode, an error occurs.

A new file is created if the specified file does not exist when opening in Append, Binary, Output, or
Random mode.

access allows you to restrict the actions that can be taken against the file in the current process, by
specifying Read, Write, or ReadWrite. The default is OpenAccess.ReadWrite.

The share argument allows you to restrict the operations performed on the open file by other
processes, and accepts one of the following members of the OpenShare enumeration:

Lock type Description

Shared Other processes can open the file for both read and write operations.

LockRead Other processes can only write to the file.

LockWrite Other processes can only read from the file.

LockReadWrite Other processes cannot open the file.

The recordlength argument is treated differently, depending upon the open mode, as the following
table shows:

Open mode Meaning of Len=

Random Length in bytes of each record

Binary Ignored

Append/Input/Output The number of characters to buffer

Example

The following example opens a random access data file, adds two records, and then retrieves the second
record:

Module modMain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Structure Person

 <vbFixedString(10)> Public Name As String

 Public Age As Short

End Structure

Public Sub Main

Dim APerson As New Person()

Dim fr As Integer = FreeFile()

FileOpen(fr, "c:\data.txt", OpenMode.Random, _

 OpenAccess.ReadWrite, OpenShare.Default, len(APerson))

APerson.Name = "Donna"

APerson.Age = 20

FilePut(fr, APerson, 1)

APerson.Name = "Steve"

APerson.Age = 30

FilePut(fr, APerson, 2)

FileGet(fr, APerson, 2)

MsgBox(APerson.Age)

FileClose(fr)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Sub

End Module

Since random access files require a fixed record length, note the use of the <vbFixedString(length)>
attribute to ensure that the Name field is a constant size.

Programming Tips and Gotchas

To avoid using the file number of an already open file and generating an error, use the FreeFile
function to allocate the next available file number.

You can open an already opened file using a different file number in Binary, Input, and Random
modes. However, you must close a file opened using Append or Output before you can open it with a
different file number.

VB.NET/VB 6 Differences

The FileOpen procedure is new to VB.NET. It is a more or less direct replacement for the VB 6 Open
statement.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FilePut, FilePutObject Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FilePut, FilePutObject Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

FilePut(filenumber, value, [recordnumber])

FilePutObject(filenumber, value, [recordnumber])
filenumber (required; Integer)

Any valid file number
value (required; any (see the first item in Section)

The name of the variable containing the data to be written to the file
recordnumber (optional; Integer)

Record number (for random access) or byte number (for binary access) at which to begin the write
operation

Description

Writes data from a program variable to a disk file

Rules at a Glance

The value argument of the FilePut procedure can be any data type except Object. The value
argument of the FilePutObject procedure must be of type Object.

If filenumber is opened in random access mode, recordnumber refers to the record number; if the
file is opened in binary access mode, recordnumber refers to a byte number.

Both bytes and records in a file are numbered starting with 1.

If recordnumber is omitted, the next byte or record to be written will be placed at the position
immediately after the position pointed to by the last FileGet or FilePut procedure, or by the last Seek
function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have opened the file in Random mode, it is important to ensure that the record length specified
in the recordNumber argument of the FileOpen procedure matches the actual length of the data being
written. If the length of the data being written is less than that specified by the recordNumber
argument, the space up to the end of the record will be padded with the current contents of the file
buffer - whatever that may be. If, on the other hand, the actual data length is more than that
specified, an error occurs.

The FilePut procedure cannot be used to write objects to disk. The FilePutObject procedure is used
for this purpose.

If you open the file in Binary mode, the RecordNumber argument has no effect. When you use FilePut
to write data to the disk, the data is written contiguously, and no padding is placed between records.

Example

The following code writes the letters A-Z to a file:

Dim fr As Integer = FreeFile()

Dim sChar As Char

Dim i As Integer

FileOpen(fr, "c:\data2.txt", OpenMode.Binary)

For i = Asc("A") To Asc("Z")

 sChar = Chr(i)

 FilePut(fr, sChar)

 Next

FileClose(fr)

Programming Tips and Gotchas

Because of the structured format of data written with the FilePut procedure, it is customary to read
the data back from the file using the FileGet procedure.

The FilePutObject procedure can be used to write data of type Object whose subtype is one of the
standard datatypes (Boolean, Byte, Char, etc.). It cannot be used to write object data defined by the
Class...End Class construct (including classes residing in .NET libraries), nor can it be used to write
data from COM objects to disk. The following is a rewritten version of the example code that uses
FilePutObject:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim fr As Integer = FreeFile()

Dim oChar As Object

Dim i As Integer

FileOpen(fr, "c:\data2.txt", OpenMode.Binary)

For i = Asc("A") To Asc("D")

 oChar = Chr(i)

 FilePutObject(fr, oChar)

Next

FileClose(fr)

If you use the FilePut procedure to write data, you can use the FileGet procedure to read it. Similarly,
if you use the FilePutObject procedure, you should should the FileGetObject procedure.

VB.NET/VB 6 Differences

The FilePut and FilePutObject procedures are new to VB.NET. They are almost direct replacements for
the VB 6 Put statement.

See Also

FileClose Procedure, FileGet, FileGetObject Procedures, FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileWidth Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

FileWidth(filenumber, recordwidth)
filenumber (required; Integer)

Any valid file number
recordwidth (required; Numeric)

A number between 0 and 255

Description

Specifies a virtual file width when working with files opened with the FileOpen function

Rules at a Glance

recordwidth defines the number of characters that can be placed on a single output line.

The default recordwidth of 0 denotes that there is no limit to the number of characters that can be
placed on a single output line.

VB.NET/VB 6 Differences

The FileWidth procedure is new to VB.NET.

See Also

FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Filter Function

Class

Microsoft.VisualBasic.Strings

Syntax

Filter(Source, Match[, Include[, Compare]])
Source (required; String or Object)

An array containing values to be filtered.
Match (required; String)

The substring of characters to find in the elements of the source array.
Include (optional; Boolean)

A Boolean (True or False) value. If True (the default value), Filter includes all matching values in the
returned array; if False, Filter excludes all matching values (or, to put it another way, includes all
nonmatching values).

Compare (optional; CompareMethod enumeration)

A constant whose value can be CompareMethod.Text or CompareMethod.Binary (the default).

Return Value

A 0-based String array of the elements filtered from Source

Description

The Filter function produces an array of matching values from an array of source values that either match
or do not match a given filter string.

Put another way, individual elements are copied from a source array to a target array if they either match
(Include is True) or do not match (Include is False) a filter string.A match occurs for an array element if
Match is a substring of the array element.

Rules at a Glance

The default Include value is True.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default Compare value is CompareMethod.Binary.

CompareMethod.Binary is case sensitive; that is, Filter matches both character and case. In contrast,
CompareMethod.Text is case insensitive, matching only character regardless of case.

If no matches are found, Filter returns an empty array.

Programming Tips and Gotchas

Although the Filter function is primarily a string function, you can also filter numeric values. To do
this, specify a Source of type Object and populate this array with numeric values. Then assign the
string representation of the numeric value you wish to filter on to the Match parameter. Note, though,
that the returned string contains string representations of the filtered numbers. For example:
Dim oArray() As Object = _

 {123,222,444,139,1,12,98,908,845,22,3,9,11}

Dim sResult() As String = Filter(oArray, "1")

In this case, the resulting array contains five elements: 123, 139, 1, 12, and 11.

Example

Dim sKeys() As String = {"Microsoft Corp.", "AnyMicro Inc.", _

 "Landbor Data", "Micron Co."}

Dim sMatch As String = "micro"

Dim blnInclude As Boolean = True

Dim sFiltered() As String = Filter(sKeys, sMatch, blnInclude, _

 CompareMethod.Text)

Dim sElement As String

For Each sElement In sFiltered

 Console.WriteLine(sElement)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fix Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Fix(number)
number (required; Double or any numeric expression)

A number whose integer portion is to be returned

Return Value

A number of the same data type as number whose value is the integer portion of number

Description

For nonnegative numbers, Fix returns the floor of the number (the largest integer less than or equal to
number).

For negative numbers, Fix returns the ceiling of the number (the smallest integer greater than or equal to
number).

Rules at a Glance

If number is Nothing, Fix returns Nothing.

The operation of Int and Fix are identical when dealing with positive numbers: numbers are rounded
down to the next lowest whole number. For example, both Int(3.14) and Fix(3.14) return 3.

If number is negative, Fix removes its fractional part, thereby returning the next greater whole
number. For example, Fix(-3.667) returns -3. This contrasts with Int, which returns the negative
integer less than or equal to number (or -4, in the case of our example).

The function returns the same data type as was passed to it.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sub TestFix()

 Dim dblTest As Double

 Dim objTest As Object

 dblTest = -100.9353

 objTest = Fix(dblTest)

 ' returns -100

 Console.WriteLine(objTest & " " & TypeName(objTest))

 dblTest = 100.9353

 objTest = Fix(dblTest)

 'returns 100

 Console.WriteLine(objTest & " " & TypeName(objTest))

End Sub

Programming Tips and Gotchas

Fix does not round number to the nearest whole number; it simply removes the fractional part of number.
Therefore, the integer returned by Fix will be the nearest whole number less than (or greater than, if the
number is negative) the number passed to the function.

See Also

Int Function, Round Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Flags Attribute

Class

System.Flags

Applies to

Enum

Description

Indicates that an enumerated type should be treated as a set of flags that can be added together, rather
than as a set of mutually exclusive values.

Constructor

New()

Properties

None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Floor Function

Class

System.Math

Syntax

Math.Floor(d)
d (required; Double)

Return Value

Returns a Double containing the largest integer less than or equal to the argument d

Description

Returns the largest integer less than or equal to the argument d

Example

Math.Floor(12.9) ' Returns 12

Math.Floor(-12.1) ' Returns -13

Rules at a Glance

Because this function can accept numeric values only, you may want to check the value you pass
using the IsNumeric function to prevent generating an error.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Floor function is new to the .NET Framework.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ceiling Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FontDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or saving a font.

The FontDialog object has properties for setting the initial appearance and functionality of the dialog box,
a property for returning the font selected by the user, as well as a method for showing the dialog box.

Selected FontDialog Members

The following provides a brief description of the more important members of the FontDialog class:

Color property

Sets or retrieves the color of the font. The return value is an instance of the Color structure. The
Color structure has a number of members, among which are:

Over 140 named color properties, from Red, Green, and Blue, to PapayaWhip, MistyRose,
and MediumSeagreen. These properties return a Color structure.

A Name property, which returns the name of the color or its ARGB value for custom colors.
(The A component is the alpha component of the color, which determines the color's opacity.)

The R property, G property, and B property, which return a byte specifying the red, green, or
blue color component of the RGB color value, respectively.

The IsKnownColor, IsNamedColor, and IsSystemColor properties, which give information
about the color. Please see the documentation for more information on these properties.

Font property

Sets or retrieves the font chosen by the user. The return value is an instance of the Font class in the
System.Drawing namespace. The Font class has a number of members, among which are:

Bold, Italic, Strikout, Underline properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Boolean properties used to set or retrieve the corresponding attribute of the font.
FontFamily property

Returns a FontFamily object associated with the font. Use the Name property to get the
name of the font family.

Name property

Returns the face name of the font as a String.
SizeInPoints

Returns the size of the font, in points, as a Single.
Style

Returns a FontStyle constant that contains information about the style of the font. The
FontStyle constants are Bold, Italic, Regular, Strikeout, and Underline, and they can be
combined using bitwise operations.

MaxSize, MinSize properties

These are properties of type Integer that specify the maximum and minimum sizes that can be
entered into the Font dialog box.

Show... properties

The FontDialog has properties that specify the features of the dialog box. These include:

ShowApply

Indicates whether the dialog box has an Apply button. (The default is False.)
ShowColor

Indicates whether the dialog box shows the font color choice controls. (The default is False.)
ShowEffects

Indicates whether the dialog box shows the strikethrough and underline options. (The default
is True.)

Example

The following code displays the Font dialog box and then displays the user's choice of font family:

Imports Microsoft.VisualBasic

Imports System

Imports System.Windows.Forms

Imports System.Drawing

Module modMain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub Main

Dim fn As New FontDialog()

fn.ShowEffects = True

fn.ShowDialog()

MsgBox(fn.Font.FontFamily.Name)

End Sub

End Module

VB.NET/VB 6 Differences

While the FontDialog class is implemented in the .NET Base Class Library, VB 6 offers the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For...Next Statement

Syntax

For counter = initial_value To maximum_value _

 [Step stepcounter]

 'code to execute on each iteration

 [Exit For]

Next [counter]
counter (required (optional with Next statement); any valid numeric variable)

A variable that serves as the loop counter
initial_value (required; any valid numeric expression)

The starting value of counter for the first iteration of the loop
maximum_value (required; any valid numeric expression)

The value of counter during the last iteration of the loop
stepcounter (optional (required if Step is used); any valid numeric expression)

The amount by which counter is to be incremented or decremented on each iteration of the loop

Description

Defines a loop that executes a given number of times, as determined by a loop counter.

To use the For...Next loop, you must assign a numeric value to a counter variable. This counter is either
incremented or decremented automatically with each iteration of the loop. In the For statement, you
specify the value that is to be assigned to the counter initially and the maximum value the counter will
reach for the block of code to be executed. The Next statement marks the end of the block of code that is
to execute repeatedly, and it also serves as a kind of flag that indicates that the counter variable is to be
modified.

Rules at a Glance

If maximum_value is greater than initial_value and no Step keyword is used or the step counter is
positive, the For...Next loop is ignored and execution commences with the first line of code
immediately following the Next statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If initial_value and maximum_value are equal and stepcounter is 1, the loop will execute once.

counter cannot be a Boolean variable or an array element.

counter is incremented by one with each iteration unless the Step keyword is used.

The For...Next loop can contain any number of Exit For statements. When the Exit For statement
is executed, program execution commences with the first line of code immediately following the Next
statement.

If the Step keyword is used, stepcounter specifies the amount counter is incremented (if
stepcounter is positive) or decremented (if it is negative).

Example

The following example demonstrates the use of a For...Next statement to iterate through the items in a
combo box until an item in the combo box list matches a particular value entered in a text box:

Dim sSought As String = txtSeek.Text

Dim i As Integer

Dim iCount As Integer = cboCombo.Items.Count

For i = 0 To iCount - 1

 If cboCombo.Items(i) = sSought Then

 cboCombo.SelectedIndex = i

 Exit For

 End If

Next i

The following example demonstrates how to iterate from the end to the start of an array of values:

For i = UBound(sArray) to LBound(sArray) Step - 1

 Console.WriteLine(sArray(i))

Next i

The following example demonstrates how to select only every other value from an array of values:

For i = LBound(sArray) to UBound(sArray) Step 2

 Console.WriteLine(sArray(i))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next i

Programming Tips and Gotchas

You can also nest For...Next loops, as shown here:
For iDay = 1 to 365

 For iHour = 1 to 23

 For iMinute = 1 to 59

 ...

 Next iMinute

 Next iHour

Next iDay

Although the counter following the Next keyword is optional, you will find your code is much easier to
read if you use it, especially when nesting For... Next loops.

You can increment the loop by a non-integral value by supplying a Single, Double, or Decimal value
in the Step clause. This also requires that counter be a Single, Double, or Decimal data type. If
counter is a Single or Double, what should be the final iteration of the loop may be skipped because
of rounding error. To prevent this half the value of stepcounter can be added to maximum_value. For
example:
Dim sngCtr As Single

For sngCtr = 1 to 2.05 Step .1

You should avoid changing the value of counter in the code within the loop. Not only can this lead to
unexpected results; it makes for code that's incredibly difficult to read and to understand.

Once the loop has finished executing, the value of counter is officially undefined. That is, you should
not make any assumptions about its value outside of the For...Next loop, and you should not use it
unless you first reinitialize it.

See Also

For Each...Next Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For Each...Next Statement

Syntax

For Each element In group

[statements]

[Exit For]

[statements]

Next [element]
element (required; Object or any user-defined object type)

An object variable to which the current element from the group is assigned
group (required)

An object collection or array
statements (optional)

A line or lines of program code to execute within the loop

Description

Loops through the items of a collection or the elements of an array

Rules at a Glance

The For Each...Next code block is executed only if group contains at least one element. If group is
an empty collection or an array that has not yet been dimensioned, an error (runtime errors 92, "For
loop not initialized," and 424, "Object required," respectively, or a NullReferenceException exception)
results.

All statements are executed for each element in group in turn until either there are no more
elements in group or the loop is exited prematurely using the Exit For statement. Program execution
then continues with the line of code following Next.

For Each...Next loops can be nested, but each element must be unique. For example:
For Each myObj In AnObject

 For Each subObject In myObj

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SName = subObject.NameProperty

 Next

Next

uses a nested For Each...Next loop, but two different variables, myObj and subObject, represent
element.

Any number of Exit For statements can be placed within the For Each... Next loop to allow for
premature, conditional exit of the loop. Once the loop is exited, execution of the program continues
with the line immediately following the Next statement. For example, the following loop terminates
once the program finds a name in the myObj collection that has fewer than ten characters:
For Each subObject In myObj

 SName = subObject.NameProperty

 If Len(Sname) < 10 then

 Exit For

 End if

Next

Programming Tips and Gotchas

Because the elements of an array are assigned to element by value, element is a "local" copy of the
array element and not a reference to the array element itself. This means that you cannot make
changes to the array elements, as the following example demonstrates:
Dim sArray(2) As String

Dim ele As String

sArray (0) = "aa"

sArray (1) = "bb"

For Each ele In sArray

 ele = "xx"

 Console.WriteLine(ele)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next

For Each ele In sArray

 Console.WriteLine(ele)

Next

The output is:

xx

xx

aa

bb

which shows that the original array has not been changed.

VB.NET/VB 6 Differences

In VB 6, element had to be a variable of type Variant. VB.NET removes this restriction; element can be a
strongly typed data type, as well as a variable of type Object, VB.NET's "universal" data type.

See Also

For...Next Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Format Function

Class

Microsoft.VisualBasic.Strings

Syntax

Format(expression[, style[, dayofweek[, _

 weekofyear]]])
expression (required; String/Numeric)

Any valid string or numeric expression
style (optional; String)

A valid named or user-defined format expression
dayofweek (optional; FirstDayOfWeek enumeration)

A constant that specifies the first day of the week
weekofyear (optional; FirstWeekOfYear enumeration)

A constant that specifies the first week of the year

First Day of Week Constants

Constant Value Description

System 0 NLS API setting

Sunday 1 Sunday (default)

Monday 2 Monday

Tuesday 3 Tuesday

Wednesday 4 Wednesday

Thursday 5 Thursday

Friday 6 Friday

Saturday 7 Saturday

First Week of Year Constants

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

UseSystemDayOfWeek 0 Use the NLS API setting.

FirstJan1 1 Start with the week in which January 1 occurs (default).

FirstFourDays 2 Start with the first week that has at least four days in the new year.

FirstFullWeek 3 Start with first full week of the year.

Return Value

A string containing the formatted expression

Description

Allows you to use either predefined or user-defined formats to output string, numeric, and date/time data

Rules at a Glance

style can be either a predefined or user-defined format.

User-defined formats for numeric values are created with up to four sections, delimited by
semicolons. Each section is used for a different type of numeric value. The four possible sections are
shown in the following table:

Section Applies to

1 All values if used alone; positive values if used with more than one section

2 Negative values

3 Zero values

4 Nothing value

It is not necessary to include all four sections in the style clause. However, the number of sections
present determines what types of numeric values each section defines, as the following table shows:

Number of sections Applies to

1 All numeric values

2 Positive and zero values; negative values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Number of sections Applies to

3 Positive values; negative values; zero values

4 As shown in previous table

If you leave a section blank, it will use the same format as that defined for positive values. For
example, the format string:
"#.00;;#,##"

means that negative values will appear in the same format as positive values.

Only one section is allowed where one of the named formats is used.

User-defined formats for string values can have two sections. The first is for all values; the second
applies only to Null values or zero-length strings.

The predefined date and time formats are:

Format Example Returns

General Date Format("01/06/98","General Date") 1/6/98

Long Date Format("01/06/98","Long Date") Tuesday, January 06, 1998

Medium Date Format("01/06/98","Medium Date") 06-Jan-98

Short Date Format("01/06/98","Short Date") 1/6/98

Long Time Format("17:08:06","Long Time") 5:08:06 PM

Medium Time Format("17:08:06","Medium Time") 05:08 PM

Short Time Format("17:08:06","Short Time") 17:08

The predefined numeric formats are:

Format Examples Returns

General Number Format(562486.2356, "General Number") 562486.2356

Currency Format(562486.2356, "Currency") $562,486.24

Fixed Format(0.2, "Fixed") 0.20

Standard Format(562486.2356, "Standard") 562,486.24

Percent Format(.7521, "Percent") 75.21%

Scientific Format(562486.2356, "Scientific") 5.62E+05

3 Positive values; negative values; zero values

4 As shown in previous table

If you leave a section blank, it will use the same format as that defined for positive values. For
example, the format string:
"#.00;;#,##"

means that negative values will appear in the same format as positive values.

Only one section is allowed where one of the named formats is used.

User-defined formats for string values can have two sections. The first is for all values; the second
applies only to Null values or zero-length strings.

The predefined date and time formats are:

Format Example Returns

General Date Format("01/06/98","General Date") 1/6/98

Long Date Format("01/06/98","Long Date") Tuesday, January 06, 1998

Medium Date Format("01/06/98","Medium Date") 06-Jan-98

Short Date Format("01/06/98","Short Date") 1/6/98

Long Time Format("17:08:06","Long Time") 5:08:06 PM

Medium Time Format("17:08:06","Medium Time") 05:08 PM

Short Time Format("17:08:06","Short Time") 17:08

The predefined numeric formats are:

Format Examples Returns

General Number Format(562486.2356, "General Number") 562486.2356

Currency Format(562486.2356, "Currency") $562,486.24

Fixed Format(0.2, "Fixed") 0.20

Standard Format(562486.2356, "Standard") 562,486.24

Percent Format(.7521, "Percent") 75.21%

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Format Examples Returns

Scientific Format(562486.2356, "Scientific") 5.62E+05

Yes/No
Format(0,"Yes/No")

Format(23,"Yes/No")

No

Yes

True/False
Format(0,"True/False")

Format(23,"True/False")

False

True

On/Off
Format(0,"On/Off")

Format(23,"On/Off")

Off

On

Characters used to create user-defined date and time formats are:

Char
Element Used

In
Display As Example Returns

c Date

A date and/or time based on the
short-date and short-time
international settings of the current
Windows system

Format("01/06/98

17:08:06", "c")

1/6/98
5:08:06 PM

dddddd Date
A complete date based on the long-
date international setting of the
current Windows system

Format("01/06/98",

"dddddd")

Tuesday,
January 06,
1998

(/) Dateseparator
A date delimited with the specified
character

Format("01/06/98",

"mm-dd-yyyy")
01-06-1998

d Day
A number (1-31) without a leading
zero

Format("01/06/98",

"d")
6

dd Day
A number (01-31) with a leading
zero

Format("01/06/98",

"dd")
06

ddd Day An abbreviation (Sun-Sat)
Format("01/06/98",

"ddd")
Tue

dddd Day A full name (Sunday-Saturday)
Format("01/06/98",

"dddd")
Tuesday

ddddd Date
A date based on the short date
section in the computer's Windows
international settings

Format("01/06/98",

"ddddd")
1/6/98

h Hour
A number (0-23) without leading
zeros

Format("05:08:06",

"h")
5

hh Hour A number (00-23) with leading zeros
Format("05:08:06",

"hh")
05

Scientific Format(562486.2356, "Scientific") 5.62E+05

Yes/No
Format(0,"Yes/No")

Format(23,"Yes/No")

No

Yes

True/False
Format(0,"True/False")

Format(23,"True/False")

False

True

On/Off
Format(0,"On/Off")

Format(23,"On/Off")

Off

On

Characters used to create user-defined date and time formats are:

Char
Element Used

In
Display As Example Returns

c Date

A date and/or time based on the
short-date and short-time
international settings of the current
Windows system

Format("01/06/98

17:08:06", "c")

1/6/98
5:08:06 PM

dddddd Date
A complete date based on the long-
date international setting of the
current Windows system

Format("01/06/98",

"dddddd")

Tuesday,
January 06,
1998

(/) Dateseparator
A date delimited with the specified
character

Format("01/06/98",

"mm-dd-yyyy")
01-06-1998

d Day
A number (1-31) without a leading
zero

Format("01/06/98",

"d")
6

dd Day
A number (01-31) with a leading
zero

Format("01/06/98",

"dd")
06

ddd Day An abbreviation (Sun-Sat)
Format("01/06/98",

"ddd")
Tue

dddd Day A full name (Sunday-Saturday)
Format("01/06/98",

"dddd")
Tuesday

ddddd Date
A date based on the short date
section in the computer's Windows
international settings

Format("01/06/98",

"ddddd")
1/6/98

h Hour
A number (0-23) without leading
zeros

Format("05:08:06",

"h")
5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Char
Element Used

In
Display As Example Returns

hh Hour A number (00-23) with leading zeros
Format("05:08:06",

"hh")
05

n Minute
A number (0-59) without leading
zeros

Format("05:08:06",

"n")
8

nn Minute A number (00-59) with leading zeros
Format("05:08:06",

"nn")
08

m Month
A number (1-12) without a leading
zero

Format("01/06/98",

"m")
1

mm Month
A number (01-12) with a leading
zero

Format("01/06/98",

"mm")
01

mmm Month An abbreviation (Jan-Dec)
Format("01/06/98",

"mmm")
Jan

mmmm Month
A full month name (January-
December)

Format("01/06/98",

"mmmm")
January

q Quarter A number (1-4)
Format("01/06/98",

"q")
1

s Second
A number (0-59) without leading
zeros

Format("05:08:06",

"s")
6

ss Second A number (00-59) with leading zeros
Format("05:08:06",

"ss")
06

ttttt Time

A time based on the 12-hour clock,
using the time separator and
leading zeros specified in Windows
locale settings

Format("05:08:06",

"ttttt")
5:08:06 AM

AM/PM Time
A 12-hour clock format using
uppercase AM and PM

Format("17:08:06",

"hh:mm:ss AM/PM")
05:08:06 PM

am/pm Time
A 12-hour clock format using
lowercase am and pm

Format("17:08:06",

"hh:mm:ss am/pm")
05:08:06 pm

A/P Time
A 12-hour clock format using an
uppercase "A" for AM and "P" for
PM

Format("17:08:06",

"hh:mm:ss A/P")
05:08:06 P

a/p Time
A 12-hour clock format using a
lowercase "a" for AM and "p" for PM

Format("17:08:06",

"hh:mm:ss a/p")
05:08:06 p

(:)
Time
separator

A time format using a nonstandard
character

Format("17:08:06",

"hh::mm::ss")
17::08::06

ww Week A number (1 - 54)
Format("01/06/98",

"ww")
2

w Weekday
A number (1 for Sunday through 7
for Saturday)

Format("01/06/98",

"w")
3

hh Hour A number (00-23) with leading zeros
Format("05:08:06",

"hh")
05

n Minute
A number (0-59) without leading
zeros

Format("05:08:06",

"n")
8

nn Minute A number (00-59) with leading zeros
Format("05:08:06",

"nn")
08

m Month
A number (1-12) without a leading
zero

Format("01/06/98",

"m")
1

mm Month
A number (01-12) with a leading
zero

Format("01/06/98",

"mm")
01

mmm Month An abbreviation (Jan-Dec)
Format("01/06/98",

"mmm")
Jan

mmmm Month
A full month name (January-
December)

Format("01/06/98",

"mmmm")
January

q Quarter A number (1-4)
Format("01/06/98",

"q")
1

s Second
A number (0-59) without leading
zeros

Format("05:08:06",

"s")
6

ss Second A number (00-59) with leading zeros
Format("05:08:06",

"ss")
06

ttttt Time

A time based on the 12-hour clock,
using the time separator and
leading zeros specified in Windows
locale settings

Format("05:08:06",

"ttttt")
5:08:06 AM

AM/PM Time
A 12-hour clock format using
uppercase AM and PM

Format("17:08:06",

"hh:mm:ss AM/PM")
05:08:06 PM

am/pm Time
A 12-hour clock format using
lowercase am and pm

Format("17:08:06",

"hh:mm:ss am/pm")
05:08:06 pm

A/P Time
A 12-hour clock format using an
uppercase "A" for AM and "P" for
PM

Format("17:08:06",

"hh:mm:ss A/P")
05:08:06 P

a/p Time
A 12-hour clock format using a
lowercase "a" for AM and "p" for PM

Format("17:08:06",

"hh:mm:ss a/p")
05:08:06 p

(:)
Time
separator

A time format using a nonstandard
character

Format("17:08:06",

"hh::mm::ss")
17::08::06

ww Week A number (1 - 54)
Format("01/06/98",

"ww")
2

w Weekday
A number (1 for Sunday through 7
for Saturday)

Format("01/06/98",

"w")
3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Char
Element Used

In
Display As Example Returns

y Day of Year A number (1 - 366)
Format("01/06/98",

"y")
6

yy Year A 2-digit number (00 - 99)
Format("01/06/98",

"yy")
98

yyyy Year A 4-digit number (100 - 9999)
Format("01/06/98",

"yyyy")
1998

Characters used to create user-defined number formats are as follows:

Char Description Examples

(0)

Digit placeholder. If expression contains a digit in the appropriate
position, the digit is displayed; otherwise, a 0 will be displayed.
The format definition dictates the number of digits after the
decimal point, forcing the number held within an expression to be
rounded to the given number of decimal places. It does not,
however, affect the number of digits shown to the left of the
decimal point.

Format(23.675,

"00.0000")returns 23.6750

Format(23.675,

"00.00")returns 23.68

Format(2658,

"00000")returns 02658

Format(2658,

"00.00")returns 2658.00

(#)
Digit placeholder. If expression contains a digit in the appropriate
position, the digit is displayed; otherwise, nothing will be displayed.

Format(23.675,

"##.##")returns 23.68

Format(23.675,

"##.####")returns 23.675

Format(12345.25,

"#,###.##")returns
12,345.25

(.)
Decimal placeholder. The actual character displayed as a decimal
placeholder depends on the international settings of the local
Windows system.

(%)
Percentage placeholder. Displays expression as a percentage by
first multiplying the value of expression by 100.

Format(0.25,

"##.00%")returns 25.00%

(,)

Thousands separator. The actual character displayed as a
thousands separator depends on the international settings of the
local Windows system. You only need to show one thousands
separator in your definition.

Format(1000000,

"#,###")returns 1,000,000

(E-

Scientific format. If the format expression contains at least one
digit placeholder (0 or #) to the right of E-, E+, e-, or e+, the number
is displayed in scientific format, and the letter E or e that was used
in the format expression is inserted between the number and its

y Day of Year A number (1 - 366)
Format("01/06/98",

"y")
6

yy Year A 2-digit number (00 - 99)
Format("01/06/98",

"yy")
98

yyyy Year A 4-digit number (100 - 9999)
Format("01/06/98",

"yyyy")
1998

Characters used to create user-defined number formats are as follows:

Char Description Examples

(0)

Digit placeholder. If expression contains a digit in the appropriate
position, the digit is displayed; otherwise, a 0 will be displayed.
The format definition dictates the number of digits after the
decimal point, forcing the number held within an expression to be
rounded to the given number of decimal places. It does not,
however, affect the number of digits shown to the left of the
decimal point.

Format(23.675,

"00.0000")returns 23.6750

Format(23.675,

"00.00")returns 23.68

Format(2658,

"00000")returns 02658

Format(2658,

"00.00")returns 2658.00

(#)
Digit placeholder. If expression contains a digit in the appropriate
position, the digit is displayed; otherwise, nothing will be displayed.

Format(23.675,

"##.##")returns 23.68

Format(23.675,

"##.####")returns 23.675

Format(12345.25,

"#,###.##")returns
12,345.25

(.)
Decimal placeholder. The actual character displayed as a decimal
placeholder depends on the international settings of the local
Windows system.

(%)
Percentage placeholder. Displays expression as a percentage by
first multiplying the value of expression by 100.

Format(0.25,

"##.00%")returns 25.00%

(,)

Thousands separator. The actual character displayed as a
thousands separator depends on the international settings of the
local Windows system. You only need to show one thousands
separator in your definition.

Format(1000000,

"#,###")returns 1,000,000

Scientific format. If the format expression contains at least one
digit placeholder (0 or #) to the right of E-, E+, e-, or e+, the number
is displayed in scientific format, and the letter E or e that was used

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Char Description Examples

(E-
E+ e-

e+)

is displayed in scientific format, and the letter E or e that was used
in the format expression is inserted between the number and its
exponent. The number of digit placeholders to the right determines
the number of digits displayed in the exponent. Use E- or e- to
place a minus sign next to negative exponents. Use E+ or e+ to
place a minus sign next to negative exponents and a plus sign
next to positive exponents.

- + $

()
Displays a literal character.

Format(2345.25,

"$#,###.##")returns
$2,345.25

(\)
The character following the backslash will be displayed as a literal
character. Use the backslash to display a special formatting
character as a literal.

Format(0.25, "##.00\%")

returns .25%

Note the difference between
the result of this example
and the result of the %
formatting character.

Programming Tips and Gotchas

A little known and very important use of the Format function is to prevent an "Invalid Use of Null"
error from occurring when assigning values from a recordset to a variable within your program. For
example, if a field within either a DAO or RDO recordset created from either an Access or SQL
Server database contains a Null value, you could trap this and change its value to "" as follows:
If IsNull(rsMyRecordSet!myValue) Then

 sMyString = ""

Else

 sMyString = rsMyRecordSet!myValue

End If

However, assigning the value returned by the Format function that has been passed the recordset
field can do away with this long and tedious coding, as the following line of code illustrates:

sMyString = Format(rsMyRecordSet!myValue)

If you are passing a date to SQL Server, what date format should you use? By default, SQL Server
expects an American date format, mmddyy, but it is possible for the database to have been altered to
accept other date formats, or you could be passing data to a stored procedure that begins with a
date-time conversion statement (SET DATEFORMAT dateformat). The only sure way of passing a date
into SQL Server is by using the ANSI standard date format 'yyyymmdd' (including the single
quotation marks).

When passing a date to a Jet (Access) database, you should surround the date with hash characters
(#); for example, #12/31/1999#.

(E-
E+ e-

e+)

is displayed in scientific format, and the letter E or e that was used
in the format expression is inserted between the number and its
exponent. The number of digit placeholders to the right determines
the number of digits displayed in the exponent. Use E- or e- to
place a minus sign next to negative exponents. Use E+ or e+ to
place a minus sign next to negative exponents and a plus sign
next to positive exponents.

- + $

()
Displays a literal character.

Format(2345.25,

"$#,###.##")returns
$2,345.25

(\)
The character following the backslash will be displayed as a literal
character. Use the backslash to display a special formatting
character as a literal.

Format(0.25, "##.00\%")

returns .25%

Note the difference between
the result of this example
and the result of the %
formatting character.

Programming Tips and Gotchas

A little known and very important use of the Format function is to prevent an "Invalid Use of Null"
error from occurring when assigning values from a recordset to a variable within your program. For
example, if a field within either a DAO or RDO recordset created from either an Access or SQL
Server database contains a Null value, you could trap this and change its value to "" as follows:
If IsNull(rsMyRecordSet!myValue) Then

 sMyString = ""

Else

 sMyString = rsMyRecordSet!myValue

End If

However, assigning the value returned by the Format function that has been passed the recordset
field can do away with this long and tedious coding, as the following line of code illustrates:

sMyString = Format(rsMyRecordSet!myValue)

If you are passing a date to SQL Server, what date format should you use? By default, SQL Server
expects an American date format, mmddyy, but it is possible for the database to have been altered to
accept other date formats, or you could be passing data to a stored procedure that begins with a
date-time conversion statement (SET DATEFORMAT dateformat). The only sure way of passing a date
into SQL Server is by using the ANSI standard date format 'yyyymmdd' (including the single
quotation marks).

When passing a date to a Jet (Access) database, you should surround the date with hash characters
(#); for example, #12/31/1999#.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Formatting numbers using Format without a format definition is also preferable to simply using the
Str function. Unlike Str, the Format function removes the leading space normally reserved for the
sign from positive numbers.

You can also use the Format function to scale numbers by 1000. This is achieved by placing a
thousands separator to the immediate left of the decimal point for each 1000 you wish the number to
be scaled by. Thus:
'one separator divides the expression by 1000 = 1000

Format(1000000, "##0,.")

'two separators divides the expression by 1,000,000 = 1

Format(1000000, "##0,,.")

VB.NET/VB 6 Differences

The VB 6 version of the Format function defined five special symbols (@, &, <, >, and !) for creating user-
defined string formats. In VB.NET, these symbols are treated as literal characters.

See Also

FormatCurrency, FormatNumber, FormatPercent Functions , FormatDateTime Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FormatCurrency, FormatNumber, FormatPercent Functions

Class

Microsoft. VisualBasic. Strings

Syntax

FormatCurrency(expression[,NumDigitsAfterDecimal][, _

 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _

 GroupDigits]]]])

FormatNumber(expression[,NumDigitsAfterDecimal][, _

 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _

 GroupDigits]]]])

FormatPercent(expression[,NumDigitsAfterDecimal][, _

 IncludeLeadingDigit[,UseParensForNegativeNumbers[, _

 GroupDigits]]]])
expression (required; Object)

The number or numeric expression to be formatted.
NumDigitsAfterDecimal (optional; Long)

The number of digits the formatted string should contain after the decimal point.
IncludeLeadingDigit (optional; TriState constant)

Indicates whether the formatted string is to have a 0 before floating point numbers between 1 and -
1.

UseParensForNegativeNumbers (optional; TriState constant)

Specifies whether parentheses should be placed around negative numbers.
GroupDigits (optional; TriState constant)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Determines whether digits in the returned string should be grouped using the delimiter specified in
the computer's regional settings. For example, on English language systems, the value 1000000 is
returned as 1,000,000 if GroupDigits is True.

Return Value

String

Description

Functions used to format currency, numbers, and percentages.

The three functions are almost identical. They all take identical arguments. The only difference is that
FormatCurrency returns a formatted number beginning with the currency symbol specified in the
computer's regional settings, FormatNumber returns just the formatted number, and FormatPercent
returns the formatted number followed by a percentage sign (%).

Rules at a Glance

If NumDigitsAfterDecimal is not specified, its default value is -1, which means that the value in the
computer's regional settings is used.

The TriState constant values are True, False, and UseDefault.

When optional arguments are omitted, their values are defined by the computer's regional settings.

In the FormatCurrency function, the position of the currency symbol in relation to the currency value
is defined by the computer's regional settings.

Programming Tips and Gotchas

These three functions first appeared in VBScript Version 2 as "light" alternatives to the Format function,
which had originally been left out of VBScript due to its size. They are quick and easy to use and make
your code more self-documenting; you can instantly see what format is being applied to a number without
having to decipher the format string.

See Also

Format Function, FormatDateTime Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FormatDateTime Function

Class

Microsoft.VisualBasic.Strings

Syntax

FormatDateTime(expression[,dateformat])
expression (required; date)

Date variable or literal date
dateformat (optional; DateFormat enum)

Defines the format of the date to return

Return Value

String representing the formatted date or time

Description

Formats a date or time expression based on the computer's regional settings

Rules at a Glance

The Dateformat enum is:

DateFormat.GeneralDate Value: 0

Displays a date and/or time. If there is a date part, displays it as a short date. If there is a time
part, displays it as a long time. If present, both parts are displayed.

DateFormat.LongDate Value: 1

Uses the long-date format specified in the client computer's regional settings.
DateFormat.ShortDate Value: 2

Uses the short-date format specified in the client computer's regional settings.
DateFormat.LongTime Value: 3

Uses the time format specified in the computer's regional settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateFormat.ShortTime Value: 4

Uses a 24-hour format (hh:mm).

The default date format is GeneralDate.

Programming Tips and Gotchas

Remember that date and time formats obtained from the client computer are based upon the client
computer's regional settings. It is not uncommon for a single application to be used internationally, so
date formats can vary widely. Not only that, but you can never be sure that a user has not modified
the regional settings on her computer. In short, never take a date coming in from a client machine for
granted; ideally, you should always verify that it is in the format you need prior to using it.

There is no appreciable difference in either coding or performance between these two statements:
sDate = FormatDateTime(dDate, LongDate)

sDate = Format(dDate, "Long Date")

See Also

Format Function, FormatCurrency, FormatNumber, FormatPercent Functions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FreeFile Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

FreeFile()

Return Value

An integer representing the next available file number

Description

Returns the next available file number for use in a FileOpen function

Programming Tips and Gotchas

It is good programming practice to always use FreeFile to obtain a file number to use in the FileOpen
procedure.

You should call FreeFile and store the returned file number to a variable rather than passing the
FreeFile function directly as the filenumber argument of the FileOpen procedure. In this way, you
save the file handle for a subsequent call to the FileClose procedure.

After using the FreeFile function to retrieve a file handle, you should immediately call the FileOpen
procedure, particularly if your file access code resides in a multithreaded application or component.
Failure to do so may cause the same handle to be assigned to two different variables, so that one of
the calls to FileOpen fails.

The names of function parameters become the function's named arguments. Because of this, it is
best to use meaningful names for parameters, and to avoid the use of Hungarian notation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Friend Keyword

Description

The Friend keyword is used to declare classes, module-level variables (but not local variables), constants,
enumerations, properties, methods, functions, and subroutines.

When the Friend keyword is used, the item being declared has direct access scope inside of the class
module in which the item is declared, as well as in all derived classes in the same project. However, if the
item is declared using Protected Friend, then the scope is all derived classes, including those that are in
other projects.

For more information on access modifiers, including Friend, see the following topics, as well as Chapter 4:

Class Statement
Const Statement
Enum Statement
Function Statement
Property Statement
Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function Statement

Syntax

[ClassBehavior][AccessModifier] Function name _

 [(arglist)] [As type][()]

 [statements]

 [name = expression]

 [statements]

End Function
ClassBehavior (optional; Keyword)

One of the following keywords:

Overloads

Indicates that more than one declaration of this function exists (with different argument
signatures). For more detail, see Chapter 4.

Overrides

For derived classes, indicates that the function overrides the function by the same name (and
argument signature) in the base class. For more detail, see Chapter 4.

Overridable

Indicates that the function can be overridden in a derived class. For more detail, see Chapter
4.

NotOverridable

Indicates that the function cannot be overridden in a derived class. For more detail, see
Chapter 4.

MustOverride

Indicates that the function must be overridden in a derived class. For more detail, see Chapter
4.

Shadows

In a derived class definition, indicates that this element shadows any elements of the same
name in the base class.

Shared

A shared function is callable without creating an object of the class. It is, in this strange

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sense, shared by all objects of the class. These are also called static functions.
AccessModifier (optional; Keyword)

One of the following keywords: Public, Private, Protected, Friend, Protected Friend. The
following table describes the effects of the various access modifiers. Note that direct access refers
to accessing the member without any qualification, as in:

classvariable = 100

and class/object access refers to accessing the member through qualification, either with the class name
or the name of an object of that class:

 Direct access scope Class/object access scope

Private Declaring class Declaring class

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

Protected Friend All derived classes Declaring project

Public All derived classes All projects

For more information, see Section 4.7 in Chapter 4.

name (required; String literal)

The name of the function.
arglist (optional)

A comma-delimited list of variables to be passed to the function as arguments from the calling
procedure.

arglist uses the following syntax and parts:
[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] _

 [= defaultvalue]
Optional (optional; Keyword)

An optional argument is one that need not be supplied when calling the function. However, all
arguments following an optional one must also be optional. A ParamArray argument cannot be
optional.

ByVal (optional; Keyword)

The argument is passed by value; that is, the local copy of the variable is assigned the value of the
argument.

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable will be also reflected in the calling
argument. ByVal is the default method of passing variables.

ParamArray (optional; Keyword)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Indicates that the argument is an optional array of Objects (or a strongly typed array, if Option
Strict is on) containing an arbitrary number of elements. It can only be used as the last element of
the argument list and cannot be used with the ByRef or Optional keywords.

varname (required; String literal)

The name of the local variable containing either the reference or value of the argument.
type (optional; Keyword)

The data type of the argument.
defaultvalue (optional; String literal)

For optional arguments, you must specify a default value.

type (optional; Keyword)

The return data type of the function.
statements (optional)

Program code to be executed within the function.
expression (optional)

The value to return from the function to the calling procedure.

Description

Defines a function procedure

Rules at a Glance

Overloads and Shadows cannot be used in the same declaration.

Functions cannot be nested; that is, you cannot define one function inside another function. (This
applies to all procedures.)

If you do not include one of the access keywords, a function will be Public by default.

Any number of Exit Function statements can be placed within the function. Execution will continue
with the line of code immediately following the call to the function. If a value has not been assigned
to the function when the Exit Function statement executes, the function will return the default
initialization value of the data type specified for the return value of the function. If the data type of the
function was an object reference, the exited function will return Nothing.

The return value of a function is passed back to the calling procedure by either assigning a value to
the function name or by using the Return statement. However, the Return statement also exits the
function, whereas assigning the return value to the function name does not exit the function.

To return arrays of any type from a procedure, you must use parentheses after the data type in the
return value of the function declaration, as in:
Public Function Test() As Integer()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you specify an optional parameter in your function declaration, you must also provide a default
value for that parameter. For example:
Private Function ShowMessage(Optional sMsg _

 As String = "Not given")

Programming Tips and Gotchas

There is often confusion between using the ByRef and ByVal methods to assign arguments to a
function. ByRef assigns a reference of the variable in the calling procedure to the variable in the
function; any changes made to the variable from within the function are in reality made to the variable
in the calling procedure. On the other hand, ByVal assigns the value of the variable in the calling
procedure to the variable in the function. Changes made to the variable in the function have no effect
on the variable in the calling procedure. In general, ByRef arguments within class modules take
longer to perform, since marshaling back and forth between function and calling module must take
place; so unless you explicitly need to modify a variable's value within a function, it's best to pass
parameters by value.

Since a variable passed to a function by reference is actually modified by the function, you can use
such variables to "return" multiple values from the function.

VB.NET/VB 6 Differences

If a parameter array is used in VB 6, it is a comma-delimited list of values in the calling procedure
that is treated as an array of variants in the called function. In VB.NET, the arguments can be any
data type, and they can be either a comma-delimited list of scalar values or an array.

In VB 6, the elements in parameter arrays are passed by reference; in VB.NET, they are passed by
value.

If you do not specify whether an individual element in arglist is passed ByVal or ByRef, it is passed
by reference in VB 6. In VB.NET, it is passed by value.

In VB 6, you can call a function that has arguments in a number of ways:
x = SomeFunction(arg1, arg2)

Call SomeFunction(arg1, arg2)

SomeFunction arg1, arg2

In VB.NET, parentheses are required in the function call:

x = SomeFunc(arg1, arg2)

Call SomeFunc(arg1, arg2)

SomeFunc(arg1, arg2)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, optional arguments do not require that you specify a default value. Instead, the IsMissing
function is used to determine whether the optional argument is supplied (although in some cases it is
unreliable). In VB.NET, you must assign a default value to an optional argument.

See Also

Sub Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FV Function

Class

Microsoft.VisualBasic.Financial

Syntax

FV(rate, nper, pmt[, pv [, due]])
rate (required; Double)

The interest rate per period
nper (required; Integer)

The number of payment periods in the annuity
pmt (required; Double)

The payment made in each period
pv (optional; Variant)

The present value of the loan or annuity
due (optional; Constant of the DueDate enumeration)

Specifies whether payments are due at the start or the end of the period. The value can be
DueDate.BegOfPeriod or DueDate.EndOfPeriod (the default).

Return Value

A Double specifying the future value of an annuity

Description

Calculates the future value of an annuity (either an investment or loan) based on a regular number of
payments of a fixed value and a static interest rate over the period of the annuity.

Rules at a Glance

The time units used for the number of payment periods, the rate of interest, and the payment amount
must be the same. In other words, if you state the payment period in months, you must also express
the interest rate as a monthly rate and the amount paid per month.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rate per period is stated as a fraction of 100. For example, 10% is stated as .10. If you are
calculating using monthly periods, you must also divide the rate per period by 12. Therefore, 10% per
annum, for example, equates to a rate per period of .00833.

The pv argument is most commonly used as the initial value of a loan. The default is 0.

Payments made against a loan or added to the value of savings are expressed as negative numbers.

The default value for the due argument is DueDate.EndOfPeriod.

See Also

IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Get Statement

Syntax

Get()

 [statements]

End Get
statements (optional)

Program code to be executed when the Property Get procedure is called

Description

Defines a Property Get procedure that returns a property value to the caller

Rules at a Glance

The Get statement can only be used within a Property...End Property construct.

The property value can be returned either by using the Return statement or by assigning the value to
a variable whose name is the same as the property. For example:
Public Property MyProp As String

 Private sSomeVar as String

 Property Get()

 Return sSomeVar

 End Get

...

End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:

Public Property MyProp As String

 Private sSomeVar as String

 Property Get()

 MyProp = sSomeVar

 End Get

...

End Property

The value returned by a property is usually the value of a Private variable. This adheres to accepted
object-oriented techniques by protecting the property value from accidental modification.

VB.NET/VB 6 Differences

The Property Get statement in VB 6 corresponds to the Get statement in VB.NET. Though the purpose
and basic operation of the two constructs is identical, the syntax of the VB.NET construct is vastly
simplified and more intuitive.

See Also

Property Statement, Set Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetAllSettings Function

Class

Microsoft.VisualBasic.Interaction

Syntax

GetAllSettings(appname, section)
appname (required; String)

Name of the application
section (required; String)

Relative path from appname to the key containing the settings to retrieve

Return Value

An object containing a two-dimensional array of strings

Description

Returns the registry value entries and their corresponding values for the application

Rules at a Glance

GetAllSettings works exclusively with the subkeys of HKEY_CURRENT_USER\ Software\VB and VBA
Program Settings.

The elements in the first dimension of the array returned by GetAllSettings contain the value entry
names.

The elements in the second dimension of the array returned by GetAllSettings contain the values for
the respective value entries.

The two-dimensional array returned by GetAllSettings is based at 0 (as are all arrays) so the first
value entry name is referenced using (0,0).

A call to GetAllSettings will return only the value entry names and data belonging to the final registry
key specified by the section argument. If that key itself has one or more subkeys, their data will not
be retrieved by the function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If either appname or section do not exist, GetAllSettings will return an uninitialized Object.

Programming Tips and Gotchas

GetAllSettings is a function that was developed to retrieve data from initialization files in 16-bit
environments and to retrieve data from the registry under Windows 9x and Windows NT. The
language of the documentation, however, reflects the language of initialization files. The arguments
labeled appname and section are in fact registry keys; the argument labeled key is in fact a registry
value entry.

The built-in registry-manipulation functions allow you to create professional 32-bit applications that
use the registry for holding application-specific data, in the same way that .INI files were used in the
16-bit environment. You can, for example, store information about the user's desktop settings (i.e.,
the size and position for forms) the last time the program was run.

Because the built-in registry functions in VB only create string-type registry keys, GetSetting and
GetAllSettings return string values. Therefore, before you use numeric values returned from the
registry, you should explicitly convert the value to a numeric data type.

GetAllSettings, SaveSettings, and GetSetting allow you direct access to only a limited section of the
windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\VB and VBA Program Settings). You cannot access or change other
registry settings without using the Win32 API.

Use the code Application.ExecutablePath to pass your application's name to the GetAllSetting
function.

Only those settings that were created using either the Win32 API or the SaveSetting function will be
returned. In other words, a VB application does not have a registry entry unless you have created
one explicitly.

If the key read by GetAllSettings has a default value, that value will not be retrieved by the function. If
you want to store and retrieve default values, you must call the Win32 API directly.

Because GetAllSettings returns an uninitialized Object when either appname or section do not exist, if
you subsequently try to perform a UBound or LBound function on the object, a "Type Mismatch" error
will be generated. You can test the validity of the returned value, as follows:
Dim MySettings(,) As String

Dim intSettings As Integer

' Place some settings in the registry.

SaveSetting("WindowsApplication6", "Startup", "Top", "75")

SaveSetting("WindowsApplication6", "Startup", "Left", "50")

' Retrieve the settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MySettings = GetAllSettings(appname:="WindowsApplication6", _

 section:="Startup")

If Not (MySettings Is Nothing) Then

 For intSettings = 0 To UBound(MySettings, 1)

 Console.WriteLine(MySettings(intSettings, 0))

 Console.WriteLine(MySettings(intSettings, 1))

 Next intSettings

 DeleteSetting("WindowsApplication6", "Startup")

else

 MsgBox("No settings")

End If

Because GetAllSetting retrieves data from the user branch of the registry, and the physical file that
forms the user branch of the registry may change (depending, of course, on who the user is and, in
the case of Windows 9x systems, whether the system is configured to support multiple users), never
assume that an application has already written data to the registry. In other words, even if you're sure
that your application's installation routine or the application itself has successfully stored values in
the registry, never assume that a particular value entry exists, and always be prepared to substitute a
default value if it does not.

Rather than rely on the relatively underpowered registry-access functionality available in Visual
Basic, we highly recommend that you instead use the Registry and RegistryKey classes available in
the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetSetting Function, SaveSetting Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetAttr Function

Class

Microsoft. VisualBasic.FileSystem

Yes

Syntax

GetAttr(pathname)
pathname (required; String)

Filename and an optional pathname

Return Value

An integer representing the sum of the following constants or members of the FileAttribute
enumeration, which reflect the attributes set for the file:

FileAttribute Enum Constant Value Description

Normal VbNormal 0 Normal

ReadOnly VbReadOnly 1 Read-only

Hidden VbHidden 2 Hidden

System VbSystem 4 System

Directory VbDirectory 16 Directory or folder

Archive VbArchive 32 File has changed since last backup

Description

Determines which attributes have been set for a file or directory

Rules at a Glance

pathname may optionally include a directory name and a drive letter, including a network drive.
pathname can also follow the UNC format of //machine_ name/drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can check if a particular attribute has been set by performing a bitwise comparison of the GetAttr
return value and the value of the attribute constant using the And operator. A nonzero result means
that the particular attribute has been set; conversely, a zero value indicates that the attribute has not
been set. For example:
If (GetAttr(myfile.txt) And VbReadOnly) = 0 then

 Msgbox "The file is Read-Write"

Else

 MsgBox "The file is Read-Only"

End If

Programming Tips and Gotchas

If pathname is invalid, a FileNotFoundException exception is generated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetChar Function

Class

Microsoft.VisualBasic.Strings

Syntax

GetChar(str, index)
str (required; String)

The string from which to extract a character
index (required; Integer)

Position of character (1-based)

Return Value

A Char containing the character at position index

Description

Returns the character that is at position index within a given string

Rules at a Glance

The first character in str is at index 1.

If index exceeds the number of character positions in str, an error is generated.

VB.NET/VB 6 Differences

The GetChar function is new to VB.NET.

See Also

InStr Function, Left Function, Mid Function, Right Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetObject Function

Class

Microsoft. VisualBasic.Interaction

Syntax

GetObject([pathname] [, class])
pathname (optional; String)

The full path and name of the file containing the COM (or ActiveX) object.
class (optional; String)

The class of the object. The class argument has these parts:
Appname (required; String)

The name of the application.
Objecttype (required; String)

The class of object to create, delimited from Appname by using a point (.). For example,
Appname.Objecttype.

Return Value

Returns a reference to an ActiveX object

Description

Accesses an ActiveX server held within a specified file

Rules at a Glance

Although both pathname and class are optional, at least one parameter must be supplied.

In situations where you cannot create a project-level reference to an ActiveX object, you can use the
GetObject function to assign an object reference from an external ActiveX object to an object
variable.

GetObject is used when there is a current instance of the ActiveX object; to create the instance, use
the CreateObject function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you specify pathname as a zero-length string, GetObject will return a new instance of the object -
unless the object is registered as single instance, in which case the current instance will be returned.

If you omit the pathname, the current instance of the object will be returned.

An error is generated if pathname is not specified and no current instance of the object can be found.

The object variable you will use within your program to hold a reference to the ActiveX object is
dimensioned as type Object. This causes the object to be late bound; that is, your program knows
nothing of the type of object nor its interface until the object has been instantiated within your
program:
Dim myObject As Object

myObject = GetObject("C:\OtherApp\Library.lib")

The details of how you create different objects and classes are determined by how the server has
been written, and you'll need to read the documentation available for the server to determine what
you need to do to reference a particular part of the object. There are basically three ways in which
you can access an ActiveX object:

The overall object library. This is the highest level and will give you access to all public sections
of the library and all its public classes:

1.

GetObject("C:\OtherApp\Library.lib")

A section of the object library. To access a particular section of the library, use an exclamation
mark (!) after the filename, followed by the name of the section:

2.

GetObject("C:\OtherApp\Library.lib!Section")

A class within the object library. To access a class within the library, use the optional Class
parameter:

3.

GetObject("C:\OtherApp\Library.lib", "App.Class")

Programming Tips and Gotchas

Pay special attention to objects registered as single instance. As their type suggests, there can only
ever be one instance of the object created at any one time. Calling CreateObject against a single-
instance object more than once has no effect; you will still be returning a reference to the same
object. The same is true of using GetObject with a pathname of ""; rather than returning a reference
to a new instance, you will be obtaining a reference to the original instance of the object. In addition,
you must use a pathname argument with single-instance objects (even if this is ""); otherwise an
error will be generated.

You can't use GetObject to obtain a reference to a class created with Visual Basic.

When possible, you should use early binding in your code. For more details on early and late

http://lib.ommolketab.ir
http://lib.ommolketab.ir

binding, see Chapter 3. You can use GetObject in early binding with COM objects, as in:
Dim objExcel As Excel.Application

objExcel = GetObject(, "Excel.Application")

The following table shows when to use GetObject and when to use CreateObject:

Task Use

Create a new instance of an OLE server CreateObject

Create a subsequent instance of an already instantiated server (if the server is not
registered as single instance)

CreateObject

Obtain another reference to an already instantiated server without launching a
subsequent instance

GetObject

Launch an OLE server application and load an instance of a subobject GetObject

Instantiate a class created with VB CreateObject

Instantiate a class registered on a remote machine CreateObject

See Also

CreateObject Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Current Book

 Code Fragments only

 Advanced Search

VB.NET Language

in a Nutshell, 2nd

Edition

Copyright

Preface

The Basics

Reference

 The Language Reference

 #Const Directive

 #If . . . Then . . . #Else

Directive

 #Region...#End Region

Directive

 Abs Function

 Acos Function

 AddHandler Statement

 AddressOf Operator

 AppActivate Procedure

 Application Class

 Application.CompanyName

Property

 Application.DoEvents

Method

 Application.ExecutablePath

Property

 Application.ProductName

Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Application.ProductVersion

Property

 Array Class

 Array.BinarySearch

Method

 Array.Copy Method

 Array.IndexOf Method

 Array.LastIndexOf Method

 Array.Reverse Method

 Array.Sort Method

 Asc, AscW Functions

 AssemblyVersion Attribute

 Asin Function

 Atan Function

 Atan2 Function

 AttributeUsage Attribute

 Beep Procedure

 Call Statement

 CallByName Function

 CBool Function

 CByte Function

 CChar Function

 CDate Function

 CDbl Function

 CDec Function

 Ceiling Function

 ChDir Procedure

 ChDrive Procedure

 Choose Function

 Chr, ChrW Functions

 CInt Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Class Statement

 Clipboard Class

 Clipboard.GetDataObject

Method

 Clipboard.SetDataObject

Method

 CLng Function

 CLSCompliant Attribute

 CObj Function

 Collection Class

 Collection.Add Method

 Collection.Count Property

 Collection.Item Method

 Collection.Remove Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetTimer Function

Class

Microsoft.VisualBasic.VBMath

Syntax

GetTimer()

Return Value

A Double indicating the number of seconds

Description

Returns the number of seconds since midnight

Programming Tips and Gotchas

You can use the GetTimer function as an easy method of passing a seed number to the Randomize
procedure, as follows:
Randomize GetTimer()

The GetTimer function is ideal for measuring the time taken to execute a procedure or block of code,
as the following snippet shows:
Dim dblStartTime As Double

Dim i As Integer

dblStartTime = Timer()

For I = 1 to 100

 Console.WriteLine("Hello")

Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Console.WriteLine("Time Taken = " & GetTimer() - _

 dblStartTime & " Seconds")

VB.NET/VB 6 Differences

The GetTimer function is new to VB.NET. However, it is functionally identical to the VB 6 Timer
function (and VB.NET Timer property), which continues to be supported.

In contrast to the VB 6 Timer function, which returned a Single, the VB.NET GetTimer function and
Timer property return a Double.

See Also

Timer Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GetType Operator

Syntax

GetType(typename)
typename (required; n/a)

The name of a type

Return Value

A Type object containing information about typename

Description

Returns type information about a particular type, such as a class, interface, enumeration, delegate, or
structure.

Rules at a Glance

typename must be the name of a valid type.

Passing an instance variable to typename generates a compiler error.

Programming Tips and Gotchas

If you don't know the name of the type about which you'd like to get information, but you do have an object
instance of that type, you can instead retrieve a Type object using the Type.GetType method.

VB.NET/VB 6 Differences

The GetType operator is new to VB.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GoTo Statement

Syntax

GoTo label
label (required)

Type: String literal

A subroutine name

Description

Passes execution to a specified line within a procedure

Rules at a Glance

label must be a line label

Programming Tips and Gotchas

GoTo can branch only to lines within the procedure where it appears.

It is not permitted to branch from outside a Try...Catch...Finally block to a point inside the Catch
or Finally block.

It is also not permitted to branch from within the Catch or Finally block to a label outside the block.

The GoTo statement is most commonly used with the On Error statement to direct control to an error-
handling routine.

GoTo is frequently used to control program flow within a procedure, a technique that often produces
highly unreadable "spaghetti code." Accordingly, great care should be taken when using the GoTo
statement.

VB.NET/VB 6 Differences

In VB 6, label could be either a line number or a label. In VB.NET, label can be only a label.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On Error Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Guid Attribute

Class

System.Runtime.InteropServices.GuidAttribute

Applies to

Assembly, Class, Delegate, Enum, Interface, Struct

Description

Assigns an explicit Globally Unique Identifier (GUID) to a program element when an automatically
generated GUID is undesirable. The <Guid> attribute is used for COM interop. A GUID can be generated
by a utility named guidgen.exe.

The major reason for explicitly assigning a GUID to a program element, rather than allowing Visual Studio
to do it automatically, is to ensure that it remains constant over successive recompilations of the source
code. Because COM uses GUIDs to identify program elements, inadvertently changing a GUID typically
causes COM to fail to recognize a component. For example, Visual Studio automatically adds the <Guid>
attribute to each AssemblyInfo.vb file to ensure that, should a type library be generated for a particular
project, its library identifier (or LibID) will remain unchanged when the project is recompiled.

Constructor

New(guid)
guid (String)

The GUID to be assigned to the program element.

