
Practical Development Environments

By Matthew B. Doar

...

Publisher: O'Reilly

Pub Date: September 2005

ISBN: 0-596-00796-5

Pages: 328

Table of Contents | Index

This book doesn't tell you how to write faster code, or how to write code with fewer memory leaks,
or even how to debug code at all. What it does tell you is how to build your product in better ways,
how to keep track of the code that you write, and how to track the bugs in your code. Plus some
more things you'll wish you had known before starting a project.

Practical Development Environments is a guide, a collection of advice about real development
environments for small to medium-sized projects and groups. Each of the chapters considers a
different kind of tool - tools for tracking versions of files, build tools, testing tools, bug-tracking
tools, tools for creating documentation, and tools for creating packaged releases. Each chapter
discusses what you should look for in that kind of tool and what to avoid, and also describes some
good ideas, bad ideas, and annoying experiences for each area. Specific instances of each type of
tool are described in enough detail so that you can decide which ones you want to investigate
further.

Developers want to write code, not maintain makefiles. Writers want to write content instead of
manage templates. IT provides machines, but doesn't have time to maintain all the different tools.
Managers want the product to move smoothly from development to release, and are interested in
tools to help this happen more often. Whether as a full-time position or just because they are
helpful, all projects have toolsmiths: making choices about tools, installing them, and then
maintaining the tools that everyone else depends upon. This book is especially for everyone who
ends up being a toolsmith for his or her group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Practical Development Environments

By Matthew B. Doar

...

Publisher: O'Reilly

Pub Date: September 2005

ISBN: 0-596-00796-5

Pages: 328

Table of Contents | Index

 Dedication

 Copyright

 Preface

 What This Book Is About

 What This Book Is Not About

 Who Should Read This Book

 What's Inside

 Style Conventions

 Using Code Examples

 Safari Enabled

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction

 Section 1.1. Developing Software Products

 Section 1.2. Open and Closed Software Development

 Section 1.3. Dirty Secrets of Software Projects

 Section 1.4. What Does "Practical" Mean?

 Section 1.5. A Personal Tools Quiz

 Chapter 2. Project Basics

 Section 2.1. The Parts of a Project

 Section 2.2. Software Configuration Management

 Section 2.3. Building Software

 Section 2.4. Testing Software

 Section 2.5. Tracking Bugs

 Section 2.6. Writing Documentation

 Section 2.7. Releasing Products

 Section 2.8. Maintenance

 Section 2.9. Recommended Tools

 Chapter 3. Project Concepts

 Section 3.1. Preconstructed Development Environments

 Section 3.2. Why Integration Is Helpful

 Section 3.3. Why Automation Is Vital

 Section 3.4. Automation Environments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 3.5. Labeling Builds

 Section 3.6. Naming Projects and Machines

 Section 3.7. Choosing New Tools

 Section 3.8. Internationalization and Localization

 Section 3.9. Authentication, Authorization, and Accounting

 Chapter 4. Software Configuration Management

 Section 4.1. Why Do I Need SCM?

 Section 4.2. What SCM Is and Is Not

 Section 4.3. Drawbacks of SCM

 Section 4.4. A Typical Day's Work with SCM

 Section 4.5. SCM Annoyances

 Section 4.6. SCM Tools

 Section 4.7. Comparison of SCM Tools

 Section 4.8. Wider Uses of SCM

 Section 4.9. Checklist

 Chapter 5. Building Software

 Section 5.1. How Software Gets Built

 Section 5.2. Build States: Virgin, Up-to-date, Changed, Interrupted, Clean

 Section 5.3. Build Dependencies

 Section 5.4. Common Build Problems

 Section 5.5. Build Tools

 Section 5.6. Comparison of Build Tools

 Section 5.7. Changing Your Build Tool

 Section 5.8. Checklist

 Chapter 6. Testing Software

 Section 6.1. Different Kinds of Tests

 Section 6.2. Why Automate Your Tests?

 Section 6.3. Evaluating Test Environments

 Section 6.4. Test Environments

 Section 6.5. Types of Test Tools

 Section 6.6. The Difficult Parts of Testing

 Section 6.7. Checklist

 Chapter 7. Tracking Bugs

 Section 7.1. Tool Requirements

 Section 7.2. Bug Tracking Tools

 Section 7.3. Bug Tracking Annoyances

 Section 7.4. Integrating with SCM Tools

 Section 7.5. Checklist

 Chapter 8. Documentation Environments

 Section 8.1. Technical Documentation

 Section 8.2. Documents and SCM

 Section 8.3. File Formats for Documentation

 Section 8.4. Documentation Environments

 Section 8.5. More File Formats

 Section 8.6. Automated Production of Documentation

 Section 8.7. Bad Ideas for Documentation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 8.8. Internal Project Documentation

 Section 8.9. Checklist

 Chapter 9. Releasing Products

 Section 9.1. Overview

 Section 9.2. Before the Release

 Section 9.3. Creating the Release

 Section 9.4. Packaging Formats

 Section 9.5. Installation Tools

 Section 9.6. Installation IrritationsShip Happens!

 Section 9.7. After the Release

 Section 9.8. Checklist

 Chapter 10. Maintenance

 Section 10.1. Maintaining an Environment

 Section 10.2. What Is Product Maintenance?

 Section 10.3. Product Maintenance Tasks

 Section 10.4. Product Maintenance and Development Environments

 Section 10.5. Cleaning Up Your Environment

 Section 10.6. Checklist

 Chapter 11. Project Communication

 Section 11.1. Tools for Communication

 Section 11.2. A Project Web Site

 Section 11.3. Different Areas for the Project Web Site

 Section 11.4. Creating the Web Site

 Section 11.5. Avoiding Content Rot

 Chapter 12. Politics and People

 Section 12.1. The Role of the Toolsmith

 Section 12.2. When Good Projects Go Bad

 Section 12.3. Awkward People

 Section 12.4. Twisted Communications

 Section 12.5. Commit Rights

 Section 12.6. Automation Discipline

 Section 12.7. What Do Developers Really Want?

 Section 12.8. An Upbeat Ending

 Appendix A. How Tools Scale

 Section A.1. Scaling of Compilers

 Section A.2. Scaling of Build Tools

 Appendix B. Resources

 Section B.1. Online

 Section B.2. Magazines

 Section B.3. Books

 Section B.4. Conferences

 Section B.5. University and College Courses

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dedication

To all the toolsmiths who haven't yet found a name for what they do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. The Theory in Practice series
designations, Practical Development Environments, and related trade dress are trademarks of
O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
A good technical environment for developing your software can make or break a project, or even a
company. What goes into a good technical development environment? This book contains helpful
answers to that question and describes some of the current tools that can help provide a good
software development environment. Areas covered include: version control, build tools, testing tools,
bug tracking systems, documentation, release, and maintenance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What This Book Is About

A development environment is the whole collection of tools that people use to create software, not
just a few tools that are specific to a particular programming language. Examples of these tools are
version control tools such as CVS, build tools such as make, and bug tracking tools such as Bugzilla.
Practical development environments are the environments that are really used by successful
projects, and are consequently reused for many different projects. Just as there is a wide range of
productivity for different programmers, there is a wide range of productivity for different projects,
and that's often due to differences in development environments.

This book is a guidea collection of advice about real development environments. Each of the core
chapters considers a different kind of tool: tools for tracking versions of files, build tools, testing
tools, bug tracking tools, and tools for creating documentation. Each chapter discusses what you
should look for in each kind of tool and what to avoid, and also describes some good ideas, bad ideas,
and annoyances for each development activity. Specific instances of each type of tool are described in
detail so that you can decide which ones you want to investigate further.

The tools described in this book are mostly intended for small to medium-sized projects, up to around
200 developers. However, the concepts and concerns described in each chapter are equally valid for
large projects. One of the key ideas throughout this book is to automate wherever possible, and this
becomes even more important as a project grows.

Finally, this book recognizes that some progress is better than none, and encourages you to take
even the smallest steps to improve your own development environment.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What This Book Is Not About

This book is not about a set of abstract concepts, patterns, or a single way of doing things. It is a
collection of practical, commonsense advicethe kind of ideas that you wish you had thought of before
the project began. These ideas and concerns are valid for whatever programming methodology or
programming language you use.

This book doesn't tell you how to write faster code, how to write code with fewer memory leaks, or
even how to debug code. It does tell you how to compile your product faster, how to keep track of all
the code you write, and how to track the bugs in your code. You will need to refer to other places for
all the specific information about each tool. For example, this book doesn't provide detailed steps on
how to set up a Subversion server.

One topic that is not covered in this book is IDEs (integrated development environments), which are
editing tools (often for specific languages) with integrated access to tools such as the ones that are
described throughout this book. The subject of editors and IDEs deserves an entire book to itself.

Although this book does describe many different tools, it's not simply an encyclopedia of tools. That
kind of book or web site is useful for comparisons, but what is often more useful is information about
what other projects are using, and how their tools are used. There are also many suggestions
throughout the book about where to look for related tools, including Appendix B.

Nor is this book about developing hardware, though plenty of the advice and tools are applicable to
hardware development environments.

Finally, this is not a book that uses words such as paradigm and ontology. In this book, companies
and projects release products; they don't "optimize passions for agile solutions." And bugs are called
bugs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Who Should Read This Book

Much of this book is about choosing and using different tools to provide a satisfying software
development environment. The people who do this are acting as toolsmiths for their software
projects, whatever their official role is within the project. Sometimes the toolsmiths are developers;
sometimes they are testers, managers, or technical leaders; sometimes they work in an IT group.
Sometimes their main role is as an actual toolsmith for the project. The role of a toolsmith, whether
by accident or design, is discussed further in Chapter 12.

As someone interested in this book, you probably fall into one of the following categories:

Tools, build, and release teams

The toolsmiths who implement the software development environments for projects. You have
probably come across many of the issues discussed in the book, but some are new.

Developers and testers

The people who use the development environment but who want to write code, not maintain
makefiles. Many developers and testers contribute to project environments, often through
frustration with their current environment. This book should give you ideas for new tools and
directions for your development environment.

Technical writers

Again, people who use a development environment but who want to write words, not maintain
templates. Likewise, this book should give you ideas for new tools and directions for your
development environment.

Managers

People who often first see long-term productivity problems with the current environment. Such
longer-term issues are described in the book, as are many ideas for different tools.

System administrators/IT staff

You provide the machines for all of the above groups but often don't have the time to maintain
lots of different tools for other people. Still, you have to know what project members need and
want in their environments. Many of the tools described in this book can also be used for your
own IT environments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What's Inside

Chapter 1

Describes the different activities involved in producing a piece of software; open and closed
software development; and some classic situations that arise when developing software
products.

Chapter 2

Describes the different areas of software development: SCM (software configuration
management), building software, testing, tracking bugs, writing documentation, releasing
products, and maintenance.

Chapter 3

Discusses the concepts such as integration and automation that are used throughout a
development environment. Preconstructed development environments such as SourceForge are
also discussed in this chapter.

Chapter 4

Discusses how to use SCM tools to keep track of different versions of files.

Chapter 5

Discusses tools for building software from source files.

Chapter 6

Discusses testing software.

Chapter 7

Describes different bug tracking tools, what to look for in them, and what to avoid.

Chapter 8

Describes some of the more common documentation tools and how they are used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9

Discusses the process of releasing software.

Chapter 10

Discusses the problems of maintaining your environment, and also how development
environments can help with the maintenance of older software products.

Chapter 11

Discusses ways to improve communication within your project.

Chapter 12

Offers a standalone collection of observations about what a toolsmith does for a development
environment, and some other decidedly nontechnical aspects of software development
environments.

Appendix A

Discusses how tools scale as a project grows.

Appendix B

Lists sources of information about software tools and development environments.

Note that prices where quoted are in U.S. dollars as of 2005 and should be used for guidance only.
Please contact the vendor directly for an accurate price. The URLs in this book are correct as of
August 2005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Style Conventions

Items appearing in the book are sometimes given a special appearance to set them apart from the
regular text. Here's how they look:

Italic

Used for book titles, email addresses, URLs, filenames, and Unix tools such as gdb. Also used to
emphasize text and to introduce new terms.

Constant width

Used for literals, functions, labels related to builds (e.g., branch names), excerpts of code and
command-line interaction, and XML/HTML markup.

Constant width italic

Used for replaceable parameters and variables.

Constant width bold

Used within command-line excerpts to highlight text typed by the user.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Practical Development Environments by Matthew B. Doar.
Copyright 2005 O'Reilly Media, Inc., 0-596-00796-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/practicalde

To remark on or ask technical questions about this book, send email to:

bookquestions@oreilly.com

You can sign up for one or more of our mailing lists at:

http://elists.oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/practicalde
http://elists.oreilly.com
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

I have a wonderful familymy beloved wife, Katherine, and my dear children, Lizzie, Jacob, and
Lukewho all supported me in writing this book and then left me alone, except when they didn't. My
mother, Susan, is all I could ask for, and much more. May the love of God rest and remain with you
always, and thank you.

I have also enjoyed numerous conversations with insightful colleagues and friends, especially Bill
Willcox, Steve Colyvas, and the brothers Josh and Alex Siegel. My father-in-law, Joe Baginski, had an
amazing 42 years of relevant development experience with IBM, and I don't think there's much in
this book that will catch him unawares. I particularly appreciated two years of carpooling with Tim
Kolar, Lol Grant, and Derek Godfrey. They finally convinced me that not everything has to have an
analogy, and I believe this book feels better for that, metaphorically speaking. I also want to thank
my colleagues at Trapeze Networks and Venturi Wireless for their understanding when I was
sometimes mentally absent while writing this book.

At O'Reilly, I am grateful to Mike Hendrickson for taking on this unexpected book, and to my editor
Andrew Odewahn, who has opened my eyes to the wonder that is professional editing. My thanks to
Andrew Savikas for describing the O'Reilly documentation environment, and to Mary O'Brien, Rob
Romano, and Abby Fox for all their work in making this book what it is.

My thanks to Hugh Doar, Marie Godfrey, Jeff Jahr, Karl Klashinsky, Peter Miller, and Dan Shahin for
their helpful comments on different parts of the book. Thanks to Steve Reinheimer too for his help
with the reviews. I'm particularly grateful to Mark Baushke, Steven Knight, and Steve Loughran for
their extensive comments, which covered the whole book. Any errors that remain are, of course,
solely mine.

As I was researching this book, I was struck by the differences between 2005 and the early 1990s
when I was researching material for my PhD thesis. There were a few specialized research sites
available then, but not very many. Then! Yahoo! arrived! closely followed by Gooooogle. While by no
means all-seeing, Google certainly found plenty of opinions about everything in this book, so thanks
to the people who created and maintain it.

For the necessary stimulants to keep me going when writing the book was hard, I'd like to thank the
Coca-Cola Company for its caffeine, the plantations of Arturo Fuente for their nicotine, and the
Laphroaig distillery for its alcohol.

Writing a book is an adventure. To begin with, it is a toy and an amusement. Then it becomes a
mistress, then it becomes a master, then it becomes a tyrant. The last phase is that just as you
are about to be reconciled to your servitude, you kill the monster and fling him to the public.

Winston Churchill

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Introduction
Projects have Environments in which People produce Products.

"Pithy, but painful," was a friend's wry reply when I asked his opinion of the above epigraph as a
summary for this book. At a very high level, it really does describe the creation of software. The key
word is environments, which in this book refers to all the tools used to produce software and how
they are used, but not the details of how the software is written, or even what language the software
is written in. For this book, an environment includes the software configuration management (SCM)
tools, build tools, testing and bug tracking tools, and the release and maintenance processes. All
these areas are covered in subsequent chapters of this book.

This chapter begins with an overview of how a software product is typically created. If you are
involved in this process from day to day, you will probably be familiar with most of the steps. The
amount of work in each step is different for different projects, groups of people, or companies, but all
the steps appear in some guise. This chapter also briefly describes the difference between open and
closed software.

The chapter then continues with some uncomfortable software development mistakes that most
developers have stumbled across; avoiding these costly mistakes justifies reading the rest of this
book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Developing Software Products

Figure 1-1 shows the different activities that are generally involved in creating a software product,
though it's only a loose description of what really happens when developing software. The activities
probably don't occur in the same order in your experience, and each one is often repeated many
times as a product is developed and maintained. You can probably also add some other arrows from
experience with different projects that you've worked on. Some projects may not even have had all
their activities connected, which is one of the things that a good development environment can help
you with.

Figure 1-1. Typical activities involved in creating software products

Large or small, formal or more relaxed, open or closed (see Section 1.2, later in this chapter), all
software projects have activities that resemble those shown in Figure 1-1. A short description of each
activity follows:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Product marketing

This goes by many names, but whatever it is called, it always involves creating the ideas for
the product. A subtle blend of technical knowledge about what has been done and what might
be possible is combined with some imaginative flair for what might actually be wanted by
potential customers. This is different from general marketing, which is described below.

Gathering requirements

The process of collecting information to clearly communicate to everyone in the project exactly
what the product is supposed to do. Some different ways that this information can be described
include documents, prototypes, and examples of how the product would be used.

Writing functional specifications

Functional specifications describe how the product can be created to fulfill the requirements.

Implementation

The gritty edge, where the product is actually created. A surprisingly small amount of the total
time to develop a product is usually spent here.

Testing

This is where the implementation is compared with the requirements. A surprisingly large
amount of the total time to develop a product is usually spent here, and yet this is commonly
the first thing removed from busy schedules.

Documentation

Documentation describes how to use the product. Internal documentation may also describe
how to maintain the product for future developers. Often written by a group called something
like Technical Publications.

Release

The process of shipping the product to customers and making sure that the product will work
properly outside the environment in which it was developed.

Marketing

Creating and controlling the market for the product. It also involves changing the product to
suit the market, which connects back to the product marketing stage.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sales

Persuading customers to use the product, often with the expectation that they will pay money
for it.

Support

Helps the customers use the product when the documentation doesn't answer their questions.
Support also provides a contact point for any licenses needed to use the product, and may
cover training as well.

Maintenance

If the product is commercial or is widely used, then as the world around it changes, the product
will need work to keep it functioning properly and hence producing more revenue and happy
customers.

End of support

Eventually no one wants to buy or use the product, not even the developers. Customers need
to be told when product support will end, and the whole development environment and source
files need to be carefully archived.

Some projects have particularly small or nonexistent activities, or the different activities may be
connected very differently. For instance, the requirements document in a small startup company can
often be the result of a late-evening "wouldn't it be cool if..." session. A large project with hundreds
of developers may have rigid requirements, with regular quarterly meetings to discuss changes to the
design documents. Some activities not mentioned above include those performed by management, IT
staff, and the legal departmentall necessary overhead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Open and Closed Software Development

Traditionally, software development is closed. This means that whether or not users are charged for
the actual product, the source files that are used to create the product are confidential. Sometimes
you can purchase the source, but that's extra.

Open software development refers to a number of different ideas about software development. The
best known one is that the source files for the product are openly and freely available, so customers
can change the source files and then rebuild the product themselves, at least in theory. The source
files may also be free, as in costing nothing. Many open source projects also allow anyone to
redistribute the source files, subject to the requirement that if you make changes, you must make
those changes publicly available. If you continue to distribute the changes you make to a product,
then you may have produced a fork of the project, and the product will have become two different
products. Forks are an accepted part of open software development.

Examples of some well-known open source software products are shown in Table 1-1.

Table 1-1. Major open software projects

Software URL Description

Apache http://www.apache.org
Most of the world's web sites run on the Apache web
server.

GCC http://gcc.gnu.org
The most widely used compiler for C and other
languages.

GNU/Linux[1] http://www.linux.org
The best-known open source Unix-based operating
system.

Mozilla http://www.mozilla.org
The Firefox web browser and many other Mozilla projects
that grew out of the original Netscape browser.

Perl http://www.perl.org
Powerful scripting languages, also known as dynamic
languages.

Python http://www.python.org

Tcl http://tcl.sourceforge.net

[1] The term GNU/Linux is generally used instead of Linux throughout this book, since almost every Linux distribution is shipped

with GNU tools.

The idea of open source development was pioneered by the Free Software Foundation, or FSF
(http://www.fsf.org), founded by Richard Stallman in 1984; it has produced hundreds of open source
products under the banner of the GNU Project (http://www.gnu.org). The FSF prefers to use the

http://www.apache.org
http://gcc.gnu.org
http://www.linux.org
http://www.mozilla.org
http://www.perl.org
http://www.python.org
http://tcl.sourceforge.net
http://www.fsf.org
http://www.gnu.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

term free rather than open for this kind of software.

The Open Source Initiative, or OSI (http://www.opensource.org), was founded in 1998 and describes
itself as a marketing program for free software. The OSI tends to distance itself from some of the
philosophical positions of the FSF. As might be inferred from the name, the OSI uses the term open
for this kind of software. Eric Raymond is one of the best-known people associated with the OSI.

You may also come across the compromise acronym F/OSS for "free/open
source software," or the terms gratis for "free as in beer" (no cost) and libre for
"free as in freedom."

There are a confusing number of different licenses for open source software. The best-known one is
the GNU General Public License (GPL) from the FSF. The most common confusion about the GPL
seems to be whether using source files that were distributed under the GPL means that the rest of a
product's source files must be made publicly available. It all seems to depend on how the GPL-
licensed source files are used by the proprietary part of the product. I am not a lawyer, but there's a
useful book on this subject by someone who is: Understanding Open Source and Free Software
Licensing, by Andrew M. St. Laurent (O'Reilly).

Regardless of whether a project is open or closed, each of the activities listed earlier in Section 1.1 is
present. Customers for closed software are people and companies who have paid money to use the
product. Customers for open software are people and companies who use the product, and they may
well pay for support. Both kinds of software have to track the different legal licenses used for
different parts of the product. Development environments for closed and open software projects often
differ only in how much money will be spent on tools.

Although this book contains many references to open source projects and open source tools, creating
a good development environment is about choosing the most appropriate tools. Both closed and open
source tools are discussed in this book.

http://www.opensource.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Dirty Secrets of Software Projects

Software projects can fail for many reasons, and one of them is a bad development environment.
Here is an informal list of some frustrations and embarrassing mistakes commonly made in producing
software. None of these have anything to do with failures caused by things like missing specifications,
specifications changing over time (the dreaded "feature creep"), poor estimates of how long a project
will take, or even whether the problem being solved is a really difficult one. Each of these problems is
due to the tools or processes of the environment in which the software was produced:

We can't rebuild the same product that we shipped to the customer, so we'll ship her the latest
version, just to be safe.

Building from scratch (also known as a clean build) each time is often the only way to get the
product to build reliably. This takes so long that the developer goes off and does something
else. Consequently, every developer thinks that his build tool is too slow.

Testers, technical writers, and managers can't build the latest version of the product. Even if it
has already been built for them by someone else, it's unclear where to find the latest version.

Fixes for known bugs are not released, because it's too hard to properly test the required
changes and they may break other parts of the product.

Everyone finds the bug tracking tool awkward to use.

The environment used by developers and the one in which the product is used by customers are
different in some important ways, so the developers never actually see problems the same way
that a customer does.

Getting a product ready to release takes so long that any late-arriving changes don't get tested
or documented.

The wrong set of bits gets shipped to the customer. This one should make anyone involved in
developing software wince, but it does happen.

Nobody knows when to remove a feature from a product, because no one knows whether the
feature is actually being used.

Communication between groups happens by reading printouts left at the printer nearest to the
coffee machine.

Sadly, the list could go on and on. Its contents are obviously subjective, but each entry has
happened in real projects. The good news is that none of these Dirty Secrets are inevitable and they
can all be eliminated with careful attention to the development environment. The promise of this
book is that you can stop these kinds of embarrassments from happening to your project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. What Does "Practical" Mean?

What makes something practical? The title of this book strongly suggests that its contents are about
practical solutions to common problems in development environments. Here is what practical means
for the tools used in development environments:

Available (whether open or closed source)

Appropriately priced (for open software, this often means no cost)

Usableinstallation and configuration to match the local development process is possible, the tool
doesn't crash regularly, there aren't too many bugs, and documentation is adequate

Can eventually produce software for the platforms used by the customer

On the other hand, impractical tools for development environments are those that are:

Deadno longer sold or supported

Too expensive to even consider spending any time evaluating

Tortuous to get working or configured as needed, or impossible to maintain and upgrade

Abstract frameworks, conceptual models, and design patterns are all useful for categorizing solutions
to problems encountered in development environments, but the aim of this book is to provide ideas
that are more practical. The basic areas of projects that are summarized in the next chapter are
ideas that are applicable to all software projects, whatever the product's purpose is and whoever the
customers are.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. A Personal Tools Quiz

To make the ideas in this book seem more personal, try answering the following questions
(honestly):

Name the biggest mistake that you, personally, made in each of your last three projects.
Program design doesn't count; tools and processes do.

Name the biggest mistake you think someone else made in your last three projects.

Imagine that you could totally replace just one software tool that you use daily. Which one
would it be, and why?

Which tool is so good that you would have to be seriously bribed to be persuaded to stop using
it?

Which part of producing software just seems to take much longer than it should? Do you feel
that you really understand what goes on in that part?

Your answers should give you some good ideas about which parts of this book will particularly
interest you. It was questions like these, and a lack of written guidance on addressing the issues
raised by their answers, that made me want to write this book in the first place.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Project Basics
This chapter briefly describes the different parts of a project and then introduces the main activities
invoved in software development and the corresponding tools that make up a development
environment. The activities are software configuration management (SCM), building software, testing
software, tracking bugs, writing documentation, releasing products, and maintenance. This chapter
ends with some personal recommendations of tools for three different types of development
environments.

Whether you are starting a project from scratch or looking to improve an existing development
environment, my opinion is that you should consider the different parts of the environment in the
same order used in this chapter and in this book. That is, SCM is the most important part of an
environment; next in importance are the build tools, then testing and bug tracking, and so on. This is
because your choice of SCM tool is likely to have the largest impact on your environment. This is not
to say that any of the parts are unimportant, just that improving how your SCM tool and build tool
are used will probably improve your environment more than improving the bug tracking tool or
release process. Similarly, if you are creating a new project, an SCM tool should be chosen before a
bug tracking tool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. The Parts of a Project

Figure 2-1 shows the different parts of a single project. This project has source files that become
products, and those products have customers who use the products. The project has project
members (developers, testers, technical writers, toolsmiths, managers, and product marketing staff),
who are also customers for their own products. The development environment for this project is
made up of both the tools and the local processes and policies for using those tools.

Figure 2-1. Different parts of a project

If there are many projects within an organization, then each project will have some areas that
overlap and some that don't. For instance, two projects may have different policies about how to use
the same bug tracking tool. The processes and tools are chosen to work with the source files but
need to be able to operate even when the same source files are used by different projects with
different policies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Software Configuration Management

SCM, the subject of Chapter 4, is the ability to keep track of different versions of the source files that
are used to create software products. Even when just one person is changing these source files, it's
very useful to be able to see how a file evolved over time or even to undo some changes that in
hindsight you regret making. As projects grow in size and complexity, effective SCM tools become
vital. To put it another way, projects that don't use an SCM tool won't grow successfully.

SCM tools also provide a good way to share your work with other people in a controlled manner.
Rather than just using a common location such as a directory to exchange files with other people,
with an SCM tool you can make sure that interdependent files are changed together and you can
control who is allowed to make changes. SCM tools also allow you to save messages about what
changed in the source files, and also why the files were changed, which can be used to work out
which releases a particular bug was fixed in.

Many SCM tools provide ways to support one or more existing releases of a product, while still
allowing the team to develop the next release using different versions of the same source files. For
instance, after a product is released, all the source files for that release can be marked (or even
branched) to allow future bug fixes for that release, while the next release is developed
independently.

Chapter 4 describes all of the above in more detail and examines seven of the most commonly used
or promising SCM tools: CVS, Subversion, Arch, Perforce, BitKeeper, ClearCase, and Visual
SourceSafe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Building Software

Software products are built from their source files, also known as source code, which is often the
collection of files stored in an SCM tool. A build tool uses the source files and follows some specified
build rules to run other tools such as compilers to create the product from the source files. These
build rules are usually specified in configuration files known as build files, which are part of the source
files for a product.

Build tools have to be aware of which products can be built from a given set of source files and other
files such as libraries. They also have to know which parts of the product depend on which other
parts, so that if one source file is changed by a developer, then all the other affected parts will also
be rebuilt. Build tools should be able to execute the correct commands for building the same product
on different platforms, while hiding the idiosyncrasies of each platform from the product's developers
as much as possible. Build tools are also used to generate executables that run on platforms other
than the platform that the build tool is actually run on; this is known as cross-compiling.

Chapter 5 describes what to look for in a build tool and examines some commonly used build tools
such as make, Ant, Jam, and SCons in more detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Testing Software

Testing a product spans the range from individual developers writing unit tests that check small parts
of an application, to system tests that use the whole application, to customers giving feedback about
how they really want the product to work. Chapter 6 focuses on testing environments for unit tests
and system tests.

One of the cornerstones of the XP (extreme programming) methodology is the importance of
extensive unit tests, written even before the functionality that they test has been written. No matter
what your methodology or style of programming is, a healthy test suite is good for reassuring
yourself that your latest changes haven't broken some other distant part of the product.

Of course, running all those different tests and interpreting their results quickly becomes tedious; if
testing is not automated, it is often postponed and then finally abandoned. So it's important when
developing and maintaining a product to have a test environment where tests can be added easily
and run easily, and where the test results can be clearly understood.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Tracking Bugs

Testing a product provides information about which parts of it are working and which are not. This
information needs to be made available to developers, other testers, managers, the people that
decide when a product is ready for release, and also to those who support a product. Bug tracking
tools are commonly used to do this. Bugs are sometimes referred to as issues, because they are
often requests for changes or some other category; some other terms, particularly defect and
incident, can have legal implications and are best avoided if possible. The term bug is used
colloquially throughout this book to refer to all these categories.

Bug tracking tools often store information about bugs in a database and then provide convenient
GUIs and command-line interfaces (CLIs) for adding information about bugs to the database,
changing the information recorded about bugs, and creating reports about different kinds of bugs. At
a minimum, a recorded bug has a description of the bug (what happened, what should have
happened) and an identifier that is unique for each different bug. Other information that is frequently
recorded with each bug includes who found it, the steps to reproduce it, who is working on it now,
which releases the bug exists in, and which releases it has been fixed in.

Many bug tracking systems define a number of states and allow each bug to be in just one state at a
time. This is intended to help guide the workflow of the team when they are working on different
bugs. For instance, a new bug may be in the Open state, then move to an Accepted state, then to a
Fixed state, and then to a Closed state. This is part of applying a change management process (see
Section 4.2) to how you want bugs to be fixed.

Tracking bugs is a lot more than just not forgetting what still needs fixing in a product. For good and
bad, it becomes a way to measure development and testing progress toward the next version.
Observing the numbers of bugs in different states over time can play a part in deciding when a
product is stable enough to ship. It is also a rather simplistic way to measure how busy individuals
arefor instance, by the number of bugs they have assigned to them. As such, bug totals often take
on a meaning far beyond a simple record of the problems in a project. Bug tracking tools can even
become a way to avoid communicating directly with other project members, as described in Section
12.4.

Chapter 7 discusses many more aspects of bug tracking and examines some of the more commonly
used bug tracking systems: spreadsheets, Bugzilla, GNATS, FogBugz, JIRA, and TestTrack.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. Writing Documentation

An ideal product is so transparent that it needs (almost) no documentation. Software products that
are as well-designed and well-implemented as this Platonic ideal are rare indeed, so documentation is
an expected part of all products. Whether the documentation is a simple README file, a large manual
that ships with the product, or interactive help available when the product is used, the contents still
have to be written by somebody, usually a technical writer.

Chapter 8 takes the viewpoint that the documentation is part of the product and that there are plenty
of similarities between writing software and writing documentation. For instance, large documents
are made up of smaller ones; different parts of a document depend on other parts of the document;
and both source code and natural-language documents can benefit from tools, whether they are
compiler warning flags or spellcheckers.

Another similarity between software and documentation is that both are transformed from one file
format into other file formats as part of being released. A source file is compiled to an executable. A
document is often written in one source file format (such as Microsoft Word or FrameMaker) and then
converted to another release format (such as HTML or PDF, Adobe's Portable Document Format) for
use by the customer. Some commonly used documentation formats are discussed in Section 8.3
(HTML, PostScript, and PDF) and Section 8.5 (TEX, Texinfo, troff, and POD).

A different aspect of documentation is when it is intended for use by a project itself. An example of
this is when the APIs (application programming interfaces) of different parts of a product are
documented to help other developers use them. There are a number of tools, such as Javadoc, to
help with this, and these are also examined in Section 8.8.

Chapter 8 also examines in more detail a variety of file formats and their related documentation
environments, including raw text, FrameMaker, XML in DocBook and OpenOffice, and Microsoft Word.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Releasing Products

Once a product has been developed, tested, and documented, it eventually becomes ready to
release. You want to release the software according to some predetermined plan. Too often,
however, products just escape into the hands of customers because no one considered issues such as
release numbers and license keys before releasing the product. Chapter 9 describes all of this.

With the increase in malicious software, assuring customers that the files they download are actually
the same as the ones that you released is becoming an essential part of releasing software products.
The use of digital signatures and checksums to help with this is discussed further in Section 9.2.8.

Since installing a product is often a customer's first experience of the software, and first impressions
count, the installation process is important. Chapter 9 also examines the most common packaging
formats and installation tools for a variety of platforms, as well as some common irritations with
installation tools and the installers that they produce.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. Maintenance

Maintenance of a product after it has been released takes up a large part of a product's life span.
Chapter 10 describes some typical product maintenance activities and how the tools in a development
environment can help you with them.

How to maintain a development environment is also discussed, including what kinds of things stop
working as an environment ages and how to know when to throw tools and files away.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.9. Recommended Tools

This section contains my personal recommendations for tools for development environments. The
recommendations are intended for projects with less than 1 million lines of source code and under
200 people involved in developing, testing, documenting, and releasing the product. The annual
budget for tools probably ranges from zero to $100,000. These choices are purely personal ones
made from the tools available in 2005, with no undue influences from any individual companies or
projects.

If you use a tool that you feel is much better than one of the tools I've
recommended, feel free to send me email about it via
bookquestions@oreilly.com. My own contact details are available at
http://www.pobox.com/~doar.

IDE recommendations are also welcome, but rants about editors (the
programs, not the people) are generally unproductiveuse one that does the job
for you, and learn it well.

If these recommendations are enough for you to make progress with a development environment,
that's great! Reading the sections about each tool later in the book is still a good idea to get some
more background, especially Section 3.7.

However, a development environment is more than just its tools. The discussions of the best
practices and annoyances of each area in the chapters that follow will help you use each of these
tools in a more productive manner.

2.9.1. Modern Environments

This list of tools is for environments that can afford the effort of using tools that are still themselves
being developed. Some reading of mailing lists and weblogs, and possibly some local development of
the tools by a toolsmith, may be necessary.

SCM tool

Subversion (Section 4.6.2) with FishEye (http://www.cenqua.com/fisheye)

Build tool

Ant (Section 5.5.4) for projects using Java©; SCons (Section 5.5.6) for most projects and
other languages

http://www.pobox.com/~doar
http://www.cenqua.com/fisheye
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Test environment

xUnit (Section 6.4.2)

Bug tracker

JIRA (Section 7.2.6)

Documentation

Anything that uses an XML source file format with an open DTD or schema; examples include
OpenOffice and DocBook (Section 8.4.3)

2.9.2. Classic Environments

This list of tools is for environments that want to use tools that have been stable for a number of
releases and have an extensive support network. These are the tools that you can buy more than
one book about.

SCM tool

CVS (Section 4.6.1) with FishEye (http://www.cenqua.com); alternatively, Perforce (Section
4.6.4)

Build tool

Ant (Section 5.5.4) for projects using Java; otherwise, make (Section 5.5.2)

Test environment

xUnit (Section 6.4.2)

Bug tracker

FogBugz (Section 7.2.5), but only if the preconfigured settings work for you; otherwise,
TestTrack (Section 7.2.7)

Documentation

FrameMaker (Section 8.4.2)

2.9.3. Future Environments

http://www.cenqua.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a list of how I foresee development environment tools changing in the next five years. Most of
these tools don't exist yet, though the foundations for them certainly do. An important question for
future development environments will be how well each of the tools is integrated with the other
toolsSCM with bug tracking is one exampleand how much of the process of using them can be
automated.

SCM tool

BitKeeper (Section 4.6.5) or Arch (Section 4.6.3), but with better integration with bug tracking
systems and a clearer view of recent changes.

Build tool

SCons (Section 5.5.6), with mappings from other languages so that you can write Perl or Java
build files as well as Python build files. Support for parallel builds on multiple machines as well.

Test environment

More extensions to the xUnit architecture (Section 6.4.2) to support system tests and historical
reports of test results.

Bug tracker

A bug tracking system based on an SCM tool, so that every single change to the whole system
is recorded. Better built-in support for a bug that appears in multiple releases of a product is
also long overdue. Better integration with build tools, so that it's easier to know which bugs
were fixed in which releases. Support for changing bugs while disconnected from a network
could also be useful.

Documentation

I would hope that a real typesetting tool such as TEX and all the concepts of literate
programming will come back into style one day. Until then, anything that uses an XML source
file format with an open DTD or schema.

Release

Better automatic deployment of software products, along with any other pieces of required
software. Doing this both atomically and efficiently. Better integration of installation tools with
build processes.

As an imaginative finale, with the increased importance of licensing for software, one useful option for
a compiler might be the ability to understand various common licenses in source files. Functions from
each source code file could then be identified by their license type, and only fully license-compatible
libraries and executables would be created. In fact, there are already companies such as Black Duck
Software (http://blackducksoftware.com) and Palamida (http://palamida.com) that provide tools to

http://blackducksoftware.com
http://palamida.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

enforce what is referred to as "software compliance management."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Project Concepts
This chapter describes ideas that are part of a development environment but are not specific to any
particular kind of tool. Examples of such ideas are the following:

Preconstructed environments, where all the tools for a development environment are provided
"out of the box" for you

Integration of tools to make them work better together

Automation of the different parts of software creation

Naming schemes

Internationalization of products and tools for use in other countries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Preconstructed Development Environments

Preconstructed development environments (PDEs) are what I have chosen to call software
development environments that are provided as a single set of software applications. (Whether or not
they are practical development environments, as in the title of this book, is a separate issue for each
PDE.) Another name sometimes used for them is collaborative development environments, but it
seems to me that development environments are always collaborative, and what sets these
environments apart is that they come ready-made, prefabricatedin short, preconstructed.

If you are setting up a development environment and one of these
environments works for you, maybe you won't have to choose every tool to use
in your environment. Still, the other chapters in this book contain much more
than just which tool to choose, so read on.

One well-known example of a PDE is SourceForge (http://www.sourceforge.net), which uses the term
"software development website" to describe itself. A typical PDE provides an SCM tool, a bug tracking
tool, a project home page, and somewhere to download released files from. Some PDEs also provide
online discussion forums, weblogs, and "farms" of different machines for developing ports of the
project to multiple platforms and for running tests. Some even provide databases ready for use by
the different projects. Still others have usage statistics for each project and places to post requests
for help or jobs. The various parts of the PDE should all work together and, as much as possible,
already be configured to make hosting your project quick and easy.

PDEs are rather like preconstructed houses. They are quick to set up and start living in, but they can
be harder to change later on. One benefit is that once you have used a particular PDE for one project,
it becomes easy to find your way around other projects that are using the same PDE. Once you have
found the statistics for one SourceForge project, you know where to look for the statistics for every
other SourceForge project.

Another analogy is to writing a document. You can choose to either use a text editor to create the
document locally on your own machine exactly as you want it, or enter the text on a remote machine
(as with weblogs and Wiki entries), leaving the effort of formatting and publishing the document to
someone else. (Wikis are web sites that can be modified by anyone.)

Some of the potential benefits of PDEs are:

Ease of integration and use

All the necessary parts of the environment should work together in a standard, straightforward
way, which should make them easier to use.

Lower administrative costs

http://www.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the environment is a remote one, then the environment provider may be able to spread the
costs of toolsmiths (or whoever supports the necessary applications) over multiple projects. If
the environment is installed locally, then having fewer knobs to twiddle may mean that there is
less custom work to be done by toolsmiths.

However, the benefits of preconstructed environments should be tempered with the following
potential problems:

Customization

Many software development teams are used to being able to tweak their development
environment. Part of this may be due to the Unix philosophy of using lots of smaller tools
rather than one big tool. Preconstructed environments are often not really designed to be
modified beyond some carefully exposed portions of the existing APIs of their underlying tools.

Security

If an open source remote environment is used, the project's source files and data may become
publicly available. If an environment that supports closed projects is used, one where the
source files and data are not public, then separate projects have to be very carefully insulated
from each other. This is possible (for instance, by using virtual machines), but it does require
careful configuration and monitoring to be truly secure.

Backups

Many environments will regularly provide each project with a collection of files suitable for
backups, but it is still up to some project member to make sure that the backups actually
occur. Testing the recovery of backups is also hard to do in some preconstructed
environments.

Portability

One concern that is also related to backups is how to extract a project's source files along with
all its history, bugs, mailing list archives, and documentation from a particular environment.
For instance, what happens if the environment provider goes out of business, or changes its
terms of usage? It generally helps if the backups are in a standard, open format that can be
imported by other tools. Just as with office software suites, it's usually much easier to import
projects into PDEs than to export projects from them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Outsourcing your Environment

The idea of outsourced development environments, which is akin to the idea of an
application service provider, seems to have grown up with the Internet in the late 1990s.
Perhaps part of the reason is that various services such as search engines are provided
remotely, but there is also great interest in how the same development environments
can be provided for use within companies. After all, if a company can outsource its IT
department or developers, it may also make sense to outsource the creation and
maintenance of the tools used to develop the software.

Before you outsource your development environment, make sure that you have good
answers about how much you can customize the environment, how secure it is, how
backups are performed and tested, and how you would extract your project from the
environment to move it somewhere else.

The differences between many PDEs are whether the source code that integrates the various parts of
the PDE is open or closed source, and which tools are supported. If you want an exhaustive
comparison of various open source PDEs, see the thorough "Comparison of Free/Open Source Project
Hosting Sites," by Haggen So (http://www.ibiblio.org/fosphost). For now, I'll focus on the most
popular PDEs: SourceForge, GForge, CollabNet, Savane, and BerliOS. These five PDEs are compared
briefly in Table 3-1. The values for the number of projects and number of users are taken from each
PDE's web site in August 2005. A plus sign (+) indicates a strength and a minus sign (-) indicates a
relative weakness, either in features or usability.

