
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax for Web
Application
Developers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax for Web
Application
Developers

Kris Hadlock

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240 USA

DEVELOPER’S
LIBRARY

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ajax for Web Application Developers
Copyright © 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval sys-
tem, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32912-3

Library of Congress Catalog Card Number: 2006922747

Printed in the United States of America

First Printing: October 2006

09 08 07 06 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editors
Linda Harrison
Mark Taber

Development Editor
Damon Jordan

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Jessica McCarty

Indexer
Larry Sweazy

Proofreader
Mike Henry

Technical Editor
Timothy Boronczyk

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

This Book Is Safari Enabled

The Safari®Enabled icon on the cover of your favorite technology book means the book is avail-
able through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:
n Go to http://www.samspublishing.com/safarienabled
n Complete the brief registration form
n Enter the coupon code HLID-97IG-ALXW-XJGX-ZH57

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email cus-
tomer-service@safaribooksonline.com.

http://www.samspublishing.com/safarienabled
http://lib.ommolketab.ir
http//lib.ommolketab.ir

❖

This book is dedicated to my wife, Lisa, who inadvertently
introduced me to the world of web design and development
and who also stood by me through endless hours of neglect

while I wrote this book. I also dedicate this book to my
late grandparents, who selflessly got me where I am today

by helping me through school.

❖

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents at a Glance
Introduction 1

I: Getting Started

1 Introduction to Ajax 5

2 The Request 7

3 The Response 19

4 Rendering the Response with XHTML and CSS 33

II: Creating and Using the JavaScript Engine

5 Object-Oriented JavaScript 41

6 Creating the Engine 55

7 Using the Engine 61

8 Debugging 65

9 Extending the Engine 81

III: Creating Reusable Components

10 Accordion 101

11 Tree View 113

12 Client-Side Validation 125

13 Data Grid 141

IV: Ajax Patterns

14 Singleton Pattern 157

15 Model View Controller 163

16 The Observer Pattern 169

17 Data Reflection Pattern 179

18 Interaction Patterns 185

19 Usability Patterns 201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

V: Interaction

20 Understanding Ajax Database Interaction 211

21 Interacting with a Database: The Server-Side 229

22 Advanced Ajax Database interaction 237

VI: Touches

23 Securing Your Application 245

24 Best Practices 253

Index 257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

Introduction 1
An Introduction to the Book Samples 2

I: Getting Started

1 Introduction to Ajax 5
The XML DOM 5

Measuring the Benefits 6

2 The Request 7
An In-Depth Look at XMLHttpRequest 7

A Standard XHR 8

A Database-Enabled XHR 9

Sending Data to a Database-Enabled XHR 9

Creating the Object 11

Asynchronous Data Transfers 13

The Ready State 14

HTTP Status Codes and Headers 16

3 The Response 19
XML 19

Elements 20

Attributes 21

CDATA 22

Parsing XML 23

JSON 27

The Syntax 28

Using JSON 29

Parsing JSON 30

4 Rendering the Response with XHTML and CSS 33
XHTML 33

CSS 36

http://lib.ommolketab.ir
http//lib.ommolketab.ir

II: Creating and Using the JavaScript Engine

5 Object-Oriented JavaScript 41
Object-Oriented Approaches 42

Using the new Operator 42

Literal Notation 43

Associative Arrays 43

JScript.NET 44

Object Constructors 45

Instances 45

Properties 46

Methods 47

Prototypes 49

Instances 50

Creating Properties 51

Overriding and Overwriting Properties 52

Property Protection 52

Methods 53

Extending Objects with Prototyped Methods 53

6 Creating the Engine 55
Creating a Custom Ajax Wrapper 55

Making Requests 56

The Ready State 57

The Response 58

Creating an Ajax Updater 59

Constructing the Object 59

Updating the Request Object 59

The Response 60

7 Using the Engine 61
Getting Started 61

Making a Request 62

Engine Methods and Properties 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 Debugging 65
The JavaScript onerror Event 65

responseText 67

IE Developer Toolbar 67

Installing the Plug-in 68

Disabling the Cache 68

Navigating the DOM 68

Viewing Class and ID Information 70

Safari Enhancer 70

Installing Safari Enhancer 71

The JavaScript Console 71

FireBug 72

Installing FireBug 72

The Command Line 73

Logging Messages in the Console 75

Levels of Logging 76

Inspecting Elements 76

Spying on Ajax 78

9 Extending the Engine 81
Creating a Utilities Object 81

Handling Status Codes with an HTTP Object 88

HTTP Status Code Categories 90

Using the HTTP Object 96

III: Creating Reusable Components

10 Accordion 101
Getting Started 101

The XML Architecture 101

Requesting the XML 103

Creating the Accordion Object 104

Panel Functionality and Data Display 107

Creating the CSS 110

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11 Tree View 113
Structuring the Data 113

Handling the Response 115

Rendering the GUI 117

Adding Style to the Component 122

12 Client-Side Validation 125
Getting Started 125

Creating a Validation Object 127

Validating User Input 128

Providing Visual Feedback 131

The Server Side 132

The Constructor 134

Verifying User Information 135

Registering and Logging In a User 136

13 Data Grid 141
Getting Started 141

Creating a DataGrid Object 143

Displaying the Data 147

Creating a DataRow Object 147

Creating a DataColumn Object 150

Adding Design to the Component 151

IV: AJAX Patterns

14 Singleton Pattern 157
An Overview of the Singleton Pattern 157

Creating an Object Using the Singleton Pattern 158

Using the Singleton Object 161

15 Model View Controller 163
An Overview of the Pattern 163

Creating the Pattern 165

Using the Pattern 166

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 The Observer Pattern 169
Pattern Overview 169

Register Observers Overview 169

Notify Observers Overview 169

Unregister Observers Overview 170

Creating an Error-Handling Object 170

Register Observers 171

Notify Observers 172

Unregister Observers 173

Using the Error-Handling Object 176

17 Data Reflection Pattern 179
An Overview 179

The Multi-User Pattern 181

Creating the Pattern 182

18 Interaction Patterns 185
Creating a History with Cookies 185

The Historian Object 185

Creating and Displaying the XML 189

The Navigation Object 190

Drag and Drop 192

The DragDrop Object 192

19 Usability Patterns 201
Handling Feedback, Errors, and Warnings 202

Designing with Code 204

V: Server-Side Interaction

20 Understanding Ajax Database Interaction 211
Connecting with PHP 212

Bridging the Gap 212

Making the Requests 214

Making the Connection 219

http://lib.ommolketab.ir
http//lib.ommolketab.ir

21 Interacting with a Database: The Server-Side 229
Connecting to ASP.NET 229

Connecting to ColdFusion 233

22 Advanced Ajax Database Interaction 237
Bulk Updates 237

Sending Arrays 237

Sending XML 239

Sending JSON 240

Server-Side XML and JSON 240

XML 241

JSON 241

VI: Finishing Touches

23 Securing Your Application 245
Security Holes 245

Password-Protecting Ajax Requests 246

Creating Unique Passwords 247

Verifying Passwords on the Server-Side 250

24 Best Practices 253
Using the Engine 253

Design Patterns 254

Using Components 254

Static Versus Dynamic Responses 254

Error and Feedback Handling 255

Application History 255

Security 255

Index 257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author
Kris Hadlock has been a contract web developer and designer since 1996. He is a fea-
tured columnist and writer for InformIT and numerous web design magazines. He is
also the founder of Studio Sedition, a web application development firm, and is the
cofounder of 33Inc, the company responsible for DashboardHQ. He maintains a blog
called Designing with Code, which focuses on web application development from a design
perspective and often features useful code snippets to help enhance web applications.You
can find all of the above and more about Kris on his website at www.krishadlock.com.

www.krishadlock.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Acknowledgments
I want to thank Robert Hoekman, Jr., my 33Inc partner who introduced me to tech
writing and passionately preaches interaction design and just good common sense.
I also gratefully thank Nikki McDonald, my InformIT editor, for introducing me to
Sams Publishing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.
You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.
Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.
When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.
Email: webdev@samspublishing.com
Mail: Mark Taber

Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.samspublishing.com/register for
convenient access to any updates, downloads, or errata that might be available for this
book.

www.samspublishing.com/register
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction

Certainly, something must have attracted you to this book. Maybe you are a web
developer who wants to learn how to better integrate Ajax into your work. Maybe you
want a handy reference to keep by your desk as you create tomorrow’s newest technolo-
gy with Ajax.Well, whatever the case, we’re glad you made it.

This book covers just about everything about Ajax and how to integrate it with your
web applications.This book is meant for web professionals with intermediate to
advanced experience looking to learn new techniques and bring their web applications
to the next level.

The first part,“Getting Started,” is all about the basics of Ajax. It includes information
on how to make requests in Chapter 2, how to receive responses as both XML and
JSON in Chapter 3 and how to handle the rendering of the data using CSS and
XHTML in Chapter 4. Part II,“Creating and Using the JavaScript Engine,” covers how
to create an Ajax engine with JavaScript. In order to get some background on object-
oriented JavaScript we will start by learning how to create objects with JavaScript in
Chapter 5. Once we understand how to create objects we will then focus on creating
the engine in Chapter 6.With the knowledge of how to create the engine we will see
how it can be used in a real world web application in Chapter 7. Chapter 8 will focus
on all of the debugging methods that are available for JavaScript and how to use them to
make your life easier.With a better understanding of the Ajax engine we will see how to
extend it by adding additional JavaScript objects in Chapter 9.

Part III,“Creating Reusable Components,” covers how to create numerous Ajax-
enabled components for rendering the response data that is received from the server.The
different components that are covered are an accordion, a tree view, a client-side valida-
tor, and a data grid. Part IV,“Ajax Patterns,” starts with Chapter 14 where we will cover
using the Singleton pattern with specific JavaScript objects and using them in our Ajax-
enabled web applications. Chapter 15 is an explanation of how to use the Model View
Controller pattern to structure our JavaScript objects.The Observer pattern is then cov-
ered in Chapter 16 where we will cover how to create an object to cover error manage-
ment.The Data Reflection and Multi-User patterns are covered in Chapter 17 in order
to provide an understanding of how to create interactive web applications that allow
people to share web spaces and see each other’s updates as they occur. Chapters 18 and
19 are both chapters that will cover different ways or best practices for interactions and
usability in our web applications. Part VI,“Server-Side Interaction,” will cover the use of
various languages to connect with server-side technologies and even the database.The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

last part of the book,“Finishing Touches,” is as it says, an explanation of how to add
some finishing touches to your Ajax-enabled web applications, such as security and some
best practices.

An Introduction to the Book Samples
As I mentioned earlier, the goal of this book is to teach you how to create reusable Ajax
applications with object-oriented JavaScript. Instead of creating individual samples with
no context, I have decided to create individual samples that are usable on their own and
as a part of larger web applications as a whole.Therefore, we will learn how to create an
Ajax engine, components, and connections to databases as individual chapter samples, but
we will also combine these individual pieces into a larger application that will be contin-
ually built throughout the book.The final application will consist of all the individual
pieces tied together by Ajax to create an internal web mail application that can be used
in any user-based application, such as a community-based web application, for example.

The samples that are used in each chapter and ultimately for the final application can
be found at samspublishing.com.Within each chapter, the samples that correlate to the
final application will be denoted with listing headings that identify each code snippet.
Not only will you learn how to create and use your own reusable Ajax components, but
you also will learn how to utilize their reusability by connecting them to any future Ajax
applications that you build.

2 Introduction

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I
Getting Started

1 Introduction to Ajax

2 The Request

3 The Response

4 Rendering the Response with XHTML and CSS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1
Introduction to Ajax

Thanks for picking up a copy of my book. My goal for this book is not only to explore
the technologies that define Ajax and how they come together to create powerful client-
side interactions, but also to teach you how to create practical examples that can be
reused in any other Ajax-enabled web application.These examples will be completely
object oriented for the scalability and flexibility that is required in enterprise-level appli-
cations.This book consists of chapters that will guide you through individual Ajax exam-
ples, such as how to create a reusable Ajax engine, how to create Ajax-enabled compo-
nents, and my personal favorite, how to connect to server-side languages with Ajax.Ajax
requires supporting technologies such as XML (Extensible Markup Language) and JSON
(JavaScript Object Notation) for the data-interchange and JavaScript and CSS (Cascading
Style Sheets) for the data rendering and display; therefore we will be focusing on these
technologies before we dive into the more complex world of Ajax.With the knowledge
of front-end and back-end integration, you will learn how each example can be com-
bined into a functional application; after all,Ajax does require knowledge of both since
they become so tightly integrated.We will also cover common programming patterns
that can be applied to Ajax to make development much quicker and cleaner. From there
we will learn some best practices for securing our Ajax applications and creating intuitive
user interactions, as well as message handling and other client-side data displays.

Ajax is an acronym for Asynchronous JavaScript and XML, and at its heart is the
XMLHTTPRequest object, which is part of the XML DOM (Document Object Model).
Since it is such a critical part of Ajax, let’s take a brief look at the XML DOM to see
how it fits in with the subjects that we will be covering.

The XML DOM
The XML Document Object Model defines a standard way for accessing and manipulat-
ing XML documents.The DOM enables JavaScript to completely access XML or
XHTML documents by providing access to the elements which define the structure.The
accessibility is possible through a set of intrinsic JavaScript objects that focus on DOM
manipulation.This model is something that we will be using throughout the rest of this
book because it is required to parse the responses that we receive from the server side
when we create an XMLHTTPRequest (XHR).As mentioned earlier, the XHR is the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

core of the Ajax model and without it the model would not exist.This is the piece of
the Ajax puzzle that has created the recent buzz because it allows HTTP requests to be
made to the server without refreshing the browser.

Though there has been a lot of recent hype surrounding Ajax, it has existed for quite
some time. Microsoft originally released the XHR object in 1999 with Windows IE 5 as
an ActiveX object available through the use of JavaScript and VBScript. It is now sup-
ported by Mozilla, Firefox, Safari, Opera, and Netscape by using a native JavaScript
object.This native JavaScript object will also be supported with the release of Windows
Internet Explorer (IE) 7.Although the technologies have been in existence and used by
some developers in the past, it has only recently gained large popularity.The cause of its
recent popularity is largely based on the support that is offered by browsers because not
many browsers had the support necessary for powerful DHTML, XHTML, CSS, and
XMLHTTPRequests until more recent versions. Now it is possible to create such interac-
tions with successful cross-browser and cross-platform results.The adoption of better
support for these technologies has brought Ajax to the forefront and it is once again an
exciting time to be a web developer. Small, independent operations are regularly emerg-
ing with applications that rival the desktop by providing powerful functionality while
immensely improving the user experience.

Measuring the Benefits
Ajax is a powerful collection of languages that, when brought together, create extremely
intuitive user interfaces and client-side interactions.Although this is true, there are many
developers who get so excited by the hype surrounding it that they simply throw the
code into their applications without measuring the benefits of using it beforehand. Not
every web application has a need for Ajax, but there are many parts of an application that
can be enhanced by utilizing its benefits. In this book, we will cover usability patterns
that will handle feedback, server-side form validation before we even submit the form,
and Ajax-enabled components that can enhance sections of our web applications without
overdoing it.Ajax is also great to use if you would like to make a server-side connection
and possibly a database interaction without refreshing the browser.This is what makes
Ajax so powerful because it allows us to interact with the server, receive HTTP status
codes, save data to a database, and determine what to present to the user without ever
refreshing the page.This request/response pattern can continually persist as a desktop
application does, but Ajax-enabled web applications are, well, on the Web—accessible by
anyone with a connection, without any downloads or shipping costs for delivering large
fancy boxes.The Web is the new desktop, and we are on the verge of a major software
shift that we can actively participate in as the pioneers of on-demand information.

Ajax can be a valuable connection between the interface and back-end logic, allowing
the back end to be robust and powerful with a simple yet intuitive interface that pro-
vides on-demand feedback to users. It also provides ways to exchange data with server-
side languages and store it in databases without disconnecting the user from the
application like standard applications do when refreshing the browser window.After
reading this book, you will have the information needed to create fully functional Ajax
applications.

6 Chapter 1 Introduction to Ajax

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2
The Request

Now that you have some background on Ajax and a brief overview of what we will
set out to accomplish with the sample project, you are ready to assemble the request.
This chapter will introduce the inner workings of the request and provide you with the
knowledge to not only create the request object, but to also understand how to approach
different request models.

An In-Depth Look at XMLHttpRequest
The XHR (XMLHttpRequest) object is the core of the Ajax engine. It is the object that
enables a page to get data from (using the GET method) or post data to (using the POST
method) the server as a background request, which means that it does not refresh the
browser during this process.As we covered in Chapter 1,“Introduction to Ajax,” the
hype surrounding Ajax has been based on this object and the fact that the interaction
model it creates is more intuitive than a standard HTTP (Hypertext Transport Protocol)
request.This is because changes happen on demand when the user makes them, and
allow web applications to feel more like desktop applications.The XHR eliminates the
need to wait on the server to respond with a new page for each request and allows users
to continue to interact with the page while the requests are made in the background.
This is a key factor in maintaining an intuitive user experience: Users should never be
aware of the process; rather, they should be focused on the task at hand, which is using
your service.The on-demand nature of the XHR is extremely beneficial when dealing
with web applications where users are trying to accomplish tasks because the standard
HTTP request is better suited for presentation-type websites.

Aside from the background data processing, the GET and POST methods of the XHR
object work the same as a standard HTTP request. Using either the POST or the GET
method allows you to make a request for data from the server and receive a response in
any standardized format.The most common formats in which to receive a response are
XML, JSON (JavaScript Object Notation), and text.We will cover all formats in detail in
Chapter 3,“The Response.” POST is specifically useful when sending data that is larger
than 512 bytes (an amount that the GET method cannot handle).After a response is
received, the application can be populated with new data from the server by using the
DOM with DHTML, which is a combination of XHTML, JavaScript, and CSS.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

All Ajax requests start with a client-side interaction that is typically managed by
JavaScript. JavaScript creates the XHR object and makes an HTTP request to the server.
What happens from here can take on many different forms. Let’s take a look at three of
the most common request models and their processes.

A Standard XHR
If you were to break down an Ajax request to its bare functionality, this is what you
would be left with. In this scenario, a static XML, JSON, or text file residing on the
same domain is requested by the XHR object through the GET method. It is then
returned by the server to be handled by the client-side code that requested it.Take a
look at Figure 2.1 to see the flow of a standard Ajax model.

8 Chapter 2 The Request

Figure 2.1 This request is the simplest form of the Ajax
request/response model, involving only a static XML, JSON, or text file

residing on the same domain.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This type of request can be beneficial if a web-savvy client or a developer is updating
the requested file on the server, which is typically not the case, especially with large-scale
applications. If this model is not going to meet your needs, the next approach has what
this model is missing most: a database.

A Database-Enabled XHR
Learning how to create a database-enabled XHR is like making your first database inter-
action. It opens a whole new world of possibilities and is not as complicated as you
would think; it is trivial compared to the complex functionality that you can achieve
with database-integrated Ajax.To use this model, we would start with a request to a
server-side language.The server-side language would query the database, based on what
was requested, via custom methods that we would write to handle specific database
interactions.After the data has been received by the server-side language, it can be
returned to the XHR that originally requested it as XML, JSON, or text and handled by
the client-side code.This request allows users to retrieve custom data based on the
requests that they make. See Figure 2.2 to get a better understanding of the flow in a
database-enabled XHR.

Although this request model is quite a bit more powerful than a standard request, you
might want even more control.The next model will provide you with the ability to post
data to the database and receive data based on the request, or simply receive a Boolean
for a successful database INSERT, all without refreshing the page.

Sending Data to a Database-Enabled XHR
Sending data to the database starts with an XHR GET or POST to a server-side
language/engine.After the server receives the request, it parses the XML or simple
key/value pair sent by the XHR and updates the database accordingly.This request
model updates the database based on user interaction, without ever refreshing the brows-
er.This is a great way to replicate the Save button in a desktop application.We will use
this model in the sample by saving sent emails to the database to allow the user to
retrieve it at a later time. Figure 2.3 shows the flow of this request type with optional
response data, which we will cover in Chapter 3.

Sending data to a database-enabled XHR provides the most power out of the request
models mentioned in this chapter. Essentially, it provides us with full database control
through the XHR.There are many different situations in which you will want to post
data to the server with the XHR. For example, you might want to password-protect
your XHR by sending a password to the server, and then authenticate it before querying
the database. Or, you might want to insert or update records in a database, or select
records based on the request.

9An In-Depth Look at XMLHttpRequest

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.2 A database-enabled XHR opens up a world of possibilities
and will take your Ajax applications to a whole new level.

Server-side interaction with Ajax allows us to create on-demand database updates, just as
a desktop application would save our progress.There is so much to cover on the server
side of a request, which is why I dedicated an entire section of the book to this very
topic in Part V,“Server-Side Interaction.” But first, it is important that there be a solid
understanding of the object and its capabilities before diving into complex code.

10 Chapter 2 The Request

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.3 A database-enabled XHR POST allows you to combine the
XHR with complete database access.

Creating the Object
With a better understanding of the XHR and different request models, we can now
focus on creating the object. Creating the request object is trivial in comparison to the
power that is unleashed when applying it to a project.

To create the request object, you must check to see if the browser uses the XHR or
the ActiveX object.The primary difference between the objects is the browsers that use
them.Windows Internet Explorer (IE) 5 and above use the ActiveX object, whereas
Mozilla, Firefox, Netscape, Opera, and Safari use the native JavaScript XHR object.The

11Creating the Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

second difference is the way in which we create each object:Windows IE requires the
name of the object to be passed as a parameter to the ActiveX constructor, whereas the
other browsers provide us with the native JavaScript object, which only we need to
instantiate:

function makeRequest(url)

{

if(window.XMLHttpRequest)

{

request = new XMLHttpRequest();

}

else if(window.ActiveXObject)

{

request = new ActiveXObject("Msxml2.XMLHTTP");

}

sendRequest(url);

}

As you can see from the code sample, the object creation is really a very simple task.
We create a method named makeRequest to handle—you guessed it—making the
request and to decipher what type of object the browser uses by creating a condition
that checks for the native XHR object. If this object is not available, we check for the
ActiveXObject.After the correct object type has been identified for the current brows-
er, the correct object is instantiated and a request object is created.This object can now
be used to access all the properties and methods listed in Tables 2.1 and 2.2, which are
available to the XHR object.

Table 2.1 A List of XHR Properties and Corresponding Definitions

Properties Definitions

onreadystatechange An event handler that fires when the state of the request
object changes.

readyState Returns number values that indicate the current state of the
object. These values are listed in Table 2.3.

responseText String version of the response from the server.

responseXML DOM-compatible document object of the response from the
server.

status Status code of the response from the server.

statusText A status message returned as a string.

12 Chapter 2 The Request

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 2.2 A List of XHR Methods and Corresponding Definitions

Methods Definitions

Abort() Cancels the current HTTP request.

getAllResponseHeaders() Retrieves the values of all the HTTP
headers.

getResponseHeader("label") Retrieves the value of a specified
HTTP header from the response
body.

Open("method", "URL"[, asyncFlag Initializes an MSXML2.XMLHTTP or
[, "userName"[, "password"]]]) Microsoft.XMLHTTP request, and

specifies the method, URL, and
authentication information for the
request.

Send(content) Sends an HTTP request to the server
and receives a response.

SetRequestHeader("label", "value") Specifies the value of an HTTP head-
er based on the label.

These two tables might look like they have only a small number of options, but as you
will find in the following chapters, they pack a lot of power when used with back-end
code, a database, and a dynamic front end.

Asynchronous Data Transfers
If you are new to data transfers and you are not exactly sure what the term asynchronous
data transfers actually means, don’t worry—you are probably unaware of the fact that you
already understand them and have used them while developing in other languages.This
type of transaction is most typical of programming languages, and is a very important
part of the XHR and, ultimately, all enterprise Ajax applications.This section will
demystify asynchronous data transfers before we begin to dive into coding the object-
oriented Ajax engine.

Asynchronous data transfers are a type of two-way communication that occurs with a
time delay, allowing data to respond on its own time, when it is available. In other words,
you can make a request to the server, continue to process other data, and receive a
response at the server’s leisure, thus making web applications very flexible.Asynchronous
is the default nature of the request/response model of the XHR in an Ajax engine.This
means that the request/response data is not transferring at predetermined or regular set
intervals. For example, you can make an HTTP request to a server and continue to
process other client-side interactions while waiting for the response in the background.
This can all be happening while the user is working on other tasks or performing other
interactions—completely unaware of the data processing in the background.This means
that you can make calls to a server-side language to retrieve data from a database, and

13Asynchronous Data Transfers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return that data as XML, JSON, or text.You can also send data to a server-side language
to be stored in a database, or you can simply load a static XML, JSON, or text file to
dynamically populate pages of your website without refreshing the page or interrupting
user interaction on the front end.

In order to process this request, we must first call two XHR methods: open and
send.The open method of the XHR object takes three parameters.The first is a string
that represents the method in which the request is to be sent.This method value can be
GET, POST, or PUT.The second parameter is the URL that is being requested in the form
of a string, which can be XML, JSON, a text file, or a server-side language that returns
any of these formats.The last parameter, which happens to be the one that we are focus-
ing on, is a Boolean that has a default value of true for asynchronous and false for
synchronous.The send method follows open and is the actual method that sends the
HTTP request and receives a response in the format that you specify.This method takes
one string parameter, which can be XML or a simple key/value pair to be sent as a
POST. Here is an example of the open and send methods as they would be used in a
simple Ajax request:

request.open("method", "URL", true);

request.send(null);

Asynchronous data transfers can prove to be complicated to manage in large-scale sit-
uations, but they are far more scalable and usable than synchronous data transfers. In
order to serve complex audiences with varying skills and experience, developers need to
create complex applications that can handle many tasks.Asynchronous interactions can
supply this audience with the possibilities of multitasking and completing tasks efficient-
ly, without the hassle of waiting for server responses. Synchronous transactions wait for a
response to one request before another can be made. In a robust web application, this
type of transaction could easily freeze up the page while the server is processing the
requests in a queue, one after the other. Ultimately, this would be unusable and could
easily turn users away.

The Ready State
After the XHR object has been created and the request has been made, we need a way
to know when the response has been received.This is where the onreadystatechange
event handler is used.The onreadystatechange event handler fires when the state of
the request object changes and allows us to set a callback method to be triggered.After
this callback method is triggered, it is up to us to handle the response.The custom call-
back method named onResponse, shown in Listing 2.1, will be covered in Chapter 3,
where we will cover all aspects of an Ajax response.

14 Chapter 2 The Request

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 2.1 Sending a Request

function sendRequest(url)

{

request.onreadystatechange = onResponse;

request.open("GET", url, true);

request.send(null);

}

Listing 2.2 is a custom method named checkReadyState that checks the ready state of
the XHR object and handles each state in a separate branch based on the number that
the current state equals.This custom method will be called from the onResponse
method to determine the ready state of the XHR before it handles parsing the response
object.

Listing 2.2 Determining the readyState Value

function checkReadyState(obj, id)

{

switch(obj.readyState)

{

case 0:

document.getElementById(id).innerHTML = "Sending Request...";

break;

case 1:

document.getElementById(id).innerHTML = "Loading Response...";

break;

case 2:

document.getElementById(id).innerHTML = "Response Loaded...";

break;

case 3:

document.getElementById(id).innerHTML = "Response Ready...";

break;

case 4:

document.getElementById(id).innerHTML = "";

return (obj.status == 200);

break;

default:

document.getElementById(id).innerHTML = "An unexpected error has
occurred.";

}}

Notice that there are two parameters in this method.The first parameter; named obj, is
the XHR object that made the request and is now being used to check the readyState
status of the response from the server.The different numbers that are returned in relation
to the readyState are listed in Table 2.3 with a definition for each.

15The Ready State

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 2.3 A List of the readyState Values, with Translations and Definitions for Each

readyState Values Translations Definitions

0 Uninitialized The object is not initialized with data.

1 Loading The object is loading its data.

2 Loaded The object has finished loading its data.

3 Interactive The user can interact with the object
even though it is not fully loaded.

4 Complete The object is completely initialized.

The second parameter, named id, is the ID of an HTML element that can be located in
the client-side XHTML.This ID is located by using JavaScript’s
document.getElementById method to find the specified element by id in the current
page using the DOM.After this element is located, the innerHTML property for the ele-
ment is set to a custom message that we choose to display in relation to each ready state.
This is an excellent way to provide feedback to the user regarding the status of a request.
As you can see from Listing 2.2, we are adding a text message that essentially represents a
loading message that is specific to each state of the request to present a frame of refer-
ence to the user.After the readyState reaches a value of 4, this means that it has com-
pleted loading.When it has completed loading, the checkReadyState method returns
whether the status of the response is equal to 200.An HTTP status of 200 means that
the request has succeeded and that it is ready to be handled.This is one of many HTTP
status codes that can be received and should be properly handled by the Ajax engine.
The next section covers more status codes and supplies examples of typical uses for both
HTTP status codes and headers.

HTTP Status Codes and Headers
The request status of the Ajax object is equivalent to the HTTP status of the file that is
being requested. HTTP status codes represent the response from the server based on the
status of the file that is being requested.There are five categories of status codes available
for the HTTP request and the XHR:

n Informational: 1xx
n Successful: 2xx
n Redirection: 3xx
n Client Error: 4xx
n Server Error: 5xx

When a status code is received through the Web, it is represented as a number, such as
when you try to go to a website and get a 404 error.This is not an arbitrary number; it
is representative of the file status and in this case represents the “File Not Found”
response.All status codes must be handled appropriately by the server and, ultimately, the

16 Chapter 2 The Request

http://lib.ommolketab.ir
http//lib.ommolketab.ir

requesting Ajax engine.When making a request with the XHR object, these status codes
need to be handled by the script that is receiving the response.This means that the
developer is responsible for providing feedback to the user based on the response and
should do so to make a more usable web application.Typically, if there is a successful
response, new data is rendered on the client side as XHTML; otherwise, a message of
some sort can be displayed to inform the user that the transaction was not successful and
what went wrong. Error handling is not the most exciting thing to code, but it is essen-
tial to creating a usable application and can give you skills that you would not gain in
other coding situations.We will learn more about error handling in Part II,“Creating
and Using the JavaScript Engine,” where we will create a custom object to handle all the
available HTTP status codes, and respond with useful messages for debugging and ulti-
mately providing users with feedback.To learn more about HTTP status codes, a full list
of definitions can be found on the W3C (World Wide Web Consortium) website at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

The XHR object can also get or set HTTP headers on the server. Headers can be
used to retrieve specific data about a requested file or information regarding specific
server attributes.An example of how this data can be useful is in determining how to
parse a requested file based on the content-type header. For instance, if the content type
is text/XML, we know that we can parse it using the XML DOM and create appropri-
ate methods for handling different types of content.There are many other determina-
tions that can be made based on HTTP headers.

There are three native header methods in the XHR object: setRequestHeader,
getResponseHeader, and getAllResponseHeaders.The setRequestHeader method
enables you to set a header’s value by specifying the header by label and passing a value.
The syntax for this method is

request.setRequestHeader("label", "value");

By setting the request header, you are adding, deleting, overriding, or replacing the
default value of the HTTP request header on the server during that particular request. If
a header is not well formed, it is not used and an error occurs, which stops the header
from being set.

In addition to setting headers, the XHR enables you to retrieve headers during the
response as well.There are two methods that can be used to retrieve headers:
getResponseHeader and getAllResponseHeaders.The getResponseHeader
method takes a header label as the parameter, which is used to get specific data from that
header. Here is a sample of each method:

request.getResponseHeader("label");

request.getAllResponseHeaders();

17HTTP Status Codes and Headers

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.4 A list of available HTTP headers that can be retrieved by the
getAllResponseHeaders method.

This was just an introduction to how useful headers can be in your web applications.
There are hundreds of uses that you will find that are out of the scope of this book.To
learn more about HTTP headers, a full list can be found on the W3C website at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

18 Chapter 2 The Request

The getAllResponseHeaders method returns all the headers from the response,
which varies depending on the server that is responding. Figure 2.4 shows a sample of
all the response headers available for an XML file on the Windows server where my
website is currently running.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

3
The Response

In Chapter 2,“The Request,” we started to discuss the response when we covered the
ready state and status codes of the XHR.This chapter will go beyond this state of the
request and focus on two specific data-interchange formats in which the response can be
received.An Ajax response can come in various formats; the most common include
JSON and the most widely accepted, XML. Each format can be useful depending on the
results you are trying to achieve. However, deciding on a single format for your applica-
tion can be useful as a convention for future management, especially if you are building a
large-scale application. For example, if you decide to use XML as the response in one
situation, it would be much easier to continue to count on that format as the response
when making all other requests.This might differ from one application to the next but,
if possible, it is an important theory to keep in mind. It is also good to keep in mind the
scalability of the technology that you choose, especially if you are planning on creating a
scalable application in which you expect exponential growth. Let’s get started by taking
an in-depth look at XML, the syntax, how to parse it, and how to use it in your next
application.

XML
XML (Extensible Markup Language) is a popular choice for XHRs, simply because it is
the standard intermediate language that all programming languages are able to share. It is
also supported both on the server side and client side, which makes it the most flexible
solution. XML is essentially a custom tag-based structure that you, the developer, define.
XML’s tag-based structure is similar to that of HTML, except that HTML has predefined
tags that represent its structure, such as the head, the body, tables, and so on.The follow-
ing is an extremely simple example of an HTML table, which could easily be translated
or used as XHTML:

<table><tr><td></td></tr></table>

XML can be passed between the front end and the back end for easy communication
of multiple languages. Having this common language between the front end and the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

back end is extremely powerful. It enables us to create direct connections from the GUI
to a server-side language and, ultimately, if desired, a database. Communicating with
XML between the GUI and the front end allows for complete separation of the two
application layers. Separation of the GUI and the back-end logic is extremely important
because it enables us to have a completely decoupled application in which GUI develop-
ers can work on the front end, while the back-end developers work on the back end.
This might seem like common sense, but it is an approach lacking approach in many
companies. It keeps specific parts of the application separated for easier management, and
allows teams or individual developers to focus on the layer that is in need of growth.
Not only is this approach ideal for teams of developers, it is also important for any indi-
vidual developer who might be working on every part of the application.With this
structure, an individual developer can focus on specific layers of the application without
interfering or having to make changes to the adjacent layers.

XML formatting is trivial, but there are important principles to consider when plan-
ning a solution. Imagine having to format email data into a structure that could be
requested through an Ajax engine and displayed with client-side JavaScript objects.This
is a structure that we will be creating for the sample in this book.When architecting this
structure, we want to keep in mind that we may use it in multiple objects or locations of
the application and should therefore keep it as abstract as possible.We will start by defin-
ing the main elements that will create this structure.

Elements
XML is composed of custom tags called elements, which are defined in the architecture
phase of a web application.They can represent any name, value, or data type that will be
used in your application.When creating an XML structure, you become the architect of
your application, deciding what data you will need to display certain items on the
screen, or what response should happen based on a user’s interaction.

It is important to keep our structures as abstract as possible by not naming items spe-
cific to the target application, but there are often unique situations that prevent us from
being as abstract as we need to be. In these cases, it is not beneficial to spend the extra
time to make our XML structure abstract because it might not even be necessary to
reuse the XML data in multiple areas of the application.With that said, it is possible to
be abstract with our email XML sample and it will be reused in other aspects of the
application.The following is a usable XML format, but not an extremely scalable or
reusable option:

<categories>

<From/>

<Subject/>

<Date/>

</categories>

20 Chapter 3 The Response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In order to keep these categories abstracted, we will change the names of the ele-
ments to category (see Listing 3.1).

Listing 3.1 An Abstract List of Categories (.xml)

<categories>

<category>From</category>

<category>Subject</category>

<category>Date</category>

</categories>

This option provides the flexibility that allows us to add additional categories with ease.
There are many reasons that this option is more scalable; an important one to remember
is the fact that we can add a new category without having to change the structure of our
XML data.This is why it is so flexible and a more scalable option than the previous
example.Also, if we create object-oriented objects to display the data, we do not need to
add additional parsing and display code to handle the new elements.This is why it is so
important to architect the solution with abstract structures that can be scalable and easily
ported to other applications or objects. For instance, imagine that you need to display
the same list of categories in two different ways, such as in a data grid and an email pre-
view.This same set of elements can be used in both objects, which eliminates any redun-
dancies in code from our application.

Although elements are what make XML, there is a limit to what can be achieved
with elements alone. Let’s take a look at attributes and how they help us add additional
information to our XML data.

Attributes
XML attributes are additional properties that can be added to your elements to provide
more information specific to the structure. From the email sample, let’s focus on an email
element.An email has many attributes, such as an action that is triggered when the email
is selected, and an icon association, such as a sealed or opened envelope, based on the
read status of the email. In order to represent our emails in the XML, we will create a
group of items that can eventually become a collection of objects or an array when they
are parsed on the client side.This is where we will add our action and icon attributes.
Attributes are easy additions to elements.Take a look at Listing 3.2 to get an idea of how
we will add the action and icon attributes to an XML element.

Listing 3.2 An Abstract List of Items (email.xml)

<items action="alert(’Grace Hopper’);" icon="img/mail.gif">

<item><![CDATA[Grace Hopper]]></item>

<item><![CDATA[BUG Found]]></item>

<item>2006-03-31 09:27:26</item>

</items>

21XML

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are some issues that are very important to be aware of when using attributes,
especially in large applications where making a mistake in the architecture stage can cre-
ate havoc when scaling. One of the biggest issues with attributes is not having the ability
to add multiple values in one attribute.This could create an issue if you later decide that
you need to have more than one instance of a specific detail that was already defined as
an attribute, leaving you or your fellow developers having to make changes in multiple
locations where there are references to the attributes.

Another important issue, and one that we will discuss a solution for in the next sec-
tion, is adding HTML to your XML. HTML cannot be added to attributes because it
will create an invalid structure.The only way to add HTML to an XML structure is
within an element. It is much safer to add an element than an attribute because if you
realize that you made a mistake and forgot to format the element properly to contain
HTML, you can always reformat it later to accept HTML without breaking any code
that might be referencing it. In order to add HTML to elements so that it is readable by
the programming language that is parsing it and does not break the validation of the
XML, we need to add CDATA tags to the element tags.

CDATA
CDATA makes XML—and, ultimately, the web applications that use it—extremely pow-
erful by allowing us to add HTML to elements.The HTML can then be used to display
formatted data directly into a DOM element in our Ajax application front end.When
XML is parsed by the programming language that we are using, the value between the
element tags is also parsed.The following example shows a group of <item> elements
that are nested in an </items> element:

<items action="alert(’Grace Hopper’);" icon="img/mail.gif">

<item>Grace Hopper</item>

<item>BUG Found</item>

<item>2006-03-31 09:27:26</item>

</items>

These nested elements need to be parsed into subelements by the parser in order to
be interpreted by the programming language as child nodes, for example.This means
that nesting HTML tags inside of XML elements will not work because the parser will
see these elements as nested or child elements of the parent element rather than HTML
tags, which will make the XML invalid, causing parsing errors or unexpected results.The
following XML will parse with the HTML bold tag () as an XML element because
the parser will see the bold tags as nested XML tags rather than HTML:

<item>BUG Found</item>

In order to add HTML to the XML element, we are required to use CDATA. XML
parsers do not parse the data immediately following these tags, leaving us with a valid XML

22 Chapter 3 The Response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

structure and ultimately the HTML format that we would like to display in the page.The
following code shows valid XML with HTML tags nested in an element using CDATA:

<item> <![CDATA[BUG Found]]></item>

When this data is parsed by the client-side scripting language, which in our case will
be JavaScript, the HTML will render as is between the tags. For example, the text value
of BUG Found will display as bold text to the user in the GUI if we write the data to the
document.The data can be written to the document by simply targeting an HTML tag
using the DOM and appending the value with JavaScript’s intrinsic innerHTML property,
or we could simply use document.write(); to write the value directly to the location
in which we place this line of code. Let’s take a deeper look at parsing the response.

Parsing XML
When planning the format and tag names that you will be using in your XML, it is
important to keep a number of things in mind. For instance, it is usually beneficial to
have unique names for elements that are at different depths in your file.This will elimi-
nate parsing issues when using JavaScript’s intrinsic getElementsByTagName method.
Using this method will return an array of all the elements by the name that you specify
without looking at the depth in which they reside. One issue that this could cause is
that groups of values from different depths that do not belong together can be combined
into one array that does not delineate the correct location of the data, causing a parsing
nightmare for you or your fellow developers.There are ways to parse data that use nest-
ed tags with duplicate names, such as targeting with the childNodes property, but this
can become difficult and lengthen the development process.You could also create an
object that has methods for parsing specific items by name at specific depths, such as
XPath does in other languages, or use attributes to distinguish different nodes with the
same name. But for our purposes, we will simply define our structure in a way that we
do not have to worry about such issues.

There are fairly standard ways of parsing XML with different languages, but parsing
XML with JavaScript is a bit different.As I have mentioned, JavaScript has an intrinsic
method named getElementsByTagName, which can target a group of elements directly
by name and allow us access to them so that we can easily parse element or attribute
values.This method will either return a single element or a group of elements by the tag
name specified as the parameter, as in the following example:

response.getElementsByTagName(’items’);

When the method finds a group of elements, it will return an array of childNodes
that you will need to parse to receive their inner nodeValues.To use this method in
your parsing, it is important to target the XHR object correctly after the response has
been made. Let’s take a look at Listing 3.3 for the completed XML sample that we will
use as a parsing example.

23XML

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.3 The Final Email XML File (email.xml)

<?xml version="1.0" encoding="iso-8859-1"?>

<data>

<categories>

<category>From</category>

<category>Subject</category>

<category>Date</category>

</categories>

<row>

<items action="alert(’Grace Hopper’);" icon="img/mail.gif">

<item><![CDATA[Grace Hopper]]></item>

<item><![CDATA[BUG Found]]></item>

<item>2006-03-31 09:27:26</item>

</items>

</row>

<row>

<items action="alert(’Pi Sheng’);" icon="img/mail.gif">

<item><![CDATA[Pi Sheng]]></item>

<item><![CDATA[Movable type]]></item>

<item>2006-01-15 12:32:45</item>

</items>

</row>

</data>

In order to sample our parsing methods, we will need to create an HTML file that will
have two hyperlinks: one that will request an XML file as a response, and another that
will request a JSON response. Listing 3.4 shows the index HTML file that will contain
the requesting hyperlinks.

Listing 3.4 The Index File for XML and JSON Request Samples (index.html)

<html>

<head>

<title>The Response</title>

<script type="text/javascript" src="javascript/ajax.js"></script>

</head>

<body>

xml

 |
json

<hr noshade="noshade">

<div id="loading"></div>

<div id="body"></div>

</body>

</html>

24 Chapter 3 The Response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, this file simply has two hyperlinks that, when clicked, make a request
through the makeRequest method that we created in Chapter 2.The only difference
with the method is that I have now added a variable callback method.This allows us to
pass a callback method of our choice, which provides us with the opportunity to parse
the response as we would like, based on the specific request being made.We also have
two div tags in place to display different data. One div tag has an id value of loading
and the other of body.The loading div is used for the loading message that is returned
while checking the ready state.The body div is used to display the actual data after we
parse the response.This data can be formatted any way we choose—it can be displayed
as anything from a simple list of data to an entire GUI that is formatted with XHTML
and contains interaction data.To begin parsing the XML response, we must first add the
callback method that we specified in the request.We will add a method named
onXMLResponse to the ajax.js that we are importing in the index, check the ready
state, and target the XML data with a property of the XHR called responseXML (see
Listing 3.5).

Listing 3.5 Creating a Response Method and Checking the Ready State (ajax.js)

function onXMLResponse()

{

if(checkReadyState(request, ’loading’) == true)

{

var response = request.responseXML.documentElement;

//Parse here

}

}

By checking the ready state, we are accomplishing two things. First, we are checking the
status of the request to decipher whether it has completed loading and is ready to be
parsed. Second, we are passing a div id to display the ready state messages with its
innerHTML property.There are two properties listed in Table 2.1 that can be used to tar-
get data with the XHR—one is responseText and the other is responseXML.The
responseText property returns a string version of the response from the server, and the
responseXML property returns a DOM-compatible document object of the response
from the server. In this case, we will use the responseXML property because we need a
DOM-compatible object for the XML response so that we can target specific items in
the file.After we have this code written, we can begin to parse values from the elements.
We will start by parsing the category values from the XML file and adding them to the
body div via the innerHTML property as shown in Listing 3.6.

25XML

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.6 Retrieving the Category Values from the XML (ajax.js)

// Categories

document.getElementById("body").innerHTML = "------------
";

document.getElementById("body").innerHTML += "Categories
";

document.getElementById("body").innerHTML += "------------
";

var categories = response.getElementsByTagName(’category’);

for(var i=0; i<categories.length; i++)

{

document.getElementById("body").innerHTML +=
➥response.getElementsByTagName(’category’)[i].firstChild.data +"</br>";

}

In order to target each of the categories, we need to use the getElementsByTagName
method and pass category as the parameter.This will provide us with an array of
categories that we can iterate and add one by one to the body div.As we add the
categories to the document, we are targeting the data within each of the tags in order
to display the actual value of each element.

After we have the categories displayed, we can move on to the item tags from the
XML.We will parse these slightly different by targeting the parents, which are the row
tags, and receiving an array of rows.Then we will iterate through the rows to target the
action and icon attributes within the items tags through JavaScript’s intrinsic
getAttribute method.After we are finished writing the attribute values to the div, we
can target the individual items within each row.We will do this by nesting two for
loops within the for loop that we are using for the rows, leaving us with a three-layer
loop. One loop will be used to iterate the items tag and the other to iterate the node
values within the individual item tags as shown in Listing 3.7.