Properties

Value (String)

Read-only. Returns the GUID of the program element.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Handles Keyword

Syntax

Handles name.event
name (required; String literal)

The name of the class or object whose event the subroutine is handling
event (required; String literal)

The name of the event that the subroutine is handling

Description

Defines a procedure as the event handler for a particular event

Rules at a Glance

The Handler keyword is used to define event handlers for events trapped by an object defined with
the WithEvents keyword.

The Handles keyword can only be used with a procedure declaration, since an event handler must be
a procedure rather than a function.

The Handles keyword must be placed on the same line as, and at the end of, a procedure
declaration.

Example

In a Windows application, the following definition appears in the declarations section of the Form1 class
module:

Public WithEvents Button1 As Button

The Button1 object is then instantiated with a line of code like the following in the New subroutine or
another initialization routine:

Me.Button1 = New Button

The Button1 object's Click event can then be handled with a event handler like the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 MsgBox("Hello, World!")

End Sub

Programming Tips and Gotchas

The WithEvents and Handles are designed to define event handlers at compile time. If you want to
define event handlers dynamically at runtime, use the AddHandler and RemoveHandler statements.

By convention, event handlers take the form objectname_eventname. For example, the Click event of
an object named Button1 could be trapped by an event handler named Button1_Click. Although this
convention is highly recommended, it is not obligatory.

VB.NET/VB 6 Differences

The Handles keyword is new to VB.NET. In VB 6, the link between an object and its event handler was
handled automatically and transparently by Visual Basic.

See Also

WithEvents Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable Class

Namespace

System.Collections

Createable

Yes

Description

A Hashtable object represents a collection of values (of type Object) that are indexed by objects called
keys (also of type Object). We can also think of a hash table as containing key/value pairs.

Identification of the location of elements in a hash table is done using a hashing function. Simply put, a
hashing function is a function that assigns a location in the hash table to each element, based on the
element's value. This is not the place to go into any detail about hashing. It is worth mentioning that hash
tables can be very efficient structures for storing and retrieving elements. However, there is no "best
approach" to defining hashing functions, and so only experimentation can determine whether this
particular implementation of a hash table is efficient in any given case.

Note that the Hashtable class is more flexible than the Collection class of the Microsoft.VisualBasic
namespace.

Hashtable class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +
IsFixedSize
IsReadOnly
IsSynchronized
Item +
Keys +
SyncRoot
Values +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Instance Methods

Add +
Clear +
Clone
Contains
ContainsKey +
ContainsValue +
CopyTo +
Equals
GetEnumerator
GetHashCode
GetObjectData
GetType
OnDeserialization
Remove +
ToString

Example

The following example illustrates most of the members that we will discuss:

Private Sub DoHashtable()

 Dim i As Integer

 Dim s() As DictionaryEntry

 Dim obj() As Object

 Dim icKeys As ICollection

 ' Define a new hash table

 Dim h As New Hashtable()

 ' Add some elements to the hash table

 h.Add("Be", "Beethoven")

 h.Add("Ch", "Chopin")

 h.Add("Mo", "Mozart")

 h.Add("Sc", "Schubert")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Copy elements to an array of DictionaryEntry objects and display

 ReDim s(h.Count)

 h.CopyTo(s, 0)

 For i = 0 To h.Count - 1

 Console.WriteLine(s(i).Value)

 Next

 ' Show the keys

 icKeys = h.Keys

 ReDim obj(h.Count)

 icKeys.CopyTo(obj, 0)

 For i = 0 To h.Count - 1

 Console.WriteLine(CStr(obj(i)))

 Next

 ' Does the hash table contain the value "Beethoven"

 MsgBox("Beethoven: " & CStr(h.ContainsValue("Beethoven")))

 ' Clear the hash table

 h.Clear()

End Sub

VB.NET/VB 6 Differences

The Hashtable object is new to the .NET platform.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Collection Class, Queue Class, Stack Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Add Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Add(Key, Value)
Key (required; Object)

The hash table entry's key
Value (required; Object)

The hash table entry's value

Return Value

None

Description

Adds a key/value pair to the hash table

Rules at a Glance

Key must be unique or a runtime error occurs.

Keys are immutable. Once added, a particular key value cannot be changed during the lifetime of the
hash table except by removing it through the Remove or Clear method and then adding it once
again.

Value need not be unique.

Programming Tips and Gotchas

According to the documentation, it is better to build a key from a String object than the Base Class
Library's StringBuilder object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Item property can also be used to add new members to the hash table.

To ensure that key is unique when calling the Add method, you can call the ContainsKey method
beforehand.

See Also

Hashtable.ContainsKey Method, Hashtable.Item Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Clear Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Clear()

Return Value

None

Description

Removes all entries from the hash table

Rules at a Glance

The Clear method removes all items from the collection, leaving the Hashtable object uninitialized. It
does not set the object to Nothing.

The Clear method sets the Hashtable object's Count property to 0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.ContainsKey Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.ContainsKey(Key)
Key (required; Object)

The key to search for among the hash table entries

Return Value

A Boolean indicating whether the key exists (True) or not (False)

Description

Indicates whether a given key is contained in the hash table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.ContainsValue Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.ContainsValue(Value)
Value (required; Object)

The value to search for among the hash table entries

Return Value

A Boolean indicating whether the value exists (True) or not (False)

Description

Indicates whether a given value is contained in the hash table

Programming Tips and Gotchas

ContainsValue is intended to determine whether a value exists in the hash table; it is not designed to
indicate the key belonging to a particular value or to determine whether multiple occurrences of a
particular value exist.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.CopyTo Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.CopyTo(array, arrayindex)
array (required; Array of DictionaryEntry structures)

The destination of the items copied from the hash table
arrayindex (required; Integer)

The first index that is to receive an element of the hash table

Return Value

None

Description

Copies the hash table values into an array of DictionaryEntry structures. A DictionaryEntry structure is
a key/value pair. Note that the array must be sized to accommodate the elements of the hash table prior to
calling the CopyTo method.

Rules at a Glance

array must be a one-dimensional array.

Elements are copied from the hash table to array in the same order in which the hash table is
iterated.

The CopyTo method copies each key/value pair in the hash table to a DictionaryEntry structure.

array, the array of DictionaryEntry structures, must be sized before calling the CopyTo method.
This is illustrated in the example.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim hshStates As New Hashtable

Dim aDE() As DictionaryEntry

Dim oDE As DictionaryEntry

hshStates.Add("NY", "New York")

hshStates.Add("MI", "Michigan")

hshStates.Add("CA", "California")

hshStates.Add("WI", "Wisconsin")

hshStates.Add("VT", "Vermont")

hshStates.Item("WA") = "Washington"

Redim aDE(hshStates.Count - 1)

hshStates.CopyTo(aDE, 0)

For each oDE in aDE

 Console.WriteLine(oDE.Key & ": " & oDE.Value)

Next

See Also

Hashtable.Keys Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Count Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Count()
hashtablevariable (required; Hashtable object)

A reference to a Hashtable object

Return Value

An Integer indicating the number of elements in the hash table

Description

This read-only property returns an Integer specifying the number of elements in the hash table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Item Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Item(key)
hashtablevariable (required; Hashtable object)

A reference to a Hashtable object
key (required; Object)

The key whose value is to be retrieved

Return Value

An Object representing the value associated with key

Description

Returns an Object that is the value associated with a particular key/value pair.

Rules at a Glance

Item is the default property of the Hashtable object, and since it is parameterized, we can write:
hashtablevariable(key)

Item is a read/write property. In other words, you can use the Item property to retrieve the value
belonging to a particular key, as well as to modify the value belonging to a particular key.

If key does not exist in the hash table when you attempt to retrieve a value, the Item property returns
Nothing.

If key does not exist in the hash table when you attempt to modify a value, the key and its associated
value are added to the hash table, as a sort of implicit add. For example, if the key "AK" does not
exist in a hash table, the code fragment:
hshStates.Item("AK") = "Alaska"

adds the key "AK" and its associated value, "Alaska".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

To guard against inadvertently adding a member to the hash table when you intend to modify an
existing value, call the ContainsKey method beforehand.

You can also retrieve individual members of the Hashtable object by iterating it using the For
Each...Next statement. Each iteration of the loop returns a DictionaryEntry object containing a
single key/value pair. For information on the DictionaryEntry object, see the entry for the
Hashtable.CopyTo method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Keys Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Keys()
hashtablevariable (required; Hashtable object)

A reference to a Hashtable object

Return Value

An ICollection interface containing the keys in the hash table

Description

Returns an ICollection interface that contains the keys in the hash table. There is not much we can do
with an ICollection object except copy it to an array of Objects using its CopyTo method, as the following
example illustrates.

Example

Dim hshStates As New Hashtable

Dim iColl As ICollection

Dim aKeys(), sKey As String

hshStates.Add("NY", "New York")

hshStates.Add("MI", "Michigan")

hshStates.Add("CA", "California")

hshStates.Add("WI", "Wisconsin")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hshStates.Add("VT", "Vermont")

hshStates.Item("WA") = "Washington"

hshStates.Item("AK") = "Alaska"

Redim aKeys(hshStates.Count - 1)

iColl = hshStates.Keys

iColl.CopyTo(aKeys, 0)

for each sKey in aKeys

 Console.WriteLine(hshStates.Item(sKey))

Next

Programming Tips and Gotchas

You can work around the inconvenience of calling the ICollection object's CopyTo method to convert the
interface to another object by defining a class that inherits from or implements ICollection.

See Also

Hashtable.Values Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Remove Method

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Remove(key)
hashtablevariable (required; Hashtable object)

A reference to a Hashtable object
key (required; Object)

The key whose key/value pair is to be removed

Return Value

None

Description

Removes an element from a hash table

Rules at a Glance

If key is found in the hash table, the member is removed, and the Count property is decreased by
one.

If key is not found in the hash table, the hash table remains unchanged, and no exception is thrown.

Programming Tips and Gotchas

For cases in which you need to know whether the call to the Remove method has actually removed a key,
you can call the ContainsKey method beforehand to make sure that the key you want to remove actually
exists.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hashtable.Values Property

Class

System.Collections.Hashtable

Syntax

hashtablevariable.Values()
hashtablevariable (required; Object)

A reference to a Hashtable object

Return Value

An ICollection object containing the values in the hash table

Description

Returns an ICollection object that contains the values in the hash table. There is not much we can do
with an ICollection object except copy it to an array of objects.

See Also

Hashtable.Keys Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hex Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Hex(number)
number (required; Numeric or String)

A valid numeric or string expression

Return Value

String representing the hexadecimal value of number

Description

Returns a string that represents the hexadecimal value of number

Rules at a Glance

If number contains a fractional part, it will be automatically rounded to the nearest whole number
before the Hex function is evaluated.

number must evaluate to a numeric expression that ranges from -2,147,483,648 to 2,147,483,647. If
the argument is outside of this range, runtime error 6, "Overflow," results.

The return value of Hex is dependent upon the value and type of number:

number Return value

Nothing Zero (0)

Any other number Up to eight hexadecimal characters

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the value of number is known beforehand and is not the result of an expression, you can represent the
number as a hexadecimal by simply affixing &H to number. Each of the following two statements assigns a
hexadecimal value to a variable, for instance:

lngHexValue1 = &HFF ' Assigns 255

lngHexValue2 = "&H" & Len(dblNumber) ' Assigns 8

See Also

Oct Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hour Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Hour(timevalue)
timevalue (required; date)

Date variable or literal date

Return Value

An Integer from 0 to 23, specifying the hour of the day

Description

Extracts the hour element from a time expression

Example

The line:

MsgBox(Hour(#1:33:00 PM#))

displays the number 13.

Rules at a Glance

Regardless of the time format passed to Hour, the return value will be a whole number between 0
and 23, representing the hour of a 24-hour clock.

If time contains Nothing, 0 is returned, so be careful here to check for Nothing.

You can also use the DatePart function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Minute Function, Second Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDataObject Interface

Namespace

System.Windows.Forms

Createable

No

Description

The IDataObject interface is used by the Clipboard for data-transfer operations. It is also used for drag-
and-drop operations. An instance of the IDataObject interface is returned by the Clipboard object's
GetData method.

Public Instance Methods

Those methods marked with a plus sign (+) are covered in more detail in their own entries:

GetData +
GetDataPresent +
GetFormats +
SetData

VB.NET/VB 6 Differences

The IDataObject interface is new to VB.NET.

See Also

Clipboard Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDataObject.GetData Method

Class

System.Windows.Forms.IDataObject

Syntax

GetData(format [,autoconvert])
format (required; String or Type object)

Field member of the DataFormats class (see later for more information on this) or a Type object
representing the format of the data

autoconvert (optional; Boolean)

True to convert the data to the specified format

Return value

An Object that contains Clipboard data in the specified format

Description

Retrieves the data of the given format, optionally converting the data format

Rules at a Glance

The format argument can be one of the following string values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

If format is a string, the autoconvert argument can be supplied in the method call.

If the GetData method cannot find data in format, it attempts to convert the data to format. If the
data cannot be converted to the format, or if the data was stored with autoconvert set to False, the
method returns Nothing.

Example

The following example extracts the text that is currently on the Clipboard:

' Declare IDataObject variable and get clipboard IDataObject

Dim di As IDataObject = Clipboard.GetDataObject

Dim obj As Object

' Call GetData method of IDataObject object to get clipboard data

obj = di.GetData(DataFormats.Text, False)

' Show the text, if any

If obj Is Nothing Then

 MsgBox("No text on clipboard.")

Else

 MsgBox(CStr(obj))

End If

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDataObject.GetDataPresent Method, IDataObject.GetFormats Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDataObject.GetDataPresent Method

Class

System.Windows.Forms.IDataObject

Syntax

GetDataPresent(format [,autoconvert])
format (required; String or Type object)

Field member of the DataFormats class (see later for more information on this) or a Type object
representing the format of the data for which to search

autoconvert (optional; Boolean)

True to convert the data to the specified format

Return value

Boolean value indicating whether the Clipboard holds data of the specified format or of a format that can
be converted to format

Description

Returns a Boolean value indicating whether the Clipboard holds data of the specified format or of a format
that the present data can be converted to

Rules at a Glance

The format argument can be one of the following string values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms object)
DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

If format is a string, the autoconvert argument can be supplied in the method call. A value of False
indicates that the function should determine whether the data stored by the IDataObject instance is
in the format defined by format; a value of True indicates that the function should determine whether
the data stored by the IDataObject instance is in or is capable of being converted to the format
defined by format.

Example

The following code will inform us whether the Clipboard contains a bitmap:

Dim di As IDataObject

di = clipboard.GetDataObject

MsgBox(di.GetDataPresent(Dataformats.Bitmap))

See Also

IDataObject.GetData Method, IDataObject.GetFormats Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDataObject.GetFormats Method

Class

System.Windows.Forms.IDataObject

Syntax

GetDataFormats([autoconvert])
autoconvert (optional; Boolean)

True to retrieve all formats that the Clipboard data is associated with or can be converted to; False
to retrieve only native data formats

Return Value

A String array containing a list of all supported formats

Description

Retrieves a list of all the formats that the Clipboard data is associated with or can be converted to

Rules at a Glance

The elements in the array returned by the method can take any of the following values:

DataFormats.Bitmap
DataFormats.CommaSeparatedValue
DataFormats.Dib
DataFormats.Dif
DataFormats.EnhancedMetafile
DataFormats.FileDrop
DataFormats.Html
DataFormats.Locale
DataFormats.MetafilePict
DataFormats.OemText
DataFormats.Palette
DataFormats.PenData
DataFormats.Riff
DataFormats.Rtf
DataFormats.Serializable (a format that encapsulates any type of Windows Forms object)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataFormats.StringFormat
DataFormats.SymbolicLink
DataFormats.Text
DataFormats.Tiff
DataFormats.UnicodeText
DataFormats.WaveAudio

See Also

IDataObject.GetData Method, IDataObject.GetDataPresent Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IEEERemainder Function

Class

System.Math

Syntax

Math.IEEERemainder(x, y)
x and y (required; Double)

Return Value

Returns the remainder after dividing x by y

Description

Returns a Double whose value is the remainder after dividing x by y

Example

Math.IEEEremainder(4, 3) ' Returns 1

Rules at a Glance

VB has a built-in Mod operator that also returns the remainder upon division.

The IEEERemainder function complies with the remainder operation as defined in Section 5.1 of
ANSI/IEEE Std 754-1985; IEEE Standard for Binary Floating-Point Arithmetic; Institute of Electrical
and Electronics Engineers, Inc; 1985.

Programming Tips and Gotchas

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IEEERemainder function is new to the .NET Framework.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If...Then...Else Statement

Syntax

If condition Then

 [statements]

[ElseIf condition-n Then

 [elseifstatements] ...

[Else

 [elsestatements]]

End If

Or, you can use the single line syntax:

If condition Then [statements] [Else elsestatements]
condition (required; Boolean)

An expression returning either True or False or an object type
statements (optional)

Program code to be executed if condition is true
condition-n (optional)

Same as condition
elseifstatements (optional)

Program code to be executed if the corresponding condition-n is True
elsestatements (optional)

Program code to be executed if the corresponding condition or condition-n is False

Description

Executes a statement or block of statements based on the Boolean (True or False) value of an expression

Rules at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If condition is True, the statements following the If are executed.

If condition is False and no Else or ElseIf statement is present, execution continues with the
corresponding End If statement. If condition is False and ElseIf statements are present, the
condition of the next ElseIf is tested. If condition is False and an Else is present, the statements
following the Else are executed.

In the block form, each If statement must have a corresponding End If statement. ElseIf
statements do not have their own End If. For example:
If condition Then

 statements

ElseIf condition Then

 statements

End If

ElseIf and Else are optional, and any number of ElseIf and Else statements can appear in the
block form. However, no ElseIf statements can appear after an Else.

condition can be any statement that evaluates to True or False.

If condition returns Null, it will be treated as False.

You can also use the If statement to determine object types by using the TypeOf and Is keywords,
as follows:
If TypeOf objectname Is objecttype Then

statements are only optional in the block form of If. However, statements are required when using
the single-line form of If in which there is no Else clause.

Programming Tips and Gotchas

You can use the single-line form of the If statement to execute multiple statements, which you can
specify by delimiting the statements using colons. However, single-line If statements are hard to
read and maintain and should be avoided for all but the simplest of situations.

In situations where you have many possible values to test, you will find the Select Case statement
much more flexible, manageable, and readable than a bunch of nested If statements.

You will come across situations in which very large blocks of code have to be executed based one or
more conditions. In these - and in all situations - you should try to make your code as readable as
possible, not only for other programmers, but for yourself, since you will probably need to revisit the
code several months down the line. For example, consider a scenario in which, at the beginning of a
procedure, a check is made to see if the procedure should be executed under a given set of
circumstances. You have the choice of surrounding the whole code with an If...Then...End If
construct, like this:
If iSuccess Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...

 ...

 ...

End If

Or you can instead check for a False condition and, if found, exit the subroutine:

If Not iSuccess Then

 Exit Sub

End If

...

...

...

The latter alternative can be much easier to read.

Indentation is important for the readability of If, and especially nested If, statements. The set of
statements within each new If...Else...EndIf block should be indented. When using the Visual
Studio IDE, you can simply select a block of code and press the tab key to indent the complete
selected block. The following example shows correctly indented code:
If x = y Then

 DoSomethingHere

 If y < z Then

 DoSomethingElseToo

 Else

 DoAnotherThing

 If z - 1 = 100 Then

 DoAThing

 End If

 End If

Else

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DoAlternative

End If

You may often run into code such as:
If iSuccess Then ...

where iSuccess is an Integer variable. The statement works because Visual Basic interprets all non-
zero values as equal to Boolean True and all zero values as equal to Boolean False. However, if
Option Strict is on, statements such as these will generate a compiler error, since VB.NET will not
automatically convert the iSuccess integer to the Boolean required by the If statement.

Logical comparison operators can be included in the condition expression, allowing you to make
decisions based on the outcome of more than one individual element. The most common of these is
And and Or. You can create conditions like:
If (x = 0) Or (1/x = 2) Then

Note the use of parentheses to improve readability.

VB.NET has introduced the AndAlso and OrElse operators, which work exactly like the And and Or
operators, respectively, except that they evaluate the statement parts from left to right only until
enough information is obtained to determine the truth value of the whole statement. For example,
consider the statement
If (X AndAlso Y) Then

If X is False, then Y is not evaluated because the entire statement is False regardless of the truth
value of Y. This is referred to as short-circuiting. It provides a significant advantage in case
evaluation of Y would produce an error. For example, we want to employ short-circuiting in the
following case

If (x <> 0) AndAlso (1/x > 10) Then . . .

because in this case if x = 0, then the statement 1/x>10 will produce an error if it is evaluated.

The If statement is also used with objects to determine if an object variable is Nothing. This is done
using the Is operator:
If Not (objectvar Is Nothing) Then

See Also

IIf Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IIf Function

Class

Microsoft.VisualBasic.Interaction

Syntax

IIf(expression, truepart, falsepart)
expression (required; Boolean)

Expression to be evaluated
truepart (required; any value or expression)

Expression or value to return if expression is True
falsepart (required; any value or expression)

Expression or value to return if expression is False

Return Value

The value or result of the expression indicated by truepart or falsepart

Description

Returns one of two results, depending on whether expression evaluates to True or False

Rules at a Glance

IIf will evaluate only one of truepart or falsepart, depending on the value of expression.

The IIf function is the equivalent of:
If testexpression Then

 Return truepart

Else

 Return falsepart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End If

truepart and falsepart can be a variable, constant, literal, expression, or the return value of a
function call.

Programming Tips and Gotchas

The IIf function is ideal for very simple tests resulting in single expressions. If you really feel the
need, IIf function calls can be nested; however, your code can very quickly become difficult to read.
The following code fragment illustrates the use of a nested IIf function:
Dim x As Integer

x = CInt(Text1.Text)

MsgBox(IIf(x < 10, "Less than ten", IIf(x < 20, _

 "Less than 20", "Greater than 20")))

In previous versions of VB, developers tended to avoid the IIf function in favor of the If statement for
all but the most simple uses because of its poor performance. In VB.NET, the performance of IIf has
been improved significantly, although it remains significantly slower than an If statement. The
average number of seconds required to call the IIf function a million times and to execute an
If...ElseIf...Else...End If statement a million times under the two VB versions showed the
following differences:

 IIf function If statement

VB 6 11.09 0.52

VB.NET 6.12 0.02

In other words, the performance of IIf from VB 6 to VB.NET has improved by 100%. At the same
time, the function is over 300 times slower than an If statement under VB.NET!

See Also

If...Then...Else Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implements Keyword

Syntax

Implements interfacename.interfacemember [, ...]
interfacename (required; String literal)

The name of the interface being implemented by a class
interfacemember (required; String literal)

The name of the interface property, function, procedure, or event that is being implemented by a
class

Description

Indicates that a class member provides the implementation of a member defined in an interface

Rules at a Glance

The Implements keyword can only be used in a class module in which the Implements statement has
been used to define an abstract base class that the class is to implement.

The Implements keyword follows the property, function, procedure, or event definition, and must be
on the same line.

The class member implementing the interface member must be of the same type (property, function,
procedure, or event) as the interface member, and its argument list and, in the case of functions and
properties, return type must also be identical to that of the interface member.

Class members must implement all of the members declared in the interface.

Example

See the example in the Implements Statement entry.

VB.NET/VB 6 Differences

The Implements keyword is new to VB.NET. Its addition means that the implementation of a
property, function, procedure, or event does not have to use the name defined by the interface. This
modifies the VB 6 practice, which requires that class members that implement an interface definition

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have the form interfacename_membername.

VB 6 does not allow derived classes to implement events defined in interfaces. VB.NET removes this
restriction.

See Also

Implements Statement, Interface Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Implements Statement

Syntax

Implements InterfaceName [,InterfaceName][,...]
InterfaceName (required; String literal)

The name of the interface that a class implements

Description

The Implements statement specifies that you will implement an interface within the class in which the
Implements statement appears.

Rules at a Glance

Implementing an interface or class means that the implementing class will provide code to implement
every Public member of the implemented interface or class. If you fail to implement even a single
Public member, an error will result.

The Implements statement cannot be used in a standard module; it is used only in class modules.

By convention, interface names begin with a capital I, as in IMyInterface.

For more information on this topic, see Chapter 4.

Example

Friend Interface IAnimal

 ReadOnly Property Name() As String

 Function Eat() As String

 Function SoundNoise() As String

End Interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Class CWolf

 Implements IAnimal

 Public ReadOnly Property Name() As String _

 Implements IAnimal.Name

 Get

 Return "Wolf"

 End Get

 End Property

 Public Function Eat() As String Implements IAnimal.Eat

 Eat = "caribou, salmon, other fish"

 End Function

 Public Function Sound() As String Implements IAnimal.SoundNoise

 Sound = "howl"

 End Function

End Class

Module modMain

Public Sub Main

 Dim oWolf As New CWolf

 Console.WriteLine(oWolf.Sound)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 oWolf = Nothing

End Sub

End Module

Programming Tips and Gotchas

If you do not wish to support a procedure from the implemented class, you must still create a
procedure declaration for the implemented procedure. However, you can simply raise an error using
the special error constant Const E_ NOTIMPL = &H80004001 so a user will know that the member is not
implemented in any meaningful way. Alternately, you can also raise a NotImplementedException
exception.

Interfaces, or abstract base classes, allow for greater coherence when developing in teams. For
example, all developers could use a set of interfaces to produce controls and objects of a particular
type without being constrained by implementation. That is, each developer would be free to
implement a particular property or method in the way that he saw fit.

Maintaining compatibility across multiple versions dictates that interfaces should not change once
they have been written and distributed. Any additional functionality required should be provided by
defining additional interfaces.

VB.NET provides only single inheritance using the Inherits statement. However, by using interface-
based inheritance with the Implements statement, you can in effect implement multiple inheritance.

VB.NET/VB 6 Differences

In VB 6, the Implements statement does not support events; any events publicly declared in an
interface are ignored. VB.NET, on the other hand, allows derived classes to trap the events defined
in interfaces.

See Also

Implements Statement, Interface Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports Statement

Syntax

Imports [aliasname =] namespace [.element]
aliasname (optional; String literal)

The name by which the namespace will be referenced in the module
namespace (required; String literal)

The name of the namespace being imported
element (optional)

The name of an element in the namespace

Description

Imports namespaces or parts of namespaces, making their members available to the current module

Rules at a Glance

A single Imports statement can import one namespace.

A module can have have as many Imports statements as needed.

Imports statements are used to import names from other projects and assemblies, as well as from
namespaces in the current project.

Imports statements must be placed in a module before references to any identifiers (e.g., variables,
classes, procedures, functions, etc.).

namespace must be a fully qualified namespace name, even if you use the /rootnamespace compiler
option or supply a value for the "Root namespace" text box in the General tab of a project's
Properties dialog in Visual Studio.

If aliasname is absent from an Imports statement, types in that namespace can be referenced
without qualification.

If aliasname is present in an Imports statement, types in that namespace must be qualified with
aliasname in order to be accessible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name aliasname must not be assigned to any other member within the module.

If element is specified, it can be the name of an enumeration, structure, class, or module within the
namespace. If specified, this restricts importation to members of that element only.

Programming Tips and Gotchas

In ASP.NET, a number of namespaces are imported automatically. These include System.Web and
its child namespaces.

You do not use the Imports statement to import namespaces into an ASP.NET application. Instead,
you can import a namespace into an ASP.NET application in a number of ways:

By creating an <add namespace> directive in a web.config configuration file. For example:
<compilation>

 <namespaces>

 <add namespace="System.IO" />

 ...

 </namespaces>

imports the System.IO namespace within the scope defined in the web. config file.

By adding an @ Import directive to global.asax. For example:
<%@ Import namespace="System.IO" %>

imports the System.IO namespace for the ASP.NET application.

By adding an @ Import page directive. This has the same form as the global.asax directive, and
must appear at the beginning of the page.

See Also

Namespace Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inherits Statement

Syntax

Inherits classname
classname (required; String literal)

The name of the inherited (base) class

Description

Specifies the name of the class that is being inherited, that is, the base class. The statement can appear
immediately after the Class statement or the Interface statement.

Rules at a Glance

The Inherits statement must be the first line of code in the class module. It can be preceeded only
by blank lines or comments. For example:
Public Class CDerivedClass

 Inherits CBaseClass

 ...

VB.NET supports single code-based inheritance only. That is, there can be only a single Inherits
statement in any class module.

If the Inherits statement is used to define the interfaces inherited by an interface, multiple
interfaces can be listed, with a comma used to delimit them. For example:
 Interface IPerson

 Property Name As String

 End Interface

 Interface IEmployee

 Property SSN As String

 End Interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface ISalaried

 Inherits IPerson, IEmployee

 Property Salaried As Boolean

 Property Salary As Decimal

 End Interface

Programming Tips and Gotchas

The Inherits statement implements code inheritance. You can also use the Implements statement to
implement interface inheritance. In that case, a class can be derived from more than one virtual base
class. (In other words, you can effectively implement multiple inheritance through interface inheritance
using the Implements statement.)

See Also

Class Statement, Interface Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Input Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Input(filenumber,value)
filenumber (required; Integer)

Any valid file number
value (required; any)

Data to read from file

Description

Reads delimited data from a file into variables. This statement is used to read files that were created using
the Write procedure, in which case the items are comma delimited with quotation marks around strings.

Rules at a Glance

Data read by Input has usually been written using the Write procedure.

Use this statement with files that have been opened in Input or Binary mode only.

If value is numeric and the Input procedure encounters non-numeric data, an InvalidCastException
exception occurs.

The Input procedure strips off the quotation marks that it finds around strings.

After the Input procedure reads value, it advances the file pointer to the next unread variable or, if
the file contains no additional delimited data, to the end of the file.

If the end of the file is reached during the operation of the Input procedure, an error is generated.

The Input procedure assigns string or numeric data to value without modification. However, other
types of data can be modified as shown in the following table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data Value assigned to variable

Delimiting comma or blank line "" (empty string)

#TRUE# or #FALSE# True or False

#yyyy-mm-dd hh:mm:ss# Date and/or time

Note that #TRUE# and #FALSE# are case sensitive.

Example

If the file c:\data.txt contains the following data:

"one", "two", "three"

then the following code will print each string on a separate line in the Output window:

Dim fr As Integer = FreeFile()

Dim sLine As String

FileOpen(fr, "c:\data.txt", OpenMode.Input)

Do While Not EOF(fr)

 Input(fr, sLine)

 Console.WriteLine(sLine)

Loop

FileClose(fr)

Programming Tips and Gotchas

Use the EOF function to determine whether the end of the file has been reached.

Use the Write procedure to write data to a file, since Write delimits data fields correctly. This ensures
that the data can be read correctly with the Input procedure.

VB.NET/VB 6 Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The VB.NET Input procedure corresponds to the VB 6 Input procedure, with a number of significant
differences:

The # symbol, which optionally preceded filenumber in VB 6, is not supported in VB.NET.

In VB 6, the value argument could be a comma-delimited list of variables. In VB.NET, it must be a
single variable of any type.

In VB 6, if value is numeric and the data read from the file is not numeric, value is initialized to the
default value for that type. In VB.NET, this generates an exception.

In addition to the standard data types, VB 6 also recognizes Empty, Null, and Error types. In VB.NET,
these are not supported.

See Also

Write Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InputBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax

InputBox(prompt[, title] [, defaultresponse] [, xpos] _

 [, ypos])
prompt (required; String)

The message in the dialog box
title (optional; String)

The title bar of the dialog box
defaultresponse (optional; String)

String to be displayed in the text box on loading
xpos (optional; Numeric)

The distance in twips from the left-hand side of the screen to the left-hand side of the dialog box
ypos (optional; Numeric)

The distance in twips from the top of the screen to the top of the dialog box

Return Value

A String containing the contents of the text box from the InputBox dialog box

Description

Displays a dialog box containing a prompt for the user, a text box for entering data, and an OK, a Cancel,
and (optionally) a Help button. When the user clicks OK, the function returns the contents of the text box.

Rules at a Glance

If the user clicks Cancel, a zero-length string ("") is returned. Thus, once again, Microsoft has
apparently made it impossible for us to distinguish when the user enters the empty string and when
the user hits the Cancel button.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prompt can contain approximately 1,000 characters, including nonprinting characters like the intrinsic
vbCrLf constant.

If the title argument is omitted, the name of the current application or project is displayed in the title
bar.

If you don't use the default parameter to specify a default entry for the text box, the text box is
shown as empty, and a zero-length string is returned when the user does not enter anything in the
text box prior to clicking OK.

xpos and ypos are specified in twips.

If the xpos parameter is omitted, the dialog box is centered horizontally.

If the ypos parameter is omitted, the top of the dialog box is positioned approximately one-third of the
way down the screen.

Programming Tips and Gotchas

If you are omitting one or more of the optional arguments and are using subsequent arguments, you
must use a comma to signify the missing parameter. For example, the following code fragment will
display a prompt, a default string in the text box, and the Help button, but default values will be used
for the title and positioning.
Dim sString As String = InputBox("Enter it now", , _

 "Something")

Note that InputBox returns a string. Your code is responsible for converting it to the required data
type before using it.

See Also

MsgBox Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InputString Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

InputString(filenumber, charcount)
filenumber (required; Integer)

Any valid file number
charcount (required; Integer)

Number of characters to read from file

Return Value

A String containing charcount characters

Description

Reads data from a file into a string variable

Rules at a Glance

InputString should only be used with files opened in input (OpenMode.Input) or binary mode
(OpenMode.Binary).

InputString begins reading from the current position of the file pointer.

InputString returns all the characters it reads, regardless of their type. This include spaces, carriage
returns, linefeeds, commas, end-of-file markers, unprintable characters, etc.

Once the function finishes reading charcount characters, it also advances the file pointer charcount
characters.

Example

If the file c:\data.txt contains the data:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

abcdefghijklmnopq

the following code reads the characters, three at a time:

Dim fr As Integer = FreeFile()

Dim sLine As String

Dim i As Long

FileOpen(fr, "c:\data2.txt", OpenMode.Input)

For i = 1 To LOF(fr) \ 3

 sLine = InputString(fr, 3)

 Console.WriteLine(sLine)

Next

FileClose(fr)

Programming Tips and Gotchas

InputString reads data written to a file using the Print, PrintLine, or FilePut functions.

InputString always attempts to precisely read charcount characters from the file. If there are no
charcount characters from the position of the file pointer to the end of the file, InputString attempts to
read beyond the end of the file, thereby generating an exception. To prevent this, you should use the
LOF function after opening the file to ensure that you don't attempt to read past the end-of-file
marker.

VB.NET/VB 6 Differences

Though a new function in VB.NET, InputString directly corresponds to the Input, Input$, InputB, and
InputB$ functions in VB 6.

The order of parameters is reversed in VB.NET and VB 6. In VB 6, the first parameter is charcount,
and the second is filenumber.

The # symbol, which optionally preceded filenumber in VB 6, is not supported in VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

FilePut, FilePutObject Procedures, Print, PrintLine Procedures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InStr Function

Class

Microsoft.VisualBasic.Strings

Syntax

InStr(start, string1, string2[, compare])

or:

InStr(string1, string2[, compare])
start (required in first syntax; Numeric)

The starting position for the search
string1 (required; String)

The string being searched
string2 (required; String)

The string being sought
compare (optional; CompareMethod enumeration)

The type of string comparison

Return Value

An Integer indicating the position of the first occurrence of string2 in string1

Description

Finds the starting position of one string within another

Rules at a Glance

The return value of InStr is influenced by the values of string1 and string2, as the following table
details:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Condition InStr return value

string1 is zero-length or Nothing 0

string2 is zero-length or Nothing start

string2 not found 0

string2 found within string1 Position at which the start of string2 is found

start > len(string2) 0

In the second syntax, InStr commences the search with the first character of string1.

If the start argument is 0 or Nothing, an error occurs.

The compare argument can be one of CompareMethod.Binary (a case- sensitive comparison) or
CompareMethod.Text (a case-insensitive comparison). If comparemode is omitted, the type of
comparison is determined by the Option Compare setting.

See Also

InStrRev Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InStrRev Function

Class

Microsoft.VisualBasic.Strings

Syntax

InstrRev(stringcheck, stringmatch[, start[, compare]])
stringcheck (required; String)

The string to be searched.
stringmatch (required; String)

The substring to be found within stringcheck.
start (optional; Numeric)

The starting position of the search. If no value is specified, start defaults to 1.
compare (optional; CompareMethod enumeration)

A constant indicating how stringcheck and stringmatch should be compared.

Return Value

Long

Description

Determines the starting position of a substring within a string by searching from the end of the string to its
beginning

Rules at a Glance

While InStr searches a string from left to right, InStrRev searches a string from right to left.

The compare argument can be one of CompareMethod.Binary (for a case- sensitive search) or
CompareMethod.Text (for a case-insensitive search). If compare is omitted, the type of comparison is
binary. Note that Option Compare is not used, unlike with the InStr function.

start designates the starting point of the search as counted from the start of stringcheck. To start
the search at the end of stringcheck, either omit the start argument or set it to -1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If stringmatch is not found, InStrRev returns 0.

If stringmatch is found within stringcheck, the value returned by InStrRev is the position of
stringcheck from the start of the string.

Example

This example uses both InStr and InStrRev to highlight the different results produced by each. Using a
stringcheck of "I like the functionality that InStrRev gives", InStr finds the first occurrence of "th" at
character 8, while InStrRev finds the first occurrence of "th" at character 26.

Dim myString, sSearch As String

myString = "I like the functionality that InsStrRev gives"

sSearch = "th"

Console.WriteLine(InStr(myString, sSearch))

Console.WriteLine(InStrRev(myString, sSearch))

See Also

InStr Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Int Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Int(number)
number (required; any valid numeric data type)

The number to be processed

Return Value

Returns a value of the data type passed to it

Description

Returns the integer portion of a number

Rules at a Glance

The fractional part of number is removed, and the resulting integer value is returned. Int does not
round number to the nearest whole number. For example, Int(100.9) returns 100.

If number is negative, Int returns the first negative integer less than or equal to number. For example,
Int(-10.1) returns -11.

Programming Tips and Gotchas

Int and Fix work identically with positive numbers. However, for negative numbers, Fix returns the
first negative integer greater than number, while Int returns the first negative integer less than number.
For example, Fix(-10. 1) returns -10, while Int(-10.1) returns -11.

Don't confuse the Int function with CInt. CInt casts the number passed to it as an Integer data type,
whereas Int returns the same data type that was passed to it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

CInt Function, Fix Function, Round Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface Statement

Syntax

[accessmodifier] [Shadows] Interface name

...statements

End Interface
accessmodifier (optional; Keyword)

One of the following keywords, which determines the visibility of the interface:

Public (optional; Keyword)

Indicates that the interface is publicly accessible anywhere both inside and outside of the
project.

Private (optional; Keyword)

Indicates that the interface is accessible to any nested types, as well as to the type (if any) in
which it is defined.

Protected (optional; Keyword)

Indicates that the interface is accessible only to derived classes; a protected interface can
only be declared inside of a class.

Friend (optional; Keyword)

Indicates that the interface is accessible only within the project that contains the interface
definition.

Protected Friend (optional; Keyword)

Indicates that the interface is declard inside of a class and that it is accessible throughout the
project that contains the interface definition, as well as to derived classes.

Shadows (optional; Keyword)

Indicates that the interface shadows an identically named element in a base class.
name (required; String literal)

The name of the interface
statements (required)

Code that defines the interface members that derived classes must implement

Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Defines a virtual base class along with its public members. The interface can then be implemented by
derived classes using the Implements statement.

Rules at a Glance

The standard naming conventions for name apply. However, by convention, interface names
generally begin with the letter I.

If accessmodifier is omitted, the interface is Public by default.

The interface definition (statements) may contain the following elements:

Inherits statement

Indicates that name inherits its properties and methods from another interface. Its syntax is:
Inherits interfacename[, interfacename...]

where interfacename is the name(s) of the interface(s) from which name inherits.

Property definitions

Property definitions take the form:
[Default] Property procname([arglist]) As type

where procname is the name of the property, Default indicates that procname is a property array
(whose argument list is defined by arglist) that is the interface's default property, and type indicates
the data type of the property. The ReadOnly and WriteOnly keywords can also be used.

Function definitions

Functions are defined as follows:
Function membername([arglist]) As type

where membername is the name of the function, arglist defines the number and type of arguments
that can be passed to the procedure, and type indicates the function's return value.

Procedure definitions

Procedures are defined as follows:
Sub membername[(arglist)]

where membername is the name of the procedure, and arglist specifies the number and type of
arguments that can be passed to the procedure.

Event definitions

Events are defined as follows:
Event membername[(arglist)]

where membername is the name of the event, and arglist defines the number and type of arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that are passed back to an event handler whenever the event is fired.

In each case, the syntax of the statement is different from the "standard" VB.NET syntax. Access
modifiers, for instance, are not permitted as a part of interface member definitions, nor are End...
statements, such as End Function, End Sub, or End Property.

The name interface cannot inherit from an interface whose access type is more restrictive than its
own. For example, if name is a Public interface, it cannot inherit from a Friend interface.

Classes that implement the interface must implement each of its methods, which must have the
same argument list and, in the case of functions and properties, return a value of the same data type
as specified by the interface definition.

Rules at a Glance

An interface can only inherit from another interface that has equal or wider accessability. Thus, for
instance, a Public interface cannot inherit from a Private interface, but the reverse is allowed.

Programming Tips and Gotchas

An interface can have only one default property. This includes properties defined in base interfaces, as
well as in the interface itself.

VB.NET/VB 6 Differences

The Interface...End Interface construct is new to VB.NET. In VB 6, an interface is defined by creating a
class module whose members have no implementation.

See Also

Implements Keyword, Implements Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

IPmt(rate, per, nper, pv[, fv[, due]])
rate (required; Double)

The interest rate per period.
per (required; Double)

The period for which a payment is to be computed.
nper (required; Double)

The total number of payment periods.
pv (required; Double)

The present value of a series of future payments.
fv (optional; Double)

The future value or cash balance after the final payment. If omitted, the default value is 0.
due (optional; DueDate enumeration)

A value indicating when payments are due. DueDate.EndOfPeriod (or 0) indicates that payments are
due at the end of the payment period; DueDate. BegOfPeriod (or 1) indicates that payments are due
at the beginning of the period. If omitted, the default value is DueDate.EndOfPeriod.

Return Value

A Double representing the interest payment

Description

Computes the interest payment for a given period of an annuity based on periodic, fixed payments and a
fixed interest rate. An annuity is a series of fixed cash payments made over a period of time. It can be
either a loan payment or an investment.

Rules at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The value of per can range from 1 to nper.

If pv and fv represent liabilities, their value is negative; if they represent assets, their value is
positive.

Example

The ComputeSchedule function accepts a loan amount, an annual percentage rate, and a number of
payment periods. It uses the Pmt function to calculate the payment per period, then returns a two-
dimensional array in which each subarray contains the number of the period, the interest paid for that
period, and the principal paid for that period.

Private Function ComputeSchedule(dblAmount As Double, _

 dblRate As Double, dblNPer As Double) _

 As Object(,)

 Dim dblIPmt, dblPmt, dblPrincipal As Double

 Dim intPer As Integer

 Dim strFmt As String

 Dim objArray(,) As Object

 ReDim objArray(CInt(dblNPer), 2)

 strFmt = "###,###,##0.00"

 dblPmt = Pmt(dblRate / 12, dblNPer, -dblAmount, 0, 0)

 For intPer = 1 To CInt(dblNPer)

 dblIPmt = IPmt(dblRate / 12, intPer, dblNPer, -dblAmount)

 dblPrincipal = PPmt(dblRate / 12, intPer, dblNPer, _

 -dblAmount)

 dblAmount = dblAmount - dblPrincipal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 objArray(intPer, 0) = intPer & "."

 objArray(intPer, 1) = Format(dblIPmt, strFmt)

 objArray(intPer, 2) = Format(dblPrincipal, strFmt)

 Next

 ComputeSchedule = objArray

 End Function

Programming Tips and Gotchas

rate and nper must be expressed in the same time unit. That is, if nper reflects the number of
monthly payments, rate must be the monthly interest rate.

The interest rate is a percentage expressed as a decimal. For example, if nper is the total number of
monthly payments, an annual percentage rate (APR) of 12% is equivalent to a monthly percentage
rate of 1%. The value of rate is therefore .01.

See Also

FV Function, NPer Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IRR Function

Class

Microsoft.VisualBasic.Financial

Syntax

IRR(valuearray()[, guess])
valuearray() (required; array of Double)

An array of cash flow values
guess (optional; Double)

Estimated value to be returned by the function

Return Value

A Double representing the internal rate of return

Description

Calculates the internal rate of return for a series of periodic cash flows (payments and receipts).

The internal rate of return is the interest rate generated by an investment consisting of payments and
receipts that occur at regular intervals. It is generally compared to a "hurdle rate," or a minimum return, to
determine whether a particular investment should be made.

Rules at a Glance

valuearray must be a one-dimensional array that contains at least one negative value (a payment)
and one positive value (a receipt).

Individual members of valuearray are interpreted sequentially. That is, valuearray(0) is the first
cash flow, valuearray(1) is the second, etc.

If guess is omitted, the default value of 0.1 is used.

IRR begins with guess and uses iteration to derive an internal rate of return that is accurate to within
0.00001 percent. If IRR cannot do this within 20 iterations, the function fails.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

Each element of valuearray represents a payment or a receipt that occurs at a regular time interval.
If this is not the case, IRR will return erroneous results.

If the function fails because it could not calculate an accurate result in 20 iterations, try a different
value for guess.

See Also

MIRR Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Is Operator

Syntax

object1 Is object2
object1 (required; Object or any reference type)

object2 (required; Object or any reference type)

Return Value

Boolean

Description

Compares two object variables or reference variables to determine whether they reference the same
object

Rules at a Glance

Both object1 and object2 must be reference-type variables. This includes string variables, object
variables, and array variables, for instance.

The operation returns a result of True if the references are identical and False if they are not.

It is also possible to determine whether an object contains a valid reference by replacing object2
with the special Nothing keyword. For example:
If oDrive Is Nothing Then

returns True if oDrive does not refer to an object and False if it does. This is the only method that
should be used to test for an uninitialized object reference.

Programming Tips and Gotchas

You can call the IsReference function to ensure that both object1 and object2 are reference types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You may wonder why there is a special Is operator for reference types. When you perform a
comparison of scalar variables, you want to know if their values are the same. But in the case of
objects, you want to know if two references point to a single object. (Since many objects have
identical property values, a test for equal values is meaningless.) Hence, the Is operator is used for
this purpose.

Typically, the Is operator is used in an If...Then...Else construct to take some action if two
reference-type variables are the same or if a reference type variable does not point to a valid object.

The Is operator also can be used with the TypeOf operator and the If...Then... construct to
determine the type of an object variable. For example:
If TypeOf(sName) Is String Then

If the variable passed to the TypeOf operator is a reference type, it must hold a valid object reference
in order for the type comparison to be True.

The Is operator reports that uninitialized reference types are equal. For instance, the Is operator
reports that all of the following are equal:
Dim obj1 As Object

Dim obj2 As Object

If obj1 Is obj2 Then ' Evaluates to True

Dim arrSt1() As String

Dim arrSt2() As String

If arrSt1 Is arrSt2 Then ' Evaluates to True

Dim str1 As String

Dim str2 As String

If str1 Is str2 Then ' Evaluates to True

VB.NET/VB 6 Differences

In VB.NET, strings and arrays are reference types. In VB 6, strings and arrays are not reference types and,
therefore, cannot be used with the Is operator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsArray Function

Class

Microsoft.VisualBasic.Information

Syntax

IsArray(varname)
varname (required; any variable)

A variable that may be an array

Return Value

Boolean (True or False)

Description

Tests whether an object variable points to an array

Rules at a Glance

If the variable passed to IsArray is an array or contains an array, True is returned; otherwise, IsArray
returns False.

Example

The following code displays True:

Dim s() As Integer = {1, 2}

Dim t As Object

t = s

MsgBox(IsArray(t))

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Due to the nature of Objects, it is not always obvious if an Object variable contains an array,
especially if you have passed the variable to a function and the function may or may not have
attached an array to the variable. Calling the array function UBound or trying to access an element in
an array that does not exist will generate an error. In these situations, you should first use the IsArray
function to determine if you can safely process the array.

An uninitialized array returns False. For example:
Dim strArr() As String

Console.WriteLine(IsArray(strArr)) ' Returns False

Array-like data structures, such as the Collection object, return False when passed to the IsArray
function.

VB.NET/VB 6 Differences

In VB 6, the IsArray function returns True when passed an uninitialized array. In VB.NET, it returns False.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsDate Function

Class

Microsoft.VisualBasic.Information

Syntax

IsDate(expression)
expression (required; any)

Expression containing a date or time

Return Value

Boolean indicating whether the expression can be converted to a Date

Description

Determines if an expression is of type Date or can be converted to type Date

Rules at a Glance

Returns True if and only if expression is of type Date or can be converted to type Date.

Uninitialized date variables also return True.

Programming Tips and Gotchas

IsDate uses the locale settings of the current Windows system to determine if the value held within
the variable is recognizable as a date. Therefore, what is a legal date format on one machine may
fail on another.

IsDate is particularly useful for validating data input. However, don't use IsDate in the VB text box
control's Change event. The Change event is fired with every keystroke, which means that when the
user starts to enter the date, chances are that the date will be invalid until the point at which the user
has completed the data entry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsDBNull Function

Class

Microsoft.VisualBasic.Information

Syntax

IsDBNull(expression)
expression (required; any expression)

Return Value

Boolean

Description

Determines whether expression evaluates to DbNull (that is, is equal to System.DbNull.Value).

Rules at a Glance

DbNull is not the same as Nothing or an empty string. DbNull is used to denote the fact that a
variable contains a missing or nonexistent value, and it is used primarily in the context of database
field values.

Since any expression that contains DbNull evaluates to DbNull, an expression such as:
If var = DbNull Then

will always fail. The only way to test for a DbNull value is to use IsDbNull.

VB.NET/VB 6 Differences

The IsDBNull function is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsError Function

Class

Microsoft.VisualBasic.Information

Syntax

IsError(expression)
expression (required; Object)

An object variable that may be an Exception object

Return Value

Boolean (True if expression is an Exception object, False otherwise)

Description

Indicates whether an object is an instance of the Exception class or one of its derived classes

Example

Module modMain

Public Sub Main

Dim oUnk As Object = "This is an object of subtype String."

'Dim oUnk As Object = 10

Dim oResult As Object = Increment(oUnk)

If Not IsError(oResult) Then

 Console.WriteLine(oResult)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Else

 Console.WriteLine(oResult.Message)

End If

End Sub

Public Function Increment(o As Object) As Object

 If IsNumeric(o) Then

 o += 1

 Return o

 Else

 Dim e As New System.InvalidOperationException

 Return e

 End If

End Function

End Module

VB.NET/VB 6 Differences

In VB 6, the IsError function takes a variant argument and determines if its subtype is vbError. Most
commonly, it is used with the CVErr function to determine if the value returned from a function is an error.
In VB.NET, the IsError function is used to test whether an object is an instance of the Exception class or its
derived classes.

See Also

Exception Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsNothing Function

Class

Microsoft.VisualBasic.Information

Syntax

IsNothing(expression)
expression (required; any)

Return Value

Boolean

Description

Determines whether expression evaluates to Nothing. The line:

If IsNothing(obj) Then

is equivalent to:

If obj Is Nothing Then

VB.NET/VB 6 Differences

The IsNothing function is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsNumeric Function

Class

Microsoft.VisualBasic.Information

Syntax

IsNumeric(expression)
expression (required; any expression)

Return Value

Boolean

Description

Determines whether expression can be evaluated as a number

Rules at a Glance

If the expression passed to IsNumeric evaluates to a number, True is returned; otherwise, IsNumeric
returns False.

Programming Tips and Gotchas

If expression is a date or time, IsNumeric evaluates to False.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IsReference Function

Class

Microsoft.VisualBasic.Information

Syntax

IsReference(expression)
expression (required; any)

Return Value

Boolean

Description

Returns True if expression contains reference type data, as opposed to value type data

Rules at a Glance

IsReference returns False if expression is one of the value data types (Byte, Short, Integer, Long,
Single, Double, Boolean, Date, or Char).

IsReference returns True if expression is a reference data type (String or Object), including an
object of a specific type, such as a Collection object.

IsReference returns True if expression is an array, since an array is a reference type.

IsReference returns False if expression is a structure, since a structure is a value type.

Example

Private Class CEmployee

...

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' The following message will display

Dim obj As Object

If IsReference(obj) Then

 MsgBox("obj is reference type, but is Nothing")

End If

' The following message will display

' (CEmployee is a class module)

Dim c As New CEmployee()

If IsReference(c) Then

 MsgBox("c is reference type")

End If

' The following message does NOT display

Dim i As Integer = 4

If IsReference(i) Then

 MsgBox("Integer is reference type")

End If

Programming Tips and Gotchas

Just because a variable has been declared to be of type Object does not mean that the IsReference
function will return True when that variable is passed to it as an argument. Consider the following code:

Dim oObj As Object

Console.WriteLine(IsReference(oObj)) 'Returns True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

oObj = New CEmployee

Console.WriteLine(IsReference(oObj)) 'Returns True

oObj = 3

Console.WriteLine(IsReference(oObj)) 'Returns False

oObj = "This is a string"

Console.WriteLine(IsReference(oObj)) 'Returns True

In other words, the IsReference function returns True only if a variable of type Object is Nothing or if its
data subtype is one of the reference types (that is, an instance of a class or a string). If its data subtype is
a value type, the function returns False.

VB.NET/VB 6 Differences

The IsReference function is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Join Function

Class

Microsoft.VisualBasic.Strings

Syntax

result = Join(sourcearray, [delimiter])
sourcearray (required; String or Object array)

Array whose elements are to be concatenated
delimiter (optional; String)

Character used to delimit the individual values in the string

Return Value

String

Description

Concatenates an array of values into a delimited string using a specified delimiter

Rules at a Glance

If no delimiter is specified, the space character is used as a delimiter.

If you want to concatenate numeric or other nonstring values in sourcearray, use an Object array. If,
for example, you specify a numeric data type for sourcearray, the function will generate a compiler
error.

Programming Tips and Gotchas

The Join function is ideal for quickly and efficiently writing out a comma-delimited text file from an array of
values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Kill Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Kill(pathname)
pathname (required; String)

The file or files to be deleted

Description

Deletes a file from disk

Rules at a Glance

If pathname does not include a drive letter, the folder and file are assumed to be on the current drive.

If pathname does not include a folder name, the file is assumed to be in the current folder.

You can use the multiple-character (*) and single-character (?) wildcards to specify multiple files to
delete.

If the file is open or is set to read only, an error will be generated.

Programming Tips and Gotchas

Note that the deleted file is not placed in the Recycle Bin. However, the following code demonstrates
how to use the FileOperation API found in Shell32.DLL to move a file to the Windows Recycle Bin:
Option Explicit

'declare the file operation structure

Type SHFILEOPSTRUCT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 hWnd As Long

 wFunction As Long

 pFrom As String

 pTo As String

 fFlags As Integer

 fAborted As Boolean

 hNameMaps As Long

 sProgress As String

End Type

'declare two constants needed for the delete operation

Private Const FO_DELETE = &H3

Private Const FO_FLAG_ALLOWUNDO = &H40

'declare the API call function

Declare Function SHFileOperation Lib "shell32.dll" _

 Alias "SHFileOperationA" _

 (lpFileOp As SHFILEOPSTRUCT) As Long

Public Function WinDelete(sFileName As String) As Long

 'create a copy of the file operation structure

 Dim SHFileOp As SHFILEOPSTRUCT

 'need a Null terminated string

 sFileName = sFileName & vbNullChar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 'assign relevant values to structure

 With SHFileOp

 .wFunction = FO_DELETE

 .pFrom = sFileName

 .fFlags = FO_FLAG_ALLOWUNDO

 End With

 'pass the structure to the API function

 WinDelete = SHFileOperation(SHFileOp)

End Function

Use the RmDir procedure to delete folders.

See Also

RmDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LBound Function

Class

Microsoft.VisualBasic.Information

Syntax

LBound(array[, rank])
array (required; any array)

An array whose lower bound is to be determined
rank (optional; Integer)

The dimension whose lower bound is desired

Return Value

An Integer whose value is 0

Description

Determines the lower boundary of a specified dimension of an array. The lower boundary is the smallest
subscript you can access within the specified array.

Rules at a Glance

Unless it is passed an invalid argument, the LBound function always returns 0.

If array is uninitialized, it generates an ArgumentNullException error when passed to the LBound
function. You can prevent this by comparing array to Nothing, as in the following code fragment:
If Not oArray Is Nothing Then

To determine the lower limit of the first dimension of an array, set rank to 1, set it to 2 for the second,
and so on.

If rank isn't specified, 1 is assumed.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since VB.NET does not allow you to change the lower bound of an array, the LBound function would
appear to be superfluous except for reasons of backward compatibility. Its continued use may be a good
idea, though, in the event that a future version of VB.NET allows you to set the lower boundary of an array.

VB.NET/VB 6 Differences

Since VB 6 offers a number of ways to set the lower bound of all arrays or a specific array, the LBound
function is particularly useful when iterating the elements of an array. In VB.NET, its use is a matter of
choice.

See Also

UBound Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LCase Function

Class

Microsoft.VisualBasic.Strings

Syntax

LCase(value)
value (required; String or Char)

A valid string expression or a character

Return Value

String or Char

Description

Converts a string to lowercase

Rules at a Glance

LCase only affects uppercase letters; all other characters in value are unaffected.

LCase returns Nothing if value contains a Nothing.

LCase returns the same data type as value.

See Also

UCase Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Left Function

Class

Microsoft.VisualBasic.Strings

Syntax

Left(str, length)
str (required; String)

The string to be processed
length (required; Long)

The number of characters to return from the left of the string

Return Value

String

Description

Returns a string containing the leftmost length characters of str

Rules at a Glance

If length is 0, a zero-length string ("") is returned.

If length is greater than the length of str, str is returned.

If str is Nothing, Left returns Nothing.

Programming Tips and Gotchas

Use the Len function to determine the overall length of str.

The Left function corresponds to the BCL System.String class' Substring method. For example, the
following two assignments to the sCity variable are functionally identical:
Dim sCity As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim sLocation As String = "New York, New York"

sCity = Left(sLocation, 8)

sCity = sLocation.Substring(0, 8)

Note that the Substring method uses a zero-based index to determine the starting position of the
substring.

See Also

Mid Function, Right Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Len Function

Class

Microsoft.VisualBasic.Strings

Syntax

Len(expression)
expression (required; any)

Any valid variable name or expression

Return Value

Integer

Description

Counts the number of characters within a string or the size of a given variable

Rules at a Glance

If expression contains Nothing, Len returns 0.

For a string or String variable, Len returns the number of characters in the string.

For a nonobject and nonstructure variable, Len returns the number of bytes required to store the
variable in memory.

For a variable of type Object, Len returns the length of its data subtype. If the object is uninitialized,
its length is 0. However, if the object contains a strongly typed class instance, an
InvalidCastException exception is thrown.

For a structure, Len returns the number of bytes required to store the structure as a file. (But see the
comment in Section .)

For a strongly typed object variable, such as one defined by the Class... End Class construct, Len
generates an InvalidCastException exception.

If varname is an array, you must also specify a valid subscript. In other words, Len cannot be used to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

determine the total number of elements in or the total size of an array.

Programming Tips and Gotchas

Len cannot accurately report the number of bytes required to store structures that contain variable-
length strings. If you need to know how many bytes of storage space will be required by a structure
that includes string members, you can fix the length of the strings by using the
<vbFixedString(length)> attribute in the Structure statement. For details, see the Structure...End
Structure Statement entry.

Len is functionally similar to the BCL's System.String.Length public instance method. One significant
difference is that Len retuns a in the case of an uninitialized String variable, whereas the Length
method raises a NullReferenceException exception. In addition, of course, the Length method can
be used only on strings, whereas Len can be used on all data types other than strongly typed
objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Like Operator

Syntax

result = string Like pattern
string (required; String)

The string to be tested against pattern
pattern (required; String)

A series of characters used by the Like operator to determine if string and pattern match

Return Type

Boolean

Description

If string matches pattern, result is True; otherwise, result is False.

Rules at a Glance

If either string or pattern is Nothing, then result will be Nothing.

The default comparison method for the Like operator is Binary. This can be overridden using the
Option Compare statement.

Binary comparison is based on comparing the internal binary number representing each character;
this produces a case-sensitive comparison.

Text comparison, the alternative to binary comparison, is case insensitive; therefore, A = a.

The sort order is based on the code page currently being used, as determined by the Windows
regional settings.

The following table describes the special characters to use when creating a pattern; all other
characters match themselves.

Character Meaning

? Any single character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Meaning

* Zero or more characters

Any single digit (0-9)

[list] Any single character in list

[!list] Any single character not in list

[] A zero-length string ("")

list is used to match a group of characters in pattern to a single character in string and can
contain almost all available characters, including digits.

Use a hyphen (-) in list to create a range of characters to match a character in string. For
example, [A-D] will match A, B, C, or D in that character position in string.

Multiple ranges of characters can be included in list without the use of a delimiter. For example,
[A-D J-L].

Ranges of characters should appear in sort order. For example, [c-k].

Use the hyphen at the start or end of list to match to itself. For example, [- A-G] matches a hyphen
or any character from A to G.

The exclamation point in pattern matching is like the negation operator in C. Use an exclamation
point before a character or range of characters in list to match all but that character. For example,
[!A-G] matches all characters apart from the characters from A to G.

The exclamation point outside of the bracket matches itself.

To use any special character as a matching character, you should enclose the special character in
brackets. For example, to match to a question mark, use [?].

Example

The following example will display OK if the text entered into Text1 starts with either V or A, followed by any
characters, and ends with "in a Nutshell." Therefore, "Paul in a Nutshell" returns Wrong, whereas either
"ASP in a Nutshell" or "VB.NET Language in a Nutshell" returns OK.

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 Dim sTitle As String = "in a Nutshell"

 Dim sPattern As String = "[V A]* " & sTitle

* Zero or more characters

Any single digit (0-9)

[list] Any single character in list

[!list] Any single character not in list

[] A zero-length string ("")

list is used to match a group of characters in pattern to a single character in string and can
contain almost all available characters, including digits.

Use a hyphen (-) in list to create a range of characters to match a character in string. For
example, [A-D] will match A, B, C, or D in that character position in string.

Multiple ranges of characters can be included in list without the use of a delimiter. For example,
[A-D J-L].

Ranges of characters should appear in sort order. For example, [c-k].

Use the hyphen at the start or end of list to match to itself. For example, [- A-G] matches a hyphen
or any character from A to G.

The exclamation point in pattern matching is like the negation operator in C. Use an exclamation
point before a character or range of characters in list to match all but that character. For example,
[!A-G] matches all characters apart from the characters from A to G.

The exclamation point outside of the bracket matches itself.

To use any special character as a matching character, you should enclose the special character in
brackets. For example, to match to a question mark, use [?].