Table 3-1. Comparison of PDEs

Feature SourceForge GForge CollabNet Savane BerliOS

Location sourceforge.net Various tigris.org savannah.gnu.org developer.berlios.de

Number of
projects

100,000 5,000 500 2,200 2,200

Number of
users

1,000,000 130,000 Thousands 32,000 11,000

SCM tools CVS, ViewCVS
CVS,
ViewCVS,
Subversion

CVS,
ViewCVS,
Subversion

CVS, ViewCVS CVS, Subversion

Bug
tracking

- + + - -

Other tools

Databases,
compile farm,
donations, and
more

Time
tracking,
themes

Better
searching

Overall site
statistics

Multiple languages
supported

http://www.ibiblio.org/fosphost
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Feature SourceForge GForge CollabNet Savane BerliOS

PDE source
open/closed

Closed Open Closed Open Open

Cost

$0; $40/year for
better searching
and support; or
$2,750 for the
commercial
version

$0

$0; or
$2,400 for
the
commercial
version

$0 $0

3.1.1. SourceForge

SourceForge (http://www.sourceforge.net) is the original PDE, dating back to early 2000. The
software to run the web site was originally open source but was then closed when the SourceForge
web site was announced. As of 2005, it remains the largest PDE, both by number of registered
projects (over 100,000) and users (over 1 million), though many of the projects are inactive.
SourceForge is designed for open source projects and has mechanisms for donating to projects. Each
project has access to a wide range of (mostly standalone) tools linked by a central project home
page. There is also an option to subscribe to SourceForge for around $40/year, which gives you
better searching abilities over all the projects, higher-priority technical support, and direct
downloading of files. The bug tracking system is fairly basic. For example, you can add categories for
your project's bugs but can't remove old categories.

There is also a commercial version of SourceForge, SourceForge Enterprise Edition, which is available
from http://www.vasoftware.com for around $2,750 per user. Some advantages of the commercial
product are that it was designed for integrating with a wider range of different applications; security
and access control is better supported; and it has a greater ability to search the project's source files
and documentation.

3.1.2. GForge

GForge (http://www.gforge.com) is an open source PDE, though the GForge Group calls it a
"collaborative development environment." The source code for GForge is a fork of the last open
source version of SourceForge's source code. Numerous changes, including support for Subversion,
have been made since then. Commercial support and even "plug and play" machines with GForge
preinstalled are provided by the GForge Group, which includes some of the core GForge developers.
The GForge Group itself does not provide any public project space using GForge, but it estimates that
there are around 5,000 projects and 130,000 users of GForge. GForge 4.0 was released in October
2004.

While GForge is open source, there are compelling arguments for using a preconfigured server or
commercial support if GForge is being used in a corporate environment. For one, GForge has many
different software components to be installed and configured. Customization of GForge in such a way
that future upgrades will be possible is always going to be easier if the core developers do it.

PDE source
open/closed

Closed Open Closed Open Open

Cost

$0; $40/year for
better searching
and support; or
$2,750 for the
commercial
version

$0

$0; or
$2,400 for
the
commercial
version

$0 $0

3.1.1. SourceForge

SourceForge (http://www.sourceforge.net) is the original PDE, dating back to early 2000. The
software to run the web site was originally open source but was then closed when the SourceForge
web site was announced. As of 2005, it remains the largest PDE, both by number of registered
projects (over 100,000) and users (over 1 million), though many of the projects are inactive.
SourceForge is designed for open source projects and has mechanisms for donating to projects. Each
project has access to a wide range of (mostly standalone) tools linked by a central project home
page. There is also an option to subscribe to SourceForge for around $40/year, which gives you
better searching abilities over all the projects, higher-priority technical support, and direct
downloading of files. The bug tracking system is fairly basic. For example, you can add categories for
your project's bugs but can't remove old categories.

There is also a commercial version of SourceForge, SourceForge Enterprise Edition, which is available
from http://www.vasoftware.com for around $2,750 per user. Some advantages of the commercial
product are that it was designed for integrating with a wider range of different applications; security
and access control is better supported; and it has a greater ability to search the project's source files
and documentation.

3.1.2. GForge

GForge (http://www.gforge.com) is an open source PDE, though the GForge Group calls it a
"collaborative development environment." The source code for GForge is a fork of the last open
source version of SourceForge's source code. Numerous changes, including support for Subversion,
have been made since then. Commercial support and even "plug and play" machines with GForge
preinstalled are provided by the GForge Group, which includes some of the core GForge developers.
The GForge Group itself does not provide any public project space using GForge, but it estimates that
there are around 5,000 projects and 130,000 users of GForge. GForge 4.0 was released in October
2004.

While GForge is open source, there are compelling arguments for using a preconfigured server or
commercial support if GForge is being used in a corporate environment. For one, GForge has many
different software components to be installed and configured. Customization of GForge in such a way
that future upgrades will be possible is always going to be easier if the core developers do it.

http://www.sourceforge.net
http://www.vasoftware.com
http://www.gforge.com
http://www.sourceforge.net
http://www.vasoftware.com
http://www.gforge.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.3. CollabNet

CollabNet Enterprise Edition (formerly SourceCast) from CollabNet (http://www.collab.net) is a
commercial "collaborative software development environment." CollabNet was founded in 1999 by
Brian Behelendorf and O'Reilly & Associates. As of 2005, the product costs around $2,400 per
developer per year. Unlike the commercial PDEs from GForge or SourceForge, CollabNet maintains its
system as a managed service for its customers. The development of CollabNet is itself distributed
around the world and coordinated using CollabNet. The open source NetBeans IDE project
(http://www.netbeans.org) is a good example of CollabNet in action, as is Sun's Java community at
http://java.net.

Tigris (http://www.tigris.org) is a free web site run by CollabNet to encourage the development of
better open source software tools for collaborative software development. There are hundreds of
relatively active projects hosted at Tigris, and the projects are carefully chosen to match the goals of
the Tigris community. One of the best-known Tigris projects is Subversion, the SCM tool intended as
a replacement for CVS (see Section 4.6.1 and Section 4.6.2). CollabNet offers Subversion as one
option for its SCM tool. CollabNet also provides hosting and the development environment for the
SCM tool CVS at http://www.cvshome.org.

3.1.4. Savane

Savane (https://gna.org/projects/savane) is the open source software package used to run GNU's
Savannah PDE, which is where GNU software is developed (http://savannah.gnu.org). It also runs
http://savannah.nongnu.org for other non-GNU free software development. Savane is also used to
run the GNA! PDE at https://gna.org. The source code for Savane is a fork of the last open source
version of SourceForge's source code. As of 2005, there are over 2,000 projects and nearly 30,000
registered users. Support for Savane is informal, but enthusiastic.

3.1.5. BerliOS

BerliOS is a service funded by the German government and industry to encourage the development
and use of open source software. Services are available in German, English, and Spanish. As of 2005,
around 2,200 projects with just over 10,000 users are active at BerliOS Developer
(http://developer.berlios.de), the PDE provided by Berlios. BerliOS also provides DocsWell, a
database for open source-related documentation; SourceWell, a news service for open source
projects; SourceLines, a best-practice database for successful open source projects; SourceBiz, a list
of open source companies; DevCounter, a database of open source developer profiles; and
OpenFacts, a Wiki-based open source knowledge database.

Just like Savane and GForge, BerliOS Developer is based on early SourceForge source code and is still
open source. Installation documentation for BerliOS Developer is rather scarce, probably since it is
similar to SourceForge installation.

3.1.6. Improving PDEs

It's one thing to use a remote preconstructed environment such as SourceForge, where you're

http://www.collab.net
http://www.netbeans.org
http://java.net
http://www.tigris.org
http://www.cvshome.org
https://gna.org/projects/savane
http://savannah.gnu.org
http://savannah.nongnu.org
https://gna.org
http://developer.berlios.de
http://lib.ommolketab.ir
http://lib.ommolketab.ir

depending upon a remote group of toolsmiths to develop and maintain your development
environment for you. It's quite another to expect to be able to run a single installation command and
have a working SCM tool, a bug tracking tool, a web server, and so on. No PDE that I'm aware of is
there yet, but I think that this is where PDEs should be heading. The alternative is to have a
consulting company such as the aforementioned GForge Group do it all for you.

Another area where PDEs could be improved is in the integration of their different partsfor instance,
having SCM commits for a bug automatically add links in the bug entry to web pages that show the
changes in the appropriate files. One approach taken by many large integration tools is to use a
common data format for exchanging data between different parts of the application. This makes
adding different SCM and bug tracking tools easier in the future, at the cost of having to add another
access layer to every tool. This idea can be taken a step further: imagine a common data format to
describe the services such as the SCM tool and bug tracking system that a project is using. Such a
format would make it easier to import and export projects from different PDEs.

Something to watch for in the future will be PDEs that come complete with automation environments,
which are tools that perform lots of different automated tasks for you (see Section 3.4, later in this
chapter). Automation environments that regularly check out your source code and then build and test
the product can really help to bring a project together. Expect to see this appear as part of PDEs in
the near future.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Why Integration Is Helpful

Regardless of which tools are used in a development environment, integration of all the different
kinds of tools is part of what creates an environment that is satisfying to work in. Manually copying
information from one tool in order to do something with another tool is an inefficient use of time and
is also prone to error. Tools that work well with each other are one mark of a good development
environment.

There is another side to the idea of integration, though. Just as with most machines and hardware,
the connections in software are often the most fragile part of a system. Upgrading tools can break
integration schemes, and unexpected inputs from one tool can break another tool in unusual and
hard-to-debug ways.

There is also the problem of how to handle one tool being unavailable for a period of time. For
instance, if your SCM tool usually updates your bugs with information about the file changes related
to each bug, what should the SCM tool do when the bug tracking tool is unavailable? Stopping work
for the whole environment means that any one tool in an environment becomes a single point of
failure. However, simply ignoring the bug tracking system means that the information there becomes
"best effort" and cannot be relied on to be complete. A reliable distributed environment is a hard
thing to achieve. The key question to consider when integrating tools is what the developers most
want to know. Effort is often spent on uncommon scenarios just as an intellectual challenge, to see if
something could be done.

Two of the simplest ways of integrating existing tools in development environments are through URLs
and email. A web server can be a useful place for gathering project information from multiple tools.

Imagine that you want to make emails about changes to source files that are sent from the SCM tool
more helpful than just a list of the names of the changed files. You could have the SCM tool insert the
details of the changes in the email or send them as an attached file. But that's a lot of text that may
hide other information. Adding URLs into the email that in turn point to a web server with the files'
differences makes the changes easily available from most mail clients. Another advantage of URLs is
that they are relatively easy to generate, since they are just short text strings. The mail doesn't even
have to be sent as HTML for this to work with some mail clients.

Email is another common way to integrate different tools in an environment. Many tools can be
configured to send email when changes occur, and the content of the email is usually in a standard
format. A simple program can be started periodically, read any waiting email, and use the command-
line interface for some other tool to make changes. For instance, integrating a bug tracking system
and a customer support system could be done using email generated when a bug is changed. Email
also has the advantage of being queued up for delivery, so even if one of the tools is not working, the
information will be saved until the tool is ready again.

URLs and email are the simplest ways to integrate tools in a development environment. They work
well for relatively low volumes of data and when the integration can take minutes to occurthat is, it
doesn't have to work in real time. More complex forms of integration include the use of COM, which is
one way that Microsoft tools such as Visual Studio are able to add tools from other vendors to their
menus, and broadcasting "events" to sockets that are being listened to by many other tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Full-scale, reliable, and robust integration of different systems in an environment generally requires
much more complex solutions. This is the land of middleware and business process management
(BPM). Middleware is technology such as CORBA ORBs or Web Services that is used to send
structured information from one system to another, and BPM is what to do with the information. This
level of integration is beyond the scope of this book, since development environments (as opposed to
bank transfers and trading floors) rarely require such robust and tightly coupled integration schemes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Why Automation Is Vital

There is no separate chapter on automation in this book, because I believe that automation is vital in
all aspects of a development environment. If you do something nontrivial twice, then at least
document the steps that you followed. If you have to do it again, consider automating it. If a task
has two or more steps and is manual, then someday someone will either perform the two steps out of
order or forget one of them.

Three Strikes And You Automate

The first time you do something, you just do it manually.

The second time you do something similar, you wince at the repetition, but you do
it anyway.

The third time you do something similar, you automate.

(Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999)

Automation by reducing the repeated parts of a task to a single command is one good idea.
Improving tools and other parts of your environment will relieve the short-term points of pain, but
automation will raise the whole level of productivity of your project one notch.

While it is easiest to automate an environment when it is first created, automation can be gradually
introduced to an existing environment. First choose an automation environment (see the next
section, Section 3.4) and then begin by automating how source code is obtained from your SCM tool.
Then automate running a build using that source code. Then work out how to run unit tests and
capture their results automatically. Finally, make sure you can automatically update bugs with details
of the build, create change logs and a list of bugs fixed in each build, tag the source files, and deploy
the results of the build and tests to a suitable location for the rest of the project members to use.
Once all of these steps have been automated, you won't have to do any of this manually. Each of
these steps is discussed in the relevant chapters. The point is that you can add automation one piece
at a time.

However, automation does have some consequences:

Debugging a process once it has been automated is somewhat harder than debugging the
manual version of the same process. This is because there are usually more logfiles,
configurations, and other levels of indirection to understand.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If a task doesn't clean up all of its temporary files, logfiles, and other output, then some disk or
other will eventually fill up. If you can't change the task to clean up after itself, then establish a
policy about how many days' output should be kept, do some calculations to see whether the
available disk space matches the policy, and then make sure that the older files are removed,
preferably by another automated task.

Even if storage space is not an issue, programs should always clean up after themselves, if only
to save people from having to ask what a file is for and where it came from. Leftover files tend
to be created faster by automated tasks because they are easier to run without thinking about
side effects than are manual tasks.

Other resources such as CPU cycles, network bandwidth, and other server loads should be
monitored to make sure that the automated task is not stopping other people from working. If
you know what your task is doing to others, then you can fine-tune when it runs. If you don't
know, then automated tasks are easy targets for blame if everything starts to run too slowly.

How do you know when an automated task is broken? Sometimes, as with builds, this is
obvious: there's no new build. Other tasks' effects are more subtle. For example, cleaning up
old builds and their entries in a bug tracking system will require more than just checking that
there is now more free disk space available. There are numerous monitoring applications
available, mostly customizable, that work well if you put the effort into defining their tests.
Mailing the daily state of an automated task to yourself (or even better, to an appropriate email
alias) as a "heartbeat" will give you examples of what a task is supposed to do, which is very
useful when something changes unexpectedly later on.

There is the dismay when something breaks in an automated task and you have to reconstruct
how the task was supposed to work when it was run manually. This is where the documentation
of the manual task becomes very useful, even more so if it has been kept up-to-date.

The places where tasks are automated are also good places to document the details of the task.
Whether done simply as comments in a shell script or a build file, or set up to provide helpful hints
during an installation process, the documentation will remind you later why something was
automated in a particular way.

Automated long-term monitoring of an environment is also an excellent way to gather statistical
information that can be used to plan for investment in a development environment. For instance,
hard data showing how the performance of a particular server has changed over a year is the first
step in deciding when to upgrade it, or to answer vague comments from developers about how
"everything seems slower recently."

Automation is one mark of people who are thinking about what they are doing as they write software.
If you find yourself working in an environment where there are many manual steps, first document
them and then automate them for your own use. Once they work well for you, generalize them for
others in the project. If you can get someone else such as the project's toolsmith to take over the
automation, so much the better.

Finally, the following definition made me smile and nod in agreement:

Oughttamatic: (adj) Programmable in principle, but considered so trivial in practice as to be
often performed manuallythus guaranteeing occasional errors. Ex: "Yeah, it's the third time I've
created a new passwd entry using cut-and-paste and forgotten to increment the UID; I really
oughttamate this." (Karl Fogel, http://www.red-bean.com/kfogel/glossiary.html)

http://www.red-bean.com/kfogel/glossiary.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Automation Environments

An automation environment is a tool that performs a variety of automated tasks for you. An automated
task is anything that has been modified so that you can run it, usually from a command line, without any
manual interaction. An automated environment makes it easier to run each of these tasks in the correct
order and at chosen intervals.

An automation environment is a key part of the XP concept of continuous integration (CI), which involves
keeping a product integrated and working correctly all the time. For that reason, automation
environments are sometimes referred to as "CI frameworks." If you find the phrase "automated
environments" too unwieldy, then perhaps EFA for "environments for automation" might do.

Many different tasks are commonly controlled by automation environments. (Exactly what some of these
tasks involve is explained in more detail in subsequent chapters.) Some of these tasks are:

Checking out the latest versions of source files

Calculating the appropriate build or release number

Tagging the source files

Building one or more products from the virgin source code (source code that has never been used
for any kind of build; see Section 5.2)

Testing the products with both unit tests and system tests

Moving the generated release packages to a suitable location for other people's use

Marking certain bugs as having potential fixes available in this release

Creating change logs and release notes about what changed in this release

Notifying people when a release becomes available, and also notifying the responsible individuals
when a build or test fails (see Section 9.3.1)

Publishing test reports and build logs to a web site (see Section 11.2)

Collecting project data and running static analyzers on the source code (see Section 6.5.4)

Regenerating the dynamic parts of a project web site (see Section 11.4.2)

This list of tasks is quite extensive and varies widely in practice. A good automation environment is able
to integrate with all of the tools in your development environment, whether by CLI, email, or custom
scripts (see Section 3.2 , earlier in this chapter). Some of your individual tools may be able perform one
or more of the tasks listed above by themselves, without the need for an automation environment. For
instance, a build tool may be able to create release packages for your product, or you may want to
describe your project's structure using a tool such as Maven (see Section 5.5.4). Great! Call those tools
from the automation environment and have them do the work for you. Some automation environments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

will allow you to define quite complex dependencies between projects; for instance, so that project X will
build only after projects Y and Z have been successfully built and tested.

How the information in the reports generated by an automation environment is provided to people makes
a critical difference in how useful the information is. To avoid annoying everyone in the project, the
default policy should be that only the transition from success to failure of build and test results should
generate notifications, since developers will quickly ignore repeated emails. A good tool will let you specify
the notification policy for different products and cases. Notification should be as rapid as possible, and the
tool should support sending notifications by as many methods as possible. Email messages are still the
most common kind of notification, but pagers, SMS messages, RSS feeds, and even X10 connections to
control red and green lava lamps have their time and place.

For each series of builds, the generated reports should include a short name for the builds (e.g., "the
Windows server build"), a build label (see Section 3.5 , later in this chapter), and platform details such as
processor type, operating system, and version. The reports should be available in multiple formats,
including summaries and text-based versions. One common format for reports is a "waterfall," which has
columns of builds with the most recent builds at the top, as shown in Figure 3-1 . Build and test failures
need to be shown in ways that help people identify their causes, so links to errors in logs and source files
are good to have. Reports can also list all recent changes to the source code and who made the changes;
this is sometimes known as the blame list . Displaying estimates of how much time each build will take,
also called the ETA (estimated time of arrival), is a nice touch.

Figure 3-1. An automated build report

Another measure of how easy a particular automation environment is to use is how easy it is to extend.
Your project might decide to use a different SCM tool or want to use make instead of Ant, so your
automation environment should either support a wide range of tools already or have a clear and openly
available API for adding support for new tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When To Build?

A common question is how to schedule builds. One guideline is that most testers rarely want
more than one new release to test every day, though if a critical bug is fixed, they will often
want a new release as soon as possible. Another guideline is that developers want to know
as soon as possible after they commit changes to the source code whether they have caused
a problem, since the sooner they know, the easier it is to identify the change that caused the
problem. You may also need to be able to suspend builds at certain times (for example,
when machines are being backed up).

On change (whenever something changes)

This has an appealing logic to it: if nothing changed, why do a build? This does assume
that everything about the build is tracked in your SCM tool and also that you know
that a given change is part of a series of changes that will eventually stop. Simple
rules such as "wait a random time up to five minutes after any commit and reset the
timer if another commit occurs" work well enough. If commits with your SCM tool are
atomic, then you can impose a limit on the number of postponements.

Some SCM tools such as CVS can take a long time to discover whether anything has
changed recently in a large project. One way to work around this is to arrange for all
commits to change the timestamp of a single file that can then be tracked.

Scheduled (once every hour, day, or week)

Creating builds on a scheduled basis is good because it becomes a pulse for the
project. If people know when the builds will occur, they know how long they have to
wait to see fresh results. If your product takes less than 30 minutes to build, hourly
builds are reasonable; otherwise, noon and nightly builds work well. If your builds take
longer than one day, Section 5.4.1 has some ideas that may help speed them up.

One common approach is to run just a subset of the tests regularly or to do only incremental
builds when something changes, and then perform full builds and run all the tests less
regularly (for example, every night).

Continuous (when the last build finishes)

This is the truly continuous approach to builds, which can be seen in action at Mozilla's
Tinderbox web page of recent builds (http://tinderbox.mozilla.org/showbuilds.cgi).
This minimizes the time before problematic changes are tested, but comes at the
expense of increasing the load on your machines' disks. (My experience is that the
filesystems on automated build machines have more problems than machines
belonging to individuals or other kinds of servers, even when they have non-RAID
partitions for the build files.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most automation environments store information about past tasks; sometimes this is in files and
sometimes in a database. Either way, automated environments are also useful for monitoring the general
historical health of your development environment. Other pieces of information that are useful to keep
track of are:

Slow SCM tools

A graph that is worth generating occasionally is how long it takes to check out a brand-new, virgin
set of files with your SCM tool at different times of the day. If there are long delays at certain
times, this will frustrate project members.

Long builds

How long automatic builds take can be measured by the automation environment or extracted from
the build logs. Unexplained spikes in a graph of how long a virgin build takes should be examined
carefully, since they may indicate errors in changes to the project's build files.

Build sizes

Historical information about the size of a project and the size of the released packages is useful for
avoiding "code bloat."

Some useful tools for monitoring the health of a development environment include Orca
(http://www.orcaware.com) and Argus (http://argus.tcp4me.com). Both of these tools can generate
informative web pages, and Argus can be configured to send alerts about problems as they are detected.
MRTG (http://people.ee.ethz.ch/~oetiker/webtools/mrtg) is another commonly used tool for monitoring
the status of networks.

The rest of this section examines four automation environments. Two of these environments were
inspired by Ant (the Java-based build tool discussed in Section 5.5.4) and are still most commonly used
for building products written in Java. There are a number of other automation environments with future
promise that are not discussed here, including DamageControl, Gump from the Apache Project, and
BuildBot, a Python-based tool with good support for cross-platform builds. For a more extensive
comparison of different automation environments, see the large but only partially complete comparison
table at
http://docs.codehaus.org/display/DAMAGECONTROL/Continuous+Integration+Server+Feature+Matrix .

3.4.1. Shell Scripts and Batch Files

The simplest way to automate a number of tasks is to execute them from within shell scripts or batch
files. Such scripts can be fast to develop and they can be scheduled to be run regularly by the Unix tool
cron or the Windows at command. However, there are good reasons to avoid using them as your entire
automation environment.Section 5.5.1 lists some of the disadvantages of shell scripts as build tools, and
Section 6.4.1 discusses the drawbacks of using them as test environments. Many of those problems apply
to automation environments as well. Things that are awkward with shell scripts or batch files include:

http://docs.codehaus.org/display/DAMAGECONTROL/Continuous+Integration+Server+Feature+Matrix
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debugging

Tracing the execution of tasks when errors occur or when the tasks interfere with each other can
be difficult.

Portability

Running the tasks on multiple machines and different platforms can be awkward.

Watchdog timers

Checking whether a task is deadlocked and has to be terminated can be complex.

Report generation

Creating HTML reports with scripts is tedious and prone to error.

Script development

Saving even a minor change to a shell script can cause odd errors to occur if the script is already
running.

Running tasks regularly is easy to do using cron or the Windows at command (though how to make at
run a task more than once a day is nonobvious). The biggest problem with both of these tools is when
some scheduled tasks start to make other tasks take longer. For instance, a build that used to take 40
minutes may sometimes take 65 minutes due to other scheduled tasks running at the same time. If two
builds on the same machine will cause errors, then this problem may occur intermittently, appearing to
break builds at random. Of course, one way to avoid this is to check at the start of a build whether
another build is already running and, if so, to stop the current build.

If you do use cron to execute lots of tasks, one useful thing to do is to track how long each task takes so
that you can see where tasks are overlapping. The crontab file shown in Example 3-1 does this.

Example 3-1. Measuring the duration of cron tasks

The logfile where the durations will be recorded
DURATION_LOG=/tmp/crontab_task_durations.log

Set the format for the output from the 'time' command
TIME="start:4 duration:%E name:myprogram"
This task is run at four minutes past every hour
4 * * * * /usr/bin/time -a -o $DURATION_LOG myprogram

Change the format for the output from time to show
when the second task started
TIME="start:8 duration:%E name:myprogram2"
This task is run at eight minutes past every hour
8 * * * * /usr/bin/time -a -o $DURATION_LOG myprogram2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4.2. Tinderbox

One of the oldest public automation environments is the open source Tinderbox tool from the Mozilla
organization (http://www.mozilla.org/tinderbox.html). Like other tools from Mozilla such as Bugzilla (see
Section 7.2.3) and Bonsai, Tinderbox is written entirely in Perl, still contains some Mozilla-specific
functionality, and is generally complicated to install.

Tinderbox is not available as a single package for download. Instead, you check the source code out from
CVS by typing:

cvs -d :pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot login

Use the password anonymous when prompted and then type:

cvs -d :pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot co mozilla/webtools/tinderbox2

There have been no recent updates to Tinderbox. You can also browse the source code, which is
reasonably well documented, at http://lxr.mozilla.org/mozilla/source/webtools/tinderbox2 . Tinderbox2 is
the current working version of Tinderbox.

Tinderbox uses formatted email messages from scripts running on the different build machines to update
a central collection of HTML reports. You write the scripts to perform the particular task and schedule
them as you wish, and then the scripts email the results to Tinderbox. In general, if you can configure the
contents of email messages that are sent from a tool, then you can integrate that tool by using Tinderbox
directly. Tinderbox comes with a small set of states such as building , testing , and build_failed to
describe your builds but allows you to add more states, change their names, or change the color used for
each state in the HTML reports.

Tinderbox integrates well with the other Mozilla tools, and you can arrange for build summaries to have
URLs linking to browser-based views of your repository and change logs. Logfiles from builds are
automatically parsed by Tinderbox, and links to errors are added to the reports. Since it uses scripts to
execute tasks, Tinderbox can run make as easily as it can run Ant, and Tinderbox is suitable for large
non-Java projects.

3.4.3. Anthill

Anthill (http://www.urbancode.com/projects/anthill) is a "build and release management tool" that runs
as a Java servlet inside an application server such as Tomcat. An open source version is available at no
cost, but there is also a commercial version named AnthillPro with more features that is available for
$2,499 per year.

One of the strengths of Anthill is that it can be administered using a web-based interface, though the
underlying configuration files are all in XML and so can also be edited with any other text editor. A wide
range of SCM tools are supported by Anthill, including ClearCase, CVS, Perforce, Subversion, and Visual
SourceSafe. The underlying build tool is usually Ant, but make is also supported. Multiple projects are
supported, and multiple builds can occur at the same time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4.4. CruiseControl

CruiseControl (http://cruisecontrol.sourceforge.net) is an open source "framework for a continuous build
process." It was inspired directly by the XP concept of continuous integration and, being a Java-based
tool, will run on most platforms.

As of CruiseControl 2.0, multiple projects are supported. The different SCM tools supported by
CruiseControl include ClearCase, CVS, Perforce, Subversion, and Visual SourceSafe. The underlying build
tool is usually Ant, though the Ant exec task can be used to run other tools indirectly. There is also a
project named CruiseControl.NET, which is a port of CruiseControl to the .NET platform.

Information about using CruiseControl is widely available. The best how-to document currently available
about installing and configuring it is at
http://www.javaranch.com/journal/200409/DrivingOnCruiseControl_Part1.html . There is also a book
about project automation that uses CruiseControl as its core: Pragmatic Project Automation , by Mike
Clark (Pragmatic Bookshelf). There are also two Wikis about CruiseControl, one at
http://confluence.public.thoughtworks.org/display/CC/Home and another, more general one at
http://c2.com/cgi/wiki?CruiseControl .

http://www.javaranch.com/journal/200409/DrivingOnCruiseControl_Part1.html
http://confluence.public.thoughtworks.org/display/CC/Home
http://c2.com/cgi/wiki?CruiseControl
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Labeling Builds

There are numerous places in a development environment where having a standard way of
describing a build is useful. If you don't define a standard way, then the SCM tags for a build will be
formatted one way, the build will appear in the bug tracking system in a different way, and the
release names will be defined in yet a third way.

What information should be in a build label? My suggestions are:

Build type

Was this build for internal testing (QA) or release (REL)?

Version

The major, minor, and patch numbers; for example, 1_3_0. Section 9.2.3 has more details
about different versioning schemes.

Build number

A number that uniquely identifies each build. Section 9.2.2 has more details about using build
numbers.

Date

The year, month, and day when the build was started, in that order so that builds can be
sorted on this field. If you plan to do more than one build per day, then the hour and minute
from a standard time zone are useful too.

Special

If the build is otherwise significant, add an optional field at the end. An example is BETA for a
beta release. Put this at the end of the label so that alphanumeric sorting of the label is not
overly affected by it.

Each of these fields should be separated from the next with a character such as #, -, or _ so that the
label can be parsed by shell scripts and other programs. If the # character is used with the above
label format, then the label for internal build 129 of Version 1.3.0 of a product on July 9, 2005 would
look like:

QA#1_3_0#129#2005_07_09

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another requirement for a build label is that it should not contain characters that are illegal in any of
the contexts that the label will be used inthat is, SCM labels, file and directory names, field values in
your bug tracking system, web pages, and documentation. Characters to avoid include $, <, >, |, /, \,
spaces, and tabs. Underscores don't show up in underlined links on web pages. Some SCM tools have
their own restrictions as well.

Build labels don't need to have a branch name in them, since the version number and build number
can tell you whether a branch was used for the source code. Embedding the name of a branch point
in a build label also seems like overkill, since this can be recorded elsewhere, along with rest of the
information about the purpose of the branch.

Once a build label format has been chosen and agreed on, document it and post it in a public place.
Consider very carefully any requests to change it, since its details will have been embedded in
numerous tools and filenames.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Naming Projects and Machines

This section contains ideas for choosing names for projects and names for computers. Planning all
these things in advance may seem excessively controlling to some people, but in my experience,
deciding on this information once, before things are done differently by each person, will help project
members communicate clearly.

3.6.1. Choosing Project Names

Project names are usually chosen by engineering groups, with one name for each significantly
different version of the products that they are working on. There should be no need to change a
project's name once it has been chosen. Product names, on the other hand, are the names that
customers see, and these names are usually chosen to help a product sell or to become popular.
Product names can change at the whim of a market research poll or a new VP of Sales.

Some general guidelines for choosing names for projects are:

Keep it short

Since project names may appear in filenames or source code, shorter project names are
preferable; four to six characters is common. Longer names will only be abbreviated anyway,
and usually in two different ways.

Use distinctive sounds

Project names should sound different from each other when spoken aloud by people whose
native language is not the one used by the rest of the group. Even if everyone speaks English,
having two projects named "ctest" and "seebest" is too close for comfort.

Use low-frequency letters

It's much easier to be confident that all references to a project name can be found if the name
contains characters that are less common in the local language. This is a good argument for
choosing project names that use unusual characters, such as the letters q and z for English.

A few years ago there was a project named IDS that apparently had a function named
IDSConnect. Then the project was renamed DIS and all its functions were renamed
accordingly, which led to their function for creating connections being renamed to DISConnect.
The letters d, i, and s are too common in English to simply reuse them in such an anagram.

Make it unmarketable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sometimes a project name will be reused as a product name, but not if it is already
trademarked, or if you make it odd or crude enough!

Project names don't have to have a theme, though that can be fun. They don't even have to be
meaningful, just memorable with an obvious way of pronouncing the word. You can choose a number
of suitable names once and then let people decide which one they want to use next. Names of stars,
types of sushi, rare diseases, and characters from comic books are some ideas to start with for
project names.

3.6.2. Choosing Machine Names

What you call different machines might seem to be of little consequence until you remember that
you'll type the names of frequently used machines many, many times. Choosing a different theme for
firewalls, servers, testbed machines, printers, and people's individual machines will make it easier to
identify machines from their names. Google Sets can help you find groups of names. The most
appropriate names that I have seen used were for two printers: chainsaw and clearcut, which
describe what printers do to forests quite well! Among the worst names I have seen were for two
servers: left and right, for their locations in the original server room. You can guess where they
ended up when the server room was rearranged later on.

There are actually two official RFCs on this subject ("Requests for Comments" or RFCs are the oddly
named standards for how the Internet works; see http://www.rfc-editor.org). "Choosing a Name for
Your Computer" (RFC 1178) has plenty of good advice. A few of my favorite suggestions from it are
excerpted here (with my comments in square brackets):

Don't overload other terms already in common use

. . . One machine was named "up", as it was the only one that accepted updates.
Conversations would sound like this: "Is up down?" and "Boot the machine up" followed by
"Which machine?" . . .

Don't use your own name

. . . It is especially tempting to name your first computer after yourself, but think about it. Do
you name any of your other possessions after yourself? No. Your dog has its own name, as do
your children. If you are one of those who feel so inclined to name your car and other objects,
you certainly don't reuse your own name. Otherwise you would have a great deal of trouble
distinguishing between them in speech. . . .

[I would add: unless you can be absolutely sure that when the machine is reassigned, its name
will be changed.]

Don't use long names

. . . Experience has shown that names longer than eight characters simply annoy people. . . .

http://www.rfc-editor.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Don't use digits at the beginning of the name

Many programs accept a numerical Internet address as well as a name. Unfortunately, some
programs do not correctly distinguish between the two and may be fooled, for example, by a
string beginning with a decimal digit.

Names consisting entirely of hexadecimal digits, such as "beef", are also problematic, since
they can be interpreted entirely as hexadecimal numbers as well as alphabetic strings. [Though
I've never seen a real problem due to this.]

Don't expect case to be preserved

. . . Convention dictates that computer names appear all lowercase. . . .

The other RFC on this subject is "The Naming of Hosts" (RFC 2100), an amusing variation on T. S.
Eliot's "The Naming of Cats."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7. Choosing New Tools

Whether you are choosing a tool for a new project or looking for a tool to replace one already in use,
there are a number of helpful places to start.

First, other members of the project are likely to have suggestions for different tools. Send out a
request for information, making sure it has an obvious deadline for replies. Specify what the tool
must do and what you would merely like it to do. If there is a tool in current use, be very clear about
what you believe the problems are with it. Be sure to ask people about whether they have actually
used their recommended tool, not just evaluated it. Make sure you ask them whether they have
administered the tool since using and administering tools can be very different experiences.
(ClearCase is the classic example of this phenomenon.)

Other places to search for more information include:

Open Directory Project

The Open Directory Project (http://dmoz.org) claims that it's the largest human-edited
directory of the Web. You won't find every tool in each category, but you'll probably find most
of them.

Newsgroups

Don't use Google or some other search engine to search only web sites. Search the
newsgroups as wellfor example, by using the Google Groups link. Company web sites' search
forms may also turn up information that is not available from other search engines.

Discussion web sites

Slashdot (http://slashdot.org) and other opinionated forums are sure to reflect a diversity of
thoughts about the tools. Some of these opinions may be based on experience, but many are
surely not. Caveat lector, or "let the reader beware."

A number of web sites, magazines, books, and other resources for choosing tools are listed in
Appendix B.

3.7.1. Steps When Changing Tools

When you have decided that a tool must be changed and you have some ideas about what to replace
it with, there are a number of steps to follow:

1.

http://dmoz.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is helpful to start with a clear and broadly agreed-on understanding of what the tool must do
and not do, and what features would be useful but are not essential. These requirements will
probably change as you investigate the available options, but they're a good place from which
to start.

1.

Create a document that summarizes the different choices and their perceived advantages and
disadvantages, or rate them in a number of different areas. Make sure you know which
requirements are mandatory and which are merely desirable. Propose some tentative schedules
for how the tool could be introduced.

2.

Evaluate the two or three leading choices, ideally by installing them locally on a development
machine and using them with your own data or files. Record all the key information about
installing, configuring, and using a new tool while you are doing it and it is fresh in your mind.
Other ways of evaluating an open source tool are reading the source code and looking at the
number of bugs, the number of messages on mailing lists, the amount of recent SCM activity,
and the download statistics, if available.

3.

Talk with senior developers on your project about their impressions of each tool. Ask the tool's
vendor or project administrators for names of people who already use the tool that you can talk
to. Add all these comments to the document, but keep them separate from each other, since
they come from different perspectives.

4.

Discuss the document with the senior members of the group and come to a decision. It helps if
you can make a business case for the cost of each tool and the expected return on investment.
Add people's names and a date, and save this document for revisiting in the future when people
ask why a particular tool was chosen.

5.

Document how you expect the new tool to be used and send this out to the whole project. Offer
to describe it in person if your numbers and locations permit.

6.

If at all possible, bring up the new tool in parallel with an existing tool and migrate people to the
new tool gradually. If a switchover date is necessary, publicize it well in advance and make sure
that extra support is available for the tool when it goes live.

7.

Archive and move the old tool aside so that it isn't used by mistake or ingrained habit. It may
still occasionally need to be used in the futureit may still be required for generating patches for
older releases. If the tool is installed on peoples' individual machines, send detailed instructions
about how to migrate safely from the old tool to the new one.

8.

Update the documents about the development environment, especially the documents for new
developers.

9.

Some tools will need to have their data exported and then imported into the new tool. Bug tracking
systems are one example of this; SCM tools are another. While you are migrating this data, it's
worthwhile to consider how you will export the data from the new tool into yet another tool a few
years from now. This is one area where file formats that are openly available and well documented
will make your life much easier.

Finally, no matter how easy the transition to the new tool is, expect some level of complaintit's the
cosmic background radiation of software projects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8. Internationalization and Localization

Two other aspects of both environments and the products that are created with them are
internationalization (i18n) and localization (L10n). i18n is designing and implementing a product so
that it can be localized, and it is notoriously difficult to do so after a product has grown. L10n is the
work of creating a version of the product for a particular locale. Among other changes, L10n can
involve translations; changes in the sort order for strings; different keyboard shortcuts; changes to
date, number, and currency formats; and changes to the layout of UIs.

i18n and L10n of products and their installers is widespread. English is just another language; it will
be the first one localized for only if it is the common language of the project. However, fully localized
software development environments still seem quite uncommon outside Japan and France. This
would require that the operating system and all other tools (such as the file editors, compilers, build
tools, and bug tracking systems) use the local language and formats.

A number of non-English-speaking developers choose their tools by what the tools can do; whether
the tools support their particular language is a secondary consideration. The basic free translation
services that are provided by Google and Babel Fish (http://world.altavista.com) can help with the
occasional message from a tool that they find confusing. To be precise, you can translate the words
in the message, but messages from some tools are notoriously hard to understand even for fluent
speakers of the original language of the message.

If you expect your environment to be used by people who are not comfortable with English, then the
development tools should be carefully chosen to support this need. Open source tools from projects
with lots of contributors and tools from large companies usually support the largest number of
localized versions. If a tool discussed in this book has been internationalized, then this is mentioned.
If a number of localized versions of the tool are available for the current release, then this is also
noted.

http://world.altavista.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.9. Authentication, Authorization, and Accounting

AAA is a convenient acronym for authentication (proving who someone is), authorization (deciding
who is permitted to do what), and accounting (keeping a record of what happened). AAA is important
for all of the tools in this book, but perhaps SCM tools and bug tracking systems depend on it the
most. Effective AAA depends on a good understanding of security issues and often uses cryptographic
techniques and tools to enforce the chosen policies.

For some environments, strong AAA is a crucial requirement. In the same way that laboratory
notebooks can be used as evidence, the output from some SCM tools has become evidence in cases
such as the SCO debacle and other corporate patent wranglings. Accounting data for the U.S.
Sarbanes-Oxley Act may be related to the information stored by an environment's tools. The FAA
(Federal Aviation Authority) requires storage of the software used in its systems for at least 25 years.

Even the smallest companies and projects want to be confident that no one has added a "back door"
to their product, either to get around paying for licenses or for other, more malicious purposes, such
as spreading computer viruses and other malware. To avoid this, changes to a project should be
made only by the people who have been both authenticated and authorized to make them. Finally,
the changes themselves need to be auditable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Software Configuration
Management
The first half of this chapter describes why keeping track of how your software changes , a process
more formally known as software configuration management (SCM), is vital for any project. This
chapter covers exactly what is meant by SCM, and how it differs from change management or
configuration management (CM). Seven of the most commonly used or promising SCM tools are
examined: CVS, Subversion, Arch, Perforce, BitKeeper, ClearCase, and Visual SourceSafe.

The second half of this chapter discusses some of the most common annoyances encountered when
using SCM tools and describes some of the ways you can avoid them.

The acronym SCM has been reverse-engineered over the years to stand for
"source configuration management" and "source code management." The
original, most widely used meaning is "software configuration management."
SCM is also known colloquially as "version control" and "revision control." Since
the number of TLAs (three-letter acronyms) is limited, reuse is inevitable; thus
SCM also refers to "supply chain management" and "software compliance
management," luckily in slightly different contexts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Why Do I Need SCM?

The source code of all projects changes over time as the projects grow. Most of the time, the people
working on the project add new parts to it and fix the broken ones. Occasionally, large
reorganizations of the source code can occur, sometimes as part of cleaning up the code (also known
as refactoring).

The simplest and most unwise way to work on a project is for a group of people to work on the
project's files in a shared directory. Each developer has to be very careful not to change any file
unless he can be sure that he is the only one changing it.

Being well aware of the woefully short life span of most hard disks, if the group is wise it makes
regular nightly backups off site, keeping the last three copies available locally for convenience. If an
individual is going to make a large change, she can make her own copy of the affected files locally,
just in case something goes horribly wrong while she's making the change. When the time comes for
a release, the current versions of all the files are copied to "somewhere safe."

This simple way of working on projects is how an estimated 40% of software projects are
developed.[1] I don't know about you, but that figure is hard for me to believe. Sure, it's just an
average, and on average every human being has one ovary and one testicle, but if the 40% value
really is true, then stunned contemplation is my first reaction. Surely all those people must have
heard that there are software tools to help with this kind of thing? The Capability Maturity Model
(CMM; see http://www.sei.cmu.edu/cmm) certainly has. For your project to be anything but "ad hoc,
and occasionally even chaotic," it says you need SCM.

[1] Three different references that suggest this value are:

The rest of this chapter can serve as an introduction to some of the major problems that such an
environment will almost inevitably get tangled up in, and some of the ways to avoid those problems.
If this is the situation you are in, the next few paragraphs should also help motivate you and your
group to introduce an SCM tool. In the too-simple environment described, eventually the following
situations or questions will occur:

More than one person wants to work on the same file at the same time, but it's too hard to find
everyone and to get them to agree that a file is available, so nobody works on that file.
Integrating different people's work becomes very hard to schedule and takes a long time to
finish.

"All this code used to work! What changed since yesterday?"

"When was this line of code changed? There's a bug in it and we need to know how many
versions of the product are affected."

"Who changed that line?" This question usually means either "For what purpose was that
change made?" or "We need to know who would write code like that!"

"Most of those changes were a mistake and they should be removed, but we do want to keep a

http://www.sei.cmu.edu/cmm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

few of the changes."

"We need to fix that bug in multiple versions of the product."

"Hey! Who stomped on that change I made yesterday?"

A good SCM tool can provide solutions to all of the above situations and questions. No software
project of any size should be attempted without some form of SCM, and occasional copying of the
source directories doesn't count as adequate SCM!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. What SCM Is and Is Not

A simple description of SCM is that it's a way to keep track of the different versions (the configuration
part of SCM) of everything that is necessary for a software project over time. What is tracked is
usually files of one kind or another, but could just as well be versions of entries in a database. SCM
tools are usually separate applications from the filesystem, though this is by no means always the
case.