Listing 3.7 Retrieving the Item Values from the XML (ajax.js)

// Items

document.getElementById("body").innerHTML += "------------
";

document.getElementById("body").innerHTML += "Items
";

document.getElementById("body").innerHTML += "------------
";

var row = response.getElementsByTagName(’row’);

for(var i=0; i<row.length; i++)

{

var action = response.getElementsByTagName(’items’)[i].getAttribute(’action’);

var icon = response.getElementsByTagName(’items’)[i].getAttribute(’icon’);

document.getElementById("body").innerHTML += action +"
"+ icon +"</br>";

var items = response.getElementsByTagName(’items’)[i].childNodes;

for(var j=0; j<items.length; j++)

{

for(var k=0; k<items[j].childNodes.length; k++)

26 Chapter 3 The Response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

document.getElementById("body").innerHTML +=
items[j].childNodes[k].nodeValue +"</br>";

}

}

document.getElementById("body").innerHTML += "------------
";

}

Parsing requested XML is fairly simple if you know what format to expect as the
response from the server. If we did not know what to expect in the previous example of
the response, we could have started by using the responseText property to display the
XML structure as a string and decipher what tags we needed to target.

function onXMLResponse()

{

if(checkReadyState(request, ’loading’) == true)

{

var response = request.responseText;

alert(response);

}

}

This would have provided us with the entire XML structure in an alert prompt.At
that point, we would be able to take a look at the structure and figure out what we
wanted to parse with the responseXML property.

As you can see, XML can basically accomplish any type of data structure—it is essen-
tially up to the objects that read the XML to do something useful with it. Let’s take a
look at how JSON compares and what the benefits are when formatting a response.

JSON
JSON, or JavaScript Object Notation, is a data-interchange format that is becoming more
widely accepted as a viable format for Ajax applications. It is essentially an associative
array or a hash table, depending on the programming language with which you are most
familiar.This means that names or labels are associated with values in an array structure
or comma-delimited list.This format rivals XML as a data format used in Ajax applica-
tions because of its lightweight syntax and the adoption of JavaScript as a standard client-
side scripting language. JSON parsing is also supported natively with JavaScript’s eval
method, which makes it extremely simple to parse when using it in your Ajax applica-
tions.The downfall is that the parsing can be quite slow due to the use of the eval
method and, even more important, using this method can be very insecure.The bright
side is that this does not mean that JSON is out of the running as an Ajax data-
interchange format contender. It simply means that you need to be smarter when

27JSON

Listing 3.7 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

choosing it as your data format.This can be done by adding encrypted passwords to your
requests for example, which we will cover in Chapter 23,“Securing Your Application.”

Now that we have a little bit of background on JSON, let’s take a look at the syntax
in which to structure it.

The Syntax
The JSON syntax is very simple and arguably a bit sleeker than XML. XML can get
quite heavy when there is a lot of data, which is due to the redundancy of elements,
making JSON a great alternative. JSON is not a standard data-interchange format, but
there are many parsers available that make it a viable option.There is just about every
type of JSON parser available on http://www.json.org, and if you cannot find a parser
for a language in which you are interested in using, you can easily write one because the
syntax is not very difficult to parse.

The JSON syntax is very intuitive when you look at it from an object-oriented
angle.The structure of a JSON file is representative of a JavaScript object in the way that
one file can consist of multiple objects, arrays, strings, numbers, and Booleans.Table 3.1
displays a list of data types formatted as JSON.

Table 3.1 JSON Representations of Each Data Type

Data Types JSON Representations

String "icon": "img/mail.gif"

Number "mynumber": 100

Boolean "myboolean": true

Array "items":

[

{

"action": "alert(’Grace Hopper’);",

"icon": "img/mail.gif",

"item": ["Grace Hopper", "BUG Found",
"2006-03-31 09:27:26"]

},

{

"action": "alert(’Pi Sheng’);",

"icon": "img/mail.gif",

"item": ["Pi Sheng", "Movable type", "2006-
01-15 12:32:45"]

}

]

28 Chapter 3 The Response

http://www.json.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object "categories":

{

"category": ["From", "Subject", "Date"]

}

All JSON data types are represented by a name or label as a string value followed by a
colon.The values are what differ from one type to another.The simple types are self-
explanatory—a string value is represented as a string, a number is represented as a num-
ber, and a Boolean is represented as a value of true or false.The more complicated
data types are arrays and objects.An array is represented as a comma-delimited list,
which is contained within square brackets.A JSON object contains properties of any
data type, within curly braces, such as a class would be formatted in other languages; the
difference here is that we do not give a name to the main structure.

Using JSON
After you understand the syntax of JSON, formatting it is fairly simple. Comparing
JSON with an XML format is interesting when working with large amounts of data
because the JSON format ultimately becomes a much smaller data structure. In this sec-
tion, we will convert the samples from the XML section and compare the two different
formats to see the differences in terms of size and readability.After we draw the compar-
isons, we will cover parsing the JSON data structures in the next section. I have convert-
ed the XML file from the last section into a JSON data structure in Listing 3.8.

Listing 3.8 The Completed JSON Sample Format (email.js)

{

"data":

{

"categories":

{

"category": ["From", "Subject", "Date"]

},

"row":

{

"items":

[

{

"action": "alert(’Grace Hopper’);",

"icon": "img/mail.gif",

29JSON

Table 3.1 Continued

Data Types JSON Representations

http://lib.ommolketab.ir
http//lib.ommolketab.ir

"item": ["Grace Hopper", "BUG Found", "2006-03-31
09:27:26"]

},

{

"action": "alert(’Pi Sheng’);",

"icon": "img/mail.gif",

"item": ["Pi Sheng", "Movable type", "2006-01-15 12:32:45"]

}

]

}

}

}

As you can see, it is much slimmer than the XML version because of the lack of redun-
dancy in tag names, which is the nature of the XML structure. Keep in mind that this
file can be a lot more compact—I have simply chosen to display it in a way that is more
readable.The JSON data structure is approximately 200 characters smaller with a total
character count of 316, whereas the XML data format has 519 characters, which is quite
a difference.As the data in your application grows, it can cause a bandwidth issue, but as
I mentioned earlier, the client-side parsing can be slower with JSON.What it ultimately
comes down to is what format is more usable in your application, or what is easier to
parse and write for you.

Parsing JSON
Parsing JSON as a response from an XHR differs from parsing all other data-interchange
formats that can be used with Ajax. Unlike using the responseXML property, which is
used for XML, we need to use the responseText property. Using this property with
plain text or straight XHTML is trivial because we would use solely it as the value of
the response, as in the following example:

document.write(request.responseText);

Using this property with JSON is also trivial; it is just different based on the fact that
we need to evaluate the responseText in order for it to be readable for parsing. By
evaluating the response, we are essentially creating a JavaScript object from the data,
which can then be used on the client side as the display data in the GUI. In order to
parse the data, we will begin by creating the callback method, checking the ready state
of the request, and evaluating the responseText (see Listing 3.9).

30 Chapter 3 The Response

Listing 3.8 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.9 Creating a Response Object (ajax.js)

function onJSONResponse()

{

if(checkReadyState(request, ’loading’) == true)

{

eval("var response = ("+request.responseText+")");

}

}

As we covered in the XML section of this chapter, the checkReadyState method is
used for two different purposes—checking that the response has been completely loaded,
and displaying a loading message to the user in any HTML element that is specified as
the parameter.After the response has been completely loaded, we will begin parsing by
evaluating the responseText from the XHR and creating an object named response
as a result.This object can then be used to target any values that were added to the
object during the evaluation or data parsing. Let’s start by targeting the categories from
the data and appending them to the body div that is in our index HTML file (see
Listing 3.10).

Listing 3.10 Parsing JSON Categories (ajax.js)

// Categories

document.getElementById("body").innerHTML = "------------
";

document.getElementById("body").innerHTML += "Categories
";

document.getElementById("body").innerHTML += "------------
";

for(var i in response.data.categories.category)

{

document.getElementById("body").innerHTML +=

➥ response.data.categories.category[i] +"
";

}

As you can see, it is very easy to target the data after it is parsed into a JavaScript object.
Property values are accessible by simply using dot syntax to target them by the proper
path. In Listing 3.10, we are targeting the categories, which are arrays based on the fact
that there were multiple values in the category property. In order to target this catego-
ry array, we use the dot syntax to literally write the path to that specific property in the
response object.

Now that we have the categories parsed and displayed in the body div, we will target
the items. In order to target the items, we will need to nest two for loops as we did in
the XML example, but parsing the actual values will be slightly different for the actual
items and their attributes. See Listing 3.11 to get an idea of how we parse this data.

31JSON

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 3.11 Parsing JSON Items (ajax.js)

// Items

document.getElementById("body").innerHTML += "------------
";

document.getElementById("body").innerHTML += "Items
";

document.getElementById("body").innerHTML += "------------
";

for(var i in response.data.row.items)

{

for(var j in response.data.row.items[i])

{

document.getElementById("body").innerHTML += response.data.row.items[i][j]

➥+"
";

}

document.getElementById("body").innerHTML += "------------
";

}

As I mentioned, the item attributes are targeted much differently than they were with
the XML parsing.We can simply do a for...in loop to target all the property values
within a specific object. In this case, we are using this method of data retrieval to access
the values of the item attributes and the item arrays.

Using JSON as a response format can be even more powerful by specifying event
handlers within the data format to represent specific object types that can be rendered to
the document.We will not go into this level of detail, but it is important knowledge to
be aware of because it might be very beneficial to your future applications. I will leave
you with an example of how to approach structuring this data:

"items": [

{"value": "Read e-mail", "onclick": "displayEmailDetail()"}

]

Now that we have a detailed understanding of how to handle an Ajax response, we can
focus on formatting it and creating GUI with CSS or XHTML.

32 Chapter 3 The Response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4
Rendering the Response with

XHTML and CSS

Now that we have covered how to request data with the XHR object and parse the
response, we are ready to render and display the data in a browser.There are many ways
to handle displaying the data that we receive from an XHR response; in this chapter, we
will be focusing on using XHTML and CSS. XHTML and CSS will render our data
and keep it easy to manipulate through JavaScript via DOM.This solution is the perfect
answer to rendering Ajax data and creating easy-to-manipulate HTML elements.

XHTML
One of the beauties of Ajax-enabled web applications is their simplicity.This can also be
seen as a downfall: Search engines cannot locate content that is dynamically added to the
page because it does not appear in the source code.This should definitely be a concern
in certain situations but, when building a web application, you are not always looking for
high-ranking search results within the application itself. Rather, you are typically looking
at ranking the home page or other such pages that are not on the inside of the applica-
tion. Most web applications, such as the sample we are building in this book, do not
require search engine rankings. Most of the time, these applications contain personal and
secure information, and so it naturally becomes easier for us to keep the source code
hidden.

If you are used to creating nested table layouts in your HTML, it might be a strange
transition when you begin using div tags.Although it might be odd at first, you will
find that div tags are extremely easy to use, the browser can render them faster, and they
require a lot less source code than unruly nested tables.The best part is that they are
much easier to manipulate when using DHTML coupled with Ajax data requests, and
your styles and content are much more separated, which makes updates far easier. I look
at div tags as containers for storing data.These containers provide ways of referencing
them through the id and name attributes so that we can target them to manipulate their
contents, their position or, for that matter, any of their associated styles.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We can easily identify what elements we need to create by taking a look at the
response we are receiving.As you might remember from Chapter 3,“The Response,” the
XML and JSON files we created consisted of different items that would appear in an
email. In this section, we will be creating HTML elements in which to display the data
from these files.The first set of data that these files contained was categories. Each of
these categories will ultimately be the section header for the items in the item collec-
tions.Therefore, we will need to create a grid-like structure to represent this data and
format it into identifiable sections of corresponding data.When we are able to identify
the contents of our page and separate it into distinct sections, we will then be able to
create HTML elements to contain and structure the data.

In Chapter 3, we created two methods in the ajax.js file—one called
onXMLResponse and the other called onJSONResponse.These methods rendered the
response by pushing the data to the body div in our index HTML page. In this section,
we are going to rewrite these methods to create div elements that will encapsulate this
data, and then we will append them to the body div.This will allow us to later associate
styles with elements via CSS. First, we will strip all the unnecessary code we added to
visually separate the categories and the items because the styles will do this for us in a
much more subtle way. For now, we will simply add a placeholder div element for an
icon header, plus numerous others div elements in which we will assign an id value of
header and populate with the data from each of the categories from both the XML and
JSON responses. Later in the book we will learn how to create HTML elements
dynamically via the DOM, but for now we will keep it simple and add content to previ-
ously created div elements.

XML
var response = request.responseXML.documentElement;

document.getElementById("body").innerHTML = "<div id=’icon’></div>";

var categories = response.getElementsByTagName(’category’);

for(var i=0; i<categories.length; i++)

{

document.getElementById("body").innerHTML +=

➥"<div id=’header’> "+ response.getElementsByTagName(’category’)

➥[i].firstChild.data +"</div>";

}

JSON
eval("var response = ("+request.responseText+")");

document.getElementById("body").innerHTML = "<div id=’icon’></div>";

for(var i in response.data.categories.category)

{

document.getElementById("body").innerHTML += "<div id=’header’> "+
➥response.data.categories.category[i] +"<div/>";

}

34 Chapter 4 Rendering the Response with XHTML and CSS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, we are simply encapsulating the icon and category data into these div
tags.These div tags will later be stylized with CSS and separated from the item data that
we will associate with these categories. In other words, we will basically be creating a
grid of corresponding data from the response. Now that we have the header div ele-
ments created, we will add div elements to the item data and associate the action and
icon for each. Each item div tag will simply get an id value of item.The action will be
associated with each of the item div tags by simply adding an onclick event to each
and appending the action variable.When adding the icons, we do not want to add them
to each div; rather, we only want to add them as the first item in each group of items.
The following code represents the addition of the div tags to the item code for both the
XML and JSON response.

XML
for(var i=0; i<row.length; i++)

{

var action = response.getElementsByTagName(’items’)[i].getAttribute(’action’);

var icon = response.getElementsByTagName(’items’)[i].getAttribute(’icon’);

var items = response.getElementsByTagName(’items’)[i].childNodes;

document.getElementById("body").innerHTML += "<div id=’icon’><img src=’"+

➥ icon +"’/></div>";

for(var j=0; j<items.length; j++)

{

for(var k=0; k<items[j].childNodes.length; k++)

{

document.getElementById("body").innerHTML += "<div id=’item’

➥onclick=\""+ action +"\"> "+ items[j].childNodes[k].nodeValue
➥+"</div>";

}

}

}

JSON
for(var i in response.data.row.items)

{

document.getElementById("body").innerHTML += "<div id=’icon’><img src=’"+
➥response.data.row.items[i].icon +"’/></div>";

for(var j in response.data.row.items[i].item)

{

document.getElementById("body").innerHTML += "<div id=’item’ onclick=\""+
➥response.data.row.items[i].action +"\">"+
➥response.data.row.items[i].item[j] +"</div>";

}

}

35XHTML

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we have the XHTML writing to the page, it is time to add the styles that
will render the final layout.We will do this by associating CSS with the elements.

CSS
Using XHTML with CSS to render Ajax response data adds layers of separation to our
code, which allows us to update specific areas of the application without ever touching
others. Now that we know how to render the data as XHTML by adding it to div ele-
ments with JavaScript, we can begin to add design to the page.We will do this by creat-
ing CSS classes that will define individual element styles and, ultimately, the entire page
layout.The first step in using CSS in our HTML page is importing the CSS files that
will define the styles for the page elements. Let’s first create a new file and name it
layout.css. Building on the examples in Chapter 2,“The Request,” and Chapter 3,
we will add the following code to the head of our index HTML file in order to import
the CSS:

<link href="css/layout.css" rel="stylesheet" type="text/css" />

Because we have already identified and populated the HTML elements in our page,
we know what elements we will need to create styles for. Before we create the styles, we
must visualize how we want the page layout to look. If it does not come easy to mental-
ly visualize a page layout, we could create wire frames or mockups in a graphics editor.
Either way, after we have a concept we can begin to arrange the elements through CSS.
The look we are going for with this example is a grid of mail data, with section headers
and data that pertains to the sections displayed underneath the headers in sets of rows.
Figure 4.1 shows the final layout of the data within this grid structure.

36 Chapter 4 Rendering the Response with XHTML and CSS

Figure 4.1 The final grid layout for response data after CSS has been
applied to the HTML elements.

In our new CSS file, we will create four classes: body, header, item, and icon.These
are the four elements we have already added to the page through our response methods
in the ajax.js file from the previous section. Starting with the body div, which was
added to the page by default, we will create a class with a width of 570px.This width
will compensate for the margin we will add around each of the items in the grid, but
we will talk more about this after we have completed adding the header and item
classes.The following is the code that creates the body class:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

#body

{

width: 570px;

}

Next, we will create a class for the header div element. Looking back at the XML
and JSON files we are requesting, we can see there are three headers and three items.
These headers and items should sit next to each other to form rows of data.To accom-
plish this, we must start by adding a float attribute with a value of left.This will left-
align each header and item tag next to each other to form a row of data. Each new
row will start when we have reached the container’s width limit, which we defined in
the body class.We have also added a pointer cursor to distinguish each item as clickable.
Following is the code that each of the headers and items is assigned:

#header

{

float: left;

width: 180px;

padding: 10px 0px 10px 0px;

background-color: #666;

color: #fff;

margin: 1px;

}

#item

{

float: left;

width: 180px;

padding: 10px 0px 10px 0px;

background-color: #eaeaea;

color: #333;

margin: 1px;

cursor: pointer;

}

The width we have set for the body accommodates the width and the margin of the
three items that will display in each row, plus the width and margin of the icons. If we
wanted to display more items in a row, we would simply adjust the width of the contain-
er, taking the margin and other spacing of the elements into consideration. Figure 4.2
reveals an inside look at the different elements that appear in the grid.

37CSS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4.2 An inside look at the HTML elements that define the grid.

As you can see, we have stylized the headers and items a bit with background colors,
font colors, and a pointer cursor for each item to make it obvious that they are clickable.
There are millions of ways to customize these elements; my suggestion is to have fun
experimenting.

The last element we have to create a class for is the icon element.The icon will be
very small, so it should not take up the same width as a typical item, which is the rea-
son we have created a separate class for icons.The icon element will be used as both a
placeholder for the space that is required for each icon in the header and the actual icon
that will be placed to the left of the items. It floats left as all the elements in the grid
have to do in order to create the rows. It also has other common properties, such as a
width, padding, font color, and margin.

#icon

{

float: left;

width: 20px;

padding: 5px 0px 5px 0px;

color: #333;

margin: 1px;

}

Now that we have the knowledge to request data, receive a response, and stylize a
page of dynamic data with CSS and XHTML, we can take it up a notch by creating a
cleaner process and encapsulating code into objects and an Ajax engine.The next chapter
will explain how to create an object-oriented Ajax engine with JavaScript, how to debug
our requests and responses, and how to extend the engine by creating additional objects
that streamline the process of creating Ajax-enabled web applications.

38 Chapter 4 Rendering the Response with XHTML and CSS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

II
Creating and Using

the JavaScript Engine

5 Object-Oriented JavaScript

6 Creating the Engine

7 Using the Engine

8 Debugging

9 Extending the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5
Object-Oriented JavaScript

Object-oriented JavaScript is essential when building large-scale Ajax applications.This
approach to programming lends reusability, scalability, and flexibility to our applications.
Object-oriented approaches provide a blueprint for object reusability, which ultimately
tends to minimize the amount and duplication of code in our applications. Minimizing
the amount and duplication of code not only helps us build an application faster, but it
also makes updates and management a simple chore for developers.When approaching
your application in an object-oriented way, there is some planning that is involved to
make sure that your objects are reusable now and, in the mapped future, to lend scalabili-
ty for any additions and/or updates to the application. Creating these objects may some-
times seem like overkill if a developer thinks she can just knock out an application in a
short amount of time, which is frequently the case. However, by beginning to approach
all of our applications in this way, we will be conditioned to think of applications in a
new light—from more of an engineer’s perspective—and we will automatically begin to
approach and build them in a better way.This allows us to use our objects in other appli-
cations and reuse code in ways that will speed up our development time immensely.

This chapter may not be the most glamorous, and you may be wondering why you
would need to understand object-oriented programming (OOP) concepts with
JavaScript in order to create Ajax applications.The use of JavaScript objects in your Ajax
applications makes it very simple to manipulate data and create graphical user interface
(GUI) elements that can be ported from one application to the next.This allows you to
put more time into the planning, engineering, and development of the site or, hopefully,
even the development of new Ajax components, rather than rewriting the same code in
each of your applications or, as they say,“reinventing the wheel.”With that said, under-
standing the creation of these different object types is essential to creating custom
objects, components, and even libraries of our own.

Unlike other programming or scripting languages, there are many ways to create
objects with JavaScript.Although this book will primarily use prototypes as the object-
oriented approach of choice, we will also cover object constructors in this chapter.
Object constructors are valid and useful ways to create objects and translate rather seam-
lessly into our sample application.You can use this approach in the book sample or in
your future Ajax applications—the choice is yours.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Object-Oriented Approaches
As I have already mentioned, there are many different ways to approach object-oriented
programming with JavaScript.You can create objects or pseudo-objects with any of the
following:

n Object constructors
n Prototypes
n The new operator
n Literal notation
n Associative arrays
n JScript.NET

Each of these methods for creating objects or pseudo-objects in JavaScript is valid, yet
some are more flexible than others.This does not mean that these methods are not use-
ful—there are definitely situations where a particular method would be better than all
the other approaches. Let’s take a brief look at each of these approaches and what situa-
tions they would be useful in.

Note
Since this chapter will be focusing in-depth on object constructors and prototypes, we will
not cover these two methods in this section.

Using the new Operator
Using the new operator is probably one of the simplest approaches to creating objects in
JavaScript because, of course, it is the native way of doing so. In order to create an object
using JavaScript’s native new operator, we simply choose a name for our object and set it
equal to a new Object.

var employee = new Object();

employee.id = 001;

employee.firstName = "Kris";

employee.lastName = "Hadlock";

employee.getFullName = function()

{

return this.firstName + " " + this.lastName;

}

In this sample, we are defining a custom object named employee with id, firstName,
and lastName properties, and a method called getFullName, which returns a concate-
nated version of the firstName and lastName properties.This solution is acceptable

42 Chapter 5 Object-Oriented JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and can work in many solutions, especially if you do not plan on creating multiple
instances of the object. Its limit is that it is unable to create multiple instances of the
same object—for instance, we would not be able to create more than one employee with
this method.

Literal Notation
Literal notation is a more complex way of defining objects with JavaScript and is sup-
ported in JavaScript 1.2 and above.This approach is a sort of shorthand way of creating
objects, which makes them easy to build but a bit hard to read because of the unique
syntax that they require. Here is a sample of creating the same object (with the literal
notation approach) we created with the new operator.

employee = {

id : 001;

firstName : "Kris";

lastName : "Hadlock";

getFullName : function()

{

return this.firstName + " " + this.lastName;

}

}

alert(employee.getFullName); // Results: Kris Hadlock

As you can see, this approach is easy to create, but could be rather hard to manage if we
were to add a lot of methods and properties. Don’t get me wrong, though—this is a
viable solution, and I wouldn’t necessarily recommend against it. It’s just that I personally
prefer to use a more familiar syntax.

Associative Arrays
Associative arrays are defined as any other array is defined, but strings are inserted in
place of numbers as indexes.This solution allows us to call an item in an array by name
rather than by an index number, which obviously makes it easier to target specific items.
This can be useful when trying to replicate a hash map of sorts, which is not a native
data type in JavaScript. Here is a sample of the syntax for this option.

var employee = new Array();

employees["firstName"] = "Kris";

employees["lastName"] = "Hadlock";

43Associative Arrays

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, this option may make it easier to target specific items, but again, imagine
having to create multiple employees. Here is an example of how unruly this could
become.

var employee = new Array();

employees[001]["firstName"] = "Kris";

employees[001]["lastName"] = "Hadlock";

employees[002]["firstName"] = "John";

employees[002]["lastName"] = "Doe";

This solution can become a real mess if you are working with a lot of data and having to
remember all of the paths to certain items in the array.With that said, using this method
to create a custom hash map object could be very useful, but I’ll leave that part up to you.

JScript.NET
JScript.NET enables us to create full-fledged .NET applications—as if we were using a
language such as C# or VB.NET—by compiling our code into Intermediate Language
(IL). One of the great things about this method is that it allows us to use strict data typ-
ing and access modifiers, such as private and public properties, which I know seems very
alien when thinking of JavaScript.The strict data typing allows for better code readability
and much easier debugging methods.

Here is an example of the syntax that you would use to create a JScript.NET object.

<script language="JScript" runat="server">

public class employee (_id, _firstName, _lastName) {

private id : String = _id;

private firstName : String = _firstName;

private lastName : String = _lastName;

private getFullName : Function = function(e)

{

return this.firstName + " " + this.lastName;

}

}

</script>

For developers with an OOP background, this approach could be easier to grasp.
However, the syntax for the data typing is a bit strange, and the fact that you need to use
and install the .NET Framework could be limiting in terms of development—it really
just depends on your situation.

44 Chapter 5 Object-Oriented JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we have a little bit of background on other ways to create an object with
JavaScript, we will cover the two approaches that I believe have the most flexibility for
what we are trying to accomplish.These next two approaches allow for the creation of
multiple objects because of the reusability they lend to JavaScript. Let’s take a look.

Object Constructors
Object constructors are a great way to structure objects so that they are reusable, without
having to create or redefine a completely new object when there is a slight difference
from one to another.This method of object creation allows us to reuse one object by
applying different property values to it and creating multiple instances from that same
object blueprint.

Instances
Creating instances, or instantiating an object, is simply the act of taking an object defini-
tion and creating multiple objects that model its definition.These separate instances can
have different property and method parameter values, which makes one unique from
another.An object definition is essentially a blueprint that a developer uses to create
multiple instances of an object.When an object is instantiated, it intrinsically contains all
of the properties and methods that the object defines.Therefore, if we had an employee
object with a name property, we could create multiple instances and give each employee
a different name.This section will explain how to use the object constructor approach
for creating multiple instances of objects to gain maximum reusability in our web appli-
cations.

Object constructors are simply a regular JavaScript function in which we encapsulate
properties and methods. It is instantiated by use of the native JavaScript new operator.
This method is very similar to the Literal Notation method, but the syntax conforms
more to a common programming model.We start by creating a simple function in
which we provide an object name. In the following example, we are creating an
employee object constructor.

function employee(_id, _firstName, _lastName)

{

}

As you can see, this is a standard JavaScript function, that takes three parameters: an _id,
a _firstName, and a _lastName.This function becomes our access point to the
object—in other words, if you are familiar with OOP, it is our constructor function.We
will use the name of our function as our object name. If you are familiar with building
classes with other programming languages, think of this approach as a way of creating a
class without defining the object as a class, or creating a class with a function instead of a
class declaration.We still have our constructor, properties, and methods; we simply do not

45Object Constructors

http://lib.ommolketab.ir
http//lib.ommolketab.ir

have the class declaration encapsulating the object’s details.With our constructor in
place, we can begin to instantiate the object.This is where we begin to see the
reusability.

var kh001 = new employee(001, "Kris", "Hadlock");

var jd002 = new employee(002, "John", "Doe");

These examples show how simple it is to create multiple instances of an object using this
approach.The exciting part about this is that we can continue to use this object for any
employee that we need to add, and if we need to add a method or property, it is not
going to have any effect on the other employee objects.They will simply ignore these
items unless they are updated.

In order to make these objects more flexible, we are allowing parameters to be passed
to the object constructor.These parameters will be used to define different properties
within the objects to make one object different from another. For instance, we may want
to create a new employee with our employee object and need to provide a new first
and last name for each. In the previous example, we are passing a first and last name as
our parameters, which will be used as properties in our class. Let’s take a look at how we
take these values and set them to object properties.

Properties
Taking the parameter from the object constructor and turning it into a local object
property is extremely simple. First, we need a value as the parameter, which we are
already receiving. Next, we must create local properties within the object that we will
use to set to the value of these parameters.

function employee(_id, _firstName, _lastName)

{

this.id = _id;

this.firstName = _firstName;

this.lastName = _lastName;

}

This method is receiving an _id, a _firstName, and a _lastName parameter, which we
are using to set to local properties in the object.These parameters allow us to distinguish
one employee from the others, and provide us with a reference to retrieve specific details
about each employee. Local object properties can be used at any later point. For exam-
ple, we could reference these employee objects with another object and then get the
first and last names.These employee objects would retain that information, regardless of
how many employees were created.

46 Chapter 5 Object-Oriented JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These properties can be set and referenced solely, or we could use methods within
the object to handle this detail. Using methods in our object constructors helps us to
combine common functionality into one reference. Let’s now take a look at how to add
a method to an object constructor and understand how it is beneficial to the scalability
of our application.

Methods
Objects are so powerful because of the data they store and the methods they contain,
which can be called to perform specific functions.These methods can be used to set new
values for object properties or retrieve a value from object properties.They also can be
used to perform complex algorithms, call other methods, create other objects, and any
other custom functionality that you or your clients need. Here is an example of the
employee object with a method called getFullName.

function employee(_id, _firstName, _lastName)

{

this.id = _id;

this.firstName = _firstName;

this.lastName = _lastName;

this.getFullName = function()

{

return this.firstName + " " + this.lastName;

}

}

This method returns two concatenated properties, which form an employee’s full name.
This is just the beginning of what we can accomplish with an object like this. For exam-
ple, we can create methods for retrieving or setting an employee’s job title because this is
something that could change if an employee gets a promotion.These are simple methods
to add, yet they provide a lot of power to someone who has the ability to change an
employee’s job title. Here is an example.

function employee(_id, _firstName, _lastName, _jobTitle)

{

this.id = _id;

this.firstName = _firstName;

this.lastName = _lastName;

this.jobTitle = _jobTitle;

this.getFullName = function()

{

47Object Constructors

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return this.firstName + " " + this.lastName;

}

this.setJobTitle = function(_jobTitle)

{

this.jobTitle = _jobTitle;

}

this.getJobTitle = function()

{

return this.jobTitle;

}

}

These methods require us to add a new property called jobTitle.This property can be
set through the constructor function or set with our new setJobTitle method.After
we set the value, we can also retrieve it with the getJobTitle method.These methods
are the equivalent of getter and setter methods for JavaScript because they allow other
objects to get or set values of specific properties of an object.We could also make a
property a read-only property by allowing only a getter and not a setter.

A more complicated example is an employee’s sick days.This requires us to create an
array of sick days for each employee object. Let’s say that we need a way to retrieve a
list of sick days that is formatted into an HTML list. Here is an example of how we
would accomplish this functionality.

var sickDays = new Array("1-12", "1-13", "1-14");

var kh = new Employee(001, "Kris", "Hadlock", "GUI Developer", sickDays);

function employee(_id, _firstName, _lastName, _jobTitle, _sickDays)

{

this.sickDays = _sickDays;

this.id = _id;

this.firstName = _firstName;

this.lastName = _lastName;

this.jobTitle = _jobTitle;

this.getFullName = function()

{

return this.firstName + " " + this.lastName;

}

this.setJobTitle = function(_jobTitle)

{

this.jobTitle = _jobTitle;

}

48 Chapter 5 Object-Oriented JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this.getJobTitle = function()

{

return this.jobTitle;

}

this.getSickDayList = function()

{

var sickDayList = "";

for(var i=0; i<this.sickDays.length; i++)

{

sickDayList += ""+ this.sickDays[i] +"";

}

sickDayList += "";

return sickDayList;

}

}

Creating unique methods such as this is a main source of power when creating instances
of objects.This is because each of the object’s instances will contain this functionality
and can call on it at any point in time.

Prototypes
The prototype object was introduced in JavaScript 1.1 as an intrinsic object that simpli-
fies the addition of custom properties and methods to existing objects.When we begin
to create objects and prototypes, we are getting into the real nuts and bolts of JavaScript
and will be able to create some powerful functionality.An example of how the prototype
object works is fairly simple: If it is asked for a method or property that it does not con-
tain, it checks the prototype of the class that created it. It will continue to follow this
chain of looking at the parent objects if it does not find the property or method that was
called.As a last resort, it will find the Object.prototype (which is the object that cre-
ates all objects), but most likely it will call the method in a custom object if it is scoped
correctly.The following are three layers that exist in all prototype objects:

n Object.prototype

n Class.prototype

n Instance

These next three layers represent the layers that exist in each of the employee instances:
n Object.prototype

n employee.prototype

n kh

49Prototypes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These layers represent object inheritance, which simply means that the kh instance
inherits all the properties and methods from the employee and Object objects, and the
employee object inherits all the properties and methods from the Object object.This
will become more apparent as we learn more about how to use the prototype object and
really tackle some complex objects in Part III,“Creating Reusable Components,” where
we create reusable objects to handle data structuring in Ajax-enabled components.

JavaScript is more powerful than some people give it credit, as you will learn
throughout this book. It can be used to create entire dynamic applications, components,
and even interact with the server and database as we will see when we implement the
server side with Ajax in Part V,“Server-Side Interaction.” Prototypes are one of the
methods that I chose for creating reusable objects in the samples throughout this book.
The other method is a variation on the new operator, which actually creates a pattern
that we will be covering in Chapter 14,“Singleton Pattern.”There we will actually want
to only have one instance of an object.The prototype method for creating objects allows
us to easily append properties and methods to objects that we are creating for the first
time and extend existing objects to include additional custom functionality.Another rea-
son why this object creation method is so powerful is because we can create multiple
instances, making the objects more scalable and reusable. Let’s take a look at how these
objects are instantiated and how they can be so powerful.

Instances
In order to create instances of a prototype-based object, we must first create a construc-
tor function.The constructor function is the access point to all objects and therefore is
the first item that is created in the object.A constructor function can receive unlimited
parameters to specify certain attribute or property values.These values are what set one
object apart from the next, and is another reason why objects are such a powerful force
in programming. Here is an example of a constructor function for an object named
employee, as we have created in the previous sections.Again, this object takes three
parameters, which specify the unique ID of the employee and his first and last names.
The first and last names are simply not enough to set apart one employee from another,
especially if two people have the same name; hence, the id parameter.

function employee(_id, _firstName, _lastName)

{

// Set properties

}

As you can see, creating a constructor function for a prototype object is trivial, yet it is
one of the most important pieces of the object.

50 Chapter 5 Object-Oriented JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating Properties
Adding properties to our object is extremely simple. In this case, we need to first define
parameters in the constructor as we did with the other objects.This allows us to pass val-
ues to the properties and set them when an instance of the object is created.After the
object is created and the parameters are retrieved by the object’s constructor function,
we create the properties and set their values. In the following example, we set the id,
firstName, and lastName of each employee object that is created.

function employee(_id, _firstName, _lastName)

{

this.id = _id;

this.firstName = _firstName;

this.lastName = _lastName;

}

As I said earlier, these properties are extremely easy to create and set within an object.
The object’s properties are scoped to the object by using the this keyword. It is good
practice to use this syntax because it is easier to distinguish a local method property from
an object property when one is using the this keyword and the other is not.

Thus far, the object is not any different from an object constructor, but this will now
change. If we had an instance of an employee object and wanted to add an email
address property, we could use the following code:

var kh = new employee(001, "Kris", "Hadlock");

kh.emailAddress = "my@email.com";

This code would not be usable by other instances of the object. For example, if we were
to create another employee, she would not have an email address property. In order to
add this new property to the employee object—which all of the employee instances can
see and use—we will need to use the prototype. Here is an example of using the proto-
type to extend our employee object by adding an email address property.

var kh = new employee(001, "Kris", "Hadlock");

employee.prototype.emailAddress = "";

kh.emailAddress = "my@email.com";

This is not the best solution for creating a new property with the prototype, but it is an
example of how we would add this property and have it be accessible to all other
instances.Typically, a property would be encapsulated in a method, such as a getter or
setter, if not in the constructor.The only reason why we would want to add a property

51Prototypes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this way is if we needed to extend the object for some reason.The reason why this solu-
tion is not the best is because it can become much harder to maintain your code if
developers are randomly extending the object in different locations. Keeping the meth-
ods and properties centralized in one JavaScript file keeps the management extremely
easy, and allows us to reference the file from multiple locations and know that we are
receiving the same code from each.

Overriding and Overwriting Properties
We also can override and overwrite properties in a prototype object. For example, we
may set a default value for the email address.

var kh = new employee(001, "Kris", "Hadlock");

employee.prototype.emailAddress = "shared@email.com";

kh.emailAddress = "my@email.com";

var jd = new employee(002, "John", "Doe");

Overriding a property value simply changes the value for the instance that you are set-
ting it with. So, now the kh employee has a new email address, but the jd employee has
the email address that was set with the prototype.

Overwriting an object property is completely different. If we were to change the
email address for the kh employee after we had already set it, we would be overwriting
the original value. Here is an example:

var kh = new employee(001, "Kris", "Hadlock");

employee.prototype.emailAddress = "";

kh.emailAddress = "my@email.com";

kh.emailAddress = "new@email.com";

Property Protection
Property protection keeps an object’s local properties from being changed by any other
instance of that object. In other words, if an instance changed the value of one of its
properties, the value would not change in the object from which it is inheriting. For
example, let’s say that you inherited blond hair from your parents. If your hair color was
to darken throughout your childhood, this would not mean that your parents’ hair color
would change. Here is an example of a value that would change in the instance, not the
object.

function employee(){}

employee.prototype.totalVacationDays = 10;

52 Chapter 5 Object-Oriented JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var kh = new employee();

kh.totalVacationDays --;

kh.totalVacationDays --;

kh.totalVacationDays --;

The reason why this instance is decrementing its own property and not the object’s local
property is because all the other instances of the object would reflect these changed
properties as well. In the example, we are using the total vacation days that an employee
has left. Imagine if modifying that property modified every other employee’s properties
or vacation days—management would have a lot of angry employees on its hands! This is
why property protection is so important and the nature of the way these object proper-
ties function. Object properties are essential to the makeup of an object, but they can
only get us so far.This is why methods are such a powerful addition to object structures.
Let’s see how we would add methods to our prototype objects.

Methods
Creating a method within a prototype object is a bit different from creating a typical
object method. In order to create a method, we need to call the object by name and add
the prototype object followed by the method name. Here is an example of the
getFullName method that we have been using throughout this chapter using a
prototype-based method.

employee.prototype.getFullName = function()

{

return this.firstName + " " + this.lastName;

}

This method becomes an employee method that can be referenced by every instance
that is created from this definition. Each object instance will have its own values for the
properties that are being returned; therefore, it will return its custom values if the
method is called. For example, if I were to create an employee object and pass it a first
name of John and a last name of Doe, calling the getFullName method would return a
string representation of John Doe.

Extending Objects with Prototyped Methods
Using prototype objects also enables us to extend an existing object, whether it is an
intrinsic JavaScript object or a custom one. Let’s take the String object as an example.
Say that we would like to add a method to all strings that allow us to turn one into an
array of letters by calling a method from that string. In order to accomplish this, we
would use a prototype.

53Prototypes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

function stringToArray()

{

var arr = new Array();

for (i=0; i<this.length; i++)

{

arr.push(this[i]);

}

return arr;

}

String.prototype.convertToArray = stringToArray;

var s = "Test String";

document.write(s.convertToArray());

Any string variable that we create in the application that contains this code will now
have the capability to intrinsically call the convertToArray method and receive an
array of the characters in that string.When you are adding code to native JavaScript
objects, you know that you have reached a moment of achievement. Now it is time to
create additional functionality that handles common Ajax data manipulation.This is just
the beginning of what we can and will accomplish with prototype objects.As I men-
tioned at the beginning of this chapter, we will be using this object creation method to
create custom Ajax-enabled components, which will be reusable in any project, in Part
III.These prototype-based objects are extremely flexible and can be scaled to any situa-
tion.This is why I have chosen prototypes as the primary method of creating objects for
the samples in this book. Utilizing these object creation methods will allow us to create
very dynamic and interactive web applications with Ajax.

54 Chapter 5 Object-Oriented JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6
Creating the Engine

In Chapter 2,“The Request,” we created a few functions to create an XHR, and handle
receiving and displaying a response.This solution works fine in many cases, especially for
simple Ajax-based web pages, but it is not the best solution for large web applications. In
order to manage multiple requests and delegate responses to specific requesting objects,
we will create an Ajax engine.This engine will consist of two objects: Ajax and
AjaxUpdater.The AjaxUpdater will manage all requests and delegate them to the
Ajax object.The Ajax object will receive the requests from the AjaxUpdater and
instantiate an XHR object.After the XHR object has been instantiated and the request-
ing object receives a response, the requestor can then call two more methods within the
Ajax object.The first method checks the ready state of the request and the second
returns the request object in its completed form.We will cover these methods in more
detail throughout this chapter. Let’s start by creating the Ajax wrapper, which we will
later be able to reuse to manage large Ajax applications.

Creating a Custom Ajax Wrapper
The Ajax wrapper that we will be creating is simply called Ajax, and is an object that
follows the Singleton pattern, which we will cover in detail in Chapter 14,“Singleton
Pattern.”This object will handle all requests to the server through the XHR as a single
object that will always be reliable and never change states—hence the Singleton pattern.
This way, any object that needs to make a request will do so through the same object,
keeping the requests structured and organized. In order to create this object, we first
need to simply construct it as in Listing 6.1.

Listing 6.1 Constructing the Ajax Object (Ajax.js)

Ajax = {};

After the object is constructed, we can create all the methods we will need to call in
order to make requests, check the ready state, and receive a response object for parsing
and either displaying or manipulating the data on the client side.We will start by cover-
ing how to create a method to handle making our XHR requests.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making Requests
One of the most important functionalities of our Ajax object is making XHRs. In order
to make this process more streamlined and easier to manage, we will be creating a method
named makeRequest.This method will take three parameters:The first is a method in
which to make the request, which will consist of either a POST or a GET method.The
second parameter is the URL in which to make the request; this URL also will include
our query string for passing data to the server when we make a request.The last parame-
ter is the callback method, which we will want to invoke to handle the response when
the ready state is completed. Listing 6.2 shows the entire method for handling this func-
tionality.

Listing 6.2 Streamlining the Process of Making XHRs (Ajax.js)

Ajax.makeRequest = function(method, url, callbackMethod)

{

this.request = (window.XMLHttpRequest)? new XMLHttpRequest(): new

➥ActiveXObject("MSXML2.XMLHTTP");

this.request.onreadystatechange = callbackMethod;

this.request.open(method, url, true);

this.request.send(url);

}

This method should look very familiar because it contains all the same functionality that
we used to create an XHR object and send that data to the server in Chapter 2.The dif-
ference with this method is that it wraps all this functionality into an easy-to-manage
object that we can access from anywhere in a large application.We start by deciphering
which XHR object to instantiate based on the browser type.After we instantiate the
appropriate XHR object, we set the onreadystatechange event to the callback
method that was provided as the third parameter of this method.This means that the
callback method you provide to this method will be fired when the XHR has been
received, and is ready to be parsed for displaying or manipulating data on the client side
of the application.The last two methods are the open and send methods of the XHR
object.The open method initializes the request, and specifies the method in which to
make the request, the URL to make the request to, plus a query string, if one applies,
and a Boolean for asynchronous versus synchronous.We set the Boolean to true by
default because we do not want to make synchronous requests; they will freeze your
application until the response has been received from the request. If you are making
numerous requests in a large application, this will render your application unusable.The
last method, the send method, will be used to actually send the HTTP request to the
server and wait to receive the response.This method takes the same URL as the open
method, plus any key/value pairs that may exist in a query string.

After this method instantiates the XHR object and makes the request based on the
information that we provide it, a response will be received in the callback method that
we set.The callback method will need to check what is called the ready state of the

56 Chapter 6 Creating the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XHR object and either parse the object after the ready state is completed or handle any
HTTP status code errors that may be returned from the server. In order to check the
ready state of the XHR object, we will be creating a method that does this for us called
checkReadyState, which will become part of the Ajax object.

The Ready State
As we covered in Chapter 2, the ready state of the object tells us when a response has
been received from the server and is available to be parsed by JavaScript through the
Document Object Model (DOM).The readyStateChange event handler fires when
the state of the request object changes and allows us to set a callback method to be trig-
gered as we did in the makeRequest method.After this callback method is triggered, it
is up to us to handle the response with our callback method. In order to do this, we will
call the checkReadyState method to get the readyState and eventually the HTTP
status of the response.This method takes one parameter, which is an ID of an HTML
element that will display a loading message during this process.This message can be
changed to a custom message of our choice for each state of the request. Listing 6.3
shows the complete method with the loading message states and the returned HTTP
status of the XHR object after the ready state has completed.

Listing 6.3 Checking the Ready State of the XHR (Ajax.js)

Ajax.checkReadyState = function(_id)

{

switch(this.request.readyState)

{

case 1:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 2:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 3:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 4:

AjaxUpdater.isUpdating = false;

document.getElementById(_id).innerHTML = ’’;

return this.request.status;

}

}

This method is very similar to the method that we created in Chapter 2, but it is now
encapsulated into the Ajax object to lend structure and organization to our code base.
For each state of the readyState, we set a custom loading message to the innerHTML
property of the HTML element that we passed the ID for as a parameter.This message

57Creating a Custom Ajax Wrapper

http://lib.ommolketab.ir
http//lib.ommolketab.ir

can become anything you would like to change it to. Each state can actually have its
own loading message passed as a parameter to the method to give the requesting object
more power over what messages display. For instance, say that we have a request to
update an inbox of an email application.We could show states specific to this request,
such as Retrieving new mail, for example. Remember that after this object has been
created, it can be manipulated to handle any custom functionality you need to handle—
this is the beauty of creating an object-oriented code base for our applications.

After the readyState has reached a state of 4, the XHR object is complete and
ready for use.At this point, one of two things can happen:The HTTP status can be suc-
cessful, or it can return an informational, redirection, client, or server error code. Based
on the code that is returned, we will decide how to handle the client side.We will cover
this in much more depth in Chapter 9,“Extending the Engine,” when we create a cus-
tom object to extend the Ajax object and handle all the HTTP status codes available.
One thing I am sure you noticed is that we are setting an AjaxUpdater object’s
isUpdating property to false. I’m sure you are wondering what this object is and
why we are setting this property.This object will be created in the next section of this
chapter and will be used to handle all Ajax requests. It will be used as one degree of sep-
aration between the client-side objects and the engine, and will keep our code base
much more organized and secure. But before we cover this object, we will see how to
get the response object after the readyState is completed.

The Response
This last method, called getResponse, is extremely simple because it only deciphers
what type of response property needs to be returned to the requesting object.Take a
look at Listing 6.4 to see how we are handling this functionality.