Example

The following example will display OK if the text entered into Text1 starts with either V or A, followed by any
characters, and ends with "in a Nutshell." Therefore, "Paul in a Nutshell" returns Wrong, whereas either
"ASP in a Nutshell" or "VB.NET Language in a Nutshell" returns OK.

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Button1.Click

 Dim sTitle As String = "in a Nutshell"

 Dim sPattern As String = "[V A]* " & sTitle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 If TextBox1.Text Like sPattern Then

 MsgBox("OK")

 Else

 MsgBox("Wrong")

 End If

End Sub

Programming Tips and Gotchas

Different languages place different priority on particular characters with relation to sort order.
Therefore, the same program using the same data may yield different results when run on machines
in different parts of the world, depending upon the locale settings of the systems.

Regular expressions provide an even more powerful method for searching and comparing strings.
You can use regular expressions through the .NET Framework's
System.Text.RegularExpressions.RegEx class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LineInput Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

LineInput(filenumber)
filenumber (required; Integer)

Any valid file number

Return Value

A String containing the line read from the file

Description

Assigns a single line from a sequential file opened in Input mode to a string variable

Rules at a Glance

Data is read into a buffer one character at a time until a line feed or carriage-return sequence (either
Chr(13) or Chr(13)+Chr(10)) is encountered. When this happens, all the characters in the buffer are
returned as a string, without the carriage-return sequence, and the buffer is cleared.

After reading a line, the file pointer advances to the first character after the end of the line or to the
end-of-file marker.

Example

The following code reads all of the lines in a text file and sends them to the Output window:

Dim fr As Integer = FreeFile()

Dim sLine As String

FileOpen(fr, "c:\data.txt", OpenMode.Input, OpenAccess.Read)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do While Not EOF(fr)

 Console.WriteLine(LineInput(fr))

Loop

FileClose(fr)

Programming Tips and Gotchas

You use the LineInput function to read data from text files. To write data back to this type of file, use the
PrintLine function.

VB.NET/VB 6 Differences

The VB.NET LineInput function corresponds directly to the VB 6 LineInput statement, with the following
differences:

The VB 6 LineInput statement has a second argument, varname, which is the variable to receive the
line read by the function. It is not supported by the VB.NET LineInput function, since the line read is
the return value of the function.

The first argument of the VB 6 LineInput statement, filenumber, could be preceded by the #
symbol. In VB.NET, this format is not supported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Loc Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Loc(filenumber)
filenumber (required; Integer)

Any valid file number

Return Value

A Long indicating the current position of the read/write pointer in a file

Description

Determines the current position of the file read/write pointer

Rules at a Glance

If you have opened the file in Random mode, Loc returns the record number of the last record read
or written.

If you have opened the file in Input or Output modes (sequential), Loc returns the current byte
position in the file divided by 128.

If you have opened the file in Binary mode, Loc returns the position of the last byte read or written.

Example

Dim fr As Integer = FreeFile()

Dim sChar As Char

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Do While Loc(fr) < LOF(fr)

 FileGet(fr, sChar)

 Debug.Write(Loc(fr) & ": ")

 Console.WriteLine(sChar)

Loop

Programming Tips and Gotchas

For sequential files, the return value of Loc is not required and should not be used.

Note that you cannot set the position of the file pointer using Loc.

See Also

FileOpen Procedure, LOF Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Lock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Lock(filenumber[, record])

or:

Lock(filenumber[, fromrecord,torecord]
filenumber (required; Integer)

Any valid file number
record (optional; Long)

The record or byte number at which to commence the lock
fromrecord (optional; Long)

The first record or byte number to lock
torecord (optional; Long)

The last record or byte number to lock

Description

The Lock procedure prevents another process from accessing a record, section, or whole file until it is
unlocked by the Unlock function.

Use the Lock procedure in situations where multiple programs or more than one instance of your program
may need read and write access to the same data file.

Rules at a Glance

Use the Lock procedure with only the filenumber argument to lock the whole file.

record is interpreted as a record number in the case of random files and a byte number in the case
of binary files. Records and bytes in a file are always numbered sequentially from 1 onward.

To lock a particular record, specify its record number as record, and only that record will be locked.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Lock procedure locks an entire file opened in Input or Output (sequential) mode, regardless of
the record argument.

If you omit the start argument, Lock will lock all records from the start of the file to record or byte
number end.

Attempting to access a locked file or portion of a file returns runtime error 70, "Permission denied."

Programming Tips and Gotchas

You must take care to remove all file locks with the Unlock procedure before either closing a file or
ending the application; otherwise, you can leave the file in an unstable state. This of course means
that, where appropriate, your error-handling routines must be made aware of any locks you currently
have in place so that they may be removed if necessary.

You use the Lock and Unlock procedures in pairs, and the argument lists of both statements must
match exactly.

The Lock procedure does not guarantee under all circumstances that the locked file will be protected
from access by other processes. There are two major circumstances under which an apparent
access violation can occur:

The file has already been opened but has not been locked by a process when the current
process locks it. However, the first process will not be able to perform operations on the file
once the second file successfully locks it.

The block of code responsible for opening the file and then locking it is interrupted by the
scheduling policy of the operating system before the file can be locked. If a second process
then opens and locks the file, it - and not the first process - will have sole use of the file.

Because of this, the Lock procedure should immediately follow the FileOpen procedure in code. This
reduces, but does not eliminate, the problems that result from the fact that opening and locking a file
is not an automatic operation.

VB.NET/VB 6 Differences

In the VB 6 Lock statement, you can separate the fromrecord and torecord arguments with the To
keyword. In the VB.NET Lock procedure, this syntax is not supported.

See Also

Unlock Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LOF Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

LOF(filenumber)
filenumber (required; Integer)

Any valid file number

Return Value

Long Integer

Description

Returns the size of an open file in bytes

Rules at a Glance

filenumber must be the number of a file opened using the FileOpen function.

Example

The following example shows how to use the LOF function to prevent reading past the end of a file in
binary mode:

Dim fr As Integer = FreeFile()

Dim sChar As Char

FileOpen(fr, "c:\data.txt", OpenMode.Binary, OpenAccess.Read)

Do While Loc(fr) < LOF(fr)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 FileGet(fr, sChar)

 Debug.Write(Loc(fr) & ": ")

 Console.WriteLine(sChar)

Loop

Programming Tips and Gotchas

LOF works only on an open file; if you need to know the size of a file that isn't open, use the FileLen
function.

See Also

FileLen Function, FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log Function

Class

System.Math

Syntax

Math.Log(d)

or:

Math.Log(a, newbase)
d or a (required; Double)

A numeric expression greater than zero
newbase (required; Double)

The base of the logarithm

Return Value

Double

Description

Returns the natural (base e) logarithm of a given number (the first syntax) or the logarithm of a given
number in a specified base (the second syntax)

Rules at a Glance

The natural logarithm is the logarithm base e, a constant whose value is approximately 2.718282.
The natural logarithm satisfies the equation:
e^Log(x) = x

In other words, the natural logarithm function is the inverse function of the exponential function.

d or a, the value whose natural logarithm the function is to return, must be a positive real number. If
number is negative or zero, the function generates runtime error 5, "Invalid procedure call or
argument."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

You can calculate base-n logarithms for any number, x, by dividing the natural logarithm of x by the
natural logarithm of n, as the following expression illustrates:
Logn(x) = Log(x) / Log(n)

For example, the Log10 function shows the source code for a custom function that calculates base-
10 logarithms:

Static Function Log10(X)

 Log10 = Log(X) / Log(10#)

End Function

The inverse trigonometric functions, which are not intrinsic to VB, can be computed using the value
returned by the Log function. The functions and their formulas are:

Inverse hyperbolic sine

HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse hyperbolic cosine

HArccos(X) = Log(X + Sqr(X * X - 1))

Inverse hyperbolic tangent

HArctan(X) = Log((1 + X) / (1 - X)) / 2

Inverse hyperbolic secant

HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse hyperbolic cosecant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)

Inverse hyperbolic cotangent

HArccotan(X) = Log((X + 1) / (X - 1)) / 2

See Also

Exp Function, Log10 Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Log10 Function

Class

System.Math

Syntax

Math.Log10(d)
d (required; Double)

A numeric expression greater than zero

Return Value

Double

Description

Returns the common (base-10) logarithm of a given number

Rules at a Glance

The common logarithm is the logarithm base-10. The common logarithm satisfies the equation:
10^Log10(x) = x

d, the value whose common logarithm the function is to return, must be a positive real number. If
number is negative or zero, the function generates runtime error 5, "Invalid procedure call or
argument."

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Log10 function is new to the .NET platform.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exp Function, Log Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LSet Function

Class

Microsoft.VisualBasic.Strings

Syntax

LSet(Source, Length)
Source (required; String)

The string to be left aligned
Length (required; Integer)

The length of the returned string

Return Value

String

Description

Left aligns a string

Rules at a Glance

If the length of Source is greater than or equal to Length, the function returns only the leftmost Length
characters.

If the length of Source is less than Length, spaces are added to the right of the returned string so that
its length becomes Length.

VB.NET/VB 6 Differences

In VB 6, LSet was implemented as a kind of assignment statement. Because it is implemented as a
function in VB.NET, its syntax is completely different.

In VB 6, LSet could be used only with fixed-length strings. In VB.NET, LSet works with all CTS String
data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

RSet Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax

LTrim(str)
str (required; String)

A valid string expression

Return Value

String

Description

Removes any leading spaces from str

Rules at a Glance

If str has no leading spaces, the function returns str unmodified.

If str is Nothing, LTrim returns Nothing.

Programming Tips and Gotchas

It is unwise to create data relationships that rely on leading spaces, especially since most string-based
data types in relational database-management systems (like SQL Server and Access) automatically
remove leading spaces.

See Also

RTrim Function, Trim Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MarshalAs Attribute

Class

System.Runtime.InteropServices.MarshalAsAttribute

Applies to

Field, Parameter, ReturnValue

Description

Defines the correct type conversion between managed and unmanaged code. Unmanaged types are
defined by the UnmanagedType enumeration, which is shown in the following table:

UnmanagedType Value Description

AnsiBStr 35
An ANSI BSTR (a character string whose first byte indicates the string
length).

AsAny 40 Dynamic type determination at runtime.

Bool 2 4-byte Boolean (True <> 0, False = 0).

BStr 19
A Unicode BSTR (a character string whose first 2 bytes indicates the string
length).

ByValArray 30

An array passed by value. An array that is a field in a structure must have
this attribute. The SixeConst field must be set to the number of array
elements, and the ArraySubType field can optionally be set to the
unmanaged data type of the array.

ByValTStr 23
An inline fixed-length character array within a structure. The character type is
determined by the CharSet argument of the containing structure's
<StructLayout> attribute.

Currency 15
A COM Currency data type. Used on the VB.NET and .NET Decimal data
type.

CustomMarshaler 44
A custom marshaler class. The class is defined by the MarshalType or
MarshelTypeRef field. Additional information can be passed to the custom
marshaler by the MarshalCookie field.

Error 45
An HRESULT. The native .NET type should be a 4-byte signed or unsigned
integer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UnmanagedType Value Description

FunctionPtr 38 A function pointer.

I1 3 A 1-byte signed integer.

I2 5 A 2-byte signed integer.

I4 7 A 4-byte signed integer.

I8 9 An 8-byte signed integer.

IDispatch 26 A COM IDispatch pointer.

Interface 28 A COM interface pointer.

IUnknown 25 A COM IUnknown pointer.

LPArray 42
A C-style array. Its length is indicated by the SizeConst and SizeParamIndex
fields. Optionally, the ArraySubType field can indicate the unmanaged type
of string elements within the array.

LPStr 20 An ANSI (single-byte) character string.

LPStruct 43 A pointer to a structure.

LPTStr 32
A platform-dependent character string (ANSI on WIndows 9x, Unicode on
WIndows NT/2000/XP). LPTStr is supported only for platform invoke, and not
for COM interop.

LPWStr 21 A Unicode (double-byte) character string.

R4 11 A 4-byte floating point number.

R8 12 An 8-byte floating point number.

SafeArray 29
A SafeArray (a self-describing array that includes information on its type,
dimension, and bounds).

Struct 27 A C-style structure used to marshal .NET formatted classes and value types.

SysInt 31
A platform-dependent integer (4 bytes on 32-bit Windows, 8 bytes on 64-bit
Windows).

SysUInt 32 The hardware's natural sized unsigned integer.

TBStr 36
A length-prefixed, platform-dependent character string (ANSI in Windows 9x,
Unicode on Windows NT/2000/XP).

U1 4 A 1-byte unsigned integer.

U2 6 A 2-byte unsigned integer.

U4 8 A 4-byte unsigned integer.

U8 10 An 8-byte unsigned integer.

VariantBool 37 A 2-byte OLE-defined Boolean value (True = -1, False = 0).

VBByRefStr 34
Allows Visual Basic to change a string in unmanaged code and reflect the
changed skin in managed code.

FunctionPtr 38 A function pointer.

I1 3 A 1-byte signed integer.

I2 5 A 2-byte signed integer.

I4 7 A 4-byte signed integer.

I8 9 An 8-byte signed integer.

IDispatch 26 A COM IDispatch pointer.

Interface 28 A COM interface pointer.

IUnknown 25 A COM IUnknown pointer.

LPArray 42
A C-style array. Its length is indicated by the SizeConst and SizeParamIndex
fields. Optionally, the ArraySubType field can indicate the unmanaged type
of string elements within the array.

LPStr 20 An ANSI (single-byte) character string.

LPStruct 43 A pointer to a structure.

LPTStr 32
A platform-dependent character string (ANSI on WIndows 9x, Unicode on
WIndows NT/2000/XP). LPTStr is supported only for platform invoke, and not
for COM interop.

LPWStr 21 A Unicode (double-byte) character string.

R4 11 A 4-byte floating point number.

R8 12 An 8-byte floating point number.

SafeArray 29
A SafeArray (a self-describing array that includes information on its type,
dimension, and bounds).

Struct 27 A C-style structure used to marshal .NET formatted classes and value types.

SysInt 31
A platform-dependent integer (4 bytes on 32-bit Windows, 8 bytes on 64-bit
Windows).

SysUInt 32 The hardware's natural sized unsigned integer.

TBStr 36
A length-prefixed, platform-dependent character string (ANSI in Windows 9x,
Unicode on Windows NT/2000/XP).

U1 4 A 1-byte unsigned integer.

U2 6 A 2-byte unsigned integer.

U4 8 A 4-byte unsigned integer.

U8 10 An 8-byte unsigned integer.

VariantBool 37 A 2-byte OLE-defined Boolean value (True = -1, False = 0).

VBByRefStr 34
Allows Visual Basic to change a string in unmanaged code and reflect the
changed skin in managed code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constructor

New(unmanagedType)
unmanagedType (Short or UnmanagedType enumeration)

Indicates the COM (unmanaged) data type to which the data is to be converted. unmanagedType can
either be a constant of the UnmanagedType enumeration or its corresponding Short value, as shown
in the previous table.

Properties

Value (UnmanagedType enumeration)

The COM (unmanaged) data type that the .NET (managed) data is to be marshaled as.

Fields

ArraySubType (UnmanagedType enumeration)

The subtype of an array of type ByValArray or LPArray. It is used when an array contains strings so
that the runtime knows how to marshal a string array to COM.

MarshalCookie (String)

An undefined field that can be used to pass user-defined data to a custom marshaler. The value of
the MarshalCookie field as passed to the custom marshaler's GetInstance method.

MarshalType (String)

The fully qualified name of a custom marshaler. It is required if the Value property is
CustomMarshaler.

MarshalTypeRef (Type)

Implements the MarshalType value as a Type, rather than a string.
SafeArraySubType (VarEnum enumeration)

The data type of a SafeArray. Possible values are the members of the VarEnum enumeration, which
is shown in the following table:

Constant Description

VT_ARRAY A SAFEARRAY pointer

VT_BLOB A length-prefixed collection of bytes

VT_BLOB_OBJECT A VT_BLOB containing an object

VT_BOOL A Boolean value

VT_BSTR A string of type BSTR

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Description

VT_BYREF A value passed by reference

VT_CARRAY A C-style array

VT_CF Clipboard format

VT_CLSID A class identifier (CLSID)

VT_CY A currency value

VT_DATE A date value

VT_DECIMAL A decimal value

VT_DISPATCH An IDispatch pointer

VT_EMPTY A value was not specified

VT_ERROR An SCODE

VT_FILETIME A FILETIME value

VT_HRESULT An HRESULT

VT_I1 A char value

VT_I2 A short (two-byte) integer

VT_I4 A long (4-byte) integer

VT_I8 A 64-bit integer

VT_INT An integer value

VT_LPSTR A null-terminated string

VT_LPWSTR A null-terminated Unicode string

VT_NULL A null reference (Nothing)

VT_PTR A pointer

VT_R4 A floating-point value

VT_R8 A double value

VT_RECORD A user-defined type

VT_SAFEARRAY A SAFEARRAY

VT_STORAGE A named storage

VT_STORED_OBJECT Storage containing an object

VT_STREAM A named stream

VT_STREAMED_OBJECT A Stream containing an object

VT_UI1 An unsigned byte

VT_UI2 An unsigned (2-byte) short

VT_BYREF A value passed by reference

VT_CARRAY A C-style array

VT_CF Clipboard format

VT_CLSID A class identifier (CLSID)

VT_CY A currency value

VT_DATE A date value

VT_DECIMAL A decimal value

VT_DISPATCH An IDispatch pointer

VT_EMPTY A value was not specified

VT_ERROR An SCODE

VT_FILETIME A FILETIME value

VT_HRESULT An HRESULT

VT_I1 A char value

VT_I2 A short (two-byte) integer

VT_I4 A long (4-byte) integer

VT_I8 A 64-bit integer

VT_INT An integer value

VT_LPSTR A null-terminated string

VT_LPWSTR A null-terminated Unicode string

VT_NULL A null reference (Nothing)

VT_PTR A pointer

VT_R4 A floating-point value

VT_R8 A double value

VT_RECORD A user-defined type

VT_SAFEARRAY A SAFEARRAY

VT_STORAGE A named storage

VT_STORED_OBJECT Storage containing an object

VT_STREAM A named stream

VT_STREAMED_OBJECT A Stream containing an object

VT_UI1 An unsigned byte

VT_UI2 An unsigned (2-byte) short

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Description

VT_UI4 An unsigned (4-byte) long

VT_UI8 A 64-bit unsigned integer

VT_UINT An unsigned integer

VT_UNKNOWN An IUnknown pointer

VT_USERDEFINED A user-defined type

VT_VARIANT A VARIANT far pointer

VT_VECTOR A simple counted array

VT_VOID A C-style void

SafeArrayUserDefinedSubType (Type object)

The user-defined type of the SAFEARRAY. This field is used only if the value of the SafeArraySubType
field is VT_UNKNOWN, VT_DISPATCH, or VT_RECORD.

SizeConst (Integer)

The number of elements in a fixed-length array
SizeParamIndex (Short)

Indicates which zero-based parameter contains a count of array elements

VT_UI4 An unsigned (4-byte) long

VT_UI8 A 64-bit unsigned integer

VT_UINT An unsigned integer

VT_UNKNOWN An IUnknown pointer

VT_USERDEFINED A user-defined type

VT_VARIANT A VARIANT far pointer

VT_VECTOR A simple counted array

VT_VOID A C-style void

SafeArrayUserDefinedSubType (Type object)

The user-defined type of the SAFEARRAY. This field is used only if the value of the SafeArraySubType
field is VT_UNKNOWN, VT_DISPATCH, or VT_RECORD.

SizeConst (Integer)

The number of elements in a fixed-length array
SizeParamIndex (Short)

Indicates which zero-based parameter contains a count of array elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Max Function

Class

System.Math

Syntax

Math.Max(val1, val2)
val1, val2 (required; any)

A numeric data type or expression

Return Value

Returns the maximum of val1 and val2, in the widest datatype of the two numbers

Description

Returns the maximum of val1 and val2

Rules at a Glance

If the two arguments do not have the same data type, then the narrower data type is cast to the wider
type. For instance, the line:
Dim x As Integer = 5

Dim y As Double = 454.8

MsgBox(Math.Max(x, y))

displays 454.8.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Max function is new to the .NET Framework.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Min Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Me Operator

Syntax

Me

Description

Represents a reference to the current class from within the class

Rules at a Glance

Me is an explicit reference to the current object as defined by the Class...End Class construct.

Me corresponds to the C++ this operator.

Example

In this example, a class passes an instance of itself to a function outside the class by using the Me
operator.

Private Class CCounter

Private lCtr As Long = 1

Public ReadOnly Property Value

 Get

 Value = lCtr

 End Get

End Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Sub Increment()

 lCtr += 1

End Sub

Public Function ShowCount() As Long

 ShowCount = ShowObjectValue(Me)

End Function

End Class

Module modMain

Public Sub Main

 Dim oCtr = New CCounter

 oCtr.Increment

 oCtr.Increment

 MsgBox("Count: " & oCtr.ShowCount)

End Sub

Public Function ShowObjectValue(oObj As Object) AS Object

 ShowObjectValue = oObj.Value

End Function

End Module

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Me operator can't be used on the left side of an expression.

Me is particularly useful when passing an instance of the current class as a parameter to a routine
outside the class.

See Also

MyClass Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mid Function

Class

Microsoft.VisualBasic.Strings

Syntax

Mid(str, start[, length])
str (required; String)

The expression from which to return a substring
start (required; Long)

The starting position of the substring
length (optional; Long)

The length of the substring

Return Value

String

Description

Returns a substring of a specified length from a given string

Rules at a Glance

If str contains Nothing, Mid returns Nothing.

If start is greater than the length of str, a zero-length string is returned.

If start is less than zero, runtime error 5, "Invalid procedure call or argument," is generated.

If length is omitted or length is greater than the length of str, all characters from start to the end of
str are returned.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example parses the contents of a text box control (named txtString) and writes each word
to a list box (named lstWord). Note the use of the InStr function to determine the position of either a space
or a carriage return/line feed character combination - the two characters that can terminate a word in this
case:

Private Sub btnParse_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnParse.Click

 Dim strString, strWord As String

 Dim intStart, intEnd, intStrLen, intCrLf As Integer

 Dim blnLines As Boolean

 lstWords.Items.Clear()

 intStart = 1

 strString = Trim(txtString.Text)

 intStrLen = Len(strString)

 intCrLf = InStr(1, strString, vbCrLf)

 If intCrLf Then blnLines = True

 lstWords.BeginUpdate()

 Do While intStart > 0

 intEnd = InStr(intStart, strString, " ") - 1

 If intEnd <= 0 Then intEnd = intStrLen

 If blnLines And (intCrLf < intEnd) Then

 intEnd = intCrLf - 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 intCrLf = InStr(intEnd + 2, strString, vbCrLf)

 If intCrLf = 0 Then blnLines = False

 lstWords.Items.Add(Mid(strString, intStart, _

 intEnd - intStart + 1))

 intStart = intEnd + 3

 Else

 lstWords.Items.Add(Mid(strString, intStart, _

 intEnd - intStart + 1))

 intStart = intEnd + 2

 End If

 If intStart > intStrLen Then intStart = 0

 Loop

 lstWords.EndUpdate()

End Sub

Programming Tips and Gotchas

Use the Len function to determine the total length of str.

Use InStr to determine the starting point of a given substring within another string.

See Also

Left Function, Mid Function, Right Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mid Statement

Syntax

Mid(target, start[, length]) = string
target (required; String)

The name of the string variable to be modified
start (required; Long)

The position within stringvar at which the replacement commences
length (optional; Long)

The number of characters in stringvar to replace
string (required; String)

The string used to replace characters within stringvar

Description

Replaces a section of a string with characters from another string

Rules at a Glance

If you omit length, as many characters of string as can fit into stringvar are used.

If start + length is greater then the length of stringvar, string is truncated to fit in the same space
as stringvar. This means that the length of stringvar is not altered by the Mid statement.

If start is less than 0, runtime error 5, "Invalid procedure call or argument," occurs.

Programming Tips and Gotchas

If string is Nothing, a runtime error occurs.

VB includes the Replace function, which enhances the functionality of the Mid statement by allowing
you to specify the number of times the replacement is carried out in the same string.

Because it is a statement, this version of Mid does not accept named arguments.

As a statement, Mid is implemented by the compiler, rather than by the Microsoft.VisualBasic.Strings
class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Mid Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Min Function

Class

System.Math

Syntax

Math.Min(val1, val2)
val1, val2 (required; any numeric)

A numeric data type or expression

Return Value

Returns the minimum of val1 and val2 in the widest data type of the two numbers

Description

Returns the minimum of val1 and val2, in the same data type as the numbers. See Section for more
detail.

Rules at a Glance

If the two arguments do not have the same data type, then the narrower data type is cast to the wider
type. For instance, the code fragment:
Dim x As Integer = 5

Dim y As Double = 454.8

MsgBox(Math.Min(x, y))

displays 454.8 without error. The datatype returned by the function in this instance is a Double.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Min function is new to the .NET Framework.

See Also

Max Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Minute Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Minute(TimeValue)
TimeValue (required; date)

Date variable or literal date

Return Value

An Integer between 0 and 59, representing the minute of the hour

Description

Extracts the minute component from a given date/time expression

Rules at a Glance

If TimeValue is not a valid date/time expression, the function generates runtime error 13, "Type
mismatch." To prevent this, use the IsDate function to check the argument before calling the Minute
function.

If TimeValue contains Nothing, 0 is returned, so be careful here to check for Nothing.

You can also use the DatePart function.

See Also

Hour Function, Second Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MIRR Function

Class

Microsoft.VisualBasic.Financial

Syntax

MIRR(valuearray(), financerate, reinvestrate)
valuearray() (required; Array of Double)

An array of cash flow values
financerate (required; Double)

The interest rate paid as the cost of financing
reinvestrate (required; Double)

The interest rate received on gains from cash investment

Return Value

A Double representing the modified internal rate of return

Description

Calculates the modified internal rate of return, which is the internal rate of return when payments and
receipts are financed at different rates

Rules at a Glance

valuearray must be a one-dimensional array that contains at least one negative value (a payment)
and one positive value (a receipt). The order of elements within the array should reflect the order in
which payments and receipts occur.

financerate and reinvestrate are percentages expressed as decimal values. For example, 10% is
expressed as 0.10.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each element of valuearray represents a payment or a receipt that occurs at a regular time interval. If this
is not the case, MIRR will return erroneous results.

See Also

IRR Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MkDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

MkDir(path)
path (required; String)

The name of the folder to be created

Description

Creates a new folder

Rules at a Glance

If you omit the drive from path, a new folder will be created on the current drive.

You can specify the drive by using either its local drive letter or its UNC name.

path can either be a fully qualified path (i.e., a path from the drive's root directory to the directory to
be created) or a relative path (i.e., a path from the current directory).

If the directory to be created by the MkDir procedure already exists, an IOException exception is
raised.

Programming Tips and Gotchas

If your program is running on Windows NT, ensure that the logged-in user has the right to create a
folder on the specified drive prior to calling the MkDir procedure.

VB does not automatically make the new folder the current folder after a call to MkDir. You will need
to call the ChDir procedure to do this.

To remove a folder, use the RmDir procedure.

Use CurDir to determine the current drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

RmDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mod Operator

Syntax

result = number1 Mod number2
number1, number2 (required; any)

A numeric expression

Return Value

Returns the modulus

Description

Returns the modulus, that is, the remainder when number1 is divided by number2. This return value is a
non-negative integral data type.

Rules at a Glance

Floating point numbers are rounded to integers before the division.

If number1 or number2 is Nothing, then an error occurs.

The Mod operator returns the data type of number1 and number2 if they are the same type, or the
widest data type of number1 and number2 if they are different.

Example

MsgBox(10 Mod 3) ' returns 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module...End Module Statement

Syntax

accessmodifier Module modulename

 ' statements

End Module
accessmodifier (optional)

Type: Keyword

One of the following keywords determine the visibility of the module:
Public

Makes the module visible to all applications
Friend

Makes the module visible throughout the project
modulename (required)

Type: String literal

The name of the code module

Description

Defines a code block as a code module

Rules at a Glance

If accessmodifier is omitted, the module is Public by default.

modulename follows standard Visual Basic naming conventions and must be unique within its
assembly.

statements can consist of the following:

Constant and variable definitions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Function and procedure definitions

Programming Tips and Gotchas

Code modules are similar to classes in which the public variables are treated as static fields and the
public functions and procedures are treated as static (shared) methods. This means that, particularly
in the event of a naming conflict (where two routines in different code modules have the same
name), you can qualify the function or procedure with the name of the module in which it resides. For
example, if the SayHello procedure is found in a module named modLibrary, it can be called as
follows:
modLibrary.SayHello()

Although modules are similar to classes, there are some important differences. The members of a
module have scope equal to the module's containing namespace, rather than just to the module
itself. Also, modules cannot be instantiated, do not support inheritance, and cannot implement
interfaces.

If a code module is to contain a routine that serves as a program entry point, that routine must be
named Sub Main. It must also have Public scope.

VB.NET/VB 6 Differences

The statement is new to VB.NET. VB 6 placed each code module in a separate BAS file, which rendered
beginning and ending statements unnecessary. A single VB.NET file, on the other hand, can contain
multiple code modules and classes, thus necessitating the use of beginning and ending statements.

See Also

Class Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Month Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Month(datevalue)
datevalue (required; date)

Date variable or literal date

Return Value

An Integer between 1 and 12

Description

Returns an integer representing the month of the year of a given date expression

Rules at a Glance

If datevalue contains Nothing, Month returns Nothing.

Programming Tips and Gotchas

The validity of the date expression, as well as the position of the month element within the date
expression, is initially determined by the locale settings of the current Windows system. However,
some intelligence has been built into the Month function that surpasses the usual comparison of a
date expression to the current locale settings. For example, on a Windows machine set to US date
format (mm/dd/yyyy), the date "13/12/1998" would technically be illegal. However, the Month function
returns 12 when passed this date. The basic rule for the Month function is that if the system-defined
month element is outside legal bounds (i.e., greater than 12), the system-defined day element is
assumed to be the month and is returned by the function.

Since the IsDate function adheres to the same rules and assumptions as Month, it can be used to
determine whether a date is valid before passing it to the Month function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic also has a new MonthName function for returning the name of the month.

You can also use the DatePart function.

See Also

Day Function, Year Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MonthName Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

MonthName(month [, abbreviate])
month (required; Integer)

The ordinal number of the month, from 1 to 12
abbreviate (optional; Boolean)

A flag to indicate if an abbreviated month name should be returned

Return Value

String containing the name of the specified month

Description

Returns the month name of a given month. For example, a month of 1 returns January or (if abbreviate is
True) Jan.

Rules at a Glance

The default value for abbreviate is False.

Example

Public Function GetMonthName(dat As Date) As String

Dim iMonth As Integer = Month(dat)

GetMonthName = MonthName(iMonth)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Function

Programming Tips and Gotchas

month must be an integer; it cannot be a date. Use DatePart("m", dateval) to obtain a month
number from a date.

If month has a fractional portion, it is rounded before calling the MonthName function.

MonthName with abbreviate set to False is the equivalent of Format(dateval, "mmmm").

MonthName with abbreviate set to True is the equivalent of Format(dateval, "mmm").

See Also

WeekdayName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MsgBox Function

Class

Microsoft.VisualBasic.Interaction

Syntax

MsgBox(prompt[, buttons][, title])
prompt (required; String)

The text of the message to display in the message box dialog box
buttons (optional; MsgBoxStyle enumeration)

The sum of the Button, Icon, Default Button, and Modality constant values
title (optional; String)

The title displayed in the title bar of the message box dialog box

Return Value

A MsgBoxResult enumeration constant indicating the button clicked by the user to close the message box

Description

Displays a dialog box containing a message, buttons, and optional icon to the user. The action taken by
the user is returned by the function in the form of an enumerated constant.

Rules at a Glance

prompt can contain approximately 1,000 characters, including carriage return characters such as the
built-in vbCrLf constant.

If the title parameter is omitted, the name of the current application or project is displayed in the
title bar.

If you omit the buttons argument, the default value is 0; that is, VB opens an application modal
dialog box containing only an OK button.

The constants of the MsgBoxStyle enumeration can be added together to form a complete buttons
argument. The constants can be divided into the following groups:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Button Display Constants
Icon Display Constants
Default Button Constants
Modality Constants

Only one constant from each group can be used to make up the overall buttons value.

Button Display Constants

Constant Value Buttons to display

MsgBoxStyle.OKOnly 0 OK only

MsgBoxStyle.OKCancel 1 OK and Cancel

MsgBoxStyle.AbortRetryIgnore 2 Abort, Retry, and Ignore

MsgBoxStyle.YesNoCancel 3 Yes, No, and Cancel

MsgBoxStyle.YesNo 4 Yes and No

MsgBoxStyle.RetryCancel 5 Retry and Cancel

Icon Display Constants

Constant Value Icon to display

MsgBoxStyle.Critical 16 Critical Message

MsgBoxStyle.Question 32 Warning Query

MsgBoxStyle.Exclamation 48 Warning Message

MsgBoxStyle.Information 64 Information Message

Default Button Constants

Constant Value Default button

MsgBoxStyle.DefaultButton1 0 First button

MsgBoxStyle.DefaultButton2 256 Second button

MsgBoxStyle.DefaultButton3 512 Third button

MsgBoxStyle.DefaultButton4 768 Fourth button

Modality Constants

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Modality

MsgBoxStyle.ApplicationModal 0 Application

MsgBoxStyle.SystemModal 4096 System

Return Values

The following intrinsic constants can be used to determine the action taken by the user and represent the
value returned by the MsgBox function:

Constant Value Button clicked

MsgBoxResult.OK 1 OK

MsgBoxResult.Cancel 2 Cancel (or Esc key pressed)

MsgBoxResult.Abort 3 Abort

MsgBoxResult.Retry 4 Retry

MsgBoxResult.Ignore 5 Ignore

MsgBoxResult.Yes 6 Yes

MsgBoxResult.No 7 No

If the MsgBox contains a Cancel button, the user can press the Esc key and the function's return value will
be that of the Cancel button.

Programming Tips and Gotchas

Application modality means that the user cannot access other parts of the application until a
response to the message box has been given. In other words, the appearance of the message box
prevents the application from performing other tasks or from interacting with the user other than
through the message box.

System modality used to mean that all applications were suspended until the message box was
closed. However, with multitasking operating systems, such as Windows 95 and Windows NT, this is
not the case. Basically, the message box is defined to be a "Topmost" window that is set to "Stay on
Top," which means that the user can switch to another application and use it without responding to
the message box. But because the message box is the topmost window, it will be positioned on top
of all other running applications.

Unlike its InputBox counterpart, MsgBox cannot be positioned on the screen. It is always displayed in
the center of the screen.

If your application is to run out-of-process on a remote machine, you should remove all MsgBox
functions since they will not be displayed to the user, but instead will appear on the monitor of the
remote server!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MsgBox should never be used in ASP.NET applications.

VB.NET/VB 6 Differences

In VB 6, the MsgBox function has five parameters. The last two, helpfile (which specified the path to a
help file containing information about the error message) and context (which specified the help context ID
within helpfile), are optional. In VB.NET, these two parameters are not supported.

See Also

InputBox Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MTAThread Attribute

Class

System.MTAThreadAttribute

Applies to

Method

Description

Specifies that the class or application to which the program element belongs is to use the multithreaded
apartment model for COM interop. If COM components are not called from the class or application, the
attribute has no effect. The <MTAThread> attribute should be used only on the class or application's Main
method or subroutine.

The <MTAThread> attribute is similar to setting a Thread object's ApartmentState property to
ApartmentState.MTA. The difference is that the <MTAThread> attribute creates a multithreaded apartment
from startup, whereas setting the property does it only from the point that the property is set.

Constructor

New()

Properties

None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyBase Keyword

Syntax

MyBase

Description

Provides a reference to the base class from within a derived class. If you want to call a member of the
base class from within a derived class, you can use the syntax:

MyBase.MemberName

where MemberName is the name of the member. This will resolve any ambiguity if the derived class also has
a member of the same name.

Rules at a Glance

MyBase will call through the chain of inherited classes until it finds a callable implementation. For
example, in the code:
Public Class CTestClass

...

End Class

Public Class CTestClass2

 Inherits CTestClass

 Public Function ShowType() As Type

 Return Mybase.GetType

 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Class

the call to ShowType is eventually resolved as a call to Object.GetType, since all classes are
ultimately derived from the Object class.

MyBase cannot be used to call Private class members.

MyBase cannot be used to call base class members marked as MustOverride.

Programming Tips and Gotchas

MyBase is commonly used to call back into the overridden member from the member that overrides it
in the derived class.

The MyBase keyword can be used to call the constructor of the base class to instantiate a member of
that class, as in:
MyBase.New(...)

VB.NET/VB 6 Differences

The MyBase keyword is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MyClass Keyword

Syntax

MyClass

Description

MyClass is a reference to the class in which the keyword is used.

Rules at a Glance

When using MyClass (as opposed to Me) to qualify a method invocation, as in:
MyClass.IncSalary()

the method is treated as if it was declared using the NotOverridable keyword. Thus, regardless of
the type of the object at runtime, the method called is the one declared in the class containing this
statement (and not in any derived classes). The upcoming example illustrates this difference
between MyClass and Me.

MyClass cannot be used with shared members.

Example

The following code defines a class, Class1, and a derived class, Class1Derived, each of which has an
IncSalary method.

Public Class Class1

 Public Overridable Function IncSalary(ByVal sSalary As Single) _

 As Single

 IncSalary = sSalary * CSng(1.1)

 End Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Sub ShowIncSalary(ByVal sSalary As Single)

 MsgBox(Me.IncSalary(sSalary))

 MsgBox(MyClass.IncSalary(sSalary))

 End Sub

End Class

Public Class Class1Derived

 Inherits Class1

 Public Overrides Function IncSalary(ByVal sSalary As Single) As Single

 IncSalary = sSalary * CSng(1.2)

 End Function

End Class

Now consider the following code, placed in a form module:

Dim c1 As New Class1()

Dim c2 As New Class1Derived()

Dim c1var As Class1

c1var = c1

c1var.ShowIncSalary(10000) ' Shows 11000, 11000

c1var = c2

c1var.ShowIncSalary(10000) ' Shows 12000, 11000

The first call to ShowIncSalary is made using a variable of type Class1 that refers to an object of type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class1. In this case, both calls:

Me.ShowIncSalary

MyClass.ShowIncSalary

return the same value, because they both call IncSalary in the base class Class1.

However, in the second case, the variable of type Class1 holds a reference to an object of the derived
class Class1Derived. In this case, Me refers to an object of type Class1Derived, whereas MyClass still
refers to the base class Class1 wherein the keyword MyClass appears. Thus:

Me.ShowIncSalary

returns 12000, whereas:

MyClass.ShowIncSalary

returns 10000.

VB.NET/VB 6 Differences

The MyBase keyword is new to VB.NET.

See Also

Me Operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Namespace Statement

Syntax

Namespace name

 component types

End Namespace
name (required; String literal)

The name of the namespace
component types (required)

The elements that are being declared as part of the namespace, including Enums, Structures,
Interfaces, Classes, Delegates, Modules, and other namespaces

Description

Declares a namespace and specifies the items in the namespace

Rules at a Glance

Namespaces are used in the .NET Framework as an organized method of exposing program
components to other programs and applications.

Namespaces are always Public. However, the elements within a namespace can be Public, Friend,
or Private. Private members are available only within the namespace declaration.

name, the namespace name, must be unique.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Now()

Return Value

A Date containing the current system date and time

Description

Returns the current date and time based on the system setting

Rules at a Glance

The date returned by Now takes the Windows General Date format based on the locale settings of
the local computer. The U.S. setting for General Date is mm/dd/yy hh:mm:ss.

The Now property is read-only.

Example

The following example returns the date 10 days from today:

MsgBox(DateAdd(DateInterval.Day, 10, Now()))

Programming Tips and Gotchas

It is often overlooked that workstations in a modern Windows environment are at the mercy of the
user! If your application relies on an accurate date and time setting, you should consider including a
line in the workstation's logon script to synchronize the time with one of the servers. Many so-called
bugs have been traced to a workstation that has had its date or time incorrectly altered by the user.
The following line of code, when added to the logon script of an Windows NT 4.0 machine, will
synchronize the machine's clock with that of a server called NTSERV1:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

net time \\NTSERV1 /set

The Now property is often used to generate timestamps. However, for short-term timing and intra-day
timestamps, the Timer property, which returns the number of milliseconds elapsed since midnight,
affords greater accuracy.

The Now property wraps the BCL's System.DateTime.Now shared property. As a result, calls to the
System.DateTime.Now property offer a slight performance improvement (about 20%) over calls to
the VB.NET Now property.

See Also

Today Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NPer Function

Class

Microsoft.VisualBasic.Financial

Syntax

NPer(rate, pmt, pv [, fv [, due]])
rate (required; Double)

The interest rate per period.
pmt (required; Double)

The payment to be made each period.
pv (required; Double)

The present value of the series of future payments or receipts.
fv (optional; Double)

The future value of the series of payments or receipts. If omitted, the default value is 0.
due (optional; DueDate enumeration)

A value indicating when payments are due. DueDate.EndOfPeriod (0) indicates that payments are
due at the end of the payment period, and DueDate. BegOfPeriod (1) indicates that payments are
due at the beginning of the period. If omitted, the default value is 0.

Return Value

A Double indicating the number of payments

Description

Determines the number of payment periods for an annuity based on fixed periodic payments and a fixed
interest rate

Rules at a Glance

rate is a percentage expressed as a decimal. For example, a monthly interest rate of 1% is
expressed as 0.01.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For pv and fv, cash paid out is represented by negative numbers; cash received is represented by
positive numbers.

Example

Typically, the amount of time required to repay credit-card debt is never explicitly stated. The following
program uses the NPer function to determine how much time is required to repay credit-card debt:

Private Sub HowLongToPay()

Try

 Dim dblRate, dblPV, dblPmt As Double

 Dim lngNPer As Long

 dblPV = InputBox("Enter the Credit Card balance: ")

 dblPmt = InputBox("Enter the monthly payment: ")

 dblRate = InputBox("Enter the monthly interest rate (.xxxx): ")

 lngNPer = NPer(dblRate, -dblPmt, dblPV, 0, 1)

 MsgBox("Your credit card balance will be paid in " & _

 lngNPer & " months." & vbCrLf & "That's " & _

 Int(lngNPer / 12) & " years and " & _

 Math.Round(lngNPer Mod 12, 2) & " months.")

Catch e As System.Exception

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MsgBox("Unable to compute period because of error " & e.Message)

End Try

End Sub

Programming Tips and Gotchas

Both rate and pmt must be expressed in the same time unit. That is, if pmt reflects the monthly
payment amount, rate must be the monthly interest rate.

NPer is useful in calculating the number of payment periods required to repay a loan when the
monthly loan payment is fixed or when an approximate amount of a monthly payment is known. In
this case, pv reflects the amount of the loan, and fv is usually 0, reflecting the fact that the loan is to
be entirely repaid.

NPer is useful in determining the length of time required to meet some future financial goal. In this
case, pv represents the current level of savings, and fv represents the desired level of savings.

See Also

FV Function, IPmt Function, NPV Function, Pmt Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NPV Function

Class

Microsoft.VisualBasic.Financial

Syntax

NPV(rate, valuearray())
rate (required; Double)

The discount rate over the period, expressed as a decimal
valuearray() (required; Double)

An array of cash flow values

Return Value

A Double specifying the net present value

Description

Calculates the net present value of an investment based on a series of periodic variable cash flows
(payments and receipts) and a discount rate

The net present value is the value today of a series of future cash flows discounted at some rate back to
the first day of the investment period.

Rules at a Glance

rate must be a percentage expressed as a decimal. For example, 10% is expressed as 0.10.

values is a one-dimensional array that must contain at least one negative value (a payment) and one
positive value (a receipt).

The NPV investment begins one period before the date of the first cash flow value and ends with the
last cash flow value in the array.

NPV requires future cash flows. If the first cash flow occurs at the beginning of the first period, the
first value must be added to the value returned by NPV and must not be included in values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

rate and the individual elements of values must reflect the same time period. For example, if values
reflects annual cash flows, rate must be the annual discount rate.

Individual members of values are interpreted sequentially. That is, values(0) is the first cash flow,
values(1) is the second, etc.

NPV is like the PV function, except that PV allows cash flows to begin either at the beginning or the
end of a period and requires that cash flows be fixed throughout the investment.

See Also

FV Function, IPmt Function, NPer Function, Pmt Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Obsolete Attribute

Class

System.ObsoleteAttribute

Applies to

Class, Struct, Enum, Constructor, Method, Property, Field, Event, Interface, and Delegate (i.e., all program
elements except parameters and return values)

Description

Indicates that the program element is obsolete and either is deprecated or no longer supported

Constructors

New([[message], error])
message (String)

Provides a message that can contain workarounds or alternate program elements
error (Boolean)

Indicates whether the compiler generates an error if the program element is used

Properties

IsError (Boolean)

Read-only. Indicates whether the compiler generates an error if the program element is used.
Default value is False.

Message (String)

Read-only. A message to be displayed to the programmer that indicates workarounds or alternate
program elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Oct Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Oct(number)
number (required; Numeric or string capable of conversion to a number)

A valid numeric or string expression

Return Value

String

Description

Returns the octal value of a given number

Rules at a Glance

If number is not already a whole number, it is rounded to the nearest whole number before being
evaluated.

If number is Nothing, an error occurs.

Oct returns up to 11 octal characters.

Programming Tips and Gotchas

You can also use literals in your code to represent octal numbers by appending &O to the relevant octal
value. For example, 100 decimal has the octal representation &O144. The following two statements assign
an octal value to a variable:

lngOctValue1 = &H200 ' Assigns 128

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lngOctValue2 = "&O" & Len(dblNumber) ' Assigns 8

See Also

Hex Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On Error Statement

Syntax 1

On Error GoTo label|0|-1
label (Either label, 0 , or -1 is required)

A valid label within the subroutine

Syntax 2

On Error Resume Next

Description

Enables or disables error handling within a procedure.

If you don't use an On Error statement or a Try...Catch block in your procedure, or if you have explicitly
switched off error handling, the Visual Basic runtime engine will automatically handle the error. First, it will
display a dialog box containing the standard text of the error message, something that many users are
likely to find incomprehensible. Second, it will terminate the application. So any error that occurs in the
procedure will produce a fatal runtime error.

Rules at a Glance

Syntax 1

The 0 argument disables error handling within the procedure until the next On Error statement is
executed.

The -1 argument disables an enabled exception in the current procedure. (It resets the exception to
Nothing.)

The label argument specifies the label that defines an error-handling routine within the current
procedure. Should an error occur, the procedure will be branched to this error-handling routine.

A label must be suffixed with a colon. In addition, you cannot use a VB reserved word for a
subroutine label name. For example:
someroutine:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

label must be in the same procedure as the On Error statement.

Syntax 2

When a runtime error occurs, program execution continues with the program line following the line that
generated the error.

Programming Tips and Gotchas

If you have no error handling in your procedure or if error handling is disabled, the VB runtime engine
will trace back through the call stack until a procedure is reached where error handling is enabled. In
that case, the error will be handled by that procedure. However, if no error handler can be found in
the call stack, a runtime error occurs, and program execution is halted.

On Error Resume Next is useful in situations either where you are certain that errors will occur or
where the errors that could occur are minor. The following example shows how you can quickly cycle
through the controls on a form and set the Text property to an empty string without checking what
type of control you're dealing with. Of course, you are aware that many of the controls don't have a
text property, so that the attempt to access their Text property will generate an error. By using the On
Error Resume Next statement, you force your program to ignore this error and carry on with the next
control.
On Error Resume Next

For Each Control In Me.Controls

 Control.Text = ""

Next

Use of the On Error Resume Next statement should be kept to a minimum, since errors are basically
ignored and their occurrence is silent to the user. This means that, should an unexpected error (that
is, an error that you were not intending to handle when you chose to ignore errors) occur or should
your application behave unexpectedly, the job of finding and correcting the cause of the error
becomes almost impossible.

The following is a template for error handling within your procedures using the On Error statement:
Sub/Function/Property Name ()

 On Error Goto Name_Err

 ... 'procedure code

Name_Exit:

 ... 'tidying up code - such as Set Object = Nothing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Exit Sub/Function/Property

Name_Err:

 ... 'error handling code e.g. a MsgBox to inform the user

 Resume Name_Exit

End Sub/Function/Property

If cleanup code isn't required within the procedure, you can simplify the template by removing the
Name_Exit label and removing the Resume Name_ Exit statement.

If you are writing an error-handling routine for use within a class module or a DLL, you should use
the following template, which raises an error back to the client, thereby notifying the client of the error
and allowing the client to handle it:
Sub/Function/Property Name ()

 On Error Goto Name_Err

 ... 'procedure code

 ... 'tidying up code - such as Set Object = Nothing

 Exit Sub/Function/Property

Name_Err:

 ... 'error handling and tidying up code

 Err.Raise etc...

End Sub/Function/Property

Errors that occur within an error handler are passed up the call chain. To illustrate this, consider the
following code:
Public Function Test() As Integer

 On Error Goto Err_Test

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim iTest() As Integer = {1, 2}

 Test = iTest(3) ' error

 Exit Function

Err_Test:

 MsgBox(iTest(4)) ' error

End Function

Sub Test2()

 On Error Goto Err_Test2

 Test()

 Exit Sub

Err_Test2:

 MsgBox("Error handled")

End Sub

When Test2 is run, the message "Error handled" is displayed. This indicates that the error that
occurs in the error handler of Test is passed to Test2.

For more on both unstructured and structured error handling, see Chapter 9.

VB.NET/VB 6 Differences

In VB 6, the label in On Error GoTo label can be either a label or a line number. In VB.NET, the use of
line numbers is not supported.

See Also

Err Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenFileDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or opening a file.

The OpenFileDialog class has properties for setting the initial appearance and functionality of the file
dialog box, a property for returning the filename or names selected by the user, as well as a method for
showing the dialog box. An instance of the OpenFileDialog class does not itself open the file, but instead
provides the information that allows your code to do this programmatically.

Under VB, the most common use for this dialog box is to get the name of a file from the user, after which
we can use VB's functions to open that file.

An OpenFileDialog object can be instantiated as follows:

Dim oOpenDlg As New OpenFileDialog

Selected OpenFileDialog Members

The following is a brief description of some of the more important members of the OpenFileDialog class:

AddExtension property

Gets or sets a Boolean value that determines whether the default file extension is automatically
added to the Filename property if the user fails to enter an extension. Its default value is True.

CheckFileExists property

Sets or retrieves a Boolean value indicating whether a warning message should be displayed if the
user enters the name of a file that does not exist. The default value is True.

DefaultExt property

Gets or sets a String that defines the default file extension. The string should consist of the file
extension only without a period.

FileName property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Returns a string that contains the fully qualified name (that is, complete path and filename) of the
file selected by the user. If no file is selected, the property returns an empty string.

FileNames property

Returns a String array that contains the fully qualified names (that is, complete paths and filenames)
of the files selected by the user. If no file is selected, the property returns an empty array. Note that
this property returns a single- element array if the Multiselect property is False and the user selects
a file.

Filter property

Gets or sets a String containing the current filter, which determines the items that appear in the
"Files of type" drop-down listbox. A single item consists of a file description, a vertical bar, and the
file extension (usually "*." plus the file extension). If there are multiple extensions in a single item,
they are separated by semicolons. If there are multiple items, they are separated by vertical bars.
For example, the following code fragment assigns a filter string to a String variable:

sFilter = oFS.Filter="Text files (*.txt; *.vb)|*.txt;*.vb|" & _

 "Visual Basic files (*.vb)|*.vb|" & _

 "All files (*.*)|*.*"
FilterIndex property

Gets or sets an Integer value that determines which of the items defined by the Filter property are
selected. The index is one-based, rather than zero- based. When the dialog is first displayed and no
FilterIndex value is specified, it defaults to 1. When the method returns, its value indicates which
filter item was selected by the user.

InitialDirectory property

Gets or sets a String that defines the directory initially displayed by the OpenFileDialog dialog
Multiselect property

Sets or retrieves a Boolean value indicating whether the user is allowed to select more than one file.
OpenFile method

Opens the file selected by the user, returning a Stream object. The file is opened in read-only mode.
As Microsoft puts it: "The OpenFile method is used to provide a facility to quickly open a file from the
dialog box. The file is opened in read-only mode for security purposes. To open a file in a read/ write
mode, you must use another call . . . "

ReadOnlyChecked property

Sets or retrieves a Boolean value indicating whether the read-only checkbox is selected on the
dialog box.

RestoreDirectory property

Gets or sets a Boolean value indicating whether the current directory is restored before the dialog
closes. Its default value is False.

ShowDialog method

The OpenFileDialog class inherits from the FileDialog class, which in turn inherits from the
CommonDialog class. This class has a ShowDialog method that shows the dialog box. Once the
user has dismissed the dialog box, the FileDialog's FileName and FileNames properties can be
used to get the user's choice(s).

ShowReadOnly property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sets or retrieves a Boolean value indicating whether the dialog box contains a read-only checkbox.
Title property

Gets or sets a String value containing the title of the Open dialog box.

Example

The following code asks the user for one or more files and displays the filenames in the Output window:

Dim fd As New OpenFileDialog()

Dim i As Integer

fd.Multiselect = True

If fd.ShowDialog() = DialogResult.OK Then

 For i = 0 To UBound(fd.FileNames)

 Console.WriteLine(fd.FileNames(i))

 Next

End If

VB.NET/VB 6 Differences

Whereas the OpenFileDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Compare Statement

Syntax

Option Compare {Binary | Text}

Description

Used to set the default method for comparing string data

Rules at a Glance

When Option Compare is not used in a module, the default comparison method is Binary.

When Option Compare is used, it must appear at the start of the module's declarations section, before
any procedures.

Binary comparison - the default text comparison method in Visual Basic - uses the internal binary
code of each character to determine the sort order of the characters. For example, "A" < "a".

Text comparison uses the locale settings of the current system to determine the sort order of the
characters. Text comparison is case insensitive. For example, "A" = "a".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Explicit Statement

Syntax

Option Explicit [On | Off]

Description

Use Option Explicit to generate a compile-time error whenever a variable that has not been declared is
encountered.

Rules at a Glance

The Option Explicit statement must appear in the declarations section of a module before any
procedures.

In modules where the Option Explicit statement is not used, any undeclared variables are
automatically cast as Objects.

The default is Option Explicit On. In other words, the statement:
Option Explicit

is equivalent to:

Option Explicit On

Programming Tips and Gotchas

It is considered good programming practice to always use the Option Explicit statement. The
following example shows why:
1: Dim iVariable As Integer

2: iVariable = 100

3: iVariable = iVarable + 50

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4: MsgBox iVariable

In this code snippet, an integer variable, iVariable, has been declared. However, because the name
of the variable has been mistyped in line 3, the message box shows its value as only 50 instead of
150. This is because iVarable is assumed to be an undeclared variable whose value is 0. If the
Option Explicit statement had been used, the code would not have compiled, and iVarable would
have been highlighted as the cause.

For an ASP.NET page, you use the @ PAGE directive rather than Option Explicit to require variable
declaration. Its syntax is:
<%@ Page Language="VB" Explicit=true|false %>

By default, Explicit is true in ASP.NET pages.

You can also use the <system.web> section of the WEB.Config file to require variable declaration for
an entire virtual directory or ASP.NET application by adding an explicit attribute to the compliation
section. Its syntax is:

<compliation strict="true|false">

In both cases, true corresponds to Option Explicit On, and false corresponds to Option Explicit
Off.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Strict Statement

Syntax

Option Strict [On | Off]

Description

Option Strict prevents VB from making any implicit data type conversions that are narrowing since
narrowing conversions may involve data loss. For example:

Dim lNum As Long = 2455622

Dim iNum As Integer = lNum

converts a Long (whose value can range from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
to an Integer (whose value can range from 2,147,483,648 to 2,147,483,647). In this case, even though no
data loss would result from the narrowing, Option Strict On would still not allow the conversion and would
instead generate a compiler error. The reasoning here is that, although particular narrowing operations
may not lose data, there is always the potential for data loss when working with variables - that is, with
symbolic representations of numbers whose values are allowed to vary.

Rules at a Glance

If the Option Strict statement is not present in a module, Option Strict is Off.

The default is Option Strict On. In other words, the statement:
Option Strict On

is equivalent to the statement:

Option Strict

The Option Strict statement must appear in the declarations section of a module before any code.

Option Strict On disallows all implicit narrowing conversions.

Option Strict On also causes errors to be generated for late binding, as well as for any undeclared
variables, since Option Strict On implies Option Explicit On.

Conversions can be narrowing or widening. The widening conversions are conversions from a type
to itself or any of the following:

Byte Short, Integer, Long, Decimal, Single, Double

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Short Integer, Long, Decimal, Single, Double

Integer Long, Decimal, Single, Double

Long Decimal, Single, Double

Decimal Single, Double

Single Double

Any enumerated type Integer type or wider

Char String

Any type Object

Any derived type Any type from which it is derived

Any type Any interface it implements

Nothing Any type

Narrowing conversions are:

The reverse conversions of the widening conversions listed above

Conversions between Boolean and any numeric type

Any numeric type any enumerated type

Conversions between a Char array and a String

Conversions between String and any numeric, Boolean, or Date type

Programming Tips and Gotchas

Although the setting of Option Strict has no effect on BCL data types, BCL data types disallow
implicit narrowing conversions.

Explicit narrowing conversions are not affected by Option Strict. However, if data loss does occur
as a result of an explicit conversion, an OverflowException exception is generated.

One of the most commonly overlooked narrowing conversions is the use of "wider" arguments in
function, procedure, and method calls. Passing a Long to an Integer parameter, for example, is an
implicit narrowing conversion that Option Strict does not allow.

In many cases, Option Strict On disallows seemingly "safe" conversions because it interprets literal
values in unexpected ways. For example, the statement:
Dim decNum As Decimal = 10.32

generates a compiler error because 10.32 is interpreted as a Double, and implicit conversions from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Double to Decimal are not allowed. You can correct this compiler error with a statement like:

Dim decNum As Decimal = 10.32D

Setting Option Strict On is highly recommended.

For an ASP.NET page, you use the @ Page directive rather than Option Strict to control strict type
checking. Its syntax is:
<%@ Page Language="VB" Strict=true|false %>

By default, Strict is false in ASP.NET pages.

You can also use the <system.web> section of the WEB.Config file to control strict type checking for
an entire virtual directory or ASP.NET application by adding a strict attribute to the compilation
section. Its syntax is:

<compilation strict="true|false">

In both cases, true corresponds to Option Explicit On, and false corresponds to Option Explicit
Off.

VB.NET/VB 6 Differences

The Option Strict setting is new to VB.NET.

See Also

Option Explicit Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Out Attribute

Class

System.Runtime.InteropServices.OutAttribute

Applies to

Parameter

Description

Defines the parameter to which it applies as an out parameter. An out parameter is a variation on a
parameter passed by reference using the ByRef keyword. In the case of a parameter passed by reference,
the caller of the method is responsible for allocating memory and passing its address to the caller, which
can then modify the parameter value. In the case of an out parameter, memory for the parameter is
allocated by the called method and only its value is returned to the caller. This makes out parameters
rather than reference parameters far more efficient in remoting (i.e., calls across machines) and in web
method calls.

Although you can define an out parameter using the <Out> attribute, the VB.NET
compiler does not enforce it. That is, if you fail to assign a value to the out
parameter, or if you indicate that the parameter is to be passed by value rather than
by reference, the compiler does not generate an error. Because of this, be
especially careful to make sure that all parameters marked with the <Out> attribute
are passed using the ByRef keyword, and that you've explicitly assigned a value to
the out parameter in the method.

Constructor

New()

Properties

None

Example

Imports System

Imports System.Runtime.InteropServices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Class CPerson

 Private iAge, iHeight, iWeight As Integer

 Private sName As String

 Public Sub New(strName As String)

 'Here we'd ordinarily perform a database lookup

 ' and assign values to the instance fields

 sName = strName

 iAge = 26

 iHeight = 73

 iWeight = 185

 End Sub

 Public Sub GetStats(<Out> ByRef intAge As Integer, _

 <Out> ByRef intHt As Integer, _

 <Out> ByRef intWt As Integer)

 intAge = iAge

 intHt = iHeight

 intWt = iWeight

 End Sub

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Module modMain

 Public Sub Main()

 Dim oPerson As New CPerson("John Doe")

 Dim iAge As Integer, iHeight As Integer, iWeight As Integer

 oPerson.GetStats(iAge, iHeight, iWeight)

 Console.WriteLine("John Doe is " & iHeight & " inches tall.")

 End Sub

End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ParamArray Attribute

Class

System.ParamArrayAttribute

Applies to

Parameter

Description

Indicates that the parameter represents a parameter array - i.e., a variable number of arguments.

The same effect is achieved by using the ParamArray keyword in a function or subroutine declaration. In
fact, the ParamArray keyword is compiled into the ParamArray attribute.

If you do use the attribute, it must appear as <ParamArrayAttribute> rather than <ParamArray>, since
ParamArray is a Visual Basic keyword.

Constructor

New()

Properties

None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Partition Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Partition(number, start, stop, interval)
number (required; Long)

Number to evaluate against the intervals.
start (required; Long)

Start of the range. Must be non-negative.
stop (required; Long)

End of the range. Must be greater than start.
interval (required; Long)

Size of each interval into which the range is partitioned.

Return Value

A String containing the range within which number falls

Description

Returns a string that describes which interval contains the number

Rules at a Glance

start must be greater than or equal to 0.

stop cannot be less than or equal to start.

Partition returns a range formatted with enough leading spaces so that there are the same number of
characters to the left and right of the colon as there are characters in stop, plus one. This ensures
that the interval text will be handled properly during any sort operations.

If number is outside of the range of start, the range reported is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

: (start - 1)

If number is outside the range of end, the range reported is:

(last_end_range + 1):

If interval is 1, the range is number:number, regardless of the start and stop arguments. For
example, if interval is 1, number is 100, and stop is 1000, Partition returns 100: 100.

If any of its arguments are Null, Partition returns a Null.

Example

The code:

Dim i As Integer

For i = -1 To 110 \ 5

 Console.WriteLine(CStr(i * 5) & " is in interval " & _

 Partition(i * 5, 0, 100, 10))

Next

produces the following output:

-5 is in interval : -1

0 is in interval 0: 9

5 is in interval 0: 9

10 is in interval 10: 19

15 is in interval 10: 19

20 is in interval 20: 29

25 is in interval 20: 29

30 is in interval 30: 39

35 is in interval 30: 39

40 is in interval 40: 49

45 is in interval 40: 49

http://lib.ommolketab.ir
http://lib.ommolketab.ir

50 is in interval 50: 59

55 is in interval 50: 59

60 is in interval 60: 69

65 is in interval 60: 69

70 is in interval 70: 79

75 is in interval 70: 79

80 is in interval 80: 89

85 is in interval 80: 89

90 is in interval 90: 99

95 is in interval 90: 99

100 is in interval 100:100

105 is in interval 101:

110 is in interval 101:

Programming Tips and Gotchas

The Partition function is useful in creating histograms, which give the number of integers from a
collection that fall into various ranges.