Sometimes people confuse build tools and SCM tools, but the difference is simple. Keeping track of
which files go into a product is the task of build tools. Keeping track of all the versions of those files
as they change is the task of SCM tools. Some build tools can use SCM tools to obtain the files they
need to build a product, but that doesn't make them SCM tools.

Using an SCM tool, you can recover older versions of files after the files have been changed later on.
This is very useful when you make a mistake. One view of SCM is that it gives you the ability to
retrieve a snapshot of the project at a moment in time and then allows you to move forward or
backward in time from that point. You can often tag or label the project at different moments in time
and then retrieve the files exactly as they were when the tag was applied.

You can also use an SCM tool to share your changes to files with other people in a controlled manner.
Many SCM tools show the differences (or diffs) between two versions of a file, as well as who made
the changes, when the changes were made, and which other files changed at the same time.

Many SCM tools also support the idea of branches, which are versions of files in parallel universes.
What that means is that you can have two (or more) different versions of a file, both derived from a
common version, and you can work with either version at the same time. Branches let you support
an existing product made from one set of files, while you develop the next release based on different
versions of those same files. Many SCM tools help you with merging changes between branches.
Figure 4-4 (in Section 4.5.1, later in this chapter) shows this diagramatically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some SCM words

Tag, label

Tagging or labeling a set of files is when you associate a name such as RELEASE_1_0
with some particular versions of the files. A tag marks a snapshot in time, so you
can't change the files that are tagged without moving the tag. The word tag was
originally used by CVS, but is now used by other SCM tools as well.

Branch

A branch is a parallel copy of a set of files, with a name. You can make changes to
files that are on branches and still keep track of the changes using SCM. You can
also tag files that are on branchesfor instance, to mark when releases are made
using the branched files.

Merging

Merging is when you copy changes that were made in one branch to another
branch. Since the files on different branches may be very different, sometimes it's
hard to merge the changes.

Diffs

Diffs are the changes between two versions of a file.

Changeset

A changeset is a group of related changes to a set of files; the changes are applied
all together or not at all.

Change log

A change log is a list of all the changes in the files, usually ordered by time.

SCM tools can be divided into two different kinds: centralized and distributed. Centralized tools store
the different versions of the files in a central location, usually on a single server. Distributed tools
store the different versions on multiple machines. The difference is somewhat blurred, since
distributed tools can choose to use a single location (just like centralized tools), and some centralized
tools support distributing their files to multiple servers. There are also SCM tools that support
replication, where for performance reasons their files can be read from many different servers but
are written to only one server. The difference sometimes simply comes down to how the tool was

http://lib.ommolketab.ir
http://lib.ommolketab.ir

originally designed.

Another way in which SCM tools can differ is whether they expect each file to be changed by more
than one person at a time. Some SCM tools stop other people from changing a file while you are
editing it; this is known as a locking or serial model. Other tools expect you to resolve changes that
other people may have made while you were all editing the same file; this is the concurrent model.
All SCM tools have different ways of declaring who can read and write the files that are controlled by
the tool. These permissions are often described using a list of permissions, also known as an access
control list (ACL), for each file.

Some SCM tools use simple text files ("flat text") while others use a database to store their files. This
is a sure source of discussion about the merit of each tool. On one hand, simple text files make it
somewhat easier to detect corruption, and you can use existing, independent tools to inspect and edit
the files. Text files scale well enough for most projects, and you don't have to be a database
administrator to use them.

On the other hand, databases have many useful properties such as atomic transactions and faster
access times. Also, since flat text files generally don't scale as well as databases do, you might as
well use a database right from the start. Databases also let you search more efficiently within the
older versions of your files. Subversion (see Section 4.6.2, later in this chapter) allows you to choose
either approach. The jury is still out on this choice, perhaps because tools based on the two different
approaches are aimed at different-sized projects.

Some modern SCM tools support the concept of changesets. A changeset is a group of changes to the
files controlled by the SCM tool that were made as one logical operation. The advantage of
changesets is that they can be applied or later removed as a single operation.

It's worth noting that SCM tools are not the same thing as configuration
management (CM) and change management systems (CMS). These systems
contain SCM abilities for tracking different versions of files, but also contain and
enforce complex procedures which have to be followed to make a change. Such
procedures may include scheduled reviews of the change, written approval, and
formal tests that the change must pass before being accepted. This is much
more than what SCM does. Sometimes people expect SCM tools to magically
enforce some change management policy or other, which is really the wrong
way around; choosing how to configure an SCM tool is just one part of your
chosen process for allowing changes to a project.

Such CM processes are often considered to be too heavyweight for many
software projects, though there certainly are instances where they are
appropriate; nuclear reactor controls, aviation software, and medical devices
are three examples that spring immediately to mind. This chapter is about
SCM, not CMS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Drawbacks of SCM

You might agree that SCM is vital to your project, but at what cost? All tools seem to have some
drawbacks associated with them, and SCM tools are no exception. This section mentions a few
complications of using SCM tools, but it should be stressed that the benefits of SCM outweigh all
these issues. I'm sure that there are trapeze artists who feel that safety nets take away some of the
thrills of their act, but you never see them work without a net.

Disk space

Keeping track of the different versions of a large number of files soon begins to take up lots of
disk space. Even storing just the source code for a product with a million lines of code can
easily take 10MB. Naively keeping complete copies of every file will use up 10MB for each tag.
SCM tools usually store only the differences between versions, which are much smaller in most
cases. Even with just storing the differences, a total of 250MB would not be unusual for such a
product after a year's worth of changes. The price of storage is cheap enough to allow us to
ignore this argument.

Performance

Using an SCM tool to obtain a set of files to work with is generally slower than copying the files
over from another directory. The SCM tool may keep the files on a remote server across a busy
network, and it may have to regenerate in real time the precise versions of the files you
requested. You may also have to wait for someone to finish making her changes before you
can get the latest set of files. All that work takes a bit more time, but it's usually not much
time.

Connectivity

Some SCM tools don't work when they are disconnected from a networkfor instance, when you
are using your laptop on an airplane. If you are going to do a lot of development disconnected
from a network, choose a distributed SCM tool that will work in that mode, or at least one that
won't stop you from accessing your files without a connection to its central server.

Complexity

Some minimal training in how to use the SCM tool is likely to be necessary, and any
infrequently used commands are quickly forgotten. Complicated activities such as merging
different versions of files or merging whole branches of source code together are particularly
hard to get right with many SCM tools. This is one reason why the quality of the documentation
and support is important to consider when you are choosing an SCM tool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cost

If the SCM tool chosen is not free of charge, then the financial cost can become a limiting factor
on how the project can grow, especially if a license is needed for each developer who uses the
tool. Still, there are plenty of good SCM tools that cost nothing, and my opinion is that you can
always find ways to get more money, but you'll never recover time lost to poor SCM practices.

Risk of corruption

Finally, and most disturbingly, if there is a bug in the SCM tool, or bad hardware, or even
operating system errors, then your files could gradually become corrupted within the SCM tool
itself. This nightmare scenario is thankfully very rare, but is a great reason to use SCM tools
with checksums on their files and with tools to validate their files, and to do nightly backups of
your SCM tool's files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. A Typical Day's Work with SCM

Each SCM tool has a different name for the collection of files that it tracks. In the rest of this chapter,
I'll use the CVS term repository for these files, simply because it is familiar to many people. The set
of files in which a developer makes changes is named the working copy (CVS calls this a sandbox).
Obtaining a working copy using CVS is known as checking out a copy. Publishing the changes to a
repository is known as committing or checking in the changes.

A typical session with an SCM tool involves the following activities:

Checkout

A developer decides to work on some part of the project. He checks out copies of the necessary
files onto his machine. This is his personal working copy. Checking out the files has not
changed anything in the repository, and all changes he makes are local to his machine. No one
else is affected by his work yet.

Edit

The developer changes the files in some interesting way, maybe even creating new files, and
probably builds a new version of the product using the changed files.

Probably the most common mistake people make when they use SCM tools is
to forget to add newly created files to the SCM tool. Even though your own
builds and tests work just fine, this mistake breaks the build when your
changes are committed, leading to self-defensive comments such as "But it
works for me!" and "I ran all the tests." Some SCM tools will alert you to the
presence of local files that they don't know anything about, but it's still good
practice to get used to adding new files to your SCM tool right after you create
them, while you still remember that they are new.

Diff

One common thing to do with an SCM tool is to see what changes have been made in the
working copy, compared with the versions of the files in the repository. Another diff-related
activity is to see who last changed a particular file and exactly what those changes were.

Update

While the developer was working on the files in his working copy, someone else may have
changed those same files in the repository. The developer has to get the latest versions of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

those files and make sure that his changes still work correctly with the changes from other
people.

Commit

Finally, the developer has resolved all these changes, added all his new files, tested a version
of the product created from his working copy, and is now ready to let other people in the
project see his changes. This happens by committing the changes to the repository. It's helpful
if you commit related changes all together, along with a descriptive comment about what the
changes were for.

Various tests can be required by the SCM tool before it accepts the changes. For instance, was
there a (possibly required) bug associated with these changes? Were the unit tests run and did
they behave as expected? Have the changes been reviewed or checked for security or
copyright problems?

Last, when the changes are accepted by the SCM tool, some notification (such as an email) is
sent to the group, describing the changes and who made them. A change log may also be
updated. If the files are tagged, then information about the tag should appear in the change
log as well.

Figure 4-1 shows a centralized repository being used by three users: Alice, Bert, and Cuthbert. Alice
is checking out her own working copy of some of the files in the repository. Bert is updating his
working copy, merging in the changes that other people have made to the files in the repository.
Cuthbert is committing the changes to the files that he has made in his working copy to the
repository, thus making them available to other people.

Figure 4-1. Using a centralized SCM tool

Using a distributed SCM tool is similar to the process just described, except that there are now many
repositories. In addition to the usual checkout, update, and commit operations on a repository, there
are equivalents for repositories themselves, at the next level of abstraction. You can:

Create your repository by copying one of the existing ones, which is similar to checking out a
working copy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Merge in changes from another repository, which is similar to updating a working copy

Merge your changes to another repository, which is similar to committing changes in a local
copy

Figure 4-2 shows distributed repositories being used in the same way as shown in Figure 4-1 for
centralized repositories. One way to think about distributed repositories is that each person has her
own repository on her machine, and she can commit files to it while disconnected from a network.
Then when she is reconnected to a network, she can synchronize her repository with the other
repositories.

Figure 4-2. Using a distributed SCM tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. SCM Annoyances

This section describes some of the common problems that people run into when they use SCM tools
with a project. Some problems such as merging are hard work due to the basic nature of the
problem, but all the problems can be tamed with a little forethought.

4.5.1. Branches and Tags

To recap, a tag is a name for all the versions of a group of files at one moment in time, just as
though you had made a copy of all the files as they were at that moment. A branch does the same
thing, but allows SCM-controlled changes to the files later on. Figure 4-3 shows an example of this.

Figure 4-3. Changing a file on a branch

Branches are vital because they allow you to make changes to an older version of the productfor
example, when you need to fix a bug in a file belonging to the last release of a product. At the same
time, you can make changes for the next release to a different version of the same file. If you don't
use branches but instead only fix bugs in future releases, this can put pressure on the project to
create premature releases.

You should consider how you are going to use branches before you release the
first version of your product. You should also check that all your other SCM-
related tools work properly with branches

However, you should try to minimize the number of active branches in your project. Branches make
things more complicated because there are now more changes to manage. Imagine three versions of
a product: the oldest one is the one that is being maintained, the middle one is the one that is being
made available to customers right now, and the newest one is next year's "yup, that bug's fixed in
the next release" version. A set of changes to fix some problem has to be created for one of the three
versions, tested there, then ported to the other two versions and then tested there too. Even if it is
straightforward to port the changes to the other versions, the amount of testing work for one bug

http://lib.ommolketab.ir
http://lib.ommolketab.ir

has just been tripled. Tracking the same bug in multiple releases is also a hard thing to do well with
most bug tracking tools (see Section 7.3.3).

Using Preprocessor Directives Instead of Branches

In languages such as C that have conditional preprocessor directives (for example,
#ifdef VERSION_1), it is possible to use these directives instead of SCM branches. By
surrounding the parts of the code that apply to one version or another with ifdefs and
using the appropriate #define directives, you can keep branched versions of a file all
together in one file. Unfortunately, this idea rapidly leads to unsupportable code. Even
with clever editors and tools such as diff to show you just the text that the compiler
actually sees for each file and combination of directives, the complexity of trying to keep
all the possibilities correct soon becomes more complicated than using real SCM
branches.

Preprocessor directives can be very convenient when used sparingly, but using them
instead of SCM branches is just not a good idea. There are some very good reasons why
many modern languages such as Java don't support preprocessor directives.

To really see why the number of branches in a product should be minimized, look at Figure 4-4. Each
of the source files is named on the vertical axis, and each different version of each source file is a
solid circle in the horizontal direction. Every branch that is created is a (logical) copy of all the files
into the third axis, the one labeled Branches. Just the copies of File 1 and File 2 are shown, and there
have been three changed versions of File 1 on Branch 1. Now this third dimension has an odd
characteristic compared with the other two: it's very easy to move in one direction (creating a
branch), but it's always much more work to move in the other direction (merging). The more
branches of a project that you keep active, the more time you will spend building, testing, and
documenting the changes to the project. For the sake of simplicity, I recommend keeping the number
of active branches small: two or three at most for a medium-sized commercial product.

Figure 4-4. Branches are in a different dimension

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To inexperienced project managers, the concept of branching may seem like an easy answer to many
of a project's growing pains. Got a new product? Just put it on a branch. Developing for a new
hardware platform? Put it on a branch. Don't like that developer's coding style? Put him on a branch.
Some SCM tools even encourage you to think like this. My advice is simple: avoid it! You should use
just enough branches for your project and no more. The next section discusses what to do when you
do have to create a branch.

4.5.2. When to Branch? When to Tag?

The previous section was pretty emphatic about why you want to minimize the number of active
branches in a project. So when is creating a branch appropriate? There are just two common cases:

A branch for each major release of a product. These long-lasting branches will become inactive
when that version of the product is no longer supported.

Branches for a small number of developers to work on for a short period (days or weeks,
usually not months). If the work on the branch is to be useful, it has to be merged back to the
main development branch sooner rather than later.

These two cases can be summarized as "branch on incompatible policies." That is, create a branch
when the guidelines for committing files are different. For example, the rules about who can commit
to a release branch are usually different from the more open nature of the main development branch.
Since the two sets of rules are different for the same source files, a branch is probably necessary. A
useful article that expands this idea is "High-Level Best Practices in Software Configuration
Management," from http://www.perforce.com/perforce/bestpractices.html. (There are other articles
that encourage each developer to have his own branch for his work, or even a branch per changeset,
but these approaches assume effortless merging abilities from your SCM tool, which is rarely the case
in practice.)

http://www.perforce.com/perforce/bestpractices.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before you create a branch, create a branch point tag. Then create the branch
using that tag. That way, if you branch only a few files but later decide that you
want to branch some other files, you can use the tag to branch from the very
same point in time. Some SCM tools do this automatically for you.

When you create a branch, always consider when you are going to be able to
stop using it, and put as many parts of the project as seems sensible onto the
branch. If you branch only a few parts of a project, then it's good to record
which parts were and were not branched somewhere. It's also a good idea to
record the name of the branch, the branch point, and the intended purpose of
the branch somewhere that everyone in the project can find it.

When is it a good idea to tag a project? Good practice is to create a tag whenever anything happens
to the project that you might want to reproduce. Examples are creating a release, giving an internal
demo, reaching a point in time that you might want to branch from one day, or just getting a build to
work again. Since tags are just a way to name a set of particular versions of files, they don't involve
the dreaded third dimension of Figure 4-4. Consequently, they require much less effort to work
withthere are no merge headaches to deal with later on. However, depending on the SCM tool and
the size of the project, tagging may take hours rather than minutes or require locking the repository
to stop the files being changed during this time.

4.5.3. Naming Branches and Tags

The naming of branches and tags has surprisingly wide effects on a project. Tag names become
associated with builds, test results, and eventually releases, so they appear in many of the related
tools such as bug tracking systems. A document with the name of each branch, the branch point tag,
and the intended purpose of the branch can help to reduce confusion about how to use different
branches. Since there are generally many more tags than branches, it's easier to simply make the
tag and branch names meaningful. Section 3.5 describes the idea of build labels, which are a good
basis for tag names.

If there is no overall naming scheme for your branches and tags, then ad hoc
ones will spring up. Changing the names of branches later on is difficult for
some SCM tools such as CVS.

Before you settle on a naming scheme for your branches and tags, note that some SCM tools have
nonintuitive quirks about what a name can look like. In CVS, for example, names must start with a
letter, not a numeral, so 2_1_release is not permitted. Periods and spaces are also not allowed, so
release 2.1 won't work, but hyphens and underscores are permitted (though underscores tend to
disappear when the name is used as part of an HTML link). Branch and tag names also have to be
unique within a file in CVS; that is, you can't tag two different versions of a file with, say,
ALPHA_RELEASE, even if the versions are on different branches. CVS also makes no distinction between
tag names and branch names, and working out whether a name is a tag or branch after the fact can
be tedious.

Create a document that describes the chosen naming scheme for your project's tags and branches,
and try to make sure that the naming scheme follows the release numbering scheme (see Section

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2.3) as closely as possible. If you can enforce the chosen naming scheme using the SCM tool itself,
so much the better. Restrict who is allowed to create branches, make sure they know what is
expected for branch and tag names, and make sure that they have some good sense about when to
create a branch. Once you know who can create branches, automate the process as much as possible
for them.

A simple naming scheme that has been used successfully with CVS is as follows:

All branch names end in _branch or _b. Tag names do not.

Private branches and tags should have _private in their name.

Tag names that are connected to points where branches occurred should have _bp (for "branch
point") in their name. Another idea is to start the names of branch point tags with Root-of.

Tag names that are connected to points where merges occurred should have _mp (for "merge
point") in their name.

Some examples of tags and branch names using this scheme are:

rel_1_1_branch

The branch for release 1.1 and any of its subsequent patch releases

bob_i18n_private_branch

A private branch, probably used by Bob for some internationalization work

QA#fugu_139

A tag for the internal release of build 139 of the project named "fugu"

Root-of#rel_1_1_branch

The tag that records where the branch rel_1_1_branch originally diverged from the main line

susan_private_branch#main#2_mp

A tag to record the second merging of the branch susan_private_branch back to the main line

Dates can be troublesome in branch and tag names, especially if the project has people from
different countries reading the dates. Some people like to have the name of the tag that was used as
the branch point (or root) of a branch included in the branch name. This seems to make the branch
name overly long, in my opinion, and you should be able to use the SCM tool itself to tell you where
the branch came from.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5.4. Merge Madness

Merging is taking the changes that were made to files on one branch and making the same changes
to another branch. Perhaps the branch was where some experimental changes were developed, and
now they're ready for everyone else to use. Perhaps a bug was fixed on a branch for one series of
releases, and the same bug needs to be fixed in a different series of releases.

Branching is so tempting, so easy: just copy all those files and make your changes to the copies.
Merging is so much harder, and only gets harder as the original and the copies diverge over time.
Indeed, there are people who make a whole career out of merging different versions of classical texts
back together, word by painful word, but you probably don't want to spend your career merging files.
Even with the merge tools that are mentioned next, merges still take time, usually because some
human intervention is necessary when the tools can't figure out what to do. Large merges inevitably
destabilize the branch they are merged into, so extra testing effort is needed after the merge is
complete.

In most SCM tools, automated merging uses the diff and patch tools in some manner. diff uses an
algorithmic equivalent of finding the shortest path between two points to create the minimum
number of hunks, which are groups of lines that could be removed or added to one file to transform it
into the other file. patch takes these hunks and applies them to one file to create the other file, along
with some smart attempts to cope with changes to where the hunks should be applied within the file.
Many SCM tools help you only with merges between branched versions of the same file, not between
separate files. For more information about diff and patch, see "Comparing and Merging Files" at
http://www.gnu.org/software/diffutils/manual.

So what makes an automated merge fail? Generally, if two files have a common ancestor and both
files have had the same lines changed, it is unclear which changes are the correct ones to use. In this
case, the changes are conflicts, and someone has to resolve them by choosing one or another of the
changes. Luckily for SCM and branches, developers tend not to modify the same lines of code at the
same time as other developers. You may be pleasantly surprised by how few conflicts there are when
merging changes from one branch to another.

Some SCM tools (including CVSNT, Arch, Perforce, and BitKeeper) automatically keep track of when
files were merged. If you have a large number of files to merge and they have many conflicts, then
graphical merge tools may be useful. Some of the better-known standalone merge tools are the
commercial Araxis Merge (Windows only) and Guiffy (all platforms), and the open source WinMerge
(Windows only) and xxdiff (for Unix).

One good way to organize larger merges is to designate a small number of people as
"mergemeisters" and let them perform the merge and resolve as many conflicts as possible. Then
have the mergemeisters call in the appropriate people for each group of files that still need to be
merged by hand.

4.5.5. Security

Some other important aspects of SCM to consider are those related to security. The source code is
the heart of your project, where all your intentions, shortcuts, and errors are plain to see. Several
large companies including Microsoft and Cisco have been the targets of successful exploits aimed at
acquiring their source code. Even the repository of the source to the CVS tool has itself been cracked.

http://www.gnu.org/software/diffutils/manual
http://lib.ommolketab.ir
http://lib.ommolketab.ir

An SCM tool must make sure that only authorized people can read and change files, and it must keep
a record of such actions for audits. It must also be able to protect its own files from accidental or
malicious corruption, and it should not be vulnerable to denial-of-service attacks.

Some practical suggestions for securing your SCM tool, and CVS in particular, include:

Use separate and well-secured machines as SCM servers, which few or no developers can log in
to directly. If you have secure server rooms, keep your SCM machines in there. Emergency
power is often available in server rooms, which helps keep your filesystem intact, as do
redundant disks.

Use encrypted connections from SCM clients to SCM servers, especially if there is a wireless
connection involved anywhere in the network. If people have to have accounts on the SCM
server, use a secure shell such as smrsh to limit the commands that they are allowed to
execute.

Carefully guard the physical security of your backups of the repository. Destroy the physical
media of outdated backups.[2]

[2] Heating any CD or DVD in an ordinary microwave oven for 5 to 10 seconds will both physically destroy the disk and

entertain onlookers. My wife and lawyer say, "Don't try this at home!" but my children say, "Again, Daddy, again!"

Track each change in the repository using notifications of commits and inspection of diffs. Train
developers to expect to see email when they make changes and to occasionally confirm that the
information in the email is also appearing in any change logs.

The CVS pserver access mode is not designed to be a secure access method; it should be used
only inside trusted networks. Use ssh and the ext mode for external access, and avoid
anonymous access to CVS servers if at all possible.

Disable the CVS admin command for most people, since this command makes it too easy to
change or corrupt a repository in untraceable ways.

An excellent source of further information about this topic is the paper "Software Configuration
Management (SCM) Security," by David A. Wheeler, which is available from
http://www.dwheeler.com/essays/scm-security.html.

4.5.6. Access Wars

The development of a software product is often broken up into functional groups, such as networking,
GUI developers, testers, technical writers, and toolsmiths. Not surprisingly, the way that a product's
source code is stored in an SCM tool tends to reflect how the groups are divided. Disagreements
about who gets to make changes ("commit rights") in each group's files is a common source of
irritation in a project.

http://www.dwheeler.com/essays/scm-security.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Access Wars: The Beginning

The conversations that lead to long meetings about who should have commit rights
typically sound like the following fictional exchange. Luke is a senior member of one
group, and Theo is a less-experienced member of a different group.

Luke: Hi, Theo. I saw the commit email about your changes in some of my files.

Theo: Yes, I just fixed some spelling mistakes.

Luke: I think I ought to preview changes in code that I have to support. Could you send
me the changes and I'll make them myself next time?

Theo: Well, they were only a few spelling changes!

Luke: Yes, but you also changed the formatting of the code. Our group has different
conventions than your group, and we think it helps us to understand our code better...

Theo: OK, sure. (Thinking to himself, "That's the last time I bother to fix his typos!")

In many projects, it is considered polite to mention proposed changes in another group's files to that
group before you make them; you can also send diffs by email to the group. Otherwise, someone in
the affected group always seems to take offense, whether at the changes themselves, or because
they were surprised by who made the changes, or because "you might do it again, and it might break
something in the future!" There's not much you can do to argue with that, so you might as well
coordinate changes in other groups' files with them beforehand: egoless programming only goes so
far when it's a whole group's ego.

Even more far-reaching than these seemingly petty territorial conflicts are the effects on a project
when different groups start to deny others read access to their files. These aren't the files containing
the name of the next CEO of the company or telling where the last project leader was buried. These
are cases such as one group of developers allowing only compiled versions of their libraries to be
used by other groups, or the Technical Publications group wanting people to use copies of only those
documents that they have personally issued. This kind of information restriction hinders effective
software development.

Still, looking at the issue from a different angle, preventing your salespeople from promising features
in the next release based on a single comment they saw committed to the source code a few weeks
ago can actually make software development more coherent. As with all information, it's what you
expect the owner to do with it that matters most. The beauty of SCM tools is that if someone else
makes changes that you don't like to your group's files, you can not only talk to him but also back
out his changes.

4.5.7. Filenames to Avoid

All filesystems have their quirks about what characters are valid in filenames and how long filenames
can be. SCM tools have their own set of restrictions on the names of files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, a little history. Filenames with spaces in them were most uncommon in older Unix filesystems.
Windows 95 began to make them more popular, but Windows also dragged along "8.3" (pronounced
"eight dot three") filename restrictions from its DOS ancestry, where the filename could be at most
eight characters long, with an extension of up to three characters. Other characters in filenames that
have been known to break cross-platform compatibility, or even corrupt the files stored in SCM tools,
are /, \, and newline characters. Just to be safe, these characters are all still worth avoiding in
filenames.

For example, since CVS was originally developed on Unix, filenames longer than 8.3 were just fine,
but support for spaces came later. Unfortunately, the format originally chosen for passing the names
of files and their versions to the CVS info scripts, which are part of customizing a CVS server for
your site, did not really support spaces in the filenames until more recently, around Version 1.12.6.

Windows filesystems are set up by default to be insensitive to the case of filenames. So three files
named FileWriter.java, Filewriter.java, and filewriter.java (which differ only in the case of one or two
characters) would all be treated as the same file in a Windows filesystem. On Unix, and most other
operating systems, they would be three different files. This becomes a problem when a Windows user
tries to extract these files from a Unix server; it's not clear which file the Windows user will finally
see, since the three filenames may be identical in their local filesystem. It should be noted that the
same problem occurs with tools such as FTP and with shared filesystems such as NFS. The most
obvious solution is to use names that are unique on case-insensitive filesystems.

In general, avoid using the name or abbreviated name of the SCM tool as a filename or directory
name. A particularly unpleasant problem can occur if you are working in Unix and are using CVS to
store information about CVSfor example, some documents about how you configured CVS for your
environment. You won't be permitted to create a subdirectory named CVS, because one already
exists as part of how CVS works. However, you can create a subdirectory named cvs, because cvs is
a different directory name from CVS in the Unix filesystem. Unpleasant surprises are now in store for
anyone who tries to check out the subdirectory to a Windows system. The cvs directory will interfere
with the CVS directory that is used by CVS. My suggestion here is to call the subdirectory scm.

Some more general advice about the naming of files and directories in a project:

When naming directories, make sure their names start with different characters. Then
completing their names will be easier when using a shell prompt at the command line.

Use common prefixes for the names of files within the same directory. The extra information
can give you more of an idea about where to find the file.

Don't reuse directory names that are significant in your operating system (e.g., sys in Unix and
system in Windows). It's confusing, and one day some tool will pick up files from the wrong sys
directory and you may not even realize it.

Avoid embedding version numbers into the name of a file or directory that's managed using an
SCM tooltracking versions is what the SCM tool is for! Put a version into a filename only if there
is an occasion when multiple versions might be used at the same time.

4.5.8. Backups and SCM

SCM tools behave like backups for their users' files, but it is good to remember that unless the SCM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tool's own data is properly backed up, the users' files are no better protected than if the users had
just copied their files over to another machine. Backups of an SCM tool's data serve at least three
purposes:

Disaster recovery

That is, being prepared for "The SCM server just crashed and it won't come back up!"

Corruption detection

By comparing the files or database contents in backups

Intrusion detection

By tracking all the changes that have been made from backup to backup

Standard server backup practices can usually be followed for SCM servers. If necessary, quiesce or
shut down the server, export the data from the database or copy the files, compress, encrypt, and
uniquely identify the backup files, and archive them off site on permanent media. As with any backup
strategy, all this effort is wasted if you don't periodically test that the SCM server can be recreated
using a recent backup. Keeping one or more identical SCM servers on standby is useful both for
testing recovery of backups and for periodic maintenance. Personally, I like to make my own nightly
backups to CD and DVD for all the SCM data that I am responsible for, and then have an IT
department also back up the SCM machines. One place to read more about basic backup and
recovery best practices is Chapter 11 of Essential System Administration, by Æleen Frisch (O'Reilly).

The backup files' size can vary quite erratically due to compression artifacts, but the total size of the
files always grows every few days, since version control systems can't discard information if they are
to reconstruct the past correctly. Large unexpected changes in the size of consecutive backups can
occur and are worth investigating, usually by comparing the contents of the different backups.

What happens in the worst case, if you lose all your SCM data? If you're lucky, someone will have a
recent copy of the files on her local machine. You can recreate the recent state of the project by
adding these files back into the SCM tool. For this reason, it's a good idea to regularly check out the
entire contents of the repository onto at least one machine. Automated builds have to do this
regularly anyway.

4.5.8.1. Backing up CVS

Example 4-1 shows an example script that can be used on a locked repository to create a gzip'd
tarball of the repository. The backup file should be copied to another machine after it has been
created. On a Unix server, this kind of script is typically set up to run nightly, using a cron job. Scripts
used to back up CVS repositories should expect to encounter filenames with spaces in them.

Example 4-1. A shell script for backing up a CVS repository

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#!/bin/bash
#
Backup a CVS repository to a gzipped tarball. Also generate output
describing what has changed since the last backup.
#

The root of the local CVS repository, the one to be backed up
CVSROOT=/usr/local/cvs

The uniquely-identified backup filename
backup_home=/backups
backup_file=${backup_home}/cvs_backup_`date +"%m%d%Y.tgz"`

Record what has changed between each consecutive backup
cd ${CVSROOT}
if [-f ${backup_home}/du.today]
then
 mv ${backup_home}/du.today ${backup_home}/du.yesterday
fi
du -k [A-Za-z0-9]* | sort +1 > ${backup_home}/du.today
diff -N ${backup_home}/du.yesterday ${backup_home}/du.today

Create a list of all the files in the repository. Note that only
files whose _full_ name starts with [A-Za-z0-9] are matched. Make
sure that empty directories and soft links are handled correctly
(find -type f loses both of these).
repos_filelist=/tmp/all_files.$$
find [A-Za-z0-9]* -not -type l -print > ${repos_filelist}

You could also use grep -v here to select portions of the
repository, and you may want to add this script to the list of files
that are backed up.
tar --files-from ${repos_filelist} --no-recursion -czf ${backup_file}
chmod ogu-w ${backup_file}

Clean up
rm -f ${repos_filelist}

And copy the backup file to another machine ...

The source to CVS contains a useful script in the contrib directory named validate_repo.pl, also
known as check_cvs in earlier versions. This script can be run nightly to confirm that the repository
has not been corrupted in any obvious way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. SCM Tools

The seven different SCM tools examined in this section are a mixture of closed and open source
software. There are noticeably more usable SCM tools available than build tools (see Section 5.5),
and there are certainly more tools available from commercial organizations.

What should you look for in an SCM tool? Beyond the basic saving and retrieving of different versions
of files, I suggest, in order of importance:

Confidence in the integrity of your data1.

Fast and simple creation of tags, extraction of tagged files, and generation of diffs2.

Good support for branching and merging, ideally with both command-line and graphical
interfaces

3.

Integration with other existing tools such as bug tracking systems4.

A good web interface to let people browse the different versions of their files and also to search
through earlier versions of the files

5.

Good support from the tool vendor or the tool's community6.

Section 4.7, later in this chapter, summarizes the major differences between the tools discussed in
this chapter.

4.6.1. CVS

CVS (http://www.cvshome.org) is by far the most commonly used open source SCM tool. The CIA
project (http://cia.navi.cx), which tracks commits from hundreds of open source projects, shows that
70% of their commits come from projects using CVS. Many of the terms used by CVS, such as
commit and check out, have become de facto terms used by other SCM tools. Other SCM tools such
as Subversion and Arch are careful to provide a "Migration Guide for CVS Users" document and tools.
CVS is licensed under the GPL.

http://www.cvshome.org
http://cia.navi.cx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The History of CVS

CVS, which is usually described as an acronym for Concurrent Versions System, was first
released by Dick Grune in 1986 as a series of Unix shell script wrappers around RCS
(Revision Control System). RCS is an even older SCM tool designed by Walter Tichy for
single-user, single-machine, single-directory development environments. Tichy later went
on to design another SCM tool named RCE, which stands for Revision Control Engine. By
1989, Brian Berliner had rewritten CVS in C, and Jeff Polk had made it scale better. CVS
was originally intended to run on a single machine; later on, the concept of CVS clients
and a CVS server were added by Jim Kingdon. CVS is an SCM tool that has evolved,
rather than having an overall design.

CVS has been stable since around the end of the last century, but major releases occur
about once per year, with around half a dozen minor releases per year. A number of the
early contributors to CVS are now part of the Subversion project.

CVS is most commonly used over a network, with a single Unix or Windows-based server providing
the repository, though some partial support for distributed servers was added with Version 1.12.10.
Developers use CVS clients to check out a sandbox, which is their local working copy of the files
under control of CVS. Different developers can check out the same files at the same time, since the C
in CVS stands for concurrent. The opposite is true with SCM tools such as Visual SourceSafe, which
let only one person at a time work on each file; this becomes a bottleneck even with medium-sized
projects. After making changes, the files are checked in to the repository, along with some text
comments about the changes. The first person to commit her changes forces the other developers to
update their files before they can commit. CVS doesn't care how long you take between checkout and
commit. CVS logs are available for each file, and these logs describe all the checkins for that file. CVS
supports branches, tags, and also some basic assistance for merges.

The CVS project uses the GNU Autotools suite (see Section 5.5.3) to build executables for DEC Alpha,
Cray, HP-UX, Solaris, GNU/Linux, FreeBSD, NetBSD, IRIX, OS/2, Windows, Mac OS X, and VMS,
among others (see the file INSTALL in the CVS source for the complete list). The CVS source also
includes an extensive set of unit tests known as the "sanity checks." CVSNT (http://www.cvsnt.org)
is a well-established fork of CVS taken in 1999 by Tony Hoyle, originally to add native support for
Windows NT to CVS, but the two products still interoperate well. Features that have been added to
CVSNT include better support for Unicode, ACLs, and Windows authentication. WinCVS and MacCVS,
which are popular GUIs for using CVS on Windows and Macintoshes, respectively, both use CVSNT
under the covers.

For many years, the best documentation for CVS was "the Cederqvist," also known formally as
"Version Management with CVS" (https://www.cvshome.org/docs/manual), an online manual written
by Per Cederqvist that extends the manpage written by Roland Peschand and the FAQ maintained by
David G. Grubbs. While the Cederqvist is still useful, and has even been published as a book by
Network Theory (http://www.network-theory.co.uk), there are now a number of other good books
about CVS. The best ones are Essential CVS, by Jennifer Vesperman (O'Reilly); Open Source
Development with CVS, by Moshe Bar and Karl Fogel (Paraglyph), which is also available online at
http://cvsbook.red-bean.com; and Pragmatic Version Control Using CVS, by Dave Thomas and Andy
Hunt (Pragmatic Bookshelf). There are also numerous how-to documents and tutorials all over the
Internet, with particularly good ones at http://en.wikipedia.org/wiki/Concurrent_Versions_System

http://www.cvsnt.org
https://www.cvshome.org/docs/manual
http://www.network-theory.co.uk
http://cvsbook.red-bean.com
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://lib.ommolketab.ir
http://lib.ommolketab.ir

and http://www.devguy.com/fp/cfgmgmt/cvs.

The biggest strength of CVS is that many developers are already familiar with it. It does scale well
with reasonably large projects (hundreds of users, thousands of files, millions of lines of code) and
large file sizes (tens of megabytes), though the time to tag files increases linearly with the number of
files and their sizes. CVS is simple to set up and maintain; most CVS servers have the longest
uptimes of any machine in a company. It's secure against casual attacks, though it has been cracked
in the past (see Section 4.5.5, earlier in this chapter).

Since CVS is both open source and mature, there are also dozens of separate tools to add extra
functionality to CVS. A few of the most useful are:

ACLs

These allow you to control who can commit files, according to the user, the branch, and the
directory name. The cvs_acls script from the contrib directory of the CVS source and the
patches from http://cvsacl.sourceforge.net are examples of such add-ons.

Browsing CVS files

For web-based viewing of repositories, the Python-based ViewCVS interface
(http://viewcvs.sourceforge.net) is excellent; it also supports browsing of Subversion
repositories.

Graphical CVS clients

There are a number of graphical CVS clients in common use, and they all hide some of the
details of the CVS command line. The oldest one is WinCVS (http://www.wincvs.org).
TortoiseCVS (http://www.tortoisecvs.org) is well integrated with the Windows filesystem
browser. My current favorite graphical CVS client is SmartCVS (http://www.smartcvs.com)
because it runs on any platform with a JVM and provides all the add-ons of the other clients by
default.

Commit email

The activitymail Perl script, available from https://activitymail.cvshome.org, has a large
number of choices for sending email about commits. One particularly useful addition to email is
to include links to a web-based view of the files' changes.

Change logs

The cvs2cl Perl script from http://www.red-bean.com/cvs2cl can generate change logs in HTML
or XML. These change logs comply with the GNU standard for change logs, which is part of the
coding standards at http://www.gnu.org/prep/standards/standards.html#Change-Logs. They
can also act as a collection of "poor man's changesets" for CVS, and you can generate scripts
to revert complete changesets or merge them to other branches.

http://www.devguy.com/fp/cfgmgmt/cvs
http://cvsacl.sourceforge.net
http://viewcvs.sourceforge.net
http://www.wincvs.org)
http://www.tortoisecvs.org
http://www.smartcvs.com
https://activitymail.cvshome.org
http://www.red-bean.com/cvs2cl
http://www.gnu.org/prep/standards/standards.html#Change-Logs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Changesets

CVSps (http://www.cobite.com/cvsps) generates changesets from individual commits to a CVS
repository.

Local changes

cvsdelta (http://directory.fsf.org/cvsdelta.html) creates summaries of what has changed locally
in your sandbox.

Clients for CVS have been written in Java, Tcl, and C++. Most modern IDEs and many bug tracking
systems have some level of integration with CVS. CVS is still the default SCM tool for many
preconstructed environments, including SourceForge, which is probably the largest CVS user in the
world. (The GNU project may have the largest single CVS repository.) Other products that tie all this
extra information into one convenient web site for your project are the excellent FishEye
(http://www.cenqua.com) and the open source CVS Monitor project (http://ali.as/devel/cvsmonitor).

The weaknesses of CVS in many ways reflect the fact that it evolved, rather than being designed as a
whole. Interactions with a CVS server are atomic on only a per-directory basis, not per transaction.
So if you update your local sandbox at the same time that another developer is checking in his
changes, you may get only some of his changes. Alternatively, if something nasty happens to the
CVS server during a commit, your commit may fail, with some files changed but with others
unchanged. Try hitting Ctrl-C sometime during a CVS commit and then see which files were
committed and which ones weren't. (Don't worryanother commit will catch the files that were missed
by the first one.) When you create a tag, CVS doesn't let you record a message with a description of
why the tag was created. Renaming a file causes a break in the recorded history of that file.
Changing the name of a directory requires intervention in the repository by the CVS administrator
and may not always be possible, so choose your directory names and hierarchy very carefully.

Living with branches and merging in CVS is somewhat of a headache, as described earlier in this
chapter in Section 4.5.1 and Section 4.5.2; you should always tag CVS branches before merging from
them. Using CVS to keep track of source code from a third party by importing it into your repository
is a task to do with a clear head and a written set of notes in front of you, and be careful not to use
the files that you just imported from againcheck out a fresh copy instead. Authentication,
authorization, and accounting support in CVS is rather rudimentary, and there is no support for an
internationalized version of the tool. CVS works best with text files but can handle binary files, albeit
inefficiently (and don't forget to use cvs add -kb to disable keyword substitution, in order to avoid
corrupting such nontext files). Once an RCS file in a CVS repository exceeds about 10 versions and
100MB on a server with 1GB RAM, you can expect to see slower checkouts of that file, especially if it
is on a branch.

4.6.1.1. Making your life with CVS easier

This section contains a number of ideas that can make administering more complex installations of
CVS easier:

Use modules

http://www.cobite.com/cvsps
http://directory.fsf.org/cvsdelta.html
http://www.cenqua.com
http://ali.as/devel/cvsmonitor
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of what you ask CVS to check out for you is referred to as a module. The top-level
directories in your repository are the default modules. The interesting thing about modules is
how they can be used to collect different directories from the repository together into a single
target for checking out. For instance, if there is a project in the directory projects/projectA and
projectA also wants to use files from a directory named common/xml, then entries in the
CVSROOT/modules administrative file such as:

The module named common refers to the top-level directory "common"
common common
The module named common_xml refers to the "xml" subdirectory
in "common" but it will be named src/xml when checked out
common_xml -d src/xml common/xml
The module named projectA is a combination of the
projects/projectA directory and the common/xml directory
projectA projects/projectA &common_xml

will cause the command cvs co projectA to create a local subdirectory projectA with subdirectories
src/xml and the directories from projectA. This kind of indirection is important because it can create
different directory structures simply by defining new modules. Be warned, though, that you can't tell
CVS to use one particular version of the modules file, so be careful not to change the module
definitions that are needed for older releases of projects. Modules are an aspect of CVS that are often
overlooked, perhaps because they seem complicated to configure, but understanding what you can
do with them will make your life with CVS much easier.

Avoid symbolic links

The temptation is so strong. You want to move a directory within the source tree and yet
somehow preserve the change history of all its files. You know that just moving the directory in
the repository will break your ability to go back in time, since CVS doesn't version directories,
only files. But what if you moved the directory anyway and then created a symbolic link (a file
that points to another file, also known as a soft link) from the old location to the new one? Yes,
it works: developers will see the directory in both the old and new locations, and can commit
files in either directory, though locking the directory may not work properly if you configure
CVS to use LockDir to keep your locks elsewhere. But what about when the next directory
move comes along three months from now? Then you'll have soft links to soft links, and so on.
CVS does not keep track of different versions of soft links, so using soft links within a CVS
repository always leads to extra work later on.

Sometimes the idea to use soft links arises from wanting to share a directory between two top-
level directories without one group having to check out multiple modules. A better approach is
to use alias and ampersand modules, as discussed in the previous item in this list.

Synchronize clocks

It's good practice, both for CVS and for build tools such as make, to synchronize the clocks on
every machine that will use the tools. ntp is the most common synchronization client and
server for Unix, and your local time server may well even be named something like
ntp.example.com. Windows XP has its own synchronization client, and the Tardis tool works for
all earlier versions of Windows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Know which commands make immediate changes

After using CVS for a while, you may be lulled into believing that nothing you do in your
sandbox can affect the rest of your team until you commit the changes. Wrong! CVS
commands that modify the repository, apart from the tagging and branching ones (both the
local and remote versions), include cvs add directory, which adds a directory immediately, and

cvs import, which changes the head of the tree straightaway. (There is a -X argument with
more recent versions of the import command to avoid this problem.) To make your life easier,
pause to consider before using the tag, add directory, and import commands.