Listing 6.4 Getting the Appropriate Response Object (Ajax.js)

Ajax.getResponse = function()

{

if(this.request.getResponseHeader(’Content-Type’).indexOf(’xml’) != -1)

{

return this.request.responseXML.documentElement;

}

else

{

return this.request.responseText;

}

}

In order to get the response from the Ajax object, we simply call this method from our
callback method after the readyState is complete, and it will return the appropriate
response property. It returns the appropriate response property based on the response
header that is returned with the response from the server. If the Content-Type response
header has an index of the string xml in it, we know that the response is in the form of

58 Chapter 6 Creating the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XML and should therefore be returned to the callback method as a DOM-compatible
document object of the response from the server. Otherwise, this method returns the
responseText property, which is a string version of the response from the server.

Now that we have a custom object to control and manage all of our Ajax requests,
we can add one more layer of abstraction to the code to make our requests more man-
ageable and secure.

Creating an Ajax Updater
In order to keep our Ajax object in the background and add a layer of abstraction to
our engine, we will create an object called AjaxUpdater.This object is another that fol-
lows the Singleton pattern to keep it accessible from all scopes of the application for easy
XHR management and control.The object is very simple and consists of only a few
methods—one of which could be the only one that is ever used.The other is optional,
or a backup for handling optional functionality. Let’s start by constructing the object.

Constructing the Object
We will construct this object as we did with the Ajax object.The difference with this
object is that we will be initializing the property we used in the Ajax object that we
briefly discussed in the last section.This Boolean property is called isUpdating and is
set to false by default (see Listing 6.5).This is due to the fact that we are not currently
updating any Ajax requests because this property will be used to decipher if a request is
in progress at any point in our application.

Listing 6.5 Constructing the AjaxUpdater and Initializing Properties
(AjaxUpdater.js)

AjaxUpdater = {};

AjaxUpdater.initialize = function()

{

AjaxUpdater.isUpdating = false;

}

AjaxUpdater.initialize();

After we construct the object, we immediately initialize its properties for use by the rest
of the methods in the object.

Updating the Request Object
In an Ajax application, the most widely used method will most likely be the one that
handles XHRs.This is the method that will handle all these requests and interact directly
with the Ajax object.This method takes three parameters: a method in which we will
be making the request, such as a POST or a GET; what I am calling the “service parame-
ter,” which is essentially the URL with optional key/value pairs for sending data to the

59Creating an Ajax Updater

http://lib.ommolketab.ir
http//lib.ommolketab.ir

server through the request; and last, an optional callback method.The callback method is
optional in this method because we will have a default or catch-all method, called
onResponse, to handle any response if a callback method is not passed to this method.
After the callback method has been deciphered, we make the request through the Ajax
object and set the isUpdating property to true (see Listing 6.6).

Listing 6.6 Handling XHRs (AjaxUpdater.js)

AjaxUpdater.Update = function(method , service, callback)

{

if(callback == undefined || callback == "") { callback =
➥AjaxUpdater.onResponse; }

Ajax.makeRequest(method, service, callback);

AjaxUpdater.isUpdating = true;

}

This method is a fairly simple way to manage all the XHRs made through our applica-
tion.The power of using this abstraction layer is that we could add more custom code to
control other aspects of the request before the request is made and without affecting the
actual Ajax engine in the future.This keeps our Ajax engine intact so that we never have
to worry about any of the logic changing in the future.

The Response
The last method in the AjaxUpdater object is the catch-all method called
getResponse I mentioned in the last section.This method simply gets all responses for
the XHRs that do not set a callback method when they make a request (see Listing 6.7).

Listing 6.7 Handling Responses (AjaxUpdater.js)

AjaxUpdater.onResponse = function()

{

if(Ajax.checkReadyState(’loading’) == 200)

{

AjaxUpdater.isUpdating = false;

}

}

The method first checks the ready state as we covered in the Ajax object and sends the
loading message to an HTML element with an id value of ’loading’.After the
readyState is complete and successful, it simply sets its isUpdating property to a
value of false as a precaution, just in case the Ajax object has not done so already.

Now that we have a reusable engine for our Ajax requests, we can move forward with
building the fun stuff, like Ajax components, database-enabled requests and, best of all, an
entire Ajax-enabled application. But first, let’s move on to the next chapter, where we
will find out how to put this engine to use.

60 Chapter 6 Creating the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7
Using the Engine

Now that we have an Ajax engine created, let’s take a look at how to use it.This chap-
ter will focus on how to make an XHR through the AjaxUpdater, and how to access
properties and call various methods within the Ajax object.After we have completed
this chapter, you will know how to put the engine to work in any Ajax application, no
matter how big or how small.This engine provides great flexibility because it abstracts all
of an application’s XHRs, keeps them consistent and, ultimately, makes them easier to
manage.We will start with the basics by getting the files loaded in a sample application.

Getting Started
Before we are even able to use the Ajax engine that we constructed in the previous
chapter, we will have to import all the JavaScript files that are associated with the engine.
We currently have created a total of two objects that are necessary for the engine to run,
but by the end of this part of the book, we will have a total of four that are necessary
because we will be extending the engine with a Utility object and an HTTP object in
Chapter 9,“Extending the Engine.”To make things easier to remember, the following
code will include all four objects that the engine will ultimately need to import in order
to run properly. Here is how the four import statements should look in an application’s
head:

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript" src="javascript/model/AjaxUpdater.js"></script>

<script type="text/javascript" src="javascript/model/HTTP.js"></script>

<script type="text/javascript" src="javascript/model/Ajax.js"></script>

As you can see, importing the JavaScript objects is trivial, but it is the first required step
in using the engine and therefore noteworthy.After these objects have been imported,
we can make requests, access properties, and get the status of specific requests at any
time. Let’s move forward by learning how to make our first request through the Ajax
engine.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making a Request
In order to make requests, we will always use the AjaxUpdater as our access point.This
object provides a layer of separation in our code to keep our XHRs easier to manage
and consistent across the application. In this section, we will use this object to make our
first engine request and get an idea of why this layer of abstraction is necessary.When we
make a request through the AjaxUpdater, we will use a method called Update.The
Update method takes three parameters: a method, a service, and an optional callback
method. If a callback method is not specified, a default callback will be set in the
AjaxUpdater object, which will reset a Boolean called isUpdating to false.This
Boolean is set to true each time a request is made and set to false within the Ajax
object when a response has been received.This is a useful property for checking whether
the object is in the process of making a request, and could ultimately be used as a way to
add items to a request queue. In addition to the import code from the previous section,
we will add code to make a request for the XML file called email.xml from Chapter 3,
“The Response.”Again, we will make the request through the Update method in the
AjaxUpdater object via the GET method, with a callback method named onResponse,
which we will create in the next section.

<script type="text/javascript">

function initialize()

{

AjaxUpdater.Update("GET", "services/sample.xml", onResponse);

}

</script>

</head>

<body onload="javascript:initialize();">

<div id="loading"></div>

<div id="body"></div>

</body>

</html>

In order to make sure all of our objects have been imported completely, we need to add
our Update request to a method that is fired when the body of the document loads.
After the body loads, it will fire the Update method, which, as you can see, passes the
parameters that were previously mentioned.Another important part of the request is
providing feedback to the user regarding the progress of the request. In order to display
the progress, we have a div element with an id of loading.When we receive a
response from the Ajax object, we will display a loading message in the element as we
did in the first part of the book.After we receive the response from the engine, we will
need a place to add it to the page.This place will be the div element, which we gave an

62 Chapter 7 Using the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

id of body.As I am sure you noticed, the concepts in this chapter are all the same as in
the first part of the book.The only difference in this second part of the book is that we
now have a clean way of executing these tasks, which will make large-scale development
much easier to manage and keep our applications much more scalable. Let’s move for-
ward by creating the onResponse method I mentioned earlier.This object will contain
our first method call to the Ajax object.

Engine Methods and Properties
When we create the callback method for the request, we will need to check the ready
state of the response in order to know that it is completed and ready to be parsed. In
order to check the ready state with our engine, we will call our first Ajax method
named checkReadyState. Following is a snippet of our onResponse method, which
will make this call:

function onResponse()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

// Parse response here

}

}

After the ready state of the response is complete, we can parse the data as we did in
Chapter 3. In order to parse the data, the Ajax object has another method named
getResponse.This method will provide the correct data format based on the header
response from the server. In other words, you do not have to worry about it—it all hap-
pens for you, which is a reason why this object makes life easier.Therefore, if there is a
response and its content type is XML, this method will return the responseXML with
the first documentElement so that the data is immediately ready to be parsed. If the
data is not XML, the method will return the reponseText value, which can be used in
any way you see fit. Following is a quick example of how simple it is to use this method
in our onResponse callback:

function onResponse()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

var categories = Ajax.getResponse().getElementsByTagName
(’category’);

for(var i=0; i<categories.length; i++)

{

document.getElementById("body").innerHTML +=

63Engine Methods and Properties

http://lib.ommolketab.ir
http//lib.ommolketab.ir

➥Ajax.getResponse().getElementsByTagName(’category’)[i]

➥.firstChild.data +"</br>";

}

}

}

This sample code will get all the category nodes from the XML and iterate through
them in order to populate the body element’s innerHTML property, resulting in a list of
categories on the page. Since JavaScript does not have any data typing or member visi-
bility, it is obviously not a requirement to use this method to receive a response because
it is only a way to make things easier during development. If you simply want to view
the response as a string, you can call the request property in the Ajax object directly and
use it to access the responseText and/or responseXML property.

This chapter is an example of how the engine simplifies our requests by eliminating a
lot of the overhead and allowing us to focus on other aspects of the application.The
next two chapters will explain how easy it is to debug with the engine in place and how
flexible the engine is by allowing us endless ways of extending and scaling it.

64 Chapter 7 Using the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8
Debugging

For years now, debugging JavaScript has not been the easiest thing to accomplish
because there has been a lack of tools and a lack of native ways of doing so. Of course,
there has always been the simple, yet trusty, alert debugging, shown in Figure 8.1, and
the more sophisticated alert debugging approaches involving the onerror event.

Figure 8.1 Trusty alert debugging.

This chapter will briefly cover the more sophisticated methods of alert debugging that
can be achieved with the onerror event and responseText property from the XHR
object.With that in mind, the main focus of this chapter will be to discuss a few tools
that will help us debug our Ajax applications with extreme ease and leave us wondering
how we ever developed without them.These tools are the Internet Explorer (IE)
Developer Toolbar, Safari Enhancer, and my personal favorite, FireBug.This chapter will
also feature screenshots from the final application, which we will debug with the various
approaches that we will be discussing throughout this chapter. Let’s get started by cover-
ing JavaScript’s own onerror event.

The JavaScript onerror Event
JavaScript has quite a few built-in events that handle various situations. One that can
help quite a bit when debugging our web applications is the onerror event. Using the
onerror event allows us to capture all the JavaScript errors that happen during runtime.
This event returns three parameters that can be manipulated in any custom callback
function that we define.The three parameters are the error message that was received,
the URL of the file with the issue, and the line number in the file that is causing the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

error. For the most part, this event is useful but it can be quite vague at times, making
sense only to someone who is intimately familiar with the code that is throwing the
error.

In order to set up the onerror event, we must create a callback method to which the
event will point.This callback method accepts the three parameters I mentioned previ-
ously.

function errorHandler(message, url, line)

{

// Add custom error handling

// return a true or false value;

}

onerror = errorHandler;

The errorHandler method should return true or false, depending on whether
we want to display the browser’s standard error message. If we return true, the browser
does not display its standard error message and vice versa. Obviously, using false would
be somewhat redundant, unless we wanted to handle the error message in two ways. In
order to display our own custom error-handling message, we could do something similar
to the following example:

<html>

<head>

<script type="text/javascript">

function errorHandler(message, url, line)

{

var errorMessage = "Error: "+ message +"\n";

errorMessage += "URL: "+ url +"\n";

errorMessage += "Line Number: "+ line +"\n";

alert(errorMessage);

return true;

}

onerror = errorHandler;

function invokeError()

{

allllert("Hello World!");

}

</script>

</head>

66 Chapter 8 Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<body>

<input type="button" value="View Error" onclick="invokeError();" />

</body>

</html>

This example provides a button to invoke an error because the alert function with-
in the invokeError method is not written properly.After the error occurs, the
onerror event will fire the callback method and pass it the three parameters regarding
the error.The callback method that we create, called errorHandler, will concatenate a
string version of the error and present an alert to the user. In Chapter 16,“The Observer
Pattern,” we will create a more sophisticated version of this method that will send an
email to us (as the developers) with a hyperlink to the file that contains the error. For
the time being, we can see that this method of error handling can be useful for debug-
ging because it can present us with a bit more detail than some of the built-in error
handling that browsers provide. Of course, when we begin to discuss installing exten-
sions, this will all change, but this method is still a viable solution to debugging our
applications.

responseText
Before we discuss the extensions that we can use for debugging our applications, we will
cover one more form of alert debugging. For a quick and dirty look at the response
received from an XHR, we could use the responseText property.This property is a
part of the XHR object and returns a string version of any response received from the
server.This includes XML, plain text, JSON, and so on. It can be helpful when used
with alert debugging to get an idea of the document structure with which you are inter-
acting.After the structure is known, it is easy to plan an approach for targeting specific
items in the response.When working with XML, we can see the structure of the nodes
and how they are encapsulated with their parents and ancestors, and so on.

After this is working, we can use the responseXML property to actually target the
correct data that we need to receive for display or confirmation of data retrieval.

IE Developer Toolbar
The IE Developer Toolbar is quite helpful when debugging web applications in Internet
Explorer, especially because the built-in JavaScript error console is incredibly vague and
unhelpful. In this chapter, we will discover how this tool provides us with the power to
disable the cache, navigate the DOM, and view class and id information within the
browser. Before we learn how to use each of these features, we will first need to install
the plug-in.

67IE Developer Toolbar

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Installing the Plug-in
The IE Developer Toolbar can be downloaded from http://www.microsoft.com/
downloads.After you have downloaded and installed the toolbar, it is quite simple to get
started. Go to the View menu and select Toolbars, Developer Toolbar.This will provide us
with the toolbar at the top of IE.After we have the toolbar set up, we can either click
View DOM, or go to the View menu and select Explorer Bar, IE DOM Explorer from
the drop-down.These options provide us with the DOM Explorer, which we can use
for a number of debugging purposes, all of which we will talk about now.

Disabling the Cache
One of the most helpful debugging features is the option to disable the cache, which I
am sure will make your day if you have been testing applications in IE for any length of
time. IE’s cache has always been hard to test around, and the process of clearing it takes
too many clicks, a long wait time, and is not very reliable.This option can be set by
selecting the Disable option from the toolbar and choosing Cache from the various
options within the drop-down menu.With this option set, we will never have to clear
the cache again, but one thing to keep in mind is that we must reset this option every
time we restart IE because it does not save the setting.

Navigating the DOM
Another useful feature in the toolbar is the ability to navigate the DOM.The DOM
Explorer allows us to view all the tags within a web application, by simply choosing the
View DOM button from the toolbar.We will see a tree view on the left side of the
DOM Explorer, which represents the structure of the document that is currently active
within the browser.We can then navigate the DOM by selecting the plus/minus symbols
next to each tag.As we choose different items in the structure, we will get an obnoxious,
flashing blue border around the tag that we are selecting in the display.This obnoxious
border is actually pretty helpful because it helps us find elements in the page by navigat-
ing the HTML.Another feature in the DOM Explorer view is that each time an element
is selected, it shows the attributes and the styles for the tags by name with their current
values.Take a look at Figure 8.2 to get an idea of what the DOM Explorer looks like.

When viewing the entire DOM in most applications, it can get quite convoluted and
near impossible to locate elements.This is why the Find Element option is so useful.This
option can be found by choosing Find from the DOM Explorer and selecting Find
Element from the drop-down menu. Once open, we can search for any element in the
page, the options are Element, Class, Id, and Name. Figure 8.3 shows an example of the
Find Element option in action.

68 Chapter 8 Debugging

http://www.microsoft.com/downloads
http://www.microsoft.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

69IE Developer Toolbar

Figure 8.2 Navigating the DOM can help
discover issues that arise during runtime.

Figure 8.3 Finding specific elements
in the DOM doesn’t have to be hard.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The tree view is one of three panels that appear in the DOM Explorer; the other two
are a node attributes panel and a styles detail panel.The node attributes panel displays
attribute information about each node. It also enables us to add or subtract attributes as
an additional debugging feature.The styles panel contains the style details about each
HTML tag in the tree view.While navigating the tree view, each tag that we choose will
display its style details in the style panel.Take a look at Figure 8.4 to see both of these
panels in action.

Viewing Class and ID Information
This feature of the toolbar is simple: It provides us with the ability to view class and ID
information.This is a great way to gather information about a web application. If we are
having trouble discovering where specific elements are nested within a page, we can use
this feature.

70 Chapter 8 Debugging

Figure 8.4 Node attributes and styles.

Safari Enhancer
If you happen to use a Mac and want to debug your JavaScript applications, the Safari
Enhancer is a great tool.The Safari Enhancer does exactly what the name implies: It is a
great addition to the browser and helps debug JavaScript issues where as no other tool,
that I have come across, does.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.5 Activating the Debugging menu in Safari.

The JavaScript Console
The JavaScript console works much like other consoles that are available in other
browsers.The difference with this console is that it obviously is attached to Safari and
therefore provides us with issues specific to this browser that other browsers consoles
may not pick up. Since all browsers handle code differently it is essential to test in them
all if you want to have a universally compatible application. Figure 8.6 shows the
JavaScript console as it appears with logged errors.

71FireBug

Installing Safari Enhancer
If we are using a new Mac, Safari comes pre-installed on the system.Therefore, to install
the Safari Enhancer we must simply visit http://www.celestialfrontiers.com/safari_
enhancer.php and click on the latest releases download link. Once the installer is down-
loaded we can install by simply double-clicking the installer and following the prompts.
When the installation has completed we can open the Safari Enhancer and set a prefer-
ence in order to debug our applications.The preference which you will want to check is
the Activate Debugging Menu option as seen in Figure 8.5.This figure also shows the
Deactivate Cache option as being checked. It is up to you if you would like to set this
option, I prefer to know that I am dealing with fresh data when I develop.

This will add a new menu item to Safari called Debug. Under this menu will be a list
of debugging options, such as Show DOM Tree, Show Render Tree, Show View Tree,
and many more. My favorite happens to be the JavaScript console and it happens to be
the most relevant to our situation.

http://www.celestialfrontiers.com/safari_enhancer.php
http://www.celestialfrontiers.com/safari_enhancer.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

72 Chapter 8 Debugging

Figure 8.6 Logged errors in the JavaScript console.

FireBug
I definitely saved the best for last with this extension. FireBug is one of the premier
debugging tools for Ajax, JavaScript, CSS, and XHTML applications. It supports error
and warning descriptions for JavaScript and CSS.This tool not only provides extremely
accurate feedback about errors—such as what went wrong, what line it happened on,
and what file it happened in—it also opens the file within the Debugger tab and high-
lights the line of code that is throwing the error. Now that is accuracy! But it gets even
better: Not only does it provide the error, it allows us to set breakpoints in the code
from the Debugger panel and rerun the page to stop the page when that line of code is
reached. I never dreamed of such things with JavaScript! Most relevant to our Ajax
applications is the fact that it also allows us to spy on XHRs and returns just enough
detail about them to eliminate the need for the responseText in an alert approach.

Installing FireBug
In order to install the extension, we first need to have the Firefox browser, which can be
downloaded from http://www.mozilla.com/firefox/.After we have the browser installed,
we can get the FireBug extension at http://www.joehewitt.com/software/firebug/. Joe
Hewitt has built a very minimal and easy-to-use debugging tool that can accomplish a
lot of debugging techniques. In order to use the extension after it is installed, we need to
either click on the check mark on the bottom-right corner of the browser window or
go to Tools, FireBug and choose an option from the extension’s list. Figure 8.7 shows a
screenshot of the options we get after the extension has been opened.

http://www.mozilla.com/firefox/
http://www.joehewitt.com/software/firebug/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.7 These are the options that are available
for displaying errors, warnings, and XHRs.

The Command Line
The command line enables us to write arguments against the page with JavaScript and
receive responses, which would typically display in an alert (that is, if we were alert
debugging).This step eliminates the need to go back and forth between our develop-
ment tool of choice, check out the file from the server, and write the code we want to
test, by either adding it to an alert or writing it to the document, and then re-upload the
file and test.These four steps are eliminated with a simple command line, which is built
in to the bottom of the tool.Take a look at Figure 8.8 for a screenshot of the command
line in action.

The command line enables us to do much more than write simple strings to the con-
sole.Writing a reference to an object creates a hyperlink in the FireBug console.When
we click an object hyperlink in the console, we are taken to the Inspector, which displays
the selected object in the appropriate tab. For example, the sample application has a div
element named email in the index, which contains all the components in the applica-
tion. If we wanted to test the object hyperlinking, we could type
document.getElementById('email'); into the command line and view the results.
Figure 8.9 shows an example of the hyperlink that appears in the console when we
write this code.

73FireBug

http://lib.ommolketab.ir
http//lib.ommolketab.ir

74 Chapter 8 Debugging

Figure 8.8 The command-line input and results provide a quick way to
test JavaScript.

Figure 8.9 Targeting HTML elements via the command-line.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

75FireBug

Table 8.1 shows a list of built-in functions that can be invoked from the command line.
These functions are useful shorthand approaches to receiving command-line responses.

Table 8.1 FireBug’s Built-in Command-Line Functions

Functions Definitions

$("id") Represents the following function:
document.getElementById().

$$("css") Returns an array of elements that match a CSS selector.

$x("xpath") Returns an array of elements that match an XPath selector.

$0 Variable containing the most recently inspected object.

$1 Variable containing the next most recently inspected object.

$n(5) Returns the nth most recently inspected object.

inspect(object) Displays the specified object in the Inspector.

dir(object) Returns an array of property names from an object.

clear() Clears the console.

Logging Messages in the Console
The console.log method is a sophisticated replacement for alert debugging.This
method takes two parameters:The first is anything that you want to display in the
console, and the second is an optional parameter that selects a tab in the Inspector based
on the value specified.This would be the perfect solution to displaying the
responseText that we were debugging earlier in the chapter. Using the console.log
method is very simple:

console.log(param, ’optional tab’);

This obviously does not work in other browsers because FireBug does not have com-
patible versions, so when deploying the live version of an application that uses them,
make sure that we remove them.

The basic logging method is not just an alert-debugging replacement.As we
learned with the command line, writing a reference to an object creates a hyperlink in
the FireBug console.When we click an object hyperlink in the console, we are taken to
the Inspector, which displays the selected object in the appropriate tab.This also applies
to passing an object reference as a parameter to the console.log method.This sudden-
ly makes the console.log method a lot more powerful and sets it far above other
debugging methods.As if that wasn’t enough there are also different levels of logging
messages according to severity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Levels of Logging
In order to log errors, warnings, debug messages or other random information we can
use the different levels of logging that exist in FireBug.They not only visually separate
different types of messages in the console, they also provide a link in the console to the
exact line number in the source code where they reside.This can be extremely useful
during development phases by eliminating excessive debugging time. In order to use
these different methods in your JavaScript you would write them as follows:

console.debug("message" [,objects]);

console.info("message" [,objects]);

console.warn("message" [,objects]);

console.error("message" [,objects]);

Inspecting Elements
FireBug provides the capability to inspect elements within a page called Instant
Inspecting. I believe this is the most useful approach to debugging that I have come
across. Instant Inspecting can be accessed by either going to Tools, FireBug, Inspect
Element or by clicking the check mark at the bottom-right corner of the browser and
choosing the Inspect button from the top-left menu, next to the Clear button.After we
have activated the Inspector, we can hover the mouse over the page to inspect the ele-
ments within the page.As we hover over them, we see the structure of our page and
how certain items relate to others. Figure 8.10 shows the Inspector in action as it high-
lights the tag in the code for the element that is currently being hovered over.

Another unbelievably helpful feature the Inspector includes is live editing. Live edit-
ing enables us to click on a tag attribute value, such as a div id value, and change it
within the editor to test the new behavior.This is another great timesaver that eliminates
quite a bit of steps from the traditional debugging approach. Figure 8.11 shows an exam-
ple of live editing with a div id from the sample application.

Inspecting events is another feature that FireBug offers, which can be used by select-
ing the Inspector tab and then the Events tab from the bottom of the window, and then
clicking the Inspect button.After we have activated the Inspector, we can hover over the
application to receive all the events within the page.As we can see in Figure 8.12, all the
events—from a simple mousemove to a DOMActivate—are displayed within the
Inspector.

At first glance, it is obvious that the event inspecting can become fairly messy, espe-
cially with all the mousemove events. Luckily, there is a feature that allows you to filter
the events you want to inspect.The search box that is located in the top-right corner of
FireBug is used for this solution. Just type in the event you want to see, such as
mouseover, and it will automatically filter out all other events—very handy.

76 Chapter 8 Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

77FireBug

Figure 8.10 Instant Inspecting provides a different
perspective on web applications.

Figure 8.11 Live editing enables us to edit tag
attributes during runtime to test functionality.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.12 Inspecting events provides vital information during runtime.

Spying on Ajax
XHRs can be watched (or spied on) with a built-in XHR event listener in FireBug.This
tool provides us with the Post or Get tab, the Response tab, and the Headers tab from a
request’s response.To activate the XHR spy, we must choose the Show
XMLHttpRequests option from the Options drop-down in FireBug. Once activated, it
will display all XHRs that are made within a web application. By default, it shows the
requested URL and the method that was used to make the request.When one is selected
it expands, leaving us with three options: Post or Get (based on the type of request),
Response, and Headers. By clicking each of the tabs, we can view the data that was used
for each.The Post or Get tab shows us the request that was made, whereas the Response
tab shows the response from the server, such as XML, JSON, and so on.The Headers tab
displays the headers from the server that were received with the response. No more writ-
ing alerts on the request headers! The Post or Get tab can be useful if we want to see the
URL that is being requested and the parameters that are being sent in the query string.
Figure 8.13 shows a request with a couple of parameters as a query string.

In this case, the Response tab shows the XML that is being returned from the server.
See Figure 8.14 to get an idea of how this looks.

As Figure 8.15 shows, the Headers tab displays the headers that were sent by the serv-
er where the sample is residing.

78 Chapter 8 Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.13 Viewing an XHR.

79FireBug

Figure 8.14 Viewing the response from the XHR.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8.15 Viewing the headers that were sent by the server with the
response to the XHR.

80 Chapter 8 Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9
Extending the Engine

Using an object-oriented design for the Ajax engine provided us with the flexibility to
extend or incorporate the code into any web application.The engine that we have creat-
ed can accomplish any type of request.To make this engine extremely powerful, we can
create additional objects that extend the engine’s functionality and provide us with ways
of handling common situations when developing our Ajax applications.

This chapter will focus on extending the Ajax engine with two completely different
types of objects.The first object that we will create is a Utilities object, which will
handle all of the common front-end functionalities, such as creating HTML elements,
simplifying common JavaScript functions, and providing our applications with reusable
GUI-focused methods.The second object is an HTTP object, which will handle all the
possible status codes that may be returned with the Ajax response.Although the
Utilities object is completely focused on front-end code, this object has the dual
purpose of providing both the front end and back end with appropriate status code
responses as strings.

Creating a Utilities Object
The samples that we build throughout the rest of this book will rely heavily on specific
DOM-related methods.These methods will simplify common JavaScript functions, create
any HTML element that we need, and be reused to avoid the duplication of common
code throughout our applications.

Before we create any methods, we must first instantiate the Utilities object as
follows:

Utilities = {};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This object is based on the Singleton pattern, which we will discuss in Chapter 14,
“Singleton Pattern.” Creating methods in this object is simple: First use the name of the
object, followed by the name of the method.Take a look at the following example:

Utilities.createElement = function() {}

The methods that currently exist in the Utilities object are extremely reusable and
will be used heavily throughout the rest of the book samples.We will start by adding
two methods: one that includes JavaScript files named includeJS (see Listing 9.1), and
another named includeCSS, which includes CSS files (see Listing 9.2). Each method
includes the corresponding array of files in any document by accepting an array of file
paths.

Listing 9.1 Including JavaScript Files (Utilities.js)

Utilities.includeJS = function(filepaths)

{

for(var i=0; i<filepaths.length; i++)

{

document.write(’<script type="text/javascript"
➥src="’+filepaths[i]+’"></script>’);

}

}

Listing 9.2 Including CSS Files (Utilities.js)

Utilities.includeCSS = function(filepaths)

{

for(var i=0; i<filepaths.length; i++)

{

document.

write(’<link href="’+filepaths[i]+’" rel="stylesheet" type="text/css" />’);

}

}

These methods are simple but they save a lot of typing, or copying and pasting, and
make our HTML page more manageable.They also save time and prevent errors if a
change needs to be made to the include statement because we will have to make the
change only in the method rather than in multiple tags that would reside in the HTML
file.The following is an example of how we could use these methods in a web page:

var cssFiles = new Array("pathto/css/file.css", "pathto/another/css/file.css");

➥Utilities.includeCSS(cssFiles);

82 Chapter 9 Extending the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var jsFiles = new Array("pathto/javascript/file.js",

"pathto/another/javascript/file.js ");

Utilities.includeJS(jsFiles);

The next method, named getElement, is even simpler than the previous two.This
method returns an element by ID by accepting a string parameter and using JavaScript’s
intrinsic getElementById method. Ultimately, this method is just a shorthand version
of the intrinsic method and allows us to make changes to the method only if we need to
do so in the future.

Utilities.getElement = function(i) { return document.getElementById(i); }

Debugging is one of the largest complaints when it comes to JavaScript aside from
the debugger tools that I mentioned in Chapter 8,“Debugging.”This next method has
saved me a lot of grief and will hopefully do the same for you. It is conveniently named
debug and takes any value as a parameter and writes it to a debug tag that you must
specify anywhere in your HTML (see Listing 9.3), specifically during development and
testing.This method also gives us an example of how to use the getElement method,
which we just covered.

Listing 9.3 Debugging with the Utilities Object (Utilities.js)

Utilities.debug = function(val)

{

this.getElement(’debug’).innerHTML += val +"</br>";

}

<!-- A Sample Debug Element -->

<div id="debug""></div>

In Chapter 18,“Interaction Patterns,” we will learn about interaction patterns and GUI-
related code that can be used in your Ajax applications.The next method, named
toggle (see Listing 9.4), is one that will get a lot of use in chapters to come.This
method takes an ID of a DOM element and checks to see whether the element’s display
style is equal to an empty string or to the string value of ’none’. If it is empty, it sets it
to ‘none’; if it is ’none’, it sets it to an empty string.This code toggles the visibility of
any DOM element by ID at anytime, from any object.

Listing 9.4 Toggle Element Visibility (Utilities.js)

Utilities.toggle = function(id)

{

this.getElement(id)

➥.style.display = (this.getElement(id).

➥style.display == ’’) ? ’none’ : ’’;

}

83Creating a Utilities Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next method that we will examine is one that creates a DOM element that can
later be written to the document body. I have conveniently named this method
createElement (see Listing 9.5).The createElement method takes two parameters: a
string that represents the HTML element type that you want to create, and an object.

Listing 9.5 Creating Elements with the Utilities Object (Utilities.js)

Utilities.createElement = function(e, obj)

{

var element = document.createElement(e);

for(prop in obj)

{

element[prop] = obj[prop];

}

return element;

}

The createElement method dynamically creates elements that can be used to display
data in the page. It can create any HTML element—a few examples are div, span, img,
a, li, and so on—based on the string that is passed as the first parameter.What makes
this method even more extraordinary is the fact that it can accept properties as JSON
and append them along with their values to the element.This method appends proper-
ties to DOM elements by iterating through the properties in the JSON parameter and
creating properties on the DOM element.The following is an example of how to use
this method:

var title = Utilities.createElement("div", {id:’title’, className:’title’,
➥innerHTML:’title’});

This method might have created an HTML element, but the createElement
method cannot write this element to the page on its own.This is why we need to create
the next method, named appendChild (see Listing 9.6).

Listing 9.6 Appending Child Elements to the Document (Utilities.js)

Utilities.appendChild = function()

{

if(this.appendChild.arguments.length > 1)

{

var a = this.appendChild.arguments[0];

for(i=1; i<this.appendChild.arguments.length; i++)

{

if(arguments[i])

{

a.appendChild(this.appendChild.arguments[i]);

}

}

84 Chapter 9 Extending the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return a;

}

else

{

return null;

}

}

This method handles appending HTML elements to one another and, ultimately, the
current document by appending elements to the document body. It uses JavaScript’s
intrinsic arguments property, which is an array that contains all the input parameters for
the current method.This arguments array can then be iterated to provide each parame-
ter that was passed to the method.This property allows developers to create methods
that can change based on the parameters.The following is an example of how we could
write the previously created title div to the document body:

<html>

<head>

<title>Sample</title>

<script type="text/javascript" src="../javascript/Utilities.js"></script>

<script type="text/javascript">

function init()

{

var title = Utilities.createElement("div", {id:’title’, className:’title’,
➥innerHTML:’title’});

Utilities.appendChild(document.body, title);

}

</script>

</head>

<body onload="javascript:init();">

</body>

</html>

As you can see, we must wait to create the element and append it to the document
until the body of the document has completely loaded. If we do not wait until the doc-
ument has fully loaded, the element that we are appending to will most likely not exist
when this code is executed and will throw an error that cause the code to fail.Therefore
it is important to be patient.After it has loaded, we can write the element and append it
however we please. Remember, this is a very simple example to show you how to use
these methods. It might seem like a lot of overhead just for writing the word title to a
web page (and it obviously is), but imagine adding a stylesheet to the page to handle for-
matting the elements that you are writing, or appending other elements to the title

85Creating a Utilities Object

Listing 9.6 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

element before appending it to the body.The possibilities are endless and can become
extremely efficient when we create objects to manage rendering components.All we
need to do is pass the newly created element content from an Ajax request that returns
dynamic XML based on data in a database.And don’t forget, this will all happen without
a page refresh.

The next method is named removeChildren and it does just that. It takes an ele-
ment as a parameter, and checks to see if the parameter is null; if so, it returns nothing. If
the value is not null, we enter a while loop based on the hasChildNodes method.This
creates a loop while the element has childNodes. In this loop we perform a
removeChild on the element and pass its firstChild as the parameter. In the end the
element is stripped of all its children and the method has accomplished its goal. Listing
9.7 shows the complete removeChildren method.

Listing 9.7 Removing Children from Their Parents (Utilities.js)

Utilities.removeChildren = function(node)

{

if(node == null)

{

return;

}

while(node.hasChildNodes())

{

node.removeChild(node.firstChild);

}

}

The next two methods are useful for adding listeners for events based on how the
browser happens to handle them, since the browsers cannot seem to get along.The first
method will be named addListener and the second removeListener. Both methods
take the same three parameters; an object, an event name, and a listener.The obj param-
eter represents the element in which you want to assign the listener to, such as the docu-
ment object.The eventName parameter represents the event to register the listener to,
which could consist of anything from a mousemove event to a click event.The last
parameter listener is the custom method that you want to be called each time the event
is fired.This is the actual method doing the listening.The only difference between the
two methods is that one adds and one removes listeners. Listing 9.8 shows both methods
as they appear in the Utilities object.

Listing 9.8 Adding and Removing Listeners (Utilities.js)

Utilities.addListener = function(obj, eventName, listener)

{

if (obj.attachEvent)

{

obj.attachEvent("on"+eventName, listener);

}

86 Chapter 9 Extending the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

else if(obj.addEventListener)

{

obj.addEventListener(eventName, listener, false);

}

else

{

return false;

}

return true;

}

Utilities.removeListener = function(obj, eventName, listener)

{

if(obj.detachEvent)

{

obj.detachEvent("on"+eventName, listener);

}

else if(obj.removeEventListener)

{

obj.removeEventListener(eventName, listener, false);

}

else

{

return false;

}

return true;

}

Each method checks to see what browser the user is using. If it is IE, we add the "on"
string to the beginning of the eventName when we attachEvent of detachEvent in
order to reference the event name as IE expects it. If the user is in another browser, the
method uses the addEventListener and removeEventListener events and the
parameters are passed to these methods as is.

The last method in the Utilities object is a visual one.The object is called
changeOpac and it changes the opacity of an element in any browser by simply passing
a number and an element ID to the method. Listing 9.9 shows this method and how it
handles changing all the different browser opacities.

Listing 9.9 Changing the Opacity of an Element (Utilities.js)

Utilities.changeOpac = function(opacity, id)

{

var object = Utils.ge(id).style;

object.opacity = (opacity / 100);

object.MozOpacity = (opacity / 100);

87Creating a Utilities Object

Listing 9.8 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

object.KhtmlOpacity = (opacity / 100);

object.filter = "alpha(opacity=" + opacity + ")";

}

Handling Status Codes with an HTTP Object
HTTP status codes have a dual purpose:They are not only useful in the back end for
development purposes, but they are also very useful on the front end for providing users
with the status of their interactions.

As we briefly covered in Chapter 2,“The Request,” the request status of the Ajax
object is equivalent to the HTTP status of the file that is being requested. HTTP status
codes represent the response from the server based on the status of the file that is being
requested.The codes are broken up into five categories, which cover all the possible
responses that a server could return to an HTTP request.The HTTP status code cate-
gories are listed next; the xx after each number represents other digits which exist in
each category and are used to specify a type of error.

n Informational: 1xx
n Successful: 2xx
n Redirection: 3xx
n Client Error: 4xx
n Server Error: 5xx

In order to handle these status codes and provide meaningful user feedback, we will cre-
ate an HTTP object.The object that we will be creating will take the request status from
the Ajax object, which will be a number from 1 to 4. It will then return the status code
that corresponds with that number value as a string that will contain an explanation of
what occurred on the server side. Providing this level of detail is essential when creating
web applications because a user should always understand what is happening and what, if
anything, went wrong.The HTTP object is fairly simple, but it is quite large because of
the level of detail it covers.The following is a condensed version of the object and the
methods it contains:

HTTP = {};

HTTP.status = function(_status){}

HTTP.getInformationalStatus = function(_status){}

HTTP.getSuccessfulStatus = function(_status){}

HTTP.getRedirectionStatus = function(_status){}

88 Chapter 9 Extending the Engine

Listing 9.9 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

HTTP.getClientErrorStatus = function(_status){}

HTTP.getServerErrorStatus = function(_status){}

The HTTP object has been separated into different methods for each response catego-
ry.To make this object more usable, there is a status method that is used as the access
point to the object.All status calls are filtered through this method to the corresponding
category to which they belong. Each method takes the status that is passed as a parame-
ter and returns a string response that we, as the developers, choose to respond with.As
you will see, the current object has default responses, which represent the literal status
code titles, but these can and should ultimately be changed to responses that are more
informative and user friendly. Let’s take a look at the status method in Listing 9.10 to get
an idea of how this method handles delegating the status number value to the corre-
sponding method category.

Listing 9.10 Delegating HTTP Status Codes to the Correct Methods (HTTP.js)

HTTP.status = function(_status)

{

var s = _status.toString().split("");

switch(s[0])

{

case "1":

return this.getInformationalStatus(_status);

break;

case "2":

return this.getSuccessfulStatus(_status);

break;

case "3":

return this.getRedirectionStatus(_status);

break;

case "4":

return this.getClientErrorStatus(_status);

break;

case "5":

return this.getServerErrorStatus(_status);

break;

default:

return "An unexpected error has occurred.";

}

}

The status code categories are split into different numbers.When the status method
receives the _status parameter, it takes the first number from the parameter and locates
the corresponding method based on its category number. For example, if the object
received a 404 status code value, it would use the first number in the code, which would
be the number 4, to locate the appropriate method category and delegate it to that

89Handling Status Codes with an HTTP Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

method. In order to use the first number in the status code, we need to convert the
number to a string and split it into an array of strings.After we have created the array,
we can target its first item, which is the item in the 0 position, and perform a switch on
it to match it with the corresponding method category.

HTTP Status Code Categories
The five method categories that the HTTP object consists of correspond to the HTTP
status code definition categories. Each of the methods in the object takes a _status
parameter, which is used to return the corresponding message.This section will cover the
status codes that are handled by each method, but will not go into detail about each
status code definition.As a useful reference, I have also added the URL in each method
to the status code definition categories, which are defined in detail on the W3C website.
The first method that we will focus on, which can be viewed in Listing 9.11, corre-
sponds to the Informational category.

Listing 9.11 Handling Informational Status Codes (HTTP.js)

HTTP.getInformationalStatus = function(_status)

{

// Informational 1xx

// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1

switch(_status)

{

case 100:

return "Continue";

break;

case 101:

return "Switching Protocols";

break;

default:

return "An unexpected error has occurred.";

}

}

The getInformationalStatus method handles all the informational status codes for
the HTTP object.The informational status code category consists of two status codes:

n Continue: 100
n Switching Protocols: 101

The second method, named getSuccessfulStatus (see Listing 9.12), handles all the
successful HTTP status codes.

90 Chapter 9 Extending the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.12 Handling Successful Status Codes (HTTP.js)

HTTP.getSuccessfulStatus = function(_status)

{

// Successful 2xx

// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2

switch(_status)

{

case 200:

return "OK";

break;

case 201:

return "Created";

break;

case 202:

return "Accepted";

break;

case 203:

return "Non-Authoritative Information";

break;

case 204:

return "No Content";

break;

case 205:

return "Reset Content";

break;

case 206:

return "Partial Content";

break;

default:

return "An unexpected error has occurred.";

}

}

The successful status code category consists of six status codes:
n OK: 200
n Created: 201
n Accepted: 202
n Non-Authoritative Information: 203
n No Content: 204
n Reset Content: 205
n Partial Content: 206

The third status code method category is the getRedirectionStatus (see Listing 9.13)
method.

91Handling Status Codes with an HTTP Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.13 Handling Redirection Status Codes (HTTP.js)

HTTP.getRedirectionStatus = function(_status)

{

// Redirection 3xx

// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3

switch(_status)

{

case 300:

return "Multiple Choices";

break;

case 301:

return "Moved Permanently";

break;

case 302:

return "Found";

break;

case 303:

return "See Other";

break;

case 304:

return "Not Modified";

break;

case 305:

return "Use Proxy";

break;

case 307:

return "Temporary Redirect";

break;

default:

return "An unexpected error has occurred.";

}

}

The getRedirectionStatus method handles all the redirection status codes for the
HTTP object.The redirection status code category consists of seven status codes:

n Multiple Choices: 300
n Moved Permanently: 301
n Found: 302
n See Other: 303
n Not Modified: 304
n Use Proxy: 305
n Temporary Redirect: 307

The fourth method for handling status codes is the getClientErrorStatus (see
Listing 9.14) method.

92 Chapter 9 Extending the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 9.14 Handling Client Error Status Codes (HTTP.js)

HTTP.getClientErrorStatus = function(_status)

{

// Client Error 4xx

// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4

switch(_status)

{

case 400:

return "Bad Request";

break;

case 401:

return "Unauthorized";

break;

case 402:

return "Payment Required";

break;

case 403:

return "Forbidden";

break;

case 404:

return "File not found.";

break;

case 405:

return "Method Not Allowed";

break;

case 406:

return "Not Acceptable";

break;

case 407:

return "Proxy Authentication Required";

break;

case 408:

return "Request Timeout";

break;

case 409:

return "Conflict";

break;

case 410:

return "Gone";

break;

case 411:

return "Length Required";

break;

case 412:

return "Precondition Failed";

break;

93Handling Status Codes with an HTTP Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

case 413:

return "Request Entity Too Large";

break;

case 414:

return "Request-URI Too Long";

break;

case 415:

return "Unsupported Media Type";

break;

case 416:

return "Requested Range Not Satisfiable";

break;

case 417:

return "Expectation Failed";

break;

default:

return "An unexpected error has occurred.";

}

}

The getClientErrorStatus method handles all the client error status codes for the
HTTP object.This status category is intended to present statuses based on an error that
occurs from an interaction that a client makes.The client error status code category is
the largest of the five categories, consisting of seventeen status codes:

n Bad Request: 400
n Unauthorized: 401
n Payment Required: 402
n Forbidden: 403
n File not found: 404
n Method Not Allowed: 405
n Not Acceptable: 406
n Proxy Authentication Required: 407
n Request Timeout: 408
n Conflict: 409
n Gone: 410
n Length Required: 411
n Precondition Failed: 412
n Request Entity Too Large: 413
n Request-URI Too Long: 414

94 Chapter 9 Extending the Engine

Listing 9.14 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n Unsupported Media Type: 415
n Requested Range Not Satisfiable: 416
n Expectation Failed: 417

The fifth and final status code category method is named getServerStatus (see Listing
9.15), which consists of all the server error status codes that could be returned from an
HTTP request.The difference between the client and the server status code categories is
instead of responding with errors based on client interactions, the server status codes are
relative to the server and its inability to perform a request.

Listing 9.15 Handling Redirection Status Codes (HTTP.js)

HTTP.getServerErrorStatus = function(_status)

{

// Server Error 5xx

// http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5

switch(_status)

{

case 500:

return "Internal Server Error";

break;

case 501:

return "Not Implemented";

break;

case 502:

return "Bad Gateway";

break;

case 503:

return "Service Unavailable";

break;

case 504:

return "Gateway Timeout";

break;

case 505:

return "HTTP Version Not Supported";

break;

default:

return "An unexpected error has occurred.";

}

}

The server error status code category consists of five status codes:
n Internal Server Error: 500
n Not Implemented: 501
n Bad Gateway: 502

95Handling Status Codes with an HTTP Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

n Service Unavailable: 503
n Gateway Timeout: 504
n HTTP Version Not Supported: 505

As you can see, the HTTP object is fairly simple, yet it is fairly large as well due to the
fact that it handles every single status code that an HTTP request could possibly return.
This object will save a lot of coding time; all that you must do for your applications is
provide a custom message or even an action based on the code.

Using the HTTP Object
Adding the HTTP object to the Ajax engine is extremely simple after the JavaScript file
has been imported into the current document.We will need to call only a single
method, which will provide the status feedback as a string. Listing 9.16 shows how to
return the status to the Ajax requestor.