VB.NET/VB 6 Differences

The Partition function is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pi Field

Class

System.Math

Syntax

Math.PI

Return Value

A Double containing the approximate value of the irrational number pi

Description

This field returns the approximate value of the irrational number pi. In particular:

Math.PI = 3.14159265358979

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Pi field is new to VB.NET.

See Also

E Field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

Pmt(rate, nper, pv[, fv[, due]])
rate (required; Double)

The interest rate per period.
nper (required; Double)

The total number of payment periods.
pv (required; Double)

The present value of the series of future payments.
fv (optional; Double)

The future value or cash balance after the final payment.
due (optional; DueDate enumeration)

A value indicating when payments are due. EndOfPeriod (0) indicates that payments are due at the
end of the payment period; BegOfPeriod (1) indicates that payments are due at the beginning of the
period. If omitted, the default value is 0.

Return Value

A Double representing the monthly payment

Description

Calculates the payment for an annuity based on periodic, fixed payments and a fixed interest rate. An
annuity can be either a loan or an investment.

Rules at a Glance

rate is a percentage expressed as a decimal. For example, an interest rate of 1% per month is
expressed as 0.01.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If fv is omitted, the default value of 0 (reflecting the complete repayment of a loan) is used.

For pv and fv, cash paid out is represented by negative numbers; cash received is represented by
positive numbers.

If due is omitted, the default value of 0 (reflecting payments at the beginning of each period) is used.

Example

See the example for the IPmt Function entry.

Programming Tips and Gotchas

rate and nper must be calculated using payment periods expressed in the same units. For example,
if nper reflects the total number of monthly payments, rate must be the monthly interest rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, PPmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pow Function

Class

System.Math

Syntax

result = Math.Pow(x, y)
x, y (required; Double)

Return Value

A Double that is x (the base) raised to the power y (the exponent)

Description

This is a generalized exponential function; it returns the result of a number raised to a specified power.

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Pow function is new to the .NET Framework.

See Also

Exp Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PPmt Function

Class

Microsoft.VisualBasic.Financial

Syntax

PPmt(rate, per, nper, pv[, fv[, due]])
rate (required; Double)

The interest rate per period.
per (required; Double)

The period for which a payment is to be computed.
nper (required; Double)

The total number of payment periods.
pv (required; Double)

The present value of a series of future payments.
fv (optional; Object)

The future value or cash balance after the final payment. If omitted, the default value is 0.
due (optional; DueDate enumeration)

A value indicating when payments are due. It can be either DueDate. EndOfPeriod (or 0), for
payments due at the end of the period, or DueDate.BegOfPeriod (or 1), for payments due at the
beginning of the period. The default value is DueDate.EndOfPeriod.

Return Value

A Double representing the principal paid in a given payment

Description

Computes the payment of principal for a given period of an annuity, based on periodic, fixed payments and
a fixed interest rate. An annuity is a series of fixed cash payments made over a period of time. It can be
either a loan payment or an investment.

Rules at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The value of per can range from 1 to nper.

If pv and fv represent liabilities, their value is negative; if they represent assets, their value is
positive.

If fv is omitted, its default value of 0 is used.

If due is omitted, the default value of 0 (reflecting payments at the beginning of each period) is used.

Example

See the example for the IPmt Function entry.

Programming Tips and Gotchas

rate and nper must be expressed in the same time unit. That is, if nper reflects the number of
monthly payments, rate must be the monthly interest rate.

The interest rate is a percentage expressed as a decimal. For example, if nper is the total number of
monthly payments, an annual percentage rate (APR) of 12% is equivalent to a monthly percentage
rate of 1%. The value of rate is therefore .01.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PV Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Print, PrintLine Procedures

Class

Microsoft.VisualBasic.FileSystem

Syntax

Print(filenumber, [outputlist()])

PrintLine(filenumber, [outputlist()])
filenumber (required; Integer)

Any valid file number.
outputlist (optional; Parameter array)

A comma-separated list of expressions to output to a file.

outputlist can be either a scalar variable, a list of comma-delimited expressions, or a parameter
array. Its comma-delimited expressions or parameter array can include the following:

Spc (n) (optional)

Insert n space characters before expression.
Tab (n) (optional)

Position the insertion point either at the next print zone (by omitting n) or at column number (n).
expression (optional; any)

The data expression to output.

Description

Outputs formatted data to a disk file opened for Append or Output

Rules at a Glance

Print and PrintLine are identical, except that PrintLine advances to the next line after printing.

The Tab(n) argument does not actually insert any tab characters (Chr(9)); instead, it fills the space
from the end of the last expression to column n (or to the start of the next print zone) with space

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters.

The Print procedure uses the locale settings of the current system to format dates, times, and
numbers, using the correct separators.

outputlist can be either a comma-separated list of expressions or a parameter array.

Example

The following code shows how to use the Print procedure to write to a file using both a comma-separated
list of arguments and a parameter array:

Dim sInput As String

Dim iFile As Integer = FreeFile()

Dim iNum As Integer

Dim oOutput(1) As Object

FileOpen(iFile, "C:\dataprex.txt", openmode.append)

Do

 sInput = InputBox("Enter name: ")

 if sInput = "" Then Exit Do

 Print(iFile, sInput)

 iNum = Len(sInput)

 sInput = InputBox("Enter street address: ")

 oOutput(0) = spc(25 - iNum)

 oOutput(1) = sInput

 Print(iFile, oOutput)

 iNum += Len(sInput)

 sInput = InputBox("Enter city: ")

 PrintLine(iFile, spc(40 - iNum), sInput)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Loop While Not sInput = ""

FileClose(iFile)

Programming Tips and Gotchas

You may find that sequential data files written using the Print procedure are misinterpreted by the Input
function. For heavily structured sequential data, you may get better results with the Write procedure, which
ensures that all fields are correctly delimited.

VB.NET/VB 6 Differences

In VB 6, the Print statement requires a # symbol in front of filenumber. In VB.NET, this usage is not
supported.

In VB 6, the final argument in outputlist, charpos, allows you to specify the starting character
position of the next output. In VB.NET, however, this argument is not supported.

See Also

FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Statement

Syntax

Private [WithEvents] varname[([subscripts])] [As [New] _

 type] [, [WithEvents] varname[([subscripts])] _

 [As [New] type]] . . .
WithEvents (optional; Keyword)

A keyword that denotes the object variable, varname, can respond to events triggered from within the
object to which it refers

varname (required; any)

The name of the variable, following Visual Basic naming conventions
subscripts (optional; Integer or Long)

Denotes varname as an array and specifies the number and extent of array dimensions
New (optional; Keyword)

Used to automatically create an instance of the object referred to by the object variable, varname
type (optional; Keyword)

Data type of the variable varname

Description

Used at module level to declare a private variable and allocate the relevant storage space in memory.
Private can also be used with procedures and class modules.

Rules at a Glance

A Private variable's scope is limited to the module in which it is created.

WithEvents is only valid when used to declare an object variable. The WithEvents keyword informs
VB that the object being referenced exposes events. When you declare an object variable using
WithEvents, an entry for the object variable is placed in the code window's Object List, and a list of
the events available to the object variable is placed in its Procedures List. You can then write code in
the object variable's event handlers in the same way you write other more common event handlers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no limit to the number of object variables that can refer to the same object using the
WithEvents keyword; they will all respond to that object's events.

You cannot create an array variable that uses the WithEvents keyword.

The New keyword cannot be used in the same object-variable declaration as WithEvents. This is
because WithEvents is designed to trap event notifications that would ordinarily be inaccessible to a
Visual Basic program. Consequently, WithEvents can only be used when defining an instance of an
existing object.

The subscripts argument has the following syntax:
upperbound [, upperbound]

For example:

Private strNames(10, 15)

defines a two-dimensional array with 11 elements in the first coordinate and 16 elements in the
second coordinate. Thus, the first element is strNames(0,0), and the last element is
strNames(10,15).

Using the subscripts argument, you can declare up to 60 multiple dimensions for the array.

To declare an array with no specified size, use commas with no integers between them, as in:
Private sNames()

Private sThings(,)

You can set or change the number of elements of an array using the ReDim statement.

The New keyword is used only when declaring an object variable. For example:
Private oEmployee As Employee

oEmployee = New Employee

or:

Private oEmployee As New Employee

The New keyword can only be used with early-bound objects.

datatype may be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long, Object, Short, Single,
String, a user-defined type, or an object type.

Programming Tips and Gotchas

All variables created at procedure level are Private by default. That is, they do not have scope
outside of the procedure in which they are created.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A new type of scope was introduced in Visual Basic 5.0. The Friend scope is halfway between
Public and Private. It is useful in situations where Private is too restricting and Public is too open.
For more information, refer to the Friend Keyword entry.

You should note that when you use the New keyword to declare an object variable, its class
constructor is fired when the object variable is declared.

The WithEvents keyword cannot be used with local variables whose scope is limited to a function or
procedure.

VB.NET/VB 6 Differences

In VB 6, the subscripts argument takes the form:
[lowerbound To] upperbound [, [lowerbound To] upperbound]

VB.NET, however, does not allow you to set the lower bound of an array.

In VB 6, an array whose number of elements are declared in advance is a fixed array; it cannot be
redimensioned. In VB.NET, all arrays are dynamic and can be redimensioned.

In VB.NET, variables declared with the New keyword on the same line as the Private statement are
no longer created when their first reference is encountered. Hence, whereas in VB 6, declaring an
object variable using a statement such as:
Private oObj As New MyApp.SomeObject

could interfere with object destruction, in VB.NET this is not the case.

In VB 6, the type argument can be Currency. The Currency data type, however, is not supported by
VB.NET.

See Also

Friend Keyword, Protected Keyword, Public Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property Statement

Syntax

[Default]

[accessmodifier] [ReadOnly| WriteOnly] _

 [ClassBehavior] Property name _

 [(arglist)] [As type] [Implements interfacemember]

 Get

 [statements]

 End Get

 Set

 [statements]

 End Set

End Property
Default (optional; Keyword)

Specifies that the property is the default property. Must have both a Get and a Set block.
accessmodifier (optional; Keyword)

One of the keywords Public, Private, Protected, Friend, or Protected Friend. For more
information, see Section 4.7 in Chapter 4.

ReadOnly (optional; Keyword)

Indicates that the property is read-only. Must have only a Get block. (If you try to write a Set block,
VB will generate a syntax error.)

WriteOnly (optional; Keyword)

Indicates that the property is write-only. Must have only a Set block. (If you try to write a Get block,
VB will generate a syntax error.)

ClassBehavior (optional; Keyword)

One of the following keywords:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Overloads

Indicates that more than one declaration of this function exists (with different argument
signatures). For more detail, see Chapter 4.

Overrides

For derived classes, indicates that the function overrides the function by the same name (and
argument signature) in the base class. For more detail, see Chapter 4.

Overridable

Indicates that the function can be overridden in a derived class. For more detail, see Chapter
4.

NotOverridable

Indicates that the function cannot be overridden in a derived class. For more detail, see
Chapter 4.

MustOverride

Indicates that the function must be overridden in a derived class. For more detail, see Chapter
4.

Shadows (optional; Keyword)

Indicates that the property shadows any element of this same name in a base class.
Shared

A shared function is callable without creating an object of the class. It is, in this strange
sense, shared by all objects of the class. These are also called static functions.

name (required; String literal)

The name of the property.
arglist (optional; any)

A comma-delimited list of variables to be passed to the property as arguments from the calling
procedure.

type (optional)

The return data type of the property. The default is Object.
Implements interfacename (optional)

Indicates that the property implements a property by the same name in the interface named
interfacename.

Description

Declares a class property

Rules at a Glance

Overloads and Shadows cannot be used in the same property declaration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Property procedures are Public by default.

The Friend keyword is only valid within class modules. Friend procedures are accessible to all
procedures in all modules and classes within a project, but are not listed in the class library for that
project. Therefore, they cannot be accessed from projects or applications outside the defining
application.

Properties and procedures defined using the Friend keyword cannot be late bound.

The Default keyword can be used only in the case of parameterized properties. Typically, these are
properties that either return collection objects or are implemented as property arrays.

By default, arguments are passed to the property procedures by value (ByVal).

type defines not only the data type returned by the property, but also the data type of the value to be
assigned to the property.

A Property Get procedure is very similar to a function: the value returned by the property is indicated
by assigning that value to a variable whose name is the same as the property.

In a Property Set procedure, the value being assigned to the property is represented by the keyword
Value. Its data type is represented by the As type clause.

If an Exit Property statement is executed, the Property procedure exits and program execution
immediately continues with the statement following the call to the property. Any number of Exit
Property statements can appear in a Property procedure.

Programming Tips and Gotchas

You should protect the values of properties by defining a Private variable to hold the internal
property value and to control the updating of the property by outside applications through the
Property statement, as the following template describes:
 ' Salary property is read/write

 Private mdecSalary As Decimal

 Property Salary() As Decimal

 Get

 Salary = mdecSalary

 End Get

 Set

 mdecSalary = Value

 End Set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Property

Otherwise, if the variable used to store a property value is public, its value can be modified arbitrarily
by any application that accesses the class module containing the property.

Typically, arglist need be specified only in the case of property arrays. For example:
Public Class CEmployee

Private sPhone(2) As String

Property Phone(idx As Integer) As String

 Get

 Phone = sPhone(idx)

 End Get

 Set

 sPhone(idx) = Value

 End Set

End Property

End Class

The class constructor is typically used to initialize property values to their default settings.

VB.NET/VB 6 Differences

The syntax for declaring properties in VB.NET is significantly different from the syntax in VB 6. Some of
the differences include:

VB 6 includes individual Property Get (to retrieve a property value), Property Let (to assign a
property value), and Property Set (to assign a reference to a property value) statements. VB.NET
replaces this with a single Property...End Property construct.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, all values - including the property values themselves - passed to property statements are
expressed as parameters. In VB.NET, the value to be assigned to a property is represented by the
Value keyword, rather than by a formal parameter.

In VB 6, because Property Set, Property Let, and Property Get procedures are separate,
standalone constructs, it is possible to expose property procedures with mixed visibility (a private
Property Let procedure, for example, and a public Property Get procedure). In VB.NET, because
the Property statement defines the visibility of the property as a whole, mixed visibility is not
supported.

See Also

Get Statement, Set Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protected Keyword

Description

Used to declare classes and their members.

When the Protected keyword is used to modify a member declaration, the member being declared has
direct access scope to the class module in which the member is declared, as well as to all derived classes
in all projects. However, as far as object access is concerned, the member is considered Private; that is, it
can only be accessed within the declaring class. (See the upcoming example.)

Declaring a class module as Protected limits all of the class' members to Protected access (or stronger if
the member has further specific access restrictions).

Example

Suppose we declare the following variable in a class module named Class1:

Protected sProtectedVar As String

Then within Class1 or any of its derived classes in any project, we can use the variable directly, as in:

Public Class Class2

 Inherits Class1

 Public Sub Test()

 MsgBox sProtectedVar

 End Sub

End Class

On the other hand, the following code, located in a form module, is illegal:

Dim c as New Class1

c.sProtectedVar = "Donna"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET/VB 6 Differences

The Protected keyword is new to VB.NET.

See Also

Friend Keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Statement

Syntax

[Overrides] [Shadows] Public [WithEvents] varname[([subscripts])] _

 [As [New] type] [, [WithEvents] _

 varname[([subscripts])] [As [New] type]] ...
Overrides (optional; Keyword)

In a derived class definition, indicates that a variable overrides a similar variable in a base class
Shadows (optional; Keyword)

In a derived class definition, indicates that calls to derived class members that are made through a
base class ignore the shadowed implementation

WithEvents (optional; Keyword)

A keyword that denotes the object variable, varname, can respond to events triggered from within the
object to which it refers

varname (required; String literal)

The name of the variable, which must follow Visual Basic naming conventions
subscripts (optional; Numeric constant or literal)

Denotes varname as an array and specifies the dimensions and number of elements of the array
New (optional; Keyword)

Used to automatically create an instance of the object referred to by the object variable, varname
type (optional)

Data type of the variable varname

Description

Used at module level to declare a public variable and allocate the relevant storage space in memory.

A Public variable has both project-level scope - that is, it can be used by all procedures in all modules in
the project - and, when used in a Class module, it can have scope outside the project.

The Public keyword also applies to procedures and class modules.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rules at a Glance

The behavior of a Public variable depends on where it is declared, as the following table shows:

Variable declared in... Scope

A procedure Illegal - this generates a compile-time error.

Code module
declarations section

Variable is available to all modules within the project.

Class module
declarations section

Variable is available as a property of the class to all modules within the
project and to all other projects referencing the class.

Form module
declarations section

Variable is available as a property of the form to all modules within the
project.

WithEvents is only valid when used to declare an object variable.

There is no limit to the number of variables that can refer to the same object using the WithEvents
keyword; they will all respond to that object's events.

You cannot create an array variable that uses the WithEvents keyword.

The New keyword cannot be used in the same object-variable declaration as WithEvents.

The subscripts argument has the following syntax:
upperbound [, upperbound]

Using the subscripts argument, you can declare up to 60 dimensions for the array.

To declare an array with no specified size, use commas with no integers between them, as in:
Public sNames()

Public sThings(,)

You can set or change a number of elements of an array using the ReDim statement.

The New keyword denotes that a new instance of the object will be created when the first reference to
the object is made. Use of the New keyword therefore negates the need to use the Set statement.

You cannot use the New keyword to declare any of the following: variables of any intrinsic data type
(the New keyword is for use with object variables only); instances of dependent objects (a dependant
object is one that can only be created from a method or property in another object; a dependent
object is not publicly createable); or a variable that uses the WithEvents argument.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instead of declaring a variable as Public within either a form or class module, proper object-oriented
programming techniques dictate that you should create a Property procedure that assigns and
retrieves the value of a Private variable.

Always use Option Explicit at the beginning of a module to prevent misnamed variables from
causing hard to find errors.

VB.NET/VB 6 Differences

In VB 6, the subscripts argument takes the form:
[lowerbound To] upperbound [, [lowerbound To] upperbound]

VB.NET, however, does not allow you to set the lower bound of an array.

In VB 6, an array whose number of elements are declared in advance is a fixed array; it cannot be
redimensioned. In VB.NET, all arrays are dynamic and can be redimensioned.

In VB.NET, variables declared with the New keyword on the same line as the Public statement are no
longer created when their first reference is encountered. Hence, whereas in VB 6, declaring an
object variable using a statement such as:
Public oObj As New MyApp.SomeObject

could interfere with object destruction, in VB.NET this is not the case.

In VB 6, the type argument can be Currency. The Currency data type, however, is not supported by
VB.NET.

See Also

Friend Keyword, Protected Keyword, Public Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PV Function

Class

Microsoft.VisualBasic.Financial

Syntax

PV(rate, nper, pmt[, fv [, due]])
rate (required; Double)

The interest rate per period
nper (required; Integer)

The number of payment periods in the annuity
pmt (required; Double)

The payment made in each period
fv (optional; Double)

The future value of the loan or annuity
due (optional; Duedate)

Either DueDate.BegOfPeriod or DueDate.EndOfPeriod

Return Value

A Double specifying the present value of an annuity

Description

Calculates the present value of an annuity (either an investment or loan) based on a regular number of
future payments of a fixed value and a fixed interest rate.

The present value is the current value of a future stream of equal cash flows discounted at some fixed
interest rate.

Rules at a Glance

The time units used for the number of payment periods, the rate of interest, and the payment amount
must be the same. In other words, if you state the payment period in months, you must also express

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the interest rate as a monthly rate and the amount paid per month.

The rate per period is stated as a fraction of 100. For example, 10% is stated as .10. If you are
calculating using monthly periods, you must also divide the rate per period by 12. For example, 10%
per annum equates to a rate per period of .00833.

The fv argument indicates the future value or cash balance after the last payment. The default is 0,
since that reflects the value of a loan after the final payment.

Payments made against a loan or added to the value of savings are expressed as negative numbers.

The due argument states whether the payment is made at the start of a period or at the end (the
default value).

Programming Tips and Gotchas

Make sure that nper, rate, and pmt all reflect values for an identical time period. For example, if pmt
represents a monthly payment, rate should represent the monthly interest rate, rather than an annual
interest rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PPmt Function, Rate Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

QBColor Function

Class

Microsoft.VisualBasic.Information

Syntax

QBColor(color)
color (required; Integer)

A whole number between 0-15

Return Value

Long

Description

Returns a Long integer representing the RGB system color code

Rules at a Glance

color can have any of the following values:

Number Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Number Color

8 Gray

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 Bright White

Programming Tips and Gotchas

The RGB function allows much more flexibility than the older QBColor function, which is a remnant
of QBasic.

Visual Basic now contains a wide range of intrinsic color constants that can be used to assign colors
directly to color properties of objects.

See Also

RGB Function

8 Gray

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 Bright White

Programming Tips and Gotchas

The RGB function allows much more flexibility than the older QBColor function, which is a remnant
of QBasic.

Visual Basic now contains a wide range of intrinsic color constants that can be used to assign colors
directly to color properties of objects.

See Also

RGB Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue Class

Namespace

System.Collections

Createable

Yes

Syntax

Dim queuevariable As [New] Queue
queuevariable (required; Queue object)

The name of the Queue object

Description

A Queue object is a model of a queue. Succinctly put, a queue is a first-in, first-out data structure. (This is
often abbreviated FIFO.) Put another way, a queue is a data structure that models a line of items. There is
a method for inserting items at the end of the line (enqueueing), as well as a method for removing the item
that is currently at the front of the line (dequeueing). Under this scenario, the next item to be dequeued is
the item that was placed in line first - hence the term first-in, first-out.

Note that the elements in a Queue object are of type Object.

Queue class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +
IsReadOnly
IsSynchronized
SyncRoot

Public Instance Methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Clone
Contains +
CopyTo +
Dequeue +
Enqueue +
Equals
GetEnumerator
GetHashCode
GetType
Peek +
ToArray +
ToString

Example

Here is a bit of code to illustrate the members of the Queue class:

' Define a new queue

Dim q As New Queue()

' Queue up some items

q.Enqueue("Chopin")

q.Enqueue("Mozart")

q.Enqueue("Beethoven")

' Is an item in the queue?

MsgBox("Beethoven in queue: " & CStr(q.Contains("Beethoven")))

' Peek at the first item

MsgBox("First item in queue is: " & q.Peek.ToString)

' Send queue to an array and display all items

Dim s() As Object = q.ToArray()

Dim i As Integer

For i = 0 To UBound(s)

 Console.WriteLine(CStr(s(i)))

Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Clear queue

q.Clear()

VB.NET/VB 6 Differences

The Queue object is new to the .NET Framework.

See Also

Collection Class, Hashtable Class, Stack Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Clear Method

Class

System.Collections.Queue

Syntax

queuevariable.Clear()

Return Value

None

Description

Removes all entries from the queue

See Also

Queue.Dequeue Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Contains Method

Class

System.Collections.Queue

Syntax

queuevariable.Contains(obj)
obj (required; any)

The value to search for on the queue

Return Value

Boolean (True or False) indicating whether obj is found in the queue

Description

Returns a Boolean indicating whether a given element whose value is obj is somewhere in the queue

Rules at a Glance

obj must correspond exactly to an item in the queue for the method to return True.

The method searches the queue sequentially. In other words, its performance is inversely
proportional to the number of items in the queue.

Programming Tips and Gotchas

In comparing objects in the queue with obj, the Contains method in turn calls the BCL's Object.Equals
method to perform the comparison. The Equals method returns True if two object instances are the same
instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.CopyTo Method

Class

System.Collections.Queue

Syntax

queuevariable.CopyTo(array, index)
array (required; Array of Objects)

Array to which to copy the queue's objects
index (required; Integer)

The index of the first array element to receive an element of the queue

Return Value

None

Description

Copies the queue elements into an array, starting at a specified array index

Rules at a Glance

The array can be of any data type that is compatible with the queue elements. Thus, for instance, we
cannot use an Integer array to hold queue elements that are strings (that is, Objects whose subtype
is String).

The array must be sized to accommodate the elements of the queue prior to calling the CopyTo
method.

Example

' Define a new queue

Dim q As New Queue()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim aQueue(), oItem As Object

' Queue up some items

q.Enqueue("Chopin")

q.Enqueue("Mozart")

q.Enqueue("Beethoven")

' Size the array and copy to it

Redim aQueue(q.Count - 1)

q.CopyTo(aQueue,0)

For Each oItem in aQueue

 Console.WriteLine(oItem)

Next

See Also

Queue.ToArray Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Count Property

Class

System.Collections.Queue

Syntax

queuevariable.Count()

Return Value

Integer

Description

This read-only property returns an Integer specifying the number of elements in the queue.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Dequeue Method

Class

System.Collections.Queue

Syntax

queuevariable.Dequeue()

Return Value

Object

Description

Removes the first item from the queue and returns it as an Object

Rules at a Glance

Dequeue removes the item at the beginning of the queue and decrements the Count property by
one.

The Dequeue method generates an error if applied to an empty queue. Thus, it may be advisable to
check for an empty queue using the Count property before attempting to dequeue.

Programming Tips and Gotchas

Dequeue is similar to the Peek method. The Peek method returns a reference to the object at the
beginning of the queue, but unlike the Dequeue method, does not remove it from the queue.

See Also

Queue.Peek Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Enqueue Method

Class

System.Collections.Queue

Syntax

queuevariable.Enqueue(obj)
obj (required; Object)

The item to place in the queue

Return Value

None

Description

Places an object at the end of the queue

Rules at a Glance

Enqueue adds an item to the end of the queue and increases the Count property by 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.Peek Method

Class

System.Collections.Queue

Syntax

queuevariable.Peek()

Return Value

Object

Description

Returns the first item in the queue as an Object, but does not remove it from the queue

Programming Tips and Gotchas

The Peek method is similar to the Queue object's Dequeue method, except that it leaves the queue intact.

See Also

Queue.Dequeue Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Queue.ToArray Method

Class

System.Collections.Queue

Syntax

queuevariable.ToArray()

Return Value

An Array of type Object

Description

This method creates an array of type Object, copies the elements of the queue - in order - to that array,
and then returns the array.

Programming Tips and Gotchas

Unlike the CopyTo method, we do not need to define an array in advance. However, we cannot specify the
starting array index for the copy procedure using ToArray.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RaiseEvent Statement

Syntax

RaiseEvent eventName([arglist])
eventName (required; String literal)

The name of the event
arglist (optional; any (defined by the Event statement)

A comma-delimited list of arguments

Description

Generates a predefined, custom event within any procedure of an object module

Rules at a Glance

eventName must already be defined in the Declarations section of the module using the Event
statement.

arglist must match the number and data type of parameters defined in the Event statement and
must be surrounded by parentheses.

The RaiseEvent and Event statements can only be used in class modules and not in standard
modules.

Example

The following code snippet demonstrates how you can use an event to communicate a status message
back to the client application and, at the same time, use a ByRef argument to trap a user response in the
client application. This gets around the fact that events can't return values. To take advantage of this
functionality, the client must declare a reference to this class using the WithEvents keyword:

Public Class CTransact

Public Event Status(Message As String, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ByRef Cancel As Boolean)

Public Function UpdateRecords(iVal As Integer) as Boolean

 Dim blnCancel As Boolean = False

 If iVal > 1000 Then

 RaiseEvent Status("Is value too high?", blnCancel)

 If blnCancel Then

 Console.WriteLine("Abandoning operation...")

 Exit Function

 Else

 iVal = 1000

 End If

 End If

 console.writeline(iVal)

 End Function

End Class

Module modMain

 Public WithEvents oTran As New CTransact

 Public Sub Main

 otran.updaterecords(1100)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Sub

 Private Sub UpdateProb(sMsg As String, _

 byref blnCancel as Boolean) _

 Handles oTran.Status

 If MsgBoxResult.Yes = MsgBox(sMsg, MsgBoxStyle.YesNo _

 Or MsgBoxStyle.Question) Then

 blnCancel = True

 End If

 End Sub

End Module

Programming Tips and Gotchas

To allow the client application to handle the event being fired, the client object variable must be
declared using the WithEvents keyword.

VB custom events do not return a value; however, you can use a ByRef argument in arglist to
simulate a return value, as shown in the previous example.

RaiseEvent is not asynchronous. In other words, when you call the RaiseEvent statement in your
class code, your class code will not continue executing until the event has been either handled by the
client or ignored (if the client is not handling the events raised by the class). This can have
undesirable side effects, and you should bear it mind when planning your application. For example,
you may have a recordset open or a transaction pending and have to wait for the user to respond to
a message dialog box at the client. This could easily turn into a bottleneck, adversely affecting the
scalability of your application.

For more information about implementing your own custom events, see Chapter 7.

See Also

Event Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Randomize Procedure

Class

Microsoft.VisualBasic.VBMath

Syntax

Randomize([number])
number (optional; Object or any valid numeric expression)

A number used to initialize the random-number generator

Description

Initializes the random-number generator

Rules at a Glance

Randomize uses number as a new seed value to initialize the random-number generator used by the
Rnd function. The seed value is an initial value that is used to generate a sequence of
pseudorandom numbers.

If you do not pass number to the Randomize procedure, the value of the system timer will be used as
the new seed value.

Repeatedly passing the same number to Randomize does not cause Rnd to repeat the same
sequence of random numbers.

Programming Tips and Gotchas

If you need to repeat a sequence of random numbers, you should call the Rnd function with a negative
number as an argument immediately prior to using Randomize with any numeric argument.

See Also

Rnd Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rate Function

Class

Microsoft.VisualBasic.Financial

Syntax

Rate(nper, pmt, pv[, fv[, due[, guess]]])
nper (required; Double)

The total number of periods in the annuity.
pmt (required; Double)

The payment amount per period.
pv (required; Double)

The present value of the payments or future receipts.
fv (optional; Double)

The future value or cash balance after the final payment. If omitted, its value defaults to 0.
due (optional; DueDate enumeration)

A flag indicating whether payments are due at the beginning of the payment period (a value of
DueDate.BegOfPeriod) or at the end of the payment period (a value of DueDate.EndOfPeriod, the
default).

guess (optional; Double)

An estimate of the value to be returned by the function. If omitted, its value defaults to .1 (10%).

Return Value

A Double representing the interest rate per period

Description

Calculates the interest rate for an annuity (a loan or an investment) that consists of fixed payments over a
known duration

Rules at a Glance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For pv and fv, cash paid out is expressed as a negative number; cash received is expressed as a
positive number.

The function works using iteration. Starting with guess, Rate cycles through the calculation until the
result is accurate to within 0.00001 percent. If a result can't be found after 20 tries, the function fails.

Programming Tips and Gotchas

In the case of a loan, pv is the loan amount. In the case of an investment, pv is the beginning
balance.

In the case of a loan, fv is typically 0, reflecting that the entire loan has been paid. In the case of an
investment, fv is the value of the investment with interest at the end of the investment period.

If the function fails because it could not calculate an accurate interest rate in 20 iterations, try a
different value for guess.

The value returned by the function rate is the interest rate for the same time period as payments
were made. Typically, this is one month, in which case you must multiply by 12 to derive the annual
percentage rate.

See Also

FV Function, IPmt Function, NPer Function, NPV Function, Pmt Function, PV Function, NPV Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ReDim Statement

Syntax

ReDim [Preserve] varname(subscripts) _

 [, varname(subscripts) ...
Preserve (optional; Keyword)

Preserves the data within an array when changing the only or last dimension
varname (required; String literal)

Name of the variable
subscripts (required; Numeric)

Number of elements and dimensions of the array, using the syntax:
upper [, upper] ...

The number of upper bounds specified is the number of dimensions. Each upper bound specifies the size
of the corresponding coordinate.

Description

Used within a procedure to resize and reallocate storage space for an array

Rules at a Glance

Arrays can be sized or resized using the ReDim statement. There is no limit to the number of times
you can redimension a dynamic array.

The dimension cannot be changed, nor can the data type of the array be changed.

If you do not use the Preserve keyword in redimensioning the array, you can resize any of the
coordinates of the array.

Use of the Preserve keyword allows you to retain the current values within the array, but it also
allows you to resize only the last coordinate of an array.

You can redimension an array in a called procedure if you pass the array to the procedure by
reference. For example:
Public Sub Main

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim lArr() AS Object = {1,2,3,4,5,6,7,8,9,10}

Dim lNum As Long

ResizeArray(lArr)

for each lNum in lARr

 Console.WriteLine(lNum)

Next

End Sub

Public Sub ResizeArray(ByRef arr() As Object)

ReDim Preserve arr(15)

arr(10) = 20

arr(11) = 50

arr(12) = 80

arr(13) = 90

arr(14) = 100

arr(15) = 200

End Sub

Note that this is contrary to the documentation, which indicates that arrays passed to called

http://lib.ommolketab.ir
http://lib.ommolketab.ir

procedures by reference will return unmodified.

Programming Tips and Gotchas

If the ReDim Preserve statement is used to reduce the number of array elements, the data in the
discarded elements is lost. And although this can be interpreted as a "narrowing" operation, it is
unaffected by the state of the Option Strict setting.

Redimensioning an array, and particularly a large string array, can be expensive in terms of an
application's performance. Consequently, frequent redimensioning, such as in the code fragment:
ReDim Preserve aNames(aNames(UBound)+1)

is not a good idea. Instead, it's best to allocate a "pool" of array elements by creating an array larger
than needed, then using a counter to keep track of how many elements remain to be filled. For
example:

If intCtr = UBound(aNames)) Then

 ReDim Preserve aNames(aNames(Ubound)+50)

 ...

VB.NET/VB 6 Differences

In VB 6, it is possible (though not recommended) to declare a dynamic array using the ReDim
statement, then use the ReDim statement again to redimension it. In VB.NET with Option Explicit
Off, using the ReDim statement to declare an array is not permitted and generates a compiler error.

In VB 6, only arrays declared without an explicit number of elements, such as:
Dim arr() As Variant

were dynamic arrays and could be redimensioned using ReDim. In VB.NET, all arrays are dynamic.

VB 6 allows you to redimension both the upper and lower bounds of an array. Since VB.NET does
not allow you to configure an array's lower bound, you can modify the array's upper bound only.

In VB 6, it is possible to change the number of dimensions of an array as long as the Preserve
keyword isn't used. VB.NET, on the other hand, does not allow you to change the number of
dimensions of an array.

Although neither VB 6 nor VB.NET permit you to change the data type of an array, the ReDim
statement in VB 6 nevertheless supports an As type clause that allows you to declare the
redimensioned array's data type. As long as type is the same as the originally declared type, ReDim
won't generate a compiler error. In VB.NET, the use of the As type clause is not supported.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rem Statement

Syntax

Rem comment

' comment
comment (optional)

A textual comment to place within the code

Description

Use the Rem statement or an apostrophe (') to place remarks within the code.

Rules at a Glance

Text or code commented out using either the Rem statement or an apostrophe is not compiled into
the final program and, therefore, does not add to the size of the executable.

If you use the Rem statement on the same line as program code, a colon is required after the program
code and before the Rem statement. For example:
Set objDoc = MyApp.MyObj : Rem Define the object

 Rem reference

This is not necessary when using the much more common apostrophe:

Set objDoc = MyApp.MyObj ' Define the object reference

Apostrophes held within quotation marks are not treated as comment markers, as this code snippet
shows:
myVar = "'Something'"

Programming Tips and Gotchas

The Visual Studio development environment contains block-comment and block-uncomment buttons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

on the Text Editor toolbar, which allow you to comment out or uncomment a selection of many rows
of code at once.

You cannot use the line-continuation character ("_") with comments.

VB.NET/VB 6 Differences

In VB 6, if a line containing a comment ends in an underscore (the line continuation character), the
following line is interpreted as a comment as well. In VB.NET, line continuation characters are ignored at
the end of a comment line; each comment line must be prefaced with the Rem statement or the ' symbol.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RemoveHandler Statement

Syntax

RemoveHandler NameOfEventSender, AddressOf NameOfEventHandler
NameOfEventSender (required; String literal)

The name of a class or object instance and its event, such as Button1.Click
NameOfEventHandler (required; String literal)

The name of a subroutine to remove as event handler for NameOfEventSender

Description

Removes a previous binding of an event handler to a built-in or custom event

Example

For an illustration, see Section 7.2.3 in Chapter 7.

Programming Tips and Gotchas

The Handles keyword can be used to receive event notification for the lifetime of an object. In contrast,
AddHandler and RemoveHandler can be used to dynamically add and remove event notification at runtime.

See Also

AddHandler Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rename Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Rename(oldpath, newpath)
oldpath (required; String)

The current filename and optional path
newpath (required; String)

The new filename and optional path

Description

Renames a disk file or folder

Rules at a Glance

newpath must not already exist, or an error will be generated.

oldpath must exist; the Rename procedure isn't able to create a new file or directory.

When renaming a file or folder, both newpath and oldpath should include a path to the same folder,
or the function will move the file or directory. For instance, the statement:
Rename("c:\Temp\Graphics", "Images")

renames the Graphics folder to Images and moves it so that it becomes a subdirectory of the current
directory.

Path information included in newpath and oldpath can take the form of the local system's path or the
UNC path. The local system path can be either a fully qualified path or a relative path from the
current directory.

newpath and oldpath can be on different drives, but if they are, Rename cannot both move the files
and rename them.

newpath and oldpath cannot include the wildcard characters ? and *.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You cannot use the Rename procedure with a file that is already open.

Programming Tips and Gotchas

The Rename procedure can be used to move a file from one folder to another and, optionally, to change
the file's name at the same time. If the folder specified in newname exists and is different from that stated in
oldname, the file will be moved to the folder specified in newname. If the filename in newname is also different,
the file will be renamed at the same time.

VB.NET/VB 6 Differences

The Rename procedure is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Replace Function

Class

Microsoft.VisualBasic.Strings

Syntax

Replace(expression, find, replace [, _

 start[, count[, compare]]])
expression (required; String)

The complete string containing the substring to be replaced
find (required; String)

The substring to be found by the function
replace (required; String)

The new substring to replace find in expression
start (optional; Long)

The character position in expression at which the search for find begins
count (optional; Long)

The number of instances of find to replace
compare (optional; CompareMethod constant)

The method used to compare find with expression; its value can be CompareMethod.Binary (for
case-sensitive comparison) or CompareMethod.Text (for case-insensitive comparison)

Return Value

The return value from Replace depends on the parameters you specify in the argument list, as the
following table shows:

If Return value

expression = "" Zero-length string ("")

find = "" Copy of expression

replace = "" Copy of expression with all instances of find removed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Return value

start > Len(expression) Zero-length string ("")

count = 0 Copy of expression

Description

Replaces a given number of instances of a specified substring in another string

Rules at a Glance

If start is omitted, the search begins at the start of the string.

If count is omitted, all instances of the substring after start are replaced.

CompareMethod.BinaryCompare is case sensitive; that is, Replace matches both character and case,
whereas CompareMethod.Text is case insensitive, matching only character regardless of case.

The default value for compare is CompareMethod.Binary.

start not only specifies where the search for stringToReplace begins, but also where the new string
returned by the Replace function will commence.

Programming Tips and Gotchas

If count is not used, be careful when replacing short strings that may form parts of unrelated words.
For example, consider the following:
Dim sString

sString = "You have to be careful when you do this " _

 & "or you could ruin your string"

Console.WriteLine(Replace(sString, "you", "we"))

Because we don't specify a value for count, the call to Replace replaces every occurrence of "you"
in the original string with "we". But the fourth occurrence of "you" is part of the word "your", which is
modified to become "wer".

You must also be aware that if start is greater than 1, the returned string starts at that character and
not at the first character of the original string, as you might expect. For example, given the
statements:
sOld = "This string checks the Replace function"

sNew = Replace(sOld, "check", "test", 5, _

start > Len(expression) Zero-length string ("")

count = 0 Copy of expression

Description

Replaces a given number of instances of a specified substring in another string

Rules at a Glance

If start is omitted, the search begins at the start of the string.

If count is omitted, all instances of the substring after start are replaced.

CompareMethod.BinaryCompare is case sensitive; that is, Replace matches both character and case,
whereas CompareMethod.Text is case insensitive, matching only character regardless of case.

The default value for compare is CompareMethod.Binary.

start not only specifies where the search for stringToReplace begins, but also where the new string
returned by the Replace function will commence.

Programming Tips and Gotchas

If count is not used, be careful when replacing short strings that may form parts of unrelated words.
For example, consider the following:
Dim sString

sString = "You have to be careful when you do this " _

 & "or you could ruin your string"

Console.WriteLine(Replace(sString, "you", "we"))

Because we don't specify a value for count, the call to Replace replaces every occurrence of "you"
in the original string with "we". But the fourth occurrence of "you" is part of the word "your", which is
modified to become "wer".

You must also be aware that if start is greater than 1, the returned string starts at that character and
not at the first character of the original string, as you might expect. For example, given the
statements:
sOld = "This string checks the Replace function"

sNew = Replace(sOld, "check", "test", 5, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CompareMethod.Text)

sNew will contain the value:

"string tests the Replace function"

You can use the Mid function on the left side of an argument to replace part of string, but to replace
more than one instance of a substring requires a complicated Do While loop that constantly checks
for the position of any remaining instances of the substring to be replaced.

The BCL's System.String class also has a public instance Replace method, which replaces all
occurrences of a character or string with another. Its syntax is:
sString.Replace(oldValue,

newValue)

where oldValue is a String or Char value containing the text to be replaced and newValue is a String
or Char value containing the replacement text.

See Also

InStr Function, InStrRev Function, Mid Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reset Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Reset()

Description

Closes all files that have been opened using the FileOpen procedure

Rules at a Glance

The contents of any current file buffers are written to disk by the Reset procedure immediately prior to
Reset closing the respective files.

Programming Tips and Gotchas

The Reset procedure is generally used as a last resort, cleaning up if your program is terminating
abnormally. Normally, you should write code to close each open file using the FileClose procedure.

See Also

FileClose Procedure, FileOpen Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resume Statement

Syntax

Resume [0]

Resume Next

Resume label

Description

Used to continue program execution when an error-handling routine is complete

Rules at a Glance

Resume can take any of the forms shown in the following table:

Statement Description

Resume

If the error-handling routine is in the same procedure as the statement that caused the
error, program execution continues with the statement that caused the error.

If the error occurred in an external procedure called by the procedure containing the error
handler, program execution continues with the statement in the procedure containing the
error handler that last called the external procedure.

Resume

Next

If the error-handling routine is in the same procedure as the statement that caused the
error, program execution continues with the statement following the statement that caused
the error.

If the error occurred in an external procedure called by the procedure containing the error
handler, program execution continues with the statement containing the error handler
immediately following the statement that last called the external procedure.

Resume

label

label must be in the same procedure as the error handler.

Program execution continues at the specified label.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can only use the Resume statement in an error-handling routine; otherwise, a runtime error will be
generated.

An error-handling routine does not necessarily have to contain a Resume statement. If the error-
handling routine is at the end of the procedure and the result of the error handling would be to exit
the procedure, you can simply allow the program to execute the End Sub or End Function statement.
This has the effect of both resetting the Err object and exiting the procedure. This is shown in the
following simple code snippet:
Private Sub DoSomething()

 On Error GoTo DoSomething_Err

 ...

DoSomething_Err:

 MsgBox(Err.Description)

End Sub

See Also

On Error Statement, Err Object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Return Statement

Syntax

In a subroutine:

Return

In a function:

Return ReturnValue
ReturnValue (required; any)

The return value of the function

Description

Returns to the calling program from a subroutine or function

Rules at a Glance

If the Return statement appears in a function, it must specify a return value for the function.

Return causes program flow to leave the function or subroutine and return to the calling program;
any statements in the function or subroutine that follow Return are not executed.

Example

Public Sub Main

Dim d As Double = GetNumbers()

Console.WriteLine("The sum of values is " & d)

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Function GetNumbers As Double

Dim iCtr As Integer = 1

Dim sInput As String

Dim dblNums(9), dblSum, dblTemp As Double

Do

 sInput = InputBox("Enter number " & iCtr & ": ", "Sum")

 If sInput = "" Then

 if iCtr = 1 Then Return 0

 Exit Do

 End If

 If IsNumeric(sInput) Then

 dblNums(iCtr - 1) = CDbl(sInput)

 iCtr = iCtr + 1

 End If

Loop While iCtr <= 9

' Sum array elements

for each dblTemp in dblNums

 dblSum += dblTemp

next

return dblSum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Function

Programming Tips and Gotchas

Return is identical in operation to the Exit Sub statement: it prematurely transfers control from a procedure
to the calling routine. It is also similar to the Exit Function statement; while it prematurely transfers control
out of the function, it also allows a particular value to be returned by the function.

VB.NET/VB 6 Differences

In VB 6, Return is a legacy statement that returns control after GoSub has invoked a subroutine within a
procedure. In VB.NET, however, Return returns control from a called function or procedure and optionally
allows the function's return value to be defined.

See Also

Exit Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RGB Function

Class

Microsoft.VisualBasic.Information

Syntax

RGB(red, green, blue)
red (required; Integer)

A number between 0 and 255, inclusive
green (required; Integer)

A number between 0 and 255, inclusive
blue (required)

Data type: Integer

A number between 0 and 255, inclusive

Return Value

An Integer representing the RGB color value

Description

Returns a system color code that can be assigned to object color properties

Rules at a Glance

The RGB color value represents the relative intensity of the red, green, and blue components of a
pixel that produces a specific color on the display.

The RGB function assumes any argument greater than 255 to be 255.

The following table demonstrates how the individual color values combine to create certain colors:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Color Red Green Blue

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Red 255 0 0

White 255 255 255

Programming Tips and Gotchas

The RGB value is actually derived using the following formula:
RGB = red + (green * 256) + (blue * 65536)

In other words, the individual color components are stored in the opposite order than you would
expect. VB stores the red color component in the low- order byte of the integer's low-order word, the
green color in the high-order byte of the low-order word, and the blue color in the low-order byte of
the high-order word.

Visual Basic now contains a wide range of intrinsic color constants that can be used to assign color
values directly to color properties of objects.

See Also

QBColor Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Right Function

Class

Microsoft.VisualBasic.Strings

Syntax

Right(string, length)
string (required; String)

The string to be processed
length (required; Integer)

The number of characters to return from the right of the string

Return Value

String

Description

Returns a string containing the rightmost length characters of string

Rules at a Glance

If length is 0, a zero-length string ("") is returned.

If length is greater than the length of string, string is returned.

If length is less than zero or is Nothing, an error is generated.

If string contains a Nothing, Right returns Nothing.

Example

The following function assumes that it is passed either a filename or a complete path and filename, and it
returns the filename from the end of the string:

Private Function ParseFileName(strFullPath As String) As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim intPos, intStart As Integer

 Dim strFilename As String

 intStart = 1

 Do

 intPos = InStr(intStart, strFullPath, "\")

 If intPos = 0 Then

 strFilename = Right(strFullPath, _

 Len(strFullPath) - inStart + 1)

 Else

 intStart = intPos + 1

 End If

 Loop While intPos > 0

 ParseFileName = strFilename

End Function

Programming Tips and Gotchas

Use the Len function to determine the total length of string.

See Also

Left Function, Mid Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RmDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

RmDir(path)
path (required; String)

The path of the folder to be removed

Description

Removes a folder

Rules at a Glance

You may include a drive letter in path; if you don't specify a drive letter, the folder is assumed to be
on the current drive.

path can be a fully qualified, relative, or UNC pathname.

If the folder contains files or other folders, RmDir will generate runtime error 75, "Path/File access
error."

Example

The following subroutine deletes all the files in a folder and removes its subfolders. If those contain files or
folders, it deletes those too by recursively calling itself until all child folders and their files are removed.

Private Sub RemoveFolder(ByVal strFolder As String)

 Static blnLowerLevel As Boolean ' A recursive call - no

 ' need to prompt user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim blnRepeated As Boolean ' Use Dir state info on

 ' repeated calls

 Dim strFile As String ' File/Directory contained in

 ' strFolder

 ' Delete all files

 Do

 strFile = Dir(strFolder & "*.*", _

 VbNormal Or VbHidden Or VbSystem)

 If strFile <> "" Then

 If Not blnLowerLevel Then

 If MsgBox("Delete files in directory " & _

 strFolder & "?", vbQuestion Or vbOKCancel, _

 "Confirm File Deletion") _

 = vbCancel Then Exit Sub

 End If

 strFile = strFolder & "\" & strFile

 Kill(strFile)

 End If

 Loop While strFile <> ""

 ' Delete all directories

 Do

 If Not blnRepeated Then

 strFile = Dir(strFolder & "*.*", VbDirectory)

 blnRepeated = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Else

 strFile = Dir()

 End If

 If strFile <> "" And _

 strFile <> "." And strFile <> ".." Then

 If Not blnLowerLevel Then

 blnLowerLevel = True

 If MsgBox("Delete subdirectories of " & _

 strFolder & "?", _

 vbQuestion BitOr vbOKCancel, _

 "Confirm Directory Deletion") _

 = vbCancel Then Exit Sub

 End If

 RemoveFolder(strFolder & "\" & strFile)

 blnRepeated = False

 End If

 Loop While strFile <> ""

 RmDir(strFolder)

End Sub

Programming Tips and Gotchas

Use the Kill procedure to delete any remaining files from the folder prior to removing the folder.

The effects of using Kill and RmDir are irreversible, since these statements do not move deleted files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the Recycle Bin.

See Also

MkDir Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rnd Function

Class

Microsoft.VisualBasic.VBMath

Syntax

Rnd[(number)]
number (optional; Single)

Any valid numeric expression that serves as a seed value

Return Value

A Single data type random number

Description

Returns a random number

Rules at a Glance

The behavior of the Rnd function is determined by number, as described in the following table:

Number Rnd generates

< 0 The same number each time, using seed as the seed number

> 0 The next random number in the current sequence

0 The most recently generated number

Not supplied The next random number in the current sequence

The Rnd function always returns a value between and 1.

If number is not supplied, the Rnd function will use the last number generated as the seed for the
next generated number. This means that given an initial seed (seed), the same sequence will be
generated if number is not supplied on subsequent calls.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The following example uses the Randomize procedure along with the Rnd function to fill 100 cells of an
Excel worksheet with random numbers. It requires that a reference to the Microsoft Excel Object Library be
added to the project. It also leaves the instance of Excel running once the code has finished execution.

 Public Sub GenerateRandomNumbers()

 Dim oApp As New Excel.Application()

 Dim objSheet As Excel.Worksheet

 Dim intRow, intCol As Integer

 oApp.Visible = True

 objSheet = oApp.Workbooks.Add.Worksheets(1)

 Randomize()

 ' Set the color of the input text to blue

 objSheet.Cells.Font.ColorIndex = 5

 ' Loop through first 10 rows & columns,

 ' filling them with random numbers

 For intRow = 1 To 10

 For intCol = 1 To 10

 objSheet.Cells(intRow, intCol).Value = Rnd()

 Next

 Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Resize columns to accommodate random numbers

 objSheet.Columns("A:C").AutoFit()

 objSheet = Nothing

 End Sub

Programming Tips and Gotchas

Before calling the Rnd function, you should use the Randomize procedure to initialize the random-
number generator.

The standard formula for producing numbers in a given range is as follows:
Int((highest - lowest + 1) * Rnd + lowest)

where lowest is the lowest required number in the range and highest is the highest.

See Also

Randomize Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Round Function

Class

System.Math

Syntax

Math.Round(value[,digits])
value (required; Numeric expression)

Any numeric expression
digits (optional; Integer)

The number of places to include after the decimal point

Return Value

The same data type as value

Description

Rounds a given number to a specified number of decimal places

Rules at a Glance

digits can be any whole number between 0 and 16.

Round follows standard rules for rounding. If the digit in the position to the right of digits is 5 or
greater, the digit in the digits position is incremented by one; otherwise, the digits to the right of
digits are dropped.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

Round with digits set to 2 is the equivalent of Format (expression, "#. ##").

If value is a string representation of a numeric value, Round will convert it to a numeric value before

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rounding. However, if expression is not a string representation of a number, Round generates
runtime error 13, "Type mismatch." The IsNumeric function can be used to ensure that expression is
a proper numeric representation before calling Round.

If value contains fewer decimal places than digits, Round does not pad the return value with
trailing zeroes.

VB.NET/VB 6 Differences

The named parameters of the Round function differ in VB 6 and in the .NET Framework. In VB 6, the
named arguments are number and numdigitsafterdecimal. In VB.NET, they're value and digits.

See Also

Fix Function, Int Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RSet Function

Class

Microsoft.VisualBasic.Strings

Syntax

RSet(Source, Length)
Source (required; String)

The string to be right aligned
Length (required; Integer)

The length of the returned string

Return Value

String

Description

Right aligns a string

Rules at a Glance

If the length of Source is greater than or equal to Length, the function returns only the leftmost Length
characters.

If the length of Source is less than Length, spaces are added to the left of the returned string so that
its length becomes Length.

VB.NET/VB 6 Differences

In VB 6, RSet was implemented as a kind of assignment statement. Because it is implemented as a
function in VB.NET, its syntax is completely different.

In VB 6, RSet could be used only with fixed-length strings. In VB.NET, RSet works with all CTS String
data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

LSet Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RTrim Function

Class

Microsoft.VisualBasic.Strings

Syntax

RTrim(string)
string (required; String)

A valid string expression

Return Value

String

Description

Removes any trailing spaces from string

Rules at a Glance

If string contains a Nothing, RTrim returns Nothing.

See Also

LTrim Function, Trim Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SaveFileDialog Class

Namespace

System.Windows.Forms

Createable

Yes

Description

Represents a common dialog box for selecting or saving a file. The most common use of this dialog box is
to ask the user for the name of a file, after which we can use VB's functions to save an existing file under
that name, since the dialog box itself does not handle the process of saving a file.

The SaveFileDialog object has properties for setting the initial appearance and functionality of the dialog
box, a property for returning the filename selected by the user, as well as a method for showing the dialog
box. The object does not itself save the file, but instead provides the information that allows your code to
do this programmatically.

A SaveFileDialog object can be instantiated as follows:

Dim oSaveDlg As New SaveFileDialog

Selected SaveFileDialog Members

The following is a brief list of some of the more important members of the SaveFileDialog class:

AddExtension property

Gets or sets a Boolean value that determines whether the default file extension is automatically
added to the FileName property if the user fails to enter an extension. Its default value is True.

DefaultExt property

Gets or sets a String that defines the default file extension. The string should consist of the file
extension only, without a period.

FileName property

Gets or sets a String containing the name that the user selected or entered in the dialog box.
Filter property

Gets or sets a String containing the current filter, which determines the items that appear in the
"Save as type" drop-down listbox. A single item consists of a file description, a vertical bar, and the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file extension (usually "*." plus the file extension). If there are multiple extensions in a single item,
they are separated by semicolons. If there are multiple items, they are separated by vertical bars.
For example, the following code fragment assigns a filter string to a String variable:

sFilter = "Text files (*.txt; *.vb)|*.txt;*.vb|" & _

 "Visual Basic files (*.vb)|*.vb|" & _

 "All files (*.*)|*.*"
FilterIndex property

Gets or sets an Integer value that determines which of the items defined by the Filter property is
selected. The index is one-based, rather than zero-based. When the dialog box is first displayed
and no FilterIndex value is specified, it defaults to 1. When the method returns, its value indicates
which filter item was selected by the user.

InitialDirectory property

Gets or sets a String that defines the directory initially displayed by the SaveFileDialog dialog box.
OverwritePrompt property

Gets or sets a Boolean value that determines whether a confirmation message is displayed when
the user enters or selects an existing file.

RestoreDirectory

Gets or sets a Boolean value indicating whether the current directory is restored before the dialog
box closes. Its default value is False.

ShowDialog method

Opens the SaveFileDialog dialog box. Its syntax is:
oSaveDlg.ShowDialog()

It returns DialogResult.OK if the user clicks the OK button and DialogResult.Cancel if the user clicks the
Cancel button to close the dialog box.

Example

Dim fd As New SaveFileDialog()

fd.OverwritePrompt = True

If fd.ShowDialog() = DialogResult().OK Then

 Console.WriteLine(fd.FileName)

End If

VB.NET/VB 6 Differences

Whereas the SaveFileDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

OpenFileDialog Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SaveSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax

SaveSetting(appname, section, key, setting)
appname (required; String)

The name of the application
section (required; String)

The name of the registry key
key (required; String)

The name of the value entry whose value is to be saved
setting (required; String or numeric)

The value to save

Description

Creates or saves an entry for a VB application in the Windows registry

Rules at a Glance

If either the appname or section subkeys are not found in the registry, they are automatically created.

The function writes a value to a subkey of the KEY_CURRENT_USER\Software\ VB and VBA Program
Settings key of the registry.

section need not be an immediate subkey of appname; instead, section can be a fully qualified path
to a nested subkey, with each subkey separated from its parent by a backslash. For example, a
value of Settings\Coordinates for the section argument indicates that the value is to be retrieved
from HKEY_CURRENT_USER\Software\VB and VBA Program Settings\appname\Settings\Coordinates.

Visual Basic writes setting to the registry as a string (REG_SZ) value. If setting is not a string, VB
attempts to coerce it into a string in order to write it.

If the setting cannot be saved, a runtime error will be generated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

The built-in registry-manipulation functions allow you to create professional 32-bit applications that
use the registry for holding application-specific data, in the same way that .INI files were used in the
16-bit environment. You can, for example, store information about the user's desktop settings (i.e.,
the size and position of forms) the last time the program was run.

Since it writes to the current user's registry key, SaveSetting should be used exclusively for storing
user settings; it should not be used to store nonuser information (i.e., hardware information, system-
level information, or application information that is independent of the user).

GetSetting, GetAllSettings, and SaveSetting allow you direct access to only a limited section of the
Windows registry, that being a special branch created for your application
(HKEY_CURRENT_USER\Software\VB and VBA Program Settings\yourappname).

SaveSetting does not allow you to write to the default value of a registry key. Attempting to do so
produces runtime error 5, "Invalid procedure call or argument." This is not as great a limitation as it
may appear, since GetSetting also cannot retrieve a default value from a registry key.

This may seem obvious, but it has been often overlooked: if a user hasn't run the application before
and your application's initialization doesn't set up the registry structure for the application, the key
values won't be there.

The previous point is particularly applicable when running your application on Windows in a
multiuser environment since Microsoft chose to use the HKEY_CURRENT_USER branch of the registry to
store entries for VB applications. This means that your application can be running swimmingly for
one user, but when another user logs onto the machine, the registry settings are not available.

Rather than rely on the relatively underpowered registry-access functionality available in Visual
Basic, we highly recommend that you instead use the Registry and RegistryKey classes available in
the BCL's Microsoft.Win32 namespace.

See Also

DeleteSetting Procedure, GetAllSettings Function, GetSetting Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngine Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngine

Return Value

A String containing the value "VB"

Description

Indicates the programming language currently in use

Rules at a Glance

ScriptEngine is a read-only property.

Programming Tips and Gotchas

A number of scripting engines support a ScriptEngine property or function, which allows you to
determine the programming language used for a particular block of code. These languages, and the
strings they return, are shown in the following table:

Language String

Microsoft Jscript JScript

VB.NET VB

VBScript VBScript

The ScriptEngine property can be most useful when calling legacy code. On the .NET platform, the
need to know the current scripting engine is substantially lessened by the existence of a unified type
system.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET/VB 6 Differences

The property is new to VB.NET and is not supported in VB 6.

See Also

ScriptEngineMinorVersion Property, ScriptEngineMajorVersion Property, ScriptEngineBuildVersion
Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngineBuildVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngineBuildVersion()

Return Value

An Integer containing the build number

Description

Returns the build number of the VB.NET language engine

Programming Tips and Gotchas

This property is implemented as a function in the JScript scripting engine.

VB.NET/VB 6 Differences

This property is new to VB.NET.

See Also

ScriptEngineMinorVersion Property, ScriptEngineMajorVersion Property, ScriptEngine Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngineMajorVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngineMajorVersion

Return Value

An Integer containing the major version number

Description

Indicates the major version (1, 2, etc.) of the programming language currently in use

Rules at a Glance

The initial version of VB.NET returns "7" as its major version number.

Programming Tips and Gotchas

This property is implemented as a function in the JScript scripting engine.

If your script requires some functionality available in a baseline version, ordinarily you want to make
sure that the script is running on that version or a later version. You do not want to test for equality,
since that may leave your code unable to run on later versions of the language engine.

VB.NET/VB 6 Differences

This property is new to VB.NET.

See Also

ScriptEngine Property, ScriptEngineBuildVersion Property, ScriptEngineMinorVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ScriptEngineMinorVersion Property

Class

Microsoft.VisualBasic.Globals

Syntax

ScriptEngineMinorVersion

Return Value

An Integer containing the minor version number

Description

Indicates the minor version (the number to the right of the decimal point) of the programming language
currently in use

Programming Tips and Gotchas

This property is implemented as a function in the JScript scripting engine.

If your script requires some functionality available in a baseline minor version, ordinarily you would
want to make sure that the script is running on that version or a later version. Test for a minor version
with a code fragment like:
Dim iMajor As Integer = ScriptEngineMajorVersion()

Dim iMinor As Integer = ScriptEngineMinorVersion()

If (lMajor = x And lMinor >= y) Or (lMajor > x) Then

 ...

VB.NET/VB 6 Differences

This property is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

ScriptEngine Property, ScriptEngineBuildVersion Property, ScriptEngineMajorVersion Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Second Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Second(timevalue)
timevalue (required; date)

Date variable or literal date

Return Value

An Integer in the range 0 to 59, specifying the second in timevalue

Description

Extracts the seconds from a given time expression

Rules at a Glance

If the time expression time is Nothing, the Second function returns 0.

See Also

Minute Function, Hour Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Seek Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Seek(filenumber)
filenumber (required; Integer)

Any valid file number

Return Value

A Long indicating the current read/write position

Description

Returns the current position of the read/write marker in the open file filenumber

Rules at a Glance

The Seek function returns a whole number in the range 1 to 2,147,483,647.

If filenumber was opened in Random mode, the number returned by the Seek function refers to the
next record to be written or read.

In all other file open modes (Append, Binary, Input, and Output), the number returned by the Seek
function is the byte position at which the next read or write operation will occur.

See Also

Seek Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Seek Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Seek(filenumber, position)
filenumber (required; Integer)

Any valid file number
position (required; Long)

Any whole number between 1 and 2,147,483,647

Description

Places the read/write marker at a given position where the next read/write operation should occur

Rules at a Glance

If the file has been opened in Random mode, position refers to the next record number that should
be read or written.

In all other file open modes (Append, Binary, Input, and Output), position is the byte where the next
read or write operation will start.

The use of a record number in any subsequent FileGet or FilePut procedure overrides the position
set by the Seek procedure.

The size of a file can be increased as the result of a write operation that is performed after a call to
the Seek procedure in which position is beyond the end of the file.

If position is 0 or negative, a runtime error will be generated.

Programming Tips and Gotchas

Unused records in a random-access data file are not necessarily blank. For example, if you open a brand
new data file, then perform a seek operation to record number 10 and write a new record, the preceding 9
records will be filled with binary data that was present on the section of the disk used by the new file prior

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to its creation.