Save the output

When you are creating tags or branches with cvs tag, or merging versions with cvs update -j,
or using cvs import, it's a good idea to save the lengthy output from these commands.
Important informationsuch as existing tags not being moved or the names of files with merge
conflicts in themappears in the output and is not saved anywhere else. If you do lose the
output from a command, you may be able to see which files have conflicts by running cvs -n
update.

Be careful with top-level directories

Since renaming directories and moving them around is hard to do well with CVS, some CVS
administrators find it helpful to keep all project directories under a single top-level directory.
When the time comes to change the directory structure of the project, they can create a new
top-level directory and copy the subdirectories into that. One problem with this approach is
that it's now more complicated to merge changes into both the old and new top-level directory
structures. The neater approach to this problem is to define a module per project and then
have the module refer to the directories that make up the project.

Some CVS administrators also find it convenient to make the top-level directory in their
repository unwritable by people who aren't also CVS administrators, so that accidental imports
don't leave their mistakes there. This does mean that new top-level directories have to be
created by a CVS administrator.

Avoid keywords and strings that complicate merges

CVS has some convenient keywords such as $ Date$ and $ Id$ that are automatically
expanded during commits to the current date or other information about the file.
Unfortunately, when merging files from one branch to another, CVS does not treat the
expanded versions of these variables as special, and merges can end up with hundreds of
conflicts to be resolved by hand, where most of them are just changes in the date a file was
modified. Many people avoid using these keywords and rely on cvs log for the same
information. Still, the $ Id$ keyword can be useful if you suspect that releases might escape
without their source code being tagged.

Another tip to make merges easier is to avoid using the strings <<<<< and >>>>> in your files.
These strings are inserted by CVS to mark conflicts in merged files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Beware of unexpected shell expansions

If the cvs commit command is used with the -m "some comment here" argument to make a

comment about a commit, then shell characters in the comment are expanded. So a comment
such as cvs commit -m "Changed the default $PATH value" will have $PATH replaced by its value in
the current shell, and the commit message will end up looking something like "Changed the
default /usr/local/bin:/usr/bin:/bin value" in your logs. This doesn't happen if you use an editor
to add the comment or if you use single quotes instead of double quotes.

Change your shell prompt

When you have lots of different branches checked out in different sandboxes, it's easy to forget
which one you're working on. Obviously, naming your local directory something suggestive
helps, but you can also add the branch name to your shell prompt and even change the color of
the cursor. The following incantation does this for the bash shell: just replace _branch with
some text that appears in your branch names. Other shells have similar abilities.

PS1="[\u@\h\$(\
if [-d CVS]; then \
 if [-e CVS/Tag]; then \
 cat CVS/Tag | sed -e 's/^T/ /' | sed -e 's/^N/ /' \
 | sed -e 's/^D/ Date /' | sed -e 's/_branch/\[\033]12;blue\007\]/'; \
 else \
 echo ' \[\033]12;black\007\]MAIN' ; \
 fi; \
else \
 echo '\[\033]12;black\007\]' ; \
fi) \W]\\$ "

Avoid empty directories

You can create empty directories in your CVS repository, and when you check out a tree, the
directories will appear as you would expect. There is a handy -P argument to cvs update to
remove, or prune, empty directories. However, if you check out a tagged version of your tree,
the empty directories are automatically pruned, and you have to run cvs update -d to get them
back. The easiest thing to do is avoid empty directories in your source tree and instead create
them as needed with your build tool. Adding empty dummy files is an ugly workaround.

Tag CVSROOT too

When you tag some files for a release, don't forget to tag the files in CVSROOT too. These files
describe how CVS is configured and can change over time. If you want to know which
directories a particular module represented at the time of a release, this will help.

CVS is the default choice for SCM for many open source and commercial projects. It is also the base
standard by which other SCM tools, both commercial and open source, are measured. Subversion
(described in the next section) is designed to be a replacement for CVS, but it will be a long time, if
ever, before CVS goes away.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6.2. Subversion

Subversion (http://subversion.tigris.org) is an open source SCM tool designed as a "compelling
replacement for CVS." Subversion development has been partially funded by CollabNet
(http://www.collabnet.com), a commercial PDE discussed in Section 3.1.3. Subversion is released
under the Apache Software Foundation license, with CollabNet given as the copyright holder.

The History of Subversion

The first release of Subversion was in October 2000, and steady monthly releases finally
led to Version 1.0 being released in February 2004. Key project members include Karl
Fogel (who cowrote one of the CVS books referred to in Section 4.6.1, earlier in this
chapter), Jim Blandy, C. Michael Pilato, Brian Fitzpatrick, Greg Stein, Kevin Hancock, and
Ben Collins-Sussman.

Subversion (also known as SVN) really is like CVS 2.0. Even typing the main command svn feels
somehow similar to typing cvs. Even apart from the fact that Subversion has an order of magnitude
more code, there are substantial differences between Subversion and CVS under the hood, including
a default Berkeley DB database backend rather than the flat-file RCS format used by CVS. (A
filesystem backend called FSFS is also available.) However, the basic client/server model used by
CVS is unchanged, and you still check files out, edit them, update, and commit them.

While using a Subversion client is as easy as using a CVS client, configuring a Subversion server can
be a little harder. The default network protocol used to connect a Subversion server and its clients is
based on an extension to HTTP that is called WebDAV. If you already have an Apache web server
running on your Subversion server machine, you can configure it to use WebDAV and then install and
configure the Berkeley DB database. Alternatively, you can use the svnserve executable, which is
much more like CVS's cvs server process in concept.

The major changes in Subversion compared with CVS are:

Renaming directories and files

Directories are now versioned, just like files. You can rename directories and files and still
follow their commit history.

Atomic operations

All Subversion operations either succeed fully, or fail with no changes made to the repository.

Versioned metadata

Every file and directory can have arbitrary information (metadata) associated with it as

http://subversion.tigris.org
http://www.collabnet.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

key/value pairs, and this information is versioned. Recording files' owners, ACLs, and any other
information needed for specific sites can be implemented using this mechanism.

Full support for binary files

Subversion is designed to fully support both binary and text files much more efficiently than
CVS does.

Cheaper branching and tagging

The cost of branching and tagging need not increase with the project size.

Where Subversion and CVS Differ Most

The major difference about Subversion for most CVS users is what version numbers now
mean. In CVS and many other SCM tools, version numbers are assigned per file. In
Subversion, version numbers are per change to a repository. So "Version 23" of a file
now means that the repository has had 23 commits to it, not that a particular file has
had 23 commits to it. This also means that the version number of a file changes on every
commit anywhere in the repository, even if the file hasn't changed at all.

Another difference is that tags and branches appear in the URL of the repository and look
exactly like directories. For example, the URL for a subdirectory subdir in the main
development of a project myproject could be
http://svn.example.com/myproject/trunk/subdir, and a branch for release 1.0 could look
like http://svn.example.com/myproject/branches/rel_1_0_branch/subdir.

Subversion can run on most Unix versions, Windows 2000 (and later for the server), and Mac OS X.
Windows support is native and has always been part of the project. The limitation on the server for
Windows is due to the use of Berkeley DB, which apparently doesn't run on Windows 95, 98, or ME.
Using the FSFS filesystem backend should remove this limitation.

A number of tools to convert data from many other SCM tools to Subversion have been developed as
part of the product. The script cvs2svn is one such useful tool; it converts existing CVS repositories to
Subversion repositories. Some Apache projects have converted some of their repositories to
Subversion, and GCC is in the process of doing so.

One of the most remarkable things about Subversion has been just how many other projects have
sprung up around it, integrating it into existing IDEs and extending existing tools to support it. Even
the effort to provide internationalized versions has been impressive. For web-based viewing of
repositories, the Python-based ViewCVS (http://viewcvs.sourceforge.net) also supports browsing of
Subversion repositories. TortoiseSVN (http://www.tortoisesvn.org) is one graphical client for
Subversion that is well integrated with the Windows filesystem browser. Another graphical client for
Subversion that can be used on Windows, Linux, and Macintosh machines is SmartSVN
(http://www.smartsvn.com).

http://svn.example.com/myproject/trunk/subdir
http://svn.example.com/myproject/branches/rel_1_0_branch/subdir
http://viewcvs.sourceforge.net
http://www.tortoisesvn.org
http://www.smartsvn.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Development of all these supporting tools for Subversion has been made easier by clear
documentation from the beginning of the project. One of the main sources of information is the book
Version Control with Subversion, by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato
(O'Reilly), which is also available online at http://svnbook.red-bean.com. Other books about
Subversion include Practical Subversion, by Garrett Rooney (Apress), which is aimed more at SCM
administrators; Pragmatic Version Control Using Subversion, by Mike Mason (Pragmatic Bookshelf);
and Subversion in Action, by Jeffrey Machols (Manning). Another useful source of information and
discussion about Subversion is the Subversionary web site at http://www.subversionary.org.

However, Subversion has limited support for ACLs and the cvs2svn script may have some difficulties
handling complex branching schemes. The known bugs in Subversion are publicly available at the
Subversion home page. Subversion still has plenty of room left to grow, with a number of ideas
already scheduled for later releases. One such idea is the ability to track who is editing which files.
Another is the ability to lock files so only one person can edit them at a time.

In summary, Subversion set out to build a replacement for CVS while keeping its familiar parts, and
for the most part it has succeeded. Expect to see Subversion become the other choice for public SCM
tools in PDEs like SourceForge and the Apache Project. CollabNet already uses Subversion as the
underlying SCM tool in its PDE product, and more companies are likely to follow.

4.6.3. Arch

Arch (http://www.gnu.org/software/gnu-arch) is a distributed open source SCM tool, as opposed to
the centralized servers of CVS and Subversion. It's designed to scale to tens of thousands of users, in
the same way that peer-to-peer (P2P) tools such as BitTorrent have scaled well for distributing large
files. Arch is licensed under the GNU General Public License. Note that Arch is still changing, and the
version discussed here is tla-1.3, released in December 2004.

The History of Arch

Arch began life as a collection of shell scripts by Tom Lord in 2002. Its growth since then
has been rapid, driven by both the attractions of distributed SCM and some good
publicity, and Arch has been rewritten in C. The personalities involved in developing Arch
are definitely prickly at times, and Arch versus Subversion mudslinging has become
something of a cliché in discussions about open source SCM tools.

At its simplest, using Arch is like having a repository on your own machine, one that you can make
commits to, branch, and generally rearrange as you wish, even on your laptop on an airplane. Then
you synchronize from other repositories when you want, and they can accept your changes at their
discretion.

Arch is carefully designed to minimize server-side work, so that it can scale well. It assumes that disk
space is cheap and that network communication is the most costly operation. Just like Subversion,
Arch provides atomic commits across entire source trees. Practically any shared resource such as a
directory, FTP server, or web server can be used as an Arch server. Different versions of the

http://svnbook.red-bean.com
http://www.subversionary.org
http://www.gnu.org/software/gnu-arch
http://lib.ommolketab.ir
http://lib.ommolketab.ir

metadata such as tags are stored, in addition to the versions of the files. Arch keeps track of file and
directory rename operations by using unique identifiers for everything; these don't change, even
when the name of a directory changes.

Changesets are a key part of Arch and use the familiar diff format, at least for text files. The unique
identifiers for each file make it possible to automatically patch files, even when their names have
changed. Arch also remembers which changesets have already been applied, so the potential
multiple-merge problems of CVS can be avoided. The default format used for storing files and
changesets is simple in the extremecompressed tarballs and a file formatted exactly like an email
message. These tarballs have checksums and can also be cryptographically signed to help ensure
their integrity. The simple format means that only a few commonly available tools are required for
Arch to work properly after installation.

Arch is known to work on GNU/Linux, FreeBSD, NetBSD, AIX, and Solaris. Portability to Windows is
planned for the near future, but the main focus for Arch still seems to be Unix-based platforms. Other
versions of Arch have been written in languages other than C, but tla by Tom Lord seems to be the
most commonly used version of Arch.

Currently, the best sources of documentation on Arch are the "Arch Meets Hello World" tutorial at
http://www.gnu.org/software/gnu-arch/tutorial/arch.html and the ever-changing Wiki at
http://wiki.gnuarch.org. Documentation of the rather large number of Arch commands (over a
hundred) is terse, which contributes to the generally steep learning curve for Arch.

Like any newer product, Arch has its rough edges. When it was evaluated in April 2005 for use with
the Linux kernel, it was felt to be too slow for such a large project. Some people feel that the
filenames used to refer to particular versions are too long to type comfortably, and that the choice of
special characters in the names clashes awkwardly with the same characters used by common shells
such as bash and also tools such as vi and vim. Arch has not yet been internationalized, though a
fork of it named ArX has been. Other problem areas, which may or may not have been fixed by the
time you read this, include the lack of symbolic links, the lack of file permissions (for controlling
access), spaces not being allowed in filenames, and some Unix/Windows end-of-line formatting
problems. One issue that is unlikely to have changed is that Arch developers can seem arrogant in
their zeal for their project.

Arch is the best open source example of a trend in SCM tools toward tools that are distributed, rather
than centralized on a single server. The emphasis on changes to a project's source code being seen
as a collection of separate changesets is also a distinct trend in all modern SCM tools. In terms of
development, Arch is roughly where CVS was 10 years ago: definitely usable for noncritical projects,
but rough around the edges, particularly with regard to ease of use and documentation. Still, it has
the backing that comes with being an official GNU project, and if development continues as it has,
Arch could be a strong contender among open source SCM tools.

4.6.4. Perforce

Perforce (http://www.perforce.com) is a commercial SCM tool, currently licensed for around $750 per
user, which includes a year of support. There are a range of licensing options, including free use for
open source projects.

http://www.gnu.org/software/gnu-arch/tutorial/arch.html
http://wiki.gnuarch.org
http://www.perforce.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The History of Perforce

Perforce Software was founded by Christoper Seiwald in 1995. Seiwald also created the
Jam build tool described in Section 5.5.5. Perforce sales have grown to include thousands
of companies, including Microsoft (see Section 4.6.7, later in this chapter) and Google.

Perforce, also known as P4, is a modern, centralized, fully networked SCM tool. It provides atomic
commits across entire depots (repositories) and supports branching and merging well, including
automatically tracking when files were merged. Concurrent access to multiple files is the normal way
of using Perforce, but unlike CVS, Perforce also keeps track of who is editing each file. Depots store
binary files as compressed files and use an RCS-like format for text files. Metadata about the files and
changelists (changesets), such as branch information and associated bugs, are stored in a separate,
proprietary, journaled database. Backups of Perforce server depots can be made without stopping the
server from being used, and no separate licensing server is used, which also reduces administrative
work.

Perforce is supported on a wide variety of platforms, including almost all recent Unixes; Windows NT,
2000, and later; Macintosh Classic and Mac OS X; and VMS. Windows 95 and 98 are not supported
for Perforce servers. Dozens of other platforms are supported for Perforce clients. APIs to use
Perforce as part of an application exist for C, C++, Java, Perl, and Python, among other languages.

Documentation for Perforce is extensive and of good quality. All the documentation is freely
downloadable in convenient file formats from the company's web site. Judging by comments in
newsgroups and weblogs and from what I've heard through other sources, the product support team
at Perforce is excellent. Training and other consulting services are readily available.

Perforce has been carefully designed to scale well as projects grow. For instance, tagging and
branching operations are fast, taking much less than the linear time seen with CVS. The Perforce web
page http://www.perforce.com/perforce/reviews.html provides some useful comparisons of various
SCM tools and tells how each one scales as a project grows.

Like any SCM tool that uses a database, Perforce requires attention to maintenance. Disk space
allocation and tuning procedures are well documented in the Perforce System Administrator's Guide.
Integrity-checking tools are provided to guard against database corruption. Renaming directories and
files is a two-step process, but the history of each step is retained. Files on the client machine are
read-only until the user tells Perforce that she wants to edit them. This can be awkward if you are
working offline, or if an external application wants to write temporary changes to files that are stored
in Perforce.

In summary, Perforce is similar in architecture to CVS but has stronger functionality and is much
faster. The product is mature and well supported, and there are numerous tools that extend or
integrate Perforce in various customized ways. Perforce is a good choice for larger groups of
developers, especially within a company with the resources to administer it properly.

4.6.5. BitKeeper

http://www.perforce.com/perforce/reviews.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

BitKeeper (http://www.bitkeeper.com) is a commercial SCM product from BitMover. BitKeeper is
licensed per person who modifies files, and licenses can either be purchased for around $1,750 or
leased for around a third of the purchase cost. There is also a different license for using BitKeeper at
no cost. The version described here is 3.2.3, released in August 2004.

The History of BitKeeper

BitMover, Inc., the company that produces BitKeeper, was founded by Larry McVoy and
others in 1998. McVoy was also the designer of TeamWare, the SCM tool used and sold
by Sun. A huge success for BitKeeper was its choice by Linus Torvalds as the SCM tool to
replace CVS for developing the GNU/Linux kernel. Some open source developers found
the terms of the free license unpalatable, and there was some spirited discontent back in
2002, when a few Subversion developers clashed with Larry McVoy over the changing
terms of the free license. The publicity doesn't seem to have hindered BitKeeper's sales.
In early 2005, reverse engineering of BitKeeper's protocol led to the free version of
BitKeeper no longer being offered by BitMover. Torvalds then began developing an SCM
tool named git, which was designed as a possible replacement for BitKeeper in the Linux
kernel project.

BitKeeper, also known as BK, is a modern, distributed SCM tool, complete with atomic operations,
changesets, file metadata, strong support for branching and merging, and a web-based graphical
interface. Since BitKeeper is fully distributed, it has no central point of failure and it scales extremely
well. It also helps that the bandwidth requirements for most common BitKeeper actions are relatively
small. Every developer effectively has a copy of the repository on his machine, which makes working
with the proverbial laptop on an airplane easy. You can make your local changes available (a push)
using a wide variety of protocols from SSH to HTTP, or even using email.

BitKeeper handles all the complexity of pushing the changes in a local repository out to other
developers' repositories. Renaming of files is handled well, including the tricky problem of two
developers renaming the same file at the same time. You can add different comments to different
files in a changeset, which is sometimes useful. The data format used by BitKeeper is based on SCCS,
the original Unix SCM tool created by Marc Rochkind in 1972. SCCS files include checksums to help
avoid corrupted data.

BitKeeper runs on most modern Unixes, Mac OS X, and Windows 98 and later releases. There is an
long-standing offer from BitMover to support any platform for a sale of over 50 licenses, providing it
is POSIX-compliant and not prohibitively expensive.

Documentation for BitKeeper is good, though the printable versions are available only with the
product. Online documentation is extensive, and support is reportedly very responsive. There is a
good demonstration of BitKeeper available at http://www.bitkeeper.com/Test.html. There is an open
source BitKeeper client available from BitMover (http://www.bitmover.com/bk-client.shar), though
this tool only extracts files from repositories. There is also an open source tool called SourcePuller
(http://sourceforge.net/projects/sourcepuller) that can interact more generally with BitKeeper.
Development of this tool was what led to the free version of BitKeeper ceasing in 2005.

BitKeeper is an attractive commercial SCM tool. The pricing scheme seems to indicate that BitKeeper

http://www.bitkeeper.com
http://www.bitkeeper.com/Test.html
http://www.bitmover.com/bk-client.shar
http://sourceforge.net/projects/sourcepuller
http://lib.ommolketab.ir
http://lib.ommolketab.ir

is competing against ClearCase and is intended for use by large businesses, while still working closely
with the open source community for the good publicity. Being chosen for GNU/Linux kernel
development is a strong endorsement for any SCM tool.

4.6.6. ClearCase

ClearCase (http://www.ibm.com/software/rational) is the SCM part of a large change management
environment known as the Rational Unified Process. ClearCase is licensed commercially at around
$5,000 per developer, though this is negotiated on a per-site basis, and there is a "lite" version
available for around $1,250.

The History of ClearCase

ClearCase grew out of the DSEE SCM tool by Apollo (which was later bought by HP) but
was first developed and released by Atria in 1992. Atria merged with PureSoft, and the
merged company was later bought by Rational, which in turn was bought by IBM.
ClearCase is used by HP, 3Com, eBay, Cisco, and many other large computer-related
companies.

ClearCase is unique among the major SCM tools in that it uses a separate, versioned, distributed
filesystem on each developer's machine. Once in this filesystem, you automatically see the chosen
versions of the files managed by ClearCase. So you never have to manually update your local copy of
a filethe filesystem just makes it appear for you. Alternatively, you can freeze different parts of what
you see at particular versions. Developers choose which versions of which sets of files they wish to
see by modifying their "configuration specification" file, also known as the "config spec." These files
can build on top of each other, allowing for complicated descriptions of which files you end up actually
using.

If the ClearCase server is unavailable, not only will developers be unable to use
the SCM tool, they won't see the directories containing the ClearCase controlled
files. To ensure that the networked filesystem remains available all the time,
ClearCase supports redundant servers as well as the ability to distribute source
trees across multiple servers.

Directories as well as files are versioned, and the ClearCase filesystem supports soft links. The
branching and merging environment provided by ClearCase has good graphical support, and the
merge tools seem particularly well liked. The ClearCase make tool, ClearMake, provides extensive
information about all generated objectsyou can even view the precise command used to generate an
object file at any time. ClearCase can also use this information to wink in object files that have
already been built, rather like ccache does (see Section 5.4.1). However, ClearMake is noticeably
slower than other versions of make, though the accuracy of dependency checking is much improved.
ClearMake can also automatically produce a "bill of materials" (BOM) for a release, listing the specific
version of each file used to construct the build. Of course, a BOM is only one part of what is needed

http://www.ibm.com/software/rational
http://lib.ommolketab.ir
http://lib.ommolketab.ir

to reproduce a release: the tools used and their versions are others.

ClearCase servers and clients are supported on AIX, HP-UX, IRIX, GNU/Linux, Solaris, and Windows
NT, 2000, and later versions.

ClearCase comes with extensive documentation and support from IBM. Two useful books are The Art
of ClearCase Deployment: The Secrets to Successful Implementation, by Darren W. Pulsipher and
Christian D. Buckley (Addison-Wesley), and Software Configuration Management Strategies and
Rational ClearCase: A Practical Introduction, by Brian A. White (Addison-Wesley).

The biggest drawback of ClearCase for many organizations is its cost, both the initial per-seat cost
and the cost of the substantial administrative team required to keep ClearCase working. The large
amount of administrative work needed to keep ClearCase running properly explains why it is rarely
found in smaller companies. ClearCase can use large amounts of disk space on developers' machines,
depending on how it is configured, and places substantial demands on networks. When either of
these resources is limited, the performance of ClearCase can become very slow. For small to medium
projects, ClearCase is usually seen as overkill.

4.6.7. Visual SourceSafe

Visual SourceSafe (http://msdn.microsoft.com/vstudio/productinfo) is a commercial centralized SCM
tool from Microsoft. As of 2005, licenses are available for approximately $500 per seat.

The History of Visual SourceSafe

SourceSafe, originally written by Brian Harry and Kenny Felder, was purchased by
Microsoft in 1994. Development continued, with the current release being Visual
SourceSafe 6.0.

Interestingly, Microsoft itself used an internally developed version of RCS named SLM
until 1999, when it began using a version of Perforce named SourceDepot.

Visual SourceSafe is a centralized SCM tool, usually used in a locking (pinning) manner, where only
one developer can change a file at a time. It's designed to be used almost exclusively on Windows-
based platforms by small groups of developers. One of its strengths is its tight integration with Visual
Studio and other Microsoft tools. However, it is not unique in that respect, since Perforce, BitKeeper,
and ClearCase also integrate well with Visual Studio. Commits are not atomic across a source tree.

There is one non-Microsoft book about Visual SourceSafeEssential SourceSafe, by Ted Roche and
Larry C. Whipple (Hentzenwerke Publishing)but it doesn't cover the subjects that many developers
find hard to use, such as branching. In the end, the tool's own online help and the MSDN library have
the largest amount of information about Visual SourceSafe.

Visual SourceSafe is an older product, and frankly, it's showing its age. You can find some (mostly
negative) opinions about it at http://www.highprogrammer.com/alan/windev/sourcesafe.html and
http://www.developsense.com/testing/VSSDefects.html, and a more balanced discussion at

http://msdn.microsoft.com/vstudio/productinfo
http://www.highprogrammer.com/alan/windev/sourcesafe.html
http://www.developsense.com/testing/VSSDefects.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://c2.com/cgi/wiki?SourceSafe. You could also pay $99 for a formal report by Forrester
(http://www.forrester.com). Some people claim that they have had their stored files corrupted using
the tool, while others dismiss these claims. Using branches with Visual Studio projects seems to be
more complicated than usual to get right, and performance is never fast enough. Supporting multiple
time zones for developers requires other add-on products.

Some of these issues may be addressed in future releases, but I don't recommend using Visual
SourceSafe for any new project. If you are looking for a product that feels like Visual SourceSafe,
there is Vault, a commercial SCM tool from SourceGear (http://www.sourcegear.com) that uses the
same terminology as Visual SourceSafe but does everything more robustly and over larger networks.
There is also a new SCM product from Microsoft, provisionally named Visual Studio 2005 Team
System, that's intended for larger groups of developers than is Visual SourceSafe; it is due for
release sometime in late 2005.

http://c2.com/cgi/wiki?SourceSafe
http://www.forrester.com
http://www.sourcegear.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7. Comparison of SCM Tools

Table 4-1 briefly summarizes my opinion of how each of the seven SCM tools described in this
chapter matches up to the suggestions at the start of Section 4.6, earlier in this chapter, about what
to look for in such a tool. Several such comparisons exist on the Internetfor example, http://better-
scm.berlios.de/comparison (which has no comparison of merging and is undated) and
http://wiki.gnuarch.org/moin.cgi/SubVersionAndCvsComparison (which is a mutable Wiki). However,
when comparing SCM tools using these tables, be careful to choose one that will work for your
project; don't just go by the number of features the tool has. In Table 4-1, a plus sign (+) indicates a
strength and a minus sign (-) indicates a relative weakness.

Table 4-1. Comparison of SCM tools

Requirement CVS Subversion Arch Perforce BitKeeper ClearCase
Visual

SourceSafe

Data integrity + + + + + - -

Fast tagging - + + + + + -

Easy
branching/merging

- + + + + + -

Integration + + - + + - +

Web interface + + - + + + -

Good support + + - + + + +

http://better-
http://wiki.gnuarch.org/moin.cgi/SubVersionAndCvsComparison
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8. Wider Uses of SCM

Most of this chapter has been about using SCM tools to control the source code for a product. To
have confidence that you can repeat previous releases, you need to control much more than just the
source code. Parts of the development environment to consider include all the tools used in the build
process, the operating system as configured on the build machine, the test environment and the
target operating systems, documentation, and finally how the SCM tool itself was configured at the
time of the build. If all that sounds like too much load for your SCM tool, then at least create backups
of the various tools and machines and store them somewhere safe off site.

One great use for SCM in your development environment is for people's personal machines, where
the data is perhaps not backed up in any other way. On Unix machines, keeping a copy of each
person's /etc directory and all the dotfiles from the home directory provides easy recovery when a
disk fails. On Windows, a copy of each person's My Documents directory will let you recover key files
at some point.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.9. Checklist

This section contains a short list of questions that you should feel comfortable answering about how
you use an existing SCM tool:

What is saved in your SCM system? What is not in your SCM system? Why?

What have you overlooked? Often the only time this question is carefully answered is when a
hard disk dies and you try to recreate your environment. List all the files, tools, and other pieces
of your environment that you use to build a release.

Can you still recreate older releases if a file is renamed?

Can you still recreate older releases if a directory is renamed?

How do you know the date on which a file was branched?

How do you know the intended purpose of each branch?

Who can change permissions for write and read access to the SCM tool?

What happens with your SCM tool if two files in the same directory have the same name, but
one is uppercase and one is lowercase? What happens if a filename has spaces in it?

How does the backup size of your SCM tool's files change over time? When will you next fill up a
key disk, CD, DVD, or tape?

Can you develop on a laptop on an airplane? How much of your SCM tool still works, and how
do you resynchronize when you reconnect later on?

How would you add a process to your SCM toolfor example, requiring each change to be
reviewed by other people?

Do you have good integration between your SCM tool and your bug tracking system?

How do you decide when to upgrade your SCM tool, whether it's to fix bugs in the tool or for
extra functionality?

What is the most common mistake that people using your SCM tool make? How could you help
them to avoid doing that?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Building Software
this chapter discusses how software products are built from their source files. The first half of the
chapter describes what a build tool is and what you might want a build tool to do. The second half
compares six of the most commonly used build tools: shell scripts and batch files, make, GNU
Autotools, Ant, Jam, and SCons.

One solid study, not written by a consultant working for a company that sells a build tool, suggests
that between 10% and 30% of the time spent working on many complex software projects is spent
wrestling with the build tool, waiting for slow builds, or investigating phantom bugs due to
inconsistent builds.[1] That's a substantial amount of time! Whether you believe the figures or not,
frustrating experiences with a build tool can certainly make any project far less productive.
Conversely, a good build tool can fade into the background and let you get on with writing code.

[1] G. Kumfert and T. Epperly, "Software in the DOE: The Hidden Overhead of `The Build,'" Lawrence Livermore National

Laboratory technical report, available at http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=15005938 (2002).

The purpose of this chapter is to help you choose and use an appropriate build tool for your project.
If that choice has already been made, then the examples and references for each build tool should
help you use the build tool better. If you are using a build tool that isn't described here, then the
general observations about builds should still be useful.

http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=15005938
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. How Software Gets Built

This section is a brief overview of how source code is turned into an executable, a program that can
actually run on a computer. This is the process is known as "building software." A summary of the
different stages of a build is shown in the next section, Section 5.1.1. This summary is also used later
on when considering how different build tools work in practice.

Source code (or "the program") is what developers (or "programmers") write. Source code can be
written in high-level programming languages (such as C or Java), scripting or dynamic languages
(such as Perl or Python), or low-level languages (such as assembly code). Source code can also be
binary files such as images or precompiled libraries. Loosely speaking, anything needed by your
product that cannot be generated from another place within your project is part of the source for
your project. A build is the process in which a build tool uses other tools to convert the source code
into a working product that can be used by other people.

How a product is used by other people varies for different customers and different machines. Some
languages (such as Perl) are interpreted, which means that the source code is used directly by
software that's already on the machine. This existing software is called an interpreter. Other
languages (such as C and Java) are compiled, which means that another tool called a compiler
converts the source code to the appropriate binary file format for the CPU to execute on each
particular machine.

Writing source code is relatively straightforward until the amount of source code begins to grow. To
help you keep track of what's going on in your program, you really want to divide up the source code.
"Put the GUI code in these files, put the disk access code over here in this file, and then put all the
database interface code into all these other files," and so on. Each of these parts depend on some of
the other parts, but they probably don't depend on all of the other parts, and so dividing up the code
in this way makes the product easier to imagine. Products depend upon these other parts being
present, either when the product is compiled (at compile time) or when the program is run (at
runtime).

To reduce the number of dependencies between different parts of the program, all kinds of simple
and complex mechanisms have been invented over the years. Some of the commonly used ones are
header files, data encapsulation, and interfaces. Section 5.3, later in this chapter, goes into more
details. What all these approaches have in common is an attempt to make it very clear to different
parts of the program how to use the other parts. These ideas do indeed help reduce the number of
interfaces between different parts of a program, but at the cost of having to update them as the
program grows.

The problem of building programs starts to get harder when different parts of the program have to be
built in a certain order. For instance, with C programs you commonly build .o or .obj object files and
then combine them into library files, before linking the generated files together to create an
executable. With Java, you have to build .class files before you can create a .jar file. Before running
your Java program, you'll also have to make sure that any other required .class or .jar files are
present on your machine.

Whatever the particular requirements are for building the different parts of a program in a certain

http://lib.ommolketab.ir
http://lib.ommolketab.ir

order, you might think that making sure that all those different steps are performed in the right order
shouldn't be too hard. After all, it's just like a recipe for a meal with a large number of ingredients
and lots of complicated steps to follow in order. Build tools are designed to perform the specified
steps, using a defined build processthe recipewhich is usually described in build files. Once the recipe
has been defined, then it just needs to be followed by the build tool.

If a program is not being changed, then even the simplest build tools should be able to follow a well-
defined build process. However, change is inevitable in any program that is being developed or
maintained. Changing just one source file means that the changed file has to be rebuilt. After that,
other files that depend on the changed file have to be rebuilt. (The structure of which files depend on
which is known as the dependency tree.) Shifting up to the next conceptual gear, the list of files that
depend on the changed file also changes over time. That is, the parts of a program that need to be
rebuilt for a particular change is not constant. Once the build tool has worked out which parts of the
programs need rebuilding, it has to execute the appropriate commands to build just those parts.
These commands may also have their own required order (e.g., compile before linking). Table 5-1
describes some of the ways that source code can change and what the build tools have to do to deal
with the changes.

Table 5-1. When builds change

Type of change What the build tool should do

New files were added.
[The developer needs to update the build files and check
them for correctness.]

The contents of a file changed.
Rebuild the file; detect whether the compile failed or
succeeded.

A file depends on some other file whose
contents changed in some way.

Rebuild all the affected files.

A file now depends on a file that already
exists.

Rebuild the dependency tree. Can the file be located
properly?

A file now depends on a new file.
Rebuild the dependency tree. Does the new file already
exist, or will it be created as part of the build?

A file no longer depends on another file.
Rebuild the dependency tree. Does the existence of the
old file cause a problem? Should it be deleted?

A file now depends on a generated file.
Make sure that the dependency tree causes the file to be
generated before it is needed.

A file now depends on a generated file
whose own source has changed.

Regenerate all the necessary generated files.

The hardest things to get right with build processes have to do with what
happens when dependencies change, not when source code changesit's like
having a recipe change every time you try to use it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some concrete examples of the different types of changes shown in Table 5-1 are as follows ("foo.c
foo.o" means that foo.o depends on foo.c):

foo.c foo.o

The contents of the file foo.c were changed, so the file foo.o needs to be rebuilt.

foo.h foo.c foo.o

The contents of the file foo.h were changed, and foo.c depends on foo.h, so foo.o needs to be
rebuilt.

{foo.h bar.h} foo.c foo.o

foo.c now depends on both foo.h and bar.h, so foo.o needs to be rebuilt.

bar.h foo.c foo.o

foo.c now depends only on bar.h, so foo.o needs to be rebuilt. All information linking foo.c and
foo.h should be forgotten.

foo.y foo.c foo.o

foo.c is now a generated file, derived from foo.y, so foo.c (and consequently foo.o) needs to be
rebuilt whenever foo.y is changed or if the tools that generate foo.c change.

5.1.1. The Different Stages of a Build

Builds are made up of a number of different stages, just as compilers can have preprocessing,
compiling, and linking stages. Each stage is usually performed by the same build tool, though not
always. For example, configuration and the calculation of dependencies may use separate tools,
sometimes even using the compiler itself. In practice, some of these build stages are small or
nonexistent with some build tools, but the order of the stages is usually the same for all build tools.
The sequence of the different stages for a typical build tool is:

Define the targets

What would you like to build? Everything? Just one file? A subset of files? The answer to this
defines the targets of the build. By default, some build tools build as much as possible, while
others just build the targets that are defined for the files in the current directory. The desired
targets can usually be specified on the command line or as defaults in build files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Read the build files

The names of the executables and the source files for each executable are defined explicitly
somewhere, often in build files. The contents of a generic build file are shown in the next
section, Section 5.1.2. The build tool reads the build files so that it knows what it's trying to do.
It also reports syntax errors in the build files.

Configuration

The build tool discovers which platform and tools are to be used. The results of the build may
be intended for a different platform than the one on which the build is executed (i.e., a cross-
compilation), and this platform's details may be specified at the command line, along with the
build targets. Some build tools assume that particular platforms have certain tools. Other build
tools perform small experiments to discover precisely what works and how.

Calculate the dependencies

The build tool scans the build files and source files to work out which parts of the program
depend on which other parts. Many dependencies are not specified in the build files, because
there are too many of them and updating them by hand would be both error-prone and
tedious. Instead, they are discovered by the build tool in this stage. This stage also reports any
errors such as circular dependencies, where the chain of dependencies has a loop in it.

Determine what to build

Using the dependencies, the build tool works out which files need to be updated or generated.
It reports errors such as nonexistent source files or files that couldn't be generated.

Construct the build commands

The build tool assembles the appropriate commands to update the out-of-date parts of the
program. These commands are different for each platform and developer; even a tool such as
gcc may be used with very different arguments on different platforms.

Execute the build commands

The build tool runs the commands to update the files that need updating and reports any errors
returned by the commands. If there are errors, you can often choose whether to stop the
whole build or to keep going.

Some of the stages may be repeated during a build. For instance, if source files are generated by
executing some build commands, their dependencies will also need to be calculated. Likewise, the
actual build commands that are executed may be constructed piece by piece.

5.1.2. A Typical Build File

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-1 shows a generic build file, showing how some dependencies are specified; others will be
discovered by the build tool. For example, the build tool does not specify what other files are required
by fileA.

Example 5-1. A build file

The executable myproduct is made up of fileA and fileB and uses
libraryX as well
executable("myproduct", "fileA, fileB", "libraryX")

The library named libraryX is made up of file1 and file2
library("libraryX", "file1, file2")

This list of tests comprises two files named test_alice and test_bob
which are defined in some other build file
files("tests", "test_alice, test_bob")

Installation targets which specify the files that are built for each
different kind of user
install("testers", "myproduct, tests")
install("customer", "myproduct")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Build States: Virgin, Up-to-date, Changed,
Interrupted, Clean

The build state is the state of the source files used by the build tool when it starts a build. However,
except for references to "clean builds," the names for the different states that a build can be in don't
seem to be standardized, certainly not in any well-known way. So I have invented names for each
state: virgin, up-to-date, changed, interrupted, and clean. Each state is explained in more detail in
this section.

Build states refer to the state of the source code being used at the start of the
build. This assumes that the build process has been correctly defined, with no
syntax errors, circular dependencies, or similar mistakes in the build files. This
means that whether a build succeeds or fails depends only on the state of the
source code, not on the build process.

Understanding different build states is useful when talking about builds. Imagine the next time you
want to describe to someone exactly how your product's build is broken. "Virgin builds are broken" is
much more precise than just "the build's broken." The latter often receives a response of "well, it
works for me," when what the person actually means is "changed builds work for me." Debugging a
build problem often depends on the build state, and names for the specific kinds of build states help
improve communication between developers.

Virgin

A completely fresh set of source code files, never before used in any build. Changes may have
been made to source files, but no build has ever used them. Other names for this state could
be sterile or unbuilt, but virgin reminds me of a virgin forest.

Up-to-date

No changes have been made in the source code files (or in any generated files) since the last
build. If the build tool is performing correctly, this state is where builds end up, and every
intended target is up-to-date.

Changed

Changes have been made in the set of source code files or generated files since the last time
the build process was started. Typically, this happens by editing some of the source files, but
sometimes there is information such as the time of the build or the build label that is different
for every build. (Another name for this state could be dirty, in the sense of being the opposite
of clean.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interrupted

The last time that the build tool was run it was interrupted, so some files may be incomplete or
have unexpected contents. To use database terminology, running a build tool is not an atomic
transaction, since no rollback capability is defined for the files that it changes.

Clean

All the files that were generated by a previous build have been deleted from the source files.
Ideally, this state is identical to that of a virgin build, including the state of any modified source
files. In practice, some generated files may get missed, or some files may have had their
timestamps updated by the build or changed in some other way.

Figure 5-1 shows each of the different build states and how a set of source files moves from one
state to another.

Figure 5-1. Five different build states

If a build process is working properly, then there are some assumptions that you can make to reduce
the number of build states from five to three, which should make describing a build a little easier. If
your build process has bugs in it, then you should use all five build states to make debugging it
easier.

First, let's assume that our build files are carefully written so that the clean build state is the same as
a virgin build state, and we can eliminate the virgin state.

Second, we can assume that interrupting a build is similar to modifying the source code, albeit in an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unknown manner. This sounds rather scary, but it's a valid assumptionwhen you stop a build, you
don't actually know what state the build tool has left various files in. This is especially true if you have
written custom shell scripts and run them as part of your build. Figure 5-2 shows the different build
states after making these two simplifications. Figure 5-2 is like Figure 5-1, but with the virgin state
merged into the clean state and the interrupted state merged into the changed state.

Figure 5-2. Three simplified build states

5.2.1. Good Builds, Bad Builds

A successful or good build is one where the build tool was able to do what you asked it to do, such as
building the product. A broken, failed, or bad build is one where the build tool was unable to do what
you asked it to do. Builds can break for many reasons. Some of these are: incorrect source code,
incorrect build dependencies (which are discussed in Section 5.3.1, later in this chapter), changes in
the tools or their options used in a build (especially for cross-compiles), lack of disk space, or network
interruptions.

Build states refer to the state of the source code being used at the start of the build, but they don't
say anything about whether the code will compile or even if it makes any sense. So whether a build
was successful or failed has nothing to do with the build state. That is, a virgin build is still a virgin
build, whether its first build turned out to be a good or bad one.

5.2.2. Build States and Different Targets

State diagrams such as Figure 5-1 and Figure 5-2 apply for every target that a build tool knows
about. If you ask the build tool to build the whole project, then the source files needed to build the
whole project are referred to in each state. If you ask the build tool just to build one small executable
target, then the source files for the state diagrams are only the ones that matter for that particular
target.

The size of the set of files related to each state depends on what you asked the build tool to do, but
the different build states apply to each different target's set of files.

5.2.3. Build States in Practice

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's assume that you have a local machine with a copy of the source code for your product. Perhaps
you used an SCM tool to access an internal site in your company. Perhaps the source tree came as
part of an open source distribution that you downloaded. Either way, now you have the source code,
and you're ready to build it for the first time. This kind of build is a virgin build.

After you've tried to build the product, the set of files that the build tool knows about will have
changed. You've probably generated some intermediate files. If you wanted to build the product and
succeeded, then you have probably generated some file you could actually use. Some new source
code files may have been generated as part of the build. The build state is now changed, because the
set of files that is used by the build tool has changed. This is true whether the build succeeded or
failed.

Since you have the source code, you decide to make some changes to it. Maybe your manager thinks
that's what you're paid to do, or maybe you do it even though you don't get paid for it; it doesn't
matter. After you've made your changes, you rerun the build tool to create a new version of the
product. The changes you made may only have been small ones, perhaps a few lines in just a couple
of files, but this kind of a build is still a changed build, just as it was after you first ran the build tool.

Now that particular build has finished, and ideally it just rebuilt the parts of the program that depend
on the files you changed. However, you can't remember if you saved one particular change before
you reran the build. "Never mind," you think, "I'll just rebuild it again to be safe." If in fact you had
already saved all your changes, then you'll get an up-to-date build. This kind of build is one where
the generated files are already up-to-date from the previous build. In a perfect world, no one would
ever perform an up-to-date buildwhy would you rebuild something if there have been no changes and
the generated files are already up-to-date? In practice, people perform up-to-date builds to convince
themselves that they are not getting a changed buildthat is, to make sure that nothing has changed
unexpectedly. Since these builds do occur, they should be as short in duration as possible, because
all they are doing is rechecking the build dependencies and they shouldn't actually have to execute
any commands.