Listing 9.16 Returning the HTTP Status As a String (Ajax.js)

Ajax.checkReadyState = function(_id)

{

switch(this.request.readyState)

{

case 1:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 2:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 3:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 4:

AjaxUpdater.isUpdating = false;

document.getElementById(_id).innerHTML = ’’;

return HTTP.status(this.request.status);

default:

document.

getElementById(_id).innerHTML = "An

➥unexpected error has occurred.";

}

}

Now that we have the HTTP object created, we can begin to return meaningful status
codes to requesting objects as feedback to the user or we can use these status codes to
provide the user with other options. For instance, let’s say that we have an application
that is attached to a shopping cart and we receive a 402: Payment Required response

96 Chapter 9 Extending the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

from the server.We could either redirect the user to a payment page or dynamically
write a payment form to the page through DHTML.Another possibility could be a
401: Unauthorized response, which we could handle by redirecting the user to a
login page or, again, we could use DHTML to present a form to the user for login/reg-
istration without refreshing the page.When the user logs in or registers, we could send
the request through Ajax.After we receive a successful response, we could present the
user with the original data she was requesting.

There is a huge difference between providing the user with feedback versus providing
her with options.When we provide a user with feedback, she does not have any options
and is usually left wondering what to do next. If we provide the user with options, we
make the process much more intuitive and allow the user to progress on her own with-
out worrying about reading cryptic messages from the server side. In fact, those cryptic
messages also take time for developers to write. Rather, developers could be planning
their next response to provide the user with a new option. HTTP status codes are just
one of the features that make Ajax so powerful, yet they are very seldom a topic of con-
versation. If you think of the example situations in this context, you can accomplish
some fairly complex user interaction scenarios that will dynamically occur based on your
users’ interactions after your project has been completed. It will become a living applica-
tion that reacts based on the current users’ status and interactions.

97Handling Status Codes with an HTTP Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

III
Creating Reusable

Components

10 Accordion

11 Tree View

12 Client-Side Validation

13 Data Grid

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10
Accordion

Adding massive amounts of data to one web page is not a recommended design
approach because it can be completely disorienting to the user, and might cause him to
go to another site.There are always exceptions, though, which is the case when using an
accordion component to display data. Using an accordion component enables a single
web page to display much more content without disorienting the user in the process.An
accordion has multiple panels that can expand and collapse to reveal only the data that a
user is interested in viewing without overwhelming him with everything at one time.

In this chapter, we will learn how to create a custom Ajax-enabled accordion compo-
nent.An Ajax-enabled accordion can lend itself to many unique situations. For example,
you can connect the component to live XML data from a database via a server-side
language, which can send and receive XML or any other format that you prefer.The
accordion component can be the graphical user interface for a custom web mail
application that displays threads in different panels.The server can push new data to the
component when mail has been updated, deleted, or added to the database, and the
accordion can parse it to update, delete, or add new panels to the thread.This is a perfect
example of providing access to massive amounts of content without scaring away the
users of the application. It is also a great way to organize the content so that the applica-
tion is ultimately more usable and purposeful.

Getting Started
In order to get started we must do a few things first.We must define an XML structure
for the object to accept, which will be scalable and grow with a large application. Once
we have defined this data structure we must then create a process for requesting it.This
section will focus on both of these assignments in order to get us started toward creating
the object.

The XML Architecture
Before we begin, we need to architect an XML structure that will be used to represent
an accordion with all its properties.Aside from the XML declaration, which needs to be

http://lib.ommolketab.ir
http//lib.ommolketab.ir

added to the top of the file, the first element that we will create will be named
accordion to represent the actual object or component. If we were to visualize an
accordion, we would know that it consists of multiple panels, so we will use panel as
the first child node name.To identify which panel is expanded by default when the
accordion is rendered, we will add an expanded attribute to the panel element and
populate it with a Boolean of true for expanded. Each panel should also include a
title and have content that displays when the panel is expanded; therefore, we will
create these elements as child nodes of the panel. If multiple panels are necessary to pres-
ent content, we can easily duplicate the panel and its enclosed children elements so that
there are numerous panels, one after the other.There is no limit to the amount of panels
that can be added, but the accordion component will render slower as more data is
added. Ultimately, however, a difference is not noticeable until your XML file gets very
large.Take a look at the sample code in Listing 10.1 to get an idea of how to construct
an accordion XML file that will be parsed by our custom component.

Listing 10.1 The XML Sample for the Accordion (accordion.xml)

<?xml version="1.0" encoding="iso-8859-1"?>

<accordion>

<panel expanded="true">

<title></title>

<content></content>

</panel>

<panel>

<title></title>

<content></content>

</panel>

</accordion>

After the structure has been created, we can add data between the XML node elements.
This data will be used to display in the corresponding parts of the accordion compo-
nent.Accepting HTML in any node element will make this component much more
flexible and can be very easily achieved by simply adding CDATA tags between the
content elements. Here is an example of how easy this is to accomplish:

<content><![CDATA[html text goes here]]></content>

Adding CDATA tags allows us to use any HTML that we would like to display in any
given panel.We could display everything from complex tables, images, and even other
components.After you have completed creating all of the components in this book, you
can combine them to make additional ways of interacting with data.After we have pop-
ulated the XML file, we are ready to request it and use its content to render the compo-
nent.

102 Chapter 10 Accordion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Requesting the XML
It is now time to set up the request for the XML.We will request the XML that we cre-
ated in the last section and push it to the parsing method in the component.To make
the request, we will first create an HTML file to hold all the code that will create and
facilitate communication between the component and Ajax. Keep in mind that aside
from building this sample, you will probably not use this component solely as you might
have an existing file that you want to incorporate the component into.With the correct
files and a few tweaks to the placement of the component, you can easily add one to any
page. In the header of the new sample HTML file, add references to the accordion CSS
and all the necessary JavaScript files, as in Listing 10.2. Keep in mind that you will have
to run the files on a server in order for the XHR to work.

Listing 10.2 The HTML Container for the Project (accordion.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

➥Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/

➥xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Accordion</title>

<link href="css/accordion.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="../javascript/Utilities.js"></script>

<script type="text/javascript" src="../javascript/utils/AjaxUpdater.js"></script>

<script type="text/javascript" src="../javascript/utils/HTTP.js"></script>

<script type="text/javascript" src="../javascript/utils/Ajax.js"></script>

<script type="text/javascript" src="../javascript/components/Panel.js"></script>

<script type="text/javascript"
➥src="../javascript/components/Accordion.js"></script>

We are including a number of JavaScript files—one of which is the Utilities object
that we created in Chapter 14,“Singleton Pattern”—because it will be used to create the
accordion’s HTML elements that get rendered on the screen.The other JavaScript files,
Panel and Accordion, are the objects that we will be focusing on creating throughout
the rest of this chapter. In order to get started, you can create these files in the corre-
sponding JavaScript directory.

After we have the files included, we need to create an initialize method (see
Listing 10.3) in the header and add an Update call with the AjaxUpdater to request
the accordion XML file.This object will make the request to the Ajax object based on
the HTTP method and the query parameters that you pass.The Ajax object will then
make an XHR to the XML file that we are passing and will finally respond to the call-
back method that you specify. In this case, it is the display method for the accordion,
which will parse the XML and render the accordion and its panels.The first parameter is
the HTTP method for the request.The second is the requested file, plus any query
string that you need to append for posting data, which we will be doing more of in Part
V,“Server-Side Interaction,” when we begin to interact with server-side languages and

103Getting Started

http://lib.ommolketab.ir
http//lib.ommolketab.ir

databases.The last parameter is the method that you would like to be used as a callback
method for the request.

Listing 10.3 The XHR Request Code (accordion.html)

<script type="text/javascript">

function initialize()

{

AjaxUpdater.Update("GET", "services/accordion.xml", Accordion.display);

}

</script>

</head>

As you can see in Listing 10.3, we need to make sure that all the code is available or
fully instantiated.We must simply wait until the page loads before we call the
initialize method that makes the request.The following shows an example of the
body onload method:

<body onload="javascript:initialize();">

I have also added a loading div element (see Listing 10.4) to handle the ready state
status of the request.This is a good way to present the user with a message regarding the
state.

Listing 10.4 A div Element to Display Loading Status (accordion.html)

<div id="loading"></div>

</body>

</html>

When we have the HTML file ready to go, we can start creating the objects that make
up the accordion component. Let’s start with the Accordion object itself.

Creating the Accordion Object
The first object that needs to be created for the accordion component is the Accordion
object.The Accordion object will handle parsing the XML as well as creating and con-
trolling a variable number of panel objects.Accordions consist of multiple panels that
stack on top of each other and expand and collapse to reveal hidden content.We will
create a panel object that uses the prototype structure we discussed in Chapter 5,
“Object-Oriented JavaScript.”This will allow us to create multiple panel objects. Before
we move onto the details of creating the panels, however, we will finish creating the
Accordion object. Creating the Accordion object and initializing the properties is triv-
ial, but there is an important sequence of events that needs to happen—otherwise, the
object will not initialize properly. First, we must instantiate the object so that we can use

104 Chapter 10 Accordion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

its other methods. In order to trigger the initialize method, we must declare the
method before we call it.The code snippet in Listing 10.5 shows an example of how we
can accomplish this.

Listing 10.5 Accordion Instantiation and Initialization (Accordion.js)

Accordion = {};

Accordion.initialize = function()

{

panels = new Array();

expandedPanel = 0;

}

Accordion.initialize();

Calling the initialize method before declaring it will cause an error because the
method does not exist in memory at this point and is not accessible. Notice that we have
two properties in the initialize method:A new panels array is created and the
expandedPanel number is set to 0.The panels array is simply an array of panel
objects that the Accordion object will contain after the panels have been created.These
panels will be added to the array in the display method and then be accessible to the
other methods in the Accordion object.The expandedPanel number is used to deter-
mine which panel is expanded by default when the accordion is rendered.This is the
property that will be set when we get the results of the XML file’s expanded attribute.

To render the accordion, we will create a display method.This is the method we
are using as the callback function for the Ajax request in the HTML file we created at
the beginning of the chapter.The first thing we need to do in the display method is to
check the ready state of the Ajax object. If the ready state returns "OK", we will continue
with the method; if we do not receive "OK" as the value, we can add a number of
branches to handle the different scenarios. For the example, I simply created a try-
catch to display a generic message for failed requests.

When we receive a successful message, we need to create an accordion div element
to act as the parent container for all the panels.When we have our accordion div ele-
ment created, we need to iterate through the panels from the response by targeting the
panel node element by name in the response XML.After we have an array of panel
data from the response, we can use the length property of the panel array to iterate
through the array.While iterating through the panel array, we need to get the title
and content data for each panel.We will find the panel element with an expanded
attribute that is set to true and use its iteration number to set the expandedPanel vari-
able.The expandedPanel number will be useful for matching purposes because it will
represent the unique ID of each panel object.When we have all the data from the XML
targeted to local variables, we can push a new panel object into the panels array we
instantiated in the accordion’s initialize method.When creating the new panel we
will pass it the iteration number as a unique ID, along with the title and content strings.

105Creating the Accordion Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we have the panel objects created, we can append the panel HTML ele-
ments to the accordion.We will accomplish this by using the appendChild method in
the Utilities object and passing the accordion div element and each panel display
method.The panel display method will pass all the HTML elements that are created
inside the panel object and append them to the accordion.When we have completed
iterating through the panels array and have appended them to the accordion, we will be
able to append the accordion to the document body.Appending the accordion to the
document body will render the accordion in the web page.Take a look at Listing 10.6 to
see the display method in its entirety.

Listing 10.6 The Accordion’s display Method (Accordion.js)

Accordion.display = function()

{

try

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

var accordion = Utilities.createElement("div", {id:’accordion’});

var p = Ajax.getResponse().getElementsByTagName(’panel’);

for(var i=0; i<p.length; i++)

{

var title = Ajax.getResponse().getElementsByTagName(’title’)[i].

➥firstChild.data;

var content =
➥Ajax.getResponse().getElementsByTagName(’content’)[i].

➥firstChild.data;

if(p[i].getAttribute(’expanded’)) { expandedPanel = i; }

panels.push(new Panel(i, title, content));

Utilities.appendChild(accordion, panels[i].display());

}

Utilities.appendChild(document.body, accordion);

Accordion.toggle(expandedPanel);

}

}

catch(err)

{

document.write(err);

}

}

As you can see, there is a toggle method that I did not mention, which is called at the
end of the display method.This is the reason we created the panel array and the
expandPanel number variables.When the toggle method is called, it iterates through

106 Chapter 10 Accordion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the panel array and checks to see whether there is a panel ID that matches the ID
parameter.When it finds a match, it expands that panel by ID; when it does not match, it
collapses that panel.The expand/collapse panel methods are in the panel object, which
we will create in the next section. Listing 10.7 shows the entire code for the accordion’s
toggle method.

Listing 10.7 The Accordion’s toggle Method (Accordion.js)

Accordion.toggle = function(id)

{

for(var i=0; i<panels.length; i++)

{

if(panels[i].id == id)

{

panels[i].expand();

}

else

{

panels[i].collapse();

}

}

}

As mentioned, the toggle method takes an element ID as a parameter and iterates
through the panels array.When it discovers a matching ID, it expands that particular
panel; otherwise, it collapses it.

Now that we have the Accordion object created, we can now focus on creating the
panels.Another way to handle the accordion panels’ toggle method is to allow multiple
panels to be open at one time.To do this, you need to create a method that does not
collapse other panels that are open.You also need to check whether the current panel
that is being clicked is already expanded (if so, it should be closed).This keeps the
expand/collapse nature of the panel intact.

Panel Functionality and Data Display
The panel object uses the prototype structure to keep it reusable, which essentially
allows us to create multiple panel objects.An accordion panel needs a unique ID for ref-
erence purposes and can include a title, which is displayed in a panel header, and content
that is exposed when a user expands the panel.The id, title, and content values will
become properties of the panel object and will be visually represented in the accordion.
These properties will be accessible during runtime and contained within the panels that
created them. In order to create these properties, we will use the values we passed to the
new panel objects while iterating through them in the accordion display method.
Listing 10.8 shows how these values were passed to the panel object’s constructor func-
tion and are scoped to the panel.

107Panel Functionality and Data Display

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 10.8 The Panel Object Properties and Constructor (Panel.js)

function Panel(id, title, content)

{

this.id = id;

this.title = title;

this.content = content;

}

The constructor function is used to instantiate the panel and set the property values of
the object.After the panel is instantiated, it can be used to call other methods within
itself. In the Accordion object, the first method we called was the display method.
This method creates the div elements that are used to display the data that is passed to
the object.To create the elements that are necessary to render a panel, we will need to
use some of the utility methods that we created in the Utilities object in Chapter 10.
In order to create the display, we will need to create the following elements: panel,
header, title, and content.The panel element is simply a container for the other
elements, whereas the header element contains the title element and has an onclick
event that will expand and collapse individual panels.The final two elements are title
and content.They both have an innerHTML property that is set to the relative proper-
ties that were set in the constructor.After we have created all the necessary elements, we
need to append them to the panel element.When we complete the display method,
we return the panel element and append it to the document body in the Accordion
object. Listing 10.9 shows the entire code for creating the elements, appending them,
and returning the panel.

Listing 10.9 The Panel’s Display Method (Panel.js)

Panel.prototype.display = function()

{

var panel = Utilities.createElement("div");

var header = Utilities.createElement("div", {

className: ’header’,

onclick: this.toggle(this.id)

});

var title = Utilities.createElement("div", {

className: ’title’,

innerHTML: this.title

});

var content = Utilities.createElement("div", {

id: ’content_’+ this.id,

className: ’content’,

108 Chapter 10 Accordion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

innerHTML: this.content

});

Utilities.appendChild(panel, Utilities.appendChild(header, title), content);

return panel;

}

As you probably remember when we created the Accordion object, the panels display
method is called from the accordion’s display method as a parameter of the
appendChild call, along with the parent accordion element.This is how the panels are
added to the accordion and then the accordion was added to the document body.

The toggle method in Listing 10.10 is used in the header div as an onclick
event.This method is interesting because it returns another method.The method that is
returned is triggered during an onclick event and ultimately calls the accordion’s
toggle method.The header is also passing the panel ID when the code is executed to
be used as a parameter in the accordion’s toggle method.This is the ID that is used to
decipher which panel should be expanded and which panels should be collapsed.

Listing 10.10 Toggling the Panel State (Panel.js)

Panel.prototype.toggle = function(id)

{

return function()

{

Accordion.toggle(id);

}

}

The collapse and expand methods in Listing 10.11 simply hide and reveal the
content divs in the panels.They both use the Utilities getElement method,
which gets the content element by name in the document.The collapse method
sets the display style to none to hide it, whereas the expand method sets the display
style to an empty string to reveal the content’s data.

Listing 10.11 The Panel’s Collapse and Expand Methods (Panel.js)

Panel.prototype.collapse = function()

{

Utilities.getElement(’content_’+ this.id).style.display = ’none’;

}

Panel.prototype.expand = function()

{

Utilities.getElement(’content_’+ this.id).style.display = ’’;

}

109Panel Functionality and Data Display

Listing 10.9 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the CSS
The CSS file for the accordion contains the styles for each of the elements within the
accordion.As Listing 10.12 shows, the accordion element sets the font-family,
font-size, width, and border attributes.These styles are inherited by each of the pan-
els because they are encapsulated within the accordion element.

Listing 10.12 The Accordion’s Styles (accordion.css)

#accordion

{

font-family: Arial, Helvetica, sans-serif;

font-size: 12px;

width: 600px;

border: #ccc 1px solid;

}

The header holds the title for each panel, and has a style shown in Listing 10.13 that
contains a border-bottom attribute, which matches the border that surrounds the pan-
els to make it look more incorporated into the accordion. It also has a background-
color, a width to set the size of the clickable area, and a pointer cursor to show
users that they can click the headers to toggle their state.

Listing 10.13 The Accordion Header Style (accordion.css)

.header

{

border-bottom: #ccc 1px solid;

background-color: #eaeaea;

width: 600px;

cursor: pointer;

}

The title class in Listing 10.14 simply bolds the font with the font-weight, changes
the color of the font, and adds a little padding to keep the title away from the edges of
the header that contains it.

Listing 10.14 The Accordion Title Style (accordion.css)

.title

{

font-weight: bold;

color: #333;

padding: 5px;

}

The class for the panel content simply sets the padding to keep the content away from
the edges of the panels, as seen in Lisitng 10.15.

110 Chapter 10 Accordion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 10.15 The Accordion Content Style (accordion.css)

.content

{

padding: 10px;

}

All these styles are easily editable and can be modified to completely change the look of
the accordion. It is now up to you to make it your own, or brand it for any project you
would like to incorporate it with.

The completed accordion component will look very similar to Figure 10.1, aside
from any content differences or additional panels you may add to the XML.This chap-
ter’s sample includes an example of how you can display an email thread in the accor-
dion, which we will incorporate into an internal web mail application for the sample
that we create in Part V, when we learn how to combine a database with Ajax.

111Panel Functionality and Data Display

Figure 10.1 The completed accordion component is just one example of
the many purposes they can serve in a web application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11
Tree View

In this chapter, we will be creating an Ajax-enabled tree view component.This compo-
nent will accept an XML file that will define the structure of the data and render it as a
tree view in a specified HTML element or the document body.The tree view will have
expand and collapse functionality and custom icons for folders. Each folder will have the
capability to add HTML-enabled content, which in our case will be used to produce
hyperlinks.These hyperlinks can be used for just about anything—for example, they can
be used for internal or external website navigation or they can be used in a web applica-
tion, as we will be doing in the final sample with our email application that will display
specific folders with hyperlinks to emails.

This component will consist of two objects: TreeManager, which will control and
bridge the gap between the Ajax engine and the graphical user interface (GUI), and
Tree, which will render the GUI after parsing the response data it receives from
TreeManager.A fully rendered tree view will look similar to Figure 11.1.

Figure 11.1 A fully rendered tree view.

Structuring the Data
In order to construct our tree view component, we must first have a way of defining the
data.The data we will be defining will be requested by our Ajax engine, so we will

http://lib.ommolketab.ir
http//lib.ommolketab.ir

create an XML structure to define it.The tree view component will render the XML
exactly as we define it.This means that if we have a node named Inbox with a node
value of ’New Mail’, the tree view component will create a folder named Inbox and it
will contain a text item equal to the node value that we defined.Therefore, all we need
to do is define nodes and node values and leave the rest up to the component.The
nodes will be represented as folders, and the node values will be represented as content
in the form in which they are defined—whether they are HTML or simple text is up to
us.The most important part is that the component will recursively create subfolders
within the tree from any childNodes that are defined in order to render subcategories,
which will ultimately create our tree view structure.The following code represents a
sample XML structure for our tree view component.The sample in Listing 11.1 repre-
sents an email tree view structure, which will be a variation of what we use in our final
sample.

Listing 11.1 The XML Structure That Defines Our Tree View (tree.xml)

<?xml version="1.0" encoding="iso-8859-1"?>

<Mail>

<Inbox action="alert(’This is the Inbox action’);">

<![CDATA[

khadlock - Hi there
<a href="javascript:alert(’Message from
➥khadlock’);">

khadlock - What’s up
<a href="javascript:alert(’Message from
➥ghopper’);">

ghopper - BUG FOUND]]>

</Inbox>

<Outbox action="alert(’This is the Outbox action’);">

<![CDATA[

khadlock - No subject]]></Outbox>

<Sent action="alert(’This is the Sent action’);">

</Sent>

</Mail>

As you can see, this sample XML is very self-explanatory because there are only four
nodes with node names of Mail, Inbox, Outbox, and Sent. Each of these items will be
represented in the tree as a folder with the Mail folder as the parent folder, and the
Inbox, Outbox, and Sent folders as subfolders in the tree. Each of the items has an
attribute named action, which will specify the action that occurs when a user clicks the
folder name.Within each node is an HTML node value that must be embedded in
CDATA in order to properly parse.This HTML will be rendered as the contents of each
folder. In this case, we are using hyperlinks as the contents of the folders, and these
hyperlinks will represent the mail within each of these folders.Take a look at the Inbox’s
node value, which includes multiple hyperlinks that are separated into different lines by
break tags.We will see how simple it is to represent multiple pieces of mail in a folder in
Part V,“Server-Side Interaction,” when we populate these folders with database data
using PHP and return it as XML to our component.

114 Chapter 11 Tree View

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we have a sample XML structure and before we create the actual tree com-
ponent, we need to create a file to display the data.We will use an HTML file (see
Listing 11.2) to load all the associated files, request the XML, and display the tree com-
ponent.The first thing we must do is import a CSS file called tree.css (which we will
create at the end of this chapter), all of the associated JavaScript files for the Ajax engine,
and the two objects that will be used to create our tree view component. Now that we
have the styles and JavaScript imported and once the page has completed loading, we
can call an initialize method.This method will make a request through the
AjaxUpdater object to get the XML file we just finished creating and send it to a
method called display in the TreeManager object.

Listing 11.2 Displaying the Data (index.html)

<html>

<head>

<title>Tree View</title>

<link href="css/tree.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript" src="javascript/model/AjaxUpdater.js"></script>

<script type="text/javascript" src="javascript/model/HTTP.js"></script>

<script type="text/javascript" src="javascript/model/Ajax.js"></script>

<script type="text/javascript" src="javascript/view/Tree.js"></script>

<script type="text/javascript"
src="javascript/controller/TreeManager.js"></script>

<script type="text/javascript">

function initialize()

{

AjaxUpdater.Update("GET", "services/tree.xml", TreeManager.display);

}

</script>

</head>

<body onload="javascript:initialize();">

<div id="loading"></div>

</body>

</html>

After we have created a file to display the tree view component, we should probably cre-
ate the objects that render it.We will start with the TreeManager object.

Handling the Response
The TreeManager object is the access point to the component.This object bridges the
gap between the Ajax response and the Tree object in the view or the GUI.

115Handling the Response

http://lib.ommolketab.ir
http//lib.ommolketab.ir

TreeManager may be a small object, but it helps to separate the back-end response data
from the GUI by adding an extra layer to act as a data controller, which is something we
will cover in more detail in Chapter 15,“Model View Controller.”

The display method (see Listing 11.3) first checks to see if the ready state of the
Ajax object is successful.After it receives the ’OK’ string, it is ready to parse the response
from the request.The difference between this controller and the controllers in the other
components is that we do not actually parse any data from the response in this object;
we simply pass it to the Tree object when we instantiate it.After we have a tree object
that has received the response data, we simply use the Utilities object from Chapter
9,“Extending the Engine,” to append the tree display directly to the body of the page.
Alternatively, if we want to add it to a specific HTML element, we can append it to a
specific element by name.

Listing 11.3 Creating and Displaying the TreeManager (TreeManager.js)

TreeManager = {};

TreeManager.display = function()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

var tree = new Tree(Ajax.getResponse());

Utilities.appendChild(document.body, tree.display());

//tree.toggle();

}

}

You will notice that this method also contains a tree object method called toggle.This
method toggles tree items open and closed. Because the tree view will render itself in an
expanded state by default, the display method has the capability to call the toggle
method to change the tree view to a collapsed state by default instead.The next method
is to set the custom icon (in our case, the folder) from an image that represents the
expanded state to an image that represents the collapsed state.This method is called
toggleImage and can be seen in Listing 11.4.

Listing 11.4 Toggling Custom Folder Icons (TreeManager.js)

TreeManager.toggleImage = function(id)

{

if(Utilities.getElement(id) != null)

{

if(Utilities.getElement(id).src.indexOf(’img/folder_o.gif’) == -1)

{

Utilities.getElement(id).src = ’img/folder_o.gif’;

}

116 Chapter 11 Tree View

http://lib.ommolketab.ir
http//lib.ommolketab.ir

else

{

Utilities.getElement(id).src = ’img/folder.gif’;

}

}

}

This method can be changed to include any images that you choose as the icons for the
categories.As you can see, it checks by id to see whether the specified category icon has
an index of the expanded or collapsed version of the image. Based on which image it
currently has, it chooses the other, which creates a toggle effect. Next, we will be creat-
ing the tree object, which will render the tree view for display in the GUI.

Rendering the GUI
The Tree object is the powerhouse in this component because it parses the response
data that is received from the TreeManager object and creates a tree structure that is
later appended to an HTML element or the HTML document body by TreeManager.
In other words, this object pretty much does it all.The object is a prototype, which
means it can be instantiated, and contains a constructor function. Listing 11.5 shows the
code snippet for this constructor.

Listing 11.5 Constructing a tree Object (Tree.js)

function Tree(data)

{

this.data = data;

this.childArray = new Array();

this.tree = ’’;

}

The tree object’s constructor takes a data parameter, which is the response data from
TreeManager, and sets the data to a local property called data. It also creates a new
array called childArray and a property called tree.The childArray array is used to
store all the child ids when the structure is created, and the tree property is used to
concatenate a string version of the tree in HTML format, which is eventually added to
the innerHTML property of the parent div for rendering.This parent div element is
called tree and is created in the next method, which we will call display.This method
renders all the data into an HTML element.The method is called from TreeManager
after the tree object is created and populated to display the final tree view structure in
the page. Listing 11.6 shows the display method code.

117Rendering the GUI

Listing 11.4 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 11.6 Displaying the Tree (Tree.js)

Tree.prototype.display = function()

{

var tree = Utilities.createElement("div", {

➥id: ’tree’,

➥innerHTML: this.traverse(this.data, 0)

➥});

return tree;

}

This method creates the HTML div element called tree, which we briefly discussed.
This element simply acts as a container that holds the tree elements in its innerHTML
property, including all of the nodes and node values.As you can see, we are calling the
traverse method in the innerHTML property.This method recursively parses the XML
structure and creates the tree view HTML, which is then added to this element.

The traverse method takes two parameters: a branch and a depth.The branch rep-
resents the node or category that is presently being parsed. For instance, with the current
XML structure, we will start with the Mail branch or node as the first branch parame-
ter, and then we will recursively dig deeper into the structure to parse the Inbox,
Outbox, and Sent branches.The second parameter, which is the depth, represents the
depth level of the tree. For instance, if we are parsing Mail, we are at a depth level of 0,
but if we are parsing Inbox, we are at a depth level of 1, and so on. Coincidentally, the
actual depth is not what is important here. Instead, it is that the depth be used as a
unique id so that we can construct a reference id to each of the categories for later
manipulation, such as expanding and collapsing a specific category. Listing 11.7 shows
the method declaration and the parameters it receives.

Listing 11.7 Traversing the XML (Tree.js)

Tree.prototype.traverse = function(branch, depth) {}

Now that we understand the parameters, we can start parsing the data. Since every
browser handles data differently, the first thing we need to do when we parse the data is
check that the nodeName is a true nodeName and not a text or CDATA reference.We do
this by simply checking the first character’s code to make sure it is not equal to 35,
which would mean it is the # symbol, used to represent text and CDATA references.The
following is an example of the code that performs this check (see Listing 11.8).

Listing 11.8 Checking for Folders (Tree.js)

if(branch.nodeName.charCodeAt(0) != 35)

118 Chapter 11 Tree View

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next line of code is an example of why we need to keep a reference to the depth
level of the tree.The id we construct may seem a bit convoluted, but it is necessary to
keep a unique reference to each category (see Listing 11.9).

Listing 11.9 Constructing a Unique Id (Tree.js)

var id = branch.parentNode.nodeName+’_’+branch.nodeName+’_’+depth;

The reason that such a convoluted id is necessary is so there can be duplicate names
within the same tree. Keeping reference to the parent node name, the current node
name, and the depth level guarantees us no duplicate ids.The next bit of code (see
Listing 11.10) puts our childArray to use.This is where we start pushing the ids to the
array.These ids will then be easy to reference later, such as with the toggle method we
may choose to call from the TreeManager.

Listing 11.10 Storing Ids (Tree.js)

this.childArray.push(id);

After we have created the ids and added them to the array, we can start creating the ele-
ments that will form our HTML string and represent the tree view in the GUI.This
string will be concatenated into the tree property that we created in the constructor
function. If a branch does not contain any childNodes, we will simply add an icon that
represents an empty folder. If a branch does contain childNodes we will add a hyperlink
that will contain our custom folder icon.This hyperlink will fire two methods: the
toggle method from the Utilities object, and the toggleImage method from the
TreeManager object.These methods will toggle the visibility of the contents within a
specified folder and toggle the icon image between an expanded and a collapsed folder
image.We will pass the toggle method the id that we created because it represents the
element that contains the contents of each folder and causes this content to show and
hide as we expand and collapse.We will pass the toggleImage method an id that repre-
sents the id of the img element we will create on the next line.This id will be used to
target the specific image and change the src property. Listing 11.11 shows the code that
handles this functionality.

Listing 11.11 Adding Custom Icons and Defining Their Actions (Tree.js)

if(branch.childNodes.length == 0)

{

this.tree += "";

}

else

{

this.tree += "<a href=’#’ onclick=\"javascript:Utilities.toggle(’"+ id +"’);

➥TreeManager.toggleImage(’expand_collapse_"+ id +"’);

119Rendering the GUI

http://lib.ommolketab.ir
http//lib.ommolketab.ir

➥\" class=’expand_collapse’ onfocus=’javascript:if(this.blur)
➥this.blur();’>";

this.tree += "<img src=’img/folder_o.gif’

➥id=’expand_collapse_"+ id +"’ border=’0’ class=’folder’>";

}

This code may be a bit hard to read as a string, but it is simply the HTML that repre-
sents the functionality we just covered.As you can see, this code represents the hyperlink
with an embedded image so that when a user clicks the image, the JavaScript functions
are triggered and perform their specified duties.

The next couple lines of code create the folder name and associate the action attrib-
ute we specified in the XML to the action that occurs when a user clicks a folder name.
Since we added these actions as attributes, we need to access them through JavaScript’s
getAttribute method (see Listing 11.12).This method is simple to use because we call
it and pass the attribute name as a parameter of the method. Here is the code for this
functionality.

Listing 11.12 Parsing Folder Label Actions (Tree.js)

var action = branch.getAttribute("action");

Now that we have parsed the action value and set an action variable to the value, we can
use it in our hyperlink for the folder name. Following is the code that creates the hyper-
link and adds this action to the click event (see Listing 11.13).

Listing 11.13 Adding Folder Labels (Tree.js)

this.tree += "<a href=\"#\" onclick=\"javascript:"+ action +"\"

class=’container’>"+ branch.nodeName +"";

As you can see, we have also added the nodeName of the branch as the text value in the
hyperlink.This value will represent the name of the folder we specified in the XML at
the beginning of this chapter.At this point, we have our custom folder icon with expand
and collapse functionality, and the folder name that will render next to the folder icons
for the first node in our XML. Now comes the harder part—recursively adding the val-
ues and the children of the tree. Before we start, you need to understand that we will be
either adding node values to the current node (in other words, the contents of the fold-
er), or we will be creating an entirely new category/ folder in the tree.The next piece of
code will add an unordered list element with an embedded list item (see Listing 11.14).
The embedded list item receives the id we created at the beginning of the method
because this is the element that will contain the contents or node value for each folder
or node.Within the embedded list, we will iterate through the branch’s immediate chil-
dren and recursively call the traverse method on each.The recursion will allow us to

120 Chapter 11 Tree View

Listing 11.11 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

add the values or new folders to the tree.With each iteration, we need to increase the
depth level by one to ensure that we are passing a unique depth id to the traverse
method.After we finish adding the children, we can simply close the list item and the
unordered list parent element.

Listing 11.14 Iterating Through the Children (Tree.js)

this.tree += "<li id=’"+id+"’>";

for(var i=0; i<branch.childNodes.length; i++)

{

this.traverse(branch.childNodes[i], depth);

depth++;

}

this.tree += "";

Now that we are recursively firing the traverse method, we need to identify what type
of element to add to the tree.This element will either be a div element with the value
for the folder, or a new folder element.We decipher this based on the first check we cre-
ated in the method.This is the check that identifies whether the branch is a node or a
text/CDATA value. If it is a node, we simply follow the same algorithm we just created;
otherwise, we add the node value with the code in Listing 11.15.

Listing 11.15 Adding Folder Contents/Values (Tree.js)

var value = branch.nodeValue;

if(value != undefined)

{

this.tree += "<div class=’value’>"+ value +"</div>";

}

return;

This code parses the node value from the branch and creates a value variable. If this vari-
able is not undefined, we add it to the div that holds the content values for each folder
and append it to the tree string.After we have run out of node names, we simply return
the tree property and add it to the innerHTML of the tree element that will be append-
ed to either a specific div in the HTML page or, as in our case, the document body.

The last method in this object is the toggle method. In our example, the toggle
method (see Listing 11.16) can be used by the TreeManager object to expand/collapse
the entire tree view, but it also can be used by any other object in the application to
accomplish the same goal.

Listing 11.16 Toggling the Tree View State (Tree.js)

Tree.prototype.toggle = function()

{

for(var i=0; i<this.childArray.length; i++)

{

121Rendering the GUI

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Utilities.toggle(this.childArray[i]);

TreeManager.toggleImage("expand_collapse_"+this.childArray[i]);

}

}

Adding Style to the Component
In order to stylize our component, we will create a CSS (Cascading Style Sheets) file
called tree.css.This file will contain element ids and classes that we created in the
tree object when we created the HTML string that was added to the current docu-
ment.This file is simple and can be customized to look the way you would like, includ-
ing link colors, spacing, and so on. Listing 11.17 shows this entire file.

Listing 11.17 Styling the Component (tree.css)

body

{

font-family: Verdana, Arial, Helvetica, sans-serif;

font-size: 11px;

}

.container

{

color: #333333;

font-weight: bold;

line-height: 21px;

text-decoration: none;

}

ul

{

margin: 2px 0px 5px 20px;

list-style-type: none;

padding: 0px;

}

li

{

padding: 2px 0px 0px 0px;

}

.expand_collapse

{

float: left;

122 Chapter 11 Tree View

Listing 11.16 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

font-size: 9px;

color: #333333;

text-decoration: none;

}

.folder

{

float: left;

margin: 0px 0px 0px 0px;

}

.value a

{

color: #999999;

font-weight: normal;

padding-left: 15px;

}

This file is fairly self-explanatory because each class and id is represented in the
JavaScript file. If you are looking to create a new look for this tree, I would suggest
modifying the colors and decoration for links, and replacing the folder image icons with
any image you would like.This tree view component can be used to represent a lot of
different data types and—with a little tweaking—can easily be used to represent other
XML-based structures, such as RSS and podcasts.

123Rendering the GUI

Listing 11.17 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12
Client-Side Validation

Client-side validation in web-based forms is an interaction designer’s dream. It is a
great way to inform users of their progress as they are using the form, rather than letting
them get to the very end, only to discover they have a bunch of fields that must be
updated with valid information.The problem here is that all forms are different, and
what is valid in one may not be valid in another. If the forms are from different websites,
we could just forget about finding any consistencies.This may not be incredibly surpris-
ing information and may seem like a battle not worth fighting, but if more developers
were to use client-side validation, the Web would be a more form-friendly environment.
Users would never be left wondering what information to enter into a field because the
form would be smart enough to inform them on the spot before they even attempted to
submit it.

This chapter will cover client-side validation with a combination of simple JavaScript
and Ajax to inform users of valid and invalid information on the spot as they tab or click
out of specified form elements.

Getting Started
The sample for this chapter is a login/registration page, which we will eventually plug in
to our final sample application.This page will do one of two things: log in existing users
or register new users.When new users arrive at the page, they will see a Register link at
the top of the login form.When they click the Register link, the necessary form ele-
ments for registration will appear in the page, above the username and password form
elements (see Figure 12.1).

While users begin filling out their user information, we will be checking their infor-
mation against the existing information in the database to let them know if the informa-
tion is already in use or present them with a visual identifier to inform them if they are
in the clear. One way in which we are going to visually represent this information to the
users is by changing the background color of the specific form element to red if it is
already in use, or green if the element is valid.These visual identifiers obviously do not
appear well in black and white, but the next identifiers will.They are simple string

http://lib.ommolketab.ir
http//lib.ommolketab.ir

messages that state the status of the data next to the form element into which users are
entering information, as shown in Figure 12.2.

126 Chapter 12 Client-Side Validation

Figure 12.1 Our sample login form with optional, inline registration.

Figure 12.2 Validation provides visual feedback
to users as they enter information.

As you can see in Figure 12.2, we are not validating the first and last names. I chose to
allow the same person to create a new account, as long as she uses a new email address
and username (hence the reason we are validating these two fields). If we wanted to ver-
ify the first and last names, we would have to verify them together because there are a
lot of people who share the same first name and sometimes the same last name.Another
thing to be aware of is that we are running validation on the form elements only when
the form is in registration mode.We only want to display feedback to users who are new
to the application because we do not want to display verification on sensitive informa-
tion that we are storing in the database.

This form may look very simple, but there is quite a bit of logic to make it a smart
form.We first have the actual login/registration page, which contains a JavaScript

http://lib.ommolketab.ir
http//lib.ommolketab.ir

validation object and fires a validation call each time specified form elements are exited.
Behind the front-end code is a PHP object that runs validation on a user database when
our JavaScript validation object makes an XHR to it.As if that were not enough, we
have an instance of the PHP object included in the login/registration page for logging
in existing users and registering new users.This chapter will cover each aspect of this
process, but focus primarily on where we use Ajax to connect the JavaScript object to
the back end. Let’s get started by creating the JavaScript validation object.

Creating a Validation Object
Since we are validating user information, the JavaScript validation object that we are
going to be creating will be called UserValidator.This object will have four methods:
an initialize method for initializing all the object’s local variables; a setMode
method, which sets the form mode from login to register; a validate method, which is
the Ajax part that will make XHRs to a PHP object; and an onValidation method,
which will be used as the callback method for the XHR and ultimately display the feed-
back to the user.When the object is created, it automatically calls the initialize
method to set the local object variables.When a request is made, the validate method
is called, which sets the onValidation method as a callback so that it fires when the
Ajax object responds.The setMode method is set when a user clicks the Register link
because this is where the mode changes from login to register.

Getting started with this object is simple. First, we need to declare it and then call its
initialize method as shown in Listing 12.1.

Listing 12.1 Creating and Initializing the UserValidator Object
(UserValidator.js)

UserValidator = {};

UserValidator.initialize = function(formId, modeVal, fieldNum, submitId)

{

UserValidator.currentSelector = ’’;

UserValidator.currentForm = formId;

UserValidator.mode = modeVal;

UserValidator.fieldNumToValidate = fieldNum;

UserValidator.submitId = submitId;

}

Declaring a Singleton object is nothing new, but we do have quite a few local object
properties that are unique to this object and set within its initialize method.The first
is a property called currentSelector, which will be used in our validate method to
hold the current form field id that is being validated.The second is the currentForm
property, which will be used to hold an id for the current form that is being validated.
The third is the mode property, which will be used to check whether the page is in login

127Creating a Validation Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

or registration mode.The fourth is called fieldNumToValidate and will be used to
hold a number that indicates how many form elements need to be validated before the
Register button is enabled for a user to register.The last property is called submitId,
which simply holds the id of the Submit button for the current form and will be used in
the setMode method to change the value from login to register if a new user clicks the
Register link.All of these properties will allow us create a form that interacts with the
user.The initialize method is fired when the body in our login/registration page
loads. Listing 12.2 shows how this method is added to our page.

Listing 12.2 Initializing the UserValidator Object (index.php)

<body onload="UserValidator.initialize(’awadForm’, ’Login’, 2, ’submit’);">

We are passing the values for the object properties as parameters of this method when
the page loads.

The next method that we will create sets the mode for the form, switching it from
login to registration in our case (see Listing 12.3).This method is called setMode and it
takes one parameter, which is the new mode value. In our sample, this value will be
’Register’.

Listing 12.3 Setting the Mode from Login to Register (UserValidator.js)

UserValidator.setMode = function(modeVal)

{

UserValidator.mode = modeVal;

Utilities.getElement(UserValidator.submitId).value = modeVal;

Utilities.getElement(UserValidator.submitId).disabled = true;

Utilities.getElement(UserValidator.currentForm).action += "?mode="+ modeVal;

}

This method takes the new mode value and sets the local mode property, which we cre-
ated in the intialize method, and the value of the Submit button to this new value. It
then disables the Submit button until the form is validated based on the
fieldNumToValidate property that we set in the initialize method and appends
the mode value to the current form’s action URL.Appending this value allows us to
retrieve it when the post-back happens and use it to decipher whether we need to regis-
ter a new user or log in an existing one.

Validating User Input
In order to validate the two fields that we specified in the intialize method, we have
to create a validate method that takes a selector parameter and its value.The selector
parameter is the id for the element that is being validated and the value parameter is the
value of this element. Listing 12.4 shows this completed method, which we will cover in
a moment.

128 Chapter 12 Client-Side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 12.4 Validating Forms Against Database Data (UserValidator.js)

UserValidator.validate = function(selector, value)

{

if(selector != ’’ && value != ’’)

{

UserValidator.currentSelector = selector;

var url = "serviceConnector.php?object=UserManager&method=

➥verifyUserInformation¶ms="+ selector +","+ value;

AjaxUpdater.Update("GET", url, UserValidator.onValidation);

}

else if(selector != ’’ && value == ’’)

{

Utilities.getElement(selector).style.backgroundColor = ’#ffffff’;

Utilities.getElement(selector +"Message").innerHTML = ’’;

}

}

Now that you have taken a look at the code, we can cover it line by line.The first thing
we do is check to make sure that neither of the parameters is empty. If they are not
empty, we set the currentSelector to the selector parameter and create a url variable
to pass through an Ajax request.The url variable that we create consists of a
serviceConnector.php file, an object parameter that is set to the userManager object
that we will create soon, and a method parameter that is set to a
verifyUserInformation method.The last part of the query is called param and is set
to the selector and value parameters that were passed into the object.The parameters are
concatenated into a comma-delimited list and the url variable is finally sent to the server
through an Ajax request with the onValidation method set as the callback. Of course,
there is always the possibility that the selector could be set, but the value parameter could
be an empty string, so we have a condition that sets the selector element’s visual feedback
to the default state, just in case a user has already validated the element already.

In order to call this validation method from the client page, we need to add the code
to the onblur for the form elements we want to validate. Listing 12.5 shows the body
of the index.php sample page.

Listing 12.5 Calling the Validation Method from the Form (index.php)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<title>AJAX for Web Application Developers</title>

<link href="css/user.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript">

129Creating a Validation Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var jsFiles = new Array("javascript/utils/ErrorManager.js",

➥"javascript/utils/Alert.js", "javascript/utils/NumberUtil.js",

➥"javascript/utils/StringUtil.js", "javascript/model/AjaxUpdater.js",

➥"javascript/model/HTTP.js", "javascript/model/Ajax.js",

➥"javascript/utils/UserValidator.js");

Utilities.includeJS(jsFiles);

</script>

</head>

<body onload="UserValidator.initialize(’awadForm’, ’Login’, 2, ’submit’);">

<div id="login">

<div style="color: #ff0000"><?=$error;?></div>

<form id="awadForm" method="post" action="<?= $_SERVER[’PHP_SELF’]; ?>">

<div id="register" style="display: none;">

First Name: <input name="firstName" id="firstName" type="text" />

Last Name: <input name="lastName" id="lastName" type="text" />

E-mail: <input name="email" id="email" type="text"

➥onblur="javascript:UserValidator.validate(this.id, this.value);"
➥/><div

➥id="emailMessage"></div>

</div>

<a href="#"
➥onclick="javascript:document.getElementById(’register’).style.
➥display

➥= ’’;document.getElementById(’registerButton’).style.display =

➥’none’;UserValidator.setMode(’Register’);"
➥id="registerButton">Register

Username: <input name="username" id="username" type="text"

➥onblur="javascript:if(UserValidator.mode == ’Register’)
➥UserValidator.validate(this.id,

➥this.value);" /><div id="usernameMessage"></div>

Password: <input name="password" id="password" type="password" />

<div id="buttons">

<input name=’submit’ type=’submit’ value=’Login’ id=’submit’>

</div>

</form>

</div>

<div id="loading" style="display:none;"></div>

</body>

</html>

130 Chapter 12 Client-Side Validation

Listing 12.5 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These validation calls are really simple and can be duplicated in any element that we
want to add them to because they are getting their parameters from the current element
to which they are attached.The only requirement is that there is an id attribute for the
element that is calling the method.There is PHP code in the action that makes the form
post back on this same page, which will require us to handle the login and registration
within this page. It also has a PHP $error message that is displayed in this page if an
error exists.This message will be covered in the next section when we add more PHP
code to the top of this file to handle the login and registration.