See Also

Seek Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Select Case Statement

Syntax

Select Case testexpression

 [Case expressionlist-n

 [statements-n]] ...

 [Case Else

 [elsestatements]]

End Select
testexpression (required; any)

Any numeric or string expression whose value determines which block of code is executed
expressionlist-n (required; any)

Comma-delimited list of expressions to compare values with testexpression
statements-n (optional)

Program statements to execute if a match is found between any section of expressionlist and
testexpression

elsestatements (optional)

Program statements to execute if a match between testexpression and any expressionlist
cannot be found

expressionlist can use any (or a combination of any) of the following:

expressionlist syntax Examples

expression

iVar - iAnotherVar

iVar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

expressionlist syntax Examples

expression To expression

5 To 10

8 To 11, 13 to 15

"A" To "D"

Is comparisonoperator expression Is = 10

Description

Allows for conditional execution of a block of code, typically out of three or more code blocks, based on
some condition. Use the Select Case statement as an alternative to complex nested If...Then...Else
statements.

Rules at a Glance

Any number of Case clauses can be included in the Select Case statement.

If a match between testexpression and any part of expressionlist is found, the program
statements following the matched expressionlist will be executed. When program execution
encounters the next Case clause or the End Select clause, execution will continue with the statement
immediately following the End Select clause.

If multiple Case statements are True, only the statements belonging to the first true Case statement
are executed.

If used, the Case Else clause must be the last Case clause. Program execution will only encounter
the Case Else clause - and thereby execute the elsestatements - if all other expressionlist
comparisons have failed.

Use the To keyword to specify a range of values. The lower value must precede the To clause, and
the higher value follow it. Failure to do this does not generate a syntax error. Instead, it causes the
comparison of the expression with testexpression to always fail, so that program execution falls
through to the Case Else code block, if one is present.

The Is keyword is used to precede any comparison operators. For example:
Case Is >= 100

Select Case statements can also be nested.

Example

The following example uses Select Case to act based on the response to a MsgBox function:

Select Case MsgBox("Backup file before changing.", vbYesNoCancel)

expression To expression

5 To 10

8 To 11, 13 to 15

"A" To "D"

Is comparisonoperator expression Is = 10

Description

Allows for conditional execution of a block of code, typically out of three or more code blocks, based on
some condition. Use the Select Case statement as an alternative to complex nested If...Then...Else
statements.

Rules at a Glance

Any number of Case clauses can be included in the Select Case statement.

If a match between testexpression and any part of expressionlist is found, the program
statements following the matched expressionlist will be executed. When program execution
encounters the next Case clause or the End Select clause, execution will continue with the statement
immediately following the End Select clause.

If multiple Case statements are True, only the statements belonging to the first true Case statement
are executed.

If used, the Case Else clause must be the last Case clause. Program execution will only encounter
the Case Else clause - and thereby execute the elsestatements - if all other expressionlist
comparisons have failed.

Use the To keyword to specify a range of values. The lower value must precede the To clause, and
the higher value follow it. Failure to do this does not generate a syntax error. Instead, it causes the
comparison of the expression with testexpression to always fail, so that program execution falls
through to the Case Else code block, if one is present.

The Is keyword is used to precede any comparison operators. For example:
Case Is >= 100

Select Case statements can also be nested.

Example

The following example uses Select Case to act based on the response to a MsgBox function:

Select Case MsgBox("Backup file before changing.", vbYesNoCancel)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Case vbYes

 ' do something

 Case vbNo

 ' do something

 Case vbCancel

 ' do something

End Select

Programming Tips and Gotchas

The Select Case statement is the VB equivalent of the Switch construct found in C and C++.

The Case Else clause is optional. However, as with If...Then...Else statements, it is often good
practice to provide a Case Else to catch the exceptional instance when - perhaps unexpectedly - a
match cannot be found in any of the expressionlists you have provided.

The To clause can be used to specify ranges of character strings. However, it is often difficult to
predict the thousands of possible combinations of valid characters between two words that will be
successfully matched by Select Case.

The Is keyword used in the Select Case statement is not the same as the Is comparison operator.

Multiple conditions in a single Case statement are evaluated separately, not together; that is, they are
connected with a logical OR, not a logical AND. For example, the statement:
Case Is > 20, Is < 40

will evaluate to True whenever the value of testexpression is greater than 20. In this case, the
second comparison is never evaluated; it is evaluated only when testexpression is under 20. This
suggests that if you use anything other than the most straightforward conditions, you should test
them thoroughly.

See Also

If...Then...Else Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Send, SendWait Methods

Class

System.Windows.Forms.SendKeys

Syntax

SendKeys.Send(keys)

SendKeys.SendWait(keys)
keys (required; String)

String describing keys to send to the active window

Description

Sends keystrokes to the active window of the foreground application. For SendKeys.Send, further
execution continues without waiting for the keys to be processed. For SendKeys.SendWait, further
execution is suspended until the keystrokes have been processed.

Rules at a Glance

To send normal alphabetical or numeric characters, simply use the character or characters enclosed
in quotation marks. For example, "SOME Text 123".

The following characters represent special keys or have special meaning within the Keys string:

Character Special key representation

+ SHIFT

^ CTRL

% ALT

~ or {ENTER} ENTER

To use these characters literally, you must surround the character with braces. For example, to
specify the percentage key, use {%}.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preceding a string with the special characters described in the previous table allows you to send a
keystroke combination beginning with Shift, Ctrl, or Alt. For example, to specify Ctrl followed by "M,"
use ^M.

If you need to specify that the Shift, Ctrl, or Alt key is held down while another key is pressed, you
should enclose the key or keys in parentheses and precede the parentheses with the special
character code. For example, to specify the M key being pressed while holding down the Alt key, use
%(M).

The following table describes how to specify nondisplaying (action) characters in the Keys string:

Key Code

Backspace {BACKSPACE}, {BS}, or {BKSP}

Break {BREAK}

Caps Lock {CAPSLOCK}

Del or Delete {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Enter {ENTER}or ~

Esc {ESC}

Help {HELP}

Home {HOME}

Ins or Insert {INSERT} or {INS}

Left Arrow {LEFT}

Num Lock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Up Arrow {UP}

F1 {F1}

F2 {F2}

F3 {F3}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Key Code

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

F14 {F14}

F15 {F15}

F16 {F16}

Special formatting syntax allows you to specify a key being repeatedly pressed. The syntax is:
{key numberoftimes}

For example, {M 3} represents pressing the M key three times.

Example

The following program launches Notepad, loads a text file whose name is passed as a parameter, gives
the focus to Notepad, then uses its File Exit menu option to close the application:

Private Sub LaunchNotepad(strFN As String)

Dim intTaskID As Integer

Dim strCmdLine As String

strCmdLine = "C:\windows\notepad.exe " & strFN

intTaskID = Shell(strCmdLine, vbNormalNoFocus)

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

F14 {F14}

F15 {F15}

F16 {F16}

Special formatting syntax allows you to specify a key being repeatedly pressed. The syntax is:
{key numberoftimes}

For example, {M 3} represents pressing the M key three times.

Example

The following program launches Notepad, loads a text file whose name is passed as a parameter, gives
the focus to Notepad, then uses its File Exit menu option to close the application:

Private Sub LaunchNotepad(strFN As String)

Dim intTaskID As Integer

Dim strCmdLine As String

strCmdLine = "C:\windows\notepad.exe " & strFN

intTaskID = Shell(strCmdLine, vbNormalNoFocus)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' timing delay

DelayLoop(200000)

' Activate notepad by task ID

AppActivate(intTaskID)

' timing delay

DelayLoop(200000)

SendKeys.SendWait("%Fx")

End Sub

Private Sub DelayLoop(n As Integer)

Dim iCtr As Integer

For iCtr = 1 to iCtr

 if iCtr/10 = iCtr \ 10 Then

 Application.DoEvents

 End If

Next

End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

Send and SendWait will only work directly with applications designed to run in Microsoft Windows.

You may find that some keys or key combinations cannot be sent successfully. For example, you
cannot use Send and SendWait to send the Print Screen key to any application. You also cannot
send the Alt and Tab keys ("%{Tab}").

Typically, Send or SendWait is used as a "convenience" feature to send an occasional keystroke to
its application or to another application. It can also be used to add a keystroke-macro capability to an
application. In some cases, it is even used for remotely controlling an application. In this latter case,
Send or SendWait is often combined with the Shell function (to start an instance of another
application) or the AppActivate procedure (to give it the focus before Send or SendWait is used). The
example program illustrates this.

It's worthwhile mentioning the difficulties of using Send or SendWait as a method for controlling a
program remotely. Windows is an event-driven operating system. Consequently, the order of events
is controlled primarily by the user, and the precise order of events is difficult or even impossible to
anticipate. Remote control of an application using Send or SendWait, however, typically makes a
number of assumptions about that application, the most basic of which is that it has the focus when
Send or SendWait is called. Given that Send and SendWait do not offer close control over a remote
application in the same way as OLE automation does, the event-driven character of Windows can
easily intervene to invalidate those assumptions. This makes Send and SendWait less than optimal
choices as tools for remote control of an application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Set Statement

Syntax

Set

 [statements]

 [variable = Value]

End Set
statements (optional)

Program code to be executed when the Property Set procedure is called
variable (optional; any (the data type of the property)

Typically, a Private variable to hold the property value
Value (optional; Keyword)

A keyword representing the value to be assigned to the property

Description

Defines a Set property procedure that sets a property value

Rules at a Glance

The Set statement can only be used within a Property...End Property construct.

The value assigned to the property is usually stored to a variable that's Private to the class. This
protects the property value from modification other than by calling the Property Set procedure.

The Value keyword represents the value to be assigned to the property. This value must be of the
same data type as the property.

Example

The example code illustrates a class that has a simple property and a property array. The syntax
documented above, rather than the "official" syntax (see the note in Section), is used, since in our opinion
it is much clearer and intuitive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Enum WageConstants

 Rate = 0

 Overtime = 1

 Differential = 2

End Enum

Public Class CEmployee

Dim strName As String

Dim decWage(2) As Decimal

Public Property Name() As String

 Set(sName As String)

 strName = sName

 End Set

 Get

 Return strName

 End Get

End Property

Public Property Wage(iType As WageConstants) As Decimal

 Get

 Wage = decWage(iType)

 End Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Set

 decWage(iType) = Value

 End Set

End Property

End Class

Module modMain

Public Sub Main

Dim oEmp As New CEmployee

oEmp.Name = "Bill"

oEmp.Wage(WageConstants.Rate) = CDec(15.00)

oEmp.Wage(WageConstants.Overtime) = CDec(15.00 * 1.5)

oEmp.Wage(WageConstants.Differential) = CDec(15.00 * .1)

Console.WriteLIne(oEmp.Name)

Console.Writeline(oEmp.Wage(WageConstants.Rate))

oEmp = Nothing

End Sub

End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

An alternative syntax for the Set statement (though it happens to be the officially documented one, as well
as the one used by Visual Studio) is:

Set([ByVal] var As Type)

 [statements]

 [variable = var]

End Set

Here var is a variable representing the value to be assigned to the property, and Type is the data type of
var. Type must be the same as the data type of the Property statement.

VB.NET/VB 6 Differences

The Property Let and Property Set statements in VB 6 correspond to the Set statement in VB.NET.
Though the purpose and basic operation of these constructs are identical, the syntax of the VB.NET
construct is vastly simplified and more intuitive.

See Also

Get Statement, Property Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetAttr Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

SetAttr(pathname, attributes)
pathname (required; String)

The name of the file or directory whose attributes are to be set
attributes (required; FileAttribute enumeration)

Numeric expression, FileAttribute enumerated constant, or global VB constant specifying the
attributes

Description

Changes the attribute properties of a file

Rules at a Glance

You can use any sum of the following constants to set the attributes of a file:

Constant Value Description

VbNormal 0 Normal

VbReadOnly 1 Read-only

VbHidden 2 Hidden

VbSystem 4 System

VbArchive 32 File has changed since last backup

Each global constant has a corresponding constant in the FileAttribute enumeration. For example,
vbNormal is identical to FileAttribute.Normal. The file-attribute constants vbDirectory, vbAlias,
and vbVolume cannot be used when assigning attributes.

File-attributes constants can be Ored to set more than one attribute at the same time. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SetAttr "SysFile.Dat", FileAttribute.System Or FileAttribute.Hidden

pathname can include a drive letter. If a drive letter is not included in pathname, the current drive is
assumed. The file path can be either a fully qualified path or a relative path from the current
directory.

pathname can include a folder name. If the folder name is not included in pathname, the current folder
is assumed.

Attempting to set the attributes of an open file will generate a runtime error.

Example

Private Sub AddAttributes(strFN As String, _

 intNewAttrib As Integer)

Dim intAttrib As Integer

intAttrib = GetAttr(strFN)

intAttrib = intAttrib Or intNewAttrib

SetAttr(strFN, intAttrib)

End Sub

Programming Tips and Gotchas

Setting file attributes simultaneously clears any attributes that are not set with the SetAttr procedure.
For example, if SysFile.Dat is a read-only, hidden, system file, the statement:
SetAttr "sysfile.dat", VbArchive

sets the archive attribute but clears the read-only, hidden, and system attributes. Clearly, this can
have disastrous implications. To retain a file's attributes while setting new ones, first retrieve its
attributes using the GetAttr function, as the example program illustrates.

Setting a file's attributes to VbNormal clears all file attributes.

Not all attribute values can be assigned to a file; many are assigned only by the operating system.
For example, FileAttribute.Directory cannot be assigned to an existing directory or a file. Thus,
when setting the attribute value of a file or directory, you must mask out these (or any other) illegal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

values. For example, the following code fragment shows how to do this in the case of a directory:
Private Sub AddAttributes(strFN As String, _

 intNewAttrib As Integer)

Dim intAttrib As Integer

intAttrib = GetAttr(strFN)

' If directory, mask out directory flag

If intAttrib And FileAttribute.Directory Then

 intAttrib = intAttrib And &HFFFFFFEF

End If

intAttrib = intAttrib Or intNewAttrib

SetAttr(strFN, intAttrib Or intNewAttrib)

End Sub

See Also

GetAttr Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shadows Keyword

Syntax

Shadows

Description

When a member of a derived class has the same name as a member of the same type in the base class,
and the keywords Overridable and Overrides are used appropriately, then the derived class member
overrides the base class member. That is, any reference to the member using a derived class object refers
to the implementation in the derived class.

Shadowing works in a similar way but allows any member type to "override" any other member type. Thus,
for example, a method can "override" a property. For a complete discussion of shadowing (with an
example), see Section 4.4.5 in Chapter 4.

VB.NET/VB 6 Differences

The Shadows keyword is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shell Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Shell(pathname[,style][, Wait][, Timeout])
pathname (required; String)

Name of the program to execute
style (optional; AppWinStyle enumeration)

The style of window and whether it receives the focus; see Section
Wait (optional; Boolean)

Boolean indicating whether to wait for the pathname application to finish execution before continuing
execution of subsequent code

Timeout (optional; Integer)

If Wait is True, number of milliseconds to wait for the pathname application to terminate before the
Shell function times out

Return Value

An Integer representing the Process ID, or 0

Description

Launches another application and, if successful, returns that application's task ID

Rules at a Glance

pathname can include a drive letter. If a drive letter is not included in pathname, the current drive is
assumed.

pathname can include a folder name. You can use either a fully qualified path (i.e., starting from the
root directory) or a relative path (i.e., starting from the current directory). If the folder name is not
included in pathname, the current folder is assumed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pathname can include any command-line arguments and switches required by the application. For
example:
Shell("notepad.exe c:\data.txt", AppWinStyle.NormalFocus)

launches Notepad, which loads the file data.txt.

Visual Basic includes the following intrinsic constants for setting the style argument:

AppWinStyle.Hide Value: 0

New application window is hidden

Focus: New application
AppWinStyle.NormalFocus Value: 1

New application window is shown in its original position and size

Focus: New application
AppWinStyle.MinimizedFocus Value: 2

New application window is displayed as an icon

Focus: New application
AppWinStyle.MaximizedFocus Value: 3

New application window is maximized

Focus: New application
AppWinStyle.NormalNoFocus Value: 4

New application window is shown in its original position and size

Focus: Current application
AppWinStyle.MinimizedNoFocus Value: 6

New application window is displayed as an icon

Focus: Current application

The default when no style is specified is AppWinStyle.MinimizedFocus (2).

If the application named in pathname executes successfully, Shell returns the windows task ID of the
program. (The task ID is better known as the process ID or PID, a unique 32-bit value used to
identify each running process.) It can be used as a parameter to the AppActivate procedure to give
the application the focus - and possibly to control it remotely using the Send and SendWait
methods. The process ID is also required by a number of Win32 API calls.

If the application named in pathname fails to execute, a runtime error is generated.

The file launched by Shell must be executable. That is, it must be a file whose extension is .EXE or
.COM (an executable file), .BAT (a batch file), or .PIF (a DOS shortcut file).

Wait determines whether the Shell function operates synchronously (True) or asynchronously

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(False). The default is False; control returns to the application, and code continues executing as
soon as the process ID is known. If True, the Shell function returns only when the pathname
application is closed or, if Timeout is not -1, when the timeout period has expired.

If Wait is False, the Shell function returns the application's process ID. If Wait is True, it returns
either the process ID (if control returns to the application because Timeout has elapsed) or 0 (if
control returns to the application because the pathname application has been closed). In this latter
case, Shell returns a 0 because, since the pathname application has been closed, its process ID is no
longer valid.

Timeout applies only when Wait is True. It defines the number of milliseconds that the application will
wait for the pathname application to end before the wait is abandoned and application code resumes
execution. Its default value is -1, which means that there is no timeout value and control returns to
the application only when the pathname application has terminated.

Programming Tips and Gotchas

Wait is a long-needed addition to the Shell function that allows your application to know when the
launched application has terminated.

The Shell function does not use file associations. You cannot, for example, supply MyReport.Doc as
the pathname in the hope that VB will load Microsoft Word, which in turn will load MyReport.Doc.

Setting Wait to True and leaving Timeout at its default value of -1 creates the possibility that control
will never return from the pathname application to the VB.NET application.

VB.NET/VB 6 Differences

The Wait and Timeout arguments are new to VB.NET. They are not supported by VB 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sign Function

Class

System.Math

Syntax

Sign(value)
value (required; any numeric type, including Decimal)

A numeric expression

Return Value

Integer

Description

Determines the sign of a number

Rules at a Glance

The return value of the Sign function is determined by the sign of value, as follows:

If number is Sign returns

Positive 1

Zero 0

Negative -1

Programming Tips and Gotchas

Sign is useful in cases in which the sign of a quantity defines the sign of an expression. For example:
lngResult = lngQty * Sgn(lngValue)

This is a Shared member, so it can be used without creating any objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using the Sign function to evaluate a result to False (0) or True (any nonzero value), you
could use the CBool function instead.

A major use for Sign is to determine the sign of an expression.

VB.NET/VB 6 Differences

The name of this function has changed. In VB 6, it is named Sgn. In VB.NET, it is named Sign and is a
member of the Math class of the System namespace.

See Also

If...Then...Else Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sin Function

Class

System.Math

Syntax

Sin(a)
a (required; Numeric)

An angle expressed in radians

Return Value

A Double containing the sine of an angle

Description

Returns the ratio of two sides of a right triangle in the range -1 to 1

Rules at a Glance

The ratio is determined by dividing the length of the side opposite the angle by the length of the
hypotenuse.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

You can convert degrees to radians using the formula:
radians = degrees * (pi/180)

You can convert radians to degrees using the formula:
degrees = radians * (180/pi)

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cos Function, Tan Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sinh Function

Class

System.Math

Syntax

Math.Sinh(value)
value (required; Double or numeric expression)

An angle in radians

Return Value

A Double denoting the hyperbolic sine of the angle

Description

Returns the hyperbolic sine of an angle

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The Sinh function is new to the .NET Framework.

See Also

Cosh Function, Tanh Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SLN Function

Class

Microsoft.VisualBasic.Financial

Syntax

SLN(cost, salvage, life)
cost (required; Double)

The initial cost of the asset
salvage (required; Double)

The value of the asset at the end of its useful life
life (required; Double)

The length of the useful life of the asset

Return Value

A Double representing depreciation per period

Description

Computes the straight-line depreciation of an asset for a single period

Rules at a Glance

The function uses a very simple formula to calculate depreciation:
(cost - salvage) / life

The depreciation period is determined by the time period of life.

All arguments must be positive numeric values.

See Also

DDB Function, SYD Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Space Function

Class

Microsoft.VisualBasic.Strings

Syntax

Space(number)
number (required; Integer)

An expression evaluating to the number of spaces required

Return Value

A String containing number spaces

Description

Creates a string containing number spaces

Rules at a Glance

While number can be zero (in which case the function returns the empty string), runtime error 5, "Invalid
procedure call or argument," is generated if number is negative.

Programming Tips and Gotchas

The Space function is most useful for creating a string buffer, an area where an external function can write
data to be returned to the calling program.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Spc Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Spc(n)
n (required; Integer)

The number of spaces required

Return Value

A String containing n spaces

Description

Inserts spaces between expressions in a Print or PrintLine procedure

Rules at a Glance

Spc can only be used with the Print or PrintLine procedure.

If the width of the device being printed to is greater than n, the print position is set to immediately
after the number of spaces printed by the Spc function.

If the width of the device being printed to is less than n, the print position is set to the current position
plus the result of the formula n Mod devicewidth.

If n is greater than the difference between the current print position and the width of the device, Spc
inserts a line break and then inserts spaces in accordance with the following formula:
n - (devicewidth - currentposition)

When using a proportional font, the Spc function uses the average width of all characters for that
particular font to determine the width of the space character to print.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the number of fixed-width columns is important, you should use either the Space or the Tab
function, since there is not necessarily a relationship between the spaces provided by the Spc
function and fixed-width columns.

See Also

Print, PrintLine Procedures, Tab Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Split Function

Class

Microsoft.VisualBasic.Strings

Syntax

Split(expression, [delimiter[, limit[, compare]]])
expression (required; String)

A string to be broken up into multiple strings.
delimiter (optional; String)

The character used to delimit the substrings in expression.
limit (optional; Integer)

The maximum number of strings to return.
compare (optional; CompareMethod constant)

The method of comparison. Possible values are CompareMethod.Binary (the default) or
CompareMethod.Text.

Return Value

A String array containing the substrings of expression delimited by delimiter

Description

Parses a single string containing delimited values into an array

Rules at a Glance

If expression is a zero-length string, Split returns an empty array.

If delimiter is not found in expression, Split returns the entire string in element 0 of the returned
array.

If delimiter is omitted, a space character (" ") is used as the delimiter.

If limit is omitted or its value is -1, all strings are returned.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The default comparison method is CompareMethod.Binary.

Once one less than limit has been reached, the remainder of the string is placed, unprocessed, into
the next element of the returned array. This is important, because it can lead to unexpected results.
For instance, the code:
Dim s() As String

s = Split("x y z", " ", 1, CompareMethod.Text)

Console.WriteLine(s(0))

prints:

x y z

because the Split function stuffs the remaining portion of the original string into the last array
element. This leaves no array elements for the actual split operation. To split off the first substring,
we need to set count to at least 2:

Dim s() As String

s = Split("x y z", " ", 2, CompareMethod.Text)

Console.WriteLine(s(0))

Programming Tips and Gotchas

Strings are written to the returned array in the order in which they appear in expression.

The setting of compare is important only if delimiter is an alphabetic character, in which case
CompareMethod.Binary will perform a case-sensitive comparison, and Compare.Method.Text will
perform a case-insensitive one.

See Also

Join Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sqrt Function

Class

System.Math

Syntax

Sqr(d)
d (required; Double)

Any numeric expression greater than or equal to 0

Return Value

A Double containing the square root of d

Description

Calculates the square root of a given number

Rules at a Glance

d must be equal to or greater than zero, or runtime error 5, "Invalid procedure call or argument,"
occurs.

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

The square root function in VB 6 is named Sqr, and it is an intrinsic VB function. In the .NET Framework, it
is named Sqrt, and it is a member of the Math class in the System namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack Class

Namespace

System.Collections

Createable

Yes

Syntax

Dim stackvariable As [New] Stack
stackvariable (required; Stack object)

The name of the Stack object

Description

A Stack object is a model of a stack.

Succinctly put, a stack is a last-in, first-out data structure. (This is often abbreviated LIFO.) Put another
way, a stack is a data structure that models a stack of items (like a stack of dinner plates). There is a
method for inserting items at the top of the stack (pushing) as well as a method for removing the item that
is currently at the top of the stack (popping). Under this scenario, the next item to be popped is the item
that was placed in line last - hence the phrase, last-in, first-out.

Note that the elements in a Stack object are of type Object.

Stack class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Method

Synchronized

Public Instance Properties

Count +
IsReadOnly
IsSynchronized
SyncRoot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Instance Methods

Clear +
Clone
Contains +
CopyTo +
Equals
GetEnumerator
GetHashCode
GetType
Peek +
Pop +
Push +
ToArray +
ToString

Example

' Define a new stack

Dim s As New Stack()

' Push some items onto the stack

s.Push("Chopin")

s.Push ("Mozart")

s.Push ("Beethoven")

' Is an item in the stack?

MsgBox("Beethoven in stack: " & CStr(s.Contains("Beethoven")))

' Peek at the first (top) item on the stack

MsgBox("First item in stack is: " & s.Peek.ToString)

' Send stack to an array and display all items

Dim s() As Object = s.ToArray()

Dim i As Integer

For i = 0 To UBound(s)

 Console.WriteLine(CStr(s(i)))

Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Clear stack

s.Clear()

VB.NET/VB 6 Differences

The Stack object is new to the .NET Framework.

See Also

Collection Class, Hashtable Class, Queue Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Clear Method

Class

System.Collections.Stack

Syntax

stackvariable.Clear()

Return Value

None

Description

Removes all entries from the stack

See Also

Stack.Pop Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Contains Method

Class

System.Collections.Stack

Syntax

stackvariable.Contains(obj)
obj (required; any)

The value to search for in the stack

Return Value

Boolean (True or False) indicating whether obj is found in the stack

Description

Returns a Boolean indicating whether a given element (Object) is somewhere in the stack

Rules at a Glance

obj must correspond exactly to an item in the stack for the method to return True.

String comparison is case sensitive and is not affected by the setting of Option Compare.

The Contains method searches the stack sequentially. In other words, its performance is inversely
proportional to the number of items in the stack.

Programming Tips and Gotchas

In comparing objects in the stack with obj, the Contains method in turn calls the BCL's
Object.Equals method to perform the comparison. The Equals method returns True if two object
instances are the same instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.CopyTo Method

Class

System.Collections.Stack

Syntax

stackvariable.CopyTo(array, index)
array (required; Array of Objects)

Array to which to copy the stack's objects
index (required; Integer)

The index of the first array element to receive an element of the stack

Return Value

None

Description

Copies the stack elements into an array, starting at a specified array index

Rules at a Glance

The array can be of any data type that is compatible with the stack elements. Thus, for instance, we
cannot use an Integer array to hold stack elements that are strings (that is, Objects whose subtype is
String).

The array must be sized to accommodate the elements of the stack prior to calling the CopyTo
method.

Example

Public Sub Main

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Define a new stack

Dim s As New Stack()

Dim aStack(), oItem As Object

' Push some items onto stack

s.Push("Chopin")

s.Push("Mozart")

s.Push("Beethoven")

' Size the array and copy to it

Redim aStack(s.Count - 1)

s.CopyTo(aStack, 0)

For Each oItem in aStack

 Console.WriteLine(oItem)

Next

End Sub

See Also

Stack.ToArray Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Count Property

Class

System.Collections.Stack

Syntax

stackvariable.Count()

Return Value

Integer

Description

This read-only property returns an Integer specifying the number of elements in the stack.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Peek Method

Class

System.Collections.Stack

Syntax

stackvariable.Peek()

Return Value

Object

Description

Returns the first item in the stack as an Object, but does not remove it from the stack

Programming Tips and Gotchas

The Peek method is similar to the Stack object's Pop method, except that it leaves the stack intact.

See Also

Stack.Pop Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Pop Method

Class

System.Collections.Stack

Syntax

stackvariable.Pop()

Return Value

Object

Description

Removes the top item from the stack and returns it as an Object

Rules at a Glance

Pop removes the top item from the stack and decrements the Count property by one.

Pop generates an error if applied to an empty stack. Thus, it's advisable to determine when a stack is
empty by using the Count property before popping the stack.

Programming Tips and Gotchas

The Peek method returns a reference to the object at the top of the stack, but unlike the Pop method, does
not remove it from the stack.

See Also

Stack.Clear Method, Stack.Peek Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.Push Method

Class

System.Collections.Stack

Syntax

stackvariable.Push(obj)
obj (required; Object)

The item to place in the stack

Return Value

None

Description

Places an Object on the top of the stack

Rules at a Glance

The Push method adds an item to the top of the stack and increases the Count property by 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stack.ToArray Method

Class

System.Collections.Stack

Syntax

stackvariable.ToArray()

Return Value

An array of type Object

Description

Creates an array of type Object, copies the elements of the stack in order, and then returns the array

Programming Tips and Gotchas

Unlike the CopyTo method, the ToArray method does not require that we define an array in advance.
However, we cannot specify the starting array index for the copy procedure.

See Also

Stack.CopyTo Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STAThread Attribute

Class

System.STAThreadAttribute

Applies to

Method

Description

Specifies that the class or application to which the program element belongs is to use the single-threaded
apartment model for COM interop. If COM components are not called from the class or application, the
attribute is ignored. The <STAThread> attribute should be used only on the class or application's Main
method or subroutine.

The <STAThread> attribute is similar to setting a Thread object's ApartmentState property to
ApartmentState.STA. The difference is that the <STAThread> attribute creates a single-threaded apartment
from startup, whereas setting the property does it only from the point that the property is set.

Constructor

New()

Properties

None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Static Statement

Syntax

Static varname[([subscripts])] [As [New] type] _

 [,varname[([subscripts])] [As [New] type]] . . .
varname (required; any)

The name of the variable, following Visual Basic naming conventions
subscripts (optional; Integer)

Denotes varname as an array and specifies the dimension and upper bounds of the array
New (optional; Keyword)

Used to automatically create an instance of the object referred to by the object variable, varname
type (optional; Keyword)

Data type of the variable varname

Description

Used at procedure level to declare a Static variable and to allocate the relevant storage space in memory.
Static variables retain their value between calls to the procedure in which they are declared.

Rules at a Glance

A Static variable's scope is limited to the procedure in which it is created.

The subscripts argument has the following syntax:
upperbound [, upperbound]

Using the subscripts argument, you can declare up to 60 multiple dimensions for the array.

The New keyword specifies that a new instance of the object will be created. Use of the New keyword
in the Static statement therefore eliminates the subsequent need to instantiate the object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You cannot use the New keyword to declare variables of any intrinsic data type or to declare
instances of dependent objects.

If you don't use the New keyword with an object variable, you must use an assignment statement to
assign an existing object to the variable before you can use the variable.

datatype may be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long, Object, Short, Single,
String, a user-defined type, or an object type.

If you don't specify datatype, the variable will be cast as an Object.

When multiple variables are declared on the same line, if a variable is not declared with a explicit
type declaration, then its type is that of the next variable with an explicit type declaration. Thus, in the
line:
Static x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type Variant.)

When a static variable is initialized on the same line as its declaration, the initialization process is
performed only the first time the declaration line is encountered. (Otherwise, the variable would not
be static.)

VB.NET permits the initialization of variables in the same line as their declaration (at long last!).
Thus, we may write:
Static x As Integer = 5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more than
one variable on a single line:

Static x As Integer = 6, y As Integer = 9

Variables that are not explicitly initialized by the Static statement have the following default values:

Data type Initial value

All numeric types 0

Boolean False

Date 01/01/0001 12:00:00 AM

Decimal 0

Object Nothing

String Zero-length string ("")

Static variables can have procedure-level scope or block-level scope. Static variables with
procedure-level scope last the lifetime of the application, but they are accessible only within the
procedure in which they are defined. Static variables with block-level scope last the lifetime of the
application, but they are accessible only within the code block (such as a looping construct or an If
statement) in which they are defined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

It is a recognized programming practice when using the Static statement in a procedure to put the
Static statement at the beginning of that procedure.

Although their value persists between calls to a procedure, Static variables do not have scope
outside of the procedure in which they are created.

For more on static variables, see Chapter 3.

VB.NET/VB 6 Differences

When multiple variables are declared on a single line of code in VB 6, variables not explicitly
assigned a data type are cast as variants. For example, in the statement:
Static Var1, Var2, Var3 As String

both Var1 and Var2 are variants rather than strings. In VB.NET, the type declaration applies to all
undeclared variables since the last explicit type declaration. So the previous statement in VB.NET
would cast Var1, Var2, and Var3 as strings.

In VB 6, declaring and initializing variables are separate steps; aside from allowing VB to assign
variables their default values, variables cannot be initialized at the same time they are declared. In
VB.NET, variables can be assigned an initial value when they are declared.

VB 6 allowes you to declare fixed-length strings; they are not supported, however, in VB.NET.

VB 6 allows you to define the lower bound of an array when it is initialized. In VB.NET, all arrays
have a lower bound of 0. Hence, the VB 6 syntax:
Static array(1 To 20) As String

is not supported in VB.NET.

In VB 6, arrays are either fixed length or dynamic; in VB.NET, all arrays are dynamic.

In VB 6, it is possible to define a procedure or a function as Static, meaning that all local variables
defined in that routine are static. In VB.NET, the use of the Static keyword with the Function or Sub
statements is not supported.

See Also

Dim Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stop Statement

Syntax

Stop

Description

Suspends program execution

Rules at a Glance

There is no limit to the number and position of Stop statements within procedures.

The Stop statement acts like a breakpoint - placing the program in break mode and highlighting the
current line in the development environment - allowing you to step through the code line by line.

Programming Tips and Gotchas

Stop is intended primarily for use in the design-time environment, where it suspends program
execution without terminating it. In the runtime environment, however, Stop will cause the debugger
to be invoked.

Unlike the End statement, Stop does not explicitly close any open files or clear any variables, except
in a compiled executable.

See Also

End... Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Str Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Str(number)
number (required; Numeric)

Any valid numeric expression or expression capable of conversion to a number

Return Value

A String representation of number

Description

Converts number from a numeric to a string

Rules at a Glance

If number cannot be converted to a string, an InvalidCastException error occurs. To prevent this, you
can check the value of number by passing it to the IsNumeric function before calling Str.

If number is not a numeric value or is not capable of conversion to a number (so that it can in turn be
converted to a string), an InvalidCastException exception occurs.

If the return value is positive, the Str function always includes a leading space in the returned string
for the sign of number.

Programming Tips and Gotchas

Use the LTrim function to remove the leading space that the Str function adds to the start of the
returned string.

Both the CStr and Format functions have now superceded the Str function. The CStr function does
not add a leading space for the sign of a positive number. Both the CStr and the Format functions are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

internationally aware, able to recognize decimal delimiters other than the period (.).

See Also

CStr Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrComp Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrComp(string1, string2[, compare])
string1 (required; String)

Any string expression
string2 (required; String)

Any string expression
compare (optional; CompareMethod constant)

Either CompareMethod.Binary or CompareMethod.Text

Return Value

Integer

Description

Determines whether two strings are equal and, if not, which of two strings has the greater value

Rules at a Glance

The compare argument is one of CompareMethod.Binary or CompareMethod.Text. If no comparison is
specified, VB uses the value of Option Compare.

The following table describes the possible return values from the StrComp function:

Scenario Return value

string1 < string2 -1

string1 = string2 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Scenario Return value

string1 > string2 1

string1 or string2 is Null Null

Programming Tips and Gotchas

Using the comparison operators <, <=, >, and >= to compare strings performs a character-by-
character binary comparison.

The StrComp function can provide a significant performance improvement (in the neighborhood of
30% to 70%) over the comparison operators.

See Also

StrConv Function, StrDup Function, StrReverse Function

string1 > string2 1

string1 or string2 is Null Null

Programming Tips and Gotchas

Using the comparison operators <, <=, >, and >= to compare strings performs a character-by-
character binary comparison.

The StrComp function can provide a significant performance improvement (in the neighborhood of
30% to 70%) over the comparison operators.

See Also

StrConv Function, StrDup Function, StrReverse Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrConv Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrConv(str, conversion[, localeID])
str (required; String)

The string expression to convert
conversion (required; Constant of the VbStrConv enumeration)

One of the constants listed in Section
localeID (optional; Integer)

The locale identifier to use for the conversion

Return Value

A String converted according to conversion

Description

Performs special conversions on a string

Rules at a Glance

The following intrinsic conversion constants specify the type of conversion to perform:

Constant Converts...

VbStrConv.UpperCase The entire string to uppercase.

VbStrConv.LowerCase The entire string to lowercase.

VbStrConv.ProperCase The first letter of every word in str to an uppercase character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Converts...

VbStrConv.Wide
Narrow (single-byte) characters in str to wide (double-byte)
characters.

VbStrConv.Narrow
Wide (double-byte) characters in str to narrow (single-byte)
characters.

VbStrConv.Katakana Hiragana characters in str to Katakana characters.

VbStrConv.Hiragana Katakana characters in str to Hiragana characters.

VbStrConv.LinguisticCasing
Uses linguistic rules for casing. Can be used only with UpperCase
and LowerCase.

VbStrConv.None Performs no conversion on str.

VbStrConv.SimplifiedChinese Traditional Chinese characters in str to Simplified Chinese.

VbStrConv.TraditionalChinese Simplified Chinese characters in str to Traditional Chinese.

You can combine some of these constants by adding them together or using a logical OR. For
example:
VbStrConv.UpperCase + VbStrConv.Wide

The only restriction is that the constants must be mutually exclusive. For example, specifying the
value:

VbStrConv.UpperCase Or VbStrConv.ProperCase ' Error

produces an error.

VbStrConv.Katakana and VbStrConv.Hiragana only apply to locales in Japanese. Use of these
constants on systems using other locales generates runtime error 5, "Invalid procedure call or
argument."

VbStrConv.Wide and VbStrConv.Narrow only apply to locales in the Far East. Use of these constants
on systems using other locales will generate a runtime error.

When determining the start of a new word to convert to proper case, StrConv recognizes the
following characters as word separators:

Null - Chr$(0)

Horizontal Tab - Chr$(9)

Line-feed - Chr$(10)

Vertical Tab - Chr$(11)

Form Feed - Chr$(12)

Carriage Return - Chr$(13)

VbStrConv.Wide
Narrow (single-byte) characters in str to wide (double-byte)
characters.

VbStrConv.Narrow
Wide (double-byte) characters in str to narrow (single-byte)
characters.

VbStrConv.Katakana Hiragana characters in str to Katakana characters.

VbStrConv.Hiragana Katakana characters in str to Hiragana characters.

VbStrConv.LinguisticCasing
Uses linguistic rules for casing. Can be used only with UpperCase
and LowerCase.

VbStrConv.None Performs no conversion on str.

VbStrConv.SimplifiedChinese Traditional Chinese characters in str to Simplified Chinese.

VbStrConv.TraditionalChinese Simplified Chinese characters in str to Traditional Chinese.

You can combine some of these constants by adding them together or using a logical OR. For
example:
VbStrConv.UpperCase + VbStrConv.Wide

The only restriction is that the constants must be mutually exclusive. For example, specifying the
value:

VbStrConv.UpperCase Or VbStrConv.ProperCase ' Error

produces an error.

VbStrConv.Katakana and VbStrConv.Hiragana only apply to locales in Japanese. Use of these
constants on systems using other locales generates runtime error 5, "Invalid procedure call or
argument."

VbStrConv.Wide and VbStrConv.Narrow only apply to locales in the Far East. Use of these constants
on systems using other locales will generate a runtime error.

When determining the start of a new word to convert to proper case, StrConv recognizes the
following characters as word separators:

Null - Chr$(0)

Horizontal Tab - Chr$(9)

Line-feed - Chr$(10)

Vertical Tab - Chr$(11)

Form Feed - Chr$(12)

Carriage Return - Chr$(13)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Space - Chr$(32)

Programming Tips and Gotchas

If you convert to proper case, StrConv converts the first letter of each word to uppercase regardless of
whether that word is significant. Hence, "this is the time" becomes "This Is The Time," even though "the"
ordinarily would not be capitalized.

VB.NET/VB 6 Differences

Two conversion values supported by VB 6, VbUnicode and VbFromUnicode, have no equivalent in the
VbStrConv enumeration. As a result, the function can no longer be used to convert ASCII to Unicode or
Unicode to ASCII.

See Also

StrComp Function, StrDup Function, StrReverse Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrDup Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrDup(number,character)
number (required; Integer)

The number of times to duplicate the first character in string
character (required; String, Char, or Object containing a String or Char)

The String or Char whose first character is to be duplicated

Return Value

A String containing the character duplicated the specified number of times

Description

Returns a string that consists of the first character of character duplicated number times

Example

The line:

MsgBox(StrDup(Number:=5, Character:="ABC"))

displays "AAAAA".

VB.NET/VB 6 Differences

The StrDup function is new to VB.NET. It appears in part to be a replacement for the VB 6 String function.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StrReverse Function

Class

Microsoft.VisualBasic.Strings

Syntax

StrReverse(expression)
expression (required; String)

The string whose characters are to be reversed

Return Value

String

Description

Returns a string that is the reverse of the string passed to it. For example, if the string and is passed to it
as an argument, StrReverse returns the string dna.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Structure...End Structure Statement

Syntax

accessmodifier Structure StructureName

 [Implements interfacenames]

 variable declarations

 procedure declarations

End Structure
accessmodifier (optional; Keyword)

The possible values of accessmodifier are Public, Private, Friend, Protected, Protected
Friend. For more information, see Section 4.7 in Chapter 4.

Implements interfacenames (optional)

Indicates that the structure implements the members of one or more interfaces

Description

Used to declare user-defined types. Structures are similar to classes, but they are value types rather than
reference types.

Rules at a Glance

The members of a structure can be variables, properties, methods, or events. Note, however, that
each member must be declared with an access modifier: Public (or Dim), Private, or Friend.

You cannot assign a structure member an initial value at the same time as you declare it. As a result,
the following Structure construct is illegal:
Structure Point

 Public x As Integer = 0 ' Illegal

 Public y As Integer = 0 ' Illegal

End Structure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Structure members can be other structures or objects.

If a structure member is an array, it cannot be explicitly dimensioned.

Structures can be passed as arguments to functions or as the return type of a function.

Although structures are similar to classes, the following class features are not supported in
structures:

Structures cannot explicitly inherit, nor can they be inherited.

All constructors for a structure must be parameterized.

Structures cannot define destructors.

Member declarations cannot include initializers, nor can they use the As New syntax or specify
an initial array size.

Example

The simplest and most common use of structures is to encapsulate related variables. For instance, we
might define a structure as follows:

Structure strPerson

 Public Name As String

 Public Address As String

 Public City As String

 Public State As String

 Public Zip As String

 Public Age As Short

End Structure

To define a variable of type strPerson, we write (as usual):

Dim APerson As strPerson

To access a member of a structure, we use the dot syntax, as in:

APerson.Name = "Beethoven"

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Related items of information are often stored in multiple arrays (or in a multidimensional array).
However, it is often preferable to store related data in a single array of structures.

The Structure statement is often used to define a data structure capable of retrieving, storing, and
saving fixed-length records. However, this is complicated by the absence of support for explicitly
declared fixed-length strings in VB.NET. One solution is to use the <vbFixedString(length)>
attribute, where length is the fixed length of the string, when defining a member of type String. This
instructs the VB.NET compiler to enforce a particular string length for the structure. For example:
Structure Person

 <vbFixedString(10)> Public FName As String

 <vbFixedString(2)> Public MName As String

 <vbFixedString(10)> Public LName As String

 Public Age As Short

End Structure

VB.NET/VB 6 Differences

The Structure...End Structure construct is new to VB.NET. It replaces the Type...End Type
construct in VB 6.

VB 6 user-defined types are different than VB.NET structures. A VB 6 user-defined type is simply a
composite data type that combines multiple data types; it allows the user-defined type to be treated
as a contiguous, word- or double-word aligned block of memory. A VB.NET structure is in some
sense a hybrid object that combines data types and methods; ordinarily, no assumptions should be
made about its layout in memory.

In VB 6, the declaration of user-defined type members did not permit an access modifier. In VB.NET,
it is required.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sub Statement

Syntax

[ClassBehavior] [AccessModifier] Sub name [(arglist)]

 [statements]

 [Exit Sub]

 [statements]

End Sub
ClassBehavior (optional; Keyword)

One of the keywords shown in the following table:

Keyword Description

Overloads
Indicates that more than one declaration of this subroutine exists (with different
argument signatures).

Overrides
For derived classes, indicates that the subroutine overrides the subroutine by the same
name (and argument signature) in the base class.

Overridable Indicates that the subroutine can be overridden in a derived class.

NotOverridable Indicates that the subroutine cannot be overridden in a derived class.

MustOverride Indicates that the subroutine must be overridden in a derived class.

Shadows
In a derived class definition, indicates that calls to derived class members that are
made through a base class ignore the shadowed implementation.

Shared
Callable without creating an object of the class. It is, in this strange sense, shared by
all objects of the class. These are also called static subroutines.

AccessModifier (optional)

The possible values of AccessModifier are Public, Private, Friend, Protected, or Protected
Friend. The following table describes the effects of the various access modifiers. Note that "direct
access" refers to accessing the member without any qualification, as in:

classvariable = 100

and "class/object access" refers to accessing the member through qualification, either with the class name
or the name of an object of that class. For more information, see Section 4.7 in Chapter 4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Direct access scope Class/object access scope

Private Declaring class Declaring class

Protected All derived classes Declaring class

Friend Derived in-project classes Declaring project

Protected Friend All derived classes Declaring project

Public All derived classes All projects

name (required; String literal)

The name of the Sub procedure.
arglist (optional; any)

A comma-delimited list of variables to be passed to the sub procedure as arguments from the
calling procedure.

arglist uses the following syntax and parts:
[Optional] [ByVal | ByRef] [ParamArray] varname[()] _

 [As type] [= defaultvalue]
Optional (optional; Keyword)

An optional argument is one that need not be supplied when calling the function. However, all
arguments following an optional one must also be optional. A ParamArray argument cannot be
optional.

ByVal (optional; Keyword)

The argument is passed by value; that is, the local copy of the variable is assigned the value of the
argument. ByVal is the default method of passing variables.

ByRef (optional; Keyword)

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable will be also reflected in the calling
argument.

ParamArray (optional; Keyword)

Indicates that the argument is an optional array containing an arbitrary number of elements. It can
only be used as the last element of the argument list, and cannot be modified by either the ByRef or
Optional keywords. If Option Strict is on, the array type must also be specified.

varname (required; String literal)

The name of the local variable containing either the reference or value of the argument.
type (optional; Keyword)

The data type of the argument. It can be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long,
Object, Short, Single, String, a user- defined type, or an object type.

defaultvalue (optional; any)

For optional arguments, you must specify a default value.

statements (optional)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Program code to be executed within the procedure.

Description

Defines a subroutine

Rules at a Glance

Subroutines cannot be nested; that is, you cannot define one subroutine inside another subroutine.
(This applies to all procedures.)

If you do not include one of the accessmodifier keywords, a subroutine will be Public by default.

Any number of Exit Sub statements can be placed within the subroutine. Execution will continue with
the line of code immediately following the call to the subroutine.

If you specify an optional parameter in your subroutine declaration, you must also provide a default
value for that parameter. For example:
Private Sub ShowMessage(Optional sMsg _

 As String = "Not given")

A subroutine is called by using its name and enclosing any arguments in parentheses. For example,
a routine named SomeRoutine might be called as follows:
x = 12

y = 12

SomeRoutine(x, y)

Note that because it does not return a value, a subroutine cannot be assigned to a variable. For
example, the following is illegal:

z = SomeRoutine(x, y)

Programming Tips and Gotchas

There is often confusion between using the ByRef and ByVal methods of assigning arguments to the
Sub procedure. ByRef assigns the reference of the variable in the calling procedure to the variable in
the Sub procedure; that is, it passes a pointer containing the address in memory of the variable in the
calling procedure. As a result, any changes made to the variable from within the Sub procedure are in
reality made to the variable in the calling procedure. On the other hand, ByVal assigns the value of
the variable in the calling procedure to the variable in the Sub procedure; that is, it makes a separate
copy of the variable in a separate memory location. Changes made to the variable in the Sub
procedure have no effect on the variable in the calling procedure. In general, ByRef arguments within
class modules take longer to handle, since marshaling back and forth between Sub procedure and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

calling module must take place. So unless you explicitly need to modify a variable's value within a
Sub procedure, it's best to pass parameters by value.

The names of procedure parameters become the procedure's named arguments. Because of this, it
is best to use meaningful names for parameters, and to avoid the use of Hungarian notation.

VB.NET/VB 6 Differences

If you do not specify whether an individual element in arglist is passed ByVal or ByRef, it is passed
by reference in VB 6. In VB.NET, it is passed by value.

If a parameter array is used in VB 6, it is an array of variants. In VB.NET, since the Variant is no
longer supported, it must be an array of objects or a strongly typed array.

In VB 6, a Sub procedure was called either by using the Call statement and including procedure
arguments in parentheses or by using the name of the procedure and including arguments without
parentheses. VB.NET features a standard calling syntax in which arguments are always enclosed in
parentheses.

See Also

Function Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Function

Class

Microsoft.VisualBasic.Interaction

Syntax

Switch(expr-1, value-1[, expr-2, value-2 ... [, _

 expr-n,value-n]])
expr (required; Object)

A number of expressions to be evaluated
value (required; Object)

An expression or value to return if the associated expression evaluates to True

Return Value

An Object value or expression

Description

Evaluates a list of expressions and, on finding the first expression to evaluate to True, returns an
associated value or expression

Rules at a Glance

A minimum of two expression/value pairs is required; additional pairs are optional.

Expressions are evaluated from left to right.

If none of the expressions is True, the Switch function returns Nothing.

If multiple expressions are True, Switch returns the value that corresponds to the first True
expression.

value can be a constant, variable, or expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The GetTextColor function uses the Switch function to return an RGB color value that depends on the sign
of the integer passed to it as a parameter. To access the Color structure, it imports the System.Drawing
namespace of the Base Class Library.

Private Function GetTextColor(lValue As Integer) As Integer

Dim fColor As New Color

Dim iColor As Integer

fColor = Switch(lValue > 0, Color.Blue, _

 lValue = 0, Color.Black, _

 lValue < 0, Color.Red)

' Convert color name to RGB color and strip out

' high order byte of high-order word

iColor = fColor.ToArgb and &H00FFFFFF

GetTextColor = iColor

End Function

Programming Tips and Gotchas

The Switch function can prove to be an efficient alternative to If...Then... Else statements, but it can't
be used in situations where multiple lines of code are required to be executed on finding the first True
expression.

Programming Tips and Gotchas

Switch does not use short-circuiting. That is, even though it returns only the first True expression, it
evaluates all expressions. As a result, Switch will generate a runtime error if any of these expressions are
invalid.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choose Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SYD Function

Class

Microsoft.VisualBasic.Financial

Syntax

SYD(cost, salvage, life, period)
cost (required; Double)

The initial cost of the asset
salvage (required; Double)

The value of the asset at the end of its useful life
life (required; Double)

The length of the useful life of the asset
period (required; Double)

The period whose depreciation is to be calculated

Return Value

A Double giving the sum-of-years depreciation of an asset for a given period

Description

Computes the sum-of-years' digits depreciation of an asset for a specified period. The sum-of-years' digits
method allocates a larger amount of the depreciation in the earlier years of the asset.

Rules at a Glance

life and period must be expressed in the same time unit. For example, if life represents the life of
the asset in years, period must be a particular year for which the depreciation amount is to be
computed.

All arguments must be positive numeric values.

To calculate the depreciation for a given period, SYD uses the formula:
(Cost-Salvage)*((Life-Period + 1)/(Life*(Life + 1)/2))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

DDB Function, SLN Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SyncLock Statement

Syntax

SyncLock expression

...[code]

End SyncLock
expression (required; any reference type (class, module, interface, array, or delegate))

An expression yielding a single result that can be used to determine the accessibility of code
code (optional)

The code statements to which access is synchronized and that will be executed sequentially

Description

Prevents multiple threads of execution in the same process from accessing shared data or resources at
the same time

Rules at a Glance

SyncLock blocks a thread's access only if that thread belongs to the same object instance.

Programming Tips and Gotchas

The SyncLock statement wraps a call to the BCL's System.Threading.Monitor. Enter method.

The BCL includes a number of other synchronization mechanisms, all of which are located in the
System.Threading namespace.

VB.NET/VB 6 Differences

The SyncLock statement is new to VB.NET. VB 6 provided the developer with no direct means of
controlling threads of execution in applications or components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SystemTypeName Function

Class

Microsoft. VisualBasic.Information

Syntax

SystemTypeName(vbname)
vbname (required; String)

The name of a VB.NET data type

Return Value

A String indicating the name of a CTS data type

Description

Returns the fully qualified type name of the Common Type System (CTS) data type that corresponds to a
particular Visual Basic data type

Rules at a Glance

vbname must be the name of a valid VB.NET data type, such as Boolean, Byte, Char, Date. Decimal,
Double, Integer, Long, Object, Short, Single, or String.

If vbname is not a valid VB.NET data type, the function returns Nothing.

If vbname does not directly correspond to a CTS data type, the function returns Nothing. For example,
user-defined types created with the Structure construct and classes created with the Class
construct both return Nothing if their data type names are passed to the function.

Example

Public Structure Point

 Dim x As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim y As Integer

End Structure

Public Class CEmployee

End Class

Module modMain

Public Sub Main

' Returns System.Int32

Dim i As Integer = 100

Console.WriteLine("Type of i: " & SystemTypeName(TypeName(i)))

' Returns Nothing

Dim o As Object

Console.WriteLine("Type of o: " & SystemTypeName(TypeName(o)))

' Returns Nothing

Dim oEmp As New CEmployee

Console.WriteLIne("Type of oEmp: " & SystemTypeName(TypeName(oEmp)))

' Returns Nothing

Dim uPt As Point

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Console.Writeline("Type of uPt: " & SystemTypeName(TypeName(uPt)))

' Returns System.String

Dim sName As String = "This is a string."

Console.WriteLine("Type of sName: " & SystemTypeName(TypeName(sName)))

End Sub

End Module

Programming Tips and Gotchas

To determine the CTS data type of a particular variable, pass the variable as an argument to the
TypeName function, and pass its return value as an argument to the SystemTypeName function. For
example:
strType = SystemTypeName(TypeName(myVar))

The existence of the SystemTypeName function clearly indicates that VB.NET data types are
wrappers for CTS data types.

VB.NET/VB 6 Differences

The SystemTypeName function is new to VB.NET.

See Also

TypeName Function, VbTypeName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tab Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Tab[(column)]
column (optional; Short)

A column number to which the insertion point will move before displaying or printing the next
expression

Return Value

A TabInfo structure

Description

Moves the text-insertion point to a given column or to the start of the next print zone

Rules at a Glance

If the column argument is omitted, the text-insertion point will be moved to the beginning of the next
print zone.

The value of column determines the behavior of the insertion point:

Value of
column

Position of insertion point

Current column
> column

Moves one line down to the column column.

column >
Output Width

Uses the formula column Mod width. If the result is less than the current insertion point,
the insertion point will move down one line; otherwise, the insertion point will remain on
the same line.

< 1 Column 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The left hand column is always 1.

When expressions are output to files using the Print or PrintLine statement, the width of the output
is determined by the Width statement.

When output surface is divided into columns, the width of each column is the average width of all
characters in the current point size of the current font. This means that the number of columns for
tabulation purposes does not necessarily relate to the number of characters that can be printed
across the width of the output surface.

Programming Tips and Gotchas

The Tab function without a column argument is useful when outputting data to a file using the Print or
PrintLine statement - especially in locales where the comma would be recognized as a decimal
separator.

See Also

Spc Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tan Function

Class

System.Math

Syntax

Tan(a)

a (required; Double)

An angle in radians

Return Value

A Double containing the tangent of an angle

Description

Returns the ratio of two sides of a right angle triangle

Rules at a Glance

The returned ratio is derived by dividing the length of the side opposite the angle by the length of the
side adjacent to the angle.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

You can convert degrees to radians using the following formula:
radians = degrees * (pi/180)

You can convert radians to degrees using the following formula:
degrees = radians * (180/pi)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Cos Function, Sin Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tanh Function

Class

System.Math

Syntax

Math.Tanh(number)
number (required; Double or numeric expression)

An angle in radians

Return Value

A Double denoting the hyperbolic tangent of the angle

Description

Returns the hyperbolic tangent of an angle

Rules at a Glance

This is a Shared member, so it can be used without creating any objects.

VB.NET/VB 6 Differences

Tanh is new to the .NET Framework.

See Also

Cosh Function, Sinh Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ThreadStatic Attribute

Class

System.ThreadStaticAttribute

Valid On

Field

Description

Specifies that the value of a static field is not shared across threads (that is, each thread in the application
has its own value). In the absence of the <ThreadStatic> attribute, a static field is shared across threads.

Constructor

New()

Properties

None

Example

The example illustrates the use of the <ThreadStatic> attribute by creating a second thread and having
both threads increment a static field. With the <ThreadStatic> attribute, the variable's value is maintained
on a per thread basis. If you remove the <ThreadStatic> attribute and recompile the source, you would
find that it is maintained on a per application basis.

Option Strict On

Imports Microsoft.VisualBasic

Imports System

Imports System.Threading

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Public Class CMain

 <ThreadStatic> Private Shared lCount As Integer

 Public Shared Sub Main

 Dim oThread As New Thread(AddressOf Thread2Proc)

 oThread.Start

 Console.WriteLine("First call to CallCount")

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("Second call to CallCount")

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("Third call to CallCount")

 CallCount()

 End Sub

 Private Shared Sub CallCount()

 lCount += 1

 Console.WriteLine(lCount)

 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private Shared Sub DelayLoop(millisecs As Integer)

 Dim oThread As Thread

 oThread = Thread.CurrentThread

 oThread.Sleep(millisecs)

 End Sub

 Private Shared Sub Thread2Proc

 Console.WriteLine("2nd thread call 1 to CallCount")

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("2nd thread call 2 to CallCount")

 CallCount()

 DelayLoop(2000)

 Console.WriteLine("2nd thread call 3 to CallCount")

 CallCount()

 End Sub

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Throw Statement

Syntax

Throw exception
exception (required; an Exception object or an object derived from Exception)

An Exception object representing the exception being thrown

Description

Throws an exception that can be handled using either structured exception handling (a Try . . . Catch
block) or unstructured exception handling (the On Error statement)

Example

Try

 ' Ask for a positive number

 Dim DataCt As Integer = CInt(InputBox("Enter number of items."))

 ' Check for error

 If DataCt <= 0 Then

 ' Throw an exception

 Throw New Exception("Must enter a positive number.")

 End If

Catch ex As Exception

 MsgBox(ex.Message)

End Try

VB.NET/VB 6 Differences

The Throw statement is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Exception Class, Try...Catch...Finally Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeOfDay Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeOfDay

Return Value

Date value giving the current system time

Description

Sets or returns the current system time

Example

The code:

TimeOfDay() = #9:05:13 AM#

sets the system time, and the code:

MsgBox(TimeOfDay())

displays the current system time.

Rules at a Glance

The TimeOfDay property returns the time in the time format defined by the system's regional settings.

Programming Tips and Gotchas

The TimeOfDay property includes an incorrect date, 01/01/0001, along with the time. It can be
eliminated with the Format or FormatDateTime function as follows:
Format(TimeOfDay(), "Long Time")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FormatDateTime(TimeOfDay(), DateFormat.LongTime)

When setting the TimeOfDay property, any date component is ignored.

See Also

Now Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Timer Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Timer

Return Value

Double representing the number of seconds that have elapsed since midnight

Description

Returns the number of seconds since midnight

Programming Tips and Gotchas

Timer is classified as a function in VB 6 and as a read-only property in VB.NET.

You can use the Timer property as an easy method of passing a seed number to the Randomize
procedure, as follows:
Randomize Timer()

The Timer property is ideal for measuring the time taken to execute a procedure or program
statement, as the following snippet shows:
Dim sStartTime As Single

Dim i As Integer

sStartTime = Timer()

 For i = 1 To 100

 Console.WriteLine("Hello")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next i

MsgBox("Time Taken = " & Timer() - sStartTime & " Seconds")

VB.NET/VB 6 Differences

While the Timer property returns a Double in VB.NET, the VB 6 Timer function returns a Single.

See Also

GetTimer Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeSerial Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeSerial(hour, minute, second)
hour (required; Integer)

A number in the range 0 to 23
minute (required; Integer)

Any valid integer
second (required; Integer)

Any valid integer

Return Value

A Date representing the time specified by the arguments to the function

Description

Constructs a valid time given a number of hours, minutes, and seconds

Rules at a Glance

Any of the arguments can be specified as relative values or expressions.

The hour argument requires a 24-hour clock format; however, the returned time is determined by the
system's regional settings.

If any value is greater than the normal range for the time unit to which it relates, the next higher time
unit is increased accordingly. For example, a second argument of 125 will be evaluated as 2
minutes, 5 seconds.

If any value is less than zero, the next higher time unit is decreased accordingly. For example,
TimeSerial(2,-1,30) returns 01:59:30.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming Tips and Gotchas

Because TimeSerial handles time units outside of their normal limits, it can be used for time calculations.
However, because the DateAdd function is more flexible and is internationally aware, it should be used
instead for this purpose.

See Also

TimeOfDay Property, TimeString Property, TimeValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeString()

Return Value

String representing the current system time

Description

Returns or sets the current system time

Rules at a Glance

The TimeString property returns the time in the format determined by the system's regional settings.

You can use any time format recognized by IsDate when setting the time using the TimeString
property.

Programming Tips and Gotchas

The string returned by the TimeString property also includes an invalid date, 01/01/0001. It can be
eliminated with the Format or FormatDateTime function as follows:
Format(TimeOfDay(), "Long Time")

FormatDateTime(TimeOfDay(), DateFormat.LongTime)

To get or set the current system date as a String, use the DateString property.

To access the current system time as a Date, use the TimeOfDay property.

VB.NET/VB 6 Differences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The TimeString property is new to VB.NET.

See Also

TimeOfDay Property, TimeSerial Function, TimeValue Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TimeValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

TimeValue(stringtime)
stringtime (required; String)

Any valid string representation of a time

Return Value

A Date containing the time specified by the string argument, with the date set to January 1 of the year 1

Description

Converts a string representation of a time to a Date data type

Rules at a Glance

If stringtime is invalid, a runtime error is generated.

If stringtime is Nothing, TimeValue generates an error.

stringtime can be in any time format recognized by the IsDate function. Both 12- and 24-hour clock
formats are valid.

The Date value returned by time is formatted based on the system's regional settings.