From past experience, you know that before you commit your changes, you want to make sure that
they will work in a clean build. A clean build attempts to restore the source code to what it looked like
when you first obtained it, except for any changes that you've made to the source files. A clean build
does this by removing all the generated files, both generated source code and generated executable
files. The reason that there are both clean and virgin build states is that not all clean builds really do
restore the build to a virgin state. One easy way this difference can appear is when dependencies
change, and the last versions of generated files (which no longer need to be built) still continue to
exist. Another way is that some build tools leave droppings, small files scattered all over the source
tree to maintain information about the state of the build; these droppings don't exist in virgin builds.

This time, you didn't interrupt your build tool in any way, so you never entered the other kind of build
state, the interrupted build. This state, which is often quietly assumed to be the same as the changed
build state, occurs when the build tool was in the middle of execution but was stopped somehow.
Some tools can leave half-written or inconsistent sets of files in this case. As noted earlier, shell
scripts that are executed as part of a build are particularly susceptible to creating this build state in
their generated files. Programs that generate source code files are also vulnerable. Even compilers
can leave incomplete object files if they are interrupted at just the wrong moment. Interrupted builds
can produce very odd errors with build tools. Luckily, a virgin build will usually make things work
again, but that does take time. The better approach is to make sure that generators and scripts clean
up before and after themselves; also, such scripts should never assume that they ran to completion
the last time they were run.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Build Dependencies

Untangling the complex and implicit dependencies between source files is one reason that a build tool
is necessary for anything but small projects. This section describes what is meant by build
dependencies, using C and Java source code as examples. It also looks at when build tools can
automatically detect dependencies and when they cannot.

A source file has explicit dependencies, which are the files, classes, methods, and functions that can
be seen directly in the source file itself. A source file also has implicit dependencies, which are all the
dependencies of the file's explicit dependencies, extending in multiple steps right out to files that
have no other dependencies (the leaves on the dependency tree).

In C source code, functions are usually defined in .c source files, also known as implementation files.
A function f1 can use functions f2 and f3 only if the compiler already knows enough information
about the functions f2 and f3 to work out how to generate the code to invoke them at runtime. If the
functions f2 and f3 are defined in a different source file from function f1, then you have to tell the
compiler about them somehow. This is usually done with a header or .h file, which contains
declarations about the functions f2 and f3. For example, here is the contents of a header file named
wombat.h:

extern void f2(int age);

extern int f3(char *name);

Each file that wants to use the functions named in wombat.h uses the preprocessor directive
#include "wombat.h", usually somewhere near the start of the file. This causes the contents of the
file wombat.h to be literally inserted in place of the #include line at compile time. Now the compiler
will have enough information about the implementations of functions f2 and f3 to be able to compile
the file. Locating the exact wombat.h file can be hard to make portable, so there are include or -I
arguments that can be passed to the compiler to suggest where to look for header files and to specify
the order in which to search directories for header files.

So if the file wombat.h is in a directory named /projects/phascolomys (phascolomys happens to be
the genus for wombats), but the file that's including wombat.h is in some other directory, then the
compiler has to be called with an argument -I "/projects/phascolomys" so that it can locate
wombat.h.

Dependency checking for C programs involves scanning .c and .h files for statements such as
#include "wombat.h" and using the current -I arguments to locate the wombat.h file. The file
wombat.h is marked as a file that the given .c file is dependent on, and then wombat.h can be
scanned in turn for more #include lines. Figure 5-3 shows this idea more clearly with three header
files and one file (main.c) that uses them.

Figure 5-3. File dependency example for C source code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The whole business of dependency checking by scanning files for #include directives is complicated
by the use of #ifdef directives: the presence of an #ifdef means that, depending on how the
preprocessor is invoked, particular #include directives may be used or ignored. So the dependency
tree really needs to be generated uniquely for each set of flags passed to the tools used by a build
tool.

Figure 5-4 shows a dependency tree where the only things that can depend on source files are
generated files. That is, source files don't depend on source files. This represents what you really
want a build tool to do. For instance, if you have two instances of main.o, each one may have been
built using a different set of #define flags. This issue is also discussed in Section 5.3.2, later in this
chapter.

Figure 5-4. Dependency example for generated files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java source code contains import lines, but these are just so that you can refer to things in a
shortened format. Java also has the added complication for dependency checking that a single .java
file can generate multiple .class files. Dependency checking for Java means analyzing the contents of
the generated .class files. Java also has the concept of reflection, where you can use a class that is
named only at runtime. Classes invoked by reflection are a good example of dependencies that build
tools cannot be expected to identify automatically.

There is another kind of dependency analysis named functional dependency analysis, which is
working out which functions call which other functions. This is part of what compilers do when they
want to optimize code. This kind of dependency analysis is not what build tools do, because build
tools are mostly independent of the details of the programming language that is being used in the
source code. So when a build tool says that it supports dependency checking for a particular
language, don't expect too much sophisticationthe parsing of the source code files for dependencies is
usually a simple search with a few regular expressions. Some build tools (including Jam and SCons)
let you examine and extend the regular expressions that are used to decide which lines in a source
file are important for dependency analysis.

5.3.1. When Build Dependencies Go Wrong

What happens if your build tool gets the build dependencies wrong? "Nothing good" is the short
answer. If you're lucky, your builds will just take a little longer while some files are unnecessarily
rebuilt. If you're unlucky, files that should have been rebuilt don't get rebuilt, and then not only do
your changes not appear in the new version of the program, but you may also get very odd crashes
and hard-to-debug output.

However, the really damaging effect of incorrect dependencies is that developers start to always do
clean builds by default, just to be sure that their changes are correctly incorporated into the next
build. Since the shortest clean build always takes longer than any changed build (unless dependency
checking takes too long), the developers have just lost valuable coding time waiting for the longer
clean build to complete.

Another approach that is sometimes used to try and survive in a project with incorrect build
dependencies is to run the build tool multiple times. This may help with circular dependencies (where
the dependency tree has a loop in it), but in general it just wastes more development time. How do
you know how many times to rerun the build? The solution is to fix the explicit dependencies that are
in your build files or to fix the build tool's analysis of implicit dependenciesnot to cross your fingers
and invoke make thrice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are some specific instances where calculating the correct build dependencies is harder.
Reflection in Java classes is one example, as mentioned earlier. Working with generated source code
is another example. With generated source files, the new files ought to be used when calculating the
file dependencies, but this is often overlooked or is too hard to do well with many build tools. If
generated source files are not added to the build dependencies, then the only way to regenerate a
generated file may be to delete it before the build starts, which is awkward and prone to error.

Yet another example of difficult dependency analysis is when some of the build files themselves are
generated as part of a build. This requires a build tool that can recalculate all its dependencies again
after certain types of files are generated. I'm not aware of any current build tool that supports this
concept well, so be careful when using this idea.

On a more positive note, what do you gain if you use a build tool that does get the build
dependencies right? One capability is better support for parallel builds. Parallel builds are those in
which a build is broken up into commands that can be executed in different threads or processes, or
even on different machines, so that the overall build can be made much faster. Breaking up a build in
this way is not always possible, or it may not be simple to do it elegantly. For instance, a useful
parallel build generally requires accurate knowledge of dependencies or a build tool that can detect
when files were built in the wrong order and redo that part of the build. (Electric Make takes the
latter approach; see Section 5.5.2, later in this chapter.)

5.3.2. How Build Dependencies Change

The hardest part of building software with a build tool is calculating accurate dependencies and doing
so quickly. Since part of what makes calculating accurate dependencies hard is that the dependencies
change over time, this section considers some of the reasons why dependencies do change.

One good reason for dependencies changing is that projects grow. More software is written in new
files, or other people's work is integrated with your product, and so you have new dependencies.
These sorts of large-scale dependency changes tend to be relatively infrequent and are often
explicitly added to the build files. Examples are adding a new file to the build or creating a whole new
build file for a new library. One thing to be careful about with this type of explicit change is circular
dependencies. Some build tools will detect these and warn you, but other build tools, including some
versions of make, don't warn you about circular dependencies.

Another reason for dependency changes is modifications that were made to existing source files in
order to use other parts of the product. This can be seen by the addition of include or import lines. If
your changes are not being rebuilt by your build tool, check that the changed dependency has been
detected; perhaps you've used a different way of referring to another file than the way that the build
tool expected? This is one example of where the ability to display the dependency tree of a build is
very helpful for debugging builds.

Changing the build variant (for example, by changing the precise arguments that are passed to the
compiler) can create a different set of implicit dependencies that build processes need to be aware of.
Compiler flags that commonly change include arguments to add debug symbols or for optimized
versions of the product. The worst example of this is C source code that has a large number of #ifdef
preprocessor directives scattered throughout the code. Depending on which arguments are passed to
the compiler, the dependency tree can change radically. You really only want to use #include lines
that are used with the current set of #ifdef directives when scanning for dependencies. Most build
tools get around this by treating all potential dependencies as actual dependencies when scanning
files, at the cost of increasing the time spent creating the dependency tree.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Similarly, the versions of the tools that are invoked by a build are part of the dependency tree. If a
new version of a compiler or source file generator is used, then the build tool should be able to detect
this and rebuild the appropriate files. The most common practical approach to this problem is to
depend upon developers' doing a clean build after changing any tool that is used in the build.

The common themes for all these different kinds of dependency changes are that you should write
your build files to expect such changes and that you should have to specify only the larger-scale ones
manually.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Common Build Problems

Some commonly encountered problems with build processes include:

Command-line length

The length of the commands executed by build tools can cause problems on different
platforms. Shell commands are usually typed in by people, so they remain relatively short. It is
not uncommon for commands that are thousands of characters long to be generated by build
tools. Some reasons for this are absolute pathnames being used for all files, or long file lists
being used to maximize the number of files processed each time that a slow-to-start compiler
is invoked. Build tools can sometimes avoid this problem by using a temporary file containing
the list of files to be used by another tool.

Filename formats

The names for the same file on different filesystems are quite different. For instance, Windows
filesystems have drive letters, plus backslashes separating directories, as opposed to Unix
forward slashes. Older Windows filenames could have only up to eight characters, with a three-
character extension. Older Unix filesystems did not support spaces in filenames. If you want to
build your project on multiple platforms, then a build tool with good support for avoiding
filesystem-specific names is helpful. The easiest build tools to use are ones that allow you to
specify a filename in one format and then automatically convert the filename to the appropriate
format for the intended platform.

Unit tests for build tools

If you treat build tools like any other application, you might well expect to have a set of system
tests to check that the tool is working as expected. Build tools are slightly unusual applications
in that their input is so varied, but it is still useful to have a simple test project for testing your
build tool. Detecting an error such as a file being rebuilt multiple times is hard to do purely by
inspection of the build tool's output log. A collection of small test projects also provides an
excellent place to develop new techniques for using your build tool.

Identifying builds

Unique identifiers for all builds that are to be used by other people helps clear communication
within a project. The idea of a build label is introduced in Section 3.5. A label such as
QA#1_3_0#129#2005_07_09 can identify a build as build 129, for internal testing (QA), Version
1.3.0, which was built on July 9, 2005. This kind of build label has many uses for SCM tools,
bug tracking systems, and file and directory names.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.1. Slow Builds

When discussing builds with project members, the most common request is always how to make
them faster. There are a number of approaches that can help speed up your builds:

Profile the build

The first thing to do with a slow build is find out where most of the time is being spent. You can
do something as simple as logging the current time at various interesting points in your build
files. Some build tools such as SCons can provide more complete profiling information by
treating the build tools as an application to be profiled just like any other application.

Build only once

Incorrect dependencies in build files may mean that files are built more than once or that other
files that aren't needed are being built. To make sure this isn't happening to you, extract
filenames from the build log and make sure each one is expected and occurs only once.
Profiling can sometimes help here too.

Use a build server

If developers' desktop machines seem underpowered for the size of the project, you can try
using shared build machines with more disk space and RAM. If there are a lot of disk accesses
during a build, then a RAM disk cache (a ramdisk) may help. Of course, using a single build
server makes your development environment more vulnerable to a single point of failure.

Create staged builds

If the build for your product is taking more than an hour or two, it may be time to consider
splitting it up into multiple builds, where each one builds a subsection of the product. The
results of the builds can then be stagedthat is, made available for other people in the project to
use as starting points for their own builds.

Use ccache

When you compile a C file, the C preprocessor first creates an expanded source file, which is
what is actually compiled into an object file. ccache (http://ccache.samba.org) is an application
that keeps a copy of the generated object file, and if the expanded source file hasn't changed
the next time that it needs to be compiled, then ccache just returns the saved copy instead of
wasting time recompiling the file. If the file has changed, then ccache compiles it as usual. To
do all this accurately, ccache has to also record which compiler flags were used when the saved
object file was created. This idea is great for builds where you rebuild lots of files the same way
every time (for instance, virgin builds), or if a build tool is rebuilding files by mistake.

Use parallel builds

http://ccache.samba.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Many build tools have arguments to run different parts of a build in parallel. Depending on how
good the build tool is at separating the build into different parts, this may improve your build
times, or it may not do much. The only way to find out is to try it, which is usually a
straightforward matter of passing another command-line argument to your build tool. Another
approach is to use a distributed compiler such as distcc instead of expecting the build tool to
handle distributing the work for the build.

Use distributed compilation

Using a cluster of machines to build a product is sometimes helpful. One tool that does this is
distcc (http://distcc.samba.org), an open source frontend to the GNU gcc compiler that
distributes preprocessed files to remote machines for compilation. After being compiled
remotely, the object files are then returned to the main build machine. distcc assumes that the
build dependencies calculated by your build tool are correct and can be cleanly partitioned for a
distributed compilation. Electric Make (mentioned in Section 5.5.2, later in this chapter) is
another high-end distributed build tool.

http://distcc.samba.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Build Tools

The six different build tools examined in the second half of this chapter are: shell scripts and batch
files, make, GNU Autotools, Ant, Jam, and SCons. These are all no-cost, open source build tools. This
is not to say that there are no useful build tools from commercial vendorsthere are a dozen or so
listed at http://www.softwareengineering.info/build/build_by_product.html. They're just not used as
commonly as the build tools that are listed below.

Section 5.1.1, earlier in this chapter, described the different stages of a build. It is worth
remembering each stage as you consider different build tools: configuration, target definition, reading
build files, dependency calculation, deciding what to build, command construction, and execution of
commands. Some of these stages in some build tools are very small or even nonexistent.

What should you look for in a build tool? In order of most important to least, my recommendations
are:

It should have accurate dependency checking.1.

Startup and dependency checking should be fast. The build tool should use tools such as
compilers intelligently.

2.

Builds should be independent from the local user environment in which the build tool was
started. This makes it easier to reproduce builds on different machines.

3.

Variant builds for debugging or with extra optimization should be easy to specify, preferably
with a single argument to the build tool on the command line.

4.

It should include support for many platforms and languages, particularly if the product is open
source. The ability to build using the same source tree on multiple platforms at the same time is
helpful.

5.

It should be easy to write and read the build files, and the build tool should already be
understood by many of the project members.

6.

It should be scalable, with support for parallel builds.7.

It should have support for debugging builds and build file problems. Graphical display of the
dependencies and changes in dependencies is a bonus. Clear output from a build tool about
what command-line arguments were used and which user started the build is helpful. Minimizing
the number of complete commands that are displayed can also make build logs easier to read,
though the complete commands and their output should also be logged somewhere for each
build.

8.

Good support from a tool vendor or the user community is also extremely helpful. And don't forget
that almost all tools have won an award at some time or other!

http://www.softwareengineering.info/build/build_by_product.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5.1. Shell Scripts and Batch Files

The simplest possible build tool is a piece of paper with a list of the compilation commands to type in
order. A shell script or Windows batch file is really just that same list of commands, with tests for
success or failure added occasionally.

This approach has some advantages. It's quick to develop, since many of the commands can be cut
and pasted straight from the command line after you work out what they should be. There is little or
no confusion about why a certain command was executed. For simple projects, with a few dozen
small files and with straightforward build dependencies, shell scripts or batch files can be an adequate
build tool.

Unfortunately, there are many disadvantages to using scripts and batch files as build tools. Some of
these are:

Rebuilding every file

The biggest issue is that simple build scripts rebuild every file, every time. You might not think
that the difference between a 5-second build and a 25-second build is very much, but if you
spend a day working on the project and recompile it 10 times per hour for 10 hours, then over
half an hour (which is more than 5% of the working day) is wasted just waiting for the project
to rebuild.

Failure detection

Another big disadvantage of scripts is having to make explicit tests to see whether a command
failed before continuing with the next command. If these tests are not made, you may not
notice that a command halfway through the build failed, making the whole build suspect.

Debugging

Debugging shell scripts is done mainly by printing out text messages and the values of
interesting variables at strategic points in the script.[2] Some shells let you set a flag to display
all the commands as they are executed in a script, which is really just a more verbose way of
displaying interesting variables. It is also possible to run scripts in a "dry run" mode, where no
commands are executed; instead, they're just displayed. This is helpful for scripts that would
take a long time to execute, but if the behavior of the script depends on the contents of a file
that is supposed to be generated by some other part of the script, then this approach doesn't
work, unless you add echo statements to certain lines.

[2] There is an interesting project at http://bashdb.sourceforge.net to extend the bash shell to support
debugging.

Portability

Making scripts and shell files portable, so that they can be executed on a variety of platforms,
is tedious and prone to error. The names and arguments of even the familiar commands to
copy a file or to find a named file vary from platform to platform. A good build tool can shield

http://bashdb.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the developer from many of these details.

In conclusion, shell scripts and batch files are adequate build tools only for the smallest and simplest
projects. If you ever expect your project to grow, then take the time to use a real build tool.

5.5.2. make

make is the original build tool and is probably still the most common one. make is generally most
popular with developers of C and C++ applications, while those using other languages, particularly
Java, more commonly use Ant (see Section 5.5.4, later in this chapter).

The History of make

make was created by Stuart Feldman in 1977. The original paper about make is "MakeA
Program for Maintaining Computer Programs" (Bell Labs Technical Report 57, April
1977), which can be found at http://citeseer.ist.psu.edu/feldman79make.html. Though
most tools win awards at some time or other, Stuart Feldman and make won the
prestigious ACM Software System Award in 2003, in recognition of the historical
significance of make.

While much has been written about the advantages and shortcomings of make, nothing
has been complained about as much as the trivial, but indeed irritating, requirement that
some makefile lines must start with a tab character. Here's what make's creator has to
say on the matter:

Why the tab in column 1? Yacc was new, Lex was brand new. I hadn't tried either,
so I figured this would be a good excuse to learn. After getting myself snarled up
with my first stab at Lex, I just did something simple with the pattern newline-tab.
It worked, it stayed. And then a few weeks later I had a user population of about a
dozen, most of them friends, and I didn't want to screw up my embedded base. The
rest, sadly, is history. (Stuart Feldman, quoted in Eric S. Raymond, The Art of Unix
Programming, Addison-Wesley, 2003)

Build dependencies are specified explicitly in build files, which are conventionally named Makefile or
makefile and are written in make's own programming language. The format of these makefiles is
shown in Example 5-2. make maintains static definitions of dependencies in the makefiles and does
not detect dependencies between files. Files are noted as changed only when their modification
timestamps change or when they are absent.

Example 5-2. A simple makefile

myproduct : file1.c file2.c
 gcc -o myproduct file1.c file2.c
 echo "Finished building"

http://citeseer.ist.psu.edu/feldman79make.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the Unix project shown in Example 5-2, the target myproduct depends on file1.c and file2.c. To
create this target, make will execute the lines after the dependency line with the : on it (that is, the
lines that begin with gcc and echo).

Note that both of the lines below the target myproduct start with a tab character, not four spaces.
Let's say that file1.c is a C source file and that it contains the line: #include "file1.h"; that is, file1.c
depends on file1.h. However, modifying or even deleting file1.h after myproduct has been built will
never cause make to rebuild myproduct, because the dependency on file1.h is unknown. You could
manually fix this problem by adding file1.h to the dependency line, changing the first line of the
makefile to:

myproduct : file1.c file1.h file2.c

This lack of automatic dependency checking explains why most large projects that use make alone as
their build tool have trouble rebuilding only those files that are affected by a change.

The are numerous implementations of make for almost every platform created in the last 25 years.
The original make first became widely used with System V Release 2 Unix in 1984 but had been
available since 1977. Compatible versions of make since then include a distributed make called
dmake (1990), gmake (1991), BSD NET2 make (1991), and SunOS make (1989). nmake, the
Microsoft version of make, is probably the most divergent make; it is one of the underlying build tools
that are used when Visual Studio projects are built, whether from within the GUI or by using the
msdev or devenv command-line tools.[3] gmake (http://www.gnu.org/software/make) is the GNU
version of make; it was written by Richard Stallman and Roland McGrath. gmake is singled out from
all the other versions of make since it has been ported to so many platforms and supports a wide set
of all the different features from the other versions of make. gmake has been maintained and
updated by Paul Smith since Version 3.76 in 1997.

[3] Visual Studio 2005 has a tool named MSBuild that uses XML to represent projects and dependencies, in a similar way to that

used by nant, which is Ant for .NET (see Section 5.5.4, later in this chapter).

Makealike (or should it be makeoid?) programs are build tools that are based on the concepts
introduced by make. Some of these are cake, cook (which is used with the CMS tool Aegis), Lucent's
nmake (no relation to Microsoft's nmake), Plan 9's mk, and mms for VMS. makepp
(http://makepp.sourceforge.net) is a more recent replacement for gmake, designed to address many
of the problems with make that are listed later in this section, with improvements including automatic
dependency checking and using file signatures instead of timestamps. bmake
(http://www.crufty.net/help/sjg/bmake.html) is derived from NetBSD's make and has some useful
extensions in how variables and conditional targets are treated. All these tools have been used in
projects, but none have achieved wide usage.

Documentation varies widely among the different versions of make. gmake is reasonably well
documented (http://www.gnu.org/software/make/manual), but, as with many build tools, developers
tend to write makefiles for large projects by copying fragments from existing makefiles. This is
especially true if the project has a complicated or hierarchical directory structure. Beyond the gmake
manual, there are two books for more information about make. The first is Managing Projects with
make, by Robert Mecklenburg. The third edition covers much more than the previous two editions.
The second book is more gmake-specific: Programming with GNU Software, by Mike Loukides and
Andy Oram. Both books are published by O'Reilly.

http://www.gnu.org/software/make
http://www.crufty.net/help/sjg/bmake.html
http://www.gnu.org/software/make/manual
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of the two books mentioned, only Managing Projects with make discusses how to create makefiles
that scale well as a project grows. The classic article about this issue is "Recursive Make Considered
Harmful," by Peter Miller (http://www.canb.auug.org.au/~millerp/rmch/recu-make-cons-harm.html).
Peter Miller is also the author of the CMS tool Aegis. His key observation is that if you have makefiles
in many directories and subdirectories, then make can spend a lot of time and effort processing each
makefile, reevaluating some of the same dependencies over and over, and still end up with a
fragmented view of what the whole project needs. The better alternative is to use make's include
directive to gather all the makefiles into a single, logical makefile and then process just that one
makefile. This approach is called included or nonrecursive make.

There is a good discussion of how the OpenRADIUS project implemented included makefiles at
http://www.xs4all.nl/~evbergen/nonrecursive-make.html. If you are interested in practical
comparisons of the two approaches, see Appendix A for some tests and their results, and some
similar results by Boris Kolpackov at http://kolpackov.net/projects/build/benchmark.xhtml.

The greatest strength of make is that it's everywhere, and so it's already familiar to many
developers. Unfortunately, the problems with make are numerous:

Incomplete dependency analysis

The common recursive use of make, with makefiles calling other makefiles, can lead to
incomplete dependency graphs or even circular dependencies. The traditional workarounds for
this are to change the order in which the subdirectories are visited; to repeat the execution of
make multiple times; or to always run make clean first. This last choice is uncomfortably like
just using a script for your build tool (as discussed earlier in this chapter, in Section 5.5.1).

Separate tools to help create and maintain dependencies for make do existmkdepend is one
such tool, and the -M argument for the gcc preprocessor is anotherbut these are other tools
that have to be configured in addition to make.

Portability

Not only do the versions of make commonly installed on different platforms differ significantly
from each other, but the way that tools such as compilers are invoked varies widely from
platform to platform. This means that either makefiles have to be written specifically for each
platform, or a project-wide mechanism to set variables correctly on different platforms has to
be created for each project.

As an aside, the largest project that I know of with custom makefiles for every platform is
libpng (http://www.libpng.org), with 41 platform-specific makefiles for about 30,000 lines of C.
That's a lot of makefiles to modify when you add a new source file.

Speed

Builds of large projects using make still take hours, if not days, despite the tremendous
advances in CPU and disk speeds in recent years.

Debugging

http://www.canb.auug.org.au/~millerp/rmch/recu-make-cons-harm.html
http://www.xs4all.nl/~evbergen/nonrecursive-make.html
http://kolpackov.net/projects/build/benchmark.xhtml
http://www.libpng.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Working out why make did or didn't choose to compile a file can be difficult. The -n argument
to make can be used to perform a dry run, which doesn't actually execute any commands but
instead just prints them out. Print statements such as echo can also help sometimes. gmake
has better debugging output than most versions of make and supports a -d argument for
choosing the desired type of debugging output, but the output is still overly verbose and hard
to use.

Clock skew

The use of file-modification timestamps to determine when a file has been updated is imprecise
and prone to error, especially across distributed filesystems such as NFS. Restoring a file from
a backup copy, even on the same machine, can change the timestamp and cause make to
rebuild source files unnecessarily or, even worse, not to rebuild source files when it should.

Makefile syntax

The make language does not have the conveniences of a carefully designed programming
language. For example, make has the strange requirement of tabs rather than spaces at the
beginning of certain makefile lines. A number of versions of make also behave strangely with
lines longer than 80 characters in makefiles.

Paul's Rules of Makefiles

These rules are taken verbatim from http://make.paulandlesley.org/rules.html, the
personal web site of Paul Smith, the maintainer of GNU gmake; square brackets indicate
my comments. The rules deserve wider exposure, even though some of the things that
they refer to are not explained in this book. The same web site also has an informative
article titled "How Not to Use VPATH" (http://make.paulandlesley.org/vpath.html).

1. Use GNU make

Don't hassle with writing portable makefiles, use a portable make instead! [There
is some bias here perhaps, but gmake is an extensive, full-featured, and widely
ported version of make.]

2. Every non-.PHONY rule must update a file with the exact name of its target.

Make sure every command script touches the file "$@"not "../$@", or "$(notdir
$@)", but exactly $@. That way you and GNU make always agree.

3. Life is simplest if the targets are built in the current working directory.

Use VPATH to locate the sources from the objects directory, not to locate the
objects from the sources directory.

http://make.paulandlesley.org/rules.html
http://make.paulandlesley.org/vpath.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4. Follow the Principle of Least Repetition.

Try to never write a filename more than once. Do this through a combination of
make variables, pattern rules, automatic variables, and gmake functions.

5. Every non-continued line that starts with a TAB is part of a command script, and vice
versa.

If a non-continued line does not begin with a TAB character, it is never part of a
command script: it is always interpreted as makefile syntax. If a non-continued
line does begin with a TAB character, it is always part of a command script: it is
never interpreted as makefile syntax.

Continued lines are always of the same type as their predecessor, regardless of
what characters they start with.

Copyright © 1997,2002 Paul D. Smith. Verbatim copying and distribution is permitted in
any medium, provided this notice is preserved.

Once the problems with maintaining a large number of makefiles for multiple platforms became
apparent, Prof. David Wheeler's observation that "all problems in computer science can be solved by
another level of indirection" came into play, and numerous makefile generators were created.[4] The
idea is to take a template file that lists both the files that you want from your build tool and also your
source files, and then run the makefile generator with some platform-specific arguments to generate
the appropriate makefiles. Some of the better-known ones are imake and Automake. Automake is by
far the most common one nowadays in open source projects and is covered further in Section
5.5.3.2, later in this chapter. imake is primarily used for building the X11 Window System and is
described further in the book Software Portability with imake, by Paul DuBois (O'Reilly).

[4] Wheeler was chief programmer for the EDSAC project in the early 1950s and is one of the inventors of the subroutine. He is

also coinventor of the compression algorithm used by the popular Unix bzip2 tool.

Some products that attempt to solve the problems with using make for parallel or distributed builds
include Electric Make (http://www.electric-cloud.com) and distcc (see Section 5.4.1, earlier in this
chapter). Electric Make is a commercial replacement for make (original make, GNU gmake, and
Microsoft's nmake are all supported). For a starting price of $50,000, it monitors all the compilations
and other build-related commands on multiple machines, and when it detects an incorrect
dependency it reschedules the erroneous compilation for later on. Even the logfiles are rewritten to
show the correct build ordering.

To summarize, if your project is unlikely to grow too large, is intended for only a small number of
platforms, and is written in C or C++, then make is still an appropriate build tool. If not, there are
better alternatives; these are discussed in the rest of this chapter.

5.5.3. GNU Autotools

The GNU Autotools suite, also referred to simply as the Autotool suite, or sometimes as the GNU

http://www.electric-cloud.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Build System, is probably the build suite most commonly used by open source C and C++ projects.
The familiar incantation of ./configure; make; make install seems to build and install about 90% of
the tarballs that you can download.

The History of GNU Autotools

GNU Autotools were developed in the early 1990s for the GNU Project. Among the early
contributors were David MacKenzie, Gary Vaughan, Ben Elliston, Tom Tromey, and Ian
Lance Taylor. Judging by the rate of recent releases, it would seem safe to say that the
tools are mature, but actually real functionality is still being added. The licensing scheme
for GNU Autotools is, not surprisingly, the GPL.

The GNU Autotools suite actually consists of three separate toolsAutoconf, Automake, and Libtoolall
of which use some common configuration files. Autoconf (http://www.gnu.org/software/autoconf)
creates shell scripts named configure. These scripts can be executed to find out which features
required by an application are present on a particular platform. Automake
(http://www.gnu.org/software/automake) uses Makefile.am files to create Makefile.in template files,
which Autoconf can then use to create GNU gmake makefiles. Libtool
(http://www.gnu.org/software/libtool) helps create static and shared libraries in a portable and
versioned manner for programs that are written in C. The most commonly used of these three tools
seems to be Autoconf, judging by the number of configure files out there. Even if a project doesn't
use Autoconf, the configure file is often the place where installation begins.

Any filename that ends in .ac is probably an Autoconf-related file. Any filename
that ends in .am is probably an Automake-related file. Any filename that ends
in .in is probably an input file for one of the three GNU Autotools.

5.5.3.1. Autoconf

The concept of Autoconf is that all you should have to do to install a package is run the generated
configure script to discover the precise details of how various features, such as compilation and
linking, are actually working on your platform. This information is then passed to the build tool and
also into the program by header files and preprocessor #define definitions. This concept alone may
explain the popularity of the GNU Autotools suite; other build tools tend to make assumptions about
what is provided on each version of each platform, but the GNU Autotools suite confirms this
information when the application is actually installed. Other factors that explain the suite's popularity
are that only the basic Bourne shell, the necessary C or C++ compilers, and make are usually needed
for the configure script to work. Also, the default make dist command creates a convenient tarball of
all the files that you need to package a release.

The configure script has a number of different arguments that you can use to enable and disable
various parts of the program that you are building. The default of using no arguments Should Just
Work, and if configure fails to run due to a missing dependency for the project, then the error
message is usually clear enough. However, if running configure fails in any other way, then

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://lib.ommolketab.ir
http://lib.ommolketab.ir

debugging the problem can be hard. Section 5.5.3.5, later in this chapter, describes some helpful
approaches for debugging installations from the perspective of a user.

From the perspective of a developer working with Autoconf, you create a file configure.ac to be the
input for Autoconf. configure.ac (which used to be named configure.in) is written in a mixture of GNU
m4 (a macro processing language) and Unix shell commands. However, you need to ship only the
generated configure file, not its precursors.

5.5.3.2. Automake

Automake produces makefiles that will work with GNU make, and they should also work with many of
the other variants of make. Automake uses the file Makefile.am to describe the desired executables,
libraries, and other files for the project. The language used for Makefile.am is specific to Automake,
but Automake also reads the same configure.ac configuration file that is used by Autoconf. Using the
Makefile.am file, Automake produces Makefile.in files that Autoconf can use to produce makefiles.

The make targets in the makefiles that are created by Automake and then Autoconf include well-
known targets such as all, install, and clean. Other useful targets are uninstall, which
simplistically undoes whatever install did, and check, which executes any tests defined by the
package developer. The target dist creates a distribution archive file, and distcheck creates a
distribution, then untars the archive into a new directory, builds the package there, installs it, and
finally runs make check.

Since Autoconf and Automake are separate tools, one can imagine creating
build files other than makefiles. For instance, the AutoJam prototype
(http://developer.berlios.de/projects/autojam) creates the equivalent of
Jamfile.in files for Autoconf to use to create the build files named Jamfile used
by the build tool Jam (see Section 5.5.5, later in this chapter). SCons (see
Section 5.5.6, later in this chapter) already has its own Autoconf-like
functionality that does at least some of what Autoconf does, so a separate
AutoSCons tool is less likely to be developed.

5.5.3.3. Libtool

Libtool is designed to hide the implementation details of creating libraries, especially shared libraries,
on different platforms. It's fully integrated with Autoconf and Automake but can be used even without
them. The contents of the desired libraries are defined in Makefile.am, just as executables were for
Automake. Libtool also includes support for versioning of libraries and for tracking which versions are
expected for a particular package.

When it comes to finding out which libraries have already been installed and using them in other
packages, pkg-config (http://pkgconfig.sourceforge.net) is a separate tool that integrates well with
the GNU Autotools suite and is useful for discovering the particular arguments that are necessary to
use an installed library on your platform.

5.5.3.4. An Autotools "Hello World" program

http://developer.berlios.de/projects/autojam
http://pkgconfig.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

None of the half dozen or so tutorials that I found while researching this section worked exactly as
written. So I've provided the precise steps that I used to create my own "Hello World" program with
GNU Autotools. These instructions are for Autoconf 2.53 and Automake v1.6.3. Libtool was not used
here.

Create a new directory with two simple C source files named hello.c and hello.h. hello.c should
contain at least the standard main function and can also contain lines such as:

#ifdef HAVE_STDLIB_H
 .
 .
 (any code that depends on stdlib.h goes here)
 .
 .
#endif

At the top of hello.c, add the line:

#include "hello.h"

The other C file, hello.h, should contain:

#ifdef HAVE_CONFIG_H
include <config.h>
#endif
#ifdef HAVE_STDLIB_H
include <stdlib.h>
#endif

Eventually, HAVE_STDLIB_H will be defined or not defined in config.h, depending on whether
configure finds the header file stdlib.h on your platform.

1.

In the same directory as hello.c, create a file named Makefile.am containing the two lines:

bin_PROGRAMS = hello
hello_SOURCES = hello.c

2.

In the same directory, run the autoscan command to create the file configure.scan. This
command emitted a warning about an uninitialized value for me, but succeeded. Since autoscan
does not overwrite configure.ac, you can run it periodically to detect potential portability
problems in your project.

3.

Rename the file configure.scan to configure.ac and edit that file as follows:

Change AC_INIT(FULL-PACKAGE-NAME, VERSION, BUG-REPORT-ADDRESS) to AC_INIT(hello, 0.1,
yourname@example.org).

a.

b.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a.

Add a line containing only AM_INIT_AUTOMAKE below the top AC_INIT line.b.

Change AC_CONFIG_HEADER([config.h]) to AM_CONFIG_HEADER([config.h]).c.

Change AC_CONFIG_FILES([]) to AC_CONFIG_FILES([Makefile]).d.

Now create four empty placeholder files with the command touch NEWS README AUTHORS
ChangeLog. This step can be avoided if the --foreign argument is used when automake is run
later on.

5.

Run aclocal to produce the file aclocal.m4, which contains m4 macro definitions such as
AM_INIT_AUTOMAKE.

6.

Run autoconf to produce the configure file and a cache directory.7.

Run autoheader to produce config.h.in, which contains #define directives that will be set up
when configure is run.

8.

Run automake add-missing to produce Makefile.in and some other necessary scripts. Note that
the last four commands (starting at aclocal, in step 6) should be run as a group if any
subsequent changes are made.

9.

This is the step that a customer downloading the source for this project starts at. Run configure
to produce the file Makefile. The line in the generated file Makefile that starts with DEFS shows
what was found by running configure, as does the generated file config.h.

10.

Run make to produce the "Hello World" executable named hello, the result of compiling hello.c
in a portable way.

11.

5.5.3.5. Debugging GNU Autotools installs

The advice in this section refers to what you can do when ./configure; make; make install doesn't do
what it should, but you have faith that compiling the package on your machine should be possible.
Problems of what to do when Autoconf, Automake, and Libtool don't work when you are developing
the configure file itself are a different issue. For those kinds of problems, the manuals and the mailing
lists at http://lists.gnu.org/archive/html/autoconf, http://lists.gnu.org/archive/html/automake, and
http://lists.gnu.org/archive/html/libtool are good places to start. Also, since the actual Autotools
programs are themselves written in shell script and Perl, familiarity with using a Perl debugger may
help.

Some problems that you may see during installation and build include:

Could not find...

If configure fails with a message saying that it could not find some dependency, your first
action should be to check whether the required files are installed and, for dependencies
involving libraries, that the installed versions are adequate. There may also be arguments to
configure to let you tell it where to find particular packages. configure help will show the
available options.

http://lists.gnu.org/archive/html/autoconf
http://lists.gnu.org/archive/html/automake
http://lists.gnu.org/archive/html/libtool
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Wrong Autotools version

If configure fails with an error about needing a different version of one of the Autotools, you
should be able to download and install it safely, since the Autotools are written with the intent
that multiple versions will coexist on one machine. This usually happens only if you are trying
to modify a package, in which case it's not unreasonable to require that you use the same
versions of the Autotools as the package's developers.

configure succeeded, make failed

Let's assume that you can see the text of the command that failed. First cut and paste the
offending command to a shell script file and execute this file to confirm that the command fails
using your own environment, as well as the environment being used by the Autotools.

If the command succeeds, then change the environment, preferably in configure.ac. If the
command fails, do what is necessary by hand to the command line or source code to make it
succeed. If success can be defined as "ignore this failure," then many versions of make support
a -i argument to simply ignore errors and keep on going.

If you had to change the source to get the command to run successfully, then it is possible that
the source wasn't written portably. Email the maintainers with the diffs and platform details. If
changes in -D defines or other command-line arguments were necessary, apply the minimal set
of changes to the files config.h or Makefile, understanding that these are generated files and
thus may be overwritten.

Finally, make the effort to send the package maintainers the details of the problem: your
package and Autotools versions, your platform, the broken command line and the working
command line, and, ideally, the changes that fixed the problem.

I just want to add one file!

The proper way to do this is to modify Makefile.am and then to rerun the Autotools. A
temporary hack is to modify the generated Makefile, adding the new source file to the _SOURCES
variables. Of course, you run the risk of the modified Makefile being overwritten if the Autotools
are rerun at any time.

make install failed

If the prefix directory is owned by root, you may need to run make install with root privileges,
or rerun configure and specify a different prefix directory for which you do have write
permission.

5.5.3.6. More Autotools

Documentation for the individual GNU Autotools is good enough, but the current sources of
information about how to use them all together are barely adequate. There are the standard GNU
manuals for each tool at http://www.gnu.org/software/autoconf/manual,

http://www.gnu.org/software/autoconf/manual
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.gnu.org/software/automake/manual, and
http://www.gnu.org/software/libtool/manual.html. There is also one book that aims to bind all three
tools together, GNU Autoconf, Automake, and Libtool, by Gary Vaughan, Ben Elliston, Tom Tromey,
and Ian Lance Taylor (New Riders). It's also known as the "Goat book" because of its cover picture.
Even though it's rather dated now, it is still strongly recommended for anyone trying to do more than
cut and paste from other projects. The contents of the Goat book are also available online at
http://sources.redhat.com/autobook. Another useful (though dated) article, which includes a well-
written example, is "The GNU Configure and Build System," by Ian Lance Taylor
(http://www.airs.com/ian/configure).

The GNU Autotools were originally developed for Unix systems and only later modified to work for
Windows machines. The recommended way to use them in Windows is to install the Cygwin
environment and the necessary Perl and Microsoft tools. The project at
http://gnuwin32.sourceforge.net has more information on how to do this. Mac OS X is supported by
GNU Autotools. Languages that are supported by the default installations of the GNU Autotools
include C, C++, Fortran, Perl, Lex, Yacc, TEX, Emacs Lisp, and, to a lesser degree, Java and Python.

The Autotools are a well-established way of making sure that software is portable to a very large
number of platforms. Since developers can write their own m4 macros for configure.ac files, the
Autotools are extensible. Indeed, there is a public archive of useful m4 macros at http://autoconf-
archive.cryp.to, and the GNULIB project (http://savannah.gnu.org/cgi-bin/viewcvs/gnulib/gnulib/m4)
has more examples. The Autotools have good support for localization of text strings in products,
using the GNU gettext utilities (http://www.gnu.org/software/gettext).

Still, opinion is divided about GNU Autotools. On one hand, thousands of people use the results of
Autoconf and run configure quite happily every day. On the other hand, when an install does fail,
they have little hope of understanding or fixing the problem without substantial effort. Most of the
problems with GNU Autotools seem to be voiced by developers who are trying to write the makefiles.
These issues generally fall into the following categories:

Layers upon layers

It can be confusing when different files are used as input to tools that generate files, which are
then used as input to yet more tools. Debugging the results of such a complicated scheme can
be hard and time-consuming. If you want to add a source file to a downloaded package, you
(understandably) have to have the GNU Autotools installed in order to regenerate the
makefiles; otherwise, you have to temporarily modify complex makefiles.

Large and complex generated files

The generated files can become quite large, starting at around 3,000 lines and often growing to
more than 30,000 lines of shell script. configure scripts are written using only the simplest shell
constructs in order to ensure portability, but this ends up creating convoluted scripts not really
intended for reading by humans. Also, even using cached results, running configure can take a
fair amount of time. Supporting all the standard targets and options for make also adds to the
size of the hierarchical makefiles.

Mixed and arcane languages

http://www.gnu.org/software/automake/manual
http://www.gnu.org/software/libtool/manual.html
http://sources.redhat.com/autobook
http://www.airs.com/ian/configure
http://gnuwin32.sourceforge.net
http://autoconf-
http://savannah.gnu.org/cgi-bin/viewcvs/gnulib/gnulib/m4
http://www.gnu.org/software/gettext
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The macro processing language m4 is not a particularly common language (the only other
applications that are using it seem to be Sendmail and fvwm), so it's a barrier for developers
wanting to use GNU Autotools. The total number of languages used by all the Autotools is quite
large: GNU m4, Perl, shell languages, make, Autoconf macros, and the Automake language.

Names of build files

The first build tool was make. Make uses files named makefile, in various combinations of
upper- and lowercase. These files have come to be known as "makefiles." By
generalization, build tools use "build files" for their configuration, but of course the actual
names of the build files are different for each tool. Many build tools have one special top-
level build file and then many other build files. The filenames that are used by convention
for the tools discussed in the following sections are:

5.5.4. Ant

Ant (http://ant.apache.org) is an open source build tool, part of the Apache community of open
source software projects. Ant is licensed under the Apache License.