Providing Visual Feedback
Visual feedback is important in web applications and often overlooked by developers.
Adding visual feedback keeps users in touch with their interactions and does not leave
them wondering what has happened to their data when they have clicked a button, exit-
ed a form field, and so on. Providing feedback with our UserValidator object is not
difficult to accomplish because all we need to do is match element ids and change styles
based on responses from our XHRs. Listing 12.6 shows this code and how it handles
displaying visual clues to the user.

Listing 12.6 Providing Visual Feedback to Users (UserValidator.js)

<?php

UserValidator.onValidation = function()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

var color = ’#ffffff’;

if(Ajax.getResponse().firstChild.data == ’success’)

{

color = ’#ff9999’;

Utilities.getElement(UserValidator.currentSelector +"Message")

➥.innerHTML = ’Already in use.’;

}

else

{

color = ’#ccff99’;

Utilities.getElement(UserValidator.currentSelector

➥+"Message").innerHTML = ’OK’;

UserValidator.fieldNumToValidate--;

}

Utilities.getElement(UserValidator.currentSelector)

.style.backgroundColor = color;

if(UserValidator.fieldNumToValidate == 0)

{

Utilities.getElement(UserValidator.submitId).disabled = false;

131Creating a Validation Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

}

}

?>

There are quite a few conditions in this method, but don’t be intimidated—the code is
very simple.The first thing we check is the ready state of the Ajax object, which we have
already covered in the other components that we have created.After it verifies, we check
the response to see if a success or failed message was returned from our server-side
object, which we will be creating shortly. If the response is successful, it means we need
to set the form element background to red and add a message stating that the data is
already in use because this data already exists in the database. Otherwise, we set it to
green and add an ’OK’ message.We also update the fieldNumToValidate property
based on the condition of the response.The last thing we check is whether the
fieldNumToValidate is equal to zero and, if it is, we enable the button.

Now that we have created the client side of the request, we need to check the data-
base and respond with the XML based on matching data.

The Server Side
I know that we have not reached Part V,“Server-Side Interaction,” yet, but this object
truly requires us to dive into the server-side of the request.With that said, in this section,
I do not plan on covering all the ins and outs of PHP or MySQL; rather, I will explain
how to make the connection between the server and the client while explaining how to
achieve it through the sample.We will create a server-side PHP object, in which we will
make XHRs, through another intermediary PHP file that will bridge the gap between
JavaScript and PHP.The PHP object will then check a database table for specific data,
which we need to validate with our JavaScript object when we receive a response from
the server. Let’s start by creating the database table. Listing 12.7 shows the SQL code to
create the table in your MySQL database.

Listing 12.7 SQL Code to Create a User’s Table (awad_users.sql)

CREATE TABLE ‘awad_users‘ (

‘password‘ varchar(50) NOT NULL default ’’,

‘username‘ varchar(25) NOT NULL default ’’,

‘email‘ varchar(100) NOT NULL default ’’,

‘lastName‘ varchar(50) NOT NULL default ’’,

‘firstName‘ varchar(25) NOT NULL default ’’,

‘id‘ int(11) NOT NULL auto_increment,

PRIMARY KEY (‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

132 Chapter 12 Client-Side Validation

Listing 12.6 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We have already created the Ajax requests in the UserValidation object, so creating
the server side will be a breeze. I honestly mean it when I say this: It may seem like a lot
of steps to remember, but once you do it, you will be amazed at how simple it really is
and how robust an application it can build.As I stated previously, we will need an inter-
mediary PHP file, a PHP object, and a database.The intermediary file is the
serviceConnector.php file that we are calling in our UserValidation object’s Ajax
requests.This file is very simple and is only needed to bridge the gap between the
JavaScript and PHP objects.The first thing we will add to this page is a header to set the
content type of the returned data to XML for the requesting Ajax object.The file will
then include the PHP object called UserManager.class.php, which we will create
shortly.This object will then be instantiated with the object variable that we are passing
through our request.After the object is instantiated, the method we passed will be fired
with the parameters in which we are passing.This file is so abstract that it can virtually
be used for any public method, with any parameters passed as a comma-delimited list, in
any object that we choose to include in this page.This lends the file quite a bit of power,
which is why we will need to add some sort of security to it in Part V,“Server-Side
Interaction.” Listing 12.8 shows how we accomplish this functionality with this interme-
diary file.

Listing 12.8 Bridging the Gap Between the Client and the Server
(ServiceConnector.php)

<?php

header("Content-Type: application/xml; charset=UTF-8");

require_once("classes/UserManager.class.php");

$o = new $_GET[’object’]();

echo $o->$_GET[’method’]($_GET[’params’]);

?>

As I said, this file is extremely simple, yet it packs a lot of power and can basically be
used in any situation where you need to make this sort of connection by simply includ-
ing another object.The object that we are using in this case is for user management,
which will be incorporated into our final sample.The methods it contains will look very
familiar since we already created the requests in our UserValidation object.The meth-
ods this object consists of are listed in Table 12.1.

133The Server Side

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 12.1 The Methods of the UserManager Class (UserManager.class.php)

Methods Function

constructor Creates the database connection object

verifyUserInformation Checks the database to see whether the data passed
in as a parameter exists in the database

register Registers a new user

insertWelcomeMessage Used by the register method to insert a welcome
email in a new user’s inbox

login Logs in an existing user

The Constructor
Before we create the constructor function, we first need to create a private local class
variable called dbConnector, which we will use to get the Singleton instance of the
database connector object from the DatabaseConnector.class.php in the construc-
tor.After we create this variable and set it to the Singleton object, we fire its init
method to make the initial connection and select our database.This object can be used
in each of our other methods to connect to the database and make queries. Listing 12.9
shows this code in action.

Listing 12.9 Creating the Object Constructor (UserManager.class.php)

<?php

require_once("classes/database/DatabaseConnector.class.php");

require_once("classes/utils/Constants.class.php");

class UserManager

{

private $dbConnector;

public function UserManager()

{

$this->dbConnector = DatabaseConnector::getInstance();

$this->dbConnector->init();

}

}

?>

Note
A very important thing to remember in order to connect to your database is to change the
static variables in Constants.class.php.

These variables look like the code in Listing 12.10.

134 Chapter 12 Client-Side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 12.10 Changing the Database Connection Information
(Constants.class.php)

<?php

class Constants

{

// Datbase connection

static $DB_USER = "USERNAME";

static $DB_PASSWORD = "PASSWORD";

static $DB_HOST = "localhost";

static $DB_NAME = "DB_NAME";

// Database Tables

static $AWAD_EMAIL = "awad_email";

static $AWAD_USERS = "awad_users";

// Password

static $PASSWORD = "TEMPPASSWORD";

// Return Values

static $SUCCESS = "<xml>success</xml>";

static $FAILED = "<xml>failed</xml>";

public function Constants() {}

}

?>

These variables should contain the connection information for your database.These are
the only items that you will have to modify in Constants.class.php in order to get
the sample to work on your server. For security reasons it is also a good idea to put the
Constants file in a secure directory that is not accessible from the Web.
DatabaseConnector.class.php will never need to be modified because it is config-
ured to connect to any database with this information.

Verifying User Information
All of our XHRs for client-side validation were made to this method. If we take a look
back at the Ajax requests that we created in our UserValidation object, they specify
the UserManager object, the method name, and the parameters necessary to verify data
against the database.After the connection has been made between the client and object,
the parameters are used to select the specified data from the database to see whether
there is a match. If there is a match, the method returns true; otherwise, it returns

135The Server Side

http://lib.ommolketab.ir
http//lib.ommolketab.ir

false.You will notice we are returning these messages in the form of XML through the
Constants.class.php file.This is to make the response a valid DOM object, which
will then be accessible via Ajax. See Listing 12.11 for an example.

Listing 12.11 Verifying User Information in the Database
(UserManager.class.php)

<?php

public function verifyUserInformation($params)

{

$param = split(",", $params);

$selector = $param[0];

$selectorValue = $param[1];

$this->dbConnector->connect();

$table = Constants::$AWAD_USERS;

$query = "SELECT * FROM $table WHERE $selector=’$selectorValue’";

$result = mysql_query($query);

$this->dbConnector->complete($query);

if(mysql_num_rows($result) == 0)

{

return Constants::$FAILED;

}

else

{

return Constants::$SUCCESS;

}

}

?>

Registering and Logging In a User
Although these methods do not have anything to do with Ajax, they do allow us to
obtain users on which to run our validation requests.Therefore, I am including them in
order to get us started.The first method I am displaying is the register method in
Listing 12.12.

Listing 12.12 Registering New Users (UserManager.class.php)

<?php

public function register($firstName, $lastName, $email, $username, $password)

{

$password = md5($password);

$this->dbConnector->connect();

$table = Constants::$AWAD_USERS;

136 Chapter 12 Client-Side Validation

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$query = "SELECT * FROM $table WHERE username=’$username’ AND

➥password=’$password’ AND email=’$email’";

$result = mysql_query($query);

if(mysql_num_rows($result) == 0)

{

$query = "INSERT INTO $table (firstName, lastName, email, username,
➥password)

VALUES (’$firstName’, ’$lastName’, ’$email’, ’$username’, ’$password’)";

$this->dbConnector->complete($query);

$this->insertWelcomeMessage($username);

return Constants::$SUCCESS;

}

else

{

return Constants::$FAILED;

}

}

?>

This method simply takes the data that was entered into the form in our index.php file
and adds it to our database.

Note
The register method also fires a method called insertWelcomeMessage, which
is not covered in this chapter, but is included in the code sample. This method creates a
welcome email by default for new users.

The next method is a login method for existing users (see Listing 12.13).

Listing 12.13 Logging In Existing Users (UserManager.class.php)

<?php

public function login($username, $password)

{

$password = md5($password);

$this->dbConnector->connect();

$table = Constants::$AWAD_USERS;

$query = "SELECT * FROM $table WHERE username=’$username’ AND password=
➥’$password’";

$result = mysql_query($query);

$this->dbConnector->complete($query);

if(mysql_num_rows($result) == 0)

{

137The Server Side

Listing 12.12 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return Constants::$FAILED;

}

else

{

return Constants::$SUCCESS;

}

}

?>

These two methods are fired from the index.php file when the form posts back on
itself. Listing 12.14 shows the code that needs to be added to the top of our index page
to handle registration and login.

Listing 12.14 Handling User Logins and Registration (index.php)

<?php

require_once("classes/utils/Constants.class.php");

require_once("classes/UserManager.class.php");

$uManager = new UserManager();

$error = ’’;

if($_GET[’mode’] == ’Register’)

{

if($_POST[’firstName’] != ’’ && $_POST[’lastName’] != ’’ && $_POST[’email’]

➥!= ’’ && $_POST[’username’] != ’’ && $_POST[’password’] != ’’)

{

$response = $uManager->register($_POST[’firstName’], $_POST[’lastName’],

➥$_POST[’email’], $_POST[’username’], $_POST[’password’]);

if($response == Constants::$SUCCESS)

{

header("Location: mail.php?username=". $_POST[’username’]);

}

else

{

$error = ’The username or password that you have choosen is in use.’;

}

}

else

{

$error = ’Please complete all of the form fields.’;

}

}

else

{

138 Chapter 12 Client-Side Validation

Listing 12.13 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if(isset($_POST[’username’]) && isset($_POST[’password’]))

{

$response = $uManager->login($_POST[’username’], $_POST[’password’]);

if($response == Constants::$SUCCESS)

{

header("Location: mail.php?username=". $_POST[’username’]);

}

else

{

$error = ’The username and password that you have entered do

not match any records.’;

}

}

}

?>

When the form is posted, it posts back on itself and runs the PHP at the top of the
page. It first sets the error variable for later use and then checks the mode of the form. If
the mode is equal to register, it runs the register code; otherwise, it runs the login
code. In the registration code, it verifies that all the fields were completed and then reg-
isters the user through the UserManager object. If the fields are not completed, we set
an error message to display to the user. In login mode, we verify that the Username and
Password fields are completed and, if they are, we log in the user through the
UserManager object.After we receive a successful response, we redirect the user into the
application.We set an error message again if there are any failures during this process.

Now that we have created this code, we can really use it for any web application.This
reusability is the great thing about writing server-side classes and client-side objects.

139The Server Side

Listing 12.14 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13
Data Grid

Data consolidation is a typical problem that developers face when designing a web
application GUI because handling large amounts of data is common practice in dynamic
applications. Using a data grid to display large amounts of data is beneficial for consoli-
dation and usability. Data consolidation and better usability occur naturally because the
function of a data grid is to format the data into rows and columns, which ultimately
creates a structured grid that is much easier to read.A data grid formats the data into
rows of different content.Within each of the rows are columns that separate correspon-
ding content.

This way of structuring data is common practice among web applications.The com-
ponent that we build in this chapter will make the process of structuring a data grid as
easy as structuring the XML data that you will be passing it.Therefore, you will never
have to touch the JavaScript objects after they are created—unless, of course, you would
like to add additional functionality.This is because all the styling will be done in a CSS
file in order to help you design the GUI for the grid and match any application that you
are developing.

Getting Started
Before we create any of the JavaScript objects, which will become our data grid compo-
nent, we will need to create an XML file to hold our data and an HTML file to display
the component.This section is a brief description of how to create the files we need in
order to get started.The XML for this chapter is actually the same structure we created
in Chapter 3,“The Response.”This chapter will take the XML and render it into a cus-
tom data grid component that we will create step by step in the next section.The only
difference is that we will modify the actions to become alerts in order to show an
example of how the actions work. Here is an example of the new action in the action
attribute:

<items action="alert(’Grace Hopper’);" icon="img/mail.gif"> </items>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

After we have an XML structure defined, we must create an HTML page to display the
data.We will create an index page that contains the corresponding JavaScript files that
we will need in order to make an XHR and display the data in the data grid.The index
will wait for the body of the document to load, and then fire an update call on the
AjaxUpdater to load the corresponding XML data.We will also specify the DataGrid’s
display method as the callback because this is the method that will handle rendering after
we create the object.Take a look at Listing 13.1 to get an idea of how the HTML needs
to be structured.

Listing 13.1 The Container for Displaying the Component (index.html)

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>DataGrid</title>

<link href="css/datagrid.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript" src="javascript/utils/NumberUtil.js"></script>

<script type="text/javascript" src="javascript/utils/StringUtil.js"></script>

<script type="text/javascript" src="javascript/model/AjaxUpdater.js"></script>

<script type="text/javascript" src="javascript/model/HTTP.js"></script>

<script type="text/javascript" src="javascript/model/Ajax.js"></script>

<script type="text/javascript" src="javascript/view/DataRow.js"></script>

<script type="text/javascript" src="javascript/view/DataColumn.js"></script>

<script type="text/javascript" src="javascript/controller/DataGrid.js"></script>

<script type="text/javascript">

function initialize()

{

AjaxUpdater.Update("GET", "services/email.xml", DataGrid.display);

}

</script>

</head>

<body onload="javascript:initialize();">

<div id="loading"></div>

</body>

</html>

There is nothing complicated about this HTML file—it’s really just a matter of import-
ing all the correct JavaScript files and making the XHR when the page has completed
loading. One last item to add is the loading div, which will display a message regarding
the status of the XHR. Now that we have the data and the display page created, let’s dive
into the code of the data grid component.

142 Chapter 13 Data Grid

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a DataGrid Object
Data grid components offer a great way to display large amounts of data.This section
will show you how to create a DataGrid object that will load XML, parse it, and dele-
gate it to two other objects called the DataRow and the DataColumn, which we will
create in the next section.

We first need to define and instantiate the DataGrid object before we can begin to
use it. Listing 13.2 shows the code for accomplishing this.After the data grid has been
defined, we will define its first method called init.This method creates the object prop-
erties, which in our case is simply a new array called rows.

Listing 13.2 Defining and Instantiating the DataGrid Object (DataGrid.js)

DataGrid = {};

DataGrid.init = function()

{

rows = new Array();

}

The data grid that we will create accepts an XML file with the structure that we created
earlier.The XML acceptance occurs when the display method is invoked as the callback
of an XHR.When the display method is invoked, it checks the readyState of the
XHR and displays a loading message in the loading div that we added to our HTML.
The loading message displays until the status reaches a completed state and returns the
"OK" status code, which we added to the HTTP object in Chapter 9,“Extending the
Engine.”

if(Ajax.checkReadyState(’loading’) == "OK"){}

The first element that is created is an actual data grid div element.This element will be
used as the container for all of the rows and columns that will eventually format the
parsed XML data.The data parsing begins with retrieval of the categories, which pro-
vides us with an array that we will iterate to target each category’s value.While iterating
through the categories, we create titlebar elements, which will hold the category val-
ues and display them as the titles of each column in the grid. During the iterations, we
will target each category value and add it to the innerHTML attribute of a category
div element.After we have the titlebar and category element populated, we can
append the titlebar element with the category. Listing 13.3 shows the code to create
the categories.

143Creating a DataGrid Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 13.3 Creating Category Titles (DataGrid.js)

var datagrid = Utilities.createElement("div", {id:’datagrid’});

var categories = Ajax.getResponse().getElementsByTagName(’category’);

for(var i=0; i<categories.length; i++)

{

var titlebar = Utilities.createElement("div", {id:’titlebar’,
➥className:’titlebar’});

var categoryText = Ajax.getResponse().getElementsByTagName

➥(’category’)[i].firstChild.data;

var category = Utilities.createElement("div", {id: ’title’, className:
’title’,

➥innerHTML:categoryText });

Utilities.appendChild(datagrid, Utilities.appendChild(titlebar, category));

}

This code would essentially leave us with the following HTML structure:
<div id="titlebar">

<div id="category">value1</div>

<div id="category">value2</div>

<div id="category">value3</div>

</div>

Now that we have the category titles created, we need to display the rest of the data in a
grid structure.We begin by targeting the row elements in the XML.This provides us
with an array of rows in which we can iterate for the rest of the data.We need to target
the items within the row tags and create an items array from the results.With this array,
we can get the value of the attributes that each group of items contains.The first attrib-
ute is the action attribute, and the second is the icon attribute.Targeting these attrib-
utes provides us with their values.The next line of code requires a utility object that we
will create shortly, which is called NumberUtil.We are calling its getParity method to
decipher whether the value that we are passing it is an even or odd number.This value is
eventually used in the DataRow object to decide which color the row will be.All of
these values are passed as parameters to the DataRow object that we create and pushed to
our rows array for later retrieval.The DataRow takes its parameters in the following
order: id, items array, action, parity, and icon (see Listing 13.4).

Listing 13.4 Parsing Row Data (DataGrid.js)

var row = Ajax.getResponse().getElementsByTagName(’row’);

for(var i=0; i<row.length; i++)

{

var items = Ajax.getResponse().getElementsByTagName(’items’)[i].childNodes;

var action =
➥Ajax.getResponse().getElementsByTagName(’items’)[i].getAttribute
➥(’action’);

144 Chapter 13 Data Grid

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var icon =
➥Ajax.getResponse().getElementsByTagName(’items’)[i].getAttribute
➥(’icon’);

var parity = NumberUtil.getParity(i);

rows.push(new DataRow(i, items, action, parity, icon));

Utilities.appendChild(datagrid, rows[i].display());

}

After we have parsed all the item data and created all the data rows, we append each row
to the datagrid div element that we created at the beginning of the method.As you
can see in Listing 13.5, we are calling the display method from the DataRow object,
which will return all the HTML that we will be creating in the DataRow object.

Listing 13.5 Displaying the DataGrid Component (DataGrid.js)

DataGrid.display = function()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

var datagrid = Utilities.createElement("div", {id:’datagrid’});

var categories = Ajax.getResponse().getElementsByTagName(’category’);

for(var i=0; i<categories.length; i++)

{

var titlebar = Utilities.createElement("div", {id:’titlebar’,

➥className:’titlebar’});

var categoryText =

➥Ajax.getResponse().getElementsByTagName(’category’)[i].
➥firstChild.data;

var category = Utilities.createElement("div", {id: ’title’, className:

➥’title’, innerHTML:categoryText });

Utilities.appendChild(datagrid, Utilities.appendChild(titlebar,
category));

}

var row = Ajax.getResponse().getElementsByTagName(’row’);

for(var i=0; i<row.length; i++)

{

var items =
➥Ajax.getResponse().getElementsByTagName(’items’)[i].childNodes;

var action =

➥Ajax.getResponse().getElementsByTagName(’items’)[i].getAttribute
➥(’action’);

var icon =

➥Ajax.getResponse().getElementsByTagName(’items’)[i].getAttribute
➥(’icon’);

145Creating a DataGrid Object

Listing 13.4 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var parity = NumberUtil.getParity(i);

rows.push(new DataRow(i, items, action, parity, icon));

Utilities.appendChild(datagrid, rows[i].display());

}

//Utilities.appendChild(document.body, datagrid);

Utilities.appendChild(Utilities.getElement(’list’), datagrid);

AjaxUpdater.saving = false;

}

}

The last line of code to include in the DataGrid object is triggering the init method
to invoke the object’s properties. Listing 13.6 shows us how to accomplish this.

Listing 13.6 Initializing the DataGrid Object (DataGrid.js)

DataGrid.init();

The NumberUtil object that we were using to get the parity is a simple utility object
that can handle number-related functions.Although the object is currently handling only
parities, it can be scaled to contain additional methods of your choice, such as complicat-
ed calculations that you may need to use multiple times and so on. Listing 13.7 shows
the object in its entirety.

Listing 13.7 The NumberUtil Object (NumberUtil.js)

NumberUtil = {};

NumberUtil.getParity = function(num)

{

if(num % 2 == 0)

{

return "even";

}

else

{

return "odd";

}

}

Now that we have completed the DataGrid object, we need to create the rows and
columns to structure the data. Let’s get started by creating a DataRow object.

146 Chapter 13 Data Grid

Listing 13.5 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Displaying the Data
Displaying data in the grid requires the ability to create rows and columns.These rows
and columns need to handle rendering data into a structured display.This display will
represent the data grid and typically handle interactive functionality, which in our case
will invoke the actions that we are setting in the XML.

Creating a DataRow Object
The DataRow object separates data of matching groups into rows, which will eventually
be subdivided into columns. Since the object is a prototype, in order to create and
instantiate the object, we need to build a constructor function for the object.As you can
see in the constructor function in Listing 13.8, we are passing the five parameters that
were used in the DataRow objects that we instantiated in the DataGrid object.These
parameters are id, items array, action, parity, and icon.

Listing 13.8 Constructing the DataRow (DataRow.js)

function DataRow(id, items, action, parity, icon)

{

this.id = id;

this.icon = icon;

this.items = this.getAllItems(items);

this.action = action;

this.parity = parity;

}

The parameters that we accept in the DataRow constructor are set to local properties
within the object.All of these parameters are directly translated into local properties
except for the items array.This parameter calls another method in the object called
getAllItems, which parses the node values from the items and returns an array of
DataColumn objects, which is then set to the local items array.We will create the
getAllItems method in just a bit.

The display method is what we called in the DataGrid object to return the HTML
for each of the rows.We then took this data and appended it to the datagrid div ele-
ment.Take a look at Listing 13.9 to see how we create the HTML elements for the rows
in the display method.

Listing 13.9 Displaying a DataRow (DataRow.js)

DataRow.prototype.display = function()

{

var row = Utilities.createElement("div", {

id: ’row_’+ this.id,

className: ’row_’+this.parity,

onclick: this.getAction(this.action),

147Displaying the Data

http://lib.ommolketab.ir
http//lib.ommolketab.ir

onmouseover: this.rollOver(’row_’+ this.id),

onmouseout: this.rollOut(’row_’+ this.id)

});

for(var i=0; i<this.items.length; i++)

{

Utilities.appendChild(row, this.items[i]);

}

return row;

}

The display method is the control center for the object. It not only contains all the code
to render the rows, but it also holds all the event handlers.This method is used as the
access point from other objects and combines all of the other methods in the object to
return a complete row element with interactive event handlers to the front end or the
GUI.After the element is constructed, we need to iterate the items array, which
includes DataColumn elements, to the current row.The row element this method creates
has a unique id, a class name, and onclick, onmouseover, and onmouseout events.The
unique id is used to uniquely identify the row, which can be used to provide us with a
way to target the object by name.The class name is where the parity comes into play.
The parity provides us with a way to concatenate two different class names: row_even
and row_odd. In our sample, these classes differ by providing background colors that
alternate from even to odd rows, leaving us with a way to distinguish one row from the
other. Of course, these classes could be modified to display the rows in other unique
ways, but I’ll leave that part up to you.The events that are created give our row interac-
tivity and enhance the user experience of the component.The first event is the onclick
event that we set to the getAction method and pass the action property as a parame-
ter.This method takes the action and returns a function to the event.Therefore, when
the row is clicked, a function is invoked.This function then evaluates the action and
fires it after it validates.Take a look at Listing 13.10 to see this method in action.

Listing 13.10 Creating an Action from the Parsed XML (DataRow.js)

DataRow.prototype.getAction = function(action)

{

return function()

{

eval(action)

}

}

The next event handler that we are adding in the row element is the onmouseover.This
event is set to the local rollover method within the object. In the sample, we are using

148 Chapter 13 Data Grid

Listing 13.9 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the rollover method to handle the styles for the rows. In this case, we are simply chang-
ing the color and setting the cursor to the hand pointer to distinguish the row as a click-
able item (see Listing 13.11).

Listing 13.11 Rolling Over a Row (DataRow.js)

DataRow.prototype.rollOver = function(id)

{

return function()

{

Utilities.getElement(id).style.backgroundColor = ’#999’;

Utilities.getElement(id).style.cursor = ’pointer’;

}

}

The last event handler is the onmouseout event, which calls a method called rollout.
This method is very similar to the rollover method because it also changes the color of
the background, but in a different way.When a user rolls out of the row, we want the
row color to return to its previous state.Therefore, we need to reset the color in this
method, but it gets a little trickier.We have the alternating colors from one row to the
next, so in order to handle this, we need to check the parity of the object calling it and
base the background color on the parity.

There is another item of interest in this method, which we have covered in previous
chapters: the scope of the this keyword.When the JavaScript object is created, the
scope works fine, but during runtime the events associated with an element will not
know the scope of the this keyword or even what this refers to.Therefore, we need
to set a variable called _this to this, which is equal to the object scope, when we cre-
ate the method in the object.This allows the variable to scope properly when we fire an
event during runtime and ultimately allows us to read specific properties based on the
current object. Listing 13.12 shows the rollout method in its entirety.

Listing 13.12 Rolling Out of a Row (DataRow.js)

DataRow.prototype.rollOut = function(id)

{

var _this = this;

return function()

{

if(_this.parity == "even")

{

Utilities.getElement(id).style.backgroundColor = ’#eaeaea’;

}

else

{

Utilities.getElement(id).style.backgroundColor = ’#fff’;

}

149Displaying the Data

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Utilities.getElement(id).style.cursor = ’none’;

}

}

The last method in the DataRow object is one that I have previously mentioned.This
getAllItems method takes an array of nodes and creates DataColumn objects, which it
appends to an array and returns to the DataRows items array (see Listing 13.13).

Listing 13.13 DataRow.js

DataRow.prototype.getAllItems = function(items)

{

var columns = new Array();

for(var i=0; i<items.length; i++)

{

for(var j=0; j<items[i].childNodes.length; j++)

{

var copy = StringUtil.trim(items[i].childNodes[j].nodeValue, 50);

columns.push(new DataColumn(j, copy).display());

}

}

return columns;

}

The first thing we do is create a new column array, and then we begin to iterate through
the items array that was passed as a parameter.While iterating through this loop, we will
need to nest another loop, which iterates the childNodes in the items. Now that we are
iterating at the value depth for the items, we can target the nodeValue for each item.
We then take this value and pass it to a trim method in an object called StringUtil,
which takes a string and a number as parameters.This method returns a trimmed version
of the string at the number of characters specified as the second parameter.After we
retrieve this trimmed version of the copy, we use it as a parameter in the DataColumn.
We then push an HTML version of the DataColumn to the columns array by invoking
the display method for the object.After we have completed iterating and constructing
the columns array, we return it.

Now that we know how to create a DataGrid object and construct DataRows to be
displayed within it, we will complete our grid by creating the DataColumn object.

Creating a DataColumn Object
The DataColumn object handles separating groups of corresponding data into columns.
The DataColumn object takes two parameters, id and copy, which both get scoped to
local properties in the constructor function.This object is very small because it simply

150 Chapter 13 Data Grid

Listing 13.12 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

constructs itself and displays its data.The display method handles the creation of column
divs. Each column div contains a unique id, a class name of column and innerHTML,
which is equal to the copy parameter that was passed to it by the DataRow object.After
the column is constructed, it is returned to the object that calls it. See Listing 13.14 for
an example.

Listing 13.14 DataColumn.js

function DataColumn(id, copy)

{

this.id = id;

this.copy = copy;

}

DataColumn.prototype.display = function()

{

var column = Utilities.createElement("div", {

id: ’column’+ this.id,

className: ’column’,

innerHTML: this.copy

});

return column;

}

Adding Design to the Component
The CSS for the DataGrid handles the design for the each component’s GUI elements.
The first item we will set a class for is the datagrid element (see Listing 13.15).This
class will simply define the width of the grid component, but we could easily add a
background color or a border, for example, to make it more appealing.

Listing 13.15 Styling the datagrid Element (datagrid.css)

#datagrid

{

width: 600px;

}

The next two classes are related to the parity method that we used in the DataRow
object. Depending on whether the row is even or odd, we assign one of these classes.
Each class is composed of a float, which aligns the rows to the left. It also contains a
width and a background color (see Listing 13.16).

151Displaying the Data

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 13.16 Styling Alternating Rows (datagrid.css)

.row_even

{

float: left;

width: 600px;

background-color: #eaeaea;

}

.row_odd

{

float: left;

width: 600px;

background-color: #fff;

}

The last three classes represent the titles and the columns of the grid.The titlebar and
the title classes handle the design for the category titles in the grid, setting the back-
ground properties for the bar and the font rendering from the title itself.The last class is
the column class, which floats the columns to the left and aligns each one in its respec-
tive row.This class also sets the width and the padding around the content within each
of the columns. See Listing 13.17 for an example.

Listing 13.17 Styling Titles and Columns (datagrid.css)

.titlebar

{

float: left;

width: 140px;

padding: 5px 50px 5px 10px;

background-color: #666;

}

.title

{

font-weight: bold;

color: #fff;

}

.column

{

float: left;

width: 140px;

padding: 5px 50px 5px 10px;

}

152 Chapter 13 Data Grid

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The beautiful part of using CSS and div elements for the component is that these class-
es can be modified to render the data grid in a million different ways.This means that
you can reuse this component in any situation and make it fit within any design neces-
sary.The objects can also be easily modified to include additional functionality, such as
resizable rows and columns or an action column for adding, editing, and deleting infor-
mation from the grid.These are only a few ideas—I am sure you already have many of
your own.

153Displaying the Data

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

IV
Ajax Patterns

14 Singleton Pattern

15 Model View Controller

16 The Observer Pattern

17 Data Reflection Pattern

18 Interaction Patterns

19 Usability Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14
Singleton Pattern

In Part II,“Creating and Using the JavaScript Engine,” we covered two advanced ways
of creating JavaScript objects, the creation of the Ajax engine, and how to debug and put
the engine to use in your web applications.We also covered extending the engine, which
we will continue to do in this part of the book. I will show you how to take your Ajax
applications to the next level by using design patterns in your code to help you optimize
and build scalable applications that can be easily updated with future features.

Design patterns help solve common programming problems. For instance, the
Singleton pattern solves the problem of having to instantiate multiple instances of an
object throughout an application by simply giving our application one reference that
never changes.This is how the Singleton pattern specifically solves a common program-
ming problem.Throughout this part of the book we will learn many design patterns and
how to apply them to our Ajax applications.This particular pattern is a simple one to
grasp, but extremely useful.The patterns will get more advanced as we move along
through the rest of Part IV “Server-Side Interaction.”

Objects that utilize the Singleton pattern provide a consistent reference for other
objects in the web application.A Singleton object is one that cannot be instantiated more
than once.This means that multiple instances of the object cannot be created.You might
be asking why you would want an object that cannot be instantiated by other objects in
a web application.This chapter will explain why, help you understand how this pattern is
useful, and show you how to use this pattern in your Ajax applications by creating an
object that handles all of your Ajax updates.

An Overview of the Singleton Pattern
Imagine having a large-scale Ajax application with dozens of objects. In this application,
you would like to add an object that handles all your Ajax updates.We will call this
object the AjaxUpdater.All the objects in your web application will communicate
through this object if they need to make an XHR at any time. Not only will this object
handle all the requests, it will also handle delegating the responses to specified callback
methods. In other words, when the response has been received, the AjaxUpdater will
notify the requesting object if a callback method was specified during the request.This

http://lib.ommolketab.ir
http//lib.ommolketab.ir

situation would require the use of the Singleton pattern because we would need a con-
sistent object reference for the dozens of objects in our application that might be making
XHRs.This pattern will also help separate this important functionality into a specific
object for more flexibility, and help keep the web application decoupled for easy updates
and future additions to the code. It might seem odd at first to separate your code into so
many different objects, but as your application grows it will keep your code extremely
easy to update and save you a lot of time in the long run.

Creating an Object Using the Singleton Pattern
Creating a JavaScript object with the Singleton pattern is so simple and intuitive that
you might not have even realized that you made one in Chapter 6,“Creating the
Engine,” when you created the Ajax object.To instantiate a Singleton object, simply
write the following line of code:

AjaxUpdater = {};

Instantiating the object is truly this simple and, as you can see, it only allows us to
create the one reference to the object within the object itself.This object will then be
used throughout the rest of the web application for constant reference. Now that we
have our object instantiated, all we have to do is call it by name from anywhere in the
application to access its properties and methods.

Creating properties and methods in a Singleton object is just as simple as instantiating
the object.Write the name of the object, followed by the name of the method, and then
point it to a new function, with any associated parameters if necessary.Take a look at the
example of the initialize method in Listing 14.1.

Listing 14.1 Creating a Method in a Singleton Object (AjaxUpdater.js)

AjaxUpdater.initialize = function()

{

AjaxUpdater.isUpdating = false;

}

AjaxUpdater.initialize();

The initialize method needs to be invoked after it is created in order to initialize the
object before we can use the rest of its methods. It also prevents JavaScript from throw-
ing an error because the method will not have existed at this point.This method initial-
izes the AjaxUpdater and, although it does not accept any parameters, it is used to set
all the local properties for the object. If this object is not initialized, the properties of the
object will not be properly instantiated when we try to access their values, resulting in
unexpected behaviors. Creating a property in a Singleton object is as simple as typing
the name of the object, followed by the property you want to create.

AjaxUpdater.isUpdating = false;

158 Chapter 14 Singleton Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the preceding example, we are creating a Boolean property named isUpdating.
This property is set to false by default because the object is not currently active, which
means that it is not currently updating any requests or waiting for any responses.The
isUpdating Boolean will be used to determine whether the object is currently updat-
ing a request or waiting for a response from the Ajax engine.This property will be
extremely useful when we have an application with numerous requests because we
might need to decide whether to make a new request based on its value, or we might
want to check it if a user is trying to exit the page while a request is in transit to warn
him of any potential data loss.There are many other uses for this Boolean value, as we
will discover when our application grows larger and has numerous active requests.

After we have our object instantiated and all its properties are initialized, we can cre-
ate the rest of the methods it will contain.The methods we will be creating will help
this object handle all of our Ajax requests and delegate the server-side responses to the
correct callback methods.The method we will use the most throughout our web appli-
cation is the Update method.This method will handle making all the requests and dele-
gating all the responses to the appropriate callback methods.The object takes three
parameters to provide maximum flexibility to our object’s XHRs.The first parameter is
called method because it represents the method in which we want to handle the
requests.As we learned in Chapter 2,“The Request,” there are three possible values for
this parameter: GET, POST, and PUT.The second parameter is a called service.This
parameter represents the key/value pair, XML, or any other type of data that we would
like to pass to the server side to be saved to a database or used to retrieve specific data.
The third is an optional parameter named callback.This parameter represents the call-
back method that other objects will register to use when making a request.This method
can be located in any other object, as long as it is scoped properly during the request. If
this parameter is not passed, we default to a callback parameter that we will create as part
of the AjaxUpdater object next. Listing 14.2 shows how the Update method is con-
structed.

Listing 14.2 The Update Method in the AjaxUpdater (AjaxUpdater.js)

AjaxUpdater.Update = function(method , service, callback)

{

if(callback == undefined || callback == "")

{

callback = AjaxUpdater.onResponse;

}

Ajax.makeRequest(method, service, callback);

AjaxUpdater.isUpdating = true;

}

The first section of code in the Update method is an if statement, which checks for the
callback parameter.We check to see if this value is undefined or an empty string. If it is,

159Creating an Object Using the Singleton Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

we set it to a default method named onResponse, which is a method that will exist in
the AjaxUpdater object.When we are sure that we have a callback method set, we
move on to make our XHR through the Ajax object.We already know how the engine
handles XHRs at this point—the only difference here is that we are encapsulating it into
our new AjaxUpdater object and abstracting the Ajax object from the rest of our
application.As I mentioned at the beginning of this section, the Ajax object also uses
the Singleton pattern because we do not want multiple Ajax objects floating around a
large web application because it would get very unwieldy.The XHR is made by directly
calling the Ajax object’s makeRequest method and passing it three parameters.The first
parameter is the method in which we want to send the data, which we have passed to
the Update method.The second parameter is the service parameter that we passed to
the Update method, which contains an XML or server-side file and additional query
strings.The last parameter is the callback method that was either passed to the Update
method or set to the default response method in the if statement.This method will
make an XHR according to the data we provide it and respond to the callback method
we pass to it, regardless of where it is located in the application.As you can see, we are
also setting the isUpdating Boolean from the initialize method to true based on
the fact that a request is in progress when this method is invoked.

The onResponse method that we use as a default callback method is very simple and
can be used for any default response that you would like; see Listing 14.3. In the exam-
ple, I am simply using it as a way to reset the isUpdating Boolean back to false, but
you could use it to display a default, custom loading message, and so on.

Listing 14.3 The onResponse Method in the AjaxUpdater (AjaxUpdater.js)

AjaxUpdater.onResponse = function()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

AjaxUpdater.isUpdating = false;

}

}

If we do not use this default callback method, we will need another way to set the
isUpdating Boolean to false. I have decided to set this variable directly in the Ajax
object’s checkReadyState method.When the readyState of the response reaches
level 4, we know that the response has completed and is no longer updating. Listing 14.4
shows an example of where to add this code to the existing method.

Listing 14.4 Updating the AjaxUpdater Status

Ajax.checkReadyState = function(_id)

{

switch(this.request.readyState)

{

160 Chapter 14 Singleton Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

case 1:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 2:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 3:

document.getElementById(_id).innerHTML = ’Loading ...’;

break;

case 4:

AjaxUpdater.isUpdating = false;

document.getElementById(_id).innerHTML = ’’;

return this.http.status(this.request.status);

}

}

As you can see, this has been a simple addition to the object, but it will cover all of our
responses in future requests.

Using the Singleton Object
In the previous section, we learned how to create an object using the Singleton pattern.
Now we will discover how to access it from other objects in a web application.The
AjaxUpdater object can be used in any other object throughout your web application,
all we need to do is import the file.

<script type="text/javascript" src="../javascript/utils/AjaxUpdater.js"></script>

Because the object instantiates itself, it is usable from the moment the file is loaded
and can be called directly by name from any object that is loaded into the same page.
Using a Singleton object method and property, such as the AjaxUpdater, is extremely
easy.The following line of code makes an XHR and sets a callback method, which waits
for the response from the server through the Ajax engine:

AjaxUpdater.Update("GET" , "services/accordion.xml", Accordion.display);

This method is called by name because it resides in the same page as the object that is
making the request.The only code we would need to write at this point is the callback
method that handles the response.You can refer to Listing 14.3 to get an idea of how
this method would be written, although if you were to write a custom callback method,
you would be doing so because you want to parse a custom response.Therefore, you
would write additional code in the method to handle any custom actions you would like

161Using the Singleton Object

Listing 14.4 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to accomplish.As an example, I have included a snippet of code in Listing 14.5 that we
will cover in Chapter 16,“The Observer Pattern,” to show you how a custom response
handler might look and how you can get started parsing the response.

Listing 14.5 Accessing a Method in a Singleton Object

Accordion.display = function()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

var p = Ajax.getResponse().getElementsByTagName(’panel’);

for(var i=0; i<p.length; i++)

{

var title =
➥Ajax.getResponse().getElementsByTagName(’title’)[i].
➥firstChild.data;

}

}

}

This snippet of code does not actually result in anything useful, but it gives us an idea of
how we would construct a custom response handler. First, we would start with the code
in Listing 14.5 to make the XHR and pass this method as the callback.When we receive
the response, we need to parse the XML that is returned by accessing the response data
through the Ajax engine’s getResponse method that we created in Part II. Once we
have this response data, we can target elements by name with the JavaScript
getElementsByTagName method. In this case, we get an array of panels that we iterate.
While iterating through the panels, we can retrieve specific child data from the response,
such as the title of each panel.

As you can see, the AjaxUpdater might be a small object, but it packs a lot of power
and is the perfect candidate for the Singleton pattern. In this chapter, the Singleton pat-
tern made the AjaxUpdater accessible from anywhere in the application and gave us a
consistent reference to the object so that we did not have to worry about having the
current information. Separating important pieces of functionality into separate objects
provides us with layers of abstraction that keeps our code clean and easily scalable. Now
that we have covered this simple design pattern, let’s move on to discover a few more
complex patterns that will help us optimize the code in our Ajax applications.

162 Chapter 14 Singleton Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15
Model View Controller

The Model View Controller (MVC) pattern is the separation of an application’s graphi-
cal user interface (GUI) from its core logic.There is no absolute design for the MVC,
but as with any design pattern, it should adapt to the situation you are faced with when
developing. Patterns are available to help solve or manage common problems when
developing, but will only hinder that development if we restrict ourselves to absolute or
strict guidelines.These lines must be blurred from one application to the next based on
the situation at hand.This is why most experienced developers use multiple patterns in
an application to accomplish or satisfy unique situations that occur because, as we all
know by now, no two applications are the same.With that said, each application has
common problems, and this is where patterns can come into play.

The MVC has existed since 1978, the year I was born. Obviously, due to technologi-
cal advances, the implementations of this pattern in present applications will not fit the
exact mold of the original pattern. In this book, we will take this and the rest of the pat-
terns we have covered so far and implement them in a way that is appropriate to our
project.A word of advice: Do not get hung up on conforming to any strict mold; rather,
be free to make the best decisions based on the problem at hand.The goal with this pat-
tern is to prevent having to make changes to the core logic in order to modify anything
in the GUI.This chapter will explain how to accomplish this goal.

An Overview of the Pattern
Anyone who knows me will tell you I am a big fan of organization and order, especially
when it comes to sensible code management, which is why I really like this pattern. I
look at the MVC as more of a way to structure and organize certain objects of a code
base in an application; whether it is a web or desktop application, the same idea applies.
Keeping the core server logic separated from the view or the data that the user is inter-
acting with by adding a central layer, called the controller, not only keeps our code organ-
ized, it also creates a logical data flow that is easier to manage. Believe it or not, in theory
this pattern exists in every web application—it is simply not always organized into sepa-
rate layers or there are variations of organization.Take a look at Figure 15.1, which
shows the MVC pattern as it applies to our Ajax application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 15.1 The MVC pattern applied to the sample project.

After taking a look at Figure 15.1, it is obvious this pattern exists in all applications. Even
if there is only one code file in an application, the underlying data flow is always present.
For example, all applications must make decisions based on user interaction and interact
with the server by storing or retrieving data—whether it is attached to a database or
simply making HTTP requests—and respond to the user with new data.The controller
would be the decision making, the model would be the server interaction, and the view
would be the response to the user. In theory, the XHR is exclusively an MVC pattern
because it takes user input, interacts with the server via the HTTP request, and responds
to the user via the responseText and responseXML properties.The difference is in the
structure and design, which are definitely debatable and open to interpretation. Reusable
objects are the ultimate goal of any application, and decoupling the objects is what
makes this pattern powerful.Therefore, this pattern may exist in all code in theory, but it
is not until we pair it with an object-oriented and structured design that its true power
is unleashed.

164 Chapter 15 Model View Controller

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the Pattern
Usually when you read about the MVC pattern, it is not related to JavaScript. However,
as I am sure you have noticed, we have already begun to implement this pattern with the
components we have built. Each of the components consists of at least one controller
and one view object, whereas the model consists of the objects that interact with the
server, such as the Ajax, AjaxUpdater, and HTTP objects that we created in Part II,
“Creating and Using the JavaScript Engine.” Creating this pattern is as simple as starting
with the folder structure in the code folder of our application. Since this pattern is relat-
ed to the JavaScript code we are creating, we will create this structure within the
javascript directory as in Figure 15.2.

165Creating the Pattern

Figure 15.2 Directory structure for the MVC pattern.

This is obviously trivial and might seem like a waste of time to cover, but it is the basis
for the structure we will utilize when creating objects we would like to fit into this pat-
tern. Let’s take the Accordion component from Chapter 10,“Accordion,” as an exam-
ple.This component is composed of two objects: Accordion and Panel. Figure 15.3
shows the previous MVC structure with the Accordion component and associated
model objects.

Figure 15.3 MVC directory structure with the Accordion component.

The Accordion object is the controller for this component because it interacts with
another controller (AjaxUpdater) and ultimately the model (Ajax), and responds to the
panel with the information from the server.The Panel object represents the view and
presents to the user the different panels the accordion is composed of.When a user
interacts with a panel, the panel interacts with the AjaxUpdater.This controller then

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sends a request to the model, which is our Ajax object.Therefore, we end up with mul-
tiple MVC triads working together to accomplish a task.Take a look at Figure 15.4 for a
graphic view of how the data flows between the objects in this pattern.

166 Chapter 15 Model View Controller

Figure 15.4 Graphical view of how the Accordion uses the MVC pattern.

This is a good example of how the pattern can fluctuate.You can use multiple objects
from different aspects of the MVC structure to work together as one whole unit, yet
keep those objects completely decoupled.