Programming Tips and Gotchas

A time literal can also be assigned to a Date variable by surrounding the date with hash characters
(#), as the following snippet demonstrates:
Dim dMyTime As Date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dMyTime = #12:30:00 AM#

The CDate function can also cast a time expression contained within a string as a Date variable, with
the additional advantage of being internationally aware.

The string returned by the TimeString property also includes an invalid date, 01/01/0001. It can be
eliminated with the Format or FormatDateTime function as follows:
Format(TimeOfDay(), "Long Time")

FormatDateTime(TimeOfDay(), DateFormat.LongTime)

VB/NET/VB 6 Differences

In VB 6, TimeValue returns the time only. In VB.NET, the function also returns an invalid date, 01/01/0001,
along with the time.

See Also

TimeOfDay Property, TimeSerial Function, TimeString Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Today Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Today()

Description

Sets or retrieves the current system date

Rules at a Glance

If you are setting the system date with numbers, as opposed to spelling the month, the sequence of
Day, Month, and Year must be in the same sequence as the computer's regional settings.

If you are running Microsoft Windows 95, 98, or 2000, the earliest system date you can set is
January 1, 1980; the latest system date you can set is December 31, 2099.

The date is returned in the short date format defined by the system's regional settings.

Example

Today() = "January 1, 1998"

Programming Tips and Gotchas

It is good programming practice to synchronize the dates across the machines in a multiuser
environment, most commonly from the date on a server. This can be done at the operating-system
level within the logon script or at application level using the Today property and TimeOfDay function.

It is risky to take a date format for granted. Wherever possible, use the Format function to explicitly
set the date format that you require, prior to using a date value.

Modern Windows systems are more reliant on system date than ever before. A single machine can
have literally hundreds of different applications installed, many of which will use dates in one way or
another. You should respect the machine on which your application is running, and only in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exceptional circumstances should you change the system date programmatically.

See Also

Now Property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Trim Function

Class

Microsoft.VisualBasic.Strings

Syntax

Trim(str)
str (required; String)

Any string expression

Return Value

String

Description

Removes both leading and trailing spaces from a given string

Rules at a Glance

If string is Nothing, the Trim function returns Nothing.

Programming Tips and Gotchas

Trim is equivalent to calling both the RTrim and LTrim functions.

VB.NET/VB 6 Differences

In VB 6, the function's single named argument is string. In VB.NET, its single named argument is str.

See Also

LTrim Function, RTrim Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Try...Catch...Finally Statement

Syntax

Try

 tryStatements

[Catch1 [exception [As type]] [When expression]

 catchStatements1

[Exit Try]

Catch2 [exception [As type]] [When expression]

 catchStatements2

[Exit Try]

. . .

Catchn [exception [As type]] [When expression]

 catchStatementsn]

[Exit Try]

[Finally

 finallyStatements]

End Try
exception (optional; System.Exception or a derived type)

The exception to catch. If exception is omitted or if it is System.Exception, all exceptions will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

caught. However, if exception is omitted, no information about the exception will be accessible
within the Catch block.

type (optional)

The data type of the exception to be handled by the Catch block. Its value can be System.Exception
or any derived type. If omitted, its value defaults to System.Exception, and all exceptions will be
handled.

expression (optional; Boolean)

A logical expression that defines a condition under which the error is to be handled by the Catch
block.

Description

Used to handle runtime errors

Rules at a Glance

The tryStatements, which are required, constitute the Try block and are the statements that VB
monitors for errors.

The Catchblocks, of which there can be more than one, contain code that is executed in response to
VB "catching" a particular type of error within the Try block. Thus, the Catch blocks consist of the
error-handlers for the Try block.

The phrases exception [As type] and [When expression] are referred to as filters in the VB.NET
documentation. In the former case, exception is either a variable of type Exception, which is the
base class that "catches" all exceptions, or a variable of one of Exception's derived classes. The
When filter is typically used with user-defined errors. (See the upcoming example.)

The Exit Try statement is used to break out of any portion of a Try...Catch...Finally block.

The optional finallyStatements code block is executed regardless of whether an error occurs (or is
caught), unless an Exit Try statement is executed.

Multiple Catch statements can be used. However, only the first Catch statement to be true is
executed. This means that multiple Catch statements should be ordered from most specific to most
general, with a Catch block handling errors of type System.Exception occurring last.

Example

The code in the following Try block will raise an error if the user does not enter a number. The Catch block
will catch this error.

Try

 Dim sInput As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sInput = Inputbox("Enter a number.")

 If Not IsNumeric(sInput) Then

 Err().Raise(1)

 End If

Catch When Err.Number = 1

 Msgbox("Error1")

End Try

Programming Tips and Gotchas

As with unstructured error handling, VB may pass an error up the call stack when using structured error
handling. This happens in the following situations:

If an error occurs within a Try block that is not handled by an existing Catch block.

If an error occurs outside any Try block (provided, of course, that no On Error-style error handlers
are active).

VB.NET/VB 6 Differences

Structured exception handling using the Try...Catch...Finally construct is new to VB.NET. It replaces
unstructured error handling using the On Error statement, which continues to be supported in VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TypeName Function

Class

Microsoft.VisualBasic.Information

Syntax

TypeName(varname)
varname (required; String literal)

Name of a variable

Return Value

String

Description

Returns a string giving data type information about varname. The possible return values are:

String
returned

Variable contents

Boolean 8-bit True or False value type

Byte 8-bit binary value type

Char 16-bit character value type

Date 64-bit date and time value type

DBNull Reference type indicating missing or nonexistent data

Decimal 96-bit fixed point numeric value type

Double 64-bit floating point numeric value type

Error Error object

Integer 32-bit integer value type

Long 64-bit integer value type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String
returned

Variable contents

Nothing
Object variable with no object currently assigned to it, uninitialized string, or
undimensioned array

Object Reference type pointing to an unspecialized object

Short 16-bit integer value type

Single 32-bit floating point numeric value type

String Reference type pointing to a string of 16-bit characters

<objectclass> Reference type pointing to a specialized object created from class <objectclass>

<structure> A variable created from a structure or user-defined type named structure

<typename>() Dimensioned array

Rules at a Glance

If varname is declared as type Object, it returns the data subtype that has been assigned to it.

varname returns the data type name of all value types. It returns Nothing for uninitialized reference
types and the data type name for all initialized reference types.

If varname is an array that has been initialized or dimensioned, the returned string will be the entry in
the previous table corresponding to the underlying data type of the array, but with empty parentheses
appended to the end of the name. For example, if varname points to an array of integers, TypeName
returns Integer().

When TypeName returns the name of a reference type, such as a class, it only returns the simple
name, not the qualified name. For example, if varname points to an object of class
System.Drawing.Printing.PaperSource, TypeName returns PaperSource.

If varname is of type Object, TypeName returns the data subtype stored to that object.

Example

Dim obj As Object

obj = New CEmployee()

MsgBox(TypeName(obj)) ' Displays: CEmployee

obj = 100

MsgBox(TypeName(obj)) ' Displays: Integer

obj = Nothing

Nothing
Object variable with no object currently assigned to it, uninitialized string, or
undimensioned array

Object Reference type pointing to an unspecialized object

Short 16-bit integer value type

Single 32-bit floating point numeric value type

String Reference type pointing to a string of 16-bit characters

<objectclass> Reference type pointing to a specialized object created from class <objectclass>

<structure> A variable created from a structure or user-defined type named structure

<typename>() Dimensioned array

Rules at a Glance

If varname is declared as type Object, it returns the data subtype that has been assigned to it.

varname returns the data type name of all value types. It returns Nothing for uninitialized reference
types and the data type name for all initialized reference types.

If varname is an array that has been initialized or dimensioned, the returned string will be the entry in
the previous table corresponding to the underlying data type of the array, but with empty parentheses
appended to the end of the name. For example, if varname points to an array of integers, TypeName
returns Integer().

When TypeName returns the name of a reference type, such as a class, it only returns the simple
name, not the qualified name. For example, if varname points to an object of class
System.Drawing.Printing.PaperSource, TypeName returns PaperSource.

If varname is of type Object, TypeName returns the data subtype stored to that object.

Example

Dim obj As Object

obj = New CEmployee()

MsgBox(TypeName(obj)) ' Displays: CEmployee

obj = 100

MsgBox(TypeName(obj)) ' Displays: Integer

obj = Nothing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MsgBox(TypeName(obj)) ' Displays: Nothing

Programming Tips and Gotchas

The TypeName function also works directly with members of the Foundation Class Library that aren't
wrapped by Visual Basic. It reports the following data types:

String returned Variable contents

UINT16 Unsigned 16-bit integer

UINT32 Unsigned 32-bit integer

UINT64 Unsigned 64-bit integer

SBYTE Signed byte

VB.NET/VB 6 Differences

In VB 6, the call to the TypeName function in the code fragment:
Dim strVar As String

Console.WriteLine(TypeName(strVar))

returns a String. In VB.NET, the TypeName function in an equivalent code fragment returns Nothing.
This is because in VB.NET, strings are reference types and reference types are implemented as
objects.

In VB 6, passing a user-defined type to the TypeName function generates a compile error. In
VB.NET, it returns the name of the user-defined type or structure.

In VB 6, passing an uninitialized array to the TypeName function returns the type name plus
parentheses. In VB.NET, it returns Nothing.

In VB 6, a variable whose type is not declared is reported as a Variant; in VB . NET, it is an object.

See Also

VarType Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UBound Function

Class

Microsoft.VisualBasic.Information

Syntax

UBound(array[, rank])
array (required; any)

The name of the array
rank (optional; Integer)

A number specifying the dimension of the array

Return Value

Integer

Description

Indicates the upper limit of a specified coordinate of an array. The upper boundary is the largest subscript
you can use with that coordinate.

Rules at a Glance

To determine the upper limit of the first coordinate of an array, set rank to 1, set it to 2 for the second
coordinate, and so on.

If rank is not specified, 1 is assumed.

The function returns -1 if the array is uninitialized.

Programming Tips and Gotchas

Note that UBound returns the actual subscript of the upper bound of a particular array dimension.

The number of valid indices for the ith coordinate is equal to UBound(array, i) + 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If array is an uninitialized array, passing it to the UBound function generates an
ArgumentNullException exception. To prevent this, you can declare the array as follows:
Dim arrValues(-1) As String

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UCase Function

Class

Microsoft.VisualBasic.Strings

Syntax

UCase(value)
value (required; String)

A valid string expression

Return Value

String

Description

Converts a string to uppercase

Rules at a Glance

UCase only affects lowercase alphabetical letters; all other characters within value remain
unaffected.

UCase returns Nothing if value is Nothing.

See Also

LCase Function, StrConv Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unlock Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax

Unlock(filenumber[, record)

Unlock(filenumber[, fromrecord[, torecord]])
filenumber (required; Integer)

Any valid file number
record (required; Long)

The record or byte number at which to commence the lock
fromrecord (required; Long)

The first record or byte number to lock
torecord (required; Long)

The last record or byte number to lock

Description

Use the Unlock procedure in situations where more than one part of your program may need read and
write access to the same data file. The Unlock procedure removes a lock that the Lock procedure placed
on a section of the file or the whole file.

Rules at a Glance

Use the Unlock procedure only with the filenumber parameter to unlock the whole file.

The Unlock procedure unlocks an entire file opened in Input or Output (sequential) mode, regardless
of the record, fromrecord, or torecord arguments.

Records and bytes in a file are always numbered sequentially from 1 up.

To unlock a particular record, specify its record number as record, and only that record will be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unlocked.

To unlock a range of bytes (in a binary file) or of records (in a random file), indicate the starting
position as fromrecord and the ending position as torecord.

Programming Tips and Gotchas

You must take care to remove all file locks using the Unlock procedure before either closing a file or
ending the application; otherwise, you can leave the file in an unstable state. This means that, where
appropriate, your error-handling routines must be made aware of any locks you currently have in
place so that they may be removed if necessary.

You use the Lock and Unlock procedures in pairs, and the argument lists of both statements must
match exactly.

VB.NET/VB 6 Differences

In VB 6, it is possible to omit the fromrecord argument and provide only the torecord argument, in
which case all records (in random mode) or bytes (in binary mode) from the beginning of the file to
torecord would be unlocked. In VB.NET, this syntax is not allowed.

VB 6 allows you to precede the filenumber argument with the # symbol. In VB.NET, this syntax is
not permitted.

When specifying starting and ending records in VB 6, you use the To keyword to separate them. In
VB.NET, this syntax is not permitted; instead, you must use a comma to separate the two arguments.

See Also

Lock Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Val Function

Class

Microsoft.VisualBasic.Conversion

Syntax

Val(expression)
expression (required; String or Char)

Any string representation of a number

Return Value

A Double able to hold the number contained in expression

Description

Converts a string representation of a number into a Double

Rules at a Glance

The Val function starts reading the string with the leftmost character and stops at the first character
that it does not recognize as being part of a valid number. For example, the statement:
iNumber = Val("1A1")

returns 1.

&O and &H (the octal and hexadecimal prefixes) are recognized by the Val function.

Currency symbols, such as $ and £, and delimiters, such as commas, are not recognized as
numbers by the Val function.

The Val function only recognizes the period (.) as a decimal delimiter.

Prior to processing expression, Val removes spaces, tabs, and line-feed characters.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are developing an international application, you should use the more modern, internationally aware
CDbl function to convert strings to numbers, since CDbl can recognize all decimal separators.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ValDec Function

Class

Microsoft.VisualBasic.Conversion

Syntax

ValDec(expression)
expression (required; String or Char)

Any string representation of a number

Return Value

A Decimal able to hold the number contained in expression

Description

Converts a string representation of a number into a Decimal

Rules at a Glance

The ValDec function starts reading the string with the leftmost character and stops at the first
character that it does not recognize as being part of a valid number. For example, the statement:
iNumber = ValDec("1A1")

returns 1.

&O and &H (the octal and hexadecimal prefixes) are recognized by the ValDec function.

Currency symbols, such as $ and £, and delimiters, such as commas, are not recognized as
numbers by the ValDec function.

The ValDec function only recognizes the period (.) as a decimal delimiter.

Prior to processing expression, ValDec removes spaces, tabs, and line-feed characters.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are developing an international application, you should use the CDec function to convert strings to
numbers, since CDec can recognize all decimal separators.

VB.NET/VB 6 Differences

The ValDec function is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VarType Function

Class

Microsoft.VisualBasic.Information

Syntax

VarType(varname)
varname (required; any)

The name of a variable

Return Value

A member of the VariantType enumeration indicating the variable type

Description

Determines the data type of a variable

Rules at a Glance

The possible values returned by the function include the following members of the VariantType
enumeration:

Constant Value Description

Array 8192 Array

Boolean 11 Boolean data type

Byte 17 Byte data type

Char 18 Char data type

Date 7 Date data type

Decimal 14 Decimal data type

Double 5 Double data type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

Integer 3 Integer data type

Long 20 Long data type

Object 9 Object, uninitialized string, uninitialized array, object of a specific type

Short 2 Short data type

Single 4 Single data type

String 8 String

UserDefinedType 36 A structure

If varname is a dimensioned array, the VarType function returns VariantType.Array (8192), plus the
value of the array's data type. For example, an array of strings returns 8192 + 8 = 8200. You can test
for an array with a code fragment such as the following:
If VarType(myVar) And VariantType.Array Then

You can extract the data type of the array with the following code fragment:

vartype(myVar) and &HFFFFDFFF

All object variables, whether late-bound or early-bound, return VariantType.Object.

Data types that are members of the base class library but are not wrapped by VB data types (i.e.,
UINT16, UINT32 etc.) return VariantType.UserDefinedType.

VB.NET/VB 6 Differences

In VB 6, passing a user-defined type as an argument to the VarType function generated an error.
VB.NET allows you to pass a structure as an argument to the function.

In VB 6, the Vartype function indicates that the data type of an object is the data type of its default
property. In VB.NET, all objects, including objects (like Collection objects) that have default
properties, return VariantType. Object.

See Also

TypeName Function

Integer 3 Integer data type

Long 20 Long data type

Object 9 Object, uninitialized string, uninitialized array, object of a specific type

Short 2 Short data type

Single 4 Single data type

String 8 String

UserDefinedType 36 A structure

If varname is a dimensioned array, the VarType function returns VariantType.Array (8192), plus the
value of the array's data type. For example, an array of strings returns 8192 + 8 = 8200. You can test
for an array with a code fragment such as the following:
If VarType(myVar) And VariantType.Array Then

You can extract the data type of the array with the following code fragment:

vartype(myVar) and &HFFFFDFFF

All object variables, whether late-bound or early-bound, return VariantType.Object.

Data types that are members of the base class library but are not wrapped by VB data types (i.e.,
UINT16, UINT32 etc.) return VariantType.UserDefinedType.

VB.NET/VB 6 Differences

In VB 6, passing a user-defined type as an argument to the VarType function generated an error.
VB.NET allows you to pass a structure as an argument to the function.

In VB 6, the Vartype function indicates that the data type of an object is the data type of its default
property. In VB.NET, all objects, including objects (like Collection objects) that have default
properties, return VariantType. Object.

See Also

TypeName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VBFixedArray Attribute

Class

Microsoft.VisualBasic.VBFixedArrayAttribute

Applies to

Field

Description

Defines a fixed array. It can be used in defining fixed arrays within structures, particularly structures that
are to be passed to Win32 API functions, and for defining fixed-length structures used by VB file input and
output functions.

Constructor

New(size1[, size2])
size1 (required; Integer)

The upper limit of the array's first dimension
size2 (optional; Integer)

The upper limit of the array's second dimension

Properties

Bounds (Array of Integer)

The upper bounds of a particular dimension of the array. The first dimension is represented by
VBFixedArrayAttribute.Bounds(0). The upper boundary of the array can be retrieved by calling the
UBound function.

Length (Integer)

The total number of elements in all dimensions of the array.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VBFixedString Attribute

Class

Microsoft.VisualBasic.VBFixedStringAttribute

Applies to

Field

Description

Defines a fixed-length string. It is the rough equivalent of the VB 6 declaration:

Dim s As String * length

It can be used to define fixed-length strings within structures, particularly structures that are to be passed
to Win32 API functions, as well as to define fixed length strings to be written to and read from random
access files.

Constructor

New(length)
length (Integer)

The length of the string

Properties

Length (Integer)

Read-only. The length of the string. Its value is set by the length parameter in the class constructor.

Example

The example creates a random access file, which must contain fixed-length records, and uses the
<VBFixedString> attribute to create a fixed-length string of 10 characters. This ensures that all records will
be a uniform length. Without the <VBFixedString> attribute, the example an IOException exception
because of bad record length.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Option Strict Off

Imports Microsoft.VisualBasic

Imports System

Module modMain

Structure Person

 <vbFixedString(10)> Public Name As String

 Public Age As Short

End Structure

Public Sub Main

Dim APerson As New Person()

Dim fr As Integer = FreeFile()

FileOpen(fr, ".\person.txt", OpenMode.Random, OpenAccess.ReadWrite, _

 OpenShare.Default, len(aperson))

APerson.Name = "John"

APerson.Age = 31

FilePut(fr, APerson, 1)

APerson.Name = "Jane"

APerson.Age = 27

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FilePut(fr, APerson, 2)

FileGet(fr, APerson, 2)

Console.WriteLine(Trim(APerson.Name) & " is " & APerson.Age)

FileClose(fr)

End Sub

End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VbTypeName Function

Class

Microsoft. VisualBasic.Information

Syntax

VbTypeName(urtname)
urtname (required; String)

The name of a CTS datatype

Return Value

A String containing the name of a VB.NET datatype

Description

Returns the name of the VB.NET datatype that corresponds to a particular Common Type System (CTS)
datatype

Rules at a Glance

urtname must be the name of a valid CTS datatype, such as Int32, UInt32, String, or DateTime.

If urtname is not a valid CTS datatype, the function returns Nothing.

If urtname is a valid CTS datatype that does not directly correspond to a VB.NET datatype, the
function returns Nothing.

Example

Public Sub Main

' Displays Short

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim intNum As Int16 = 1234

Console.WriteLine(VbTypeName(intNum.GetType().ToString))

' Displays ""

Dim uintNum As UInt16 = Convert.ToUInt16(1234)

Console.WriteLine(VbTypeName(uintNum.GetType().ToString))

' Displays Char

Dim chLetter As System.Char = Convert.ToChar("a")

Console.WriteLine(VbTypeName(chLetter.GetType().ToString))

' Displays ""

Dim sbytNum As SByte = Convert.ToSByte(-3)

Console.WriteLine(VbTypeName(sbytNum.GetType().ToString))

End Sub

Programming Tips and Gotchas

To determine the VB.NET datatype of a particular variable, call the variable's GetType method to
retrieve a Type object, then call the Type object's ToString method to retrieve its datatype name. This
string can then be passed to the VbTypeName function. For example:
strType = VbTypeName(myVar.GetType().ToString)

If passed the name of a structure defined with the Structure construct or an instance of a class
defined with the Class construct, the VbTypeName function returns Nothing.

The existence of the VbTypeName function clearly indicates that VB.NET datatypes are wrappers for
some CTS datatypes.

VB.NET/VB 6 Differences

The VbTypeName function is new to VB.NET.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

SystemTypeName Function, TypeName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebMethod Attribute

Class

System.Web.Services.WebMethodAttribute

Applies to

Method

Description

Marks a method within a web service as a web method callable from a web client. The method and the
class to which it belongs must be public and must be part of an ASP.NET application.

Constructors

New([[[[enableSession], transactionOption], cacheDuration], bufferResponse])
enableSession (Boolean)

Indicates whether session state is enabled for the web method call.
transactionOption (System.EnterpriseServices.TransactionOption enumeration)

Indicates whether the web method supports transactions. Possible values are Disabled,
NotSupported, Supported, Required, and RequiresNew.

cacheDuration (Integer)

Indicates the number of seconds the response to the web method request should be stored in the
cache.

bufferResponse (Boolean)

Indicates whether the response to the web method request is buffered.

Properties

BufferResponse (Boolean)

Indicates whether the response to the web method request is buffered. Its default value is True.
CacheDuration (Integer)

Defines the number of seconds the server caches the response to the web method request. Its
default value is 0; responses to web methods are not cached.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Description (String)

Provides a description for the web service that is displayed in the service description and web
service help page. Its default value is an empty string.

EnableSession (Boolean)

Read-only. Indicates whether session state is enabled for the web method call. Its default value is
False.

MessageName (String)

Identifies the public name by which the web method is invoked by clients. Since web methods do
not support overloading, the property provides a method for identifying overloaded methods that
share the same name. Its default value is the name of the web method

TransactionOption (System.EnterpriseServices.TransactionOption enumeration)

Read-only. Indicates whether the web method supports transactions. Possible values are Disabled,
NotSupported, Supported, Required, and RequiresNew. A web method must participate as the root
object of a transaction. Because of this, Supported and NotSupported are both equivalent to
NotSupported, and Required and RequiresNew are both equivalent to RequiresNew. Its default value
is Disabled.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WebService Attribute

Class

System.Web.Services.WebServiceAttribute

Applies To

Class

Description

An optional element of a web service definition (the ASP.NET @ Webservice directive is required), the
<WebService> attribute can be used to assign the web service a namespace and description.

Constructor

New()

Properties

Description (String)

A textual description of the web service. The description is displayed in the Service Description page and
the Service help page.

Name (String)

The name to be assigned to the web service. Ordinarily, the web service name corresponds to the name
of the class However, the Name property of the <WebService> attribute is used instead of the class name
as the name of the web service.

Namespace (String)

The web service's namespace. During development, the namespace http://tempuri.org/ is used by
default. However, a unique namespace should be assigned to any production web service. Although the
namespace for a web service resembles a URL, it need not point to any valid Internet resource.

Example

The example uses an .asmx file with the following contents:

<%@ WebService Language="VB" Class="HelloWebService" Codebehind="Hello.asmx.vb" %>

It has the following codebehind file:

Option Strict

http://tempuri.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System.Web.Services

<WebService(Name:="Hello", _

 Description:="Displays a friendly greeting to the user.", _

 Namespace:="http://www.oreilly.com/VbNet")> _

Public Class HelloWebService

<WebMethod()> Public Function SayHello(Name As String) As String

 Return "Hello, " & Name

End Function

End Class

See Also

WebMethod Attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Weekday Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Weekday(datevalue, [dayofweek])
date (required; Date or valid date expression)

Any valid date expression
dayofweek (optional; Constant of FirstDayOfWeek enumeration)

A constant indicating the first day of the week

Return Value

Integer

Description

Determines the day of the week of a given date

Rules at a Glance

The default for dayofweek is FirstDayOfWeek.Sunday.

To determine the day of the week, think of the day specified by dayofweek as day 1, and the value
returned by the function as indicating the day relative to day 1. Then, for example, if the return value
of WeekDay is 2, this specifies the day following dayofweek. A return value of 1 specifies dayofweek.
A return value of 7 specifies the day before dayofweek.

The members of the FirstDayOfWeek enumeration are:

Constant Value Description

Sunday 1 Sunday

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value Description

Monday 2 Monday

Tuesday 3 Tuesday

Wednesday 3 Wednesday

Thursday 4 Thursday

Friday 5 Friday

Saturday 6 Saturday

Sunday 7 Sunday

Passing a value of 0 as the dayofweek argument uses the system's locale settings to determine the
first day of the week.

Example

Since the code:

Weekday(#3/26/2001#, FirstDayOfWeek.Sunday)

returns 2, the date 3/26/2001 is a Monday.

Programming Tips and Gotchas

If passing a date literal as datevalue, the Weekday function requires that all four digits of the year be
present.

VB.NET/VB 6 Differences

The names of the named parameters of the function have changed from date and firstdayofweek in VB 6
to datevalue and dayofweek in VB.NET.

See Also

DatePart Function, Day Function, WeekdayName Function

Monday 2 Monday

Tuesday 3 Tuesday

Wednesday 3 Wednesday

Thursday 4 Thursday

Friday 5 Friday

Saturday 6 Saturday

Sunday 7 Sunday

Passing a value of 0 as the dayofweek argument uses the system's locale settings to determine the
first day of the week.

Example

Since the code:

Weekday(#3/26/2001#, FirstDayOfWeek.Sunday)

returns 2, the date 3/26/2001 is a Monday.

Programming Tips and Gotchas

If passing a date literal as datevalue, the Weekday function requires that all four digits of the year be
present.

VB.NET/VB 6 Differences

The names of the named parameters of the function have changed from date and firstdayofweek in VB 6
to datevalue and dayofweek in VB.NET.

See Also

DatePart Function, Day Function, WeekdayName Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WeekdayName Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

WeekdayName(Weekday, [abbreviate [, FirstDayOfWeekValue]])
Weekday (required; Long)

The ordinal number of the required weekday, from 1 to 7
abbreviate (optional; Boolean)

Specifies whether to return the full day name or an abbreviation
FirstDayOfWeekValue (optional; FirstDayOfWeek constant)

Member of the FirstDayOfWeek enum indicating the first day of the week

Return Value

A String

Description

Returns the name of the day

Rules at a Glance

Weekday must be a number between 1 and 7, or the function generates an ArgumentException error.

The default value of abbreviate is False.

For a list of the members of the FirstDayOfWeek enumeration, see the Weekday Function entry.

The default value of FirstDayOfWeekValue is FirstDayOfWeek.Monday.

Programming Tips and Gotchas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since Weekday is an integer, to determine the name of the day of a particular date, combine
WeekDayName with a call to the WeekDay function, as the following code fragment shows:
sDay = WeekDayName(Weekday(dDate, iFirstDay), _

 bFullName, iFirstDay)

Note that the value of the FirstDayOfWeek argument must be the same in the calls to both functions
for WeekdayName to return an accurate result.

Unlike the Weekday function, the WeekdayName function behaves predictably. For example, if you
ask for the name of the first day of the week when the week starts on Monday, the function returns
Mon or Monday. If you ask for the fifth day of the week for a week that starts on Sunday, the function
returns Thu or Thursday.

See Also

Weekday Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While...End While Statement

Syntax

While condition

 [statements]

[Exit While]

 [statements]

End While
condition (required; Numeric or String)

An expression evaluating to True or False
statements (optional)

Program statements to execute while condition remains True
Exit While (optional; Keyword)

Exits the While loop

Description

Repeatedly executes program code while a given condition remains True

Rules at a Glance

A Null condition is evaluated as False.

If condition evaluates to True, the program code between the While and End While statements is
executed. After the End While statement is executed, control is passed back up to the While
statement where condition is evaluated again. When condition evaluates to False, program
execution skips to the first statement following the End While statement.

You can nest While...End While loops within each other.

Programming Tips and Gotchas

The While...End While statement remains in Visual Basic for backward compatibility only. In our opinion,
it has been superceded by the much more flexible Do...Loop statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET/VB 6 Differences

In VB 6, the ending statement that accompanies the While construct is Wend; in VB.NET, it is End While.

See Also

Do...Loop Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With Statement

Syntax

With object

 [statements]

End With
object (required; Object)

A previously declared object variable or user-defined type
statements (optional)

Program code to execute against object

Description

This statement is used to execute a series of statements on an object without having to qualify each
statement with the object name.

Rules at a Glance

The single object referred to in the With statement remains the same throughout the code contained
within the With...End With block. Therefore, only properties and methods of object can be used
within the code block without explicitly referencing the object. All other object references within the
With...End With statement must start with a fully qualified object reference.

With statements can be nested, as long as the inner With statement refers to a subobject or a
dependent object of the outer With statement.

A member of object is referenced within a With block by omitting the object name and simply
including a period and the member name.

Example

Public Structure Point

Dim x As Integer

 Dim y As Integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Structure

Public Sub Main

Dim udtPt As POINT

With udtPt

.x = 10

 .y = 100

End With

Console.Writeline(udtpt.x)

End Sub

Programming Tips and Gotchas

It is important that you do not include code within the With statement block that forces execution to branch
out of the block. Similarly, do not write code that forces program flow to jump into a With block. Both the
With and its associated End With statement must be executed, or you will generate unpredictable results.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WithEvents Keyword

Syntax

Dim|Private|Public WithEvents objVarName As objectType
objVarName (required; String)

The name of any object variable that refers to an object that exposes events
objectType (required; any object type other than the generic Object)

The ProgID of a referenced object

Description

The WithEvents keyword informs VB that the object being referenced exposes events for which you intend
to provide event handlers.

When you declare an object variable using WithEvents, an entry for the object variable is placed in the
code window's drop-down Object List, and a list of the events available to the object variable is placed in
the code window's drop-down Procedures List. You can then write code event handlers for the object
variable.

Rules at a Glance

An object-variable declaration using the WithEvents keyword can only be used in an object or class
module.

An object-variable declaration using the WithEvents keyword should only be placed in the
Declarations section of the object module.

Any ActiveX object or class module that exposes events can be used with the WithEvents keyword.
WithEvents is only valid when used to declare an object variable.

You cannot use WithEvents when declaring a generic Object type.

Unlike other variable declarations, the As keyword is mandatory.

There is no limit to the number of object variables that can refer to the same object using the
WithEvents keyword; they will all respond to that object's events.

You cannot create an array variable that uses the WithEvents keyword.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You cannot use the WithEvents keyword in a local variable declaration.

If objectType does not expose any events, the WithEvents statement generates a compiler error.

Example

The following example demonstrates how to trap and respond to the events within an ADO recordset. An
object variable is declared using the WithEvents keyword in the declarations section of a form module.
This allows you to write event-handling code for the ADO's built-in events, in this case the FetchProgress
event. (The FetchProgress event allows you to implement a Progress Bar control that shows progress in
populating the recordset.)

Private WithEvents oADo As ADODB.Recordset

Private Sub oADo_FetchProgress(ByVal Progress As Long, _

 ByVal MaxProgress As Long, _

 adStatus As ADODB.EventStatusEnum, _

 ByVal pRecordset As ADODB.Recordset) _

 Handles oADO.FetchProgress

 ProgressBar1.Max = MaxProgress

 ProgressBar1.Value = Progress

End Sub

Programming Tips and Gotchas

Placing the object-variable declaration that uses the WithEvents keyword in a procedure does not
add the object variable name to the module's Object List. In other words, the events fired from the
object would only have scope in the procedure and therefore cannot be handled.

Even if you declare the object variable using the Public keyword, the events fired by the object only
have scope in the module in which the object variable has been declared.

Because you cannot use WithEvents to declare a generic Object type, WithEvents can only be used
with early-bound object references. In other words, objects must have been added to the project
using the References dialog box. Without this prior knowledge of the object's interface, VB has no

http://lib.ommolketab.ir
http://lib.ommolketab.ir

chance of knowing how to handle events from the object.

If the object you are referencing doesn't expose any public events, you will generate a compile-time
error, "This object does not raise Events."

VB.NET/VB 6 Differences

In VB 6, object variables in a code module couldn't be declared with WithEvents. In VB.NET, this
restriction has been lifted.

See Also

Dim Statement, Public Statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Write Procedure

Class

Microsoft.VisualBasic.FileSystem

Named Arguments

No

Syntax

Write(filenumber, output)
filenumber (required; Integer)

Any valid file number
output (required; Object (Any))

A comma-delimited list of expressions or a ParamArray to be written to the file

Description

Writes data to a sequential file

Rules at a Glance

output can contain multiple expressions delimited with either a comma, a semicolon, or a space.

output can also be an Object array containing values to be written to the file indicated by
filenumber.

The following table describes how the Write procedure handles certain types of data, regardless of
the locale, to allow files to be read universally:

Data type Data written to file

Numeric Decimal separator is always a period (.)

Boolean #TRUE# or #FALSE#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data type Data written to file

Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)

Null #NULL#

Error #ERROR errorcode#

The Write procedure automatically does the following:

Delimits data fields with a comma

Places quotation marks around string data

Programming Tips and Gotchas

The structured data written to a file using the Write procedure is most suited to being read back from the
file using the Input procedure.

VB.NET/VB 6 Differences

The VB 6 Write statement requires that output be a comma-delimited list of literal values or
variables. The VB.NET WriteLine procedure also allows outputlist to be a parameter array.

Calling the VB 6 Write statement with a single comma in place of outputlist forces a blank line to
be written to the file. VB.NET requires that you call the WriteLine procedure.

The VB 6 Write statement allowed a # symbol to precede the filenumber argument. In the VB.NET
Write procedure, this usage is not permitted.

See Also

WriteLine Procedure

Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)

Null #NULL#

Error #ERROR errorcode#

The Write procedure automatically does the following:

Delimits data fields with a comma

Places quotation marks around string data

Programming Tips and Gotchas

The structured data written to a file using the Write procedure is most suited to being read back from the
file using the Input procedure.

VB.NET/VB 6 Differences

The VB 6 Write statement requires that output be a comma-delimited list of literal values or
variables. The VB.NET WriteLine procedure also allows outputlist to be a parameter array.

Calling the VB 6 Write statement with a single comma in place of outputlist forces a blank line to
be written to the file. VB.NET requires that you call the WriteLine procedure.

The VB 6 Write statement allowed a # symbol to precede the filenumber argument. In the VB.NET
Write procedure, this usage is not permitted.

See Also

WriteLine Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WriteLine Procedure

Class

Microsoft.VisualBasic.FileSystem

Named Arguments

No

Syntax

WriteLine(filenumber, [output])
filenumber (required; Integer)

Any valid file number
output (optional; Object (Any))

A comma-delimited list of expressions or a ParamArray to be written to the file

Description

Writes data to a sequential file and then adds a line-feed character combination

Rules at a Glance

output can contain multiple expressions delimited with either a comma, a semicolon, or a space.

output can also be an Object array containing values to be written to the file indicated by
filenumber.

The following table describes how the WriteLine procedure handles certain types of data, regardless
of the locale, to allow files to be read universally.

Data type Data written to file

Numeric Decimal separator is always a period (.)

Boolean #TRUE# or #FALSE#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data type Data written to file

Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)

Null #NULL#

Error #ERROR errorcode#

The WriteLine procedure automatically does the following:

Delimits data fields with a comma

Places quotation marks around string data

Inserts a new-line character (Chr(13) + Chr(10)) after the last item in output is written to the
file

If the output argument is omitted, WriteLine writes a blank line to the file designated by filenumber.

Programming Tips and Gotchas

The structured data written to a file using the WriteLine procedure is most suited to being read back from
the file using the Input procedure.

VB.NET/VB 6 Differences

The WriteLine procedure is new to VB.NET as a partial replacement for the VB 6 Write procedure.

See Also

Write Procedure

Date #yyyy-mm-dd hh:mm:ss# (hours specified in 24-hour format)

Null #NULL#

Error #ERROR errorcode#

The WriteLine procedure automatically does the following:

Delimits data fields with a comma

Places quotation marks around string data

Inserts a new-line character (Chr(13) + Chr(10)) after the last item in output is written to the
file

If the output argument is omitted, WriteLine writes a blank line to the file designated by filenumber.

Programming Tips and Gotchas

The structured data written to a file using the WriteLine procedure is most suited to being read back from
the file using the Input procedure.

VB.NET/VB 6 Differences

The WriteLine procedure is new to VB.NET as a partial replacement for the VB 6 Write procedure.

See Also

Write Procedure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Year Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Year(datevalue)
datevalue (required; Date or valid date expression)

Any valid date expression

Return Value

Integer

Description

Returns an integer representing the year in a given date expression

Rules at a Glance

If datevalue contains Nothing, Year returns 1. (This assumes that Option Strict is off.) For
example:
Dim oDat As Object

Console.Writeline(Year(sDat)) ' Displays 1

If datevalue is a date literal (a date delimited with the # symbol), the year must contain four digits.

Programming Tips and Gotchas

The validity of the date expression - and the position of the year element within the given date
expression - is initially determined by the locale settings of the Windows system. However, some
extra intelligence relating to two-digit year values (see the next item in this list) has been built into the
Year function, which surpasses the usual comparison of a date expression to the current locale
settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What happens when you pass a date over to the Year function containing a two-digit year? Quite
simply, when the Year function sees a two-digit year, it assumes that all values equal to or greater
than 30 are in the 20th century (i.e., 30 = 1930, 98 = 1998) and that all values less than 30 are in the
21st century (i.e., 29 = 2029, 5 = 2005). Of course, it is much better programming practice to use -
and require your clients to use - four-digit years.

See Also

DatePart Function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Part III: Appendixes

Part III contains six appendixes that supplement the core reference material provided in Part II.
These include:

Appendix A which surveys the extensive changes the language has undergone with the release
of the .NET platform.

Appendix B which lists each language element from Part II in several different categories. You
can use it to identify a particular language element so that you can then look up its detailed
entry in Part II.

Appendix C which lists VB.NET operators, including a somewhat more detailed treatment of
logical and bitwise operators.

Appendix D which lists VB.NET intrinsic constants, as well as VB.NET enumerations and their
members.

Appendix E which documents the operation of the Visual Basic command-line compiler.

Appendix F which lists the elements that have dropped out of the Visual Basic language as a
result of its transition to the .NET Framework.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. What's New and Different in VB.NET

This appendix is for readers who are familiar with earlier versions of Visual Basic, specifically Version 6. In
this appendix, we describe the basic changes to the VB language, both in syntax and in functionality.
(Readers familiar only with Version 5 of Visual Basic will also benefit from this chapter, although we
discuss only the changes since Version 6.)

We also touch upon other changes to VB, such as error handling and additional object-oriented
programming support.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1 Language Changes for VB.NET

In this section, we outline the changes made to the Visual Basic language from Version 6 to Visual Basic
.NET. These language changes were made to bring VB under the umbrella of the .NET Framework and
allow a Common Language Runtime for all languages in Visual Studio .NET. In some sense, the changes
made to the VB language were to bring the language component of VB (as opposed to the IDE
component) more in line with the C# language (which is a derivative of C and C++).

Since we assume in this chapter that you are familiar with VB 6, we will not necessarily discuss how VB 6
handles a given language feature, unless the contrast is specifically helpful. You can assume that if a
VB.NET language feature is described in this chapter, there has been a change in its behavior since VB 6.

A.1.1 Data Types

There have been fundamental changes to data types in VB.NET, which we outline in this section. The
most important change is that all of the languages under the .NET umbrella (VB, C#, and Managed C++)
now implement a subset of a common set of data types, defined in the .NET Framework's Base Class
Library (BCL). We say subset because VB.NET does not implement all of these data types. In any case,
each data type in the BCL is implemented either as a class or as a structure (which is similar to a class)
and, as such, has members. The VB.NET data types are wrappers for the corresponding BCL data type.
While this need not concern the VB programmer, it can be used in some cases to expose a bit more
functionality from a data type. For more on data types, see Chapter 3.

Now let us consider the specifics.

A.1.1.1 Strings

As you may know, in VB 6, strings were implemented as a data type known as the BSTR. A BSTR is a
pointer to a character array that is preceded by a 4-byte Long specifying the length of the array. In
VB.NET, strings are implemented as objects of the String class, which is part of the .NET Framework's
System namespace.

One consequence of this reimplementation of strings is that VB.NET does not have fixed-length strings, as
does VB 6. Thus, the following code is illegal:

Dim Name As String * 30

Note, though, that strings in VB.NET are immutable. That is, although you do not have to declare a string's
length in advance, once a value is assigned to a string, its length cannot change. If you change that string,
the .NET Common Language Runtime actually gives you a reference to a new String object. (For more on
this, see Chapter 3.)

A.1.1.2 Integer/Long data type changes

VB.NET defines the following signed-integer data types:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Short

The 16-bit integer data type. It is the same as the Int16 data type in the Base Class Library.
Integer

The 32-bit integer data type. It is the same as the Int32 data type in the Base Class Library.
Long

The 64-bit integer data type. It is the same as the Int64 data type in the Base Class Library.

Thus, with respect to the changes from VB 6 to VB.NET, we can say:

The VB 6 Integer data type has become the VB.NET Short data type.

The VB 6 Long data type has become the VB.NET Integer data type.

A.1.1.3 Variant data type

VB.NET does not support the Variant data type. The Object data type is VB.NET's universal data type,
meaning that it can hold data of any other data type. According to the documentation, all of the
functionality of the Variant data type is supplied by the Object data type.

We cannot resist the temptation to add that there are several penalties associated with using a universal
data type, including poor performance and poor program readability. Thus, while VB.NET still provides this
opportunity through the Object data type, its use is not recommended whenever it can be avoided.

The VarType function, which was used in VB 6 to determine the type of data stored in a variant variable
(that is, the variant's data subtype), now reports the data subtype of the Object type instead. In addition,
the TypeName function, which can be used to return a string that indicates the data type of a variable of
type Object, is still supported.

A.1.1.4 Other data type changes

Here are some additional changes in data types:

The Deftype statements (DefBool, DefByte, etc.), which were used to define the default data type for
variables whose names began with particular letters of the alphabet, are not supported in VB.NET.

The Currency data type is not supported in VB.NET. However, in VB.NET, the Decimal data type can
handle more digits on both sides of the decimal point, and so it's a superior replacement. In VB.NET,
Decimal is a strong data type; in VB 6, it was a Variant subtype, and a variable could be cast as a
Decimal only by calling the CDec conversion function.

In VB 6, a date is stored in a Double format using four bytes. In VB.NET, the Date data type is an 8-
byte integer data type whose range of values is from January 1, 1 to December 31, 9999.

A.1.2 Variables and Their Declaration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The changes in variable declarations and related issues are described here.

A.1.2.1 Variable declaration

The syntax used to declare variables has changed for VB.NET, making it more flexible. Indeed, these are
long awaited changes.

In VB.NET, when multiple variables are declared on the same line, if a variable is not declared with a type
explicitly, then its type is that of the next variable with an explicit type declaration. Thus, in the line:

Dim x As Long, i, j, k As Integer, s As String

the variables i, j, and k have type Integer. (In VB 6, the variables i and j would have type Variant, and
only the variable k would have type Integer.)

When declaring external procedures using the Declare statement, VB.NET does not support the As Any
type declaration. All parameters must have a specific type declaration.

A.1.2.2 Variable initialization

VB.NET permits the initialization of variables in the same line as their declaration (at long last). Thus, we
may write:

Dim x As Integer = 5

to declare an Integer variable and initialize its value to 5. Similarly, we can declare and initialize more than
one variable on a single line:

Dim x As Integer = 6, y As Integer = 9

A.1.2.3 Variable scope changes

In VB 6, a variable that is declared anywhere in a procedure has procedure scope ; that is, the variable is
visible to all code in the procedure.

In VB.NET, if a variable is defined inside a code block (a set of statements that is terminated by an End...,
Loop, or Next statement), then the variable has block- level scope ; that is, it is visible only within that
block.

For example, consider the following VB.NET code:

Sub Test()

 If x <> 0 Then

 Dim rec As Integer

 rec = 1/x

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

 MsgBox CStr(rec)

End Sub

In this code, the variable rec is not recognized outside the block in which it is defined, so the final
statement will produce an error.

It is important to note that the lifetime of a local variable is always that of the entire procedure, even if the
variable's scope is block-level. This implies that if a block is entered more than once, a block-level variable
will retain its value from the previous time the code block was executed.

A.1.2.4 Arrays and array declarations

VB 6 permitted you to define the lower bound of a specific array, as well as the default lower bound of
arrays whose lower bound was not explicitly specified. In VB.NET, the lower bound of every array
dimension is 0 and cannot be changed. The following examples show how to declare a one-dimensional
array, with or without an explicit size and with or without initialization:

' Implicit constructor: No initial size and no initialization

Dim Days() As Integer

' Explicit constructor: No initial size and no initialization

Dim Days() As Integer = New Integer() {}

' Implicit constructor: Initial size but no initialization

Dim Days(6) As Integer

' Explicit constructor: Initial size but no initialization

Dim Days() As Integer = New Integer(6) {}

' Implicit constructor: Initial size implied by initialization

Dim Days() As Integer = {1, 2, 3, 4, 5, 6, 7}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Explicit constructor, Initial size and initialization

Dim Days() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

Note that in the declaration:

Dim ArrayName(X) As ArrayType

the number X is the upper bound of the array. Thus, the array has size X+1.

Multidimensional arrays are declared similarly. For instance, the following example declares and initializes
a two-dimensional array:

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

and the following code displays the contents of the array:

Debug.Write(X(0, 0))

Debug.Write(X(0, 1))

Debug.Writeline(X(0, 2))

Debug.Write(X(1, 0))

Debug.Write(X(1, 1))

Debug.Write(X(1, 2))

123

456

In VB.NET, all arrays are dynamic; there is no such thing as a fixed-size array. The declared size should
be thought of simply as the initial size of the array, which is subject to change using the ReDim statement.
Note, however, that the number of dimensions of an array cannot be changed.

Moreover, unlike VB 6, the ReDim statement cannot be used for array declaration, but only for array
resizing. All arrays must be declared initially using a Dim (or equivalent) statement.

A.1.2.5 Structure/user-defined type declarations

In VB 6, a structure or user-defined type is declared using the Type...End Type structure.

In VB.NET, the Type statement isn't supported. Structures are declared using the Structure...End
Structure construct. Also, each member of the structure must be assigned an access modifier, which can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be Public, Protected, Friend, Protected Friend, or Private. (The Dim keyword is equivalent to Public in
this context.)

For instance, the VB 6 user-defined type:

Type RECT

 Left As Long

 Top As Long

 Right As Long

 Bottom As Long

End Type

is defined in VB.NET as:

Structure RECT

 Public Left As Long

 Public Top As Long

 Public Right As Long

 Public Bottom As Long

End Structure

Actually, the VB.NET Structure type is far more reaching than its VB 6 user- defined type predecessor.
Indeed, structures have many properties in common with classes; for instance, structures can have
members (properties and methods). We discuss structures in detail in Chapter 3.

A.1.3 Boolean and Bitwise Operators

Eqv and Imp, two infrequently used Boolean and bitwise operators that are present in VB 6, have been
removed from VB.NET.

In VB 6, Eqv is the logical equivalence operator. As a Boolean operator, it returns True if both expressions
are either True or False, but it returns False if one is True while the other is False. As a bitwise operator, it
returns 1 if both bits are the same (that is, if both are 1 or both are 0), but it returns 0 if they are different. In
VB.NET, Eqv can be replaced with the equals comparison operator for logical operations. However, for
bitwise operations, you'll have to resort to a bit-by-bit comparison, as the following code fragment shows:

Public Function BitwiseEqv(x1 As Byte, X2 As Byte) _

 As Long

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dim b1, b2, bRet As Byte

Dim iCtr as Integer

For iCtr = 0 to len(x1) * 8 - 1

 b1 = x1 and 2^iCtr

 b2 = x2 and 2^iCtr

 if b1 = b2 then bRet += 2^iCtr

next

BitwiseEqv = bRet

End Function

In VB 6, Imp is the logical implication operator. As a Boolean operator, it returns True unless its first
expression is True while the second is False. As a bitwise operator, it returns 1 unless the bit in the first
expression is 1 while the bit in the second expression is 0. In VB.NET, Imp can be replaced with a
combination of the Not and Or operators for logical operations. For example, the code fragment:

bResult = (Not bFlag1) Or bFlag2

is equivalent to the VB 6 statement:

bResult = bFlag1 Imp bFlag2

For bitwise operations, a bit-by-bit comparison is again necessary, as the following code fragment shows:

Public Function BitwiseImp(x1 As Byte, X2 As Byte) As Long

Dim b1, b2, bRet As Byte

Dim iCtr as Integer

For iCtr = 0 to len(x1)*8 - 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 b1 = Not(x1) and 2^iCtr

 b2 = x2 and 2^iCtr

 if b1 Or b2 then

 bRet += 2^iCtr

 end If

next

BitwiseImp = bRet

End Function

Unlike previous versions of Visual Basic, most programming languages use short-circuiting when
evaluating If statements. That is, if an If statement contains multiple subexpressions joined by Boolean
operators, expressions are evaluated from left to right, and once the truth or falsity of the expression is
known, the remaining subexpressions are not evaluated. This applies in particular to subexpressions
joined by a logical And (the expression is necessarily False if the first subexpression is False) and by a
logical Or (the expression is necessarily True if the first subexpression is True).

VB.NET now supports short circuiting through the use of the AndAlso and OrElse logical operators. If these
operators are used, once the value of an expression is known, any further subexpressions will not be
evaluated. For example, consider the statement:

If (X AndAlso Y) Then

If X is False, then Y is not evaluated because the entire statement is False regardless of the truth value of
Y.

VB.NET has introduced new operators to support short circuiting, rather than simply modify the behavior of
And and Or, largely for reasons of compatibility. In most cases, short circuiting has no effect on a program's
execution other than an improvement in performance and an increase in robustness (expressions that are
not evaluated cannot raise errors). This isn't the case, however, if an expression calls a function that
modifies the value of a variable. For example:

If Increment(x) AndAlso Increment(y) Then

 ' Do something

End If

...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Private Function Increment(ByRef n As Integer) As Boolean

 If n <> 10 Then

 n += 1

 Return True

 Else

 Return False

 End If

End Function

Here, we can never be certain whether the second call to the Increment function will occur and whether the
value of y will be incremented. In this case, it's preferable to avoid short-circuiting with AndAlso in favor of
the And operator.

A.1.4 Changes Related to Procedures

VB.NET features a number of changes to the way in which procedures are defined and called, most of
which tend to make the language more streamlined and consistent.

A.1.4.1 Calling a procedure

In VB 6, parentheses are required around arguments when making function calls. When calling a
subroutine, parentheses are required when using the Call statement and proscribed when not using the
Call statement.

In VB.NET, parentheses are always required around a nonempty argument list in any procedure call -
function or subroutine. (In subroutine calls, the Call statement is optional.) When calling a parameterless
procedure, empty parentheses are optional.

A.1.4.2 Default method of passing arguments

In VB 6, if the parameters to a function or subroutine were not explicitly prefaced with the ByVal or ByRef
keywords, arguments were passed to that routine by reference, and modifications made to the argument in
the function or subroutine were reflected in the variable's value once control returned to the calling routine.
In VB.NET, on the other hand, if the ByRef or ByVal keyword is not used in a parameter, the argument is
passed to the routine by value, and modifications made to the argument in the function or subroutine are
discarded once control returns to the calling program.

A.1.4.3 Optional arguments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In VB 6, a procedure parameter can be declared as Optional without specifying a default value. For
optional Variant parameters, the IsMissing function can be used to determine whether the parameter is
present.

In VB.NET, an optional parameter must declare a default value, which is passed to the procedure if the
calling program does not supply an argument for that parameter. The IsMissing function is not supported.
The following example shows an optional parameter declaration:

Sub Calculate(Optional ByVal Switch As Boolean = False)

A.1.4.4 Return statement

In VB.NET, the Return statement is used to return control to the calling program from a function or
subroutine. The GoSub statement is not supported. Note that the Return statement is used to return a value
from a function.

The following function illustrates the Return statement:

Public Function Test() As Integer

 If MsgBox("Return", MsgBoxStyle.YesNo) = MsgBoxResult.Yes Then

 Return 0

 Else

 MsgBox("Continue")

 Return 1

 End If

End Function

A.1.4.5 Passing property parameters in procedures

Consider passing a property to a procedure by reference, as in:

Sub ShrinkByHalf(ByRef lSize As Long)

 lSize = CLng(lSize/2)

End Sub

Call ShrinkByHalf(Text1.Height)

In VB 6, when passing the value of a property by reference, the property is not updated. In other words,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

passing a property by reference is equivalent to passing it by value. Hence, in the previous example, the
property Text1.Height will not be changed.

In VB.NET, passing a property by reference does update the property, so in this case, the Text1.Height
property will be changed. Note, however, that the value of the property is not changed immediately, but
rather when the called procedure returns.

A.1.4.6 ParamArray parameters

In VB 6, if the ParamArray keyword is used on the last parameter of a procedure declaration, the
parameter can accept an array of Variant parameters. In addition, ParamAarray parameters are always
passed by reference.

In VB.NET, ParamArray parameters are always passed by value, and the parameters in the array may be
of any data type.

A.1.5 Miscellaneous Language Changes

VB.NET includes several miscellaneous changes that include the format of line numbers, the lack of
support for the GoTo and GoSub statements, and the replacement of the Wend keyword by End While.

A.1.5.1 Line numbers

Visual Basic .NET requires that every line number be followed immediately by a colon (:). A statement can
optionally follow the colon. In VB 6, line labels, which were used in particular for error handling by the On
Error GoTo statement, had to be followed immediately by a colon, but line numbers did not.

A.1.5.2 On GoTo

The On...GoSub and On...GoTo constructs are not supported. However, VB.NET still supports the On Error
GoTo statement.

A.1.5.3 While

The While...Wend construction loops through code while a specified condition is True. VB.NET retains that
construction, but replaces the Wend keyword with the End While statement. The Wend keyword is not
supported.

A.1.5.4 GoSub and Return statements

In VB.NET, the GoSub statement is not supported.

As remarked earlier, in VB.NET, the Return statement is used to return control to the calling program from
a function or subroutine. The VB 6 Exit Sub and Exit Function statements continue to be supported in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB.NET; however, the advantage of the Return statement is that it allows you to specify the function's
return value as an argument to the Return statement.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2 Changes to Programming Elements

VB.NET has removed support for several programming elements because the underlying .NET
Framework Class Library and the Common Language Runtime (CLR) contain equivalent functionality.
Here are the victims and their replacements. (We discuss the class library and CLR in Chapter 4 and
Chapter 5.)

A.2.1 Constants

The Microsoft.VisualBasic.Constants class in the Base Class Library defines a number of constants, such
as the familiar vbCrLf constant, so these can be used as always. However, some constants, such as the
color constants vbRed and vbBlue, are no longer directly supported. Indeed, the color constants are part of
the System.Drawing namespace's Color structure, so they are accessed as follows:

Me.BackColor = System.Drawing.Color.BlanchedAlmond

In most cases, to access a particular constant that is not a field in the Microsoft. VisualBasic.Constants
class, you must designate the enumeration (or structure) to which it belongs, along with the constant
name. For example, the vbYes constant in VB 6 continues to exist as an intrinsic constant in VB.NET.
However, it has a counterpart in the MsgBoxResult enumeration, which can be accessed as follows:

If MsgBoxResult.Yes = MsgBox("OK to proceed?", ...

For a list of all built-in constants and enums, see Appendix D.

A.2.2 String Functions

The String function has been removed from the language. In its place, we simply declare a string and
initialize it, using syntax such as:

Dim str As New String("A"c, 5)

which will define a string containing five As. Note the use of the modifier c in "A"c to define a character
(data type Char), as opposed to a String of length 1. This is discussed in more detail in Chapter 2.

A.2.3 Emptiness

In VB 6, the Empty keyword indicates an uninitialized variable, and the Null keyword is used to indicate
that a variable contains no valid data. VB.NET does not support either keyword, but uses the Nothing
keyword in both of these cases.

According to the documentation: "Null is still a reserved word in Visual Basic .NET 7.0, even though it has
no syntactical use. This helps avoid confusion with its former meanings." Whatever.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition, the IsEmpty function is not supported in VB.NET.

A.2.4 Graphical Functionality

The System.Drawing namespace contains classes that implement graphical methods. For instance, the
Graphics class contains methods such as DrawEllipse and DrawLine. As a result, the VB 6 Circle and Line
methods have been dropped.

Note that the VB 6 PSet and Scale methods are no longer supported and that there are no direct
equivalents in the System.Drawing namespace.

A.2.5 Mathematical Functionality

Mathematical functions are implemented as members of the Math class of the System namespace. Thus,
the VB 6 math functions, such as the trigonometric functions, have been dropped. Instead, we can use
statements such as:

Math.Cos(1)

Note also that the Round function has been replaced by the Round method of the System.Math class.

A.2.6 Diagnostics

The System.Diagonstics namespace provides classes related to programming diagnostics. Most notably,
the VB 6 Debug object is gone, but its functionality is implemented in the System.Diagnostics.Debug class,
which has methods such as Write, WriteLine (replacing Print), WriteIf, and WriteLineIf.

A.2.7 Miscellaneous

Here are a few additional changes to consider:

The VB 6 DoEvents function has been replaced by the DoEvents method of the Application class of
the System.Windows.Forms namespace.

The VB 6 IsNull and IsObject functions have been replaced by the IsDBNull and IsReference
methods of the Information class of the Microsoft.VisualBasic namespace. Since this namespace is
implicitly loaded by VB as part of the project template when a project is created in Visual Studio, no
Imports statement is required, and the members of its classes can be accessed without qualification.

Several VB 6 functions have two versions: a String version and a Variant version. An example is
provided by the Trim$ and Trim functions. In VB.NET, these functions are replaced by a single
overloaded function. Thus, for instance, we can call Trim using either a String or Object argument.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.3 Obsolete Programming Elements

The following list shows some of the programming elements that have been removed from Visual Basic
.NET:

As Any

All parameters are required to have a declared data type.
Atn function

Replaced by System.Math.Atan.
Calendar property

Handled by classes in the System.Globalization namespace.
Circle statement

Use methods in the System.Drawing namespace.
Currency data type

Replaced by the Decimal data type.
Date function

Replaced by the Today property of the DateTime structure in the System namespace.
Date statement

Replaced by the Today statement.
Debug.Assert method

Replaced by the Assert method of the Debug class of the System.Diagonistics namespace.
Debug.Print method

Replaced by the Write and WriteLine methods of the Debug class of the System.Diagonistics
namespace.

Deftype statements

Not supported.
DoEvents function

Replaced by the DoEvents method of the Application class in System. Windows.Forms namespace.
Empty keyword

Replaced by the Nothing keyword.
Eqv operator

Use the equal sign.
GoSub statement

Not supported.
Imp operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Imp B is logically equivalent to (Not A) Or B.
Initialize event

Replaced by the constructor method.
Instancing property

Use the constructor to specify instancing.
IsEmpty function

Not supported because the Empty keyword is not supported.
IsMissing function

Not supported because every optional parameter must declare a default value.
IsNull function

Not supported. The Null keyword is replaced by Nothing.
IsObject function

Replaced by the IsReference function.
Let statement

Not supported.
Line statement

Use the DrawLine method of the Graphics class in the System.Drawing namespace.
Null keyword

Use Nothing.
On...GoSub construction

Not supported. No direct replacement.
On...GoTo construction

Not supported. No direct replacement. On Error... is still supported, however.
Option Base statement

Not supported. All arrays have lower bound equal to 0.
Option Private Module statement

Use access modifiers in each individual Module statement.
PropertyGet, PropertyLet, and PropertySet statements

Replaced by a new unified syntax for defining properties.
PSet method

Not supported. No direct replacement. See the System.Drawing namespace.
Round function

Use the Round method of the Math class of the System namespace.
Scale method

Not supported. No direct replacement. See the System.Drawing namespace.
Set statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Not supported.
Sgn function

Use Math.Sign.
Sqr function

Use Math.Sqrt.
String function

Use the String class constructor with parameters.
Terminate event

Use the Destroy method.
Time function and statement

Instead of the Time function, use the TimeOfDay method of the DateTime structure of the System
namespace. Instead of the Time statement, use the TimeOfDay statement.

Type statement

Use the Structure statement.
Variant data type

Use the Object data type.
VarType function

Use the TypeName function or the GetType method of the Object class.
Wend keyword

Replaced by End While.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.4 Structured Exception Handling

VB.NET has added a significant new technique for error handling. Along with the traditional unstructured
error handling through On Error Goto statements, VB.NET adds structured exception handling, using the
Try...Catch...Finallysyntax supported by other languages, such as C++. We discuss this in detail in
Chapter 9.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.5 Changes in Object-Orientation

As you may know, Visual Basic has implemented some features of object-oriented programming since
Version 4. However, in terms of object-orientation, the step from Version 6 to VB.NET is very significant.
Indeed, some people did not consider VB 6 (or earlier versions) to be a truly object-oriented programming
language. Whatever your thoughts may have been on this matter, it seems clear that VB.NET is an object-
oriented programming language by any reasonable definition of that term.

Here are the main changes in the direction of object-orientation. We discuss these issues in detail in
Chapter 4.

A.5.1 Inheritance

VB.NET supports object-oriented inheritance (but not multiple inheritance). This means that a class can
derive from another (base) class, thereby inheriting all of the properties, methods, and events of the base
class. Since forms are also classes, inheritance applies to forms as well. This allows new forms to be
created based on existing forms. We discuss inheritance in detail in Chapter 4.

A.5.2 Overloading

VB.NET supports a language feature known as function overloading. The idea is simple and yet quite
useful. We can use the same name for different functions (or subroutines), as long as the functions can be
distinguished by their argument signature. The argument signature of a function (or subroutine) is the
sequence of data types of the arguments of the function. Thus, in order for two functions to have the same
argument signature, they must have the same number of arguments, and the corresponding arguments
must have the same data type. For example, the following declarations are legal in the same code module
because they have different argument signatures:

Overloads Sub OpenFile()

 ' Ask user for file to open and open it

End Sub

Overloads Sub OpenFile(ByVal sFile As String)

 ' Open file sFile

End Sub

A.5.3 Object Creation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VB 6 supports a form of object creation called implicit object creation. If an object variable is declared
using the New keyword:

Dim obj As New SomeClass

then the object is created the first time it is used in code. More specifically, the object variable is initially
given the value Nothing, and then every time the variable is encountered during code execution, VB
checks to see if the variable is Nothing. If so, the object is created at that time.