Originally designed as an extensible replacement for make but "without make's wrinkles," Ant quickly
found favor as the build tool for projects written in Java. Ant comes with a large number of ready-to-
use tasks. Each task allows users to define a small part of a build process in their build files. The ease
with which Ant can have other tasks added to it has resulted in a build tool with a diverse set of
abilities. You could go so far as to say that if you want your Java tool to be used nowadays, it has to
have an Ant task to run it. All IDEs, whether open or closed, that are intended for developing Java
projects now have built-in support for using Ant.

The History of Ant

Ant (possibly an acronym of "another neat tool") was developed by James Duncan
Davidson (quite possibly during a long airplane flight) as part of the Apache Tomcat
project. Tomcat 3.1, released in April 2000, contained an early version of Ant. Version
1.1 of Ant was released in July 2000, and roughly one major release per year has
occurred since then. Ant was promoted to its own Apache project in November 2002 and
has a core team of around 20 people.

http://ant.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The build files for Ant are written in XML. The core of Ant itself is written in Java, as are the Ant tasks
that are used in the build files. The build files have <project> XML elements, which contain <target>
elements, which are the names of targets that can be passed to Ant on the command line. target
elements can specify that they depend on other target elements. Each target contains one or more
<task> elements, which are the elements that control what Ant actually executes during the build.

Ant build files are conventionally named build.xml. For the Java project shown in Figure 5-5, a
build.xml that uses the jar, javac, and the delete Ant tasks would look like that shown in Example 5-
3.

Figure 5-5. Directory tree of an example Java project

The default task is named dist and it calls the run_tests target, which in turn calls the compile and
compile_tests targets to compile the product and compile the tests, using the javac task. Where
there is just an echo task in this example build file, you would add tasks to actually run the tests.
Finally, the first target, dist, uses the jar task to create a distributable JAR archive of the product.

Example 5-3. An Ant build.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="My Project" basedir="." default="dist">

 <target name="dist"
 description="Jar up the project ready for distribution"
 depends="run_tests">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <jar destfile="dist/project.jar" basedir="build/classes"/>
 </target>

 <target name="run_tests" depends="compile, compile_tests"
 description="Test the project class files">
 <echo>Call an Ant task to test the project</echo>
 </target>

 <target name="compile"
 description="Compile the source files">
 <javac srcdir="src" destdir="build/classes"/>
 </target>

 <target name="compile_tests"
 description="Compile the test source files">
 <javac srcdir="test" destdir="build/test_classes"/>
 </target>

 <target name="clean"
 description="Remove all generated files">
 <delete dir="build/classes/org"/>
 <delete dir="build/test_classes/org"/>
 <delete dir="dist/*"/>
 </target>

</project>

The output from executing ant with no arguments (so that the default dist target is used) shows the
target names and the tasks that they call. Note that while this minimal build took 15 seconds from
start to finish on a rather underpowered laptop, it only took 3 seconds on a more modern desktop
machine:

[theo@theo-laptop example]$ ant

Buildfile: build.xml

compile:
 [javac] Compiling 2 source files to /home/theo/example/build/classes

compile_tests:
 [javac] Compiling 1 source file to /home/theo/example/build/test_classes

run_tests:
 [echo] Call an Ant task to test the project here.

dist:
 [jar] Building jar: /home/theo/example/dist/project.jar

BUILD SUCCESSFUL
Total time: 15 seconds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since Ant is written in Java, it runs unchanged on all platforms that support Java. The common ones
are Solaris, GNU/Linux, and Windows, using the downloads from Sun (http://java.sun.com). Dozens
of other platforms have had other Java Virtual Machines (JVMs) written for them; there is an
extensive list available at http://www.geocities.com/marcoschmidt.geo/jvm.html. All official Ant tasks
are written to operate correctly regardless of the underlying platform; that this mostly works as
designed is due to plenty of testing. Troublesome areas include the Cygwin environment and older
versions of Windows. If you write a task yourself, be careful about portability when using native
commands, especially ones like ps, the Unix command for listing processes, which seems to have
different arguments wherever it is found.

The documentation for Ant is generally good and certainly extensive, with standardized descriptions
of what each Ant task does.[5] The Ant documentation includes FAQs, reference manuals, API
manuals, Wikis, presentations, and half a dozen books at last count. The books include O'Reilly's Ant:
The Definitive Guide, now in a second edition, by Steve Holzner, and Java Development with Ant
(Manning Publications), by Erik Hatcher and Steve Loughran, who are two members of the Ant
project. There is also a different O'Reilly Ant book only in German: Antkurz und gut, by Stefan Edlich.
Be warned, though: the first editions of the O'Reilly books cover only up to Ant 1.4.

[5] This may be partly due to Javadoc (see Section 8.8), the standard tool that makes it easy to create API reference documents

for Java programs; it is installed with Java by default. Perhaps Java programmers have come to expect more from their

documentation?

Ant has many strengths. It runs on all the platforms for which you can find a JVM, and that's every
major platform I've used in the past 10 years. Ant uses XML to describe the build dependencies for a
project, so you don't have to be able to write Java to use Ant. Using XML also means that the
information can be easily transformedfor instance, into a graphical representation of the
dependencies, as is done by Vizant (http://vizant.sourceforge.net) and AntGraph (at the time of this
writing, the download site is no longer valid, but AntGraph's author can be contacted via
http://www.ericburke.com).

Another major strength of Ant is the large number of Ant tasks that already exist. Over 80 core tasks
are shipped with Ant, and they provide support for Java compilation, filesystem commands,
archiving, mail, and CVS commands. The 60 optional tasks that are also part of the Ant project
provide access to other SCM tools, unit testing, and much more. There are hundreds of other public
Ant tasks freely available to do everything a project could require, including source code and
document generation, web page maintenance, and even automated blogging.

Creating your own Ant task is not hard if you can write basic Java, since the documentation is clear
and there are a plethora of available examples. You can also use the exec task to specify the precise
commands to be executed as part of the build, though this tends to create platform-specific build files
and makes it harder to determine whether a task succeeded or failed.

http://java.sun.com
http://www.geocities.com/marcoschmidt.geo/jvm.html
http://vizant.sourceforge.net
http://www.ericburke.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Writing an Ant Task for JDiff

Everything I had read said that writing your own Ant task was easy, but I wanted to
confirm it for myself. There had been a few requests for an Ant task for JDiff
(http://www.jdiff.org), an open source tool I wrote that compares two different versions
of a set of Java files. JDiff produces a Javadoc-like report of all the parameters whose
types have been changed, the methods and classes that have been added and removed,
and so on. JDiff is implemented as a Javadoc doclet (an application that uses Javadoc to
parse Java source files) and had already graduated from build scripts to Ant a few years
before. I had been testing JDiff using Ant's ready-made Javadoc task, but there were a
lot of knobs to twiddle to use JDiff with that task. What was wanted was a simple Ant
task to make it easier to generate a no-frills comparison of two Java projects.

I started with Ant's tutorial "Writing Your Own Task"
(http://ant.apache.org/manual/develop.html), and after less than 30 minutes of carefully
following along, I had my first working custom Ant task. Adding support for attributes
and nested elements in the XML for the task took another hour or so to get working, with
the help of the Java Development with Ant book. Then I decided to create my own JDiff
task by extending the Javadoc task class, rather than the ordinary Task class.
Documentation for this was mainly the Javadoc task API pages, which told me enough to
generate my first call to Javadoc. The trouble was that my task wanted to make three
calls to Javadoc, not just one, and I couldn't see any easy way to reset the parent
Javadoc task object to a clean state so that I could execute it again and again.

It was time to get away from that Javadoc task class. Instead of the JDiff task class
inheriting from the Javadoc task class, I changed the JDiff task class to use three
different instances of the Javadoc class. That worked nicely, after I eventually discovered
that you have to call the method setProject yourself on such separate Task objects. The
documentation is skimpy for this particular approach to custom Ant tasks, so if you are
considering writing your own Ant task, extending an existing class for a task still seems
to be the easiest way to proceed. The quality of the Javadoc documentation for your
chosen parent task will make a big difference in how easy the process is. Of course, if
you really want to be sure of how that parent task works, the source code is where the
answers are. Ant 1.7 should have some improvements in how tasks can be reused.

Overall, writing my own Ant task for JDiff was not too hard. It took about a day to
complete, mainly because of trying the two different approaches. The errors and
warnings generated by Ant when there were errors in the build file were clear enough.
The verbose and debug arguments for Ant helped me to see what my task was really
executing. If I had needed more details, I could have run Ant inside a Java debugger or
added the time-honored println or log statements, which both appear nicely interleaved
with the output from Ant.

Some of Ant's weaknesses are:

XML limitations

http://www.jdiff.org
http://ant.apache.org/manual/develop.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of Ant's weaknesses is that large projects have large build files. XML was not designed to
be particularly concise; thus a good XML editor such as XMLSpy or even Emacs becomes vital
for larger projects. Keeping track of all the different parts of large build files can be complex,
though each target XML element can have a textual description conveniently associated with
it.

XML is fine as a format for build files until you try to use Ant as a scripting language or want to
add conditional (if-then-else) constructs to your build files (though there now is a condition
task). One specific example of the issues of using XML is that if you want to execute a shell
command that uses a < input redirection operator, you have to write < in the XML. Quoting
of arguments is another messy area. The use of XML can be frustrating when a particular task
doesn't do quite what you want it to do. You can either tweak the Java source for the task and
then recompile it or try writing XSLT scripts to transform your XML files into the kind of XML
that Ant build files need.

Complex dependency chains

Another nonobvious feature of Ant is that if target 3 depends on targets 1 and 2, and target 2
also depends on target 1 (i.e., a triangle), and if you invoke Ant as ant target2 target3, then
target 1 will be executed twice: once for target 2 and once for target 3. The way to avoid this is
to always invoke target 3 from the command line, which will do the right thing.

This can sometimes create challenges when defining the target dependencies as projects grow.
One way to avoid this is to eschew the depends attribute altogether and define the required
dependencies in another target, using the antcall task to invoke each target in turn. The ant
task can be useful when creating a hierarchy of recursive build files, though this approach can
result in slower builds, just as with recursive make. The import task, new in Ant 1.6, promises
to make large, modular builds somewhat easier.

Limited properties

Ant build files use properties to store values, but these are not as powerful as variables in a
regular programming language. For instance, once a property has been set, it cannot be
changed later on in the build file. Also, you cannot use one property to hold the name of
another property; one level of redirection is all you get. Many XML editors don't know how to
expand Ant properties.

Parallel builds and dry runs

Parallel builds are not as straightforward with Ant as with other build tools (and they're not
particularly easy in some of those tools either). Dry runs (seeing what Ant would do if it were
run but not actually executing any commands) are not supported by Ant, though individual
tasks may support them.

Slow startup

Since most JVMs seem to take some time to start up, subjectively Ant is not a particularly fast
build tool. However, most Java developers find it to be much faster than make. This is primarily
because Ant uses a single JVM for multiple tasks, but it may also be because Ant can reduce

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the number of times that a Java compiler has to be invokedfor example, by compiling more
files at a time with each compilation command. The dependency checking of the default Java
compilation task is not particularly robust, so other build dependency tools have emerged.
There is Ant's own optional depend task. I've had good results using Misha Dmitriev's Javamake
(http://www.experimentalstuff.com/Technologies/JavaMake/index.html). You can also use
faster Java compilers, such as the open source Jikes compiler, originally from IBM
(http://jikes.sourceforge.net). For small to medium-sized Java projects, many experts take the
approach that a clean build using a fast compiler beats complex, and sometimes error-prone,
dependency analysis.

Platform-dependent issues

Platform-dependent issues such as the use of forward or backward slashes in filenames can be
minimized through careful use of Ant tasks such as PathConvert to generate the platform-
specific version of a filename. For more information on this and other issues about using Ant in
real development, see Steve Loughran's article "Ant in Anger" at
http://ant.apache.org/ant_in_anger.html.

Ant does not support internationalization directly, nor is any of the Ant logging output localized, but
given the good support in Java for both, this should be easier to do than with most build tools.

Numerous Ant-related projects have been developed; some add to the list of tasks for Ant, some
providing alternate ways such as GUIs to create build files for Ant, and some reimplement Ant for
other environments. Examples of each of these include:

More tasks

AntContrib (http://ant-contrib.sourceforge.net) provides support for compiling C and C++
source files with Ant on a variety of platforms.

Build file generators

Antelope (http://antelope.tigris.org) is a UI for creating Ant build files that can also help with
profiling and debugging Ant build files.

Other variants on Ant

nant (http://nant.sourceforge.net) is a build tool for the Microsoft .NET Framework that is
written in C#. nant uses XML build files very much like Ant's and includes a convenient
slingshot task to create an Ant build file from an existing Visual Studio .NET project. Visual
Studio 2005 has a tool named MSBuild that uses XML similarly to the way nant does.

As many other IDEs already do, Microsoft's Visual Studio and Borland's JBuilder both save their lists
of the source files that are associated with a project in XML files, and these files are used by the IDE's
internal build tool to build the project. XSLT scripts can transform these tool-specific XML project files
into Ant or nant build files. This often makes it easier or cheaper to build projects entirely without the
IDE, since you may be able to avoid installing the full and sometimes costly IDE on multiple build
machines.

http://www.experimentalstuff.com/Technologies/JavaMake/index.html
http://jikes.sourceforge.net
http://ant.apache.org/ant_in_anger.html
http://ant-contrib.sourceforge.net
http://antelope.tigris.org
http://nant.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another popular use of Ant is as the basis for an automation environment. Automation environments
are discussed in detail in Section 3.4; basically, they are applications to help you automate the
checkout-build-test-deploy parts of your build process (this is known as "continuous integration" in
the XP literature). Typical tasks for automated environments are downloading the source for a
project using an SCM tool and then running a build and unit tests, and doing all this continually, or
every hour or night. Reports of the current state of the project are created and made available, often
through a web site or by email.

Some automation environments that use Ant are Anthill
(http://www.urbancode.com/projects/anthill), which is a commercial tool that also has a no-cost
version, and CruiseControl (http://cruisecontrol.sourceforge.net), an open source automation
environment. Both these and other automation environments are discussed further in Section 3.4.

Another outgrowth of Ant is Maven (http://maven.apache.org), a project management tool from the
Apache Project. While you can use Ant to manage other parts of your project such as releases and
tracking multiple .jar file dependencies, large build.xml files can become hard to understand. Maven
lets you describe your project's structure using a version of XML with programming constructs named
Jelly. You can still call Ant tasks from Maven, but Maven can also download the required files for a
project as necessary; Ant 1.7 will also be able to do this. Many of the Apache projects use Maven to
describe their structure. The idea of having an overall structured description of a project is a good
one and seems likely to become common in all automated environments.

In summary, Ant has become the default build tool for Java projects: if a project is written in Java,
it's most likely being built with Ant. The exceptions are those projects tied to an IDE with its own
build tool, and even these IDEs now support building products by using Ant. In addition, if you want a
definition of a build that can be transformed into formats suitable for use by other tools, then using
XML for your build file language is very convenient.

5.5.5. Jam

Jam (http://www.perforce.com/jam/jam.html) is an open source build tool from Perforce Software,
written by Christoper Seiwald and aimed squarely at projects written in C and C++. Jam costs
nothing, and is licensed in a very free manner:

License is hereby granted to use this software and distribute it freely, as long as this copyright
notice is retained and modifications are clearly marked. ALL WARRANTIES ARE HEREBY
DISCLAIMED.

That's the entirety of the license for Jam. As you might guess from it, Jam is not supported by
Perforce; Perforce's business is more focused on its own SCM tool, which is discussed in Section
4.6.4.

http://www.urbancode.com/projects/anthill
http://cruisecontrol.sourceforge.net
http://maven.apache.org
http://www.perforce.com/jam/jam.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The History of Jam

Jam (which may have once stood for "just another make") was originally created in the
early 1990s by Christoper Seiwald for internal use at Sybase. Release 1.0 was in
November 1993. Seiwald went on to found the SCM tool company Perforce Software in
1995 and is still the CEO there.

Jam is still used to build the various SCM-related products that are sold by Perforce, but
new releases of Jam have appeared on average only once every two years. The current
version of Jam is 2.5rc3. Since Jam is free, work has continued on it outside Perforce.
The most active fork of Jam is BoostJam (http://www.boost.org) by Dave Abrahams,
Rene Rivera, Vladimir Prus, and others. It was originally developed to build the Boost
libraries, which are a suite of free, peer-reviewed, portable C++ source libraries.
BoostJam was actually derived from FT Jam (http://www.freetype.org/jam), an
extension of Jam by David Turner for the FreeType software font engine project. Jam has
also been used internally by Cisco and other related networking companies to build large
pieces of networking software.

In Jam, build dependencies are specified in build files called Jamfiles, and these Jamfiles can include
each other in a hierarchical fashion (the top-level build file is named Jamrules). Example 5-4 shows a
typical Jamfile. First, note the quirky but required spaces before the semicolons at the end of the
lines. The top line of the Jamfile specifies the location of the Jamfile in the directory hierarchy; this
one is in a directory named src. The next two lines show how there are two other Jamfiles included by
this Jamfile. The line beginning with Main shows an executable named hello being defined as
containing the four .c source files and needing to be linked with the libraries listed after
LinkLibraries. This Jamfile will create an executable hello on any one of the many platforms
supported by Jam. The appropriate file suffixes and prefix are supplied by Jam for each platform.

Example 5-4. A Jamfile

SubDir TOP src ;

SubInclude TOP src subdir1 ;
SubInclude TOP src subdir2 ;

Main hello : hello.c foo.c bar.c baz.c ;
LinkLibraries hello : libother libcommon ;

There are three internal stages of execution when Jam is run. In the first stage, all the Jamfiles are
opened and (re)read, and for all the Jam targets that could be named on the command line, such as
hello, a dependency tree is created. Source files are automatically scanned for other dependencies
using extensible rules. Just as with make, file modification timestamps are used to decide whether
files have changed, as opposed to the digest scheme used by SCons.

In the second stage, Jam calculates which files need to be updated as part of building (or rebuilding)

http://www.boost.org
http://www.freetype.org/jam
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the specified targets.

In the third stage, the specific Jam rules such as Main that were used in the Jamfiles are used to
create the Jam variables that are later used to create the commands that are actually executed. Jam
rules are written in the Jam language, and each Jam rule has an action associated with it, which is
written as a snippet of shell script.

Unix platforms that are supported by Jam include GNU/Linux, AIX, the BSD Unixes, HP-UX, IRIX,
QNX, Solaris, and a number of other less well-known Unixes. Other platforms include Windows and
Mac OS X, and also VMS, OS/2, and BeOS. Compilers that are supported by default include gcc,
Microsoft Visual C++, MinGW, the Borland compiler bcc, HP-UX aCC, AIX Visual Age, Solaris CC, and
IRIX MIPSpro. Other recognized tools and file formats include Lex and Yacc.

Documentation for Jam is accurate, but woefully thin. What is most obviously missing is a cookbook
of recipes for various kinds of projects. The next place to search for help is the Jamming mailing list
(http://maillist.perforce.com/pipermail/jamming). Another surprising lack is that of a central list of
bugs related to Jam (BoostJam does have such a service).

Jam's strengths are many compared with make. First, the idea of a global understanding of
dependencies works well; just what is needed for the target that you specify is what gets built. Jam is
also fast. One commercial project is able to build all the targets that are found in a million lines of C
source code in over 4,000 files in under 10 minutes on an unremarkable desktop machine. Jam is
also relatively small; its source code is under 15,000 lines of C source, which makes porting it to
different platforms somewhat easier than with larger build tools. Indeed, Jam has already been
ported to many different platforms, probably second in number only to make. Extending Jam is
relatively easy, since new or overriding rules and actions can be defined in the Jamfiles that are
parsed at startup, as shown in Example 5-5. This example also shows that Jam rules and actions are
easy to customize, but are often hard to understand.

Example 5-5. Extending Jam

#
Generate C source using a CORBA interface defined in an
IDL file.
#
Argument $(1) is the name of the output file
Argument $(2) is the name of the IDL source file
Argument $(3) is an optional string argument passed to
the IDL compiler.
#
rule Idl
{
 # A Jam idiom to extract the directory from the # first
 # argument. outdir is a local variable also available to the
 # action defined below.
 local outdir = $(<[1]:D) ;
 # Set a global Jam variable named IDLFLAGS
 IDLFLAGS on $(<) = $(3) ;
 # Specify that the C source depends upon the IDL file and
 # also on the output directory
 Depends $(<) : $(outdir) $(>) ;

http://maillist.perforce.com/pipermail/jamming
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 # Make sure that the output directory exists
 MkDir $(outdir) ;
}

#
Actually generate the source files using the IDL compiler
and the IDL source file.
#
An action is made up of shell script commands, so doesn't
have to have the space-semicolon line endings, but semicolons
are still used to separate the shell commands.
#
actions Idl
{
 cd $(outdir);
 idlcompiler $(IDLFLAGS) $(>);
}

#
An example of using the new rule in a Jamfile
to generate the file def.c from def.idl with some verbose
output
#
Idl build/project1/idl/def.c : def.idl : -Dverbose=true ;

Jam's weaknesses are mainly in debuggability and documentation. Jam's debugging output is
extremely verbose and hard to follow or restrict in any useful way. This leads to one of the common
complaints about Jam, along the lines of "Jam didn't build my new library." This complaint is often
due to the differences between make and Jam: if nothing depended on your new library, then Jam
knew it didn't have to build it, so it didn't. In make, you probably defined every target explicitly, so
some target or other probably ended up building it for you.

Other weaknesses of Jam include:

The Jam language

The Jam language itself can sometimes prove irritating. Rather oddly, many lines must end
with a space and a semicolon. Omitting the space will lead to all kinds of cryptic messages and
hard-to-debug build problems, especially if the line in question is the last one in a Jamfile.
Using an editor such as Emacs with a mode to color Jamfiles syntactically helps a little with
this. The language is also entirely string based, so it has no increment operatorwhich is fine
until you really want one. Jam currently has no support for internationalization.

Grist

Another awkward part of using Jam is the concept of grist. Grist is a string associated with
every file in a build used by Jam; it tells Jam where to find or write that file. Some of the built-
in rules for Jam expect the grist to be implicit, while others expect it to be explicitly provided.
When a file's grist is wrong, it can be hard to work out why Jam can't locate the file. Naming a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

very specific target on the command line, such as a single .o object file, is harder than
necessary because of the format of grist, which contains characters such as < and ! that have
to be escaped to avoid confusing most shells.

Separate phases

Jam operates strictly in phases: it first evaluates dependencies and all the files that need
rebuilding and then executes the commands to rebuild them. This means that the dependency
calculations and any included Jam rules in the first stage cannot use files that are generated as
part of the second stage. One way around this problem is to call Jam from a shell script or
batch file and then use this script to create any generated Jamrules files, for example.

Local header files

There is a current bug that proves surprising to newcomers to Jam. Header files included
without a directory name (e.g., include "myproject.h") will be found just fine by the compiler
(since the current directory is usually part of the default include path), but Jam may not
recognize the dependencies on the included files. This means that changes to header files such
as myproject.h will not result in the proper rebuilding of the files in which they were included.
Including the file with a directory name (e.g., include "subdir/myproject.h") is a rather long-
winded workaround for this bug.

BoostJam is a frontend to Jam and includes explicit support for building object files somewhere other
than in the source directory. It also supports building variants (debug, optimize) and multiple targets
with multiple compilers better than Jam does. BoostJam also has a better way of quoting arguments
passed on the command line, much improved debugging output, and a number of other helpful
additions. As of 2005, the BoostJam team is actively developing Version 2 of BoostJam.

In summary, Jam is an accurate, free, and fast build tool, probably the fastest of all the build tools
examined in this chapter. A wide range of different platforms and C and C++ compilers are supported
by default, and adding more is possible. Weighing against these benefits is the difficulty of debugging
Jamfiles, minimal documentation, and lack of any impetus from Perforce to develop Jam any further.
The current developments in BoostJam, particularly Version 2, are the brightest hope for
improvements to Jam.

5.5.6. SCons

SCons (http://www.scons.org) is an open source build tool written by Steven Knight and others.
Among its early contributors were Chad Austin, Charles Crain, Steve Leblanc, and Anthony Roach.
The current licensing scheme is the MIT license.

http://www.scons.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The History of SCons

A build tool named Cons, for "construction," was created by Bob Sidebotham in 1996. It
was eventually released under the GPL and is an FSF-connected project. Cons was
originally inspired by Jam but used Perl as the language for its build files instead of the
Jam language. A key idea of Cons was that you should be able to use the full power of an
ordinary programming language within the build files. However, Cons was hard to extend
for different file types and didn't handle parallel builds very well; also, some people felt
that Perl was not the easiest language in which to write build files. Cons is currently in
maintenance mode at http://www.dsmit.com/cons, but the last release was back in
2002.

SCons was conceived as a rewriting of Cons in Python for the Software Carpentry
competition, which was sponsored in 2000 by Lawrence Livermore National Laboratory
and O'Reilly, among others. More details of the competition can be found at
http://www.onlamp.com/pub/a/python/2001/09/13/pythonnews.html. ScCons (for
"Software Carpentry Cons") was renamed SCons (for "software construction") after it
won the build tool part of the competition in August 2000. Opinions on pronouncing
SCons differ, but "ess-cons" seems to be the most common way. The first release of
SCons, modestly versioned at 0.01 alpha, was released in December 2001. The first beta
release was 0.90 in June 2003, and the first nonbeta release is expected sometime soon.

SCons is implemented in Python (http://www.python.org), a modern, interpreted, object-oriented
language freely available under the Python license on many platforms. Python is often compared to
Tcl, Perl, Scheme, and Java, and is reportedly one of the easiest languages to learn.[6] For its build
files, SCons uses script files that are written in Python and named SConscript.

[6] The argument that Python is the easiest language to learn is in a persuasively presented paper available at

http://www.python10.org/p10-papers/14/index.htm. It's a good paper, but it was presented at a conference about Python.

Unix platforms that are supported by SCons include GNU/Linux, AIX, the BSD Unixes, HP-UX, IRIX,
and Solaris. Other platforms include Windows and Mac OS X, and also OS/2. Compilers that are
supported include gcc, Java, Microsoft Visual C++ (including the use of precompiled headers),
MinGW, the Intel compiler tools, .NET tools, the Borland compiler bcc, HP-UX aCC, AIX Visual Age,
Solaris CC, and IRIX MIPSpro, among others. Other recognized tools and file formats include Lex,
Yacc, tar, LATEX, m4, Qt, SWIG, PostScript, PDF, and zip.

Some distinguishing aspects of SCons are:

Portable build files

The way that programs are specified in the SConscript build files is independent of the
platform; this permits most platform-dependent decisions to be made in a single configuration
file, rather than in each build file. Judicious use of the os.sep string rather than the /, \\, or :
characters can help maintain portability. Actually, Python and SCons understand that foo/bar
refers to the file bar in the directory foo on both Unix and Windows, so even this may be
unnecessary.

http://www.dsmit.com/cons
http://www.onlamp.com/pub/a/python/2001/09/13/pythonnews.html
http://www.python.org
http://www.python10.org/p10-papers/14/index.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Automatic dependency scanning

The dependency checking for SCons is reliable, and a number of languages are supported by
default (C, C++, D, Java, and Fortran). You can also extend SCons to support dependencies on
objects that are not filesfor example, entries in a database.

Signature files

An MD5 signature of each preprocessed file and the arguments to the compiler is created for
every generated file. This makes it easy to detect when a file really does or does not need to be
recompiled, which saves a lot of build time. However, just "touching" a key file no longer
causes the expected rebuild, which at first can confuse people familiar with make. It also
makes it possible to share generated files between different people with more confidence in the
correctness of such files.

Parallel build support

The SCons model for performing distributed builds is a carefully considered one. There are
multiple threads, with a single job executing per thread. Each thread synchronizes with a task
master, which gives it more jobs to work on. In comparison, older versions of make can end up
spawning a process for every recursive makefile, making the number of jobs executing at any
moment dependent on the structure of the source directories.

Programming language for build files

The use of a full-fledged programming language for the build files means that all the usual
features such as conditional branching, loops, text formatting for output, and a sane syntax are
present in SCons. You also gain the advantages of having a debugger, profiler, and other such
tools that are already part of most programming languages but have historically been missing
from most build tools.

SCM tool integration

SCons contains native support for checking out files from various SCM tools, including SCCS,
RCS, CVS, BitKeeper, and Perforce. Subversion is not yet supported.

Extensibility and modularity

Adding support for building from new file types is relatively easy. Using small parts of SCons in
other applications such as installers is also possible since SCons was designed to be modular.
The part of SCons that does the dependency checking and the execution of commands (the
"build engine") is separate from the part of SCons that specifies which files to compile. In
theory, you could even write the build files in a language other than Python (this idea is
explored further in Section 5.5.7, later in this chapter).

Example 5-6 shows an SConscript file. It is written in Python, which has no semicolons at the end of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lines and uses the indentation of each line to identify a block of code, instead of curly braces as seen
in C and Java. Comments are preceeded by the # character. A single top-level file named SConstruct
can be used to tell SCons about the SConscript files, potentially one in each subdirectory.

Example 5-6. An SCons SConscript file

Explicitly allow this file to use a common environment defined elsewhere.
Import('env')

Define an executable named 'hello'
env.Program(target = 'hello',
 source = ['hello.c', 'foo.c', 'bar.c', 'baz.c'],
 LIBS = ['other', 'common'])

The line with the Program method call shows an executable named hello being defined as containing
the four .c source files and needing to be linked with the libraries listed in the LIBS argument. This
SConscript file will create an executable hello on all of the platforms supported by SCons. The
appropriate file suffixes and prefix are supplied by SCons for each platform.

The output shown in Example 5-7 is a small section of the results of using the --debug=tree
command-line argument with SCons. It shows how libA.a depends on the three object files, which in
turn depend on the .c three source files. Note that if this were a build on a Windows platform, then
the file extensions and directory separators would be changed appropriately. Another very useful
debug option is --debug=explain, which tells you why a file was recompiled.

Example 5-7. SCons debug output

+-dir1/libA.a
 +-dir1/a1.o
 | +-dir1/a1.c
 +-dir1/a2.o
 | +-dir1/a2.c
 +-dir1/a3.o
 +-dir1/a3.c

Documentation of SCons is of good quality. There is a 5,000-line manpage installed with the package,
which is also available from the SCons home page. The Wiki on the home page is well laid-out and
has a number of cookbook examples about how to use SCons. Basic examples for using SCons can
also be found at the end of the manpage. The mailing lists for SCons are friendly and a good source
of help. No book has yet been published about SCons, but it seems to be only a matter of time before
one is.

Some other well-considered aspects of SCons include the fact that the environment in which the build
is performed is defined independently of the user's own environment. This helps to avoid the
awkward situation of leaving departed developers' machines untouched just to perform builds.
Variables in the Python build files are properly scoped, which is not true of many other build tools,
though of course this does mean that variables have to be explicitly imported between SConscript

http://lib.ommolketab.ir
http://lib.ommolketab.ir

files. Scalability of SCons for long command lines (lengths of over 10,000 characters) has also been
demonstrated, at least for Windows.

Other things that make SCons easier to debug than most build tools are options to display the time
spent in different major parts of a build, access to full-scale profiling data for the Python profiler
pstats, and an option to start the build from within pdb, the Python debugger.

SCons even has enough confidence in the correctness of its dependency checking to provide a
command-line argument to explicitly build the product in a random order! This unique idea helps
performance when building different versions of a product simultaneously from the same source
code, since it avoids performance problems that occur when multiple processes try to access the
same file at the same time. The SCons core developers have an extensive set of unit tests and
system tests, and changes to SCons are controlled using the change management tool Aegis.

Weaknesses and irritations of SCons seem to be relatively few. One complaint is about how long an
already up-to-date build can take (up to 10 seconds when nothing actually needs to be built). The
time spent checking dependencies can be reduced by using the SCons arguments --max-drift=1 and
--implicit-deps-unchanged. Still, the startup time for SCons can feel slow. If you make an error in
an SConscript file, the Python backtrace at the command line can be quite long, and you have to get
used to the most recent part of the trace being at the bottom of the screen, not the top. The
.sconsign MD5 signature files exist for each generated file, but these droppings can be made to occur
in the directory where the files are built, or even in a single file, as opposed to the source directory.
Internationalization is not currently supported.

SCons does require Python, which may not be installed on your machine by default. However, it
deliberately does not require cutting-edge versions of Python (though it is tested with them), and
Python isn't hard to learn, with many good tutorials available online. Python in a Nutshell, by Alex
Martelli (O'Reilly), is one good introduction to Python, as is Dive into Python, by Mark Pilgrim
(Apress), which is also available at http://diveintopython.org. The Python Cookbook, by Alex Martelli
and David Ascher (O'Reilly), is also handy when you want just an example of how to do something
with Python.

In summary, SCons is a well-designed build tool for a range of languages and platforms, and one that
has been developed carefully by a knowledgeable group of developers. The choice of Python as a
build tool does introduce yet another language dependency to any project, but this overhead seems
to be small in practice. If you are starting a project from scratch, or your current build tool is just too
much to bear any longer, SCons is the build tool to use.

http://diveintopython.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Vision of the Future?

As few years ago, I had a vision of a language-independent build tool. With this tool, you
would write the build files in whatever language was most appropriate and familiar for
the projectJava, C, Python, or even Visual Basic. The build files would be small programs
and would make use of a well-defined API to a build engine. Each section of the build file
would make calls such as CreateExecutable("hello", SomeFiles), where SomeFiles is the

collection of files that are used to create the executable file hello. Dependency checking
would be completely automatic, so you would need to recompile or reinterpret the build
files only when a file was added to or removed from a target. Detecting this could be
done using the digest or signature of the build file itself.

Sound a bit far-fetched? Interprocess communication (IPC) mechanisms such as CORBA
have been enabling communication between applications written in different languages
for years. Distributed build tools already use IPC mechanisms to communicate between
the different processes. Build engines such as the one developed for SCons are already
constructed to exist as separate pieces of functionality. All the pieces are coming
together for such a build toolwatch the skies!

5.5.7. Custom Build Tools

As projects grow, there is often a need to generate some part of the source code automatically using
generic code structures, in the same sense as C++ templates. Common areas for generated code are
logging functions, class skeletons, and header files. The input specification can be a simple text file,
an XML file, or a whole hierarchy of definitions in different files. A generator tool that uses these input
files is invoked as part of the build process to generate the required files. Whatever mechanism is
chosen, the generator is essentially a custom build tool, complete with all the potential advantages
and frustrations that all the other build tools in this chapter possess. Before writing or using such a
generator tool, consider all the things that you want in a regular build tool, such as accurate
dependency calculation, easy debugging, and fast up-to-date builds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Comparison of Build Tools

Table 5-2 briefly summarizes how each of the six build tools described in this chapter compare to the
suggestions at the start of Section 5.5, earlier in this chapter, about what to look for in a build tool.
This table summarizes the observations of the previous section, which discussed each tool in more
detail. A plus sign (+) indicates a strength and a minus sign (-) indicates a relative weakness.

Table 5-2. Comparison of build tools

Requirement Shell scripts make GNU Autotools Ant Jam SCons

Dependency checking - - + + + +

Fast and smart - - - + + +

Independence from local environment - - + - + +

Variant builds - - + + + +

Multiple platforms - - + + - +

Easy to read and write build files - - - + - +

Scales well, parallel builds - - + - - +

Debugging/readable output - - - + - +

User community - + - + - +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Changing Your Build Tool

If you do decide to change your build tool, here are some tips for making the transition a little easier.
Section 3.7.1 also has some more general advice on choosing new tools.

Search for advice

Search carefully for examples of how other people have used the new build tool. Create a few
local prototypes before going to the effort of creating all of the new build files. Subscribe to the
appropriate mailing lists and browse the documentation and any books about the tool.

Start with a working build

Make sure that the existing build is working, at least for the major targets that are used by the
project. This will remove a whole range of uncertainties from the conversion process.

Capture all the output from a working build

Generate a text logfile that shows the complete details of every command that the build
currently executes, including any warnings from compilers and other tools. Now make your
new build tool do what the old one did, as closely as possible. Then when your new build fails in
some mysterious way, you will have a working example to compare against the output from
the new build. Your existing build tool may well have an argument to increase verbosity and to
show the actual command lines that were run.

Use the existing directories

If at all possible, create the new build files for the new build tool using the existing directory
structure. This is one less variable changing at the same time. Later, after the build is working,
you can start to rearrange directories and rename or split up the source code files.

Use temporary scripts

If there are parts of the original build files that the new build tool doesn't support until you
customize it in some way, you can still make progress by hardcoding the old build commands
into a script file and calling that with your new build tool.

Compare the results

If you run both the old and new build tool in parallel for a few days or weeks, then you can
compare every generated file. It's also reassuring to see how many generated files are identical

http://lib.ommolketab.ir
http://lib.ommolketab.ir

at a binary level and to understand the differences when they aren'toften this is due to
timestamps. Ideally, when you do change over to using the new build tool, no one should see
any difference in the files that are generated. You can also run tests to compare the
performance of the old and new build tools, which helps encourage other people to use the new
build tool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Checklist

This section contains some questions that the person responsible for your builds should feel
comfortable answering about your current build process:

When you build the product, do the generated files end up mixed in with the source files, or are
they in a separate location?

You made a small change to a few files, but then rebuilding the product took much longer than
you expected. Can you find out why it took so long? Exactly which files were rebuilt, and why
was each one rebuilt?

How long does an up-to-date build take with your build tool? (As explained in the earlier Section
5.2, an up-to-date build is one where nothing has changed since the last build and so the
generated files are already up-to-date.)

How long do the other kinds of build (virgin, changed, interrupted, and clean) typically take for
your product?

How do you cause just a subset of your product to be rebuilt? Do you have to delete a magic
file? Specify some target name to the build tool? Change to a special location in your source
tree?

How do you debug a build process? Can you debug where incorrect dependencies come from?

Can you use different versions of your build tools on the same machine with confidence?

Can you list all the other tools (and their versions) that your build tool depends on? Are they
safely stored somewhere in such a way that you could recover them after a disaster? When was
this backup last updated?

Can you list all the operating systems (and their versions) that your build tool depends on? Are
they safely stored somewhere in such a way you could recover them after a disaster? When was
this backup last updated?

How long did all the different kinds of builds take in the past? Can you predict when your build
will become too slow?

Do you think that a parallel build would improve your build times? How do you configure your
build tool to run parallel builds?

If you want to produce a different product using the same build tool and build files, in how many
places do you have to add information about the new product?

If you want to add a new type of build (e.g., with a different set of debugging arguments to a
compiler or to generate PDF files instead of HTML), how many of the build files do you have to
change? How many places do you have to make these changes in each build file?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you had to change the name of a product or a project, or the name of the company, how
many build files would you have to change?

Finally, the real motivation for this chapter: how much time per week do the project's
developers spend wrestling with the build tool, waiting for slow builds, and investigating
phantom bugs that are due to inconsistent builds?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Testing Software
The single most important rule of testing is to do it.

Brian Kernighan and Rob Pike

The Practice of Programming

This chapter is about how a good test environment can make testing your product much easier. A
test environment is made up of the tools that you use to run your tests and report the results,
together with the processes and policies for how to use the tools. Test environments are also referred
to synonymously as "test infrastructures," "test harnesses," and "test scaffolds."

This chapter describes what to look for in a good test environment and summarizes a few different
test environments. Automation of all the different kinds of tests is emphasized, along with integrating
the tests with your SCM and build tools and communicating the test results to the rest of the project.
Finally, some of the practical aspects of testing that always seem hard to get right are examined.

This book takes a somewhat simplified view of testing because the focus is on
the tools used to write and run tests, not on how to write good tests, or testing
methodologies. For more information about testing in general, there are many
books and web sites. Some that I have found particularly useful are listed in
Appendix B.

This book also uses the term tester generally to mean anyone who runs a test, including developers,
Quality Assurance (QA) engineers, and toolsmiths. This is because everyone in a project is involved in
testing the product, in one way or another. Of course, testing is just one part of creating a quality
product.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Different Kinds of Tests

There are many different ways to test software products. The tests that are described in this section
are all tests that are separate from the productthat is, tests that don't have to be shipped to a
customer. Other kinds of tests not discussed here are written directly into the product, checking for
sane data values at the start of a function or testing for consistent states at other places in the
source code.

All tests contain assumptions about what is correct and incorrect behavior for the product. Few
products are ever mathematically specified to their most precise details, so most test results can only
be as accurate as their assumptions are about how the product should work. Tests that check for
both known correct and known incorrect behavior at least catch each end of the range of a product's
behavior. The area between these two extremes is where carefully constructed tests can detect any
poorly specified or inconsistent parts of a product, in addition to errors in the implementation of the
product.

6.1.1. Unit Tests

Unit tests are designed to test smaller parts of a product, ideally just a single part per unit test.
Exactly what a "single part" means in practice depends on how the product is designed: it could be a
whole feature, a class, or just a single method or function. Unit tests are often written by the same
developers who wrote the source code that is being tested. They may in fact be the best source of
documentation of how to write applications that use their particular part of the product. Unit tests
generally don't make assumptions that a network is accessible and working, or that a database or
any other large product is available.

Unit tests are closely tied to the code that they test, and indeed the unit tests for the functions in a
file foo.c will often be found in a file named foo_test.c in the same directory. The ability to identify
source files for tests by their names is often useful, so don't just put unit test code anywhere. Unit
tests are useful only if they stay in step with what they are testing, so it's good practice to build the
unit tests whenever the product is built. The extra time for a build is a one-off cost, since a good
build tool will rebuild unit tests only when something changes. Sometimes unit test files are placed in
a top-level directory parallel to the product source code, but this doesn't encourage checking out,
compiling, and running the tests, so I don't recommend doing this. Separate top-level directories can
sometimes make running the preprocessor more complicated for C and C++ test files, but they may
also make packaging Java class files a little easier.

Some programming methodologies such as XP stress that unit tests should be written before the
code that they will test is written. This kind of test-driven development (TDD) approach does give a
clearer understanding of what the code should do and what its APIs should look like. Of course, this
also involves more work in the short term, and testing every get and set method may be
unnecessary. As with all testing, the art of writing unit tests lies in deciding where to test for the
maximum likely reward for your effort.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Regression tests are defined as any tests that confirm that a program hasn't
regressed and reintroduced bugs. Not regressing has also come to mean that a
program still produces the same test results as it did before some changes
were made to the program. Using regression tests can reduce the risk of
making changes.

6.1.2. System Tests

System tests are designed to test the whole product. They may well be written by testers, often a
separate group of people from the developers who wrote the source code for the product. Having two
groups of people provides a useful confirmation when both groups have the same understanding
about how the product is supposed to work. Testers who write system tests may or may not know
how the product works at the source code level, so these kinds of tests are sometimes referred to as
"black box testing." Testing that depends upon being able to see inside some imaginary box is known
as "white box testing."

System tests generally assume that the product has been installed as the customer will install it and
that everything that the product requires is present. This may include a working connection to the
Internet or access to a database. Specifying exactly what a product requires to operate correctly is
discussed in Section 9.2.1.

6.1.3. Customer Tests

Customer tests involve using the product just as a customer might. This might include installing the
product in different ways or updating the product to a newer version. Customer testing may involve
beta releases with real customers. Usability tests, which try to decide how easy a product is to use,
are often conducted as part of customer tests. Both novice and experienced users of the product are
needed for usability tests to be able to improve the design of a product.