Using the Pattern
As we have covered, there are many ways to use this pattern.This pattern can be com-
bined with other patterns that are completely different, or the same pattern in combina-
tion with other MVC triads.As an example, we could have one MVC in our PHP code
and another MVC in our JavaScript code.There are also many different ways to inter-
pret the MVC pattern—no one way is the absolute and only way because the best solu-
tion for a situation is always the one that works best.As I said, this pattern can be used

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to simply organize your JavaScript and your PHP code into separate MVC patterns of
their own, or it can be used to organize all your code into one combined MVC pattern.
In the last section, we covered how we already combined our JavaScript objects for the
Accordion component into an MVC pattern, whether or not we knew we were doing
it when we built the accordion. Figure 15.5 shows a graphical representation of the PHP
and the JavaScript organized into one combined MVC pattern.

167Using the Pattern

Figure 15.5 Graphical representation of the PHP and
JavaScript organized into one combined MVC pattern.

In conclusion, this pattern is a great way to abstract our code into layers so that all
objects have a common pattern for interacting with other objects. By following this pat-
tern, we avoid having mixed connections, which could ultimately lead to tracking down
what objects are connected to others. Finding an issue is usually harder than fixing the
issue itself, which is why when following common patterns, the maintenance tasks
become easier to manage because there is a logical flow to the application.This allows us
to focus more quickly on specific areas that may be causing issues, which is the power of
this pattern because it becomes more than handling a programming task—it becomes a
way to structure and manage large amounts of data in a more efficient manner.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16
The Observer Pattern

As you have been learning throughout this part of the book, design patterns are
extremely useful when developing large-scale applications. Design patterns provide code
flexibility and help establish a way of handling common situations that occur in the logic
of an application.The Observer pattern is an extremely important addition to the sample
application because it creates a way of handling an unlimited number of objects as a col-
lection with only a few object methods. Let’s learn more about how this pattern accom-
plishes so much with so little.

Pattern Overview
The Observer pattern is a design pattern that is used to observe the state of an object in
an application.The observed object allows other objects to register and unregister as
observers.The observers are notified when specific events that they are observing are
fired.The observed object has three distinct methods, which are outlined next.

Register Observers Overview
The Observer pattern essentially allows an unlimited number of objects to observe or
listen to events in the observed object (or subject) by registering themselves.After
observers are registered to an event, the subject will notify them when the event is fired.
The subject handles this by storing an observer collection and iterating through it when
the event occurs in order to notify each observer.

Notify Observers Overview
When an event is fired in the subject, the observers are notified via the methods they
provide to the observer when they are registered. Each observer specifies its own notify
method and defines what happens when the notification occurs. For instance, you may
have an object that registers to an error-handling object and specifies a notify method
that handles displaying the error to the user. On the other hand, you may also have a
completely different object that specifies a notify method, that sends an email to the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

developer each time an error occurs in the web application.The power of this pattern is
in the fact that both of these objects can be registered and notified by the same subject.

Unregister Observers Overview
If an object no longer wants to be notified by the subject it is registered with, it can
unregister itself.There are a number of instances in which this method is useful, one of
which is when you do not want an object to be notified more than one time.After an
object has been notified, it can unregister itself and the subject will remove it from the
observer collection. For example, imagine that you want to wait to fire a method until
another method has occurred. If it follows the Observer pattern, you can register to this
method and wait for notification before moving forward.Take a look at Figure 16.1 for
an example.

170 Chapter 16 The Observer Pattern

Figure 16.1 The Observer pattern allows multiple objects to observe
one event and be notified when that event is invoked.

As you can see, the Observer pattern can affect numerous objects with only one event.
In this chapter, we will create an error-handling object that we will call the
ErrorManager.This object will follow the Observer pattern and notify any registered
objects if an error occurs.

Creating an Error-Handling Object
An error-handling object is essential when building and releasing large web applications
that use heavy amounts of JavaScript.While building, error handling is very useful for
identifying bugs in your code so that you can easily track them down and progressively
finish building the application.When releasing an application, error handling is even

http://lib.ommolketab.ir
http//lib.ommolketab.ir

more important because users need to know how to handle issues that may arise and
cannot do so without feedback from the application, which can tell them what went
wrong. It is also important after releasing because you or your fellow developers will be
able to identify what went wrong when a user is contacting you with an issue.To handle
errors, let’s create an object called ErrorManager as in Listing 16.1.

Listing 16.1 Instantiating ErrorManager (ErrorManager.js)

ErrorManager = {};

The core of this object is JavaScript’s intrinsic onerror event.This method listens for
errors and fires an event that can point to any custom callback method that you speci-
fy.The onerror event also has the capability to pass three parameters to the callback
method, to provide detailed information regarding any errors that occur.The three
parameters that the event passes are the actual error message, which identifies what error
occurred; the URL of the document where the error occurred; and the line number in
the document where the error occurred.These parameters can have a number of uses.
They can be used to provide feedback to users regarding any errors that occur, or they
can be used to provide feedback to the developer so that he is aware of any issues that
occur during user interaction after an application has been released or is being tested.We
will set this event to a local callback in the ErrorManager object, but first we need to
create the observer methods.

Register Observers
The onerror event will be used to notify the subject, which is the ErrorManager
object of any errors that occur. ErrorManager will then notify any objects that have
been registered and stored in its collection.There are three methods we will create,
which we discussed in the previous section.The methods that will handle all the obser-
vation functionality are called registerObserver, notifyObservers, and
unregisterObserver.These methods must be the first written in the object after the
object has been declared. Listing 16.2 shows the registerObserver method.

Listing 16.2 Registering Observers (ErrorManager.js)

ErrorManager.registerObserver = function(_observer)

{

ErrorManager.observerCollection.push(o);

}

The registerObserver method does exactly that: It registers an observer by adding it
to an observerCollection, which is a property of the object and is essentially an array
that is specifically used to store observers. Observers that are added to this collection
need to specify the object name plus the method they want to use as the notification

171Creating an Error-Handling Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

callback in a codestring.A codestring is a string representation of any code. In this case, it
would be a method call in the form of a string:

"Object.notify"

The collection will be declared in an initialize method that we will create as soon as
we have finished adding the observer methods to the object so that we keep the scope of
the object members intact.

Notify Observers
The next method, called notifyObservers (see Listing 16.3), iterates through the
observerCollection and fires the callback methods that the observers specified.

Listing 16.3 Notifying the Observers (ErrorManager.js)

ErrorManager.notifyObservers = function(message, url, line)

{

for(var i in ErrorManager.observerCollection)

{

eval(ErrorManager.observerCollection[i] +"(’"+message +"’,

➥’"+ url +"’,’"+ line+"’);");

}

}

While iterating through the observerCollection, the notifyObservers method calls
the observers by using JavaScript’s intrinsic eval method to create a method from the
codestring that was passed to the registerObserver method.The eval method deter-
mines whether the codestring is valid and executes the code if it is valid. I have also
added the additional power of passing the error parameters from the onerror method to
the notify methods.This allows the observers to be aware of the error that occurred
and act on it as they see fit. For example, an object may register to the ErrorManager
and receive notification when an error occurs. Based on the parameters we are passing to
the callback method, the line of code where the error occurred may be used to high-
light the corresponding issue in the GUI.This allows our objects to provide feedback to
the user as to what went wrong.The best part about this pattern is that there can be an
unlimited number of objects registered to the subject and they can all handle errors in
different ways, depending on what portion of the application they manage.This allows
for complete flexibility in your application and keeps the objects extremely decoupled,
while allowing them to communicate with each other.

172 Chapter 16 The Observer Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unregister Observers
The next method is the unregisterObserver method, which is used to remove
observers from the collection so that they are no longer notified when an event occurs.
Listing 16.4 shows the method as it is used in ErrorManager.

Listing 16.4 Unregistering Observers (ErrorManager.js)

ErrorManager.unregisterObserver = function(_observer)

{

for(var observer in ErrorManager.observerCollection)

{

if(_observer == ErrorManager.observerCollection[observer])

{

ErrorManager.observerCollection.splice(observer, 1);

}

}

}

This method receives a codestring as did the registerObserver method. It then uses
this string while iterating through the collection by checking to see whether there is a
matching codestring in the collection.When and if there is a match, the codestring is
removed from the collection. In order to remove the string from the collection, we need
to use the JavaScript splice method to remove the specified index in the collection.
After the observer has been removed from the collection, it will no longer be notified of
any events that it was once registered to, although the object may register again at any
time.

Once we have these three methods created, we need to initialize the object and all its
properties. Listing 16.5 shows our ErrorManager’s initialize method.

Listing 16.5 Initializing the ErrorManager (ErrorManager.js)

ErrorManager.initialize = function()

{

ErrorManager.observerCollection = new Array();

ErrorManager.registerObserver("ErrorManager.emailError");

onerror = ErrorManager.notifyObservers;

}

ErrorManager.initialize();

As you can see, the initialize method is very important to this object. It must be
called as soon as it has been created to allow proper scoping of its properties.As I men-
tioned earlier, it handles the creation of the observerCollection that we used
throughout all of the observer methods.The observerCollection is nothing more
than a simple array that is used to collect the observers as they are registered.The next
two lines of code in this method register two methods from the ErrorManager: a

173Creating an Error-Handling Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

method named emailError and another named alert.These two methods will be
notified when any JavaScript error occurs in the application. Now that we have the
observer methods created and the objects’ properties are available, we can set the local
callback method to JavaScript’s intrinsic onerror event.This event becomes the core
of this object; without it, the object would not function.Anytime a JavaScript error
occurs, this event fires the callback, which in this case is the notifyObservers method.
It may look as if we are defining a variable, but since this is an intrinsic JavaScript event
it knows how to handle the assignment.This method then handles notifying all the
observers of the error that occurred, along with all the details, including the message,
URL, and exact line of code.

The first notify method that we will create is the emailError method (see Listing
16.6) that we registered in the initialize method.This method contains the function-
ality to send an email to specified developers listing all the details of the error.

Listing 16.6 Emailing Errors (ErrorManager.js)

ErrorManager.emailError = function(message, url, line)

{

var error = "Error: "+ message +"
";

error += "URL: "+ url +"
";

error += "Line: "+ line +"
";

var page = "classes/ErrorManager.class.php";

var subject = "My Ajax Application Error";

AjaxUpdater.Update(’POST’, page +"?subject="+ subject +"&message="+ error,

➥this.catchResponse);

}

ErrorManager.catchResponse = function()

{

if(Ajax.checkReadyState(’loading’) == "OK")

{

// Handle the response from the server-side

}

}

Take a look at the parameters the emailError method accepts.They are the three
parameters that we previously discussed.We will use these parameters to create an
HTML-formatted email that we will ultimately send to ourselves or the developer of
our application.After we have the error formatted as HTML, we will identify the vari-
ables that will be used as the parameters in the email.The first parameter is the page that
we are requesting through Ajax, which is an ErrorManager class that we will create
with PHP shortly, and the second is the subject of the email.After we have our variables
identified for the request, we will send it to the AjaxUpdater’s update method, which
we created in Chapter 14,“Singleton Pattern.”This request will be made through the

174 Chapter 16 The Observer Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

POST method to the page that we specify, which in this case is an ErrorManager class
that we will create with PHP.The request is sent along with a query string that consists
of the variables we defined, such as the subject and HTML error.We will also specify a
callback method, named catchResponse, which we can use to handle the response
from the server.After all this information has been passed to the AjaxUpdater, it will
make the request through the Ajax object to the PHP page specified.

Although we have not covered server-side interaction with Ajax, in this section we
will be jumping ahead a bit in order to add the functionality to send the email. Later, in
Part V,“Server-Side Interaction,” we will take an in-depth look at server-side interaction.
The PHP ErrorManager class is a fairly small class, so it will be a good object in which
to make our first server-side interaction. Listing 16.7 shows the class in all its glory.

Note
The PHP classes used throughout this book require PHP version 5.0.

Listing 16.7 ErrorManager PHP Class (ErrorManager.class.php)

<?php

$errorManager = new ErrorManager();

$errorManager->send($_GET["subject"], $_GET["message"]);

class ErrorManager

{

public function ErrorManager() {}

public function send($_subject, $_message)

{

$headers = "From: noreply@sample.com\r\n" .

"Reply-To: noreply@sample.com\r\n" .

"MIME-Version: 1.0\r\n" .

"Content-Type: text/html; charset=utf-8\r\n" .

"Content-Transfer-Encoding: 8bit\r\n\r\n";

mail("you@yourdomain.com", $_subject, $_message, $headers);

}

}

?>

As I mentioned, this class is fairly small because it only consists of one method. It is
important to notice that we are instantiating the object in the same file.This allows us to
make requests directly to the class without having to create an intermediate file that does

175Creating an Error-Handling Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

it for us. Either way is perfectly fine, but I find this way to be a bit cleaner and easier to
manage.After the object is instantiated, we call the send method and pass it two param-
eters, which are the subject and message parameters.You may recognize these param-
eters from the ErrorManager object that we created in JavaScript.These are the
onerror parameters that are sent to the callback method and ultimately passed
through the request to this class.Therefore, this method is invoked as soon as the page is
requested.The request is then handled by the send method, which sends an email based
on the parameters that are sent to it. However, before it sends the email, it also specifies
the headers, such as the from email address, the reply-to email address, and the MIME
version, content type, and content-transfer encoding, which are all used to handle the
HTML format that we are passing through the request.After the headers have been
identified, we will use PHP’s intrinsic mail function, which allows you to send an email.

The only requirement is that the server you are using to run the web application
must have access to a mail application. In order to get more information about the mail
function, you may visit the PHP manual at www.php.net and search for mail in the func-
tion list.This page will provide you with additional information regarding the function
and samples to show you how to make our ErrorManager class more robust. For exam-
ple, you may want to add error handling in the ErrorManager class in case the email is
not sent for any reason. If an error occurs, you can then respond to the client-side Ajax
engine and ultimately the catchResponse method in the JavaScript ErrorManager
with the response.The JavaScript ErrorManager can then handle the response by trying
to send another email if there was a failure or simply notifying the user of the error that
occurred as an alternative to sending the email.

Now that we have a fully functional ErrorManager object, we can use it throughout
our application. Let’s see how.

Using the Error-Handling Object
Error handling is essential to a successful web application, but it is often overlooked and
deemed a boring chore to developers. Using the Observer pattern for Ajax error han-
dling allows us to create an extremely intuitive user experience and is actually quite
interesting to program.As you learned in Chapter 9,“Extending the Engine,” with
HTTP status codes, we can also provide immediate feedback and options to the user
when errors occur without disrupting the flow of experience or leaving a user with
questions regarding what to do next. Imagine having an object that can control all the
alerts in your application. I have created one that is named Alert.This object registers
an error method with the ErrorManager object immediately after it is instantiated.This
method accepts the three parameters the notifyObservers method passes to observers
in its collection. It then concatenates an error string that is displayed in an alert box to
the user (see Listing 16.8).

176 Chapter 16 The Observer Pattern

www.php.net
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 16.8 Alert Object (Alert.js)

Alert = {};

ErrorManager.registerObserver("Alert.error");

Alert.error = function(message, url, line)

{

var error = "Error: "+ message +"\n";

error += "URL: "+ url +"\n";

error += "Line: "+ line;

alert(error);

//ErrorManager.unregisterObserver("Alert.error");

}

After the error method is called, you can unregister it as an observer by uncommenting
the last line in the method.This is only one simple example of how to use the Observer
pattern in a web application.There are millions of ways this pattern can bring power to
your applications.

177Using the Error-Handling Object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17
Data Reflection Pattern

The Data Reflection pattern is a pattern that keeps web application content in sync
with the database and with the file it is requesting.This pattern can be used in a number
of ways. In our sample, it will be used as a way to keep a user’s email data current by
allowing the application to receive new emails from other users.This means that if a user
sends email to another user, the receiving user will get this new email whenever the data
happens to be reflected in the back end of the application.This reflection will be based
on a delay or time interval that we set in the code. Or, the functionality could also be
extended into a user preference, which would allow a user to choose how long a delay
he has for email checking, such as current desktop applications have.The limits are based
on your application and what pieces of it could benefit from using this pattern because it
provides niche functionality that is not always going to be necessary.

In this chapter, we will learn different ways this pattern can be useful in a web appli-
cation, as well as specific sections of an application that might benefit from it.

An Overview
The Data Reflection pattern keeps the web application content in sync with the data-
base.This happens because the pattern runs in the back-end code and updates data that
has changed while a user is logged in and using the application.As a typical XHR model
does, the Data Reflection pattern starts with the user interface, where a user interacts
with an element and the application makes a request.The major difference is that this
pattern programmatically consists of JavaScript’s setTimeout method.This method con-
tinuously makes XHRs through the Ajax engine to either call a server-side language and
check for database updates or to check an XML file for updates. If there are updates, the
new data is returned to the Ajax callback method and the application content is
updated (or reflected); otherwise, there is nothing to reflect and therefore we do not
complete the request. Figure 17.1 shows the data flow of the as it continually makes
XHRs to the server-side language.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 17.1 The constant data flow of the Data Reflection pattern.

This figure shows the data flow as the pattern makes requests to a server-side script and
ultimately the database, but keep in mind that the pattern could loop back by requesting
an XML file as well. Figure 17.1 shows the client on the front end of the application,
with the setTimeout method continually making a request through the Ajax engine.
When the Ajax engine receives the request, it either sends a POST or GET as an HTTP
request to a server-side language or engine.The server-side engine checks the database
for updates and does one of two things depending on the results.The results could yield
no changes, which would cause the server-side script to respond to the Ajax engine with
no updates, or the script could respond with updates that exist in the database. If there
are updates in the database, the engine can respond with XML or JSON, which the Ajax
engine will delegate to a callback method.The callback method will parse this data
and reflect the changes in the user interface or the GUI as (X)HTML and/or CSS.This
might seem like a lot of steps, but after we have the Ajax engine and the server-side
engine running, we will not have to modify them any further.This means that after the
application is set up, we should not have to touch the code and the users will keep the
application running with fresh data. Now that we have an understanding of the Data
Reflection pattern, let’s step it up a notch and add more layers to the pattern. In this

180 Chapter 17 Data Reflection Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

next section, we will extend this pattern to satisfy multiple users and allow them to
interact with our application simultaneously with real-time updated content.

The Multi-User Pattern
The Data Reflection pattern can be extended to accommodate much more functionali-
ty.A perfect example of this is the Multi-User pattern. It is based on the Data Reflection
pattern, yet it delegates the functionality between multiple users to provide them all with
updated information from other user requests.Take a look at Figure 17.2 to get an idea
of how the data flows from one user to the next in this pattern.

181An Overview

Figure 17.2 The Multi-User pattern as an
extension of the Data Reflection pattern.

An example of this pattern is a chat application. Imagine multiple users from remote
locations typing data into a chat window and clicking Send. Each time a user clicks the
Send button, an XHR is made to update the database or file that is currently holding
the chat content.While the users are chatting back and forth, this pattern is consistently
polling from the server in the background to see whether there are any content updates
on the server that a user does not yet have. If a user is up to date, nothing happens, but if
she is not, she receives the latest content from the server.This is just one of a million
examples of how we can use this pattern, but the same concept applies as far as the
functionality works and the data flows in the back end of the application.Think about
any situation that can possibly have multiple users and this pattern can be applied over
and over again without changing the base code that we will write in the next section.
Let’s take a look at this code and how it will apply itself to the functionality in our
application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating the Pattern
Now that we understand the power of this pattern, we will learn how to put it to use in
our application. Up to this point, we have created all the components that are needed to
create an email application, but we are missing the object that ties them together in
some way. In this section, we will create an object named Email, which will perform all
the duties that are necessary to gather data for each of the components. But rather than
focus on the details of each method and the population of different components, we will
focus on how to add the Data Reflection pattern to the object.Therefore, we will create
all the methods, but we will not add code to them until Chapter 21,“Interacting with a
Database:The Server Side,” when we connect the object to a database with PHP. So, let’s
get started by defining the methods we will need to populate the different components
and make our application function.

We will start by identifying the actions you would typically associate with an email
application.The first actions that come to mind are sending, receiving, and composing an
email. Next, we will focus on how we would like to show email threads. I have chosen
to use the accordion component that we built in Chapter 10,“Accordion,” to display all
the emails in a particular thread as a group.The first email in the group, which is the one
that initiated the thread, is the email that will display in the inbox.The replies that came
afterward will only display in the accordion as part of the thread, but we will focus more
on this in Chapter 21. Since we are displaying emails in a thread, we will add a method
that displays them as a threaded group. Last, we will create an initialize method to
set the local variables, and we will also create a display method to be used as an access
point to the object, which will fire the correct methods when the body of the applica-
tion has loaded.Therefore, we have six methods we need to create, as follows:

n Email.initialize

n Email.display

n Email.showThread

n Email.getMail

n Email.sendMail

n Email.compose

Each method is prefixed with the Email object since this will be the name of the object
that contains them. Now that we have these methods, we can move on to the focus of
this section, which is adding the Data Reflection pattern to the Email object.The first
thing we will do is add a method that creates a Data Reflection pattern.We will appro-
priately name the method dataReflection and it will receive two parameters: a
callback method and a time delay.The callback method represents the method we
want to be called each time the data is reflected. In our case, we will call back the
display method because it is our access point and will naturally create a consistent loop
for the pattern, which will continually reflect the database data.The time delay represents

182 Chapter 17 Data Reflection Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the amount of time in milliseconds in which we would like the method to be called. For
example, if we would like to set it to reflect every minute, we would use 60,000 mil-
liseconds.Within the dataReflection method is JavaScript’s setTimeout method,
which will take these two parameters and fire when the time delay has been reached.
Following is the dataReflection method, which we will add to the Email object.

Email.dataReflection = function(callbackMethod, delay)

{

setTimeout(callbackMethod, delay);

}

Since the display method is the access point to our object, we will plant the first
dataReflection pattern within this method and create a loop that continually does
callbacks on the display method.The display method for our object will receive a
username when we add the server-side code to it in Chapter 21 because we will need to
have a value to check against in the database so that we can provide the appropriate
email data back to the current user.This means that the callback method will need to
have this value as well. Here is the code that we will add to the display method, with
the username parameter as a value in the callback method.

Email.display = function(username)

{

Email.dataReflection("Email.display(’"+ username +"’)", 60000);

}

As you can see, calling this method is trivial because it is really just a wrapper for the
setTimeout method.Although it is simple, this pattern is actually quite powerful when
put to use with a database.

183Creating the Pattern

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18
Interaction Patterns

There are many interaction patterns emerging in the budding presence of Ajax.Web
applications can now have front-end functionality that is much more complex, such as
interacting with the database without a browser refresh. Not refreshing the browser is
much more than a code trick that is just done for kicks—it allows developers to create
extremely complex front-end functionality that interacts with the database and feels like
any other application, regardless of whether it is on the desktop or the Web. In this chap-
ter, we are going to cover two interaction patterns I have found much use for.The pat-
terns we will be discussing are creating a pseudo-history and a drag-and-drop interface.
Both of these objects will be completely flexible, allowing for extensibility, which I’m
sure will provide you with some additional ideas. Let’s get started creating a history, and
then we will dive into the drag-and-drop interface.

Creating a History with Cookies
History is a known issue with Ajax because when a page is not refreshed, it is not added
to the browser history. In this section, we will create a solution that will solve many
issues with regard to application history and can also be used to provide additional func-
tionality to an application, such as Undo.Although this object will not completely fix
the Back button issues, which occurs due to a user never leaving the same page and
therefore never creating a history, it will allow users to click the Back button and come
back to the site where they left off if they allow cookies to be saved to their local
machine.

The Historian Object
The Historian object will be a different type of object than the others we have created
in the book. It uses the object constructor method, which we covered in Chapter 5,
“Object-Oriented JavaScript.”We are using this method because I want to lend flexibili-
ty in terms of being able to use multiple Historian instances in one application, during
one session.This could come in handy if we wanted to save a separate history for specific
features in an application.The Historian object will save data to a cookie to allow

http://lib.ommolketab.ir
http//lib.ommolketab.ir

users to leave the page and come back to where they left off.The first thing we will do
is create a constructor for the object and, since it saves a cookie, we will pass the URL
that the cookie should be saved to.The following code snippet shows how we are going
to accomplish this:

function Historian(url){}

After we have the constructor completed and we are able to pass a unique URL, we will
create a local array called collection and a method called push.The push method will
enable us to add data to the array, and will ultimately save the array to a cookie at the
URL specified as the constructor’s parameter. It checks to see whether the collection
contains the value we are pushing through a custom method that we will create called
containsValue. If the value does not already exist, we will push the new value and save
the collection array.The following code shows how we will push new values to the
collection, call another method to save the data to a cookie, and check the collection to
make sure that the value does not already exist.

this.collection = new Array();

this.push = function(_index)

{

if(!this.containsValue(this.collection, _index))

{

this.collection.push(_index);

this.save(this.collection, 1, "/", url, false);

}

}

this.containsValue = function(_arr, _val)

{

for(var i=0; i<_arr.length; i++)

{

if(_arr[i] == _val)

{

return true;

break;

}

}

return false;

}

186 Chapter 18 Interaction Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The save method we are calling from the push method is what creates and stores the
cookie. It receives five parameters, all of which are required to create the cookie:

n The value we are saving, which in this case is our collection array
n The number of days for which it is saved
n The path on the server where it is saved
n The domain we are passing through the constructor
n A Boolean for whether the cookie is saved securely

After the method is triggered, it simply creates a date object in order to set the expira-
tion date relative to the amount of days that are passed to the method.After we config-
ure the date method, we create the cookie with all the data we have received:

this.save = function(value, days, path, domain, secure)

{

var expdate = new Date();

expdate.setTime(expdate.getTime() + days *24*60*60*1000);

document.cookie= "history=" + escape(value) +

((expdate) ? "; expires=" + expdate.toGMTString() : "") +

((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +

((secure) ? "; secure" : "");

}

Now that we have a way to save the data as a cookie, we need to create a method for
retrieving it.We will create a method called getSaved, which will retrieve the cookie,
and if one exists, repopulate the collection with the saved data. Since cookies are saved as
strings, we need to parse the saved data in a number of ways in order to retrieve the val-
ues we need.The first few things we will do are get the cookie, set a variable to the pre-
fix that we saved the data as, and look for an index of the prefix in the cookie. If a prefix
does not exist, the method will simply return a null value. Otherwise, we will have an
index in which to look for the values, which we will set to a variable called begin. Last,
we will return the unescaped value of the cookie after performing a substring from the
begin number plus the prefix length to the end of the cookie string.

this.getSaved = function()

{

var dc = document.cookie;

var prefix = "history=";

var begin = dc.indexOf(prefix);

if (begin != 0)

{

187Creating a History with Cookies

http://lib.ommolketab.ir
http//lib.ommolketab.ir

return null;

}

return unescape(dc.substring(begin + prefix.length, dc.length));

}

Now that we have created this method, we can set the collection to the returned value
of the method.We will do this by simply adding a try, catch to the object directly after
the getSaved method.We will use the try, catch in in order to determine whether
the code will perform before we follow through with it.We will try to set the collection
to the getSaved data after we split it at all the commas into an array value. If we get an
error, we will simply catch it and set the collection to a new array.

try

{

this.collection = this.getSaved().split(",");

}

catch(err)

{

this.collection = new Array();

}

In order to clean up and clear the cookie through the Historian, we will create a
method named clear.This method takes two parameters: the path and the domain of
the cookie. It first checks to see whether any data is saved in the cookie by calling the
getSaved method. If the method returns a value other than null, we simply set a new
cookie with all the previous data to a past date, which renders the cookie expired and
therefore clears it from memory.

this.clear = function(path, domain)

{

if(this.getSaved())

{

document.cookie = "history=" +

((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") +

"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}

}

Now that we have the object created, we can put it to use, but we first need to create
some sample data to load and play with in the HTML.

188 Chapter 18 Interaction Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating and Displaying the XML
In this section, we will first create an XML structure in which to sample our Historian
and then create an HTML file to display it all. Our XML file will contain a number of
references to images that represent screens, which are grouped into navigation nodes.
These screens will become what a user navigates through in the sample. Following is the
sample XML data:

<?xml version="1.0" encoding="iso-8859-1"?>

<navigation>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

<screen><![CDATA[]]></screen>

</navigation>

In order to navigate from screen to screen and clear the history, we need to create an
HTML page that has Next, Previous, and Clear History buttons.This page must also
import our CSS and JavaScript files in order to render the screens and make the Ajax
requests.The following is the HTML for the Historian HTML page:

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<title>Ajax Historian</title>

<link href="css/historian.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="javascript/utils/Historian.js"></script>

<script type="text/javascript" src="javascript/controller/Navigation.js"></script>

<script type="text/javascript" src="javascript/model/AjaxUpdater.js"></script>

<script type="text/javascript" src="javascript/model/Ajax.js"></script>

<script type="text/javascript" src="javascript/model/HTTP.js"></script>

</head>

<body onload="javascript:AjaxUpdater.Update(’GET’, ’services/navigation.xml’,

Navigation.loadScreen);">

<div id="navigation"></div>

189Creating a History with Cookies

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Previous |

Next |

<a href="javascript:Navigation.history.clear(’/’, ’www.yourdomain.com’);

document.location = document.location;">Clear History

</body>

</html>

As you can see from the source code for our HTML page, we are referencing an object
called Navigation.This object will allow us to navigate from one screen to the next
and reverse, plus clear the history. Now that we have all our other code in place, let’s cre-
ate the Navigation object that will pull it all together.

The Navigation Object
The example we will be creating to use the Historian reminds me a lot of my days
working in e-learning.All the courses we built had a number of interactive screens with
navigation to click from one to the next—sort of like a slideshow, but with a lot of addi-
tional functionality.These courses would also remember where you left off or bookmark
the last place you were located in the course so that if you left and came back, it would
take you to the bookmark.We will be creating this bookmark functionality in our sam-
ple; therefore, we will be creating a Navigation object to take us from one page to
another.The Navigation object is a Singleton object that increments and decrements
which screen displays from the navigation collection in the XML. In order to save the
history with our Navigation object, we must instantiate the Historian object when
we initialize it. Here are the Navigation’s instantiation and initialize methods.

Navigation = {};

Navigation.initialize = function()

{

Navigation.history = new Historian("www.yourdomian.com");

Navigation.index = (Navigation.history.collection.length == 0)

➥? 0 : Navigation.history.collection.length-1;

Navigation.screenArray = new Array();

}

Navigation.initialize ();

In the initialize method, we instantiate the Historian object and pass it the local
domain in which we want to save the cookie. I have added a sample domain; this will
need to be changed to reflect the local domain of the server where you will be deploy-
ing in the sample.After we have our Historian object instantiated, we will get the
index for the navigation array in order to display the screen that was bookmarked, if one

190 Chapter 18 Interaction Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

exists. Otherwise, we will show the first in the collection by setting the value to 0. Last,
we will create an array called screenArray.This array will be set to the collection of
screens we receive in the response from the XHR, which occurs in the loadScreen
method.The loadScreen method will be used throughout the rest of this object’s
methods to load each screen.This method is used as the callback method for the
AjaxUpdater from the HTML page in the onload event of the body.When it is trig-
gered and the response is "OK", we simply retrieve the screens from the response and add
them to our screenArray.After we have an array of screens, we display the index in
the screenArray that is currently set in the Navigation object. By default, this index
is 0, but if the Historian has a saved cookie of history, it is set to the last screen index
that was visited by the current user. Last, we push the index to the Historian, which
will be stored in the collection array and saved to the cookie if it does not already
exist in the collection.

Navigation.loadScreen = function()

{

if(Ajax.checkReadyState(’navigation’) == "OK")

{

Navigation.screenArray =
➥Ajax.getResponse().getElementsByTagName(’screen’);

document.getElementById(’navigation’).innerHTML = Navigation.screenArray[

➥Navigation.index].firstChild.data;

Navigation.history.push(Navigation.index);

}

}

In order to navigate from one screen to the next, we will create a method called next.
This method will first make sure we are not on the last screen. If we are not, it will
increment the index and fire the loadScreen method. If we are on the last index of the
screenArray, we will not do anything because we would end up with null values from
the array, which would break the navigation.

Navigation.next = function()

{

if(Navigation.index < (Navigation.screenArray.length-1))

{

Navigation.index++;

Navigation.loadScreen();

}

}

In order to navigate in reverse, we simply check to make sure we are not currently at the
0 index. If not, we decrement the index and fire the loadScreen method.When the

191Creating a History with Cookies

http://lib.ommolketab.ir
http//lib.ommolketab.ir

loadScreen method is fired, it has the index from the previous screen and it renders it
in the page.

Navigation.previous = function()

{

if(Navigation.index > 0)

{

Navigation.index--;

Navigation.loadScreen();

}

}

This object is pretty powerful and can fix a lot of issues related to not refreshing the
browser when using Ajax. I hope that you experiment with the objects in this book and
create some extremely powerful custom functionality.The next section of this chapter
will cover adding drag-and-drop functionality to elements in your applications, so let’s
get to it.

Drag and Drop
Drag-and-drop functionality is becoming more and more popular and in the right situa-
tions it can be extremely useful.With all the new personal data storage applications that
are on the Web, this functionality becomes very useful when a user wants to sort ele-
ments that contain data. For example, if you are using an application to create a list of
things you have to do, you might create the list only to find out you would like to do
certain things before others.This could be a real pain in the butt, or it could easily be
solvable if there was a way to drag and drop the items in the order you would like, mak-
ing them into a sortable list. In this section, we will be creating a sortable list of data.
Let’s get started by creating the object that makes it all happen.

The DragDrop Object
The DragDrop object is a Singleton object that allows HTML elements to have drag-
and-drop functionality.This functionality allows lists to become sortable with other ele-
ments that include the same class name and parent.This means that if we have a group
of elements and we would like them all to be drag and drop and sortable, we would sim-
ply call the initialize method of the object and pass a shared class name that all the
elements would need to have in common. Here is an example of the HTML we will use
for this sample:

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Drag and Drop</title>

192 Chapter 18 Interaction Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<link href="css/dragdrop.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript" src="javascript/utils/DragDrop.js"></script>

</head>

<body onload="DragDrop.initialize(’dItem’);">

<div id="container">

<div id="1" class="dItem">1</div>

<div id="2" class="dItem">2</div>

<div id="3" class="dItem">3</div>

<div id="4" class="dItem">4</div>

<div id="5" class="dItem">5</div>

<div id="6" class="dItem">6</div>

<div id="7" class="dItem">7</div>

<div id="8" class="dItem">8</div>

<div id="9" class="dItem">9</div>

<div id="10" class="dItem">10</div>

</div>

</body>

</html>

In order to separate our div elements from each other visually, and add a dotted outline
to the drag state of elements and a move cursor to the draggable elements, we will write
the following CSS and save it to a file called dragdrop.css:

#container

{

float: left;

}

#drag_dummy

{

border: #333 1px dotted;

}

.dItem

{

width: 400px;

height: 20px;

background-color: #ccc;

border: #333 1px solid;

193Drag and Drop

http://lib.ommolketab.ir
http//lib.ommolketab.ir

margin: 2px;

cursor: move;

}

In order to create the DragDrop object, we will start by instantiating and initializing it:
DragDrop = {};

DragDrop.initialize = function(className)

{

DragDrop.className = className;

DragDrop.currentItem = ’’;

document.onmousedown = DragDrop.onmousedown;

document.onmouseup = DragDrop.onmouseup;

}

This method accepts the shared class name for the drag-and-drop elements and sets it to
an object variable for later reference.Then it creates a new property called currentItem
and sets it to an empty string so that we can later set it to the element that is currently
being dragged in order to reference it during a drag-and-drop occurrence. Last, we set
two events to drag-and-drop events.These include the onmousedown and onmouseup
events, which are set to the onmousedown and onmouseup methods in the DragDrop
object.These two methods will fire every time there is a mousedown or mouseup event,
but we will check to make sure the event is resonating from a drag element in order to
keep the calls under control.The way in which we will verify that a drag item is being
clicked is by taking the received event object—which is passed to our methods by
default since they are fired by events—and checking whether an event object exists.After
we verify that one exists, we check the target, which is the source of the event, to see
whether its class name is equal to the class name that we set in the initialize method.
If it is, we know we have a drag item that is being triggered and we move forward with
the startDrag or stopDrag actions. Here is the code that handles firing the events,
checking the elements, and calling the start and stop drag methods:

DragDrop.onmousedown = function(evt)

{

var evt = DragDrop.getEvent(evt);

if(evt != null)

{

var t = DragDrop.getTarget(evt);

if(t.className == DragDrop.className)

{

if (!t.isDragging)

{

194 Chapter 18 Interaction Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DragDrop.startDrag(t, evt.clientX, evt.clientY);

}

}

}

}

DragDrop.onmouseup = function(evt)

{

var evt = DragDrop.getEvent(evt);

if(evt != null)

{

var t = DragDrop.getTarget(evt);

if(t.className == DragDrop.className +’ dragging’)

{

DragDrop.stopDrag(t);

}

}

}

DragDrop.getEvent = function(evt)

{

if(!evt)

{

var evt = window.event;

}

return evt;

}

DragDrop.getTarget = function(evt)

{

return t = (evt.target) ? evt.target : evt.srcElement;

}

You are probably wondering how we fire the mousedown event.This will occur at the
end of the startDrag method where we will add a listener to the document’s
mousemove event rather than setting it by default. Setting it by default would mean the
event would be fired each time the mouse moved and while it was moving, which
would be a lot of method calling.

The startDrag method accepts three parameters.The parameters are the HTML
element itself, and the x and y positions of the mouse, which are gathered by the
mousedown event object.The first thing we do in this method is set a few variables for
later use.These properties are called orgParent, currentItem, and isDragging.
orgParent is set to the parentNode of the drag element when the startDrag event
is fired because we will need it in the dragTo method, and the drag item will not have

195Drag and Drop

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the same parent at that time.The other two properties are currentItem and
isDragging, which are fairly self-explanatory.

The next section of code gathers the coordinates and size of the current element and
sets two properties called dragOffsetX and dragOffsetY, which will be used in the
dragTo method to keep the element’s coordinates relevant to the mouse coordinates
while it is moving.The next group is a bit more interesting and creates a nice effect for
the drag functionality.We will create a new element on the fly and give it an id value of
drag_dummy.This element will take on the coordinates of the current drag element and
eventually replace it. Before we replace it, though, we need to convert the current ele-
ment to an absolute position, set its coordinates to absolute values and, as an extra effect,
also set the alpha to 25% so that when the element is being dragged, it will allow us to
view its position over the other elements.Adding this effect makes it seem as though
there is depth to the page and makes the drag-and-drop more realistic. Now comes the
replacement code, which places drag_dummy in place of the current drag item.The last
thing we will do is add the listener for the mousemove event and set it to a method
called dragTo, as was mentioned earlier.The following is the code for the startDrag
method. It may seem like a lot at first glance, but most of it is code for gathering coordi-
nates for the drag_dummy element.

DragDrop.startDrag = function(_this, mouseX, mouseY)

{

this.orgParent = _this.parentNode;

DragDrop.currentItem = _this;

this.isDragging = true;

// Get coordinates

var pos = Utilities.getXY(_this);

var x = pos.x;

var y = pos.y;

var w = _this.offsetWidth;

var h = _this.offsetHeight;

this.dragOffsetX = mouseX - x;

this.dragOffsetY = mouseY - y;

// Create dummy

var dummy = Utilities.createElement("div", {id:’drag_dummy’});

dummy.style.height = (h) + ’px’;

dummy.style.width = (w) + ’px’;

Utilities.appendChild(document.body, dummy);

// Convert to drag class

this.className = DragDrop.className+’ dragging’;

this.style.position = ’absolute’;

this.style.left = x + ’px’;

196 Chapter 18 Interaction Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this.style.top = y + ’px’;

this.style.width = w + ’px’;

this.style.height = h + ’px’;

Utilities.changeOpac(25, _this.id);

// Replace with dummy

this.parentNode.replaceChild(dummy, _this);

document.body.appendChild(_this);

Utilities.addListener(document, "mousemove", DragDrop.dragTo);

}

The dragTo method is triggered by the mousemove event, so it accepts an event object
as its parameter by default.The first group of code in this method gathers the current
drag element and gets the mouse x and y positions. Once we gather this information,
we can use it moving forward.The first piece of code that will use these properties will
be when we set the left and top style properties for the current element to the current
mouse positions.Then we will subtract the dragOffset values we set in the startDrag
method so that the element moves to the current position. Next, we will create a
dummy variable that is equivalent to the drag_dummy element so that we can use it to
place the current drag element later in the method. In order to place the element in a
new position, we need to first figure out where the element is located and where it
should be placed when it is dropped.We will do this by calling the
getNewPositionElement method, which will iterate through the orgParent we set in
the startDrag method and figure out which sibling the current element is over, based
on the mouse x and y properties and their relation to the elements.After we find the
correct placement, we will receive the element in that place and insert our drag element
before it. If something happens to go wrong, we will simply append it back to the parent
and not worry about the exact placement.The following is the dragTo method in its
entirety, plus the getNewPositionElement method for calculating the placement:

DragDrop.dragTo = function(evt)

{

this = DragDrop.currentItem;

var evt = DragDrop.getEvent(evt);

mouseX = evt.clientX;

mouseY = evt.clientY;

this.style.left = (mouseX - _this.dragOffsetX) + ’px’;

this.style.top = (mouseY - _this.dragOffsetY) + ’px’;

var dummy = Utilities.getElement(’drag_dummy’);

var el = DragDrop.getNewPositionElement(_this, mouseX, mouseY);

197Drag and Drop

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if(el != null)

{

el.parentNode.insertBefore(dummy, el);

}

else

{

this.orgParent.appendChild(dummy);

}

}

DragDrop.getNewPositionElement = function(_this, mx, my)

{

var target = null;

var y = null;

var ly = null;

var p = _this.orgParent;

for(var i in p.childNodes)

{

if(p.childNodes[i] != undefined)

{

if(p.childNodes[i].id != ’drag_dummy’ && p.childNodes[i].id !=
➥undefined)

{

var pos = Utilities.getXY(p.childNodes[i]);

y = pos.y;

h = p.childNodes[i].offsetHeight;

if(my<(y+h) && (target == null || y < ly))

{

target = p.childNodes[i];

ly = y;

}

}

}

}

return target;

}

Now that we are able to drag elements, we need a way to stop the drag.The stopDrag
method will be used and is what we set in the beginning when we added the mouseup
event in the intialize method.This method simply sets the current drag element’s
class name back to its original class name in order to return the element back to the way
it started. Next we get the drag_dummy element and replace it with the actual element

198 Chapter 18 Interaction Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that was being dragged.This returns everything back to normalcy, with the dragged ele-
ment in the new position.After the element is in place, we reset all the rest of its proper-
ties.This includes all its styles and the isDragging Boolean. Last, we remove the listener
we implemented for the mousemove event, change the opacity back to 100%, and reset
the currentItem to nothing.

DragDrop.stopDrag = function(_this)

{

this.className = DragDrop.className;

var dummy = Utilities.getElement(’drag_dummy’);

dummy.parentNode.replaceChild(_this, dummy);

this.isDragging = false;

this.style.position = ’’;

this.style.left = ’’;

this.style.top = ’’;

this.style.width = ’’;

this.style.height = ’’;

Utilities.removeListener(document, "mousemove", DragDrop.dragTo);

Utilities.changeOpac(100, _this.id);

DragDrop.currentItem = ’’;

}

This object may be a bit complex, but now that it has been created it can be used with-
out ever touching the code again. But, of course, we could always add more code to cre-
ate more functionality, such as adding a sort method to the object that would reset the
order of the items.Although we have not integrated this object with Ajax, it can easily
be done to save the positions of elements in a database for later retrieval.This is a com-
mon theme in a lot of new web applications because it lends itself well to personalizing
user data as we have done in this section.

199Drag and Drop

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

19
Usability Patterns

Up until now, all the patterns we have covered have been Ajax-enabled OOP (object-
oriented programming) patterns, which occur in the background code and are never
visible to the user.This chapter will differ by focusing specifically on visible design
elements, the usability principles that occur in the design of an Ajax web applications
interface, and the interactions that occur on the client side in the graphical user interface
(GUI).The usability patterns we will be discussing are designed to provide a more intu-
itive user experience and eliminate all the annoying JavaScript dialogs that have existed
in many applications over the years.The GUI should be free of questions and uncertain-
ty. Most of all, though, it should definitely be free of obtrusive JavaScript dialogs by pro-
viding an extremely integrated method of error, warning, and feedback handling to the
user.

As a software developer, I am well aware it is not always easy to display these errors in
such an apparent interface design, but with all the capabilities that Ajax provides our
applications, we should be taking on the responsibility and forging new paths in web
application development, design, and interaction.There are a number of ways to inte-
grate errors and feedback seamlessly into an application through Ajax and DHTML.
Providing this feedback opens up a whole new realm of possible interactions that have
not yet existed, leaving us at the forefront of something that is exciting and fun to be a
part of.

A couple solutions that we will cover in more detail throughout this chapter are
highlighting elements when the content or data has been updated, and displaying errors
and feedback as inline messages.When I say inline messages, I mean a message that displays
within the current page and connects messages to the elements to which they corre-
spond. Errors and feedback should be helpful information to the user. However, abruptly
throwing JavaScript alerts or confirmations at a user is not the best solution because they
are usually pretty startling to a user and should be eliminated from all web applications.
We are going to learn how to create graceful messages that leave users comfortable about
their decisions and ultimately keep them involved and engaged in our web applications
without hindering their experience and workflow. Keeping users actively involved pro-
vides life to our web applications and, if they can efficiently solve a problem with our

http://lib.ommolketab.ir
http//lib.ommolketab.ir

web application, they will continue to use it.The message handling that we will be cov-
ering in this chapter could and should ultimately be applied to all forms of web applica-
tions, but they integrate most beautifully with Ajax because of JavaScript and its easy
access and manipulation of the Document Object Model (DOM).