VB.NET does not support implicit object creation. If an object variable contains Nothing when it is
encountered, it is left unchanged, and no object is created.

In VB.NET, we can create an object in the same statement as the object-variable declaration, as the
following code shows:

Dim obj As SomeClass = New SomeClass

As a shorthand, we can also write:

Dim obj As New SomeClass

If the object's class constructor takes parameters, then they can be included, as in the following example:

Dim obj As SomeClass = New SomeClass(argument1, argument2,...)

As a shorthand, we can also write:

Dim obj As New SomeClass(argument1, argument2,...)

For details on class constructors, see Chapter 3.

A.5.4 Properties

There have been a few changes in how VB handles properties, particularly with respect to default
properties and property declarations.

A.5.4.1 Default properties

As you know, you can use default properties in VB 6. For instance, if txt is a textbox control, then:

txt = "To be or not to be"

assigns the string "To be or not to be" to the default Text property of the textbox txt.

However, there is a price to pay for default properties: ambiguity. For example, if txt1 and txt2 are object
variables referencing two TextBox controls, what does:

txt1 = txt2

mean? Are we equating the default properties or the object variables? In VB 6, this is interpreted as
equating the default properties:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

txt1.Text = txt2.Text

and we require the Set statement for object assignment:

Set txt1 = txt2

In VB.NET, default properties are not supported unless the property takes one or more parameters, in
which case there is no ambiguity.

As Microsoft points out, default properties occur most commonly with collection classes. For example, in
ActiveX Data Objects (ADO), the Fields collection of the Recordset object has a default Item property that
returns a particular Field object. Thus, we can write:

rs.Fields.Item(1).Value

or, since the default Item property is parameterized:

rs.Fields(1).Value

Although we may not be used to thinking of this line as using default properties, it does.

Thus, in VB.NET, the line:

txt1 = txt2

is an object assignment. To equate the Text properties, we must write:

txt2.Text = txt1.Text

Since it is no longer needed, the Set keyword is not supported under VB.NET, nor is the companion Let
keyword.

This settles the issue of equating object variables. For object variable comparison, however, we must use
the Is operator, rather than the equal sign, as in:

If txt1 Is txt2 Then

or:

If Not (txt1 Is txt2) Then

A.5.4.2 Property declarations

In VB 6, properties are defined using Property Let, Property Set, and Property Get procedures.
However, VB.NET uses a single property-declaration syntax of the form shown in the following example.
Note also that there is no longer a need to distinguish between Property Let and Property Set because
of the changes in default property support.

Property Salary() As Decimal

 Get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Salary = mdecSalary

 End Get

 Set

 mdecSalary = Value

 End Set

End Property

Note the use of the implicitly defined Value variable that holds the value being passed into the property
procedure when it is being set.

Note also that VB.NET does not support ByRef property parameters. All property parameters are passed
by value.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. Language Elements by Category

This appendix lists by category all the directives, statements, functions, procedures, and classes available
within the VB.NET language. We have also included those Foundation Class Library members that are
documented in this book. The categories are:

Array Handling
Clipboard
Collection Objects
Common Dialogs
Conditional Compilation
Conversion: Data Type Conversion and Other Conversion
Date and Time
Error Handling
Filesystem
Financial
IDataObject Interface
Information
Input/Output
Interaction
Mathematics
Programming: Object Programming and Miscellaneous Programming
Program Structure and Flow
Registry
String Manipulation
Variable and Constant Declaration

Where necessary, individual keywords may appear in more than one category.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1 Array Handling

Element Description

Array class Represents an array

Array.BinarySearch
method

Searches for a value in a sorted one-dimensional array

Array.Copy method Copies all or part of an array

Array.IndexOf method
Searches for the first occurrence of a value in an unsorted one-dimensional
array

Array.LastIndexOf method
Searches for the last occurrence of a value in an unsorted one-dimensional
array

Erase statement Resets an array to its uninitialized state

IsArray function Indicates whether a variable is an array

Join function Concatenates an array of values into a delimited string

LBound function Returns the lower boundary of an array

ReDim statement Redimensions an arrayxs

UBound function Returns the upper boundary of an array

VBFixedArray attribute Defines a fixed-length arrayXS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.2 Clipboard

Element Description

Clipboard.GetDataObject method Places data on the Clipboard

Clipboard.SetDataObject method Retrieves an IDataObject object representing data on the Clipboard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3 Collection Objects

Element Description

Collection.Add method Adds a member to a Collection object

Collection.Count method Indicates the number of items stored to a Collection object

Collection.Item method
Retrieves a member from a Collection object based on its key value or
its ordinal position

Collection.Remove method
Removes the member associated with a given key or ordinal position
from a Collection object

Hashtable.Add method Adds a key-value pair to a HashTable object

Hashtable.Clear method Removes all entries from the hash table

Hashtable.ContainsKey
method

Indicates whether a given key exists among the hash table's items

Hashtable.ContainsValue
method

Indicates whether a given value exists among the hash table's items

Hashtable.CopyTo method Copies hash table values into an array of DictionaryEntry structures

Hashtable.Count property Indicates the total number of elements in the hash table

Hashtable.Item property Retrieves the value of a hash table item given its key

Hashtable.Keys property Returns an ICollection object that contains the keys in the hash table

Hashtable.Remove method Removes a key/value pair from the hash table

Hashtable.Values property
Returns an ICollection object that contains the values in the hash
table

Queue.Clear method Clears all items in the queue

Queue.Contains method Indicates whether the queue contains a particular object

Queue.CopyTo method Copies the queue elements to an array

Queue.Count method Indicates the total number of items in the queue

Queue.Dequeue method Removes an item from the queue

Queue.Enqueue method Places an item at the end of the queue

Queue.Peek method Returns the first item in the queue

Queue.ToArray method Copies the queue elements to an array

Stack.Clear method Clears all items in the stack

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Stack.Contains method Indicates whether the stack contains a particular object

Stack.CopyTo method Copies the items in the stack to an array

Stack.Count method Indicates the total number of items in the stack

Stack.Peek method Returns the item at the top of the stack

Stack.Pop method Removes the topmost item from the stack

Stack.Push method Places an item at the top of the stack

Stack.ToArray method Copies the items on the stack to an array

Stack.Contains method Indicates whether the stack contains a particular object

Stack.CopyTo method Copies the items in the stack to an array

Stack.Count method Indicates the total number of items in the stack

Stack.Peek method Returns the item at the top of the stack

Stack.Pop method Removes the topmost item from the stack

Stack.Push method Places an item at the top of the stack

Stack.ToArray method Copies the items on the stack to an array

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.4 Common Dialogs

Element Description

ColorDialog class Allows programmatic control of the Windows Common Color dialog box

FontDialog class Allows programmatic control of the Windows Common Font dialog box

OpenFileDialog class Allows programmatic control of the Windows File Open dialog box

SaveFileDialog class Allows programmatic control of the Windows SaveAs dialog box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.5 Conditional Compilation

Element Description

#Const directive Declares a conditional compiler constant

#If...Then...End If
directive

Defines a block of code that will only be compiled into the program if the
expression with the conditional constant evaluates to True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.6 Conversion

B.6.1 Data Type Conversion

Element Description

CBool function Converts an expression to a Boolean data type

CByte function Converts an expression to a Byte data type

CChar function Converts a string expression to a Char data type

CDate function Converts an expression to a Date data type

CDbl function Converts an expression to a Double data type

CDec function Converts an expression to a Decimal data type

CInt function Converts an expression to an Integer data type

CLng function Converts an expression to a Long data type

CObj function Converts an expression to an Object data type

CSng function Converts an expression to a Single data type

CStr function Converts an expression to a String data type

CType function
Converts an expression to any valid data type, structure, object type, or
interface

DateValue function Converts the string representation of a date to a date

DirectCast function Converts a variable to its runtime type

Option Strict statement Determines whether narrowing operations are allowed

Str function Converts a numeric value to a string

TimeValue function Converts a string representation of time to a Date data type

Val function Converts a numeric string to a number

ValDec function Converts a numeric string to a Decimal data type

B.6.2 Other Conversion

Element Description

ErrorToString method Returns the descriptive error message corresponding to a particular error code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Fix function Returns the integer portion of a number

Hex function Converts a number to a string representing its hexadecimal equivalent

Int function Returns the integer portion of a number

Oct function Converts a number to a string representing its octal equivalent

QBColor function Converts a QBasic color code to an RGB color value

RGB function Returns a system color code that can be assigned to object color properties

Fix function Returns the integer portion of a number

Hex function Converts a number to a string representing its hexadecimal equivalent

Int function Returns the integer portion of a number

Oct function Converts a number to a string representing its octal equivalent

QBColor function Converts a QBasic color code to an RGB color value

RGB function Returns a system color code that can be assigned to object color properties

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.7 Date and Time

Element Description

DateAdd function Returns the result of adding or subtracting a date or time

DateDiff function Returns the difference between two dates

DatePart function Returns the part (month, day, year) of the date requested

DateSerial function
Returns a date from an expression containing month, day, and year
components

DateString property Retrieves or sets the current system date

DateValue function Converts the string representation of a date to a date

Day function Returns a number representing the day of the month

GetTimer function Returns the number of seconds since midnight

Hour function Extracts the hour element from a time

Minute function Extracts the minutes element from a time

Month function Extracts the month element from a date

MonthName function Returns the name of the month for a given date

Now property Returns the current system date and time

Second function Extracts the seconds element from a time

TimeOfDay property Sets or retrieves the current system time

Timer property Returns the number of seconds that have elapsed since midnight

TimeSerial function Returns a time from its hour, minute, and second components

TimeString property Sets or returns the current system time

TimeValue function Converts a string representation of time to a Date data type

Today property Sets or retrieves the current system date

Weekday function Determines the day of the week of a given date

WeekdayName
function

Returns the weekday name for a given weekday number

Year function Returns the year element from a date

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.8 Debugging

Element Description

Debug.Assert method Outputs a message if an expression is False

Debug.AutoFlush
property

Determines whether each write operation should be followed by a call to the
Flush method

Debug.Close method Flushes the output buffer and closes any listeners except the Output window

Debug.Flush method Flushes the output buffer

Debug.Indent method Increases the value of the IndentLevel property by 1

Debug.IndentLevel
property

Determines the indent level for Debug object output

Debug.IndentSize
property

Defines the current indent size, in number of spaces

Debug.Listeners property
Returns a collection of all TraceListener objects that are monitoring the
Debug object's output

Debug.Unindent method Decreases the value of the IndentLevel property by 1

Debug.Write method Sends output to the Output window and other listeners

Debug.WriteIf method Sends output to the Output window and other listeners if an expression is
True

Debug.WriteLine method Writes output along with a newline character to the Output window

Debug.WriteLineIf
method

Writes output along with a newline character to the Output window if an
expression is True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.9 Declaration

Element Description

Const statement Declares a constant

Class...End Class
statement

Defines a class

Declare statement Defines a prototype for a call to an external DLL library function

Dim statement Declares a variable

Enum statement Defines a series of constants as an enumerated type

Function statement Defines a function

Friend keyword
Makes a procedure in a class callable from outside the class but within the
project in which the class is defined

Option Explicit statement Requires declaration of all variables

Private statement Declares a local variable

Property statement Defines a property

Protected statement Declares a protected class member

Public statement Declares a public or global variable

Static statement Declares a static variable

Structure...End Structure
statement

Declares a structure or user-defined type

Sub statement Declares a subroutine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Current Book

 Code Fragments only

 Advanced Search

<

VB.NET Language

in a Nutshell, 2nd

Edition

Copyright

Preface

The Basics

Reference

Appendixes

 What's New and Different

in VB.NET

 Language Elements by

Category

 Array Handling

 Clipboard

 Collection Objects

 Common Dialogs

 Conditional

Compilation

 Conversion

 Date and Time

 Debugging

 Declaration

 Error Handling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Filesystem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.11 Filesystem

Element Description

ChDir procedure Changes the current directory

ChDrive procedure Changes the current drive

CurDir function Returns the current directory of a drive

Dir function
Returns the name of a file or directory matching a file specification
and having particular file attributes

Directory.CreateDirectory method Creates a new directory

Directory.Delete method Deletes a directory

Directory.Exists method Indicates whether a particular directory exists

Directory.GetCreationTime method Retrieves the date and time the directory was created

Directory.GetDirectories method Retrieves the names of the subdirectories of a given directory

Directory.GetDirectoryRoot method Retrieves the name of the root directory of a given directory

Directory.GetFiles Retrieves the names of the files in a given directory

Directory.GetFileSystemEntries
method

Retrieves the names of filesystem objects (files and directories) in
a given directory

Directory.GetParent method
Retrieves a DirectoryInfo object representing the parent of a
specified directory

Directory.Move method
Moves a directory and its contents, including nested
subdirectories, to a new location

File.Exists method Indicates whether a specified file exists

FileCopy function Copies a file

FileDateTime function Returns the date and time of file creation or last access

GetAttr function Returns the attributes of a given file or directory

Kill function Deletes one or more files

MkDir function Creates a new directory

Rename function Renames a file or directory

RmDir function Removes a directory

SetAttr procedure Sets a file or directory's attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.12 Financial

Element Description

DDB
function

Returns double-declining balance depreciation of an asset for a specific period

FV function Calculates the future value of an annuity

IPmt
function

Computes the interest payment for a given period of an annuity

IRR function Calculates the internal rate of return for a series of periodic cash flows

MIRR
function

Calculates the modified internal rate of return

NPer
function

Determines the number of payment periods for an annuity, based on fixed periodic
payments and a fixed interest rate

NPV
function

Calculates the net present value of an investment

Pmt function Calculates the payment for an annuity

PPmt
function

Computes the payment of principal for a given period of an annuity

PV function Calculates the present value of an annuity

Rate
function

Returns the interest rate per period for an annuity

SLN method Computes the straight-line depreciation of an asset

SYD
function

Computes the sum-of-years' digits depreciation of an asset for a specified period

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.13 IDataObject Interface

Element Description

GetData method Retrieves data from the Clipboard in a given format

GetDataPresent
method

Indicates whether the Clipboard holds data of a particular format

GetFormats method
Retrieves a list of all the formats with which the Clipboard data is associated or
to which it can be converted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.14 Information

Element Description

Application. CompanyName
property

Returns the name of the company that created the application

Application.ExecutablePath
property

Returns the executable path to the application

Application.ProductName property Returns the application's product name

Application.ProductVersion
property

Returns the application's version number

Erl function Indicates the line number at which an error occurred

IsArray function Indicates whether a variable is an array

IsDate function
Indicates whether an argument is - or can be converted to - a
date

IsDBNull function Determines whether an expression evaluates to DbNull

IsError function Determines whether an object is an exception type

IsNothing function Determines if an object reference evaluates to Nothing

IsNumeric function
Determines if an expression is a number or can be converted to a
number

IsReference function
Determines if an expression is a reference type rather than a value
type

RGB function
Returns a system color code that can be assigned to object color
properties

Rem statement Indicates a remark or comment placed within the code

ScriptEngine function Returns the name of the programming language

ScriptEngineBuildVersion function Returns the build number

ScriptEngineMajorVersion function Returns the major version

ScriptEngineMinorVersion function Returns the minor version

SystemTypeName function
Returns the name of the CTS datatype corresponding to a VB.NET
datatype

TypeName function Returns the data type name of a variable

VarType function Returns a constant indicating the data type of a variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

VbTypeName function
Returns the name of a VB.NET datatype that corresponds to a CTS
datatype

VbTypeName function
Returns the name of a VB.NET datatype that corresponds to a CTS
datatype

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.15 Input/Output

Element Description

EOF function Returns a flag denoting the end of a file

FileAttr function
Returns the file-access mode for a file opened using the FileOpen
statement

FileClose function Closes one or more open files

FileGet, FileGetObject
functions

Read from a file to a variable

FileLen function Returns the size of an open file

FileOpen function Opens a file

FilePut, FilePutObject
functions

Writes from a variable to a file

FileWidth function Sets the line width of a file opened using the FileOpen function

FreeFile function Returns the number of the next available file

Input function Reads delimited data from a sequential file

InputString function Reads a designated number of characters from a file

LineInput function Returns a string containing a line read from a file

Loc function Returns the current position of the read/write pointer in a file

Lock function
Locks a file, section of a file, or record in a file to prevent access by
another process

LOF function Returns the size of an open file in bytes

Print function Writes formatted data to a sequential file

PrintLine function Writes formatted data followed by a linefeed to a sequential file

Reset function Closes all open files

Seek function Returns the position of the file pointer

Seek procedure Sets the position of the file pointer

Spc function Inserts spaces between expressions in output

Tab function
Moves the text-insertion point to a given column or the start of the next
print zone

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.16 Integrated Development Environment

Element Description

#Region...#End Region Defines collapsible sections of code in VB source code files

Debug object Provides debugging services for the Output window and other listeners

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.17 Interaction

Element Description

AppActivate statement Gives the focus to a window based on its title or task ID

AppActivateHelper
statement

Gives the focus to a window based on its window handle

Beep statement Sounds a note using the computer speaker

Choose function Returns a value from a list based on its index

Command function Returns the argument portion of the command line

Environ function Retrieves the value of an environment variable

IIf function Returns one of two values based on the evaluation of a Boolean expression

InputBox function Returns user input from a simple dialog box

MsgBox function
Displays a message box with buttons, icon, and a message, and returns the
button selected by the user

Shell function Launches an external application

Switch function Returns the first value or expression in a list that is True

Send, SendWait methods Send keystrokes to the active window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.18 Mathematics

Element Description

Abs function Returns the absolute value of a number

Acos function Returns the arccosine in radians

Asin function Returns the angle in radians of a sine

Atan function Returns the arctangent in radians of a tangent

Atan2 function
Returns the angle in the Cartesian plane formed by the x-axis and a vector
starting from the origin (0, 0) and terminating at a point (x, y)

Ceiling function Returns the smallest integer that's greater than or equal to a number

Cos function Returns the cosine of an angle

Cosh function Returns the hyperbolic cosine of an angle

E Field Returns the approximate value of the irrational number e

Exp function Returns the base of a natural logarithm raised to a power

Fix function Returns the integer portion of a number

Floor function Returns the largest integer less than or equal to a number

IEEERemainder
function

Returns the remainder resulting from division

Int function Returns the integer portion of a number

Log function Returns the natural (base e) logarithm of a given number

Log10 function Returns the common (base 10) logarithm of a given number

Max function Returns the larger of two numbers

Min function Returns the smaller of two numbers

Mod operator Returns the modulus (the remainder after division)

Partition function A string indicating the range into which a number falls

Pi Field Returns the approximate value of pi

Pow function Returns the result of a number raised to a specified power

Randomize function Initializes the random-number generator

Rnd function Returns a random number

Round function Rounds a number to a specified number of decimal places

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Sign function Determines the sign of a number

Sin function Returns the sine of an angle

Sinh function Returns the hyperbolic sine of an angle

Sqrt function Calculates the square root of a number

Tan function Returns the ratio of two sides of a right triangle

Tanh function Returns the hyperbolic tangent of an angle

Sign function Determines the sign of a number

Sin function Returns the sine of an angle

Sinh function Returns the hyperbolic sine of an angle

Sqrt function Calculates the square root of a number

Tan function Returns the ratio of two sides of a right triangle

Tanh function Returns the hyperbolic tangent of an angle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.19 Program Structure and Flow

Element Description

Call statement
Calls an intrinsic or user-defined procedure or function, a method, or a routine
in a dynamic link library

CallByName statement Dynamically executes a class method, property let, or property set

Do...Loop statement Repeatedly executes a block of code while or until a condition is true

Exit statement Prematurely exits a code block

End statement Marks the end of a block of code

For...Next statement Iterates through a section of code a given number of times

For Each...Next
statement

Iterates through a collection or array of objects or values, returning a
reference to each of the members

GoTo statement Passes program flow to a portion of code marked by a label

If...Then...Else
statement

Defines a conditional block or blocks of code

Return statement
Transfers control from a function or procedure and returns a value from a
function

Select Case statement
Executes one out of a series of code blocks based on the value of an
expression

Stop statement Suspends program execution

While...End While
statement

Executes a block of code until a condition becomes False

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.20 Programming

B.20.1 Object Programming

Element Description

AddHandler statement Dynamically binds an event handler to an event

AddressOf operator
Creates a procedure delegate instance that references a particular
procedure

Class...End Class
statement

Defines a class and its members

COMClass attribute Allows a .NET component to be exposed as a COM object

CreateObject function Creates a new instance of a COM (ActiveX) object

Event statement Declares a custom event

Get statement Defines a Property Get procedure that returns a property value to the caller

GetObject function Returns a reference to a COM (ActiveX) object

Handles keyword Indicates that the procedure serves as the handler for an event

Implements keyword
Indicates that a class member implements a property, function, procedure,
or event of an abstract base class

Implements statement Specifies one or more interfaces that are implemented by a class

Imports statement
Imports a namespace from a project or an assembly, making its types and
their members accessible to the current project

Inherits statement Indicates that a class is derived from a base class

Interface...End Interface
statement

Defines an interface and its members

Is operator Compares two object references for equality

Me operator Represents the current class instance

MyBase keyword Represents the base class from which an inherited class is derived

MyClass keyword Represents the current class instance

Namespace statement Declares the name of a namespace

Property statement Defines a property

RaiseEvent statement Raises a custom event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

RemoveHandler statement
Disassociates an event from an event handler defined using the AddHandler
statement

Shadows keyword
Indicates that a derived class member is hidden when calls to the derived
class member are made through the base class

WithEvents statement Receives notification of events raised by an object

B.20.2 Miscellaneous Programming

Element Description

AddressOf operator
Creates a procedure-delegate instance that references a particular
procedure

Application.DoEvents
method

Allows the operating system to process events and messages waiting in the
message queue

Declare statement Defines a prototype for a call to an external DLL library function

Environ statement Retrieves the value of an environment variable

Len function Returns the size in bytes of a given variable

SyncLock statement
Prevents multiple threads of execution in the same process from accessing
shared data or resources at the same time

RemoveHandler statement
Disassociates an event from an event handler defined using the AddHandler
statement

Shadows keyword
Indicates that a derived class member is hidden when calls to the derived
class member are made through the base class

WithEvents statement Receives notification of events raised by an object

B.20.2 Miscellaneous Programming

Element Description

AddressOf operator
Creates a procedure-delegate instance that references a particular
procedure

Application.DoEvents
method

Allows the operating system to process events and messages waiting in the
message queue

Declare statement Defines a prototype for a call to an external DLL library function

Environ statement Retrieves the value of an environment variable

Len function Returns the size in bytes of a given variable

SyncLock statement
Prevents multiple threads of execution in the same process from accessing
shared data or resources at the same time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.21 Registry

Element Description

DeleteSetting
statement

Removes a complete application key, one of its subkeys, or a single value entry
from the system registry

GetAllSettings
function

Returns all values from an application key in the system registry

GetSetting function Returns a specific value from an application key in the system registry

SaveSetting
procedure

Creates or saves a value in the system registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.22 String Manipulation

Element Description

Asc, AscW functions Return the character code of the first character of a string

Chr, ChrW functions Return a string containing a character based on its numeric code

Filter function Returns an array of strings matching (or not matching) a specified value

Format function Returns a string formatted to a given specification

FormatCurrency
function

Returns a string formatted using the currency settings for the current locale

FormatDateTime
function

Returns a string formatted using the date/time setting for the current locale

FormatNumber function Returns a numeric value in a specified format

FormatPercent function Returns a numeric value formatted using the "%" symbol

GetChar function Returns a Char containing the character at a particular position in a string

InStr function Finds the starting position of a substring within a string

InStrRev function
Returns the first occurrence of a string within another string by searching from
the end of the string

Join function Concatenates an array of values into a delimited string

LCase function Converts a character or string to lowercase

Left function Returns a string containing the leftmost n characters of a string

Len function Counts the number of characters in a string

Like operator Compares two strings

Mid function Extracts a substring from a larger string

Mid statement Replaces a substring in a larger string

Option Compare
statement

Sets the default method for comparing string data

Replace function Replaces one or more occurrences of a substring within a larger string

Right function Returns a string containing the rightmost characters of another string

RTrim function Removes any trailing spaces from a string

Str function Converts a numeric value to a string

Spc function Inserts spaces between expressions in output

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Space function Fills a string with a given number of spaces

Split function Returns an array of strings from a single delimited string

StrComp function Returns the result of comparing two strings

StrConv function Returns the result of converting a string in a number of possible ways

StrDup function
Returns a string consisting of the first character of another string duplicated a
given number of times

StrReverse function Reverses the characters of the strings passed to it

Trim function Removes leading and trailing spaces from a string

UCase function Converts a string to uppercase

Val function Converts a numeric string to a number

VBFixedString attribute Defines a fixed-length string

Space function Fills a string with a given number of spaces

Split function Returns an array of strings from a single delimited string

StrComp function Returns the result of comparing two strings

StrConv function Returns the result of converting a string in a number of possible ways

StrDup function
Returns a string consisting of the first character of another string duplicated a
given number of times

StrReverse function Reverses the characters of the strings passed to it

Trim function Removes leading and trailing spaces from a string

UCase function Converts a string to uppercase

Val function Converts a numeric string to a number

VBFixedString attribute Defines a fixed-length string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix C. Operators

There are four groups of operators in VB.NET: arithmetic, concatenation, comparison, and logical. We will
look at each group of operators in turn before discussing the order of precedence VB.NET uses when it
encounters more than one type of operator within an expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.1 Arithmetic Operators

The arithmetic operators are:

+

The addition operator. Used to add numeric expressions, as well as to concatenate (join together)
two string variables. However, it is preferable to use the concatenation operator with strings to
eliminate ambiguity. For example:

result = expression1 + expression2
-

The subtraction operator. Used to find the difference between two numeric values or expressions,
as well as to denote a negative value. Unlike the addition operator, it cannot be used with string
variables. For example:

result = expression1 - expression2
/

The division operator. Returns a floating point number. For example:
result = expression1 / expression2
*

The multiplication operator. Used to multiply two numerical values. For example:
result = expression1 * expression2
\

The integer division operator. Performs division on two numeric expressions and returns an integer
result (no remainder or decimal places). For example:

result = expression1 \ expression2

Note that regardless of what specific numeric data types expression1 and expression2 are, integer
division returns only an integral data type (Byte, Short, Integer, or Long). After the division is performed,
the result is truncated to an integer data type.

Mod

The modulo operator. Performs division on two numeric expressions and returns the modulus, that
is, the remainder when one number is divided by another. If either of the two numbers are floating
point numbers, they are rounded to integer values prior to the modulo operation. The return value is
a non-negative integral data type. For instance, the expression:

10 Mod 3

evaluates to 1, because the remainder when dividing 10 by 3 is 1. For example:

result = expression1 Mod expression2
^

The exponentiation operator. Raises a number to the power of the exponent. For example:
result = number ^ exponent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.2 Assignment Operators

Along with the equal operator, there is one assignment operator that corresponds to each arithmetic and
concatenation operator. Its symbol is obtained by appending an equal sign to the arithmetic or
concatenation symbol.

The arithmetic and concatenation operators work as follows. They all take the form:

expression1 <operator>= expression2

where <operator> is one of the arithmetic or concatenation operators. This is equivalent to:

expression1 = expression1 <operator> expression2

To illustrate, consider the addition assignment operator. The expression:

x += 1

is equivalent to:

x = x + 1

which simply adds 1 to x. Similarly, the expression:

s &= "end"

is equivalent to:

s = s & "end"

which concatenates the string "end" to the end of the string s.

All of the "shortcut" assignment operators - such as the addition assignment
operator or the concatenation assignment operator - are new to VB.NET.

The assignment operators are:

=

The equal operator, which is both an assignment operator and a comparison operator. For example:
oVar1 = oVar2

Note that in VB.NET, the equal operator alone is used to assign all data types; in previous versions of VB,
the Set statement had to be used along with the equal operator to assign an object reference.

+=

Addition assignment operator. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lNumber += 1

adds 1 to the value of lNumber and assigns the result to lNumber.

-=

Subtraction assignment operator. For example:
lNumber -= 1

subtracts 1 from the value of lNumber and assigns the result to lNumber.

^=

Exponential assignment operator. For example:
lNumber ^= 2

squares lNumber and assigns the result to lNumber.

*=

Multiplication assignment operator. For example:
lNumber *= 3

triples lNumber and assigns the result to lNumber.

/=

Division assignment operator. For example:
lNumber /= 2

halves lNumber and assigns the result to lNumber.

\=

Integer division assignment operator. For example:
dblNumber \= 2

divides dblNumber by 2, discards any fractional part, and assigns the result to dblNumber.

&=

Concatenation assignment operator. For example:
strVal &= "."

appends a period to the end of strVal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unlike the comparison operators, in which the order of symbols is reversible (that is,
>= is the same as =>), the order of the "shortcut" operator symbols is not reversible.
For example, while:

x += 1

increments x by 1, the expression:

x =+ 1

simply assigns 1 to the variable x.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.3 Concatenation Operators

VB.NET has two string concatenation operators:

&

The ampersand symbol is the recommended concatenation operator. It is used to bind a number of
string variables together, creating one string from two or more individual strings. Any nonstring
variable or expression is converted to a string prior to concatenation (even if Option Strict is on).
Its syntax is:

result = expression1 & expression2...
+

Although in principle the + sign is identical to the & concatenation operator, it also doubles as the
addition operator. Hence, as Microsoft states:

When you use the + operator, you may not be able to determine whether addition or string
concatenation will occur. Use the & operator for concatenation to eliminate ambiguity and
provide self-documenting code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.4 Comparison Operators

There are three main comparison operators: < (less than), > (greater than), and = (equal to). They can be
used individually, or any two operators can be combined with each other. Their general syntax is:

result = expression1 <operator> expression2

The resulting expression is True (-1), False (0), or Null. A Null results if and only if either expression1 or
expression2 itself is Null.

What follows is a list of all the comparison operators supported by VB.NET, as well as an explanation of
the condition required for the comparison to result in True:

>

expression1 is greater than and not equal to expression2.
<

expression1 is less than and not equal to expression2.
<>

expression1 is not equal to expression2 (less than or greater than).
>=

expression1 is greater than or equal to expression2.
<=

expression1 is less than or equal to expression2.
=

expression1 is equal to expression2.

Comparison operators can be used with both numeric and string variables. However, if one expression is
numeric and the other is a string, the numeric expression will always be "less than" the string expression. If
both expression1 and expression2 are strings, the "greatest" string is the one that is the longest. If the
strings are of equal length, the comparison is based on the value of the Option Compare setting. If its value
is Binary, the comparison is case sensitive. (Lowercase letters are "greater" than their uppercase
counterparts.) If its value is Text, the comparison is not case sensitive.

C.4.1 The Is Operator

While not strictly a comparison operator, the Is operator determines whether two object reference
variables refer to the same object. Thus, in some sense, it tests for the "equality" of two object references.
Its syntax is:

result = object1 Is object2

If both object1 and object2 refer to the same object, the result is True; otherwise, the result is False. You

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can also use the Is operator to determine if an object variable refers to a valid object. This is done by
comparing the object variable to the special Nothing data type:

If oVar Is Nothing Then

The result is True if the object variable does not hold a reference to an object.

C.4.2 The Like Operator

The Like operator is used to match strings. It compares a string variable or string literal with a pattern
expression and determines whether they match (the result is True) or not (the result is False). For more on
this operator, see Like Operator in Chapter 10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.5 Logical and Bitwise Operators

Logical operators allow you to evaluate one or more expressions and return a Boolean value (True or
False). VB.NET supports four logical operators: And, AndAlso, Or, OrElse, Not, and Xor. These operators
also double as bitwise operators. A bitwise comparison examines the bit positions in both expressions and
sets or clears the corresponding bit in the result, depending upon the operator used. The result of a bitwise
operation is a numeric value.

In performing logical operations, VB.NET, unlike VB 6, uses conditional short- circuiting. This means that,
in compound logical expressions, the individual expressions are evaluated only until the expression's
overall value is known, unless one of the individual expressions involves a call to another function or
subroutine. Short-circuiting can occur in logical And operations when the first operand evaluates to False,
as well as in logical Or operations when the first operand evaluates to True.

The six logical and bitwise operators are:

And

Performs logical conjunction; that is, it returns True if and only if both expression1 and expression2
evaluate to True. If either expression is False, then the result is False. If either expression is Null,
then the result is Null. Its syntax is:

result = expression1 And expression2

For example:

If (x = 5) And (y < 7) Then

In this case, the code after the If statement will be executed only if the value of x is five and the value of y
is less than seven.

As a bitwise operator, And returns 1 if the compared bits in both expressions are 1, and returns 0 in all
other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 0

1 0 0

1 1 1

For example, the result of 15 And 179 is 3, as the following binary representation shows:

00000011 = 00001111 And 10110011
AndAlso

As a comparison operator, works exactly like the And operator, except that it performs short-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

circuiting; an If statement will be evaluated from left to right only until the truth or falsity of the
statement can be determined (that is, until the first False condition is encountered). Unlike And,
AndAlso does not double as a bitwise operator.

Or

Performs logical disjunction; that is, it returns True if and only if at least one (that is, one or both) of
expression1 or expression2 evaluates to True. If either expression is Null, then the result is also
Null. The syntax for the Or operator is:

result = expression1 Or expression2

For example:

If x = 5 Or y < 7 Then

In this case, the code after the If statement will be executed if the value of x is five or if the value of y is
less than seven.

As a bitwise operator, Or is the converse of And. Or returns 0 if the compared bits in both expressions are
0, and returns 1 in all other cases, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 1

For example, the result of 15 Or 179 is 191, as the following binary representation shows:

10111111 = 00001111 Or 10110011

And/Or: Conditional Short-Circuiting

The documentation implies that And and Or do no short-circuiting; that is, that every
subexpression is evaluated, even if the result of the expression is known. In fact, both And and
Or perform short-circuiting if the result of the expression is known and unevaluated
subexpressions do not include calls to functions.

OrElse

As a comparison operator, works exactly like the Or operator, except that it performs short-circuiting;
an If statement will be evaluated from left to right only until the truth or falsity of the statement can
be determined (that is, until the first True condition is encountered). Unlike Or, OrElse does not
double as a bitwise operator.

Not

Performs logical negation on a single expression; that is, it returns True if and only if the expression
is False. If the expression is Null, though, the result of using the Not operator is still a Null. Its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

syntax is:
result = Not expression1

For example:

If Not IsNumeric(x) Then

In this example, the code following the If statement will be executed if IsNumeric returns False, indicating
that x is not a value capable of being represented by a number.

As a bitwise operator, Not simply reverses the value of the bit, as shown in the following table:

expression1 Result

0 1

1 0

For example, the result of Not 16 is 239, as the following binary representation shows:

Not 00010000 = 11101111
Xor

Performs logical exclusion; that is, Xor (an abbreviation for eXclusive OR) returns True if and only if
the two expressions have different truth values. If either expression is Null, the result is also Null.
Its syntax is:

result = expression1 Xor expression2

As a bitwise operator, Xor returns 1 if the bits being compared are different and returns 0 if they are the
same, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Eqv and Imp

Eqv and Imp, two logical and bitwise operators, present in VB 6, have been removed from
VB.NET. Eqv can simply be replaced with the = comparison operator. Hence, the expression:

exp1 Eqv exp2

is the same as:

exp1 = exp2

Imp can be replaced with an expression using the Not and Or operators. For example:

exp1 Imp exp2

can also be expressed as:

(Not exp1) Or exp2

For example, the result of 15Xor179is 188, as the following binary representation shows:

10111100 = 00001111 Imp 10110011

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C.6 Operator Precedence

If you include more than one operator in a single line of code, you need to know the order in which
VB.NET will evaluate them. Otherwise, the results may be completely different from what you intended.
The rules that define the order in which a language handles operators is known as the order of
precedence. If the order of precedence results in operations being evaluated in an order other than the
intended one, you can explicitly override the order of precedence through the use of parentheses. Indeed,
we strongly recommend the use of sufficient parentheses to avoid any possible misinterpretation. Put
another way, we recommend using enough parentheses so that operator precedence is no longer
relevant!

When a single line of code includes operators from more than one category, they are evaluated in the
following order:

Arithmetic operators
Concatenation operators
Comparison operators
Logical operators

Within each category of operators, except for the single concatenation operator, there is also an order of
precedence. If multiple comparison operators appear in a single line of code, they are simply evaluated
from left to right. The order of precedence of arithmetic operators is as follows:

Exponentiation (^)
Division and multiplication (/,*) (no order of precedence between the two)
Integer division (\)
Modulo arithmetic (Mod)
Addition and subtraction (+,-) (no order of precedence between the two)

If the same arithmetic operator is used multiple times in a single line of code, the operators are evaluated
from left to right.

The order of precedence of logical operators is:

Not
And
Or
Xor

If the same arithmetic or logical operator is used multiple times in a single line of code, the operators are
evaluated from left to right.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix D. Constants and Enumerations

This appendix consists of a reference for Visual Basic's built-in constants and enumerations.

VB.NET defines several enumerations in the Microsoft.VisualBasic namespace. For instance, the
CompareMethod enumeration is defined as:

Enum CompareMethod

 Binary = 0

 Text = 1

End Enum

Thus, we can use the following expressions in our VB code:

CompareMethod.Binary

CompareMethod.Text

On the other hand, VB also defines two equivalent built-in constants in the Constants class of the
Microsoft.VisualBasic namespace that serve the same purpose:

VbBinaryCompare

VbTextCompare

Note, however, that VB does not define built-in constants corresponding to every member of every enum.
For instance, there are no built-in constants that correspond to the OpenMode enum members. This enum is
used in the FileOpen procedure/statement:

Enum OpenMode

 Input = 1

 Output = 2

 Random = 4

 Append = 8

 Binary = 32

End Enum

In this appendix, we list all of the VB constants and enumerations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.1 Visual Basic Intrinsic Constants

Table D-1 contains an alphabetical list of VB's built-in symbolic constants. They are actually implemented
as fields of the Constants class in the Microsoft.VisualBasic namespace.

Table D-1. Visual Basic constants

Constant Value

VbAbort 3

VbAbortRetryIgnore &H00000002

VbApplicationModal &H00000000

VbArchive 32

VbArray 8192

VbBack Chr(8)

VbBinaryCompare 0

VbBoolean 11

VbByte 17

VbCancel 2

VbCr Chr(13)

VbCritical &H00000010

VbCrLf Chr(13) & Chr(10)

VbCurrency 6

VbDate 7

VbDecimal 14

VbDefaultButton1 &H00000000

VbDefaultButton2 &H00000100

VbDefaultButton3 &H00000200

VbDirectory 16

VbDouble 5

VbEmpty 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value

VbExclamation &H00000030

VbFalse 0

VbFirstFourDays 2

VbFirstFullWeek 3

VbFirstJan1 1

VbFormFeed Chr(12)

VbFriday 6

VbGeneralDate 0

VbGet 2

VbHidden 2

VbHide 0

VbHiragana 32

VbIgnore 5

VbInformation &H00000040

VbInteger 3

VbKatakana 16

VbLet 4

VbLf Chr(10)

VbLinguisticCasing 1024

VbLong 20

VbLongDate 1

VbLongTime 3

VbLowerCase 2

VbMaximizedFocus 3

VbMethod 1

VbMinimizedFocus 2

VbMinimizedNoFocus 6

VbMonday 2

VbMsgBoxHelp &H00004000

VbMsgBoxRight &H00080000

VbExclamation &H00000030

VbFalse 0

VbFirstFourDays 2

VbFirstFullWeek 3

VbFirstJan1 1

VbFormFeed Chr(12)

VbFriday 6

VbGeneralDate 0

VbGet 2

VbHidden 2

VbHide 0

VbHiragana 32

VbIgnore 5

VbInformation &H00000040

VbInteger 3

VbKatakana 16

VbLet 4

VbLf Chr(10)

VbLinguisticCasing 1024

VbLong 20

VbLongDate 1

VbLongTime 3

VbLowerCase 2

VbMaximizedFocus 3

VbMethod 1

VbMinimizedFocus 2

VbMinimizedNoFocus 6

VbMonday 2

VbMsgBoxHelp &H00004000

VbMsgBoxRight &H00080000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value

VbMsgBoxRtlReading &H00100000

VbMsgBoxSetForeground &H00010000

VbNarrow 8

VbNewLine Chr(13) & Chr(10)

VbNo 7

VbNormal 0

VbNormalFocus 1

VbNormalNoFocus 4

VbNull 1

VbNullChar Chr(0)

VbNullString

VbObject 9

VbObjectError &H80040000

VbOK 1

VbOKCancel &H00000001

VbOKOnly &H00000000

VbProperCase 3

VbQuestion &H00000020

VbReadOnly 1

VbRetry 4

VbRetryCancel &H00000005

VbSaturday 7

VbSet 8

VbShortDate 2

VbShortTime 4

VbSimplifiedChinese 256

VbSingle 4

VbString 8

VbSunday 1

VbSystem 4

VbMsgBoxRtlReading &H00100000

VbMsgBoxSetForeground &H00010000

VbNarrow 8

VbNewLine Chr(13) & Chr(10)

VbNo 7

VbNormal 0

VbNormalFocus 1

VbNormalNoFocus 4

VbNull 1

VbNullChar Chr(0)

VbNullString

VbObject 9

VbObjectError &H80040000

VbOK 1

VbOKCancel &H00000001

VbOKOnly &H00000000

VbProperCase 3

VbQuestion &H00000020

VbReadOnly 1

VbRetry 4

VbRetryCancel &H00000005

VbSaturday 7

VbSet 8

VbShortDate 2

VbShortTime 4

VbSimplifiedChinese 256

VbSingle 4

VbString 8

VbSunday 1

VbSystem 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Value

VbSystemModal &H00001000

VbTab Chr(9)

VbTextCompare 1

VbThursday 5

VbTraditionalChinese 512

VbTrue 1

VbTuesday 3

VbUpperCase 1

VbUseDefault &HFFFFFFFE

VbUserDefinedType 36

VbUseSystem 0

VbUseSystemDayOfWeek 0

VbVariant 12

VbVerticalTab Chr(11)

VbVolume 8

VbWednesday 4

VbWide 4

VbYes 6

VbYesNo &H00000004

VbYesNoCancel &H00000003

VbSystemModal &H00001000

VbTab Chr(9)

VbTextCompare 1

VbThursday 5

VbTraditionalChinese 512

VbTrue 1

VbTuesday 3

VbUpperCase 1

VbUseDefault &HFFFFFFFE

VbUserDefinedType 36

VbUseSystem 0

VbUseSystemDayOfWeek 0

VbVariant 12

VbVerticalTab Chr(11)

VbVolume 8

VbWednesday 4

VbWide 4

VbYes 6

VbYesNo &H00000004

VbYesNoCancel &H00000003

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.2 ControlChars Class

The Microsoft.VisualBasic namespace includes a ControlChars class whose shared fields can be used for
device control and outputting special characters. Most of the shared fields also have equivalent Visual
Basic intrinsic constants, as the following table shows:

Field Value Intrinsic constant

Back Chr(8) VbBack

Cr Chr(13) VbCr

CrLf \r\n VbCrLf

FormFeed Chr(12) VbFormFeed

Lf Chr(10) VbLf

NewLine \r\n VbNewLine

NullChar Chr(0) VbNullChar

Quote Chr(34) none

Tab Chr(9) VbTab

VerticalTab Chr(11) VbVerticalTab

Note that these constants must be qualified with the class name, as in:

If str = ControlChars.CrLf Then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.3 Visual Basic Enumerations

The following is a list of VB enumerations, along with the VB constants that can be used in place of
individual enumeration members. In a few cases, there seem to be missing VB intrinsic constants. These
are marked with a question mark (?).

Note that all enumeration members must be qualified with the name of the enumeration to which they
belong.

D.3.1 AppWinStyle Enumeration

Enum AppWinStyle

 Hide = 0 ' VbHide

 NormalFocus = 1 ' VbNormalFocus

 MinimizedFocus = 2 ' VbMinimizedFocus

 MaximizedFocus = 3 ' VbMaximizedFocus

 NormalNoFocus = 4 ' VbNormalNoFocus

 MinimizedNoFocus = 6 ' VbMinimizedNoFocus

End Enum

D.3.2 CallType Enumeration

Enum CallType

 Method = 1 ' VbMethod

 Get = 2 ' VbGet

 Let = 4

 Set = 8 ' VbSet

End Enum

D.3.3 CompareMethod Enumeration

Enum CompareMethod

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Binary = 0 ' VbBinaryCompare

 Text = 1 ' VbTextCompare

End Enum

D.3.4 DateFormat Enumeration

Enum DateFormat

 GeneralDate = 0 ' VbGeneralDate

 LongDate = 1 ' VbLongDate

 ShortDate = 2 ' VbShortDate

 LongTime = 3 ' VbLongTime

 ShortTime = 4 ' VbShortTime

End Enum

D.3.5 DateInterval Enumeration

Enum DateInterval

 Year = 0

 Quarter = 1

 Month = 2

 DayOfYear = 3

 Day = 4

 WeekOfYear = 5

 Weekday = 6

 Hour = 7

 Minute = 8

 Second = 9

End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.3.6 DueDate Enumeration

Enum DueDate

 EndOfPeriod = 0

 BegOfPeriod = 1

End Enum

D.3.7 FileAttribute Enumeration

Enum FileAttribute

 Normal = 0 ' VbNormal

 ReadOnly = 1 ' VbReadOnly

 Hidden = 2 ' VbHidden

 System = 4 ' VbSystem

 Volume = 8 ' VbVolume

 Directory = 16 ' VbDirectory

 Archive = 32 ' VbArchive

End Enum

D.3.8 FirstDayOfWeek Enumeration

Enum FirstDayOfWeek

 System = 0 ' VbUseSystemDayOfWeek

 Sunday = 1 ' VbSunday

 Monday = 2 ' VbMonday

 Tuesday = 3 ' VbTuesday

 Wednesday = 4 ' VbWednesday

 Thursday = 5 ' VbThursday

 Friday = 6 ' VbFriday

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Saturday = 7 ' VbSaturday

End Enum

D.3.9 FirstWeekOfYear Enumeration

Enum FirstWeekOfYear

 System = 0 ' VbUseSystem

 Jan1 = 1 ' VbFirstJan1

 FirstFourDays = 2 ' VbFirstFourDays

 FirstFullWeek = 3 ' VbFirstFullWeek

End Enum

D.3.10 MsgBoxResult Enumeration

Enum MsgBoxResult

 OK = 1 ' vbOK

 Cancel = 2 ' vbCancel

 Abort = 3 ' vbAbort

 Retry = 4 ' vbRetry

 Ignore = 5 ' vbIgnore

 Yes = 6 ' vbYes

 No = 7 ' vbNo

End Enum

D.3.11 MsgBoxStyle Enumeration

Enum MsgBoxStyle

 DefaultButton1 = &H00000000 ' vbDefaultButton1

 ApplicationModal = &H00000000 ' vbApplicationModal

 OKOnly = &H00000000 ' vbOKOnly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OKCancel = &H00000001 ' vbOKCancel

 AbortRetryIgnore = &H00000002 ' vbAbortRetryIgnore

 YesNoCancel = &H00000003 ' vbYesNoCancel

 YesNo = &H00000004 ' vbYesNo

 RetryCancel = &H00000005 ' vbRetryCancel

 Critical = &H00000010 ' vbCritical

 Question = &H00000020 ' vbQuestion

 Exclamation = &H00000030 ' vbExclamation

 Information = &H00000040 ' vbInformation

 DefaultButton2 = &H00000100 ' vbDefaultButton2

 DefaultButton3 = &H00000200 ' vbDefaultButton3

 SystemModal = &H00001000 ' vbSystemModal

 MsgBoxHelp = &H00004000 ' vbMsgBoxHelp

 MsgBoxSetForeground = &H00010000 ' vbMsgBoxSetForeground

 MsgBoxRight = &H00080000 ' vbMsgBoxRight

 MsgBoxRtlReading = &H00100000 ' vbMsgBoxRtlReading

End Enum

D.3.12 OpenAccess Enumeration

Enum OpenAccess

 Default = &HFFFFFFFF

 Read = 1

 Write = 2

 ReadWrite = 3

End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D.3.13 OpenMode Enumeration

Enum OpenMode

 Input = 1

 Output = 2

 Random = 4

 Append = 8

 Binary = 32

End Enum

D.3.14 OpenModeTypes Enumeration

Enum OpenModeTypes

 Any = &HFFFFFFFF

 Input = 1

 Output = 2

 Random = 4

 Append = 8

 Binary = 32

End Enum

D.3.15 OpenShare Enumeration

Enum OpenShare

 Default = &HFFFFFFFF

 LockReadWrite = 0

 LockWrite = 1

 LockRead = 2

 Shared = 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Enum

D.3.16 TriState Enumeration

Enum TriState

 UseDefault = &HFFFFFFFE ' VbUseDefault

 False = 0 ' VbFalse

 True = 1 ' VbTrue

End Enum

D.3.17 VariantType Enumeration

Enum VariantType

 Empty = 0

 Null = 1

 Short = 2

 Integer = 3 ' VbInteger

 Single = 4 ' VbSingle

 Double = 5 ' VbDouble

 Currency = 6 ' VbCurrency

 Date = 7 ' VbDate

 String = 8 ' VbString

 Object = 9 ' VbObject

 Error = 10 ' VbError

 Boolean = 11 ' VbBoolean

 Variant = 12 ' VbVariant

 DataObject = 13 ' VbDataObject

 Decimal = 14 ' VbDecimal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Byte = 17 ' VbByte

 Char = 18

 Long = 20 ' VbLong

 UserDefinedType = 36 ' VbUserDefinedType

 Array = 8192 ' VbArray

End Enum

D.3.18 VbStrConv Enumeration

Enum VbStrConv

 None = 0

 UpperCase = 1 ' VbUpperCase

 LowerCase = 2 ' VbLowerCase

 ProperCase = 3 ' VbProperCase

 Wide = 4 ' VbWide

 Narrow = 8 ' VbNarrow

 Katakana = 16 ' VbKatakana

 Hiragana = 32 ' VbHiragana

 SimplifiedChinese = 256 ' VbSimplifiedChinese

 TraditionalChinese = 512 ' VbTraditionalChinese

 LinguisticCasing = 1024 ' VbLinguisticCasing

End Enum

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix E. The VB.NET Command-Line Compiler

With the release of the .NET Framework Software Development Kit (SDK), Visual Basic for the first time
features a command-line compiler that allows you to create and compile Visual Basic components and
applications apart from Visual Studio. Ironically, this means that one of VB.NET's significant advances is
the ability to use your favorite text editor, such as NotePad or WinEdit, to create VB.NET code. This
appendix details the operation of the compiler, vbc.exe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.1 Compiler Basics

Syntactically, the compiler is fairly typical in that it uses command-line switches to control its operation. A
command-line switch is designated by a slash or hyphen followed by a keyword. If the keyword takes an
argument, it is separated from the keyword by a colon (:). For example:

vbc sample1.vb /target:library

supplies the library keyword as an argument to create a library file (that is, a DLL). If multiple arguments
are required, they are separated from one another by commas. For example:

vbc sample1.vb /r:system.design.dll,system.messaging.dll

references the metadata in the system.design.dll and system.messaging.dll assemblies.

The minimal syntax required to compile a file named sample1.vb is:

vbc sample1.vb

This generates a console-mode application. You can specify the type of component or application you
wish to generate by using the /target switch. To generate a Windows executable, you'd enter something
like the following at the command line:

vbc sample1.vb /t:winexe /r:system.windows.forms.dll

Note the /r switch, which adds a reference to the assembly that contains the system.windows.forms
namespace. You must explicitly add references to any assemblies your application requires, other than
mscorlib.dll and microsoft.visualbasic.dll.

To compile multiple files, just list them on the command line using a space to separate them. For example:

vbc sample1.vb sample2.vb /t:winexe /r:system.windows.forms.dll

Since sample1.vb is the first file we listed and we haven't explicitly designated an output filename, the
compiler will generate a Windows executable named sample1.exe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.2 Command-Line Switches

The VB.NET compiler supports the following command-line switches.

E.2.1 Output Filename and File Type

Switch Description

/out:<file>
Defines the output filename. If not present, the output file will have the same root
filename as the input file. <file> can be the root filename without a file extension.

/target:<type>

or:

/t:<type>

Defines the type of file to be generated by the compiler. <type> can be any of the
following keywords: exe (to create a console application), winexe (to create a
Windows application), library (to create a library assembly in a DLL), and module
(to create a .NETMODULE file that can be added to an assembly). If the switch is
not present, type defaults to exe, and the compiler attempts to create a console
application.

E.2.2 Input Files

Switch Description

/addmodule:<file> Includes the .NETMODULE file named <file> in the output file.

/libpath:<path_list>

The directory or directories to search for metadata references (which are
specified by the /reference switch) that are not found in either the
current directory or the CLR's system directory. <path_list> is a list of
directories, with multiple directories separated by commas or
semicolons. Note that /libpath is additive; using multiple switches adds
<path_list> to existing paths rather than replacing the existing ones.

/recurse:<wildcard>

Includes all files in the current directory and its subdirectories according
to the wildcard specifications. For example:

vbc /recurse:*.vb /t:library

 /out:mylibrary.lib

If you use the /recurse switch, you do not have to name a specific file to
compile; however, if you do, it should not match the specification
provided as an argument to the /recurse switch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Description

/reference:<file_list>

or:

/r:<file_list>

References metadata from the assemblies contained in <file_list>.
Each filename in <file_list> must include a file extension.

E.2.3 Resources

Switch Description

/linkresource:<resinfo>

or:

/linkres:<resinfo>

Links to a managed resource file without embedding it in the output file.
<resinfo> has the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical
name used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public.

/resource:<resinfo>

or:

/res:<resinfo>

Embeds the managed resource or resources named <resinfo> in the
output file. <resinfo> takes the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical
name used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public. The /resource switch
cannot be used along with the /target:module switch.

/win32icon:<file> Indicates the application icon is found in a Win32 icon (ICO) file.

/win32resource:<file> Indicates resources are to be found in a Win32 resource (RES) file.

E.2.4 Code Generation

Switch Description

/optimize[+|-]

Determines whether compiler output is optimized to produce smaller
binary files that offer improved efficiency and performance. Optimized
code, however, is more difficult to debug. Its default value is on (+).
/optimize is equivalent to /optimize+.

/removeintchecks[+|-]

Removesinteger overflow checks. Its default value is off (-). Turning it on
places the responsibility on the developer for ensuring that integers don't
overflow their bounds. /'removeintchecks is equivalent to
/removeintchecks+.

/reference:<file_list>

or:

/r:<file_list>

References metadata from the assemblies contained in <file_list>.
Each filename in <file_list> must include a file extension.

E.2.3 Resources

Switch Description

/linkresource:<resinfo>

or:

/linkres:<resinfo>

Links to a managed resource file without embedding it in the output file.
<resinfo> has the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical
name used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public.

/resource:<resinfo>

or:

/res:<resinfo>

Embeds the managed resource or resources named <resinfo> in the
output file. <resinfo> takes the form:

<file>[,<name>[,public|private]]

where <file> is the filename of the resource, <name> is the logical
name used to load the resource, and the public and private keywords
determine whether the resource is public or private in the assembly
manifest. By default, resources are public. The /resource switch
cannot be used along with the /target:module switch.

/win32icon:<file> Indicates the application icon is found in a Win32 icon (ICO) file.

/win32resource:<file> Indicates resources are to be found in a Win32 resource (RES) file.

E.2.4 Code Generation

Switch Description

/optimize[+|-]

Determines whether compiler output is optimized to produce smaller
binary files that offer improved efficiency and performance. Optimized
code, however, is more difficult to debug. Its default value is on (+).
/optimize is equivalent to /optimize+.

/removeintchecks[+|-]

Removesinteger overflow checks. Its default value is off (-). Turning it on
places the responsibility on the developer for ensuring that integers don't
overflow their bounds. /'removeintchecks is equivalent to
/removeintchecks+.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.2.5 Debugging

Switch Description

/debug[+-]

Determines whether debugging information is generated and included in the output
file or files. The default value is /debug-, which suppresses the generation of debug
information. /debug+ or /debug causes the compiler to generate debugging
information.

/debug:full

or:

/debug:pdbonly

Defines the form of debugging information output by the compiler. full generates
full debugging information and allows a debugger to be attached to the running
program; it is the default value if debugging is enabled. pdbonly generates a debug
symbol (PDB) file only. It supports source-code debugging when the program is
started in the debugger, but displays assembler only when the running program is
attached to the debugger.

E.2.6 Errors and Warnings

Switch Description

/nowarn Disables warnings.

/warnaserror[+|-] Treats warnings as errors, so that warnings prevent the code from compiling. Its
default value is off (-). /warnaserror is equivalent to /warnaserror+.

E.2.7 Language

Switch Description

/define:<symbol_list>

or:

/d:<symbol_list>

Declares global conditional compiler constants. <symbol_ list> has
the form name=value, with multiple values separated by commas.

/imports:<import_list>
Globally imports namespaces, eliminating the need to define them with
individual Imports statements. <import_list> is a comma-delimited list
of namespaces.

/optioncompare:binary
Specifies binary (case-sensitive) string comparison; this is the default
value. The switch does not override any explicit Option Compare
settings found in individual source- code files.

/optioncompare:text
Specifies case-insensitive string comparisons. The switch does not
override any explicit Option Compare settings found in individual source-
code files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Description

/optionexplicit[+|-]

Determines whether variables must be explicitly defined before they
are used; the default setting is on. The switch does not override any
explicit Option Explicit settings found in individual source-code files.
/optionexplicit is the same as /optionexplicit+.

/optionstrict[+|-]

Determines whether implicit narrowing conversions and late binding are
allowed; the default setting is off. The switch does not override any
explicit Option Strict settings found in individual source-code files.
/optionstrict is the same as /optionstrict+.

/rootnamespace:<string>

Defines a root namespace for all type declarations. This means that an
Imports statement need not be used to import the root namespace,
and that the relative path of a type (starting from the root namespace)
can be used in place of its fully qualified name. Any Imports
statements, however, must contain the fully qualified namespace
name.

E.2.8 Miscellaneous

Switch Description

/help

or:

/?

Displays help information.

/nologo Suppresses the display of the compiler's copyright banner.

/quiet Turns on quiet output mode; the compiler displays less information about errors than it does
ordinarily.

/verbose Turns on verbose output mode; the compiler displays more information about the file being
compiled and about errors than usual.

E.2.9 Advanced

Switch Description

/baseaddress:<number>

Specifies the base address at which a library or module should be
loaded. If a single application or component uses multiple libraries, or if
modules are loaded by a single application or component, the runtime
attempts to load them at the same address and then maps them to new
addresses. In this case, performance can be improved by specifying the
base address of a project's additional libraries or modules. <number>
should be a hexadecimal address.

/optionexplicit[+|-]

Determines whether variables must be explicitly defined before they
are used; the default setting is on. The switch does not override any
explicit Option Explicit settings found in individual source-code files.
/optionexplicit is the same as /optionexplicit+.

/optionstrict[+|-]

Determines whether implicit narrowing conversions and late binding are
allowed; the default setting is off. The switch does not override any
explicit Option Strict settings found in individual source-code files.
/optionstrict is the same as /optionstrict+.

/rootnamespace:<string>

Defines a root namespace for all type declarations. This means that an
Imports statement need not be used to import the root namespace,
and that the relative path of a type (starting from the root namespace)
can be used in place of its fully qualified name. Any Imports
statements, however, must contain the fully qualified namespace
name.

E.2.8 Miscellaneous

Switch Description

/help

or:

/?

Displays help information.

/nologo Suppresses the display of the compiler's copyright banner.

/quiet Turns on quiet output mode; the compiler displays less information about errors than it does
ordinarily.

/verbose Turns on verbose output mode; the compiler displays more information about the file being
compiled and about errors than usual.

E.2.9 Advanced

Switch Description

/baseaddress:<number>

Specifies the base address at which a library or module should be
loaded. If a single application or component uses multiple libraries, or if
modules are loaded by a single application or component, the runtime
attempts to load them at the same address and then maps them to new
addresses. In this case, performance can be improved by specifying the
base address of a project's additional libraries or modules. <number>
should be a hexadecimal address.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Switch Description should be a hexadecimal address.

/bugreport:<file>
Generates a file named <file> that contains information needed to
report a bug.

/delaysign[+|-]

If on (+), signs the assembly using only the public portion of the strong
name key; if off (-), the default value, generates a fully signed assembly.
The /delaysign option must be used with either /keycontainer or
/keyfile.

/keycontainer:<string>
Specifies a strong-name key container with the assembly's key pair. The
name of the container is indicated by <string>; if <string> has
embedded spaces, it should be enclosed in quotation marks.

/keyfile:<file>
Specifies the file containing a key or key pair that will be used to give an
assembly a strong name. If the filename has embedded spaces, <file>
should be enclosed in quotation marks.

/libpath:<path_list>
Specifies the list of directories to search for metadata references. By
default, the global assembly cache is automatically searched for
references.

/main:<class>

or:

/m:<class>

Specifies the class or module (or a class that inherits from
System.Windows.Forms.Form) that contains Sub Main, which, if
present, is a program entry point for applications and components. It is
particularly useful if more than one class/module in a project has a
subroutine named Main.

/utf8output[+|-]

Emits compiler output in UTF8 character encoding, which is useful when
local settings prevent compiler output from being displayed to the
console correctly. Its default value is off (-). /utf8output is the same as
utf8output+.

should be a hexadecimal address.

/bugreport:<file>
Generates a file named <file> that contains information needed to
report a bug.

/delaysign[+|-]

If on (+), signs the assembly using only the public portion of the strong
name key; if off (-), the default value, generates a fully signed assembly.
The /delaysign option must be used with either /keycontainer or
/keyfile.

/keycontainer:<string>
Specifies a strong-name key container with the assembly's key pair. The
name of the container is indicated by <string>; if <string> has
embedded spaces, it should be enclosed in quotation marks.

/keyfile:<file>
Specifies the file containing a key or key pair that will be used to give an
assembly a strong name. If the filename has embedded spaces, <file>
should be enclosed in quotation marks.

/libpath:<path_list>
Specifies the list of directories to search for metadata references. By
default, the global assembly cache is automatically searched for
references.

/main:<class>

or:

/m:<class>

Specifies the class or module (or a class that inherits from
System.Windows.Forms.Form) that contains Sub Main, which, if
present, is a program entry point for applications and components. It is
particularly useful if more than one class/module in a project has a
subroutine named Main.

/utf8output[+|-]

Emits compiler output in UTF8 character encoding, which is useful when
local settings prevent compiler output from being displayed to the
console correctly. Its default value is off (-). /utf8output is the same as
utf8output+.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.3 Using a Response File

The Visual Basic compiler also allows you to specify command-line options and settings from a text file or
response file when you compile your program. The syntax is:

vbc @<file>

where <file> is the name of the response file, including its path if it is not located in the current directory.
The response file simply contains source filenames and compiler options; it is interpreted as if the
filenames and compiler switches were entered at the command line.