6.1.4. Other Tests

Other kinds of tests include:

Comparison tests

Similar products are compared directly against each other, often in terms of features,
robustness, and price.

Conformance tests

Testing that a product conforms to a particular specification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interoperability tests

Products are tested for how well they work together, usually by assuming that they all conform
to a particular specification and then connecting the different products together in some way.

Many of these kinds of tests are performed by an external organization on behalf of a company, a
standards body, or an industry magazine. Some of these organizations are more rigorous and
objective than others, just like the industry analysts who write product reports for their magazines.

Such testing organizations may permit support staff from a company to be present but will not
usually allow them to actually configure their own product except by proxy. It's also hard for testing
organizations to be sure that the product they are testing is anything like the version that a customer
reading the test results six months later will be able to purchase.

The design of these kinds of tests is often a matter of much discussion and careful market
maneuvering. If you can influence the test configuration and parameters, then you can help ensure
that your product will succeed, even before the test is performed. Indeed, products are sometimes
specifically designed to perform well in benchmark tests, even if their performance in more common,
real-life situations is less spectacular.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Why Automate Your Tests?

The motivation for automating tests is pretty simple: the easier it is to run the tests, the more the
tests will be run, and the more tests you will be able to run. Tests that are not run regularly begin to
rot and become useless. Automating unit tests and system tests also makes it easier to run them
regularly as part of an automation environment (see Section 3.4). As the number of tests and the
different things that you want to test grows, automation becomes the only way to run the tests in a
reasonable amount of time. Some tests, such as load testing with many hundreds of machines, are
hard to imagine wanting to do by hand!

However, despite what the glossy brochures for test automation tools tell you, automated testing will
not magically solve all your testing problems. For each test, you need to first decide how much effort
it will take to automate it and what the likely payback is. For instance, imagine that a large, long-
running system test costs X each time you run it manually, or costs Y for the first time you automate
it and then nothing thereafter. If Y is 10 times X, then there is no benefit to automating the test
unless you know that you are going to run the test more than 10 times in the life of the product.

Tests with more human interaction (such as conformance tests, customer tests, and "bakeoffs")
benefit less from automation, so this section doesn't discuss automating those kinds of tests.

As a general guideline, all the developers on a project should be able to build and run the unit tests,
and there should be an agreed-on set of unit tests to be run whenever developers want assurance
that their changes haven't broken anythingthe CYA process.[1] Some projects in fact require that unit
tests are run before committing any changes to the project. There is a balance to be struck here for
each project between the time spent running the unit tests and the increased perceived stability of
the product. Running the unit tests automatically elsewhere and then mailing failures to developers
who have changed the code since the unit tests last passed is another way to approach this issue.

[1] CYAcover your assets. This can involve anything from a "How Not to Break the Build" document, to a script that must be run

before committing changes, to having all your diffs reviewed by other developers.

System tests are often a larger collection of tests that are more complex than unit tests; thus system
tests may take much longer to run. Whenever a release is created for testing purposes, the system
tests should be run automatically, ideally before any time is spent manually installing and testing the
new release. These system tests can be viewed as a contract between developers and testers about
what has to work, at a minimum, before testers bother to look at the rest of the product.

Automation of both unit and system tests will also help greatly when the product has to be
maintained later on, after the first release. The fewer steps it takes to build and run the tests, the
fewer steps there are to forget or to run incorrectly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Evaluating Test Environments

At a minimum, a test environment should allow you to:

Run a number of tests.

Decide whether the tests ran properly and whether any tests hung. A hung test should not
prevent other tests from being run.

Determine what the result of each test waserror (in the test), failure, or successand also explain
why.

Summarize the results of the tests in a report.

It is my opinion that a good test environment keeps its tests separate from the mechanism used to
run them. To see why, imagine that you want to use a different way of running your tests. You really
don't want to have to actually change how any of your tests are written, since the tests are still
testing the same parts of your product. A good analogy here is that if you change your build tool
from make to SCons, you shouldn't have to change the source code for your product, just the build
files.

Just like build tools and their build files, test environments benefit from having a good scripting
language, one that has full support for familiar programming constructs. If you have to write your
scripts and tests using a language that is supported by only one test environment, then changing test
environments in the future will be more effort than it needs to be. And frankly, vendor-specific
scripting languages are rarely as good as other, better-known scripting languages. Beware vendor
lock-in!

6.3.1. Preparing to Test

Before you run a single test, make sure that you have a test plan that clearly describes the different
parts of the product that will be testedand how, on which platforms, and what the expected results
are for each test. Make a list of the required machines and applications for each test, so that you can
decide which groups of tests can be run in parallel. When the inevitable time crunch comes for your
project, a clear and comprehensive test plan will help you in discussions about which parts of the
product perhaps don't need as much testing as other parts.

Performance tests should be written with clear expectations of what their approximate results should
be. Numbers by themselves are rarely meaningful, so the usefulness of performance tests is often
more about how the results change as the values of different dimensions of the product are changed.
You should at least be able to predict whether changing a parameter will make a particular result
increase or decrease. You should also run performance tests for different durations until you can see
the results tending toward a final value or range of valuesfor a short time, a man can outrun a horse,
but I wouldn't call it a particularly useful test result.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's also important to make sure that you've identified all the different dimensions that will be
considered during testing. For example, for an application that runs on a single machine, you will
need values for the operating system and version, disk size, and available memory. Once these
dimensions are known, specific combinations of them can be chosen and used during testing. Getting
the dimensions wrong is very frustrating for testers; it's annoying enough to have to repeat tests
because the product changes, but it's infuriating to have to rerun tests because insufficient data was
collected the first time that they were run.

Preparing to run the tests should now be a matter of deciding which tests to run, specifying the
expected results, checking for the necessary resources, and, most importantly, deciding who will be
told about any test failures and who will own any broken (failed) tests. If test results are never used,
then the time spent testing is wasted. This sounds obvious, but if developers are not made aware of
test results, then it's as though the tests had never been run.

A good test environment can help with the following before any tests are run:

Checking resources

If an external resource (such as a database or a web site) is a prerequisite for running a group
of tests, then it often makes sense to check that the resource is available just once, not before
every one of the tests.

Defining expected results

Defining the expected results is part of defining a test. Some tests may be expected to fail. This
is true when a bug has been found and a test has been written to demonstrate this failure, but
the bug has not yet been fixed. Other failing tests may be tests that are themselves waiting to
be fixed.

Tracking primary owners

Test environments can make it easy to change who owns each test, ideally by using a UI or a
simple text search and replace. It should always be easy to identify who will be asked to make
a broken test work again. With bugs, even if it's not clear until the bug has been investigated
more thoroughly who really owns the faulty code, at least there's a name to start from. If the
same test keeps failing due to changes in an unrelated area, then the owner of the test can
offer to let the owner of the other area own the test, without having to change who owns the
source code.

Tracking secondary owners

Providing a secondary owner of a test in case the primary owner leaves the project is another
useful idea. That way, email messages about failed tests should always reach someone, who
may well feel motivated to reassign the tests to a new primary owner, if only to stop the email.

Generating test data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some edge cases or boundary conditions can be tested for automatically. For instance, if a
method accepts an integer as an argument, then values of 0, -1, and 1 are probably worth
using in a unit test. Similarly, very short and very long strings, strings with spaces and
punctuation, and non-ASCII strings are all good candidates for testing APIs that have string
parameters. If your product uses text files, try passing an executable file to it as an input test.

Handling input data

If you are using fixed data, make sure it is stored in such a way that it is easy to change, such
as in a file that's used for input by the test, rather than being compiled into the test
executable. This also implies that test environments should be able to read from datafiles.

Generating random numbers

A test environment should have a good random number generator for generating data and for
making choices in tests. Good ones are hard to find, and they're easy to use in ways that make
the results decidedly nonrandom, so guidelines about using them properly are helpful.

Somewhat paradoxically, if you do need a random number generator, you should make sure
that its output can be precisely repeated, so that you can debug your tests. This is usually done
by passing in a "seed value" to the function that initializes the random number generator.
Using the same seed value will produce the same sequence of random numbersit's where you
start in the sequence that isn't random.

6.3.2. Running the Tests

Some aspects of a test environment that help when running tests are:

Single tests

The ability to run just one test quickly dramatically improves the turnaround time for retesting
small parts of a product.

Groups of tests

Being able to refer to tests in groups and to have the same test be part of multiple groups
means that you can run test groups such as "the ones that failed last time" or "just the tests
for Windows."

Independent, idempotent tests

Ideally, tests should have no side effects and should leave the environment in a known state.
This means that you should be able to run the same test over and over again, or run the tests
in any order. Test environments that help you get this right will save you hours of time trying
to debug tests that failed only because the test that was run just before them failed. Running
the tests in a different order also simulates more closely how customers may use the product.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Parallel processes

Tests that have to be run at the same time and be synchronized with each other are hard to
run in most test environments. Most testers simply try to avoid these tests or design the
product so that it can be put into states where it will wait for certain inputs for synchronization.
The useful software clock resolution on many machines without real-time operating systems is
only tens of milliseconds, so microsecond synchronization of software is most unlikely to be
supported by test environments.

Background processes

Even if parallel processes don't have to be synchronized with each other, some tests will need
processes to run in the background, and output logging and deadlock detection should work for
these processes just as they do for other tests. A test environment should also provide a clean
way to check for orphaned background processes before the next test starts.

Multiple machines

The use of multiple machines for a test means that the test environment has to provide a way
of executing commands on remote machines, and also a way to collect the results of the
commands for processing as part of creating a report. The test itself may have to be written so
that it can be started and then wait for a signal to proceed.

Multiple platforms

Tests that run on many different platforms (for example, both Unix and Windows) benefit
greatly from a test environment that hides the differences between the platforms from the
person writing tests.

Capturing output

Good test environments can make capturing both the output and any errors from each test
much easier. Keeping textual output and errors in the same place makes it easier to see when
errors occurred relative to other output. If they have to remain separate, then timestamps are
required, with as much resolution as the platform will provide. It's also helpful to be able to tee
the output from each test to be able to monitor the progress of each test.

Scanning output

When the output of a test has been captured, usually into a file, the result of a test is often
determined by searching for certain strings in the output. A good test environment can help by
making the common cases simple to implement, while also supporting complex regular
expressions or even state machines driven by the content of the output file. If there is some
part of the output (such as the starting time or memory addresses) that changes every time a
test is run, make sure that this output either is separate from other output or can be filtered by
the comparison tools that are being used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the Unix tool grep does not support matches over multiple lines, so you can't use it
to search for Number of failures:\n1, where \n is the newline character. However, both Perl
and Python do support this.

6.3.3. After the Tests

Some features of a test environment that are helpful after tests have been executed include:

Distinguishing between failures and test errors

Tests can fail; this is expected when a product isn't behaving as expected. Tests can also have
errorsthat is, when the tests themselves fail to run correctly. Test environments that make a
clear distinction in their test definitions and test reports between these two cases help reduce
confusion. Test reports also have to make it clear when a test failure was expected. Of course,
tests that fail intermittently without a clear explanation eventually tend to not get run.

Tracking which files were tested

Since tests may have names like test019 that are unrelated to the source code that they are
testing, all other clues about which files, classes, methods, and functions a particular test was
exercising are helpful. For instance, you could look at the definition of a test to see which
methods it called; or your test environment could provide you with that information and maybe
add links to those methods to the detailed parts of test reports.

Flexible report formats

A wide variety of ways of communicating results is useful. Generating a set of HTML web pages
is one common way to present reports, but text-based email, PDF, Word, or spreadsheet files
are sometimes more appropriate. To make generating test reports in a variety of formats
easier, it's often useful to store the results in a structured file format such as XML. Some test
environments use databases to store their test results.

Storing test information

Once tests have become stable enough to be run automatically as part of a build, it's a good
idea to use an SCM tool to store both the source code for the tests and the test results. The
tests and their results should be tagged with the same build label that the build was tagged
with (see Section 3.5). That way, you know which tests were run against a particular build, and
also which versions of those tests were used.

Historical reports

Some test environments provide tools to create historical reports about test results. Graphs
showing the total number and proportion of tests that pass or fail against time can provide a
sense of a product's stability. Like any project statistic, these figures are useful only if you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

understand how the information was gathered and what kinds of errors exist in the data.

Creating bugs

Once a test has failed, it should be easy to create a bug about the failure. Creating a bug
should always have a human involved to act as a filter for what is added to the bug tracking
system. However, once the failure has been identified as a genuine bug, filling in the fields of
the bug and attaching logfiles should be handled as automatically as possible.

Did your test fail with a cryptic error message? After you've searched the open
source code for clues about where the message might have come from, your
best bet may be to try the Google Universal Debugger. Simply cut and paste
the error into a Google search box, optionally add double quotes (") at the start
and end of the phrase to keep it together, and then see whether other people
have seen the same error. Don't forget to try searching the Google Groups too.

6.3.4. Good Test Reports

What should a good test report contain? The answer depends on whom the reports are intended for
and how often the reports appear. A manager of a project may be interested only in the total number
of tests, the percentage that failed, and perhaps the changes in these numbers since the last test
report. Most importantly, a manager will want to know who's going to fix the broken tests.

Developers and testers tend to require more detail in test reports. Such information includes a unique
name for the test or group of tests, an error state (maybe more than just "passed" or "failed"), links
to the logfiles gathered when the tests were run, the duration of the tests, and possibly the expected
duration. Output logs should be available in both raw and preprocessed form to highlight warnings,
errors, and any other locally interesting text. Since test reports may well be printed on monochrome
printers, highlighting of any text should use fonts and border thicknesses, not just color. Another
helpful idea is to add links to reports to allow readers to browse each test definition and the areas of
the source code that are being tested. Figure 6-1 shows an example of a crisp and clear test report.

The more information that appears in a test report about the environment in which the tests were
run, the easier it is to recreate that environment later on, or in a different location. Section 9.2.4
discusses the kind of information to gather for releases, and much of the same information is useful
for test reports.

A useful guideline for the design of a good test report is to remove everything that doesn't directly
provide information to the reader. Every line on every page is a potentially distracting piece of clutter
for someone scanning the report in a hurry. A classic book on this subject that I can thoroughly
recommend is Edward Tufte's The Visual Display of Quantitative Information (Graphics Press).
Examples from all of his excellent books can be found at http://www.edwardtufte.com.

Figure 6-1. An example of a clear set of test results

http://www.edwardtufte.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Test Environments

This section examines some examples of different test environments that are currently available.

6.4.1. Shell Scripts and Batch Files

The simplest ad hoc test environments are just collections of a number of different test commands.
Unix shell scripts and Windows batch files provide one way to collect these commands together.
Scripting languages (such as Perl, Python, and Tcl) can also be used. Failure of a test written for
these environments can often be detected by the value of each program's return code, with nonzero
generally indicating a problem. Output is usually simple: the test name and pass or fail, with the
error code. Single tests can be run by simply invoking them with the same arguments that the shell
script uses.

Some aspects of testing that become more difficult if you use shell scripts and batch files are:

Checking for deadlocks when a test is not ending properly. This can be done by using a separate
watchdog process to provide timeouts for tests, but a program can do this more efficiently by
using threads.

Coordinating which regular expression patterns to look for in the output from each particular
test. With a more general language, this information can be stored in the same place as each
test definition.

Gathering statistics about different parts of each testfor example, startup times and response
times. A program can offer a better structure for running different parts of tests separately.

Generating reports in HTML. This is just plain tedious using shell scripts.

For fewer than perhaps a hundred straightforward unit tests, this approach at least gets you started,
and has very little overhead. However, the overall awkwardness of shell scripts explains why they are
rarely used for complex products. The major drawback of this approach is that adding features to the
test environment gets progressively harder as the shell script becomes more complex, which in turn
discourages you from writing more tests or making changes to the test environment.

As a practical example of some of these issues, CVS (see Section 4.6.1) is released with a 34,000-
line shell script named sanity.sh for running a number of tests on different platforms. The file
TESTING, which is also part of the source code distribution for CVS, discusses various alternatives to
sanity.sh, precisely because it is hard to understand such a monolithic shell script.

6.4.2. xUnit

The first of the series of xUnit test environments to become popular was JUnit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(http://junit.sourceforge.net and http://junit.org), originally written by Erich Gamma and Kent Beck,
which is a well-known open source test environment for Java classes. JUnit is now integrated into the
Java build tool Ant and also into most IDEs for Java developers.

The xUnit test environments all use the same basic architecture as JUnit, but each one is intended for
implementing tests for different languages. Each test inherits from a TestCase class and implements
setUp and tearDown methods to prepare a class for testing and to clean up after testing,
respectively. The author of the test class then defines methods whose names start with "test" to
perform the tests, and uses a variety of assert methods to determine the result of each test.
Generally, each test class should test a small part of the application (the "unit" part of xUnit). Multiple
tests can be combined into TestSuite classes. You can also use a TestResult parameter within the
tests for the collection of runtime statistics.

There is a long list of all the available xUnit test environments at http://c2.com/cgi/wiki?
TestingFramework, and there is an even longer list at http://www.xprogramming.com/software.htm.
The book Unit Test Frameworks, by Paul Hamill (O'Reilly), provides a good overview of the test
frameworks for Java, C++, .NET, Python, and generated XML documents. The Pragmatic Unit Testing
series, by Andy Hunt and Dave Thomas (Pragmatic Bookshelf), covers JUnit and NUnit in the authors'
classic back-to-basics style.

One large advantage of the xUnit test environments is that since the architecture and classes are
similar from one language to another, it becomes easier to write tests in different languages and
easier to understand other people's tests. There are a number of command-line and GUI tools for
running xUnit-based tests and collecting their results. However, the tests that you write are closely
tied to the xUnit environment; it's harder to run such tests directly from the command line or by
using a different test environment. Writing your tests in the same language that your project is using
is a popular way to make developing tests easier.

6.4.3. DejaGnu

DejaGnu (http://www.gnu.org/software/dejagnu) is an open source test environment written in
Expect that uses Tcl as the language for defining tests. Like the bug tracking system GNATS (see
Section 7.2.4), DejaGnu was originally developed at Cygnus. It's now maintained by Rob Savoye and
Ben Elliston, and it is the test environment used by gcc, gdb, and some other GNU projects.

Tcl and Expect

Tcl (http://tcl.sourceforge.net) is a scripting language commonly used by testing teams,
though you can also use it to build larger applications. The graphical interface for
BitKeeper (see Section 4.6.5) is one such application.

Expect (http://expect.nist.gov) is an open source tool written in Tcl that helps you
automate interactive tasks such as FTP sessions, remote logins, and complex system
tests.

DejaGnu's main focus is on running system tests, which are usually defined in Tcl, but you can also

http://junit.sourceforge.net
http://junit.org
http://c2.com/cgi/wiki?
http://www.xprogramming.com/software.htm
http://www.gnu.org/software/dejagnu
http://tcl.sourceforge.net
http://expect.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

run existing tests in the same environment. There is strong support for running remote tests on
many different platforms (though to run it on Windows, you must have the Cygwin environment) and
there is good integration with the GNU Autotools suite (see Section 5.5.3). Running the tests
automatically generates both a summary of the results and details of the tests' output. One benefit of
using Expect is that DejaGnu can be used to test interactive applications such as gdb, the GNU
debugger, which uses an interactive CLI by default. DejaGnu is also one of only a few available test
environments that are POSIX-compliant.

The manual for DejaGnu is well written and contains an excellent step-by-step guide to getting
started. Test debugging is mostly done by increasing the verbosity of various logfiles, but there is
also more information on debugging remote tests available at
http://kegel.com/crosstool/current/doc/dejagnu-remote-howto.html.

If you need to test your product on many platforms (basically anything that gcc runs on) or if you
want a lot of text-based user interaction as part of your testing, then you should consider DejaGnu
for your testing environment.

6.4.4. SilkTest

SilkTest is a commercial test environment from Segue Software (http://www.segue.com). First
released in 1993 as QA Partner, the latest release of SilkTest was Version 7.1 in 2004. Pricing starts
above $6,500 per user for the test design tool; the runtime part costs less.

SilkTest is one of the industry-standard test environments (the other one being WinRunner) that is
commonly used for testing everything from GUIs to browsers to databases to network management
applications. The design tool runs only on Windows platforms and allows you to record and play back
test actions, and to extend them with different data. SilkTest has its own test-scripting language
named 4Test, which has support for multiple platforms and many existing applications. There is
support for testing Java applications on Unix platforms, and the separate runtime part of SilkTest can
be used on multiple platforms in parallel.

SilkTest is highly customizable; hence it has a fairly steep learning curve. The quality of support from
Segue seems to have gone through cycles, but is sometimes excellent. Alternative sources of
information include the QA forums at BetaSoft (http://www.betasoft.com).

http://kegel.com/crosstool/current/doc/dejagnu-remote-howto.html
http://www.segue.com
http://www.betasoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Types of Test Tools

There are many different tools that can be used to test and debug very specific aspects of products.
Some of these tools are more commonly used by developers than testers, but these tools can also be
part of automated testing. For instance, knowing when a program started to leak memory during
tests makes it easier to identify the particular changes that caused the memory leak. This section
looks at a number of different kinds of tools that can be used as part of a test environment.

6.5.1. Memory Analyzers

One of the classic problems with programming languages such as C and C++ is that developers are
responsible for keeping track of the memory that their programs use. If the memory leaksthat is, if it
isn't freed properly for later reusethen the program will eventually run out of memory and probably
crash. In addition to permitting leaks, many languages don't check for programming errors such as
reading or writing past the end of an array, which corrupts memory. The alternative to all of this is to
use a language such as Java that support garbage collection, the process whereby unused memory is
automatically managed while the program runs (at the cost of somewhat less control over when
memory is reclaimed).

Memory analyzers are tools to keep track of how and when memory is allocated and freed by a
program. They may also check for errors including ignoring an array's length; using a variable that is
no longer valid in a later part of a program; reading from memory that hasn't been used yet; and a
whole host of other common coding mistakes.

One of the oldest commercial memory analyzers is Purify
(http://www.ibm.com/software/awdtools/purify), originally from Pure Software, then Rational, and
now IBM. For many developers, Purify defined the expectations for what a memory analyzer should
be able to do and how easy it should be to use. Purify runs on Windows, HP-UX, IRIX, GNU/Linux,
and Solaris. It works by instrumenting the executable and the libraries that make up a program,
adding code to every function to track when each part of it is called. No recompilation of source code
is necessary, though more information can be collected if the source code is recompiled. There is a
related product named PurifyPlus that provides code coverage (see the next section, Section 6.5.2)
as well as memory checking, but PurifyPlus does require recompilation of the program. Other good
commercial memory analyzers include TotalView (http://www.etnus.com), which is also a graphical
debugger, and Insure++ (http://www.parasoft.com).

There are a number of open source memory analyzers (see
http://en.wikipedia.org/wiki/Memory_debugger for a long list of them), but the best-known ones are
Electric Fence (http://perens.com/FreeSoftware/ElectricFence), Valgrind (http://valgrind.kde.org),
and dmalloc (http://dmalloc.com). If you're willing to recompile gcc, there are also patches available
at http://gcc.gnu.org/extensions.html to add the -fbounds-checking command-line argument.

Electric Fence uses lots of memory but is particularly good at detecting out-of-bounds memory reads
or writes. dmalloc is a replacement library for the standard memory allocation library, so it is likely to
detect any bug that involves incorrect allocation or freeing of memory. dmalloc is also relatively

http://www.ibm.com/software/awdtools/purify
http://www.etnus.com
http://www.parasoft.com
http://en.wikipedia.org/wiki/Memory_debugger
http://perens.com/FreeSoftware/ElectricFence
http://valgrind.kde.org
http://dmalloc.com
http://gcc.gnu.org/extensions.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

portable and fast. Valgrind is actually an entire simulated x86 processor for GNU/Linux programs,
and memory analysis is just one part of what it can do. Valgrind is probably the closest open source
equivalent to Purify. A basic comparison of Electric Fence, dmalloc, and Valgrind can be found in "A
Survey of Static and Dynamic Analyzer Tools," by Elise Hewett and Paul DiPalma
(http://www.cs.wm.edu/~coppit/csci780-fall2003/final-papers/hewett-dipalma.pdf).

An alternative approach is to add some form of memory analysis to your product yourself. This can
be particularly useful when you allocate one large block of memory at startup and then have your
own memory allocation functions. It's not hard to make sure that every allocation is tracked and then
to provide a way to display how much memory is being used by each part of the product. A useful
idea is to provide not just the amount of memory used, but also the change since the last time the
value was displayed. This lets you see more easily which parts of your product are leaking the most
memory.

Of course, all this monitoring and analysis comes at a price. The executables are somewhat larger,
but the main effect is that applications run more slowly when using memory analyzer tools. This is
not usually a problem when the tool is being used to catch mistakes that are triggered by simply
starting up a product, but using them to help debug errors that occur only after running a product for
a long time can be very tedious indeed. The different speeds can also make timing-dependent bugs
go away. This difficult class of bugs, where monitoring something changes the bug, are sometimes
known as Heisenbugs.[2]

[2] Like a fundamental particle bound by Heisenberg's uncertainty principle, the bug resists all attempts to pin down both its effect

and its location at a particular instant. The act of observing a Heisenbug seemingly destroys information about it.

Even languages such as Java that do support garbage collection can benefit from the use of analysis
tools such as JProbe (http://www.quest.com/jprobe), which can show where memory is not being
garbage collected as expected and can also suggest why. Fine-tuning exactly when garbage collection
occurs in order to improve interactive performance is another use for this kind of memory analyzer.

6.5.2. Coverage Tools

Coverage tools report how much of a product's source code is used when the product is tested. Of
course, just because a line of source code has been executed doesn't mean that it has been fully
tested and found to behave correctly in all cases. But if a line of code has never even been executed,
you don't know anything at all about it.

Some coverage tools are better than others at tracking exceptions. Exceptions
are a way of making a function immediately return from any line of its source
code if certain error situations occur; the lines after an exception is thrown will
not be executed, so should they not be counted as covered.

Another kind of coverage testing is branch coverage. This measures the number of different places
where a particular condition was never fully exercised. For example, were both the TRue and false
branches in a particular if-then-else statement executed? Still another kind of coverage is condition
coverage, where every Boolean in a conditional statement's condition is monitored to make sure that
it has been tested as both TRue and false. For example, given the following:

if (var1 && var2 && var3) { ... }

http://www.cs.wm.edu/~coppit/csci780-fall2003/final-papers/hewett-dipalma.pdf
http://www.quest.com/jprobe
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Booleans var1, var2, and var3 are expected to have been both true and false during the tests.
Tests that set every group of Booleans used in such conditional statements to all possible
combinations of values take an exponentially long time to run, depending on the number of Booleans,
but using a coverage tool to tell you which conditions were never tested at all can still be useful.

Good coverage tools summarize their results so that you can see which files or classes have received
lower than average testing with your current tests. Summary reports that allow you to drill down to
the details of each function or method can also help you avoid rerunning the coverage tests.

As with any testing, the art of coverage testing is to focus on areas of concern and not to expect
100% coverage. Coverage is a worthwhile endeavor, but the lure of concrete numbers can encourage
an unwarranted overreliance on coverage for judging how well testing is going.

6.5.3. Performance Tools

For developers, the idea of performance tools usually suggests profilers. Just like coverage tools,
profilers record how often each line, function or method, and class were called, but they also record
how much time was spent in each place in the source code. This information can help a developer
understand where the product spends most of its time (the bottlenecks) and may suggest some
areas to focus on for improving the product's performance. It's a good idea to profile only the
released version of the product, since nonoptimized code, or code with debugging enabled, will often
change the results of profiling.

Many compilers including gcc already support profiling abilities with separate tools such as gprof.
Compiling the product with the correct arguments will cause profiling data to be saved when the
product is run. This data can then be processed separately later on. Compiler-driven profiling tends to
be text only, and it can be hard to follow the results for large programs. One of the best-known
commercial profilers is Quantify, originally from Rational, now IBM
(http://www.ibm.com/software/awdtools/quantify). It has good graphical summaries of the results,
which can be expanded and followed through different parts of the source code. Valgrind (see Section
6.5.1, earlier in this chapter) also has profiling abilities, and there is a graphical frontend to these
named KCachegrind (http://kcachegrind.sourceforge.net).

For testers, performance is usually about loading the product with unusual amounts of data, large
numbers of users, huge numbers of files, or any other parameter that can be modified. The idea is to
discover what the limits of the product are, not necessarily to understand the causes of these limits.
Once the limits are known, that information can be used to set customers' expectations and to guide
them as they configure the product. Stress testing differs from load testing in that stress testing
examines how the product behaves when the resources that it needs (memory, CPU cycles, disk
space) are in short supply.

6.5.4. Static Code Analyzers

Another entire class of testing tools is static code analyzers. These tools take the source code of the
product as input and analyze it. Some of the more common kinds of information provided by these
tools are:

http://www.ibm.com/software/awdtools/quantify
http://kcachegrind.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Language conformance

This is how closely the source code conforms to a standard for the language it is written in.
Compilers for each language often deviate from the standard for the language, which can make
code that compiles on one machine fail to compile when using a different compiler or when
compiling on a different machine. When compiling C source code with gcc, there is a -std
argument to specify which language standard is being used.

Security

Source code can be analyzed for statements that are vulnerable to cracking by potential stack
smashing or other buffer overruns. Examples of tools that do this are StackGuard, Stack
Shield, ProPolice, and Libsafe, all of which are conveniently compared in the paper "A
Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention," by John
Wilander and Mariam Kamkar (http://www.ida.liu.se/~johwi/research_publications).

Correctness

Usually this involves proving, in the mathematical sense, that a program correctly implements
what was intended. Far less formal, but still very useful, are tools such as the open source
FindBugs (http://findbugs.sourceforge.net), which analyzes Java source code for different bug
patterns, even looking for silly little bugs. FindBugs has a good track record of finding real bugs
in many well-known applications that were already in production. Other similar tools are listed
at http://findbugs.sourceforge.net/links.html, and there is a comparison of such tools for Java
at http://www.cs.umd.edu/~jfoster/papers/issre04.pdf.

Size

How large is your product? One simple way to check in a Unix shell is by typing:
find . -name "*.[ch]" -print0 | xargs --null wc

to count the number of lines in each of the .c and .h C source files in the current directory and its
subdirectories. You could even count only lines that end with a semicolon by replacing wc with grep ';'
| wc.

A more robust way of doing all this is to use SLOCCount (http://www.dwheeler.com/sloccount), an
easy-to-use open source line-counting application that works with most languages. If you want to
track how the size of your product changes over time, StatCVS (http://statcvs.sourceforge.net) can
do so for CVS repositories and can also generate lots of other CVS-related information; however,
what's defined as a line of code is not as sophisticated as in SLOCCount.

Complexity

Counting the number of lines of source code is only the simplest (and some would say an
almost meaningless) way of measuring a software product. There are a number of different

http://www.ida.liu.se/~johwi/research_publications
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net/links.html
http://www.cs.umd.edu/~jfoster/papers/issre04.pdf
http://www.dwheeler.com/sloccount
http://statcvs.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ways to measure the complexity of source code, and tools for each different method exist for a
variety of languages. An introduction to different software metrics and their history can be
found at http://irb.cs.tu-berlin.de/~zuse/metrics/3-hist.html.

As well as measuring the size of your product, SLOCCount calculates the COCOMOII
(http://sunset.usc.edu/research/COCOMOII) complexity of a product and uses the results to
make an estimate of the cost of recreating the product. The resulting figures always seem high
until you count the number of hours everyone has spent on the project.

Documentation

Tools such as Javadoc and doxygen generate documentation for developers from the
comments embedded in the source code. These tools are described in more detail in Section
8.8.

A more unusual example of static analysis of a product's source code is measuring the stability of its
API. A stable API is one that doesn't change greatly between two versions of a product. I wrote such
a tool for Java applications (JDiff; see http://jdiff.org). The statistic that it uses doesn't seem to
published anywhere else, so I have included it here. JDiff counts the number of program elements
(Java packages, classes, constructors, methods, and fields) that have been added, removed, or
changed between versions. The percentage change of the API between versions is then defined as:

For example, if there were 15 packages in the old API, and then 2 packages were removed and 4
packages were added, there are now 17 packages in the new API. If another 3 existing packages
have changed between versions, then the simple percentage difference would be:

A change of 100% means that there is nothing in common between the two APIs; a change of 0%
indicates that nothing changed between the two APIs. In practice, this formula is applied recursively
for every package's classes and class members. That is, the value for the number of packages
changed (3 in the example) is not an integer, but instead is the value obtained by applying the same
formula to all the classes in the changed packages, and then to all the constructors, methods, and
fields of the changed classes. This results in a more accurate percentage difference. Real-world
figures are a 28% difference between Java J2SE© 1.2 and J2SE 1.3, and a 46% difference between
Versions 1.3.1 and 1.4. As might be expected, patch releases of J2SE have much lower percentage
differences.

Finally, one location for a somewhat dated, but still useful list of static analysis tools is
http://testingfaqs.org/t-static.html.

http://irb.cs.tu-berlin.de/~zuse/metrics/3-hist.html
http://sunset.usc.edu/research/COCOMOII
http://jdiff.org
http://testingfaqs.org/t-static.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. The Difficult Parts of Testing

There are two ways to write error-free programs; only the third one works.

Alan Perlis

"Epigrams in Programming" ACM SIGPLAN, September 1982

Personally, I find that testing a piece of software is full of activities that somehow turn out to be
harder than I feel they ought to be. This section looks at some of these difficult parts of testing.

6.6.1. Faults of Omission

No matter how systematic and thorough you've been, there are always missing tests and the bugs
that they never caught. These missing tests often seem so obvious after they are noticed. Of course,
there are plenty of these faults of omission in the source code too, and some are found by the tests
that you did remember to write and run.[3]

[3] According to Brian Marick at http://www.testing.com/writings/omissions.html, 20% to 50% of bugs in shipped products are

faults of omissionsource code that needed to be written, but never was.

A general intent that is helpful when thinking of tests is to not only test for what the product should
do, but also test that it hasn't done anything that it shouldn't do. For example, when you add a value
to a complex data structure, consider not just whether that value is present, but also whether any
extra values were added or other structures were changed.

It takes a particularly doubting outlook about software products to be able to consistently imagine
conditions that the designers and developers of a product overlooked. Great testers can be
psychologically exhausting for a team, since they can always find something wrong. Still, a good bug
can be as surprising as seeing how someone cracked your product, and it can generate the same
sneaky admiration in developers for the technical insight shown.

There is an interesting quote from Donald Knuth, who has written and tested plenty of complex
software products, as well as having written the classic Art of Programming series of books. In a
paper describing his experiences testing the typesetting program TEX, he wrote:

I get into the meanest, nastiest frame of mind I can manage, and I write the nastiest [testing]
code I can think of. Then I turn around and embed that in even nastier constructions that are
nearly obscene. (D. E. Knuth, "The Errors of TeX," Software Practice & Experience 19, no. 7
[1989]: 625-626)

Which at least has passion to recommend it. The next sentence is quoted less frequently, though it
has some serious implications for anyone else maintaining his tests:

The resulting test program is so crazy that I could not possibly explain to anybody else what it
is supposed to do.

http://www.testing.com/writings/omissions.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6.2. Capturing Output

Many tests display text as messages while they are running, and the final result of the test may be
part of this output, which then has to be searched for by some tool or other. (Other tests are more
silent and simply indicate the test's status by their exit code.) One of the hardest parts of creating a
good test environment is making sure that all the text output can be captured in a synchronized and
complete way on many platforms.

Most operating systems support the idea of input, output, and error streams for programs, though in
very different ways at their lowest levels. By default, there is an input stream for the program to
receive data on, an output stream on which text appears, and an error stream for displaying error
messages. Other streams can be defined for raw file-based input and output. Each of these streams
can be redirected to and from files, or merged together. Some recurring problems when using this
model are:

Merged output

If two threads in a program write to the same output stream at the same time, the text is
mangled, with parts of both messages appearing together. The program has to provide a way
to synchronize access to the stream. Windows locks its files so that only one source can write
to them at a time.

Buffered output

If you are using buffered streams, then to improve performance no data is written until a
certain number of bytes have accumulated in the buffer. However, if your program stops
unexpectedly without flushing the output buffer, you may lose the critical messages that would
tell you why the program stopped.

Child processes

If one process starts another process, then arranging for the output from the child process to
be redirected along with the output of the parent process is prone to error.

Complex code

Neither Windows nor Unix primitive operations in the area of input and output are particularly
easy to use correctly.

This is a good area in which to look for working examples in any test environment.

6.6.3. Using Multiple Machines

Running tests on multiple machines creates a whole level of difficulty beyond testing on a single
machine. Just the time taken to run these tests manually can quickly become overwhelming. I recall

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trying to test an application that used multicast without a lab full of test machines or any way to
reliably run commands remotely on the machines that we did have. We ended up using everyone's
desktop machines on the weekend and ran from one machine to another to start and stop the tests!

The difficulties here can be broken down into three parts: sending commands to remote machines,
starting and stopping the tests, and collecting the resulting data.

6.6.3.1. Sending commands

For less than about 16 machines, especially if they are all running the same operating system, a KVM
(keyboard, video, monitor) switch, a shared monitor, and a programmable keyboard can take you a
surprisingly long way. Many KVM switches allow you to change between machines by using a short
sequence of cryptic keystrokes. First, create an executable script to run the test on one machine and
name the script using a single letter; then program the keyboard to change machines using a single
function key. To run the script on all the machines, simply peck away at the two keys until everything
is running. VNC (http://www.realvnc.com) is a program that lets you see the desktops of different
machines, and you can do a similar thing with VNC screens. All of this isn't very elegant at all, but
sometimes it's all that's needed.

Rather more general ways of sending commands to remote machines are to use rsh and its more
secure descendant ssh. Two open source tools that can run commands remotely are fanout
(http://www.stearns.org/fanout/README.html) and BitCluster (from BitKeeper, the eponymous
maker of the SCM tool described in Section 4.6.5), which is available as an alpha release from
http://www.bitmover.com/bitcluster.

Using CORBA ORBs is another way to communicate with remote machines. Applications can send
command strings to multiple machines using different languages and on different platforms. You do
still have to write the code that actually executes the commands on each platform, and most ORBs
don't support multicast, so commands are sent to each machine in turn.

6.6.3.2. Starting the tests

Once you have a way to send commands to multiple machines, you'll need to administer the
machines so that they all have the desired version of the operating systems and the correct copies of
the test programs. Doing this can take a fair amount of time in itself. Now you need a master test-
control tool to send the correct commands to each machine. You may want to be able to take
snapshots of the test results during the tests in order to see what's happening on each machine.
Without regular peeks at each machine and good logfiles with synchronized timestamps on each
machine, it's often hard to work out why a test or product crashed on only a few machines out of
many. Some of the tests may also require more input from the master machine after some time has
passed. In this case, you'll need a way for each machine to indicate that it's waiting and is ready for
more commands.

6.6.3.3. Collecting the data

Once the tests have finished on every machine, the amount of data to be processed becomes an
issue. Copying all the results that are on the test machines back to a central location can overload
that one machine's resources and slow down the network. If affecting the local network while the

http://www.realvnc.com
http://www.stearns.org/fanout/README.html
http://www.bitmover.com/bitcluster
http://lib.ommolketab.ir
http://lib.ommolketab.ir

tests are running is not a concern, then you could copy results during the tests or use a single file
server mounted remotely on each of the test machines.

One good idea is to preprocess the results while the data is still on the test machines and then copy
just the summaries to the central location, where they can be assembled into the report for the whole
test.

To ensure that your collected data is meaningful, you should make sure that the clocks on all the
machines involved in the tests are synchronized (for example, by using ntp on Unix, or the Windows
synchronization client or Tardis on Windows machines). You might also need to postprocess results
that come from different time zones and watch out for daylight savings time occurring on different
days in different countries.

One interesting project that shows what can be done with a distributed test environment is
SmartFrog (http://sourceforge.net/projects/smartfrog), a framework developed by Hewlett-Packard
and released as open source software.

6.6.4. Only a Developer Can Do That!

There always seem to be some bugs where the only person who can test the fix is the developer who
made the fix. This is irritating, since it was usually a tester who noticed the problem and filed the
bug. One example of this sort of bug is in stress testing, where to overload the product, a developer
may need to change the values of array sizes, file sizes, or connection speeds, and these changes
have to be made in the product's source code.

For instance, suppose that the product crashed during some long-running tests, and it was eventually
determined that this was due to the rest of the internal network being overloaded for more than 15
minutes. A bug is filed, and the assigned developer believes she has a fix. It's more than a little
inconvenient to overload the internal network again, so she makes changes in the source code that
affect the way the product accesses the network, in order to simulate the extended network
overload. How is a tester supposed to confirm that the bug is fixed? Without simulating the entire
network, the closest to confirmation anyone can come to is to have the developer explain the
changes and to provide test versions of the product with and without the changes.

The most common example of bugs that only developers can test occurs when part of the product
has no API, and that part is where the bug is. If the bug needs to be tested by someone other than a
developer, then the best solution is to add a test API to that part of the product. It's quite likely to be
similar to the debugging code added by the developers anyway. Of course, you have to be careful
that the test APIs are not enabled when the product is shipped, and that they are not relied on by
developers and testers during the ordinary use of the product.

One way to get around this whole problem is to make sure that the testers on the project are
comfortable inspecting source code, can build and execute the unit tests, and can add hooks into the
product for easier testing. If the project's testers are not comfortable with these activities, then at
least make sure that developers and testers are using the product in the same way, so you can avoid
the equally irritating opposite of this section's title: "Only a tester can do that!"

6.6.5. Accessibility Testing

http://sourceforge.net/projects/smartfrog
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Testing a product to make sure that it can be used by people with different needs from the
developers is always hard to do automatically. So much of what a customer can or cannot use is hard
to embed in tests, particularly in automated tests. The classic example is making sure that
information on web pages can be read by people with vision problems. Since accessibility is now
required by law in various countries, this is an area that would really benefit from better automated
testing tools.

My personal frustration is with the use of color alone to add information to a report or web page.
Along with up to 10% of all men, I was born red/green color-blind, so some common color
combinations look identical to me.[4] This doesn't mean that all colors appear the same, or that I
can't tell what red looks like (to me). It does mean that certain colors that appear quite different to
my wife look the same to me, just as some people can't tell two close musical notes apart. Some
practical examples are that red chalk on a green blackboard is hard to see, and maps and diagrams
that have regions with similar colors are pretty much useless to me.

[4] Color-blindness is also known as "color variance" or "Daltonism."

Perhaps you've seen products that change tiny little images from green to red to tell you when
something has gone wrong? These products just don't get purchased by color-blind people, because
we can't see any of the changes. Products that have considered this issue will allow you to configure
the colors used in different parts of the product and may even provide some different color schemes
or skins. (Skins are not there just to make the product look cool.)

As this issue has become better understood by web designers, web sites have been created with
suggestions of color combinations to avoid, or even to show you what your web site looks like to a
color-blind person. One good site as a starting point for more information is
http://more.btexact.com/people/rigdence. There is also a wonderful tool at
http://www.vischeck.com/vischeck/vischeckURL.php that simulates how web pages appear to color-
blind people.

http://more.btexact.com/people/rigdence
http://www.vischeck.com/vischeck/vischeckURL.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7. Checklist

This section contains a short list of questions that you should feel comfortable answering about your
existing test environment:

Can you use your test environment to run just one test?