Handling Feedback, Errors, and Warnings
In Chapter 12,“Client-Side Validation,” we created quite a powerful process of managing
custom server-side errors based on database information with the ErrorManager and
UserValidator objects. In this chapter, we will take what we learned about displaying
these errors to the user and go a step further by focusing on all forms of messages that
need to be presented to a user in an application.We will take a look at a few figures that
show different ways of displaying messages to a user and how to keep them consistent
across an Ajax application.We will also learn how to create a very simple dialog object in
the section,“Designing with Code,” that will have a display method for custom messages
of all kinds.This object will be focused on creating visual elements with the DOM and
cascading style sheets (CSS). Let’s first start with a very obvious and detrimental issue
that occurs with all JavaScript applications.

One of the most obvious issues with Ajax applications is the fact that they use
JavaScript and, although not often, some users may actually have JavaScript disabled. If
we are developing an Ajax application, we really should add a quick line of code that
informs non-JavaScript users how to enable it if they would like to use the application,
just in case they do not know how. It is very easy to do this with the noscript HTML
tag. Listing 19.1 is a quick example of how we could inform non-JavaScript users of the
issue.

Listing 19.1 Displaying a Message for Non-JavaScript Users

<noscript>This application requires that your browser has JavaScript
enabled.</noscript>

This message can be anything you decide—it can explain how to enable JavaScript, what
benefits it will provide, and so on.The choice is yours, so be creative.

Originally, I was going to separate feedback and errors into two different sections of
this chapter, but as I thought more about it, I realized the best responses are the ones that
are handled the same way throughout an application with very subtle but obvious design
differences.When I say design differences, I mean colors, font decorations, and other dis-
play differences, not the interaction model. For example, errors could have a red back-
ground or font color, whereas successful feedback messages could use green. Keeping
interaction models the same is the key to obtaining consistency in an application and
ultimately the user experience. Each time we introduce a new interaction, users have to
take the time to learn a new concept and are taken out of their current workflow,
which—even if for only a second—changes the course of their experience.This means

202 Chapter 19 Usability Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that if we are going to make users take the time to learn a new interaction, it should be
up front and extremely obvious to the point that they may not even be aware that the
interaction is something creative that we customized.Also, if we keep the interaction
model consistent, we allow the workflow to progress without interruption.This allows
users to solve the problem that they are using our application for in the first place, in a
timelier manner. Interaction models could include fading messages, highlighting form
fields, and so on.Again, this is your choice, so be creative.

Figure 19.1 has a combination of quite a few forms of error handling that I have
mentioned so far in this chapter. Combining error-handling methods can really help
users understand exactly what it is that they need to fix in order to move forward with
their workflow. How many forms of error handling are there in this one figure?
Obviously, it is not as easy to know without a working sample, but this figure actually
features five forms of error handling.The first two are the most obvious:The first is the
actual message at the top of the page that explains the errors, and the second is the high-
lighted fields in the form that correspond to the errors presented in the message.Again,
it is a bit hard to notice without a working example, but the other error handlers
include the cursor that appears in the first form field that has created an error, and
hyperlinks on each actual error in the message at the top of the page, which when
selected bring you to the form element to which it corresponds and adds the cursor to
that field.

203Handling Feedback, Errors, and Warnings

Figure 19.1 Handling errors with multiple combinations.

As Figure 19.2 shows, after the field has been updated, the strikethrough appears for the
error that has been updated, and the hyperlink becomes disabled and disappears.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19.2 Adding feedback based on user error corrections.

Figure 19.3 shows an additional form of error handling that is a unique and unobtrusive
way to help display errors to users.After the form has been submitted and errors occur,
the form will not only highlight the incorrect form fields as our last solution did, but it
will also display a “bubble” message above the first form field that caused an error and
disappear along with the highlight color on the field after the error has been corrected.
At this point, if there are more errors, the bubble will appear above the next error in the
form and the cursor will move to that form element.To make it even more apparent, if
the next form field happens not to be within visibility due to a scrollbar, the page will
scroll to the location of the incorrect form field and bring it into focus.

Designing with Code
As I mentioned at the beginning of this chapter, this section will explain how to create
custom messages with an object called Dialog.This object will display a message based
on CSS classes that we connect to it and will render itself based on the properties we
define in these classes. Listing 19.2 shows the Dialog object in full, which is simply the
instantiation of the object and a method called display.We know what the instantia-
tion declaration looks like at this point, so we will focus on covering the display
method, which is the meat of this object.The display method takes three parameters.
The first is a unique id that will represent the actual id of the div that is created as the
dialog in the front end.The second parameter is the class name that we will use to con-
nect the div to a custom CSS class that will define the properties we define.The last
parameter is the message that we would like to display to the user to provide feedback,
errors, or warnings.

204 Chapter 19 Usability Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19.3 Displaying feedback directly above form elements.

After the method has been called and we have passed all the parameters, the first thing
our method does is create a div element that will become the dialog in the front end
and, ultimately, display the message to the user.After we have created the element with
the Utilities object from Chapter 9,“Extending the Engine,” we define the
elements id and className properties by making them equal to the parameters we
passed to the method when we fired it. In order to get the correct message to display to
the user, we will use the innerHTML property of the div element to display our custom
message to the user. Last, we must have a way to add the completed dialog to the page
the user is currently using.We will do this by appending the element to the document
body, once again with our handy Utilities object.

Listing 19.2 The Dialog Object (Dialog.js)

Dialog = {};

Dialog.display = function(id, c, message)

{

var d = Utilities.createElement("div");

d.id = id;

d.className = c;

d.innerHTML = message;

Utilities.appendChild(document.body, d);

}

205Handling Feedback, Errors, and Warnings

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In order to use this method, we must have an HTML page to import the appropriate
objects.The following code shows how to import the Dialog and Utilities objects
along with a corresponding CSS file that we will create shortly, and a method call to dis-
play an error at the top of the page.

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<title>Ajax Message Dialogs</title>

<link href="css/dialog.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript" src="javascript/utils/Dialog.js"></script>

</head>

<body onload="Dialog.display(’dialog’, ’error’, ’Please correct the following

errors.’);">

</body>

</html>

You probably noticed we are only creating an error message in this page and that it does
not even correspond to anything.Well, you are right—this is simply an example of how
to display a custom dialog, but I will also show you how to display the other two types
with the following code.This code shows how to create a warning and a success feed-
back message.

Dialog.display(’dialog’, ’warning’, ’ Your form submission was successful, but you
did not enter a web site URL, click here in order to update this record.’);

Dialog.display(’dialog’, ’success’, ’Your form submission was successful!’);

The success message works very similarly to the error message because it is straightfor-
ward, but the warning works a bit differently and takes a bit more thinking on our part.
If we display a warning to users, we must provide them with a way to ignore it or act on
it by updating the data based on the issue. In the sample code, I have a message that says
click here.As an example, this could be a hyperlink that links users to a form that
allows them to update the information that produced the warning, or they could choose
to ignore it and move on to another area of the application.

Now that we have the method that creates the dialog and we are calling it from the
application, we will have a simple message that will display to users. However, there will
still not be any style to the element until we create the CSS that corresponds to the id
and class name we defined. In order to define the classes that correspond with different
types of messages, the application may need to display to the user that we will create a

206 Chapter 19 Usability Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CSS file called dialog.css.This file will contain four custom classes.The first will be a
class that all the messages will share by corresponding to the dialog id that we passed as
the first parameter to the Dialog object’s display method.This class will contain the
font weight and the padding for the messages, and will ensure that all our messages are
consistent in this way.The code in Listing 19.3 shows this class as it is defined in the
dialog.css file.

Listing 19.3 The Dialog CSS Class (dialog.css)

#dialog

{

font-weight: bold;

padding: 5px;

}

After we have this shared class defined, we can focus on defining the individual classes
that correspond to each of the different types of messages that an application can have.
Again, the different types we will be focusing on are the error, warning, and success
feedback messages. In this example, we will simply change the color of the background
based on the message type, but we could use many different CSS properties to make
these messages distinctively different from one another. Errors will have a red back-
ground color, warnings will be orange, and success messages will be green. It doesn’t get
much more apparent than this, but there is always room for improvement. Listing 19.4
shows all of these classes as they are defined in the dialog.css file.

Listing 19.4 Specific Classes for Each Corresponding Message Type (dialog.css)

#dialog.error

{

background-color: #ff0000;

}

#dialog.warning

{

background-color: #ff9900;

}

#dialog.success

{

background-color: #00cc33;

}

These classes extend the dialog id element class by specifically specifying the dialog
div as the base class and then appending each message type as the class name for each
message.These also happen to be the names that we pass to the display method to

207Handling Feedback, Errors, and Warnings

http://lib.ommolketab.ir
http//lib.ommolketab.ir

connect the correct class to the message.With all of this code in place, we can very easily
provide feedback for any form of message with which we need to inform the user.
Creating all of this code up front will actually save you a lot of grief in the long run,
especially if you work on a team with members who are responsible for displaying their
own feedback to the user.This way, we as the design-oriented developers do not need to
be concerned with inconsistencies between each team member’s messages, and I am sure
they will be happy that they do not need to define their own messages as well.

208 Chapter 19 Usability Patterns

http://lib.ommolketab.ir
http//lib.ommolketab.ir

V
Server-Side
Interaction

20 Understanding Ajax Database Interaction

21 Interacting with a Database: The Server-Side

22 Advanced Ajax Database interaction

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20
Understanding Ajax
Database Interaction

We have already begun to cover Ajax database interaction in previous chapters, but
this chapter will takes us to a deeper understanding of the interaction model by explain-
ing every step. Database interaction with Ajax allows developers to create interaction
paradigms that can exist only with this set of technologies.The actions that occur to cre-
ate database interactions with Ajax are the same as a standard interaction, but the way in
which the request process occurs is quite different.The actions that exist in both interac-
tions start with a user interaction on the front end, which fires an HTTP request to the
server where a server-side language makes a query on the database.What happens in the
database—for example, an insert, a delete, or a select—will all occur exactly the same as
well.Again, the only difference in these two processes is the way in which they make the
request. Creating connections to a database without interrupting the user experience
with browser refreshes is definitely unique to Ajax and is what makes the XHR different
from a standard HTTP request.

It is true that Ajax can easily be misused and often is, but it can be extremely useful
in the right situations, such as when the sample application receives and/or sends emails.
Imagine if you were in the middle of reading an email and your browser refreshed in
order to get new messages.This would be an unusable situation because you would
completely lose your place and have to reorient yourself with the interface that may
have changed due to new email messages.Therefore, this is one of those situations where
it would be perfect to use Ajax to make database connections.We can make requests to
the server with the Data Reflection pattern we covered earlier in Chapter 17,“Data
Reflection Pattern,” receive updates if new messages exist, and replenish the inbox with
the new data from the database.This solution also enables us to keep the other areas of
our application as is or untouched while we update the necessary data inconspicuously.
In other words, using the components we have built, we can replenish the data in the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

data grid and tree components with new messages while leaving the accordion compo-
nent untouched as the user continues to read an open email message. In this chapter, we
will dive into the server-side code and learn each of the steps that make a database-
enabled XHR possible.

Connecting with PHP
Before we get started we will need to create the database that will be used for this
example and ultimately in our final sample project.The SQL code for creating the table
is shown in Listing 20.1.

Listing 20.1 The SQL File for Creating the Email Database Table (awad_email.sql)

CREATE TABLE ‘awad_email‘ (

‘message‘ longtext NOT NULL,

‘folder‘ varchar(50) NOT NULL default ’’,

‘thread_id‘ int(11) NOT NULL default ’0’,

‘date‘ timestamp NOT NULL default CURRENT_TIMESTAMP on update
➥CURRENT_TIMESTAMP,

‘subject‘ varchar(100) NOT NULL default ’’,

‘sender‘ varchar(50) NOT NULL default ’’,

‘receiver‘ varchar(50) NOT NULL default ’’,

‘id‘ int(11) NOT NULL auto_increment,

PRIMARY KEY (‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

PHP is a great language to combine with Ajax. First of all, it is open source, and second,
it is very flexible and easy to learn. Because all the samples in this book have already
been written, we will continue to use strict typing with PHP 5.0.Therefore, the server
that the sample is running on must have PHP 5.0 or above. Let’s get started by learning
how to bridge the gap between the client side and back end by creating a file that sim-
ply delegates requests and returns responses as XML.

Bridging the Gap
Connecting to a database with PHP is simple after we create a file that specifically
enables the connection via XHR. In the sample, I have named this file
serviceConnector.php, but it can be named anything we want because the only
requirement for this example is that it be PHP and that we request it by the appropriate
name in the XHR. Listing 20.2 shows the file contents.

212 Chapter 20 Understanding Ajax Database Interaction

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 20.2 The File Is the Bridge Between the Client Side and the Database
(serviceConnector.php)

<?php

header("Content-Type: application/xml; charset=UTF-8");

require_once("classes/UserManager.class.php");

require_once("classes/Email.class.php");

$o = new $_GET[’object’]();

echo $o->$_GET[’method’]($_GET[’params’]);

?>

This listing is the key that will help us make all of our connections.The code begins
with the PHP declaration tags (as all of the PHP examples will from this point forward)
so that the server knows how to process it.The first line of code is a header, which
defines the content type of the returned data as XML.This means that any file that
requests it will receive the data back as XML. Of course, this is extremely useful when
using Ajax because we want the response to be XML in this case.The next two lines of
code are types of include statements unique to PHP, which require these two files to
be included in order to compile the rest of the code in the file.There is also a require
statement that is unique to PHP, but the require_once statement has additional logic
to make sure that if a required class is included twice in the same document, only one is
required.We can continue to add new PHP classes to this file if we want to call a new
object method at some later point.

After we have all our required files set up, we will instantiate a new object, which will
be defined in the query as object.This is an extremely powerful statement because it
allows us to instantiate objects from the client side by simply passing the correct query
variables.After we have the correct object instantiated, we can fire a method within that
object and pass parameters that we define on the client side in the XHR.After the
method has been called, we write its return value to the page so that when the server
has completed writing the file, it will return an XML file with the value that was
returned from the object. In our case, this value will be data represented by database val-
ues, or success or failure messages for database inserts or deletions, but the return value
can be anything that you can dream of returning from a server-side object. Of course,
with the great power this solution presents come great security risks.Therefore, we will
focus on creating a secure way to make these server-side requests from Ajax by password
protecting them when we reach Chapter 23,“Securing Your Application.”

213Connecting with PHP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making the Requests
We now understand how to bridge the gap between the front end and the database; now
we need to focus on how to make the XHR from the front side. Making the connec-
tion to the connector file we created in the last section is as easy as requesting static
XML files. It is really just a matter of understanding what parameters to pass it and how
it will return that data so you can anticipate dynamic responses. Listing 20.3 shows how
to make an XHR from our Email JavaScript object on the client side to our
serviceConnector.php file.

Listing 20.3 Connecting to the Database to Retrieve a User’s Email Folders
(Email.js)

Email.display = function(username)

{

Email.currentUser = username;

var url = "serviceConnector.php?object=Email&method=getFolders¶ms="+
➥username;

AjaxUpdater.Update("GET", url, TreeManager.display);

setTimeout(’Email.getMail("’+ username +’:INBOX")’, 500);

Email.dataReflection("Email.display(’"+ username +"’)", 100000);

}

The Email object is what combines and connects all the components from the book to
the database via the Ajax engine.The first method to be called from the index PHP file
is the display method.This method takes a username, which is passed from the login
PHP page when a user logs in to the application.After the method has been fired, it sets
the username to an object property and proceeds to define a url variable to use as an
XHR.As you can see, this URL consists of the serviceConnector.php plus the
object, method, and additional parameters that need to be passed, which in this case is
simply the username.After the URL is defined, it is added to the AjaxUpdater Update

method and sent to the server via the GET method.The Update method also tells the
Ajax object to return the response to the TreeManager’s display method. If you look
closely at the URL, we are calling a PHP object called Email and firing a method called
getFolders, which gets all the folders that are necessary for creating the tree view for
the specific user we are requesting.The rest of this method consists of a setTimeout call
that delays another Email object method call to the getMail method.The delay is set
because each method makes an XHR. If they fire at the same time, they will cross
requests and we will end up with unexpected results.The last line is the data reflection,
which we already covered in Chapter 17. Figure 20.1 shows the email application with
all the components as they appear with data from the database.

214 Chapter 20 Understanding Ajax Database Interaction

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 20.1 A preview of the completed email application
with all the components from the book.

The getMail and showThread methods in the Email JavaScript object are very similar
to the display method in the way that they make an XHR and delegate the response
to the appropriate components. Listing 20.4 shows the getMail method as it makes a
request to the serviceConnector.php in order to get the data that is necessary to dis-
play all of a user’s mail from a specified folder.

Listing 20.4 Connecting to the Database to Retrieve Mail (Email.js)

Email.getMail = function(params)

{

Utilities.removeChildren(Utilities.getElement(’list’));

DataGrid.initialize();

var url = "serviceConnector.php?object=Email&method=getMail¶ms="+ params;

AjaxUpdater.Update("GET", url, DataGrid.display);

}

As I mentioned, the getMail method makes a request to the server to get a user’s mail
from a specified folder. If we take a look at the setTimeout in the display method, we
are passing the current user’s username and inbox as the specific folder to retrieve mail
from.These parameters will be used in the XHR URL. Before we make the request,
there are two lines of code that are required to re-create the DataGrid component with
the new data we will be delegating to it from the server response.Within these two lines
of code, we first remove any of the previously instantiated DataGrid elements and then
initialize a new one to replenish its default values and prepare it for the new data from
the response.We use the removeChildren method from the Utilities object to

215Connecting with PHP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

remove all the nested (children) elements in the list element, which is the element the
DataGrid gets written to when it is created. Finally, we make the request via the GET
method and delegate the response to the display method of the new DataGrid. Figure
20.2 features the DataGrid component with inbox data that has been saved to the
server.

216 Chapter 20 Understanding Ajax Database Interaction

Figure 20.2 A populated DataGrid component
integrated with the application.

The showThread method occurs when a user selects an email from the DataGrid com-
ponent. Listing 20.5 shows the code for this method.

Listing 20.5 Retrieving Mail Threads from the Database (Email.js)

Email.showThread = function(id, sender)

{

Email.currentThread = id;

Email.currentSender = sender;

Utilities.removeChildren(Utilities.getElement(’mail’));

Accordion.initialize();

var url = "serviceConnector.php?object=Email&method=getMessage¶ms=

➥"+ id +":"+ Email.currentUser;

AjaxUpdater.Update("GET", url, Accordion.display);

Utilities.getElement(’reply’).style.display = ’’;

Utilities.getElement(’compose’).style.display = ’none’;

}

This method takes an id, which is a number that represents a thread of emails, and a
sender, which represents the username of the person who sent the email.These param-
eters are first used to set object properties for the Email object, which include the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

currentThread as the id parameter and the currentSender as the sender parameter.
Both of these properties will be used throughout the object in various ways. Next, we
remove the children of the parent HTML element that may contain previously retrieved
threads.We then initialize the Accordion, and instantiate or re-instantiate any properties
in the object.After we have a fresh Accordion, we make a request with the
AjaxUpdater via the GET method and pass a custom url variable as we have in the pre-
vious examples.The url variable is made up of the serviceConnector.php file fol-
lowed by a query string that consists of the Email object, a method called getMessage,
and two parameters: the thread id and the current user.When the request is made, we
delegate the response to the display method in the Accordion object and a new
Accordion is displayed with the thread that was selected.This thread is representative of
all the different emails that were sent back and forth between two users as a single
thread. Figure 20.3 shows an example of how the Accordion looks with a threaded
email.

217Connecting with PHP

Figure 20.3 A threaded email populating the
Accordion component in the final application.

Now that we have all the methods for displaying various types of data, such as the fold-
ers, emails, and threads, we can focus on how to send a new email or a response to
another user in the system.The method we will use for both of these different types of
functionality is called compose. Listing 20.6 shows this method.

Listing 20.6 Sending Mail to Other Users (Email.js)

Email.sendMail = function(action, username, subject, message)

{

var params;

if(action == ’reply’ && Email.currentThread != ’’)

{

params = username +":"+ Email.currentUser +":"+ subject +":"+ message
➥+":"+ Email.currentThread;

}

else

{

params = username +":"+ Email.currentUser +":"+ subject +":"+ message;

Email.currentReceiver = ’’;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

var url = "serviceConnector.php?object=Email&method=sendMail¶ms="+ params;

AjaxUpdater.Update("GET", url);

if(Email.currentUser == username && Email.currentThread != ’’)

{

setTimeout(’Email.showThread("’+ Email.currentThread +’")’, 500);// Reply

}

else if(Email.currentUser == username && Email.currentThread == ’’)

{

setTimeout(’Email.getMail("’+ Email.currentUser +’:INBOX")’, 500);//
➥Compose

}

else

{

Utilities.getElement(’compose’).style.display = ’none’;

}

}

This method is a bit larger than the previous and it takes quite a few more parameters.
The four parameters it takes are

n An action, which represents whether we are sending a new email or a reply
n A username, which represents the user to whom the email is being sent
n The subject for the email
n The message for the email

We start by checking to see whether the action is a reply or a new email. Depending on
the result, we create a local param variable to a colon-delimited string, which will repre-
sent the parameters for the email.After we have the necessary parameters for the request,
we will append them to a url variable that consists of a string.This string will call the
serviceConnector.php file, pass the Email object, call a method named sendMail,
and pass the parameters we set previously.We then fire the Update method for the
AjaxUpdater object and pass the url parameter with the GET method.The difference
in this call is that we do not pass a callback method in which to delegate the response.
This is because we will simply refresh the current Accordion or DataGrid object by
firing either the showThread or getMail method in the setTimeout method.This will
create a delay in the call so that the data has been updated.Then, when the method is
called, it will make another XHR for the new data, which will either replenish the
Accordion with the reply thread or the DataGrid with the default inbox view. Figure
20.4 shows the Compose or Reply form as it appears in the application.

218 Chapter 20 Understanding Ajax Database Interaction

Listing 20.6 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 20.4 New and reply messages are
sent from this form in the application.

Making the Connection
Now that we understand how to make requests to the PHP file that will receive server-
side method calls and return responses as valid XML, we can focus on the database inter-
action.The one object that we connect with throughout this chapter is the Email
object.This file is named Email.class.php and resides in the classes folder in the
application structure.This object contains a lot of functionality that I will not cover in
detail because I want to provide the knowledge to understand how the database data is
formatted into useable XML on the client side by the Ajax object or the objects that
receive the delegated responses.Therefore, we will see all the code that is involved, but
we will focus on the Ajax-oriented part of it. Let’s start by requiring the necessary classes
to make a database connection, declaring the Email object, and creating its constructor.
Listing 20.7 shows the code to make this happen.

Listing 20.7 Getting Started with the Email Class (Email.class.php)

<?php

require_once("classes/database/DatabaseConnector.class.php");

require_once("classes/utils/Constants.class.php");

class Email

{

private $dbConnector;

public function Email()

{

$this->dbConnector = DatabaseConnector::getInstance();

219Connecting with PHP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$this->dbConnector->init();

}

}

?>

The two classes we must require are the DatabaseConnector and the Constants class.
The DatabaseConnector will contain all the methods for making the connection to
your database as we already covered in Chapter 12,“Client-Side Validation.”The
Constants file contains all the reusable data we will need throughout the application.
We will cover the Constants class next before moving on to the Email object’s meth-
ods.After we declare the Email object, we define a property that will represent the
DatabaseConnector object throughout the class.The constructor function takes this
property and sets it to an instance of the DatabaseConnector, which is a Singleton
object.After we have set the object to the property, we fire the init method within it.
Let’s briefly take a look at the Constants class to see how it will be used moving for-
ward. Remember that the class will represent some of your server data and will have to
be changed when you upload the files. Listing 20.8 shows the complete class.

Listing 20.8 The Constants Object (Constants.class.php)

<?php

class Constants

{

// Database connection

static $DB_USER = "your user name";

static $DB_PASSWORD = "your password";

static $DB_HOST = "localhost";

static $DB_NAME = "your database name";

// Database Tables

static $AWAD_EMAIL = "awad_email";

static $AWAD_USERS = "awad_users";

// Password

static $PASSWORD = "TEMPPASSWORD";

// Return Values

static $SUCCESS = "<xml>success</xml>";

static $FAILED = "<xml>failed</xml>";

public function Constants() {}

}

?>

220 Chapter 20 Understanding Ajax Database Interaction

Listing 20.7 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This class is full of static properties, which can be accessed by any object that has includ-
ed it.The first set of properties we need to create depends on the server in which we are
using.These properties represent the database information for our server.These will need
to be changed by you in order to run the sample on your server.The next two proper-
ties are the database tables with which we will be interacting throughout the sample
code.They are the awad_email table, which consists of all the email information that
has been passed back and forth between users, and the awad_users table, which consists
of the user data for the application.This database has been created already in Chapter 12,
where we learned how to validate user information in the database via the Ajax object.
The next property is called password and will be used in Chapter 23 where we learn
how to secure the application with password-protected Ajax requests.The last two prop-
erties are the success and failure messages that will be returned as responses to the Ajax
requests when no data is required to be sent back. For example, if a user deletes an
email, we will not need to return any data as a response; instead, we will return whether
or not the deletion was a success and act on the response based on the result. Now that
we understand how this file will be used throughout the Email object, we will cover the
rest of its objects.The first method we will focus on is called sendMail and is shown in
Listing 20.9.

Listing 20.9 Sending Mail (Email.class.php)

<?php

public function sendMail($params)

{

$param = split(":", $params);

$username = $param[0];

$sender = $param[1];

$subject = $param[2];

$message = $param[3];

$threadId = $param[4];

$this->dbConnector->connect();

$table = Constants::$AWAD_EMAIL;

if($threadId == NULL)

{

// Get next thread id

$query = "SELECT MAX(thread_id) FROM $table WHERE receiver=’$username’";

$result = mysql_query($query);

$row = mysql_fetch_array ($result);

$threadId = $row[0]+1;

$this->dbConnector->complete($query);

}

221Connecting with PHP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$this->dbConnector->connect();

$query = "INSERT INTO $table (message, folder, thread_id, subject, sender,
➥receiver)

VALUES (’$message’, ’Inbox’, ’$threadId’, ’$subject’, ’$sender’, ’$username’)";

$this->dbConnector->complete($query);

$this->dbConnector->connect();

$query = "INSERT INTO $table (message, folder, thread_id, subject, sender,
➥receiver)

VALUES (’$message’, ’Sent’, ’$threadId’, ’$subject’, ’$username’, ’$sender’)";

$this->dbConnector->complete($query);

// TODO: need to decipher if this is true

return Constants::$SUCCESS;

}

?>

This method receives the colon-delimited list of parameters that were sent from the
Email object.This parameter string is first split at the colons and then set to local
method variables.After we have the local variables, we check to see whether the thread
id is null. If so, we know that the email belongs in a new thread. If this is true, we make
a database selection to get the highest thread id and set a local variable to its value.After
we have the value, we increment the local variable and use it in the two default queries.
These queries insert the email into the receiving user’s inbox and the sending user’s sent
folder.After the queries have been made, we return a value stating whether or not the
insertion was a success.

The next method is used to get a user’s folders for the TreeView component. It takes
a parameter that tells it which user to retrieve folders for.After it receives the data from
the database, it compiles an XML string that is structured as the treeview.xml file was
in Chapter 11,“Tree View.”The structure that is created takes a fairly complicated algo-
rithm because we want any data that belongs to specific folders to display in those fold-
ers. If we did not use this algorithm, the structure would simply represent a tree with
duplicate folders for each item, which wouldn’t be very functional.The method featured
in Listing 20.10 contains comments that explain the algorithm.

Listing 20.10 Getting a User’s Folders (Email.class.php)

<?php

public function getFolders($receiver)

{

// retrieve all the current folders by userid, in treeview.xml format

$this->dbConnector->connect();

$table = Constants::$AWAD_EMAIL;

222 Chapter 20 Understanding Ajax Database Interaction

Listing 20.9 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$query = "SELECT * FROM $table WHERE receiver=’$receiver’ ORDER BY folder
ASC";

$result = mysql_query($query);

if($result)

{

$response = "<?xml version=\"1.0\" encoding=\"iso-8859-1\" ?>";

$response .= "<Mail>";

$folder = "";

while($row = mysql_fetch_array ($result))

{

// Add an item

// Set the folder to equal the current folder

// If the next item is the same folder, add an item

// If not the same and the folder != ’’, close the prev item and
// create a new

// first half

if($threadId != $row[’thread_id’])

{

$threadId = $row[’thread_id’];

if($folder == $row[’folder’])

{

$folder = $row[’folder’];

// If the next item is the same folder, add an item

$response .= "<a href=\"javascript:Email.showThread(’".
➥$threadId

➥."’, ’". $row[’sender’] ."’);\">". $row[’sender’]
➥."
";

}

else

{

if($folder != ’’)

{

// If not the same and the folder != ’’, close the prev
// item and

// create a new first half

$response .= "]]></". $folder .">";

}

$folder = $row[’folder’];

223Connecting with PHP

Listing 20.10 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// Create the first half: first thing that happens because
// there is

// not going to be a match

$response .= "<". $folder ." action=\"Email.getMail(’".

➥$row[’receiver’] .":". $row[’folder’]
➥."’);\"><![CDATA[";

// Add an item

$response .= "<a href=\"javascript:Email.showThread(’".
➥$threadId

➥."’, ’". $row[’sender’] ."’);\">". $row[’sender’]
➥."
";

}

}

}

$response .= "]]></". $folder .">";

$response .= "</Mail>";

}

else

{

return Constants::$FAILED;

}

$this->dbConnector->complete($query);

return $response;

?>

After the XML tree structure has been created, it is returned to the
serviceConnector.php class. Its content type is set to XML to make it valid and
accessible through the DOM via the Ajax engine (or the method the response is delegat-
ed to), which happens to be the display method of TreeManager in this case. Figure
20.5 shows the tree view as it renders in the application.

224 Chapter 20 Understanding Ajax Database Interaction

Listing 20.10 Continued

Figure 20.5 The TreeView component renders folders
and the usernames of the senders for certain threads.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next method we will cover is less complicated than the previous one. It is called
getMail and is featured in Listing 20.11.This method receives a single parameter, which
is a colon-delimited string of values in which we define this method.This means we
need to know the parameters this method expects when we call it.After we split and set
the local variables, we make a connection to the database and select the mail for a specif-
ic user from a specified folder and order it by thread id.After we receive the results, we
create an XML string, which is structured the same as the sample for the DataGrid in
Chapter 13,“Data Grid.”

Listing 20.11 Getting User Mail (Email.class.php)

<?php

public function getMail($params)

{

$param = split(":", $params);

$receiver = $param[0];

$folder = $param[1];

// all or for a particular folder by id, in datagrid.xml format

$this->dbConnector->connect();

$table = Constants::$AWAD_EMAIL;

$query = "SELECT * FROM $table WHERE receiver=’$receiver’ AND folder=’$folder’
➥ORDER BY thread_id DESC";

$result = mysql_query($query);

if($result)

{

$response = "<?xml version=\"1.0\" encoding=\"iso-8859-1\" ?>";

$response .= "<data>";

$response .= "<categories>";

$response .= "<category>From</category>";

$response .= "<category>Subject</category>";

$response .= "<category>Date</category>";

$response .= "</categories>";

$threadId = "";

while($row = mysql_fetch_array ($result))

{

if($threadId != $row[’thread_id’])

{

$threadId = $row[’thread_id’];

$response .= "<row>";

$response .= "<items action=\"Email.showThread(’". $threadId ."’,
➥’". $row[’sender’] ."’);\" icon=\"img/mail.gif\">";

$response .= "<item><![CDATA[". $row[’sender’] ."]]></item>";

$response .= "<item><![CDATA[". $row[’subject’] ."]]></item>";

$response .= "<item>". $row[’date’] ."</item>\n";

225Connecting with PHP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$response .= "</items>";

$response .= "</row>";

}

}

$response .= "</data>";

}

else

{

return Constants::$FAILED;

}

$this->dbConnector->complete($query);

return $response;

}

?>

After we have created the structure as the DataGrid component expects it, we will
return it as the response to the XHR.When the engine receives the response, it will
then delegate it to the DataGrid component and display the user mail from the speci-
fied folder.

The last method in this class is called getMessage (Listing 20.12). Like the other
methods in this object, this method also accepts a string of colon-delimited parameters,
which are split and set to local variables.After the variables are set, a database connection
is made and we select the thread that was requested from the client side.These threads
are gathered in descending order based on their id in the database.Therefore, the
Accordion object will display the email threads in the order they were created.

Listing 20.12 Retrieving User Messages (Email.class.php)

<?php

public function getMessage($params)

{

// retreive a message by id, in accordion.xml format

$param = split(":", $params);

$threadId = $param[0];

$receiver = $param[1];

$this->dbConnector->connect();

$table = Constants::$AWAD_EMAIL;

$query = "SELECT * FROM $table WHERE receiver=’$receiver’ AND
➥thread_id=’$threadId’ ORDER BY id DESC";

$result = mysql_query($query);

if($result)

{

226 Chapter 20 Understanding Ajax Database Interaction

Listing 20.11 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$index = 0;

$response = "<?xml version=\"1.0\" encoding=\"iso-8859-1\" ?>";

$response .= "<accordion>";

while($row = mysql_fetch_array ($result))

{

if($index == 0)

{

$response .= "<panel expanded=’true’>";

}

else

{

$response .= "<panel>";

}

$response .= "<title><![CDATA[". $row[’subject’] ."]]></title>";

$response .= "<content><![CDATA[". $row[’message’] ."]]></content>";

$response .= "</panel>";

$index++;

}

$response .= "</accordion>";

}

else

{

return Constants::$FAILED;

}

$this->dbConnector->complete($query);

return $response;

}

?>

After the XML structure is concatenated, we return it to the serviceConnector.php
file, which provides a valid XML file to the requesting object.As the engine does in all
the other cases, it delegates the response to another object (in this case, the Accordion).
The Accordion object receives the response through its display method and creates
an accordion from the response data.You can take a look back at Figure 20.3 to see an
example of the accordion as it looks with a thread of emails in the application.

This chapter has quite a bit of information in it that is completely unique to Ajax, but
if you understand the server side of things, it is not hard to pick up on the request
model we are producing in this application.When you have a solid understanding of the
logic behind these requests, you can basically accomplish anything you see today on the
Web in terms of Ajax database interactions.Who knows—maybe you’ll create some of
your own standards.

227Connecting with PHP

Listing 20.12 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

21
Interacting with a Database:

The Server-Side

We have learned many aspects of Ajax interaction throughout this book. In the last chap-
ter, we learned how to connect our sample application to a database with PHP.This
chapter will explain how to connect to dynamic server-side data with ASP.NET and
ColdFusion.The final sample for this book does not use these technologies, so you can
skip ahead if you do not have any interest in these two approaches.We will first learn
how to connect to dynamic data using ASP.NET, and then we will cover the same func-
tionality with ColdFusion.This chapter will provide us with powerful information that
can be applied to other Ajax web applications in order to connect them to dynamic
server-side data.

Connecting to ASP.NET
ASP.NET is an extremely powerful programming platform. Here, we will learn how to
make a connection to it with an Ajax request.The sample was created with Visual
Studio, and we will simply run it in Debug mode in this example, but it can be config-
ured to run in Windows IIS if you prefer.

The first thing that we will need to do in order to start our example is create a new
C# website.After we have created our new C# website, we need to move the
Utilities, AjaxUpdater, HTTP, and Ajax JavaScript files to the project directory.We
will then need to import them into the Default.aspx file that is created in the project
by default when we create the website (see Listing 21.1).

Listing 21.1 Importing the Appropriate JavaScript Files (Default.aspx)

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript" src="javascript/model/AjaxUpdater.js"></script>

<script type="text/javascript" src="javascript/model/HTTP.js"></script>

<script type="text/javascript" src="javascript/model/Ajax.js"></script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

After the files are imported, we will add the code in Listing 21.2 to handle the HTML
that will take input from a user and make a request to the server side.

Listing 21.2 Taking User Input (Default.aspx)

<form id="requestForm" runat="server">

<div>Request:</div>

<div><input type="text" autocomplete="off" onkeyup="request(this.value);" /></div>

<div>Response:</div>

<div id="response"></div>

</form>

The user will use the request input field to enter a value, which will then make a request
to the server side.After the response is received, it will be displayed in the div with an
id of response.The request to the server side happens in a JavaScript method, which is
conveniently named request.Take a look at the request method in Listing 21.3.

Listing 21.3 Making a Request to the Server Side (Default.aspx)

<script type="text/javascript">

function request(data)

{

AjaxUpdater.Update(’GET’, ’serviceConnector.aspx?request=’+ data,

➥onResponse);

}

</script>

The request method takes a parameter named data, which is the value of the input
field.This value is passed to it each time the keyup event is fired.The method then
makes an XHR via the GET method to a file named serviceConnector.aspx.The
data parameter is appended to the URL and passed as a query value to the request
key. Finally, a method named onResponse is added as the callback method and the
request is made via the AjaxUdpdater’s Update method.The onResponse method will
be added to this file after we know what data will be received from the response and we
understand how to properly parse it.The serviceConnector.aspx file connects the
front end to the C# code, which we will write in a moment.This C# code will receive
the request and respond with a username that contain the letters that are entered into
the input field. Before we create the C# code behind, let’s take a look at the
serviceConnector.aspx in Listing 21.4.

230 Chapter 21 Interacting with a Database: The Server-Side

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 21.4 Bridging the Gap Between the Front End and Server Side
(serviceConnector.aspx)

<%@ Page ContentType="text/xml" Language="C#" AutoEventWireup="true"

CodeFile="serviceConnector.aspx.cs" Inherits="serviceConnector" %>

This file is the link between the front-end and the back-end code.The two most impor-
tant things to remember are to have only this line of code in the file (otherwise the
response will not be valid), and to make sure to add the ContentType property.This
property does not exist by default when the file is created and without it the response
will not be valid XML.

The way this file works is that it receives the request and passes the data to the code
behind.The code behind, which is the C# class that contains the code that handles the
request, is defined in the CodeFile property.This class will take the request, process it
through any custom methods we define, and return a response based on the logic we
define. In this case, the C# class that we create will simply receive the request, search an
array of usernames, and return a username as a string value.The username that is
returned will be formatted as XML and delivered as the response to the Ajax engine
and, ultimately, the onResponse callback method that we defined in the AjaxUpdater
request. Let’s take a look at Listing 21.5 to see the C# code behind for the
serviceConnector, understand what classes it needs to import, and how it performs
the username searches.

Listing 21.5 The Code Behind the serviceConnector
(serviceConnector.aspx.cs)

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml;

public partial class serviceConnector : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

this.SearchUsers();

}

231Connecting to ASP.NET

http://lib.ommolketab.ir
http//lib.ommolketab.ir

private void SearchUsers()

{

string request = Request["request"].ToString();

string usernameXml = "";

string[] usernames = new string[3] { "Kris Hadlock", "Grace Hopper", "Pi
➥Sheng"

};

foreach(string username in usernames)

{

if(username.ToLower().Substring(0, request.Length) ==
➥request.ToLower())

{

usernameXml += "<username>" + username + "</username>";

}

}

usernameXml = "<?xml version=’1.0’ encoding=’iso-8859-1’ ?><usernames>" +

➥usernameXml + "</usernames>";

XmlDocument xDoc = new XmlDocument();

xDoc.LoadXml(usernameXml);

xDoc.Save(Response.OutputStream);

}

}

Aside from the default classes that are automatically imported via Visual Studio’s new file
option, we needed to import the System.xml class.This class will allow us to return a
valid XML response to the client side.The first method fired in this class is Page_Load,
which immediately calls the SearchUsers method.This is where all the action happens.
The first thing we do is gather the request query that was sent.This is done by using the
request method, targeting the request key, and converting it to a string.This string is
set to a local string named request to later be used to perform the search. Next we
define a string variable named usernameXml and construct an array of strings with
three values named usernames.The three values may look familiar because they are
usernames we have used in other samples throughout the book.After this array is con-
structed, we will iterate it and check to see whether any of the usernames begin with
the request value. If they do, the names will be appended to the usernameXml string
between username XML elements and CDATA to ensure they can be parsed properly if
they contain any HTML of special characters.After we are finished iterating the
usernames array, we will add an XML declaration to the beginning of the
usernameXml string and nest the existing usernameXml string values with usernames
elements.Although we have an XML string defined, this will not be enough to return as
valid XML to the client side.This is where the System.xml class comes in handy.We

232 Chapter 21 Interacting with a Database: The Server-Side

Listing 21.5 Continued

http://lib.ommolketab.ir
http//lib.ommolketab.ir

need it to instantiate the XmlDocument object, call its LoadXml method, and pass the
usernameXml string to it.This will provide us with a valid XML structure, which can
now be returned to the client. In order to return this data, we cannot simply use a
return as we do in PHP.We must fire the XmlDocument object’s Save method and pass
the following parameter, Response.OutputStream.This will output the XML data and
return it as the response to the client-side callback method.

Now that we will be receiving the response on the client side, we need to create the
onReponse method to handle it. Listing 21.6 shows how this method will receive the
response, parse the data, and display the data in the response div.

Listing 21.6 Handling the Response (Default.aspx)

function onResponse()

{

if(Ajax.checkReadyState(’response’) == "OK")

{

var usernames = Ajax.getResponse().getElementsByTagName(’username’);

for(var i=0; i<usernames.length; i++)

{

Utilities.getElement("response").innerHTML +=
➥usernames[i].firstChild.data +"
";

}

}

}

This method is quite simple because it follows all the responses we have created in other
samples.Targeting the response and parsing the username data from the XML define a
username variable.After we have defined the username, we simply write it to the
response element and test our application. In order to test the application, we need to set
Debug to true in the Web.Config file, which should be asked of us if we forget when
we press the Debug button for the first time.After the application is up and running in a
browser, we can test it by simply typing in the first letters in a name and seeing the
response. Let’s do the same thing with ColdFusion.

Connecting to ColdFusion
Server-side examples with ColdFusion are very hard to come by and I have used
ColdFusion to build a number of web applications so I thought it was noteworthy for
this chapter. ColdFusion is a unique language that is easy to pick up for developers who
are familiar with tag-based code, such as HTML, XML, and so on.The great thing about
ColdFusion is that although it is simple, it is quite powerful because it can easily be con-
nected to databases, and it can interact directly with Flash. Nowadays, this is a bonus
because Flash is becoming a powerful web application product and, of course, the reason

233Connecting to ColdFusion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I am covering it is because it can easily be integrated with Ajax and ultimately our
engine.This section will show you how to achieve the same results as the ASP.NET
example with much less code.

The first thing we will do in order to get started is create an HTML file to import
our JavaScript files and contain our display code.The import statements should look
similar to the example in Listing 21.7.

Listing 21.7 Importing the Appropriate JavaScript (index.html)

<script type="text/javascript" src="javascript/Utilities.js"></script>

<script type="text/javascript" src="javascript/model/AjaxUpdater.js"></script>

<script type="text/javascript" src="javascript/model/HTTP.js"></script>

<script type="text/javascript" src="javascript/model/Ajax.js"></script>

After the appropriate files have been imported, we will add the JavaScript code to make
the request to the server.The code looks exactly like the code in the ASP.NET example,
but it is requesting a ColdFusion service connector file instead. Listing 21.8 shows this
request method.

Listing 21.8 Making the Request (index.html)

<script type="text/javascript">

function request(data)

{

AjaxUpdater.Update(’GET’, ’serviceConnector.cfm?request=’+ data, onResponse);

}

</script>

As I mentioned, aside from the file it requests, the request method is the same as the
ASP.NET example. It accepts a data parameter, which it appends to the URL via the
query string, as a value that matches the request key.The other code that is placed into
this file is the display code.This code is also almost identical to the ASP.NET example.
Take a look at Listing 21.9 to see the code.

Listing 21.9 Display Code for the Request and Response (index.html)

<div>Request:</div>

<div><input type="text" onkeyup="request(this.value);" /></div>

<div>Response:</div>

<div id="response"></div>

Now that we have the code to allow users to make requests to the server side, let’s take a
look at the serviceConnector.cfm that we created for this example. Much like the

234 Chapter 21 Interacting with a Database: The Server-Side

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ASP.NET sample, this code will receive a string request and search an array of
usernames for a name that includes the string.The first thing we will do in this file is
create the array of names. If this were a database example, we would simply select all the
names from the database, push them into an array, and search the array for the string.
Listing 21.10 shows the entire serviceConnector.cfm file.

Listing 21.10 Building the Response (serviceConnector.cfm)

<cfset userNames = ArrayNew(1)>

<cfset userNames[1] = "Kris Hadlock">

<cfset userNames[2] = "Grace Hopper">

<cfset userNames[3] = "Pi Sheng">

<cfcontent type="text/xml; charset=iso-8859-1">

<cfoutput>

<usernames>

<cfloop from="1" to="#ArrayLen(userNames)#" index="i">

<cfloop from="1" to="#Len(userNames[i])#" index="j">

<cfif #Mid(userNames[i], 1, j)# IS #URL.request#>

<username><![CDATA[#userNames[i]#]]></username>

</cfif>

</cfloop>

</cfloop>

</usernames>

</cfoutput>

This file is quite small compared to the ASP.NET example, due to the fact that the lan-
guage is not strictly typed and does not include any classes.As I mentioned, the first
thing we do is create an array of usernames.This array consists of the same values that
we added to the array in the ASP.NET example.After this array has been created, a very
important piece of code needs to be added.The cfcontent tag provides us with a
response of valid XML to the request.Without this line of code, the XML string struc-
ture will be just a string and therefore not valid for parsing.After we have the content
type defined, we will output the XML structure as a string.This data starts with a
usernames element and then begins to loop the array of names. In this loop, we need to
nest another loop.The nested loop will iterate the actual characters within each of the
array string values. In other words, it we will iterate each letter in a username. In this
nested loop, we will add a flag that uses ColdFusion’s Mid function, which is similar to
the substring function in other languages.This function will be used to determine if the
current set of characters is equal to the request string. If so, the username is appended to
a username element within CDATA to ensure proper parsing.After all of the usernames
are added to the XML structure, we will close the first usernames element and the file
will be ready to be parsed by the client side.

Now that we are receiving a response on the client side, we must create a method to
handle it.This method will be the onResponse method, which we passed as the

235Connecting to ColdFusion

http://lib.ommolketab.ir
http//lib.ommolketab.ir

callback method to the AjaxUpdater during the request.This method can be seen in
Listing 21.11.