The syntax of a response file is quite simple. Multiple filenames or switches can be included on a single
line. However, a single switch, option, or filename cannot span multiple lines. In addition, # serves as a
comment symbol.

For example, a response file named mylib.rsp might appear as follows:

Build the library

/target:library

/out:mylibrary

/debug+

/debug:full

libfunc1.vb

libproc1.vb

libstrings.vb

The compiler can then be invoked by entering the following at the command line:

vbc @mylib.rsp

A response file can be combined with switches and filenames entered at the command line, and multiple
response files can be used. The compiler processes these items in the order in which they are
encountered. This means that settings in a response file can be overridden by later specifying command-
line options or that command-line settings can be overridden by later specifying a response filename. For
example, the command line:

vbc libnumeric.vb @mylib.rsp /debug-

compiles a file named libnumeric.vb, in addition to the three files already named in mylib.rsp. It also
reverses some settings in mylib.rsp by preventing debugging information from being included in the output
file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix F. VB 6 Language Elements Not Supported by
VB.NET

This appendix provides an alphabetical list of language elements that are present in VB 6 but are not
supported by VB.NET.

Element Description

Array function
Returns a variant array whose elements contain the values passed as
arguments to the function

AscB function
Returns an integer representing the character code of the first byte of
a string

Atn function
Returns the arctangent of a number; replaced by the Atan method in
the System.Math class

Calendar property
Determines whether a project should use the Gregorian or Hijri
calendar

CCur function Converts an expression into a Currency data type

ChrB function Returns the character corresponding to an 8-bit character code

Close statement Closes a file opened with the Open statement

CVar function Converts an expression into a Variant data type

CVDate function Returns a Date variant

CVErr function Returns an error from a procedure

Date, Date$ functions Return the current system date

Date statement Sets the current system date

Debug.Print Sends output to the Immediate window

DefBool statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Boolean

DefByte statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Byte

DefCur statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Currency

DefDate statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Date

DefDbl statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Double

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

DefDec statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Decimal

DefInt statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Integer

DefLng statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Long

DefObj statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Object

DefSng statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Single

DefStr statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as String

DefVar statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Variant

Eqv operator Represents a logical equivalence operator

Error function Returns a standard description of a particular error code

Get statement Retrieves data from a disk file into a program variable

GoSub...Return statement Passes execution to and returns from a subroutine within a procedure

IMEStatus function Returns the state of the Input Method Editor

Imp operator Represents a logical implication operator

Initialize event Fires when an object is first used

Input, Input$, InputB, InputB$
functions

Reads a designated number of characters from a file opened in input
or binary mode

Instancing property Defines how instances of a class are created

InStrB function Returns the position of a particular byte in a binary string

IsEmpty function Determines if a variable has been initialized

IsMissing function Determines whether an argument has been passed to a procedure

IsNull function Indicates whether an expression contains Null data

IsObject function Indicates whether a variable contains a reference to an object

LeftB, LeftB$ functions Returns the leftmost n bytes of binary data

LenB function Returns the actual size of a user-defined type in memory

Let statement Assigns the value of an expression to a variable

Load statement Loads a form or control

LoadResData function Extracts a string containing a resource included in a resource project

DefDec statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Decimal

DefInt statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Integer

DefLng statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Long

DefObj statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Object

DefSng statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Single

DefStr statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as String

DefVar statement
Defines all otherwise undeclared variables beginning with particular
alphabetical characters as Variant

Eqv operator Represents a logical equivalence operator

Error function Returns a standard description of a particular error code

Get statement Retrieves data from a disk file into a program variable

GoSub...Return statement Passes execution to and returns from a subroutine within a procedure

IMEStatus function Returns the state of the Input Method Editor

Imp operator Represents a logical implication operator

Initialize event Fires when an object is first used

Input, Input$, InputB, InputB$
functions

Reads a designated number of characters from a file opened in input
or binary mode

Instancing property Defines how instances of a class are created

InStrB function Returns the position of a particular byte in a binary string

IsEmpty function Determines if a variable has been initialized

IsMissing function Determines whether an argument has been passed to a procedure

IsNull function Indicates whether an expression contains Null data

IsObject function Indicates whether a variable contains a reference to an object

LeftB, LeftB$ functions Returns the leftmost n bytes of binary data

LenB function Returns the actual size of a user-defined type in memory

Let statement Assigns the value of an expression to a variable

Load statement Loads a form or control

LoadResData function Extracts a string containing a resource included in a resource project

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

LoadResPicture function
Assigns a graphic from a resource file to the Picture property of an
object

LoadResString function Retrieves a string from a resource file

MidB, MidB$ functions Returns a specified number of bytes from a larger binary string

MidB statement Replaces a specified number of bytes in a binary string

MTSTransactionMode property
Indicates whether a component is an MTS object and, if so,
determines its level of transaction support

Name statement Renames a disk file or directory

ObjPtr function Returns a pointer to an object

On...GoSub statement
Causes program execution to jump to a subroutine based on the
value of a control variable

On...Goto statement
Causes program execution to jump to a label based on the value of a
control variable

Open statement Opens a file

Option Base statement
Defines the default lower bound for arrays dimensioned within a
module

Option Private Module
statement

Restricts the scope and visibility of a module to the module's project

Persistable property
Determines whether a class in an ActiveX DLL project can be saved
to disk

Property Set statement Declares a procedure that assigns an object reference to a property

Put statement Writes data from a program variable to a disk file

Right, Right$ functions Returns the rightmost bytes from a binary string

Set statement Assigns an object reference to a variable

Sgn function Determines the sign of a number

Sqr function Calculates the square root of a number

String function
Creates a string composed of a single character repeated a given
number of times

StrPtr function Returns a pointer to a BSTR (Visual Basic string)

Terminate event Fired when an object is destroyed

Time function Returns the current system time

Time statement Sets the current system time

Type statement Defines a user-defined type

LoadResPicture function
Assigns a graphic from a resource file to the Picture property of an
object

LoadResString function Retrieves a string from a resource file

MidB, MidB$ functions Returns a specified number of bytes from a larger binary string

MidB statement Replaces a specified number of bytes in a binary string

MTSTransactionMode property
Indicates whether a component is an MTS object and, if so,
determines its level of transaction support

Name statement Renames a disk file or directory

ObjPtr function Returns a pointer to an object

On...GoSub statement
Causes program execution to jump to a subroutine based on the
value of a control variable

On...Goto statement
Causes program execution to jump to a label based on the value of a
control variable

Open statement Opens a file

Option Base statement
Defines the default lower bound for arrays dimensioned within a
module

Option Private Module
statement

Restricts the scope and visibility of a module to the module's project

Persistable property
Determines whether a class in an ActiveX DLL project can be saved
to disk

Property Set statement Declares a procedure that assigns an object reference to a property

Put statement Writes data from a program variable to a disk file

Right, Right$ functions Returns the rightmost bytes from a binary string

Set statement Assigns an object reference to a variable

Sgn function Determines the sign of a number

Sqr function Calculates the square root of a number

String function
Creates a string composed of a single character repeated a given
number of times

StrPtr function Returns a pointer to a BSTR (Visual Basic string)

Terminate event Fired when an object is destroyed

Time function Returns the current system time

Time statement Sets the current system time

Type statement Defines a user-defined type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Element Description

Unload statement
Removes a form or a dynamically created member of a control array
from memory

Width# statement
Specifies a virtual file width when working with files opened with the
Open statement

VarPtr function Returns a pointer to a variable

Unload statement
Removes a form or a dynamically created member of a control array
from memory

Width# statement
Specifies a virtual file width when working with files opened with the
Open statement

VarPtr function Returns a pointer to a variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality
and life into potentially dry subjects.

The animal on the cover of VB.NET Language in a Nutshell, Second Edition , is a catfish. Catfish can be
found all over the world, most often in freshwater environments. Catfish are identified by their whiskers,
called "barbels," as well by as their scaleless skin; fleshy, rayless posterior fins; and sharp, defensive
spines in the dorsal and shoulder fins. Catfish have complex bones and sensitive hearing. They are
omnivorous feeders and skilled scavengers. A marine catfish can taste with any part of its body.

Though most madtom species of catfish are no more than 5 inches in length, some Danube catfish (called
wels or sheatfish) reach lengths of up to 13 feet and weights of 400 pounds. Wels catfish (found mostly in
the U.K.) are dark, flat, and black in color with white bellies. They breed in the springtime in shallow areas
near rivers and lakes. The females hatch eggs in their mouths and leave them on plants for the males to
guard. Two to three weeks later, the eggs hatch into tadpole-like fish, which grow quickly in size. The
largest recorded wels catfish was 16 feet long and weighed 675 pounds.

Catherine Morris was the production editor and proofreader for VB.NET Language in a Nutshell, Second
Edition. Ann Schirmer assisted with the copyedit. Sarah Sherman and Claire Cloutier provided quality
control. Judy Hoer wrote the index.

Pam Spremulli designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout, based on a series design by Nancy Priest. Neil Walls converted
the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra. The text and
heading fonts are ITC Garamond Light and Garamond Book. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop
6. This colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch,
and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained
by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

! (exclamation point) type identifier

$ (dollar sign) type identifier

& (ampersand) string concatenation operator

&= concatenation assignment operator

< less-than comparison operator

<= less-than-or-equal-to comparison operator

<\\> inequality operator

* (asterisk)

 multiplication operator

 in regular expressions

*= multiplication assignment operator

+ (plus)

 addition operator

 in regular expressions

 string concatenation operator

+= addition assignment operator

- (minus) subtraction operator

-= subtraction assignment operator

. (period) in regular expressions

.NET [See VB.NET]

/ division operator

/= division assignment operator

= (equals sign)

 assignment operator 2nd

 comparison operator

? (question mark) in regular expressions

@ (at sign) type identifier

[] (brackets) in regular expressions

\ integer division operator

\: (colon) and line numbers

\\> greater-than comparison operator

\\>= greater-than-or-equal-to comparison operator

\\\\= integer division assignment operator

^ (caret) exponentiation operator

^= exponential assignment operator

_ (underscore) VB.NET line continuation character

{} (curly brackets) in regular expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Abs function (Math class) 2nd 3rd

abstract classes

abstract members

abstraction in object-oriented programming

access modifiers

 class modules and 2nd

 declaring variables and constants

 using in Property statement

 using in Sub statements

accessibility

 in class modules

 of members

 rules of

accessor methods 2nd

accessors, property

Acos function (Math class) 2nd 3rd

ActiveX objects

 accessing

 creating

Add method

 Collection class 2nd 3rd

 Hashtable class 2nd

AddExtension property

 OpenFileDialog class

 SaveFileDialog class

AddHandler statement 2nd 3rd

addition assignment operator (+=)

addition operator (+)

/addmodule\: command-line switch

address, variable

AddressOf operator 2nd 3rd 4th

ADO.NET and data access

AllowFullOpen property (ColorDialog class)

And logical operator 2nd 3rd

AndAlso logical operator 2nd 3rd

AnsiBStr (UnmanagedType enumeration)

AnyColor property (ColorDialog class)

ApartmentState property (Thread class)

 MTAThread attribute

 STAThread attribute

AppActivate procedure 2nd

AppActivateHelper procedure

Application class

application-level events (ASP.NET)

Application.CompanyName property 2nd

Application.DoEvents method 2nd

Application.ExecutablePath property 2nd

Application.ProductName property 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Application.ProductVersion property 2nd

applications, creating

AppWinStyle enumeration

arccosine, returning

arcsine, returning

arctangent, returning

argument signatures

 overloading functions and

arguments

 optional

 for attributes

 passing 2nd

 required

 for attributes

 for custom attributes

 vs. parameters

arithmetic operators

Array class 2nd 3rd

Array.BinarySearch method 2nd 3rd

Array.Copy method 2nd

Array.IndexOf method 2nd 3rd

Array.LastIndexOf method 2nd 3rd

Array.Reverse method 2nd

Array.Sort method 2nd

arrays

 clearing

 Filter function and

 fixed arrays, defining

 IsArray function and 2nd 3rd

 LBound function and

 redimensioning 2nd

 UBound function and

 VB 6 vs. VB.NET

 vs. Collection objects

AsAny (UnmanagedType enumeration)

Asc/AscW functions (String class) 2nd

Asin function (Math class) 2nd 3rd

ASP.NET events

assemblies

 attributes stored as metadata in 2nd

 command-line switches for

 importing

AssemblyInfo.vb file

AssemblyVersion attribute

Assert method (Debug class) 2nd

assignment operators

asterisk (*)

 multiplication operator

 in regular expressions

Atan function (Math class) 2nd 3rd

Atan2 function (Math class) 2nd 3rd

attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 arguments, required/optional 2nd

 AssemblyVersion attribute

 AttributeUsage attribute

 class constructors for

 CLSCompliant attribute

 COMClass attribute

 custom

 declaring properties for

 defining

 using

 DefaultEvent attribute

 DefaultMember attribute

 file

 getting

 setting

 Flags attribute

 Guid attribute

 MarshallAs attribute

 MTAThread attribute

 Obsolete attribute 2nd

 Out attribute

 ParamArray attribute

 parameter declarations and

 STAThread attribute

 syntax of

 ThreadStatic attribute

 VBFixedArray attribute

 VBFixedString attribute 2nd

 WebMethod attribute 2nd

 WebService attribute

AttributeTargets enumeration

AttributeUsage attribute 2nd

AutoFlush property (Debug class) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Base Class Library (BCL), implementing data types defined in

base classes

 abstract members in

 defining

 inheritance and

 MyBase keyword and

/baseaddress\: command-line switch

BCL (Base Class Library), implementing data types defined in

Beep procedure 2nd

binary comparison 2nd

 Like operator and

binary strings

BinarySearch method (Array class) 2nd 3rd

binding

 dynamic

 late vs. early 2nd

bitwise operators

 removed from VB.NET

block-level scope of variables 2nd

 Dim statement and

Bool (UnmanagedType enumeration)

Boolean data type 2nd

 converting values to

Boolean operators removed from VB.NET

Bounds property (VBFixedArray attribute)

brackets ([]) in regular expressions

BStr (UnmanagedType enumeration)

BSTR data type

BufferResponse property (WebMethod attribute)

/bugreport\: command-line switch

built-in constants

built-in events

button display constants

ByRef keyword

 Out attribute and

 using in Sub statement

 VB 6 vs. VB.NET

Byte data type 2nd

 converting values to

ByVal keyword

 using in Sub statement

 VB 6 vs. VB.NET

ByValArray (UnmanagedType enumeration)

ByValTStr (UnmanagedType enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

CacheDuration property (WebMethod attribute)

Call statement 2nd

 controlling execution flow

callback functions and function pointers 2nd

CallByName function 2nd

CallType enumeration

CancelEventArgs class

cast operators

Catch blocks and Try...Catch...Finally statement

CBool function 2nd 3rd

CByte function 2nd 3rd

CChar function 2nd 3rd

CDate function 2nd 3rd

CDbl function 2nd 3rd

CDec function 2nd 3rd

Ceiling function (Math class) 2nd 3rd

centralized error handling

Char data type 2nd

 converting values to

Chars property (String class)

ChDir procedure 2nd

ChDrive procedure 2nd

CheckFileExists property (OpenFileDialog class)

Choose function 2nd

Chr/ChrW functions (String class) 2nd

CInt function 2nd 3rd

Circle method (not supported in VB.NET)

class constructors

 for attributes

 for custom attributes

 Windows Forms applications and

class members [See members]

class modules

 access modifiers and

 accessibility in

 constructors in

 implementing interfaces with

 types of members in

Class statement 2nd 3rd

ClassBehavior keyword and Property statement

classes

 abstract members and

 attributes and

 command-line switches for

 declaring

 properties for

 with Protected keyword

 Framework Class Library

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inheritance

 instantiating

 Me operator and

 members [See members]

 public interfaces of 2nd

ClassID property (COMClass attribute)

Clear method

 Err object 2nd 3rd

 Hashtable class 2nd

 Queue class 2nd

 Stack class 2nd

Clipboard class

Clipboard.GetDataObject method 2nd

Clipboard.SetDataObject method 2nd

CLng function 2nd 3rd

Clone method (String class)

Close method (Debug class) 2nd

CLR (Common Language Runtime) 2nd

 console applications and

 language changes for VB.NET

CLSCompliant attribute

CObj function 2nd 3rd

code

 commenting out

 converting between managed and unmanaged

 generating

 managed

 Visual Basic, categories of

code blocks

 conditional

 Do...Loop statement

 #If...Then...#Else directive

 defining as code modules

 expanding/collapsing

 variables declared inside of 2nd 3rd

Collection class 2nd

collection types, implementing

Collection.Add method 2nd 3rd

Collection.Count property 2nd 3rd

Collection.Item method 2nd 3rd

Collection.Remove method 2nd 3rd

color codes, returning 2nd

Color property

 ColorDialog class

 FontDialog class

ColorDialog class 2nd

COMClass attribute 2nd

Command function 2nd

command-line compiler

CommandArgument property (CommandEventArgs class)

CommandName property (CommandEventArgs class)

commenting out code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Common Language Runtime (CLR) 2nd

 console applications and

 language changes for VB.NET

Common Type System (CTS) 2nd

 SystemTypeName function and

 VbTypeName function and

CompanyName property (Application class) 2nd

Compare method (String class)

CompareMethod enumeration

CompareOrdinal method (String class)

CompareTo method (String class)

comparing string data

 command-line switches and

comparison operators

compiler, command-line

Concat method (String class)

concatenation assignment operator (&=)

concatenation operators, string

conditional compiler constants, defining

conditional execution of code

console applications 2nd

#Const directive 2nd

Const statement 2nd

constants

 assigning error numbers

 built-in

 converting strings

 declaring

 MsgBoxStyle enumeration

 scope of 2nd

 setting attributes of a file

 VB 6 vs. VB.NET

constructors [See class constructors]

Contains method

 Queue class 2nd

 Stack class 2nd

ContainsKey method (Hashtable class) 2nd

ContainsValue method (Hashtable class) 2nd

control-related events

ControlChars class

conversion functions

Convert class

converting data types

 functions for

 Option Strict statement and

 System namespace and

Copy method

 Array class 2nd

 String class

copyright banner, suppressing display of

CopyTo method

 Hashtable class 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Queue class 2nd

 Stack class 2nd

 String class

Cos function (Math class) 2nd 3rd

Cosh function (Math class) 2nd 3rd

Count property

 Collection class 2nd 3rd

 Hashtable class 2nd

 Queue class 2nd

 Stack class 2nd

CreateDirectory method (Directory class) 2nd

CreateObject function 2nd

CShort function 2nd

CSng function 2nd 3rd

CStr function 2nd 3rd

CTS (Common Type System) 2nd

 SystemTypeName function and

 VbTypeName function and

CType function 2nd 3rd

CurDir function 2nd

curly brackets ({}) in regular expressions

Currency (UnmanagedType enumeration)

Currency data type (not supported in VB.NET) 2nd

currency, formatting

custom attributes

 AttributeUsage attribute and

 class constructors for

 defining

 GetCustomAttributes method

 using

custom procedures

 writing

CustomColors property (ColorDialog class)

CustomMarshaler (UnmanagedType enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

\\\\d and \\\\D in regular expressions

data access with ADO.NET

data members in class modules

data types 2nd

 changes for VB.NET

 converting

 functions for 2nd 3rd 4th 5th

 Option Strict statement and

 System namespace and

 simple

 summary of

 SystemTypeName function and

 TypeName function and

 for VB.NET

 VbTypeName function and

data, managed

Date data type 2nd

 converting values to

 VB 6 vs. VB.NET

DateAdd function 2nd

DateDiff function 2nd

DateFormat enumeration

DateInterval enumeration

DatePart function 2nd

dates and times

 Day function

 formatting

 GetTimer function

 Hour function

 IsDate function 2nd

 Minute function

 Month function

 MonthName function

 Now property

 predefined formats for

 Second function

 TimeOfDay property

 Timer property

 TimeSerial function

 TimeString property

 TimeValue function

 Today property

 user-defined formats for

 Weekday function

 WeekdayName function

 Year function

DateSerial function 2nd

DateString property 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DateValue function 2nd 3rd

Day function 2nd

DBNull, evaluating to 2nd

DDB function 2nd

Debug class 2nd

/debug command-line switch

Debug.Assert method 2nd

Debug.AutoFlush property 2nd

Debug.Close method 2nd

Debug.Flush method 2nd

Debug.Indent method 2nd

Debug.IndentLevel property 2nd

Debug.IndentSize property 2nd

Debug.Listeners property 2nd

Debug.Unindent method 2nd

Debug.Write method 2nd

Debug.WriteIf method 2nd

Debug.WriteLine method 2nd

Debug.WriteLineIf method 2nd

Decimal data type 2nd

 CDec function and

 converting values to

 ValDec function and

declarations, function

Declare statement 2nd 3rd

declaring

 object variables using WithEvents

 statements used for

 variables and constants

 changes for VB.NET

 Option Explicit statement and

default button constants

default events

Default keyword

 Property statement and

 vs. DefaultMember attribute

default properties

DefaultEvent attribute

DefaultExt property

 OpenFileDialog class

 SaveFileDialog class

DefaultMember attribute

/define\: command-line switch

Deftype statements (not supported in VB.NET) 2nd

/delaysign command-line switch

Delegate class

Delegate statement

delegates

 calling methods using

 as function pointers

Delete method (Directory class) 2nd

DeleteSetting procedure 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dequeue method (Queue class) 2nd

derived classes

 abstract members in

 inheritance and

 MyBase/MyClass keywords and

 overriding base class implementations

 Shadows keyword and

Description property (Err object) 2nd 3rd

destructor methods

detecting vs. handling errors

diagnostics, programming

dialog boxes

 classes for controlling

 ColorDialog class and

 FontDialog class and

 InputBox function and

 MsgBox function and

 OpenFileDialog class and

 SaveFileDialog class and

Dim keyword

Dim statement 2nd

dimension of an array

Dir function 2nd

DirectCast function

directories

 changing default

 returning current

 searching for metadata references

Directory class

Directory.CreateDirectory method 2nd

Directory.Delete method 2nd

Directory.Exists method 2nd

Directory.GetCreationTime method 2nd

Directory.GetDirectories method 2nd

Directory.GetDirectoryRoot method 2nd

Directory.GetFiles method 2nd

Directory.GetFileSystemEntries method 2nd

Directory.GetLogicalDrives method

Directory.GetParent method 2nd

Directory.Move method 2nd

Dispose method

division assignment operator (/=)

division operator (/)

Do...Loop statement 2nd

DoEvents method (Application class)

Double data type 2nd

 CDbl function and

 converting values to

 Val function and

double pointers

double-declining balance, calculating

drives, changing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DueDate enumeration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

E field (Math class) 2nd 3rd

early binding 2nd

Empty field (String class)

Empty keyword (not supported in VB.NET) 2nd

EnableSession property (WebMethod attribute)

encapsulation in object-oriented programming

 violating principles of

End... statements 2nd

EndsWith method (String class)

Enqueue method (Queue class) 2nd

entry points of programs 2nd

Enum statement 2nd

EnumerateTypeMembers method

EnumerateTypes method

enumerations (Visual Basic)

Environ function 2nd 3rd

EOF function 2nd

equal operator (=) 2nd

Equals method (String class)

Eqv operator (not supported in VB.NET) 2nd 3rd

Erase statement 2nd

Erl property 2nd 3rd

Err object

 properties and methods of

Err.Clear method 2nd 3rd

Err.Description property 2nd

Err.GetException method 2nd

Err.HelpContext property 2nd

Err.HelpFile property 2nd

Err.LastDLLError property 2nd

Err.Number property 2nd

Err.Raise method 2nd 3rd

 error constants and

Err.Source property 2nd

Error (UnmanagedType enumeration)

error handling

 assigning error numbers

 centralized

 command-line switches and

 in-line

 IsError function and 2nd 3rd

 On Error... statements and

 regenerating errors

 Resume statement and

 structured 2nd

 Try...Catch...Finally statement and

 unstructured

 vs. error detection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Error statement

ErrorToString function 2nd 3rd

event arguments

event handlers

 arguments for

 calling routines from

 entry points for event-driven programs

event members in class modules

Event statement 2nd

event-driven programs

EventArgs class

EventID property (COMClass attribute)

events 2nd

 AddHandler statement 2nd

 control-related

 DoEvents method

 Handles keyword and

 RaiseEvent statement and

 RemoveHandler statement 2nd

 WithEvents keyword 2nd

Exception classes 2nd 3rd

exception handling [See error handling]

executable programs (VB.NET)

 console applications 2nd

 Windows Forms applications

ExecutablePath property (Application class) 2nd

execution flow, controlling

execution, managed

ExecutionEngineException exception

Exists method

 Directory class 2nd

 File class 2nd

Exit Try statement

Exit... statements 2nd

Exp function (Math class) 2nd 3rd

explicit type conversions 2nd

 command-line switches and

exponential assignment operator (^=)

exponential functions

exponentiation operator (^)

expressions, evaluating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

False keyword

FCL (Framework Class Library) 2nd

 namespaces

FIFO (first-in, first-out) data structures

file attributes

 getting

 setting

File class

File.Exists method 2nd

FileAttr function 2nd

FileAttribute enumeration

FileClose procedure 2nd

FileCopy procedure 2nd

FileDateTime function 2nd

FileGet/FileGetObject procedures 2nd

FileLen function 2nd

FileName property

 OpenFileDialog class

 SaveFileDialog class

FileOpen procedure 2nd

FilePut/FilePutObject procedures 2nd

files

 command-line switches for

 deleting from disk

 getting attributes for

 locking

 setting attributes for

 unlocking

FileWidth procedure 2nd

Filter function (String class) 2nd

Filter property

 OpenFileDialog class

 SaveFileDialog class

FilterIndex property

 OpenFileDialog class

 SaveFileDialog class

Finalize method

FirstDayOfWeek enumeration 2nd

 Format function and

FirstWeekOfYear enumeration

 Format function and

Fix function 2nd 3rd

fixed arrays, defining

fixed-length strings, defining

Flags attribute

floating-point numbers

 Double data type

 Single data type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Floor function (Math class) 2nd 3rd

Flush method (Debug class) 2nd

folders

 creating

 removing

Font property (FontDialog class)

FontDialog class 2nd

For Each...Next statement 2nd

For...Next statement 2nd

Format function (String class) 2nd

Format method (String class)

FormatCurrency function (String class) 2nd

FormatDateTime function (String class) 2nd

FormatNumber function (String class) 2nd

FormatPercent function (String class) 2nd

Framework Class Library (FCL) 2nd

 namespaces

FreeFile function 2nd

Friend keyword 2nd 3rd

 accessibility rules for

 class modules and

 declaring variables and constants

FullOpen property (ColorDialog class)

function members in class modules

function pointers

 using delegates as

function procedures

 calling

Function statement 2nd

FunctionPtr (UnmanagedType enumeration)

functions

 conversion

 declarations vs. implementations

 interfaces and

 overloading 2nd

 signatures of

future value of annuities, calculating

FV function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

garbage collection

Get statement 2nd

get_Name method

GetAllSettings function 2nd

GetAttr function 2nd

GetBaseException method (Exception class)

GetChar function (String class) 2nd

GetCommandLineArgs method

GetCreationTime method (Directory class) 2nd

GetCustomAttributes method (Attribute class)

GetData method (IDataObject interface) 2nd

GetDataObject method (Clipboard class) 2nd

GetDataPresent method (IDataObject interface) 2nd

GetDirectories method (Directory class) 2nd

GetDirectoryRoot method (Directory class) 2nd

GetException method (Err object) 2nd

GetFiles method (Directory class) 2nd

GetFileSystemEntries method (Directory class) 2nd

GetFormats method (IDataObject interface) 2nd

GetLogicalDrives method (Directory class)

GetMembers method (Type class)

GetModules method (Assembly class)

GetObject function 2nd

GetParent method (Directory class) 2nd

GetSetting function 2nd

GetTimer function 2nd

GetType operator

GetTypeCode method

GetTypes method (Assembly class)

globally unique identifiers (GUIDs) 2nd

GoSub statement (not supported in VB.NET) 2nd

GoTo statement 2nd

graphical functionality in VB.NET

Guid attribute

guidgen.exe utility 2nd

GUIDs (globally unique identifiers) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Handles keyword 2nd 3rd 4th

Hashtable class

Hashtable.Add method 2nd

Hashtable.Clear method 2nd

Hashtable.ContainsKey method 2nd

Hashtable.ContainsValue method 2nd

Hashtable.CopyTo method 2nd

Hashtable.Count property 2nd

Hashtable.Item property 2nd

Hashtable.Keys property 2nd

Hashtable.Remove method 2nd

Hashtable.Values property 2nd

/help command-line switch

HelpContext property (Err object) 2nd 3rd

HelpFile property

 Err object 2nd 3rd

 Exception class

Hex function 2nd

Hour function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

I/O functionality, providing

I1 (UnmanagedType enumeration)

I2 (UnmanagedType enumeration)

I4 (UnmanagedType enumeration)

I8 (UnmanagedType enumeration)

icon display constants

IDataObject interface

IDataObject.GetData method 2nd

IDataObject.GetDataPresent method 2nd

IDataObject.GetFormats method 2nd

identifiers, globally unique 2nd

IDispatch (UnmanagedType enumeration)

IEEERemainder function (Math class) 2nd 3rd

#If...Then...#Else directive

If...Then...Else statement 2nd

#If...Then...End If directive

IIf function 2nd

ILDASM

 console applications and

 property procedures and

 Windows Forms applications and

Imp operator (not supported in VB.NET) 2nd 3rd

implementations, function

Implements keyword 2nd 3rd

Implements statement 2nd

implicit type conversions 2nd

 command-line switches and

/imports\: command-line switch

Imports statement 2nd

 /r command-line switch and

 /rootnamespace\: command-line switch and

in-line error handling

Indent method (Debug class) 2nd

IndentLevel property (Debug class) 2nd

IndentSize property (Debug class) 2nd

IndexOf method

 Array class 2nd 3rd

 String class

IndexOfAny method (String class)

inheritance 2nd 3rd

 of members

 multiple

 permission to inherit

 rules of 2nd

Inherits statement 2nd

InitialDirectory property

 OpenFileDialog class

 SaveFileDialog class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InnerException property (Exception class)

Input procedure 2nd

InputBox function 2nd

InputLanguageChangingEventArgs class

InputString function 2nd

Insert method (String class)

instance constructors [See class constructors]

instance members

instantiating classes

InStr function (String class) 2nd

InstrRev function (String class) 2nd

Int function 2nd 3rd

Integer data type 2nd

 changes in VB.NET

 converting values to

 encapsulation and

integer division assignment operator (\\\\=)

integer division operator (\)

Intellisense

interest payments, computing

interest rates for annuities, calculating

Interface (UnmanagedType enumeration)

Interface keyword

Interface statement 2nd

InterfaceID property (COMClass attribute)

interfaces 2nd

 abstract members and

 defining

InterfaceShadow property (COMClass attribute)

internal rate of return, calculating 2nd

intrinsic constants

 MsgBox function and

InvokeMember method

IPmt function 2nd

IRR function 2nd

Is operator 2nd 3rd

IsArray function 2nd 3rd

IsCompliant property (CLSCompliant attribute)

IsDate function 2nd

IsDBNull function 2nd

IsEmpty function (not supported in VB.NET) 2nd

IsError function 2nd 3rd

IsError property (Obsolete attribute)

IsMissing function (not supported in VB.NET) 2nd 3rd

IsNothing function 2nd

IsNumeric function 2nd

IsReference function 2nd

Item method (Collection class) 2nd 3rd

Item property (Hashtable class) 2nd

IUnknown (UnmanagedType enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Join function (String class) 2nd 3rd

Join method (String class)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

/keycontainer\: command-line switch

/keyfile\: command-line switch

Keys property (Hashtable class) 2nd

keystrokes, sending to active window

Kill procedure 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

l-value of variables

language elements not supported by VB.NET

language reference

LastDLLError property (Err object) 2nd 3rd

LastIndexOf method

 Array class 2nd 3rd

 String class

LastIndexOfAny method (String class)

late binding 2nd

 command-line switches and

LBound function 2nd

LCase function (String class) 2nd

Left function (String class) 2nd

Len function (String class) 2nd 3rd

Length property

 String class

 VBFixedArray attribute

/libpath\: command-line switch 2nd

lifetime of variables

LIFO (last-in, first-out) data structures

Like operator (String class) 2nd 3rd

Line method (not supported in VB.NET) 2nd

line numbers

 colons must follow

 Erl property and

LineInput function 2nd

/linkresource\: command-line switch

Listeners property (Debug class) 2nd

Loc function 2nd

local variables 2nd

 Dim statement and

Lock procedure 2nd

 Unlock procedure and

LOF function 2nd

Log function (Math class) 2nd 3rd

Log10 function (Math class) 2nd 3rd

logical errors

 detecting

 handling

 at point of detection

 by passing to calling procedures

 by raising runtime errors

 vs. runtime errors

logical operators

Long data type 2nd

 changes in VB.NET

 converting values to

lowercase, converting strings to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LPArray (UnmanagedType enumeration)

LPStr (UnmanagedType enumeration)

LPStruct (UnmanagedType enumeration)

LPTStr (UnmanagedType enumeration)

LPWStr (UnmanagedType enumeration)

LSet function (String class)

LTrim function (String class)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

/main\: command-line switch

Main method

 in console applications 2nd

 procedure-driven programs and

 in Windows Forms applications

managed code

 converting between unmanaged code and

managed execution

manifests of assemblies

MarshallAs attribute

Math class 2nd

Math.Abs function 2nd 3rd

Math.Acos function 2nd 3rd

Math.Asin function 2nd 3rd

Math.Atan function 2nd 3rd

Math.Atan2 function 2nd 3rd

Math.Ceiling function 2nd 3rd

Math.Cos function 2nd 3rd

Math.Cosh function 2nd 3rd

Math.E field 2nd 3rd

Math.Exp function 2nd 3rd

Math.Floor function 2nd 3rd

Math.IEEERemainder function 2nd 3rd

Math.Log function 2nd 3rd

Math.Log10 function 2nd 3rd

Math.Max function 2nd 3rd

Math.Min function 2nd 3rd

Math.PI field 2nd 3rd

Math.Pow function 2nd 3rd

Math.Round function 2nd 3rd

Math.Sign function 2nd 3rd

Math.Sin function 2nd 3rd

Math.Sinh function 2nd 3rd

Math.Sqrt function 2nd 3rd

Math.Tan function 2nd 3rd

Math.Tanh function 2nd 3rd

Max function (Math class) 2nd 3rd

MaxSize property (FontDialog class)

Me operator 2nd 3rd

MemberInfo objects

members

 abstract

 access modifiers and

 accessibility of

 CallByName function and

 declaring with Protected keyword

 implementing properties

 inheritance of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 instance

 MyBase keyword and

 overriding

 shadowing

 shared (static)

 types of in class modules

Message property

 Exception class 2nd

 Obsolete attribute

MessageName property (WebMethod attribute)

metadata

 attributes stored as, in assemblies 2nd

methods

 using delegates to call

Microsoft.VisualBasic namespace

Mid function (String class) 2nd

Mid statement (String class) 2nd

Min function (Math class) 2nd 3rd

MinSize property (FontDialog class)

Minute function 2nd

MIRR function 2nd

MkDir procedure 2nd

Mod operator 2nd 3rd 4th

modality constants

modified internal rate of return, calculating 2nd

Module objects and custom attributes

module-level scope of variables

Module...End Module statement

Month function 2nd

MonthName function 2nd

most significant bit

Move method (Directory class) 2nd

MsgBox function 2nd

MsgBoxResult enumeration

MsgBoxStyle enumeration

MTAThread attribute

MulticastDelegate class

multiple inheritance

multiplication assignment operator (*=)

multiplication operator (*)

Multiselect property (OpenFileDialog class)

multithreaded apartments, creating

MustInherit keyword

 abstract members and

MustOverride keyword

 abstract members and

 Property statement and

 Sub statement and

mutators, property

MyBase keyword 2nd 3rd

MyClass keyword 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

named and positional arguments for attributes

Namespace statement 2nd

namespaces

 assemblies and

 assigning to web services

 Framework Class Library

 importing

 second-level

narrowing casts 2nd

net present value, calculating 2nd

New keyword, instantiating objects with

New subroutine

 custom attributes, defining

 Windows Forms applications and

/nologo command-line switch

Not logical operator 2nd

Nothing keyword

Nothing, evaluating to 2nd

NotInheritable keyword

NotOverridable keyword

 Property statement and

 Sub statement and

Now property 2nd

/nowarn command-line switch

NPer function 2nd

NPV function 2nd

number formats

 predefined

 specifying

 user-defined

Number property (Err object) 2nd 3rd

numbers, evaluating to 2nd

numeric data type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Object data type 2nd

 converting values to

object variables

 binding and

 comparing

 Private statement and

 Static statement and

object-oriented programming

 changes in VB.NET

 functions and operators for

 introduction to

 Visual Basic and

objects

 accessing

 creating 2nd

 declaring using WithEvents

 instantiating

 passing

Obsolete attribute 2nd

Oct function 2nd

OLE Automation objects

 accessing

 creating

On Error... statements 2nd 3rd

On...GoSub/On...GoTo statements (not supported in VB.NET) 2nd

one-dimensional arrays

OpenAccess enumeration

OpenFile method (OpenFileDialog class)

OpenFileDialog class 2nd

OpenMode enumeration

OpenModeTypes enumeration

OpenShare enumeration

operators

 arithmetic

 assignment

 bitwise

 comparison

 concatenation

 logical

 precedence of

/optimize command-line switch

Option Compare statement 2nd

 command-line switches and

Option Explicit statement 2nd

 command-line switches and

Option Strict statement 2nd

 command-line switches and

Optional keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/optioncompare\: command-line switch

/optionexplicit command-line switch

/optionstrict command-line switch

Or logical operator 2nd 3rd

order of precedence for operators

OrElse logical operator 2nd 3rd

Out attribute

/out\: command-line switch

output mode, quiet/verbose

overloading

 attribute constructors

 functions 2nd

Overloads keyword

 Property statement and

 Sub statement and

Overridable keyword 2nd

 Property statement and

 Sub statement and

Overrides keyword 2nd 3rd

 Property statement and

 Public statement and

 Sub statement and

overriding

 members

 vs. shadowing

OverwritePrompt property (SaveFileDialog class)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

PadLeft method (String class)

PadRight method (String class)

page-level events (ASP.NET)

ParamArray attribute

ParamArray keyword 2nd

 VB 6 vs. VB.NET

parameter declarations and attributes

parameterless constructors, invoking

parameters vs. arguments

Partition function 2nd

passing

 arguments

 objects

Peek method

 Queue class 2nd

 Stack class 2nd

percentages, formatting

period (.) in regular expressions

Pi field (Math class) 2nd 3rd

PID (process ID), returning

Pmt function 2nd

pointer variables

pointer-type variables

polymorphism

 overriding as form of

Pop method (Stack class) 2nd

positional and named arguments for attributes

Pow function (Math class) 2nd 3rd

PPmt function 2nd

precedence of operators

Print/PrintLine procedures 2nd

PrintEventArgs class

Private statement 2nd 3rd

 accessibility rules for

 class modules and

 declaring variables and constants

procedure-driven programs

procedure-level scope of variables 2nd

 Dim statement and

procedures

 custom procedures

 writing

 passing properties to

 property

 VB.NET changes to

process ID (PID), returning

ProductName property (Application class) 2nd

ProductVersion property (Application class) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programming elements

 changes to

 obsolete

programming languages and scripting engine properties

programs, procedure driven vs. event driven

project-level scope of variables

properties

 attributes and

 declaring for classes 2nd

 implementing

 passing to procedures

 setting/retrieving values

 VB 6 vs. VB.NET

Property Get procedure

 defining

property members in class modules

property procedures 2nd

Property Set procedure

 defining

Property statement 2nd 3rd

Property...End Property statement

Protected Friend keyword

 class modules and

 declaring variables and constants

Protected keyword 2nd

 accessibility rules for

 class modules and

 declaring variables and constants

public interfaces of VB.NET classes

 encapsulation and

Public statement 2nd 3rd

 accessibility rules for

 class modules and

 declaring variables and constants

Push method (Stack class) 2nd

PV function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

QBColor function 2nd

question mark (?) in regular expressions

Queue class

Queue.Clear method 2nd

Queue.Contains method 2nd

Queue.CopyTo method 2nd

Queue.Count property 2nd

Queue.Dequeue method 2nd

Queue.Enqueue method 2nd

Queue.Peek method 2nd

Queue.ToArray method 2nd

/quiet command-line switch

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

r-value of variables

R4 (UnmanagedType enumeration)

R8 (UnmanagedType enumeration)

Raise method (Err object) 2nd 3rd

 error constants and

RaiseEvent statement 2nd

random numbers, returning

Randomize procedure (Math class) 2nd 3rd

Rate function 2nd

ReadOnly keyword and Property statement

ReadOnlyChecked property (OpenFileDialog class)

/recurse\: command-line switch

ReDim statement 2nd 3rd 4th

/reference\: command-line switch 2nd

reference-tracing garbage collection

reference-type variables

 comparing

 IsReference function and 2nd

 vs. value-type variables

reflection and attributes 2nd

regenerating errors

Regex class

#Region...#End Region directive 2nd

registry [See Windows registry]

regular expressions, providing access to

Rem statement 2nd

Remove method

 Collection class 2nd 3rd

 Hashtable class 2nd

 String class

RemoveHandler statement 2nd 3rd

/removeintchecks command-line switch

Rename procedure 2nd

Replace function (String class) 2nd

Replace method (String class)

reporting bugs

Reset method (ColorDialog class)

Reset procedure 2nd

/resource\: command-line switch

resources, releasing

response files

RestoreDirectory property

 OpenFileDialog class

 SaveFileDialog class

Resume statement 2nd

Return statement 2nd 3rd

Reverse method (Array class) 2nd

RGB function 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 QBColor function and

Right function (String class) 2nd

RmDir procedure 2nd

Rnd function (Math class) 2nd 3rd

/rootnamespace\: command-line switch

Round function (Math class) 2nd 3rd

RSet function (String class)

RTrim function (String class) 2nd

runtime errors

 detecting

 vs. logical errors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

SafeArray (UnmanagedType enumeration)

SaveFileDialog class 2nd

SaveSetting procedure 2nd

Scale method (not supported in VB.NET)

scope

 in class modules

 shadowing by

 of variables/constants 2nd

ScriptEngine function

ScriptEngine property

ScriptEngineBuildVersion function

ScriptEngineBuildVersion property

ScriptEngineMajorVersion function

ScriptEngineMajorVersion property

ScriptEngineMinorVersion function

ScriptEngineMinorVersion property

Second function 2nd

Seek function 2nd

Seek procedure 2nd

Select Case statement 2nd

Send/SendWait methods 2nd

session-level events (ASP.NET)

Set statement

set_Name method

SetAttr procedure 2nd

SetDataObject method (Clipboard class) 2nd

Sgn function [See Sign function]

shadowing by scope

shadowing element types

Shadows keyword 2nd 3rd

 Class statement and

 Property statement and

 Public statement and

 Sub statement and

Shared keyword

 Main method and

 Property statement and

 Sub statement and

shared members

Shell function 2nd

Short data type 2nd

 changes in VB.NET

 converting values to

short-circuiting

 evaluating If statements 2nd 3rd

 logical expressions and

Show... properties (FontDialog class)

ShowDialog method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OpenFileDialog class

 SaveFileDialog class

Sign function (Math class) 2nd 3rd

signatures, function

signed integers and encapsulation

Sin function (Math class) 2nd 3rd

Single data type 2nd

 converting values to

single-threaded apartments, creating

Sinh function (Math class) 2nd 3rd

SLN function 2nd

SolidColorOnly property (ColorDialog class)

Sort method (Array class) 2nd

sort order and Like operator

Source property

 Err object 2nd 3rd

 Exception class 2nd

Space function (String class) 2nd

Spc function 2nd 3rd

Split function (String class) 2nd 3rd

Split method (String class)

SqlClient namespace

Sqrt function (Math class) 2nd 3rd

Stack class

Stack.Clear method 2nd

Stack.Contains method 2nd

Stack.CopyTo method 2nd

Stack.Count property 2nd

Stack.Peek method 2nd

Stack.Pop method 2nd

Stack.Push method 2nd

Stack.ToArray method 2nd

StackTrace property (Exception class) 2nd

StartsWith method (String class)

STAThread attribute

static fields, not sharing values across threads

static members

Static statement 2nd

static subroutines

static variables

 declaring and initializing

 initializing

Stop statement 2nd

Str function 2nd 3rd

straight-line depreciation of assets, computing 2nd

StrComp function (String class) 2nd

StrConv function (String class) 2nd

StrDup function (String class) 2nd

String class

String data type 2nd 3rd

 converting values to

strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 concatenation operators

 Filter function and

 fixed-length, defining

 functions for manipulating

 left aligning

 members of String class

 right aligning

 VB 6 vs. VB.NET

strong-name key containers, specifying

StrReverse function (String class) 2nd

Struct (UnmanagedType enumeration)

Structure data type 2nd

Structure...End Structure statement 2nd

 VB 6 vs. VB.NET

structured error handling 2nd

Sub procedures

 calling

Sub statement 2nd

Substring method (String class)

subtraction assignment operator (-=)

subtraction operator (-)

sum-of-years' digits depreciation of assets, computing 2nd 3rd

Switch function 2nd

switches, command-line

SYD function 2nd 3rd

symbolic constants (VB) 2nd 3rd

SyncLock statement 2nd

SysInt (UnmanagedType enumeration)

System namespace 2nd

 assemblies and

 Exception class

System.Attribute namespace

System.CodeDOM namespace

System.Collections namespace 2nd

System.ComponentModel namespace

System.Configuration namespace

System.Data namespace 2nd 3rd

System.Diagnostics namespace

System.DirectoryServices namespace

System.Drawing namespace

System.IO namespace

System.Net namespace

System.Reflection namespace 2nd

System.Resources namespace

System.Security namespace

System.ServiceProcess namespace

System.Text namespace

System.Text.RegularExpressions namespace 2nd

System.Threading namespace

System.Timers namespace

System.Web namespace

System.Web.UI namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.Windows.Forms namespace 2nd 3rd

System.Xml namespace

SystemTypeName function 2nd

SysUInt (UnmanagedType enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Tab function 2nd

Tan function (Math class) 2nd 3rd

Tanh function (Math class) 2nd 3rd

/target\: command-line switch

TargetSite property (Exception class) 2nd

task ID, returning

TBStr (UnmanagedType enumeration)

Terminate event (not supported in VB.NET) 2nd

text comparison 2nd

 Like operator and

threads of execution, controlling

ThreadStatic attribute

Throw statement

TimeOfDay property 2nd

Timer property 2nd

TimeSerial function 2nd

timestamps, generating

TimeString property 2nd

TimeValue function 2nd 3rd

ToArray method

 Queue class 2nd

 Stack class 2nd

ToBoolean method

ToByte method

ToChar method

ToCharArray method (String class)

ToDateTime method

Today property 2nd

ToDecimal method

ToDouble method

ToInt16 method

ToInt32 method

ToInt64 method

ToLower method (String class)

ToSByte method

ToSingle method

ToString method

 Convert class

 Exception class 2nd

 Type class

ToUInt16 method

ToUInt32 method

ToUInt64 method

ToUpper method (String class)

TransactionOption property (WebMethod attribute)

TreeViewCancelEventArgs class

Trim function (String class) 2nd

Trim method (String class)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TrimEnd method (String class)

TrimStart method (String class)

TriState enumeration

True keyword

Try...Catch...Finally statement 2nd 3rd

two's-complement representation

two-dimensional arrays

Type class

 iterating objects in

 reflection classes and

type members in class modules

type system, common [See Common Type System]

type-safe code

Type...End Type construct [See Structure...End Structure statement]

Type.GetType method

TypeName function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

U1 (UnmanagedType enumeration)

U2 (UnmanagedType enumeration)

U4 (UnmanagedType enumeration)

U8 (UnmanagedType enumeration)

UBound function 2nd 3rd

UCase function (String class) 2nd

underscore (_) VB.NET line continuation character

Unindent method (Debug class) 2nd

universal data types

Unlock procedure

 Lock procedure and

unsigned integer data types

 Convert class methods and

 TypeName function and

unstructured error handling

uppercase, converting strings to

user-defined types 2nd

 declaring 2nd

/utf8output command-line switch

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Val function 2nd 3rd

ValDec function 2nd

value-type vs. reference-type variables

Values property (Hashtable class) 2nd

VarEnum enumeration, members of

variables

 declaring

 command-line switches and

 Option Explicit statement and

 VB.NET changes to

 FileGet/FileGetObject procedures

 FilePut/FilePutObject procedures

 lifetime of

 object [See object variables]

 private

 properties of

 public

 scope of 2nd

 changes for VB.NET

 shadowing by scope

 static 2nd

 value-type vs. reference-type

Variant data type (not supported in VB.NET) 2nd

VariantBool (UnmanagedType enumeration)

VariantType enumeration 2nd

VarType function 2nd 3rd 4th

VB IDE and control-related events

VB.NET

 arrays in

 assemblies

 command-line compiler

 common type system [See Common Type System]

 data types [See data types]

 error handling in

 introduction to

 language changes for

 language reference

 .NET Framework

 object-oriented programming

 changes to

 procedures, changes to

 program structure

 programming elements

 changes to

 obsolete

 variables in

 VB 6 language elements not supported by

VBByRefStr (UnmanagedType enumeration)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vbc.exe

VBFixedArray attribute 2nd

VBFixedString attribute 2nd 3rd

vbObjectError constant

VbStrConv enumeration 2nd

VbTypeName function 2nd

/verbose command-line switch

versioning properties of assemblies

Visual Basic

 built-in constants

 enumerations

 vs. VB.NET

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

\\\\w and \\\\W in regular expressions

/warnaserror command-line switch

WebMethod attribute 2nd

WebService attribute

Weekday function 2nd

WeekdayName function 2nd

Wend keyword (not supported in VB.NET) 2nd

When filter, used with user-defined errors

While...End While statement 2nd 3rd

widening casts 2nd

/win32icon\: command-line switch

/win32resource\: command-line switch

Windows applications, creating

Windows Forms

 applications

 events

Windows registry

 creating entries for VB applications in

 functions for manipulating

 GetAllSettings function and

 GetSetting function and

windows, activating

With statement

WithEvents keyword 2nd

 Private statement and

 Public statement and

WithEvents statement

Write method (Debug class) 2nd

Write procedure

WriteIf method (Debug class) 2nd

WriteLine method (Debug class) 2nd

WriteLine procedure

WriteLineIf method (Debug class) 2nd

WriteOnly keyword and Property statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Xor logical operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Year function 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Cover
	Table of Contents
	Copyright
	PREFACE
	Why Another VB Book?
	Who This Book Is For
	How This Book Is Structured
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Part I: The Basics
	Chapter 1. Introduction
	Section 1.1. Why VB.NET?
	Section 1.2. What Is VB.NET?
	Section 1.3. What Can You Do with VB.NET?

	Chapter 2. Program Structure
	Section 2.1. Getting a VB Program to Run
	Section 2.2. The Structure of a VB Program

	Chapter 3. Variables and Data Types
	Section 3.1. Variables
	Section 3.2. Declaring Variables and Constants
	Section 3.3. Data Types
	Section 3.4. Arrays
	Section 3.5. Object Variables and Their Binding
	Section 3.6. The Collection Object
	Section 3.7. Parameters and Arguments

	Chapter 4. Introduction to Object-Oriented Programming
	Section 4.1. Why Learn Object-Oriented Techniques?
	Section 4.2. Principles of Object-Oriented Programming
	Section 4.3. Classes and Objects
	Section 4.4. Inheritance
	Section 4.5. Interfaces, Abstract Members, and Classes
	Section 4.6. Polymorphism and Overloading
	Section 4.7. Accessibility in Class Modules

	Chapter 5. The .NET Framework: General Concepts
	Section 5.1. Namespaces
	Section 5.2. Common Language Runtime (CLR), Managed Code, and Managed Data
	Section 5.3. Managed Execution
	Section 5.4. Assemblies
	Section 5.5. Assemblies and VB.NET

	Chapter 6. The .NET Framework Class Library
	Section 6.1. The System Namespace
	Section 6.2. Other Namespaces

	Chapter 7. Delegates and Events
	Section 7.1. Delegates
	Section 7.2. Events and Event Binding

	Chapter 8. Attributes
	Section 8.1. Syntax and Use
	Section 8.2. Defining a Custom Attribute
	Section 8.3. Using a Custom Attribute

	Chapter 9. Error Handling in VB.NET
	Section 9.1. Error Detection and Error Handling
	Section 9.2. Runtime Error Handling
	Section 9.3. Dealing with Logical Errors
	Section 9.4. Error Constants

	Part II: Reference
	Chapter 10. The Language Reference
	#Const Directive
	#If . . . Then . . . #Else Directive
	#Region...#End Region Directive
	Abs Function
	Acos Function
	AddHandler Statement
	AddressOf Operator
	AppActivate Procedure
	Application Class
	Application.CompanyName Property
	Application.DoEvents Method
	Application.ExecutablePath Property
	Application.ProductName Property
	Application.ProductVersion Property
	Array Class
	Array.BinarySearch Method
	Array.Copy Method
	Array.IndexOf Method
	Array.LastIndexOf Method
	Array.Reverse Method
	Array.Sort Method
	Asc, AscW Functions
	AssemblyVersion Attribute
	Asin Function
	Atan Function
	Atan2 Function
	AttributeUsage Attribute
	Beep Procedure
	Call Statement
	CallByName Function
	CBool Function
	CByte Function
	CChar Function
	CDate Function
	CDbl Function
	CDec Function
	Ceiling Function
	ChDir Procedure
	ChDrive Procedure
	Choose Function
	Chr, ChrW Functions
	CInt Function
	Class Statement
	Clipboard Class
	Clipboard.GetDataObject Method
	Clipboard.SetDataObject Method
	CLng Function
	CLSCompliant Attribute
	CObj Function
	Collection Class
	Collection.Add Method
	Collection.Count Property
	Collection.Item Method
	Collection.Remove Method
	ColorDialog Class
	COMClass Attribute
	Command Function
	Const Statement
	Cos Function
	Cosh Function
	CreateObject Function
	CShort Function
	CSng Function
	CStr Function
	CType Function
	CurDir Function
	DateAdd Function
	DateDiff Function
	DatePart Function
	DateSerial Function
	DateString Property
	DateValue Function
	Day Function
	DDB Function
	Debug Class
	Debug.Assert Method
	Debug.AutoFlush Property
	Debug.Close Method
	Debug.Flush Method
	Debug.Indent Method
	Debug.IndentLevel Property
	Debug.IndentSize Property
	Debug.Listeners Property
	Debug.Unindent Method
	Debug.Write Method
	Debug.WriteIf Method
	Debug.WriteLine Method
	Debug.WriteLineIf Method
	Declare Statement
	DefaultMember Attribute
	Delegate Statement
	DeleteSetting Procedure
	Dim Statement
	Dir Function
	DirectCast Function
	Directory Class
	Directory.CreateDirectory Method
	Directory.Delete Method
	Directory.Exists Method
	Directory.GetCreationTime Method
	Directory.GetDirectories Method
	Directory.GetDirectoryRoot Method
	Directory.GetFiles Method
	Directory.GetFileSystemEntries Method
	Directory.GetLogicalDrives Method
	Directory.GetParent Method
	Directory.Move Method
	Do...Loop Statement
	E Field
	End... Statement
	Enum Statement
	Environ Function
	EOF Function
	Erase Statement
	Erl Property
	Err Object
	Err.Clear Method
	Err.Description Property
	Err.GetException Method
	Err.HelpContext Property
	Err.HelpFile Property
	Err.LastDLLError Property
	Err.Number Property
	Err.Raise Method
	Err.Source Property
	Error Statement
	ErrorToString Function
	Event Statement
	Exception Class
	Exit Statement
	Exp Function
	File Class
	File.Exists Method
	FileAttr Function
	FileClose Procedure
	FileCopy Procedure
	FileDateTime Function
	FileGet, FileGetObject Procedures
	FileLen Function
	FileOpen Procedure
	FilePut, FilePutObject Procedures
	FileWidth Procedure
	Filter Function
	Fix Function
	Flags Attribute
	Floor Function
	FontDialog Class
	For...Next Statement
	For Each...Next Statement
	Format Function
	FormatCurrency, FormatNumber, FormatPercent Functions
	FormatDateTime Function
	FreeFile Function
	Friend Keyword
	Function Statement
	FV Function
	Get Statement
	GetAllSettings Function
	GetAttr Function
	GetChar Function
	GetObject Function
	GetSetting Function
	GetTimer Function
	GetType Operator
	GoTo Statement
	Guid Attribute
	Handles Keyword
	Hashtable Class
	Hashtable.Add Method
	Hashtable.Clear Method
	Hashtable.ContainsKey Method
	Hashtable.ContainsValue Method
	Hashtable.CopyTo Method
	Hashtable.Count Property
	Hashtable.Item Property
	Hashtable.Keys Property
	Hashtable.Remove Method
	Hashtable.Values Property
	Hex Function
	Hour Function
	IDataObject Interface
	IDataObject.GetData Method
	IDataObject.GetDataPresent Method
	IDataObject.GetFormats Method
	IEEERemainder Function
	If...Then...Else Statement
	IIf Function
	Implements Keyword
	Implements Statement
	Imports Statement
	Inherits Statement
	Input Procedure
	InputBox Function
	InputString Function
	InStr Function
	InStrRev Function
	Int Function
	Interface Statement
	IPmt Function
	IRR Function
	Is Operator
	IsArray Function
	IsDate Function
	IsDBNull Function
	IsError Function
	IsNothing Function
	IsNumeric Function
	IsReference Function
	Join Function
	Kill Procedure
	LBound Function
	LCase Function
	Left Function
	Len Function
	Like Operator
	LineInput Function
	Loc Function
	Lock Procedure
	LOF Function
	Log Function
	Log10 Function
	LSet Function
	LTrim Function
	MarshalAs Attribute
	Max Function
	Me Operator
	Mid Function
	Mid Statement
	Min Function
	Minute Function
	MIRR Function
	MkDir Procedure
	Mod Operator
	Module...End Module Statement
	Month Function
	MonthName Function
	MsgBox Function
	MTAThread Attribute
	MyBase Keyword
	MyClass Keyword
	Namespace Statement
	Now Property
	NPer Function
	NPV Function
	Obsolete Attribute
	Oct Function
	On Error Statement
	OpenFileDialog Class
	Option Compare Statement
	Option Explicit Statement
	Option Strict Statement
	Out Attribute
	ParamArray Attribute
	Partition Function
	Pi Field
	Pmt Function
	Pow Function
	PPmt Function
	Print, PrintLine Procedures
	Private Statement
	Property Statement
	Protected Keyword
	Public Statement
	PV Function
	QBColor Function
	Queue Class
	Queue.Clear Method
	Queue.Contains Method
	Queue.CopyTo Method
	Queue.Count Property
	Queue.Dequeue Method
	Queue.Enqueue Method
	Queue.Peek Method
	Queue.ToArray Method
	RaiseEvent Statement
	Randomize Procedure
	Rate Function
	ReDim Statement
	Rem Statement
	RemoveHandler Statement
	Rename Procedure
	Replace Function
	Reset Procedure
	Resume Statement
	Return Statement
	RGB Function
	Right Function
	RmDir Procedure
	Rnd Function
	Round Function
	RSet Function
	RTrim Function
	SaveFileDialog Class
	SaveSetting Procedure
	ScriptEngine Property
	ScriptEngineBuildVersion Property
	ScriptEngineMajorVersion Property
	ScriptEngineMinorVersion Property
	Second Function
	Seek Function
	Seek Procedure
	Select Case Statement
	Send, SendWait Methods
	Set Statement
	SetAttr Procedure
	Shadows Keyword
	Shell Function
	Sign Function
	Sin Function
	Sinh Function
	SLN Function
	Space Function
	Spc Function
	Split Function
	Sqrt Function
	Stack Class
	Stack.Clear Method
	Stack.Contains Method
	Stack.CopyTo Method
	Stack.Count Property
	Stack.Peek Method
	Stack.Pop Method
	Stack.Push Method
	Stack.ToArray Method
	STAThread Attribute
	Static Statement
	Stop Statement
	Str Function
	StrComp Function
	StrConv Function
	StrDup Function
	StrReverse Function
	Structure...End Structure Statement
	Sub Statement
	Switch Function
	SYD Function
	SyncLock Statement
	SystemTypeName Function
	Tab Function
	Tan Function
	Tanh Function
	ThreadStatic Attribute
	Throw Statement
	TimeOfDay Property
	Timer Property
	TimeSerial Function
	TimeString Property
	TimeValue Function
	Today Property
	Trim Function
	Try...Catch...Finally Statement
	TypeName Function
	UBound Function
	UCase Function
	Unlock Procedure
	Val Function
	ValDec Function
	VarType Function
	VBFixedArray Attribute
	VBFixedString Attribute
	VbTypeName Function
	WebMethod Attribute
	WebService Attribute
	Weekday Function
	WeekdayName Function
	While...End While Statement
	With Statement
	WithEvents Keyword
	Write Procedure
	WriteLine Procedure
	Year Function

	Part III: Appendixes
	Appendix A. What's New and Different in VB.NET
	Section A.1. Language Changes for VB.NET
	Section A.2. Changes to Programming Elements
	Section A.3. Obsolete Programming Elements
	Section A.4. Structured Exception Handling
	Section A.5. Changes in Object-Orientation

	Appendix B. Language Elements by Category
	Section B.1. Array Handling
	Section B.2. Clipboard
	Section B.3. Collection Objects
	Section B.4. Common Dialogs
	Section B.5. Conditional Compilation
	Section B.6. Conversion
	Section B.7. Date and Time
	Section B.8. Debugging
	Section B.9. Declaration
	Section B.10. Error Handling
	Section B.11. Filesystem
	Section B.12. Financial
	Section B.13. IDataObject Interface
	Section B.14. Information
	Section B.15. Input/Output
	Section B.16. Integrated Development Environment
	Section B.17. Interaction
	Section B.18. Mathematics
	Section B.19. Program Structure and Flow
	Section B.20. Programming
	Section B.21. Registry
	Section B.22. String Manipulation

	Appendix C. Operators
	Section C.1. Arithmetic Operators
	Section C.2. Assignment Operators
	Section C.3. Concatenation Operators
	Section C.4. Comparison Operators
	Section C.5. Logical and Bitwise Operators
	Section C.6. Operator Precedence

	Appendix D. Constants and Enumerations
	Section D.1. Visual Basic Intrinsic Constants
	Section D.2. ControlChars Class
	Section D.3. Visual Basic Enumerations

	Appendix E. The VB.NET Command-Line Compiler
	Section E.1. Compiler Basics
	Section E.2. Command-Line Switches
	Section E.3. Using a Response File

	Appendix F. VB 6 Language Elements Not Supported by VB.NET

	Colophon
	Index
	SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y