Listing 21.11 Handling the Response (index.html)

function onResponse()

{

if(Ajax.checkReadyState(’response’) == "OK")

{

var usernames = Ajax.getResponse().getElementsByTagName(’username’);

for(var i=0; i<usernames.length; i++)

{

Utilities.getElement("response").innerHTML +=
➥usernames[i].firstChild.data +"
";

}

}

}

This method may look familiar because it is the same one that was used to handle the
response in the ASP.NET example.When the response is received, we target the array of
usernames and set them to a usernames variable.This variable is then iterated and each
username is added to the response div element.

Each of the server-side samples we have created in this book is requested the same
way.The model we created will always work as long as we can respond with the appro-
priate data from the server-side language.

236 Chapter 21 Interacting with a Database: The Server-Side

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22
Advanced Ajax Database

Interaction

Now that we have covered basic database interaction with Ajax, we will learn advanced
ways of creating database-driven XHRs and their responses.We will cover how to mini-
mize the number of requests to the server by sending bulk data formatted as arrays,
XML, or JSON.We will also learn how minimizing the number of requests will speed
up our application, help us to create more advanced interactions with the database, and
provide us with the beginnings of an API that can be accessible via HTTP in which
developers can send requests, pass specific data as parameters, and either receive struc-
tured data responses from the web application or store data in the database.The second
part of this chapter will cover sending custom responses as XML or JSON.Then there is
a brief reminder of how to handle the response on the client side. Let’s get started by
taking a look at bulk updates.

Bulk Updates
Bulk updates help keep our Ajax applications running more efficiently by keeping the
number of database requests down.This is because large amounts of data can be sent as
an array, XML, or JSON rather than separate XHRs.This data can be deleted from,
saved to, or inserted into the database as one SQL query. Imagine that we have a number
of items we want to save to the database.These items could be user attributes, for exam-
ple, such as names, descriptions, and so on. In most examples, requests are made with
each of these attributes as separate key/value pairs.This solution works fine for simple
XHRs that need to send only small amounts of data, but if we wanted to send data for
multiple users, it would be much more efficient to send it as a bulk update. Let’s look at
three different ways that we could send bulk data to the server via an XHR.

Sending Arrays
Sending bulk updates in the form of an array follows the same pattern as the other Ajax
requests that we have made throughout the book.The difference with passing arrays is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that instead of sending one value per key, we will send an array (or comma-delimited
list) of data per key. In the user data example, which I introduced previously, we may
want to update multiple users through one request. In order to do this, we could pass
keys with arrays as the key values. For example, we could pass an array of names paired
with a name key or an array of descriptions paired with a description key.This part is
fairly simple—the data simply needs to be pushed into an array on the client side with
JavaScript, concatenated into a query string, and sent via an XHR to the server. Our first
hurdle arises because a JavaScript array does not translate directly to an array in a server-
side language, but this can be easily fixed. By taking what is now a comma-delimited list
in our server-side language of choice, we can split the data into a new array and iterate
the values in order to add, update, or remove them from the database. By approaching
the request in this fashion, we can see that there are some direct correlations between a
query string and a SQL query—it is simply a matter of how we are applying the query
that counts. Let’s use the following HTTP query as an example.

serviceConnector.php?object=DatabaseManager&method=parseArray&

name=Grace,Pi&description=Hopper,Sheng

As you can see, we have a name and a description key with corresponding values.As an
example, we will act as if we are going to insert this data into a database with a method,
which simply makes queries directly on our database based on the HTTP queries that
were sent to it.We will first need to abstract our serviceConnector.php file a bit in
order to simply send the HTTP query data directly to our handling method, rather than
send the data as we did in the previous chapter.

<?php

header("Content-Type: application/xml; charset=UTF-8");

require_once("classes/UserManager.class.php");

$o = new $_GET[’object’]();

echo $o->$_GET[’method’]($_GET);

?>

We are simply passing the query data as a whole rather than splitting it or sending a spe-
cific key.The following is an example of how we would write the method that will
make the connection between our Ajax engine and our server-side object.

238 Chapter 22 Advanced Ajax Database Interaction

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<?php

class DatabaseManager

{

public function parseArray($q)

{

$names = split(",", $q[’name’]);

$descriptions = split(",", $q[’description’]);

// Open database connection

for($i=0; $i<count($names); $i++)

{

$query = "INSERT INTO myTable SET name=’$names[$i]’,

➥description=’$description s[$i]’";

// Close database connection

}

return "<response>". $q[’name’] ." and ". $q[’description’] ."

➥: were successfully retrieved!</response>";

}

}

?>

This option is very easy to manage and, even though it is not the best solution, it can
provide us with some powerful ways of manipulating bulk data.

Sending XML
Sending XML or JSON is slightly different from sending a simple array because the data
can be much more complex and therefore achieve results on a larger scale. In this sec-
tion, we will focus on sending XML as our request data and cover some of the possibili-
ties that can be reached with this approach.As we have seen throughout the samples in
this book, XML is a flexible language that can be used to encapsulate static or dynamic
data as any custom structure that we define.This, of course, leaves a lot of room for
interpretation and allows complete flexibility in our code, which enables us to exchange
complex data types between different languages.This is why XML lends much more
power to our requests than passing a simple array or other custom character-delimited
lists.The following is an example of a simple query that can be sent from any application
to pass data as XML to be used on our server side based on the object and method spec-
ified.

serviceConnector.php?object=DatabaseManager&method=parseXML&xml=<names>

<name>Kris Hadlock</name></names>

239Bulk Updates

http://lib.ommolketab.ir
http//lib.ommolketab.ir

After the sample is set on your server, you can simply paste this query on the end of
your URL and you will receive the response that we will now construct.

<?php

class DatabaseManager

{

public function parseXML($q)

{

$doc = new DOMDocument();

$doc->loadXML($q[’xml’]);

// Manipulate the database

return "<response>". $doc->getElementsByTagName(’name’)->item(0)

➥->nodeValue .": was successfully retrieved!</response>";

}

}

?>

This method will have been called based on the query that took place via the
serviceConnector. In this method, I am simply showing you how to load the XML
and parse the data we have sent to it. Of course, this method can be much more com-
plex because it can receive XML, save, insert, or delete node values in the database, and
so on.After the data has been used to manipulate the database, we can take the values
and respond to the requestor.

Sending JSON
JSON is a great solution for JavaScript and lends a lot of power to Ajax requests, but it is
not as easy to manage on the server side because we must implement or create our own
parser depending on the language we choose to use. Of course, our job is made much
easier if we implement one of the parsers available at http://www.json.org. If you are
interested in using JSON as your data-interchange format with Ajax, I recommend tak-
ing a look at the examples found on the download sites to really get an idea of the func-
tionality that can be accomplished.

Server-Side XML and JSON
Creating custom XML or JSON structures with a server-side language from database
data and returning it as a response to an XHR is a required step for creating Ajax-
enabled database integration.

240 Chapter 22 Advanced Ajax Database Interaction

http://www.json.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

XML
Although we have already briefly covered the structuring of dynamic data as an XML
structure to be used as an Ajax response, in this section we will focus more on the server
side of the process. Responding with valid XML requires a few easy steps that can be
achieved by the following instructions.

Including an XML Declaration
In order to specify that our data structure is XML, we must add an XML declaration to
the beginning of the file that we would like to return to the client side.The following
code shows an example of how to add this declaration to the structure and how to also
specify the format in which the XML data should be encoded by the server.

$declaration = "<?xml version=\"1.0\" encoding=\"iso-8859-1\" ?>";

Setting the Content Type to Text/XML
Setting the content type is what we have been doing in the serviceConnector.php
file that we created in each of our server-side examples. Setting the header to this con-
tent type is the key to creating a valid XML structure that is accessible by other lan-
guages, such as JavaScript. Following is an example of the header we have been using to
make our structures valid.

header("Content-Type: application/xml; charset=UTF-8");

The last thing to remember is to carefully structure the string that you want to ultimate-
ly use as the XML response with opening and closing XML tags surrounding the
dynamic data.This may seem the most obvious part of the process, but is usually the
most likely to be an issue.

JSON
Responding with data as a JSON structure allows us to simply convert the JSON struc-
ture into a JavaScript object on the client side.After the data has been received by the
Ajax engine as a response, we can pass it to our custom parsing method.This method
simply needs to use the eval method to convert the data into a valid JavaScript object.
This leaves us with a fully functional JSON object that can be used for anything we
want to achieve on the client side. If we are trying to achieve this functionality, it makes
the architecture of the JSON response structure a very important piece of the process.

If we plan on sending a response back to the client as a JSON structure, we must
write a custom method to concatenate the data as a JSON object that can be evaluated
on the client side by JavaScript after the Ajax engine receives the response, or we can use
one of the parsers available at http://www.json.org.

241Server-Side XML and JSON

http://www.json.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

VI
Finishing Touches

23 Securing Your Application

24 Best Practices

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

23
Securing Your Application

Ajax database interaction is extremely powerful and provides a lot of flexibility to web
applications. Of course, with great power there are also great security risks.This chapter
will explain what security holes are exposed in the application we created, and how to
create unique passwords for your XHRs to avoid these security issues.A password alone
will not protect your XHR, so we will need to add a verification process on the server
side in the serviceConnector.php file from Chapter 20,“Understanding Ajax
Database Interaction.”This will provide us with the ability to avoid unwanted requests, if
they should occur, before they even reach the PHP classes that connect to the database.
This not only keeps unwanted requests out, it also keeps them a layer away from the
classes that contain critical information about our database and other proprietary infor-
mation.

Security Holes
Adding database interaction to an XHR exposes security holes that can allow malicious
hackers to make requests to our server side.All they would need to know is the URL of
the file in which to make the request.With the new debugging tools that are available,
such as the ones that were covered in Chapter 8,“Debugging,” we can actually spy on
requests and see the exact URL they are requesting along with the parameters that are
passed.This is great for debugging, but provides anyone with the ability to easily under-
stand the interactions that you are making with Ajax to the server by exposing your
requests.This, of course, is a huge threat if you are connected to files that interact with a
database or contain other important data that you do not want to share with the public.

Throughout the rest of this chapter, we will focus on creating a process for password-
protecting our XHRs and verifying them on the server side.The object that will create
and verify these passwords is called the PasswordManager and can be seen in Listing 23.1.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 23.1 Creating and Verifying XHRs (PasswordManager.class.php)

<?php

class PasswordManager

{

private function PasswordManager() {}

public static function getInstance()

{

static $instance;

if (!is_object($instance))

{

$instance = new PasswordManager();

}

return $instance;

}

public function getPassword($arr)

{

$max = count($arr);

$index = rand(0, $max);

$seed = $arr[$index];

return md5($seed) .":". $index;

}

public function verfiyPassword($arr, $password)

{

$uid = split(":", $password);

$seed = $arr[$uid[1]];

return md5($seed) .":". $uid[1] == $password;

}

}

?>

Let’s take a look at how to create this object and use it to protect the requests that we
make during runtime.

Password-Protecting Ajax Requests
Password-protecting Ajax requests is fairly simple because we could simply append an
additional variable to the query string that represents a password and verify it on the
server side.This would work fine, but could easily be discovered if the password never

246 Chapter 23 Securing Your Application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

changed—we would run into the same problem of people being able to see the variable
being passed via the request.This is where unique passwords would be extremely helpful
because it would be nearly impossible for a hacker to decipher a password and send a
malicious request if every request had a unique password.

Creating Unique Passwords
Now that we understand how useful unique passwords will be to our applications’
XHRs, we will learn how to create a server-side method that creates them. Let’s start by
creating the PHP class on the server side called PasswordManager.This object will be a
Singleton object so that it is accessible on an applicationwide level. In order to make this
object a Singleton, we need to make the constructor function private and create a public
static method called getInstance.This method will check to see whether the object
has already been instantiated. If not, it will create an instance and return it; if it does
exist, the method will return the previously instantiated version of the object. Listing
23.2 shows how this object uses the Singleton design pattern.

Listing 23.2 Creating a Singleton PasswordManager Object

<?php

class PasswordManager

{

private function PasswordManager() {}

public static function getInstance()

{

static $instance;

if (!is_object($instance))

{

$instance = new PasswordManager();

}

return $instance;

}

}

?>

Now that we can access this object applicationwide, we will create a method that will
provide us with unique passwords.This method will be called getPassword and will
accept an array of unique values that we will define shortly.When the method is called,
it takes the array, gets a count for the length of the array that was passed to it, and sets it
to a local variable called max.This variable is then used to generate a random number
between 0 and itself, which is then set to a local variable called index.The index

247Password-Protecting Ajax Requests

http://lib.ommolketab.ir
http//lib.ommolketab.ir

variable is then used to generate a variable called seed by setting it to this specific index
in the array.At this point, we have selected a random value from the array that was
passed in as the parameter, which makes it that much harder for a hacker to get the first
value correct—but this definitely is not enough yet.To make it even more secure, we
take the newly generated seed variable and encrypt it with the md5 encryption method
in PHP. md5 is a one-way encryption method, meaning that it cannot be reverse-
engineered to provide the original seed value that we provided it.After we encrypt the
seed, we append a colon and the random index in the array.After we have our password
created, we return it to the caller.You may be wondering why we appended the random
index to the end of the password; we will cover this when we verify the password during
XHRs. See Listing 23.3 for an example of the getPassword method.

Listing 23.3 Creating a Password Array (Constants.class.php)

public function getPassword($arr)

{

$max = count($arr);

$index = rand(0, $max);

$seed = $arr[$index];

return md5($seed) .":". $index;

}

The array we will use to eventually pass as a parameter to the getPassword method
will be added to our Constants object.This array will be another static property so that
we can access it applicationwide.The property is named PASSWORD and can include as
many values as you want to add to it.This is because when we created the getPassword
method, we got the count of the array, so the code is flexible enough to accept any size
array.The values in the array can also be any value you want and should be something
that is secure, such as a typical password.The values and the number of them can also
change as often as you like to make it that much more secure. Listing 23.4 shows this
property with a few dummy values as an example.

Listing 23.4 Creating a Password Array (Constants.class.php)

// Password

static $PASSWORD = array(’temp_password_1’, ’temp_password_2’, ’temp_password_3’);

In order to send the password to the server side with all of our XHRs, we will add a
property to the AjaxUpdater that sends the password each time a request is made.This
ensures that all our requests are secure and that we or another developer on our team
did not forget to add the password to a request string. It also keeps the code much
cleaner so that we do not have random password-protected requests throughout our
application.This would make it very difficult to make later updates to the request and
would become very unruly.Take a look at Listing 23.5 to get an idea of how this prop-
erty is added to the AjaxUpdater initialize and Update methods.

248 Chapter 23 Securing Your Application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 23.5 Adding the Password to All Ajax Requests (AjaxUpdater.js)

AjaxUpdater.initialize = function()

{

AjaxUpdater.uid = null;

AjaxUpdater.isUpdating = false;

}

AjaxUpdater.Update = function(method , service, callback)

{

if(callback == undefined || callback == "")

{

callback = AjaxUpdater.onResponse;

}

Ajax.makeRequest(method, service+"&uid="+AjaxUpdater.uid, callback);
AjaxUpdater.isUpdating = true;

}

Now that we are generating unique passwords and have a property that is sent with all
our requests, we must provide this property with some sort of value.This value will be
set in our application’s mail.php (Listing 23.6) page with PHP as the
AjaxUpdater.uid property in JavaScript. In other words, we will write JavaScript with
PHP and set the password in the process. In order to use PHP to get the password and
add it to the page, we must include the Constants and PasswordManager objects.
After we have included these files, we will get an instance of the PasswordManager and
call its getPassword method with a parameter value set to the PASSWORD array that we
added to the Constants file.When the password is returned, we will write a JavaScript
init method between JavaScript tags in the page, which sets the AjaxUpdater.uid to
the generated password.

Listing 23.6 Setting the Password (mail.php)

require_once("classes/utils/Constants.class.php");

require_once("classes/security/PasswordManager.class.php");

$pwManager = PasswordManager::getInstance();

$uid = $pwManager->getPassword(Constants::$PASSWORD);

echo "function init() { AjaxUpdater.uid = ’". $uid ."’; }";

We now have a unique password that is being sent with each and every request through
the AjaxUpdater, but this doesn’t do us any good if we do not verify the password on
the server side when the request is made. Let’s take a look at how we accomplish this
verification and ensure that our requests are secure.

249Password-Protecting Ajax Requests

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Verifying Passwords on the Server-Side
To add a final layer of security to our Ajax applications, we will verify the unique pass-
words that we have created when we send them with the requests on the server side.We
will create a method called verifyPassword to take an array and the previously created
password as parameters.The array in this case will be the PASSWORD array that was creat-
ed in the Constants object.After the method has been called and receives the parame-
ters, we will split the password at the colon that we created in the getPassword
method.This will leave us with an array of two values.The first value will be the md5-
encrypted array value from the getPassword method and the second value will be the
random index that we set and appended to the password when we returned it. Now that
we split this password into an array, we can use the second value, which is the random
array index.This index will then be used to get the value in the arr array that we used
in the getPassword method as the md5 value.After we have this seed value, we will cre-
ate a new password by performing the same concatenation of values as we did when we
created the password.This concatenated value will then be tested against the saved pass-
word that was passed in as the parameter and the Boolean value will be returned. Listing
23.7 shows this method and the code we have just covered.

Listing 23.7 Creating a Method to Verify the Password
(PasswordManager.class.php)

public function verfiyPassword($arr, $password)

{

$uid = split(":", $password);

$seed = $arr[$uid[1]];

return md5($seed) .":". $uid[1] == $password;

}

To put this method to use, we will add it to the serviceConnector.php file.This file
will need to include the Constants and PasswordManager objects in order to use the
verifyPassword method.After the objects have been included, we will get the instance
of the PasswordManager and call the verifyPassword method.We will pass the
Constants PASSWORD property as the array parameter and the unique id that we passed
through the AjaxUpdater in the query string of the request. If the verification is a suc-
cess, we move forward by making the request.Take a look at Listing 23.8 to see how we
need to add this code to the serviceConnector.php file.

250 Chapter 23 Securing Your Application

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Listing 23.8 Verifying the Password in the Service Connector
(serviceConnector.php)

<?

require_once("classes/utils/Constants.class.php");

require_once("classes/security/PasswordManager.class.php");

$pwManager = PasswordManager::getInstance();

if($pwManager->verifyPassword(Constants::$PASSWORD, $_GET[’uid’]))

{

header("Content-Type: application/xml; charset=UTF-8");

require_once("classes/UserManager.class.php");

require_once("classes/Email.class.php");

$o = new $_GET[’object’]();

echo $o->$_GET[’method’]($_GET[’params’]);

}

?>

Although database-enabled XHRs are fairly easy to accomplish, we must keep in mind
that they can be very insecure if we do not appropriately secure them.The object in this
chapter is just an example of how you can secure your requests; other methods can easily
be added to PasswordManager in order to add more encryption to the passwords and
so on. Remember that with great power comes great responsibility, and it is important to
secure the requests on both the client and server sides.

251Verifying Passwords on the Server-Side

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24
Best Practices

At this point, you know how to create an object-oriented Ajax engine, create Ajax-
enabled components, and tie together all the code to create database-enabled XHRs.
With this knowledge fresh in your mind, it is a good time to get an understanding of
some basic best practices as to when, how, and why to use Ajax based on the examples
we have covered throughout the book.Although Ajax can create great effects and amaz-
ing interactions that don’t refresh the browser, this does not mean that it should be used
in every situation. I strongly believe that the technology should always be chosen after a
solution has been engineered. If this rule is followed, the technology chosen will most
often be the best solution to the problem.

This chapter will recap the key concepts covered throughout the book and explain
best practices for each. Let’s get started by talking about the Ajax engine.

Using the Engine
The Ajax engine we built in Part II,“Creating and Using the JavaScript Engine,” provid-
ed us with a reusable and versatile set of JavaScript objects that can be used in any Ajax-
enabled project. I personally use the engine for all Ajax interactions I create because the
engine provides reusable functionality that can be utilized without alterations in any
project, from small websites to large-scale applications. It eliminates the need to rewrite
code each time Ajax is used, which saves on development time and ultimately eliminates
the need to debug this area of the application because it doesn’t need to change from
one application to the next.

Aside from being a flexible and reusable object, the engine and all the other compo-
nents and front-end JavaScript logic are encapsulated into objects. Objects are much easi-
er to maintain because all your code is separated and distinguishable—that is, of course, if
you create meaningful object names. It also keeps all your code out of the main page,
leaving only the objects to import as in other programming languages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Design Patterns
Design patterns solve common programming problems. On the one hand, they are
extremely useful and eliminate the need to produce code work-arounds. On the other
hand, they are not always necessary and should not be used unless they are needed to
satisfy a specific problem.The most commonly used patterns are the Singleton and the
Model View Controller because they help solve structural problems that arise in almost
every object-oriented web application.

Using Components
The components we built in Part III,“Creating Reusable Components,” provide a few
examples of how to build your own custom components and connect them with the
Ajax engine and server-side data.With this knowledge, it is possible to move forward
building your own custom components to be used in multiple projects and save you
development time. Components provide base functionality that can be shared as open
source or across multiple applications.The great thing about the components we made
in this book is that the design can easily be tweaked based on the fact that the compo-
nents rely solely on CSS. Relying on CSS is always a solution that will pay off because
the look of a component can be completely changed based on different CSS classes and
styles that we define, making them very flexible and company specific to follow branding
guidelines and so on.

Static Versus Dynamic Responses
Static responses are XML or JSON files that reside on the server, which are not generat-
ed based on dynamic data from a database or third-party source. Dynamic responses are
the opposite, meaning that they are based on fluid, changing data from a database, for
example. Static responses are sometimes the only option you have regardless of the best
solution, such as when a client does not have a database or the ability to use a server-side
language on her server. In these cases, it is usually more feasible to use XML because if a
client is updating the content, it is a much easier language to understand. Static XML or
JSON should be used for small single websites that do not need to be updated on a reg-
ular basis. XML is also the best cross-application language such as when trying to con-
nect with application APIs or web services.

When creating XML or JSON responses, it is always a best practice to provide the
structure with informative names for elements while keeping it as abstract as possible.
Keeping the structure abstract is a great way to provide a flexible and reusable response
that can easily be parsed by yourself or other developers.

Dynamic responses are the best solution for web applications or even large websites in
which a client wants to maintain the content, such as with a content management
system.

254 Chapter 24 Best Practices

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Error and Feedback Handling
As a developer, I know the time it takes to consider every possible situation in which a
message will need to be displayed to a user.Whether it is an error or a successful message
that you need to display, it is time-consuming to write the code to handle each and
every case. On the bright side, with the reusable JavaScript Dialog object from Chapter
19,“Usability Patterns,” we can easily use it instead of an alert, which is what most
developers use anyway because of its simplicity.The Dialog object is a good solution for
handling all of our front-end messages because it is as simple as writing one line of code
in order to use it.Another reason why this object allows us to easily follow best practices
is because it keeps our messages consistent in look and feel. Keeping a consistent design
for each different type of message will make your application much more intuitive.

Aside from the messages that can occur during the runtime of our applications, we
must also be prepared if a user simply does not have the required technologies needed to
view our application. Even more important than displaying these messages is making
sure that the messages are clear and informative, or simply trying to avoid them in the
first place by offering alternatives utilizing the HTTP object we created as an extension of
the Ajax engine in Chapter 9,“Extending the Engine.” If a message is unavoidable, such
as when the user does not have JavaScript, be sure to provide information as to what
happened and what to do in order to move forward with using our application. It is
important to remember that we are building applications for the users. If they are not
capable of understanding how to use our applications, all our hard work goes unused—
so always remember the users and work to their advantage.

Application History
The History object we created in Chapter 18,“Interaction Patterns,” is very useful in
web applications because it can be used in a number of ways to make the user experi-
ence much more intuitive. One way in which this object makes the process more intu-
itive is by providing users with the most recent options they have chosen. Most users
have a specific set of needs for using an application, and this object allows them to not
have to make as many decisions each time they enter the application.The object we cre-
ated simply saves the state of specific tasks to a client-side cookie with JavaScript, but
ultimately would be much more powerful if it connected to the Ajax engine in order to
send the data to the server side and store it in a user preferences or user history table in a
database.

Security
When making server-side database connections with Ajax, we leave our database wide
open.This is a huge problem because someone could simply make the right HTTP
request to our application and wipe away data or overwrite it.This is why the security
code in Chapter 23,“Securing Your Application,” should be a required step in all your
database-enabled Ajax web applications and should never be overlooked.

255Using the Engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The purpose of the samples in this book is to provide reusable Ajax-enabled code that
can be utilized in any web application. Object-oriented JavaScript, an Ajax engine, and
all of the server-side classes are perfect examples of how to accomplish creating code for
one application that can be ported to another. From all the JavaScript objects to each
XML document, we have created code that is abstracted enough to lend itself to the
object-oriented model.

256 Chapter 24 Best Practices

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

A
abstraction, 21

accordians, 107-111

instantiation, 105
objects, 104-107

actions, parsing, 120

adding

design to data grids, 151-153
feedback, 204
folders

contents/values, 121
icons, 119
labels, 120

HTML to XML, 22
listners, 86
passwords to requests, 248
titles, 152

addListener method, 86

AjaxUpdater, 158-160

alert function, 67

appending elements, HTML 85

applications, 255

creating, 175
database-enabled XHR objects, 9
debugging, 67
DragDrop, 192-196
error-handling, 170-176

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FireBug, 72
command line, 73
inspecting elements, 76
installing, 72
levels of logging, 76
logging messages, 75
viewing XHRs, 78-80

Historian object, 187-189
object-oriented JavaScript, 41

associative arrays, 43-44
constructors, 45-49
creating objects, 42
JScript.NET, 44-45
literal notation, 43
new operator, 42-43
prototypes, 49-54

objects
creating error-handling, 170-177
DragDrop, 192-199

optimizing, 6
responseText property, debugging 67
Safari Enhancer, 70

Installing, 71
JavaScript Console, 71

updating
arrays, 237-239
JSON, 240
XML, 239-240

Updating, 237
usability patterns, 202-204

applying

error-handling objects, 176-177
HTTP objects, 96-97
JSON, 29-30
MVC, 166-167
Singleton objects, 162

architecture, XML, 101-102

arrays

childArray, 117
associative, 43-44

ASP.NET, 229

databases. See databases
servers, 230

asynchronous data transfers, 13-14

attributes, border-bottom, 110

B-C
background requests, XHR objects 7

basic.logging method, 75

border-bottom attribute, 110

C#, 230

caches, IE Developer Toolbar, 68

Cascading Style Sheet. See CSS

categories

HTTP status codes, 90-96
titles, 143
values, 26

CDATA, 102

changeOpac method, 87

checkReadyState method, 160

childArray, 117

childNodes property, 23

children, removing, 86

clear method, 188

clients

connections, 134
constructors, 134
creating objects, 128
errors, 92
registering user information, 139
servers, 132-135

258 applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir

user input, 128-131
validation, 125-134
verifying user information, 135

CodeFile property, 231

codes, status, 96. See also HTTP

ColdFusion, 234

requests, 234
servers, 233-236

collapse method, 109

components

accordians
configuring panels objects,

107-111
creating objects, 104-107
customizing 101
XML, 101-104

data grids
adding design to, 151-153
creating objects, 143-146
overview of, 141-142
viewing objects, 147-150

Data Reflection patterns, 182-183
MVC patterns, 165-166
optimizing, 254
tree view

adding style, 122-123
rendering GUIs, 117-121
responses, 115-117

structure of, 113-115
configuring. See also creating; formatting

accordians
creating objects, 104-107
panel objects, 107-111
XML, 101-104

CSS, 36-38
elements, 84
HTTP, 16-17

IE Developer Toolbar, 70
disabling caches, 68
installing, 68
navigating DOMs, 68-70
viewing, 70

JSON, 29-32
objects, 158-161
panel objects, 111
XHR

asynchronous data transfers, 14
creating, 11-13
HTTP status codes and headers,

16-18
ready state, 14-15

XHTML, 33-36
XML

attributes, 21
CDATA, 22-23
elements, 20
JSON, 27-32
parsing, 23-27

connections

client-side, 134
databases, 214-218

Console, Safari Enhancer, 71

console.log method, 75

Constants object, 220

constuctors, 45-46, 134-135

containers, HTML, 103

content

accordian, 110
elements, 102
formatting, 241

cookies

Historian object, 185
histories, 185-187
Navigation object, 190-192

259cookies

http://lib.ommolketab.ir
http//lib.ommolketab.ir

createElement method, 84

creating. See also configuring; formatting

applications, 175
data grids, 143-153
DataReflection patterns, 179-183
elements, 84
error-handling, 171-177
MVC, 165-166
passwords, 246-248
properties, 51-54
updaters, 59

CSS (Cascading Style Sheet)

accordian, 110-111
dialog.css file, 207
elements, 36
Utilities object, 82

customizing

accordians
creating objects, 104-107
panel objects, 107-111
XML, 101-104

applications, 6
components, 254
content type to text/XML, 241
CSS, 36-38
Data Reflection patterns, 182-183
elements, 84
histories, 191
HTTP, 16-17
IE Developer Toolbar, 70

disabling caches, 68
installing, 68
navigating DOMs, 68-70
viewing, 70

interfaces, 6
JSON, 29-32

objects, 158-161, 172
panel objects, 111
passwords, 246
security, 255
TreeManager, 116
wrappers, 55-59
XHR, 245

asynchronous data transfers, 14
creating, 11-13
HTTP status codes and headers,

16-18
ready state, 14-15

XHTML, 33-36
XML

attributes, 21
CDATA, 22-23
elements, 20
JSON, 27-32
parsing, 23-27

D
data grids

adding design to, 151-153
creating, 143-153
elements, 151
email, 216
initializing, 146
objects, 141-142
PHP, 215
viewing, 145-150

data transfers, asynchronous, 13-14

Data Reflection pattern

creating, 179-183
formatting, 182-183
synchronization, 179-181

260 createElement method

http://lib.ommolketab.ir
http//lib.ommolketab.ir

databases

connecting, 214-218
PHP, 212-227
security holes, 245-246
updating, 237

arrays, 237-238
JSON, 240
XML, 240

DataColumn objects, 150

DataRow objects, 147-150

debugging

applications, 67
FireBug, 74

command line, 73
inspecting elements, 76
installing, 72
levels of logging, 76
logging messages, 75
viewing XHRs, 78-80

IE Developer Toolbar, 67
disabling caches, 68
installing, 68
navigating DOMs, 68-70
viewing, 70

JavaScript, 65-67
responseText property, 67
Safari Enhancer, 70-71
Utilities object, 83
viewing, 78-80

declarations, XML, 241

defining DataGrid objects, 143

delegating HTTP status codes, 89

design. See also configuring

applications, 175
data grids, 143-153
DataReflection patterns, 179-183

elements, 84
error-handling, 171-177
MVC, 165-166
passwords, 246-248
patterns, 254
properties, 51-54
updaters, 59

dialog.css file, 207

directories, MVC patterns, 165

disabling IE Developer Toolbar, 68

display method, 106, 116, 204, 214

DOM (Document Object Model), IE
Developer Toolbar, 68-70

DragDrop

applications, 192-196
HTML, 192
objects, 192-199
elements, 193-199

dragTo method, 196

E
elements

content, 102
creating, 84
CSS, 36
data grids, 151
DragDrop, 193-199
FireBug, 76
HTML, 85
loading div, 104
responses, 20

email

data grids, 216
sending, 217, 221
threads, 216
XML, 23

261email

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Email object, 214

Email.class.php file, 219

emailError method, 174

encryption, 248

engines

best practices, 253-255
extending, 81-87
HTTP, 88-97
JavaScript, 61
methods, 63-64
requests, 62-63
Utilities object, 81-87

errorHandler method, 66

ErrorManager object, 175

initializing, 173
errors, 255. See also debugging; trou-

bleshooting

applications, 170-176
clients, 92
creating, 171-177
email, 174
runtime, 65-67

events

handlers, JSON, 32
mousedown, 194
onerror, 171-177
onmouse, 149
onmousedown, 194
readyStateChange event handler, 14

expand method, 109

extending engines, 82-87

HTTP, 88
Utilities object, 81

Extensible HTML. See XHTML

Extensible Markup Language. See XML

F
feedback

adding, 204
handling, 255
usability patterns, 204-208
visual, 131-132

files

dialog.css, 207
Email.class.php, 219
ServiceConnector.cfm, 234
ServiceConnector.php, 238

FireBug

debugging, 72-76
functions, 73
inspecting elements, 76
levels of logging, 76
logging messages, 75

folders

contents, 121
icons, 119
labels, 120
trees, 119

formatting. See also configuring; creating

accordians
creating objects, 104-107
panel objects, 107-111
XML, 101-104

content type to text/XML, 241
CSS, 36-38
Data Reflection patterns, 182-183
elements, 84
histories, 191
HTTP, 16-17
IE Developer Toolbar

disabling caches, 68
installing, 68

262 Email object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

navigating DOMs, 68-70
viewing, 70

JSON, 29-32
objects, 158-161, 172
panel objects, 111
passwords, 246
TreeManager, 116
XHR, 245

asynchronous data transfers, 14
creating, 11-13
HTTP status codes and headers,

16-18
ready state, 14-15

XHTML, 33-36
XML

attributes, 21
CDATA, 22-23
elements, 20
JSON, 27-32

parsing, 23-27
functions

alert, 67
command line (FireBug), 73

G
GET method, 7

getClientErrorStatus method, 94

getElementsByTagName method, 23

getInformationalStatus method, 90

getInstance method, 247

getMail method, 215, 225

getMessage method, 217, 226

getNewPositionElement method, 197

getPassword method, 247

getRedirectionStatus method, 91

getSaved method, 188

getServerStatus method, 95

getSuccessfulStatus method, 90

GUI (graphical user interface), 117-121,
163. See also MVC

H
handling

errors, 255
feedback, 255
HTTP status codes, 88-97

hasChildNodes method, 86

headers, accordian, 110

Historian object

applications, 187-189
cookies, 185
creating XML, 190
viewing, 189

histories

cookies, 185-187
formatting, 191
Historian object, 185
Navigation object, 190

holes, security. See security

HTML (Hypertext Markup Language)

adding to XML, 22
DragDrop, 192
elements, 85
innerHTML property, 25, 227, 205

HTTP (Hypertext Transfer Protocol), 88-91,
95-97

configuration, 16-17
containers, 103
engines, 88-97
handling, 96
objects, 18, 96-97
queries, 238

263HTTP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

requests, 18
status codes/headers,16-18, 91-95

delegating, 89
handling, 96

Hypertext Markup Language. See HTML

Hypertext Transfer Protocol. See HTTP

I
ids, storing, 119

IE Developer Toolbar

caches, 68
configuration, 70
debugging, 67
disabling, 68
DOM, 68-70
installing, 68
navigating, 68-70
viewing, 70

importing JavaScript

ASP.NET, 229
ColdFusion, 234
engines, 61

include statements, 213

indexes, XML, 24

initialize method, 103, 127

initialization

DataGrid objects, 146
ErrorManager, 173

innerHTML property, 25, 117, 205

input, clients, 128-131

installing

FireBug, 72
IE Developer Toolbar, 68
Safari Enhancer, 71

instances

constructors, 45-46
prototypes, 50

instantiation

accordian, 105
methods, 190
panels, 108
Singleton patterns, 158
Utilities object, 81

interfaces, 6, 163

invokeError method, 67

isUpdating property, 159

items, parsing, 31

iteration, trees, 121

J-K
JavaScript

ASP.NET, 229
ColdFusion, 234
debugging, 65-67
engines, 61
object-oriented

associative arrays, 43-44
constructors, 45, 48-49
JScript.NET, 45
literal notation, 43
new operator, 42-43
objects, 45-49
JScript.NET, 44
literal notation, 43
prototypes, 49-54

Utilities object, 82
JavaScript Object Notation. See JSON

JScript.NET, 44-45

264 HTTP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JSON (JavaScript Object Notation)

configuration, 29-32
event handlers, 32
parsing, 30-32
representations, 28
responses, 28
syntax, 28-29
XHTML, 34
XML, 29-32

L
literals, 43, 86

loading div elements, 104

loadScreen method, 191

logging,

FireBug, 75-76
levels of, 76
messages, 75
users, 136-137

login

client-side validation, 125-127
registering users, 138

M
Macintosh, Safari Enhancer, 70-71

md 5 encryption method, 248

messages, FireBug, 75. See also email

methods

access, 162
addListener, 86
basic.logging, 75
changeOpac, 87
checkReadyState, 160
clear, 188
collapse, 109

console.log, 75
createElement, 84
display, 106, 116, 204, 214
dragTo, 196
emailError, 174
engines, 63-64
errorHandler, 66
expand, 109
GET, 7
GetClientErrorStatus, 94
getElementsByTagName, 23
getInformationalStatus, 90
getInstance, 247
getMail, 215, 225
getMessage, 217, 226
getNewPositionElement, 197
getPassword, 247
getRedirectionStatus, 91
getSaved, 188
getServerStatus, 95
getSuccessfulStatus, 90
hasChildNodes, 86
initialize, 103, 127
instantiation, 190
invokeError, 67
loadScreen, 191
md5 encryption, 248
next, 191
objects, 47-49
onResponse, 160, 233, 235
onValidation, 129
prototypes, 53-54
removeChildren, 86, 215
request, 230
save, 187
SearchUser, 232

265methods

http://lib.ommolketab.ir
http//lib.ommolketab.ir

setTimeout, 183
startDrag, 195
stopDrag, 198
toggle, 106, 121
toggleImage, 116, 119
traverse, 118
Update, 159
UserManager class, 133
Validate, 128
XHR objects, 13

Model View Controller. See MVC

modification, opacity, 87

mousedown event, 194

Multi-User patterns, 181

MVC (Model View Controller)

applying, 166-167
components, 165
creating, 165-166
directories, 165

N
navigating IE Developer Toolbars, 68-70

Navigation object, 190-192

new operator, 42-43

next method, 191

notation

JSON, 27-32
literal, 43

notify observers pattern, 169

NumberUtil object, 46

O
object-oriented JavaScript, 41. See also

JavaScript

associative arrays, 43-44
constructors, 45, 48-49

JScript.NET, 44-45
literal notation, 43
new operator, 42-43
objects, 45-49
literal notation, 43
prototypes, 49-54

OOP (object-oriented programming), 41.
See also JavaScript

objects

accordians, 104-107
Constants, 220
constructors, 45
creating, 135

clients, 134
error-handling, 171
updaters, 60

DataColumn, 150
DataRow, 147-50
data grids, 141-142. See also data

grids
DragDrop, 192-199
Email, 214
error-handling, 174-177
ErrorManager, 175
formatting, 172
HTTP, 18, 96-97
JSON, 29-30. See also JSON
Navigation, 190-192
NumberUtil, 46
panels, 107-111
PasswordManager, 247
properties, 52-53
pseudo, 42
Singleton, 162. See also Singleton

patterns
TreeManager, 115
trees, 117

266 methods

http://lib.ommolketab.ir
http//lib.ommolketab.ir

updaters, 59-60
UserValidation, 133
UserValidator, 131
Utilities

creating, 81-86
extending engines, 81-87

Observer pattern

creating error-handling objects,
170-177

error-handling objects,171-177
notify observers, 172
register observers, 171-172
unregister observers, 173-176

onerror event, 171-177

onmouse event, 149

onmousedown event, 194

onResponse method, 160, 233-235

onValidation method, 129

opacity, modifying, 87

operators, new, 42-43

optimization

accordians
creating objects, 104-107
panel objects, 107-111
XML, 101-104

applications, 6
components, 254
content type to text/XML, 241
CSS, 36-38
Data Reflection patterns, 182-183
elements, 84
histories, 191
HTTP, 16-17
IE Developer Toolbar

disabling caches, 68
installing, 68

navigating DOMs, 68-70
viewing, 70

interfaces, 6
JSON, 29-32
objects, 158-161, 172
panel objects, 111
passwords, 246
security, 255
TreeManager, 116
XHR, 245

asynchronous data transfers, 14
creating, 11-13
HTTP status codes and headers,

16-18
ready state, 14-15

XHTML, 33-36
XML

attributes, 21
CDATA, 22-23
elements, 20
JSON, 27-32
parsing, 23-27

overwriting properties, 52

P
panels, 101-110

configuring, 111
instantiation, 108

parsing

actions,120
items, 31
JSON, 30-32
responses, 27
rows, 144
XML, 23-26

PasswordManager object, 247

267PasswordManager object

http://lib.ommolketab.ir
http//lib.ommolketab.ir

passwords

adding, 248
creating, 246-248
formatting, 246
requests, 247-249
security, 245
setting, 249
verifying, 250-251
unique, 247

patterns

DataReflection
creating, 179-183
formatting, 182-183
synchronizing, 179-181

design, 254
Multi-User, 181
MVC, 165
notify observers, 169
Observer

creating error-handling objects,
170-177

notify observers, 172
register observers, 171-172
unregister observers, 173-176

register observers, 169
Singleton. See Singleton patterns
usability

design, 206-208
errors, 202-204
feedback, 205-207
JavaScript, 202
viewing, 202-204
warnings, 202

PHP

databases, 212-227
data grids, 215
Email.class.php file, 219

properties

childNodes, 23
CodeFile, 231
creating, 51-54
innerHTML, 25, 117, 205
isUpdating, 159
overwriting, 52
objects, 46
protection, 52-53
responseText, 25, 30, 67
responseXML, 25, 30, 67
XHR objects, 12

protection, properties, 52-53

protocols. See HTTP

prototypes, instances, 50

pseudo objects, 42. See also objects

Q-R
queries, HTTP, 238

ready state, 15, 25, 57-58

readyStateChange event handler, 14

register observers pattern, 169

registration, 136-139

removeChildren method, 86, 215

rendering GUIs, 117-121

representations, JSON, 28

request method, 230

requests

ColdFusion, 234
engines, 62-63
HTTP, 18
passwords, 247-249
sending, 14
updaters, 59
wrappers, 56

268 passwords

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XHR, 7-13
XML, 103-104

require statements, 213

responses

elements, 20
JSON, 28
parsing, 27
static, 254
updaters, 60
wrappers, 59
XHTML, 33-36
XML, 19-21

CDATA, 22-23
elements, 20
JSON, 28-32

responseText property, 25, 30, 67

responseXML property, 25, 30, 67

rolling out of/over rows, 149

rows

design, 151
parsing, 144
rolling out of/over, 149

runtime errors, 65-67

S
Safari Enhancer

Console, 71
debugging, 70-71
installing, 71
tools, 70

save method, 187

SearchUser method, 232

security

encryption, 248
holes, 245-246
optimizing, 255

passwords, 245
troubleshooting, 245

sending

email, 217, 221
requests, 14

server-side, 241

servers

ASP.NET, 230
clients, 132-135
ColdFusion, 233-236
databases, 229-233
serviceConnector.cfm, 234
serviceConnector.php file, 238

setTimeout method, 183

setting passwords, 249

Singleton patterns, 82, 158-162

sorting, DragDrop objects, 192-199

startDrag method, 195

state, ready, 15, 25, 57-58

statements

include, 213
require, 213

static responses, 254

status codes, 96. See also HTTP

stopDrag method, 198

storing ids, 119

strings, 96

styles, 151. See also creating; CSS; for-
matting

synchronization, DataReflection patterns,
179-181

syntax, JSON, 28-29

T
tags

CDATA, 102
XML, 20. See also XML

269tags

http://lib.ommolketab.ir
http//lib.ommolketab.ir

threads, email, 216

titles

accordian, 110
adding, 152
categories, 143

toggle method, 106, 121

toggleImage method, 116, 119

tools

FireBug
command line, 73
inspecting elements, 76
installing, 72
levels of logging, 76
logging messages, 75
viewing XHRs, 78-80

Safari Enhancer, 70
installing, 71
JavaScript Console, 71

translations, ready state, 15

traverse method, 118

TreeManager objects, 115-116

trees

iterating, 121
objects, 117
views

adding style, 122-123
components, 117, 122-123
GUIs, 117-121
responses, 115-117
structure of, 113-115
styles, 122-123

unique ids, 119
troubleshooting

engines, 253-255
security holes, 245

U
unique ids, trees, 119

unique passwords, creating, 247

unregister observers, 170, 175

Update method, 159

updaters

AjaxUpdater, 158
creating, 59
requests, 59
responses, 60

updating databases

arrays, 237-238
JSON, 240
XML, 240

usability patterns

design, 206-208
errors, 202-204
feedback, 205-207
JavaScript, 202
viewing, 202-204
warnings, 202

users

registering, 138
verifying, 135-136

UserValidation object, 133

UserValidator object, 131

Utilities object

creating, 81-86
CSS, 36-38
debugging, 83
engines, 81-87
extending engines, 81-87
getElement method, 109
instantiation, 81
JavaScript, 82

270 threads

http://lib.ommolketab.ir
http//lib.ommolketab.ir

V
validate method, 128

validation

clients, 125-134
connections, 132-134
constructors, 134-135
creating objects, 127-128
overview of, 125-127
registering user information,

136-139
user input, 128-131
verifying user information, 135
visual feedback, 131-132

values

categories, 26
folders, 121
ready state, 15

verifying

passwords, 250-251
user information, 135-136

viewing

DataGrid objects, 145-150
DataRow objects, 147
debugging, 78-80
Historian object, 189
IE Developer Toolbar, 70

views, trees, 115-123

W
web sites, configuring panel objects, 111

wrappers

customizing, 55-59
ready state, 57-58
requests, 56
responses, 59
XHRs, 56

X-Z
XHR (XMLHttpRequest), 5, 18, 104

asynchronous data transfers, 13-14
formatting, 245
HTTP status codes and headers,

16-17
properties, 12
ready state, 14-16, 57-58
requests, 7-13
wrappers, 56

XHTML (Extensible HTML)

JSON, 34
responses, 33-36
XML, 34

XML (Extensible Markup Language)

adding XML to, 22
architecture, 101-102
declaring, 241
email, 23
formatting, 21
Historian object, 190
indexes, 24
JSON, 29-32
parsing, 23-26
requests, 103-104
responses, 19, 21, 27

CDATA, 22-23
elements, 20
JSON, 28-32

XHTML, 34
XML DOM (XML Document Object

Model), 5

XMLHttpRequest. See XHR

271XMLHttpRequest

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