How do you decide when to automate a test?

Do you ever discard tests? If so, how do you decide when? If not, do all of your tests actually
help you to test the product?

When are automated tests run? Is someone automatically informed about failed tests?

Can your test environment detect when a test has become deadlocked? Can you kill it, and can
the other tests still be executed?

How do you know who to contact about a particular test when it stops working?

How do you know which parts of your product are the least tested?

When was each aspect of the product last tested, and where are the results?

What resources do each of your tests require?

How could you change your product to make it easier to test?

How much work would it be to test your product on a new platform? Does your test
environment help you with this?

When a bug is fixed, do you know which precise test will confirm that it is fixed?

Which versions of the tests and test environment tools were used with which release?

If your product uses color anywhere in it at all, have you had a color-blind person test those
parts?

Most importantly, does your test environment make testing your product easier?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Tracking Bugs
This chapter is about keeping track of bugs in software products. Doing this well turns out to be one
of the harder things for a development environment. Few people ever seem to really like using their
bug tracking system, perhaps because different groups of people want very different things from the
same bug tracking system. Bug tracking systems are one example of collaborative tools, which help
groups of people work together efficiently on many small tasks. Similar systems include the tools that
help customer support teams track customers' issues and the tools that help a salesforce coordinate
its efforts, but those tools are outside the scope of this book.

The first part of this chapter discusses what kinds of things you might want a bug tracking system to
do for you. The second part describes six different bug tracking systems: spreadsheets, Bugzilla,
GNATS, FogBugz, JIRA, and TestTrack. The last part of the chapter discusses some commonly
encountered annoyances of bug tracking systems and has some suggestions for how to avoid the
worst of these. Most of these suggestions are independent of any particular bug tracking system.

Bug or Feature?

Feedback on a product comes in all shapes and sizes. Forcing everything to be classified
as a bug often produces strong responses from developers. For example, "That's not a
bug because the product is working exactly as designed!" You can classify such things as
bugs in the design stages of the product, but since no one can predict all the changes in
a product's requirements, a better approach is to classify them as feature requests or
requests for enhancement (RFEs). Another type of entry that is sometimes present in a
bug tracking system is an inquiry, which can later become source material for FAQs and
other documentation.

It's hard work to sell products that have known bugs, faults, or failures, but products
with unresolved issues, anomalies, artifacts, or even potential defects somehow sound
better to prospective customers. You may even come across some products with design
side effects! Be careful when you choose your own euphemisms, making sure that
everyone knows exactly what the words mean for your project. Also, note that the terms
defect and incident can have unforeseen legal consequences. For simplicity, the term
used in the rest of this book is the good old Anglo-Saxon bugfrom the Anglo-Saxon
budda, meaning "beetle" (http://alt-usage-english.org).

http://alt-usage-english.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. Tool Requirements

At a minimum, a tool for tracking bugs needs a way to uniquely identify each bug and somewhere to
store the information that describes each bug. The word bug is used here to refer to both an actual
bug in a product and the information about a bug that is stored in a bug tracking system. Bug
tracking tools usually store this information in a database. Most tools add the ability to generate
reports in various file formats. The contents of these reports are often the results of queries that
have been run against the underlying database. Sometimes bugs have states assigned to them, and
each bug's state is changed as work is done on the bug. Other information that is often recorded with
a bug includes who found it, who is working on it now, which releases the bug exists in, and which
releases it was fixed in.

There are a number of characteristics to look for in any bug tracking system:

Easy to enter new bugs

There should be a minimum number of fields that have to be filled in, just enough so that if any
of them were empty, then the entire bug would be useless. These required fields should be the
easiest ones to find on a screen or in a list (and simply making the field names red instead of
black doesn't cut it for color-blind people). You should be able to leave the screen to copy and
paste text from other screens, and return to find the screen just as you left it. Drop-down lists
can help ensure that data is consistent, but they should not be allowed to grow too long. Fields
that aren't available should be disabled, not just made invisible. If there are obvious choices for
whom a bug should be assigned to, then these should be filled in automatically. You should also
be able to attach other files to a bug.

Easy to change the state of a bug

The different states that a bug can be in varies widely with different products and projects, so a
convenient state diagram that shows how bug states are expected (and permitted) to change
is very useful. If bugs are allowed to change states only according to the state diagram, then
it's helpful if the bug tracking tool suggests only the valid states for changes.

Easy to change many bugs

The ability to change a number of bugs with a single operation can save a lot of time, especially
if the list of bugs is the result of running a report.

Easy to review a particular bug

Given a particular bug identifier, you should be able to view and edit that bug quickly and
intuitively. All of a bug's information should be accessible from a single screen of the UI.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Easy to watch a bug

It should be easy to become aware that something in a bug has changed. Email is the usual
way to notify people about this. It should be easy to change when and how different groups of
people are notified. Notifications may be related to groups of bugs or to changes in the state of
bugs.

Easy to search using brute force

When all other ways of finding a particular bug fail, you should be able to search all the text
fields for a given string. It may not be efficient, but when you are stuck, you really need to be
able to do this.

Easy to trace the history of a bug

You should be able to see how a particular bug has changed over timewhat changed, who
made the change, and when. Snapshots of the bug at each change and a list of the differences
between the snapshots are both useful.

Easy to connect to source code changes

If a bug tracking system is integrated with an SCM tool, then you should be able to find all the
changes to the source code that are related to a bug or multiple bugs. This could be reported
as the affected filenames and their versions, the differences between versions, or the
changesets.

Characteristics you should look for that relate to using the bug tracking system to manage a project
are:

Easy to generate reports

How easy it is to generate different reports is often a major factor in people's perception of how
easy it is to use a particular bug tracking system. It should be possible to generate simple
reports by using a simple interface. It should also be possible to generate more complex
reports with AND, OR, and XOR Boolean operations, selection of multiple values, and range
comparisons. You should be able to save all reports, along with text explaining the purpose of
the report. Formats for reports can include HTML, comma-delimited text, XML, Microsoft Word,
and PDF.

Easy to produce historical reports

Not all bug tracking systems let you produce reports about how the bugs have changed over
time. These kinds of historical reports are very useful for seeing how a project is progressing.

Easy to connect to a schedule

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The list of which bugs should be fixed for a particular release should be straightforward to enter
and to create reports about. If one bug depends on another, then that also should be made
very obvious. Some projects like to be able to have project members vote for the bugs that
they really want to be fixed, which can help when assigning bugs to planned releases.

Desirable features that are more closely related to administering a bug tracking system include:

Easy to modify the definition of a bug

The administrators of a bug tracking tool will probably need to change the different fields that
make up a bug. This should be straightforward, with clear documentation about what kind of
data is expected in each type of field that can be added. Adding new fields to UI screens should
be as intuitive as possible. Removing a field should also be integrated with the report and
screen design areas of the bug tracking system.

Easy to modify the workflow

It should be easy to change the states that a bug can be inthat is, to change the names of the
possible states and also how the states are related to each other. Adding or removing states
should also be possible.

Easy to manage the list of users

Many companies already have their users definedfor instance, in an LDAP server. Bug tracking
systems that can work with existing lists of users make maintenance easier. There should at
least be a way to import a list of users, so that the administrator doesn't have to enter each
one manually.

Scalable

As the number of bugs, groups, and users in a bug tracking system grows, the interface design
must also scale well. Drop-down lists with hundreds of users don't work very well. Searching
text fields may become painfully slow. Backups may become more than an overnight job.
Additional features to help with detecting duplicate bugs also become more necessary as the
number of bugs increases.

Accessible through external clients; good API

You should be able to read and modify data in the bug tracking system from outside the GUI or
browser. This is a generally useful ability (e.g., for adding the latest build label to the bug
tracking system as part of an automated build process). A well-considered and well-tested API,
beyond just writing SQL statements, is a good sign.

Easy to change the text displayed

It should be easy to change the text that is displayed onscreen for usernames, release
numbers, and other field names. This is partly to help localization and customization, but also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

because product names can change, so embedding them directly in a database field name
makes maintenance harder than is necessary.

Easy to back up different parts of the bug tracking system

You should be able to save copies of reports and UI screens before modifying them, in case of
errors. This also allows you to design complex reports and screens on a development system
and then import them into a production system, rather than having to re-enter them by hand.
Backing up the actual data in the bug tracking system should be possible on a live system and
easy to automate.

The features listed so far in this section are the positive requirements for bug tracking tools. The
following is a list of some general issues with bug tracking systems that come up again and again in
practice. More specific annoyances, and ideas to help work around them, are described in Section
7.3, later in this chapter.

Huge attachments

Many tools claim that the size of file attachments that can be added to their bugs is limited only
by the underlying filesystem or database. That may or may not be true, but you should check
how the performance is affected. Section 7.3.2, later in this chapter, has some more ideas
about cleaning up your data to help with this.

Spam magnets

If you create a public email address for customers to send bugs to, you risk filling your bug
tracking system with spam when the address falls into the wrong hands. Good spam filtering
will help stop most of this, but be sure you can delete information from all the fields in your
bugs.

Mystery data formats

Migrating from one bug tracking system to another is often very tedious, even more so than
with SCM build tools. If the data is in an open format, and if there are published schemas for
each tool's database, then the process becomes somewhat easier. Before you add data to a
bug tracking system, consider how you would extract it if the system failed to perform in some
way.

Internationalization

Some bug tracking systems don't handle non-Latin text and other characters well in their input
fields, or even in the names of users. Many are not localized for any language except English.

Default values

If no data was added to a field, what value does that field have when you want to search on it?
If a field is added or removed, how does it appear in historical reports? Not surprisingly, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

classic database issues of nulls and defaults also exist for bug tracking systems.

Databases need administrators

If a bug tracking tool uses a complex database such as Oracle, then there will probably be
occasions when Oracle administration will be a necessary skill for the tool administrator. Make
sure this is clearly understood from the start and arrange for consulting and training if the
necessary skills aren't available within the project.

Multiple platforms

Different people will want to use the bug tracking system from different platforms. Since
supporting client applications for multiple platforms is a lot of work, many bug tracking tools
have chosen to use web servers and browsers instead. This is mostly portable, but not all
browsers will work with complicated web pages, and many browsers don't do very well at
displaying XML or HTML text when it's entered as data for a bug.

A related problem is that some users, and most system administrators who are integrating a
bug tracking tool, will want to use CLI commands. The CLI ought to work uniformly across the
different supported platforms, but in my experience it often doesn't.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Bug Tracking Tools

There are easily a hundred different tools available for tracking bugs. A good place to start if you
want to see a list of choices is the Open Directory's Bug Tracking section at
http://dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking. Another good
location for a list of tools is http://testingfaqs.org/t-track.html. Yet another list of open source bug
tracking tools is http://usefulinc.com/edd/notes/IssueTrackers.

7.2.1. Spreadsheets

The simplest structured way to keep track of a small number of bugs is to use a spreadsheet
program, such as Excel or OpenOffice Calc. You could use an ordinary text file or a Wiki, but then it's
hard to sort the information. Each row in the spreadsheet is a single bug. Some typical column titles
might be Bug Number, Summary, Description, State, Owner, and Priority. Sorting and summarizing
by different columns can show the bug counts per person, the highest-priority bugs, and so on. Many
spreadsheets will let you restrict the kind of data entered into each fieldfor instance, to make sure
that the bug number is unique.

The main advantage of this approach is its simplicity. Spreadsheets are commonly available tools and
are reasonably well documented. Basic reports are easy enough to produce. Adding a new field to the
definition of a bug is as simple as naming another column.

However, the disadvantages of this approach are significant. Most of these are the same reasons why
people use databases rather than spreadsheets. As a project grows, the first problem that is likely to
be encountered is that only one person can modify the spreadsheet at a time. Another problem is
that, unlike with a good database, if the machine running the spreadsheet crashes during
modification of a bug, then the data can be inconsistent. Also, as the number of bugs in the
spreadsheet grows into the thousands, the time taken for the different reports can grow significantly.

Using a spreadsheet to keep track of bugs should be viewed as a temporary measure, one that will
not scale as a project grows. There are many simple, low-cost bug tracking tools available that will
scale better than a spreadsheet. Still, a spreadsheet is better than an email folder of reports of
possible bugs or a wall full of Post-it notes, but not by much.

7.2.2. Different Server Technologies

There are many bug tracking systems to choose fromperhaps more than all the available SCM tools
and build tools combined. Most of these tools meet a fair number of the requirements and goals for a
bug tracking system that were listed in Section 7.1, earlier in this chapter. So how to choose tools for
evaluation? Some tools are easy to reject because they're no longer actively developedwhen was
their last real release? A useful reference for checking up on this is Danny Faught's Boneyard page
(http://www.testingfaqs.org/boneyard.html), which is a list of many corporate changes and dead
products in this area. Other tools are easy to reject because you can't justify their cost for the project
at hand.

http://dmoz.org/Computers/Software/Configuration_Management/Bug_Tracking
http://testingfaqs.org/t-track.html
http://usefulinc.com/edd/notes/IssueTrackers
http://www.testingfaqs.org/boneyard.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Between these two extremes there are still hundreds of tools, both commercial and free, all of which
have a dozen or so customer sites and a few glowing testimonials. My suggestion is that if you have
used one of these tools beforeor even better, if you've administered it and it worked for a similar
projectthen use it again if at all possible (and if you still can bear it). That way you'll avoid spending
time discovering bugs in a new product.

If you are interested in knowing what other people and projects are using, then the next five sections
should be helpful to you. The tools in these sections (Bugzilla, GNATS, FogBugz, JIRA, and TestTrack)
were chosen because each one is relatively well known and represents a different underlying
technology. The different server-side technologies used by each tool are:

Bugzilla

Perl scripts called from a web server

GNATS

A standalone server using C and shell scripts

FogBugz

PHP scripts called from a web server

JIRA

A Java servlet running inside an application server

TestTrack

A separate server closely coupled to a web server

7.2.3. Bugzilla

Bugzilla (http://www.bugzilla.org) was one of the first projects to be released by the Mozilla
organization. Written entirely in Perl, Bugzilla is licensed under the open source Mozilla Public License.
The version described here is 2.18rc3.

http://www.bugzilla.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The History of Bugzilla

Bugzilla grew out of the bug tracking systems developed for use inside Netscape in the
late 1990s. Terry Weissman wrote the first version in Tcl and then ported it to Perl for
Version 2. Since April 2000, the project has been led by Tara Hernandez and then Dave
Miller. Several forks have occurred and merged, including the Bugzilla used by Red Hat,
and IssueZilla, which was used in CollabNet's preconstructed development environment
(see Section 3.1.3).

Bugzilla has all the basic features that you would expect from any bug tracking system, and a good
number of more advanced ones. Interaction is via a web browser, and notification is by email.
Configuration is done by modifying Perl source files, so the local source of Bugzilla can (and should)
be versioned with an SCM tool. Other features include the following:

Regular expressions can be used in text searches. The web page for queries can seem daunting
when first encountered, but the defaults mostly just work. More complex queries using Boolean
operators are also supported.

Reports are a separate feature from queries and are really quite impressive. Three kinds of
information can be chosen, then filtered according to interest, and then displayed as tables,
various graphs, or pie charts. Data can be exported as comma-delimited values. The historical
reports are also of generally good quality.

LDAP is used to control access rights, so there is no need for a separate set of Bugzilla
usernames.

The history of each bug is available; it displays in a table which fields were changed by whom
and when, and what the changes were.

Each person can configure to a fine level which types of changes to a bug will trigger an email to
them.

Email addresses in bugs can optionally be obfuscated to stop address harvesting on public web
sites.

Bugzilla supports people voting for different bugs. Bugs with more votes are considered more
irritating to more people.

Links from within text to other bugs, URLs, and email addresses are created automatically.

Adding dependencies between bugs is supported.

Spellchecking is available.

There is some limited support for measuring the time spent working on each bug.

Bugzilla is well localized in at least nine different languages and can use multiple language
templates at once.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There are tools to check the configuration and to check that the data in the database makes
sense to Bugzilla.

The list of projects and companies that use Bugzilla is impressive and includes some of the largest
open source projects. The Apache web server, the Linux kernel, and gcc all have thousands of bugs
recorded in their Bugzilla systems. There were discussions within Apache about using other bug
trackers after Apache's insecurely configured Bugzilla led to the defacing of the main Apache web
site, but better security seems to have meant that Bugzilla is still in use there, though some projects
are now moving to JIRA.

Documentation for Bugzilla is sufficient but improving, and the mailing list and other resources are
very active due to the large number of users and system administrators. Consulting is offered from
numerous sites all over the world. Another useful page about Bugzilla administration is Byron Jones's
http://bugzilla.glob.com.au, especially for Windows servers. References for how to integrate CVS with
Bugzilla appear in Section 7.4, later in this chapter.

Bugzilla's biggest strength is that it is open source. If you are comfortable with Perl and the Perl ways
of doing things, then customization is possible. However, because Bugzilla has grown organically,
some of the interfaces are not defined clearly enough to make it easy to maintain your modifications
as new versions are released. Also, modifying the workflow by adding new states is not easy at all.
That said, the many features that already exist in the newer versions of Bugzilla may well be
complete enough so that only minor customizations are necessary for your project. Another approach
is to purchase a server already configured with Bugzillafor example, from Bugopolis
(http://www.bugopolis.com)or to use a Bugzilla hosting service such as BugHost
(http://www.bughost.com).

Bugzilla was developed for Unix-based web servers and has only recently begun to support Windows
as a server platform. Likewise, it was written to use MySQL as the underlying database and has only
recently begun to support other databases (PostgreSQL is one). Documentation of the database
schema is sparse. In general, configuration of Bugzilla is still quite complex, even if you are
comfortable with Perl and Unix.

Bugzilla is the most popular open source bug tracking tool available. It's used by a large number of
projects and companies and does provide a wide range of features after careful installation and
configuration, preferably by someone who is comfortable with Perl. One area still under careful
scrutiny is security (http://www.bugzilla.org/security), so make sure you read all the documentation
when using it on a public server.

7.2.4. GNATS

GNATS (http://www.gnu.org/software/gnats) is a bug tracking system from the Free Software
Foundation and is licensed under the GPL.[1] It's written mainly in C and shell scripts, and has a long
history of extensive customizations by each project that has used it. All interaction with GNATS was
originally by Unix shell commands and email, but other interfaces also exist. There is a Web interface
(Gnatsweb), an Emacs mode, and a GUI written in Tcl/Tk (TkGnats) that runs on Unix and some
older versions of Windows. The source's contrib directory also contains a web interface for
administering GNATS itself, which is particularly useful since GNATS comes with a fair number of
different configuration files.

[1] GNATS should not be confused with GNAT, which is the GNU Ada Toolchain project.

http://bugzilla.glob.com.au
http://www.bugopolis.com
http://www.bughost.com
http://www.bugzilla.org/security
http://www.gnu.org/software/gnats
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The History of GNATS

GNATS (recursively defined as "GNats: A Tracking System") has been in existence since
the early 1990s. It was originally written by Heinz G. Seidl, and then for a number of
years it was developed by Brendan Kehoe and Jason Merrill at Cygnus, and it's still
sometimes referred to as the GNU Problem Report Management System (PRMS).
Releases based on the 3.1 source continued even after the 3.2 release. Version 4.0 was a
major rewrite by Bob Manson, Milan Zamazal, and Yngve Svendsen; it was released in
August 2003. As of early 2005, Chad Walstrom is the maintainer of the project.

GNATS is really intended for use on Unix machines, though the Tcl/Tk, email, and web interfaces do
allow it to be used from Windows machines. Releases prior to 4.0 used text files to store the data.
Release 4.0 changed the data format to a binary one. By default, the states for bugs are:

Open

Initial state for all bugs.

Analyzed

Work has begun on the bug.

Feedback

A fix is being tested.

Closed

The bug has been fixed.

Suspended

Work on the bug has been suspended.

Large projects and organizations that use GNATS as their bug tracking tool include Juniper Networks
and FreeBSD (http://www.freebsd.org/support.html). It was also used by the Apache community
until March 2002, when it was replaced with Bugzilla. GCC has also moved from GNATS to Bugzilla.

Documentation for GNATS exists and mostly is correct, though not extensive. Reading the source
really is the final documentation for GNATS. The mailing lists are all fairly lowvolume as of early
2005.

GNATS interacts with the lowest common denominators of open source projects: email and browsers.

http://www.freebsd.org/support.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It even works with text-based browsers, such as Lynx. Since many of the fields are simple text,
regular expression queries work well. The latest version has made adding new fields easier and
supports using separate database instances (for use by different projects, for example).

While GNATS does have an audit trail that can be configured to show the changes in different fields,
this is not searchable by default. There is no explicit audit trail for changes to the configuration of the
tool itself. Generating historical reports is complicated, though FreeBSD does have some Tcl scripts
available to help do this.

GNATS is a project that seems to have grown by fits and starts, as each project using it fed their
changes back into the GNATS source code. Even though Version 4.0 removed many of the valid
concerns about the speed and index-corruption bugs of earlier versions, a number of projects had
already stopped using GNATS, usually changing to Bugzilla, the other open source bug tracking
system. Still, GNATS seems adequate for most projects and can be extended in many different ways
without too much difficulty. If you like your tools to be Unix-based with a terse command line or to be
purely email-oriented, GNATS may be worth further investigation.

7.2.5. FogBugz

FogBugz, from Fog Creek Software (http://www.fogcreek.com/FogBUGZ), was designed by Joel
Spolsky, who also writes thought-provoking articles on development environments at
http://www.joelonsoftware.com. Interaction with FogBugz is by web browser or email, and it uses
the PHP scripting language and a web server (Apache or IIS) to interact with a database. FogBugz is
licensed commercially but is released with source code for modification by system administrators. The
cost is approximately $100 per user, with support wittily priced at five cents per day (which works
out to be $18.25 per year, in case you were wondering) but available only in blocks of a year.

The whole design of FogBugz places a priority on usability over functionality. What this means in
practice is that FogBugz is really easy for users to learn and will do 80% of what other, more
complicated bug tracking tools will do. Adding new users and changing their preferences is
straightforward. Changing the text used as labels for different fields is easy enough, since the PHP
files are available. Adding a simple text field is apparently possible but not encouraged, since it leads
to too many choices, which discourages people from entering bugs. Adding more complex fields that
increase choices, or changing fields' default values or the interactions between fields, is definitely not
recommended.

Limiting a tool's functionality takes some confidence in these days of bloated software. The following
quote from the FogBugz web site demonstrates this confidence:

FogBugz does not provide personal performance metrics for management, because in the real
world, whenever people are measured based on the number of bugs they create (or fix, or
report), every bug results in an argument. If you try to penalize programmers for writing buggy
code, the only thing you can be certain of is that sooner or later, the number of bugs in the bug
tracking database will approach zero, while the number of bugs in the software stays the same.
FogBugz is not a crutch for your HR department.
(http://www.fogcreek.com/FogBugz/40FogBugzInDepth.html)

Of course, you can still write SQL queries to produce any report you wish for, but FogBugz isn't going
to make it easy for you to do so.

The different platforms supported for FogBugz servers are Windows, GNU/Linux, FreeBSD, and Mac

http://www.fogcreek.com/FogBUGZ
http://www.joelonsoftware.com
http://www.fogcreek.com/FogBugz/40FogBugzInDepth.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

OS X. Required software for Windows are some data access libraries and the Microsoft Jet, Microsoft
SQL Server, or MySQL databases. Unix versions require Apache, MySQL, and PHP. Another
alternative is to pay Fog Creek to host a FogBugz instance for you on one of its servers.

Documentation for FogBugz is clear, and the discussion groups are lively and mostly helpful. Support
response is apparently excellent. There is one book about FogBugz so far: Painless Project
Management with Fogbugz, by Mike Gunderloy (Apress).

Features of FogBugz beyond those usually found in simple bug tracking systems include the
following:

Integration with various SCM tools (including CVS, Subversion, Perforce, and Visual SourceSafe)
is a core part of the product.

Full-text searching with Boolean operators and prefix matches is available (though depending on
the underlying database, this may only be for the title field).

URLs are created automatically when the string http:// appears in text. XML content is
unchanged in the fields.

Spellchecking is available.

There is support for estimating how long fixing a bug will take and how long it has already
taken.

FogBugz provides robust and easy-to-use bug tracking, but by design does not have some common
features. Whether these matter for your project is up to you to decide:

The actions you can perform on each case (bug) are limited to the following: create a new bug,
edit, assign, resolve (with a number of different reasons), close, and reactivate. Creating
different states for bugs is not permitted, though renaming the existing ones should be possible.

Text fields in the bug are for simple text only, since tab characters and long lines are filtered
out. Presumably, formatted files should be treated as attachments, though this makes cutting
and pasting text from log messages tedious.

The history of a bug is recorded at the end of the bug, but historical reports are not available.

Everyone can see and edit all bugs.

The filters for reports are all single-valued fields, not multivalued, so searching for all bugs from
User A or User B requires an SQL query.

The version of FogBugz described here is 3.1.9. Version 4.0 was released early
in 2005 and added more complex access controls; operations such as closing
groups of bugs; spam filters on incoming bug reports; and the same discussion
group software that hosts their own support forums.

FogBugz does a few things and does them well. It's simple to learn, doesn't scare customers away
from submitting bugs, and is well supported. If this is enough for your project, then its very

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reasonable pricing may make it just what you want.

7.2.6. JIRA

JIRA (http://www.atlassian.com/software/jira) is a Java servlet-based bug tracking tool from
Atlassian Software Systems. Interaction is by web browser or email. JIRA is licensed commercially,
but the source code is also distributed to commerical users. Prices for commercial use range from
$1,200 for the standard edition to $4,800 for the enterprise edition. Academic prices are half the
commercial prices; open source and nonprofit use is free. These prices are one-off, per server; they
include upgrades and a year's support. Version 3.0.2 was the version tested here.

JIRA provides a wide range of features, lets you change them in a number of ways, and then finally
encourages you extend JIRA itself and integrate it with other tools. It is clearly very carefully
designed to be easy to use. Administration is all performed through the web interface. Just as
Bugzilla finds favor with system administrators who use Perl, JIRA fits well with system
administrators who are already working with projects that use Java. For example, the build tool used
for JIRA is Ant (see Section 5.5.4).

Features beyond those usually found in simple bug tracking systems include the following:

JIRA has a clean and uncluttered UI.

CVS integration is excellent right out of the box and can be configured from a simple UI.

Integration with other tools such as SCM tools and mailers has a clear and documented API. The
schema for the database is also freely provided, though subject to change with each version.

URLs and emails are automatically made into links within text. XML text is not parsed. Long
lines are not wrapped or truncated in text fields, which can sometimes lead to the layout looking
stretched out.

JIRA provides customizable notification by email and RSS feeds about all changes and about
each bug.

JIRA has a very useful default report called Recent History, showing which bugs you have
recently visited.

Voting for bugs is supported, and there are reports to show the most-requested bugs.

Localization of JIRA is complete for at least three languages.

There is support for timing different operations in the server, to provide some basic profiling.

An integrity checker for the data is provided.

The requirements for JIRA are relatively platform independent. For the standalone version, only Java
is required, since a pure-Java database and web server are provided. When the bug tracking system
needs to grow larger, JIRA works with numerous versions of the OrionServer, Resin, Tomcat, JBoss,
Weblogic, Jetty, and Oracle OC4J application servers.[2] The different databases that are supported
include Oracle, DB2, MySQL, PostgreSQL, and Sybase. The web pages are said to work with Internet
Explorer 5 and 6, Mozilla, Firefox, Opera, and Safari, and they work well with Opera 8.0 for me.

http://www.atlassian.com/software/jira
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[2] Application servers are a convenient way of making Java applications accessible remotely. J2EE© (Java 2 Platform,

Enterprise Edition) is one common standard for such applications.

The user and administration documentation for JIRA is excellent, as is the documentation for how to
modify it. The support is "legendary," and actually does have a rather good record. One of the
reasons for this is that the project information for JIRA itself is publicly available at
http://jira.atlassian.com. JIRA's list of customers is extensive and growing rapidly.

Features that aren't yet in JIRA that you might want are:

A CLI for each supported platform, though a rudimentary Java API to write one is provided
using SOAP or XML-RPC. More complex operations can also be performed using HTTP POST calls.

The ability to change states for a group of bugs in one bulk operation (JIRA does let you
reassign a group of bugs in one operation).

Reports that include the history of each bug and groups of bugs.

JIRA is a good example of a highly configurable bug tracking system that also works well by default.
Entering bugs is simple, but all the abilities for integration and fine-level control are also provided and
documented. JIRA is particularly easy to install for a small-scale standalone server. JIRA is a great
choice for projects and organizations that want to be able to customize their bug tracking tool more
than is permitted by tools such as FogBugz.

7.2.7. TestTrack

TestTrack (http://www.seapine.com/ttpro.html) is a commercial bug tracking system from Seapine
Software, Inc. Pricing for TestTrack Pro begins at $295.00 for an individual license or $795 for a
floating license that everyone in a project can use. Support typically costs 20% of the purchase price
per year. The version tested here was TestTrack Pro 7.0. Seapine also sells Surround SCM, an SCM
tool that integrates well with TestTrack.

TestTrack is highly customizable, but system administrators don't have to see the underlying details
of the database to make the changes. Servers are available for Windows (in English and French),
GNU/Linux, Solaris, and Mac OS X. The client is available only for Windows, though a Perl API is
provided for remote access. Other platforms connect to the servers by using a browser. The backend
database can be the default proprietary one (xBase), Oracle (natively for speed), or any other
database with an ODBC connector.

Features beyond those usually found in simple bug tracking systems include the following:

There is a standalone application for developers and customers to submit bugs using email or
the Web, and there is good support for involving customers directly with the bug tracking
system.

TestTrack supports spellchecking of text fields.

State transitions can be customized, and diagrams of the states are automatically created.

Administrators can easily change the labels used for each field or users' names.

http://jira.atlassian.com
http://www.seapine.com/ttpro.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Encryption of the data exchanged between client and server is supported, as is cryptographic
signing of bugs.

TestTrack has basic integration with Visual Studio, as does Surround SCM (which can be used to
replace Visual SourceSafe). TestTrack also provides integration with other SCM tools including
CVS, ClearCase, Perforce, and Visual SourceSafe.

LDAP or Active Directory can be used for user authentication, and a fairly sophisticated set of
administration options for users and their passwords is provided.

Release notes can be automatically built from bugs that have been marked as part of a
particular release.

Import and export of all dataincluding bug data, reports, and user detailsis in XML, which makes
it somewhat easier to exchange data with other tools or future bug tracking systems.

The list of customers who use TestTrack is in the hundreds, with some good-sized companies listed.
Seapine's documentation has received awards from a number of technical documentation societies,
and TestTrack has also won Jolt awards from Software Development magazine. There is a moderated
discussion site for TestTrack; it has lots of messages, but also plenty of unanswered questions.

Some of the drawbacks of TestTrack are:

No CLI

While the data is all fairly easy to extract in XML, there is no out-of-the-box CLI. You can use
Perl and SQL to access the database directly, or use the SOAP SDK add-on, but that's extra.

Lots of tabs

The Windows client is faster and has a cleaner interface than most browser-based clients, but
it's still hard to see all the information about a bug on one screenthere are seven horizontal
tabs and four vertical ones to choose from! Not surprisingly, the web interface feels slower than
the Windows client.

Separate license server

TestTrack and Surround SCM use a license server, which is another potential central point of
failure.

Two other aspects of TestTrack struck me as unusual, though they're not really problems:

Drop-down parentheses

The Advanced Find screen has drop-down menus for selecting the number of parentheses in
each part of complex queries with AND and OR. This looks a little odd at first, but actually
works well enough for up to three or four levels of parentheses.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Separate registry editor

There is a separate Windows application for modifying TestTrack-related values in the Windows
registry, which made me wonder why the changes couldn't be made using the existing
administration tools.

TestTrack is a flexible and reasonably powerful bug tracking system that is not too hard to
administer. It's especially attractive if you can use the Windows client, which feels faster than any of
the web-based clients.

7.2.8. Custom Bug Tracking Tools

When you're frustrated with a particular tool, sometimes it's tempting to oversimplify what the tool
involves. For example: SCM is really just copying some files to a safe place; build tools really just run
a series of commands; and bug tracking tools are really just a frontend to a database. Don't let
yourself be deceived by this shallow thinking! One reason why there are so many bug tracking tools
available is that lots of other people thought along these lines, and their tools really are just
frontends to databases. These are not the tools you're looking for.

The requirements for a bug tracking tool that are listed in Section 7.1, earlier in this chapter, are
much harder to achieve. If you feel you have tried all the different tools you can, and none of them
do what you want, then why not modify one of the more substantial open source ones?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Bug Tracking Annoyances

There are a number of problems with using bug tracking systems that seem to occur regardless of
which system is used. Some of these annoyances are discussed in this section.

7.3.1. Multiplying Products

Most of a bug's information has simple values: a string of text to describe the problem, the name
(chosen from a list) of one person assigned to the bug, and so on. If a field holds only one value at a
time, things are simple. Everything becomes more complicated when one field can have multiple
values at the same time.

A good example of this is the field in a bug that is typically named something like Product, which is
used to indicate which of a project's products are affected by the bug. A sensible default value for this
field might be All, since that may well be true. However, when the bug affects just a few of the
products, the obvious thing to do is to have the field contain multiple values. This could be a string
with comma-delimited values, or it could be the input from an HTML form. Regardless of how the
information is actually stored, the problem is that the number of choices that can be made in reports
and other queries has just increased dramatically.

For instance, if there is a version of the product for Windows, GNU/Linux, and Macintosh, and bugs
may affect one, two, or all three of these versions, then your reports show some subset of these
choices. When another version for the next version of Windows is added, all the reports become out-
of-date, because they don't include the new version.

Fields with multiple values always complicate the experience of using the tool, and the more fields
that there are with multiple values, the more complex it all becomes. If possible, avoid fields with
multiple values since they tend to make writing useful reports much harder.

In case the above seems overstated, imagine a bug tracking tool with just three fields in its bugs:
Owner, Description, and Product. Owner is a single-value field (because only one person owns the
bug at a time), Description is a text string, and Product is the multivalued field representing the
different (but related) products that are affected by a bug. Each bug is actually a point in three
dimensions: the Owner is along one axis, the Description along another, and the Product on the third.
If the Owner and Description stay the same, and the Product value is All, then the bug has a definite
point in space. The number of values the Owner coordinate can take is just the number of users,
which only increases by one for each new user. The number of points that the Description can take is
huge, being the number of ways to write a few paragraphs, so we ignore it except for keywords when
trying to run reports. However, the number of different values that the Product coordinate can take
with n products is 2n (imagine a bitmap with a 1 for each affected product). Adding another product
increases the number of choices by 2n.

So if multivalued fields can complicate your bug tracking tool, what can make it simpler? Good
pattern-matching capabilities and text fields are a start. Suppose you want to select all bugs found in
a series of releases such as 3.1.1, 3.1.2, and 3.1.3. Using a pattern such as 3.1.* makes this easy.
Having to select each value in turn is the hard way, and when 3.1.4 is released, the report becomes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

incorrect. A good bug tracking tool lets you use patterns and Boolean operators to create complex
reports flexibly.

7.3.2. Cleaning Up

There are two parts to keeping a bug tracking system clean. The first part is the process as designed
of adding new bugs, assigning them, fixing them, testing the changes, and marking the bugs as
Closed. There may be some tendency to delay closing bugs while they are being tested more
rigorously, but eventually most bugs that are marked as Fixed are marked as Closed, and that can be
considered their final state. Some bugs will be marked as Deferred, meaning either that the effort to
fix them is too great for the time and people available, or that no one understood the bug and more
information needs to be gathered. (Or maybe the bug is actually a protest about some part of the
product and closing it would be tantamount to telling someone their opinion is being ignoredsee
Section 12.4.)

The second kind of cleanup of a bug tracking system has to do with the available choices for each
field. This is sometimes known as the bug tracking system's metadata. If there is a field for the build
in which the bug was found, then every time a new build is created, the new build has to be added to
the choices for that field. Doing this automatically as part of the build process is a good idea. The
alternative is to require people to enter the build information by hand, which may well lead to more
data-entry errors.

Using a small set of valid choices for a field on a screen makes life easier for people. However, as
more builds occur, a small set of choices becomes a large set of choices, which is now not at all
convenient for the user. More than a few dozen choices seems tedious to most people searching for
an entry in a list. One solution is to keep only the last dozen values visible but still allow people to
enter text (which can be validated separately). Maintaining the current list of values is something
that needs to be done automatically, either as part of the build process or by a separate task that is
run regularly. Reducing the number of choices also needs to be an automatic process, though some
care is needed to retain the choices for any builds that have been released to customers.

When a developer leaves the project, what happens to the bugs she owned? If the developer is
marked as somehow inactive, can you still search for her bugs and reassign them? How does the
developer's name show up in historical reports? These questions are all part of cleaning up the data
in a bug tracking system.

One last warning is about the effect that attaching large files to bugs can have. Many bug tracking
tools allow people to attach files to a bug, which is useful for storing long text logs or screenshots. If
no limit is even hinted at by the tool, then people start to treat this capability as some kind of magic
filing system. Whole core dumps, CD or DVD images, and other enormous files are attached without
a thought about the tool's underlying database or filesystem. The consequence is that the tool's
performance becomes unacceptably slow. Regular automated checks of the sizes of attachments are
a good idea. Some databases and filesystems may handle large datafiles better than others, but none
of them are invulnerable to this particular problem.

7.3.3. One Bug, Multiple Releases

One of the more complicated pieces of information associated with a bug is the group of different
releases that the bug exists in. For example, a bug might be discovered in Version 2.1 of the product,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

but Version 2.2 has already shipped and Version 3.0 is about to be released. Does the bug exist in all
three versions? How should this be recorded in the bug tracking system? Notice that we're referring
to releases here, not branches in an SCM tool, since a bug tracking system should not have to be
aware of how a release was created.

The simplest way to handle this is to leave the information about the affected releases out of the bug
tracking system. For each release, keep a spreadsheet of bugs that might be in the release and
coordinate with the development team to confirm when the bug is fixed. This approach is tedious and
is prone to error, but is not uncommon on smaller projects.

Another simple way to handle this problem is to make two extra copies of the original Version 2.1 bug
and then change the value for the Release Found field in each of the two copies to 2.2 and 3.0,
respectively. Each of the copies will have its own unique bug identifier. This approach has the
advantage that the bug count for each release is more likely to be correct, and some bug tracking
tools support duplicating bugs very well. One disadvantage is that information has to be added to the
original and to each of the copies about their connections with each other; otherwise, information will
invariably be added to just one copy and not the others. The main disadvantage is that developers,
product managers, and customers find it hard to keep track of which bug was fixed in which release.
If a customer has been told that the bug he reported is number 12345, then he expects to see that
bug number in the release notes when his bug is fixed.

A different approach that is sometimes taken is to add multiple instances of the fields that are
affected, and then use one instance per release. For instance, a bug might have fields named Release
Fixed 1, Release Fixed 2, and Release Fixed 3, and then each field would be set to 2.1, 2.2, and 3.0
in our example bug. Other fields such as the status and who the bug is assigned to can also be
treated in this way. This approach is equivalent to duplicating just the affected fields of a bug and can
record the information correctly. The big drawback is that all the reports now have to use much more
complicated queries"Show me all my Open bugs" becomes "Show me all bugs that are Open in one or
more of these fields." From experience, I recommend avoiding this approach.

Some bug tracking tools claim to support adding multiple releases to a bug, but then their support for
reports using the multiple release values is often not as robust as might be expected. Generally,
keeping track of bugs in multiple releases of a product is hard to do automatically and is not well
supported by existing bug tracking tools.

7.3.4. Severity Inflation

Many bugs have fields to indicate how serious the bug is. One common series of values goes like this:
Severity 1 means "The bug stops the product, and no workaround is possible"; Severity 2 means
"The bug stops the product, but a workaround is possible." Severity 3 and 4 bugs are defined as
meaning "The bug breaks a minor part of the product" and "The bug is cosmetic or an irritation,"
respectively. There may be one Severity field for the customer and a similar field for the engineering
organization of a project.

In most companies and projects, limited resources mean that as the ship date for a release
approaches, only bugs with Severity 1 and 2 get fixed; the others are closed or deferred. Over time
this practice leads to severity inflation. Someone entering a bug knows that this bug won't stop the
product, but she remembers that none of her Severity 3 bugs got fixed last time and she really wants
this one fixed, so she makes it a Severity 2. In the extreme, by a process of induction, all bugs
become Severity 1 bugs and the purpose of the field is lost.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One approach to avoiding such severity inflation is to have a small group of people who understand
both the source of the product and the marketing and sales requirements assign the severity value
for each bug. Of course, this kind of group has so many different outlooks that it is hard to make it
work well. Along with having someone other than the originator of the bug decide on its severity,
another approach is to use votes. Each developer or customer has some limited number of votes that
can be cast for different bugs. This at least gives a sense of which bugs people care enough to vote
for (not that software development is usually run as a democracy). It also goes some way to
discouraging duplicate bugs that were entered just to add weight to an issue.

A Severity field for customers is even more prone to distortion than one for internal use. A Severity 1
bug may mean "I need an answer right now," "This bug is critical to our continued use of your
product," or "I guess I have to keep making this bug more severe to get your attention!" That's
altogether too much information squashed into one field. Having Urgency, Criticality, and Irritation
fields might work ("Please indicate on a scale of 1 to 10 just how angry you are right now!"), but
these may in effect just be knobs that do nothing but give you something to fiddle with (like the
button to close the doors in an elevator).

One last thought: when you change the value of the customer's Severity field, it is always a problem.
If you increase the severity, the customer worries whether the problem is part of a bigger issue. If
you decrease the severity, you seem to be minimizing his distress. If you provide this kind of field for
customers, let them change the values themselves.

7.3.5. Identifying the Right Area

Imagine entering a new bug on your first day at a new job. You have some idea of what the product
you are using is called. Then there's a field in the bug named something like Area, Feature, Module,
or Section and it has a dozen or more choices to indicate which part of the product the problem is in.
If you're lucky, the choice is obvious, but these choices often seem vaguely named. Then it turns out
that making a choice is a requirement for entering the bug. So you choose the catchall choice
General, hoping that someone else will make a better choice than you for this bug later on. "There
has to be a better way," you think.

There are some better ways. One way is simply to not require that the choice be made when
submitting a bug. It's often wrong anyway, just a guess from some piece of text printed out in a
logfile at around the same time that the bug occurred. Let the assigned engineer work out which part
of the product it belongs to.

Another way is to eliminate the dreaded General and Miscellaneous choices, since they usually mean
no choice at all. The most helpful thing is to have an easily accessible glossary of all the choices and
their intended meanings available from where the bug is entered. An HTML link to such a page, or
floating help text, or even just the local location of a glossary file are all better than guessing. Simple,
concrete names and a small number of choices will also help everyone concerned.

7.3.6. Customizing the Bug Tracking System

The customizations discussed in this section are changes in the way a bug tracking system is
configured. All these changes usually require some administrative privileges, and descriptions of any
changes that were made should appear in audit logs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One common customization is changing the states that a bug can be in, in order to make them better
fit the project's existing workflow. The administrator should be able to add and remove states, and
the tool should ask you how to deal with bugs in removed states. The transitions from state to state
should also be customizable.

Defining Your States

A project's workflow is often hard to define clearly, usually because everyone seems to
have different opinions about what should be a state, what should be entered in some
other field or fields, and what is simply irrelevant. Some ideas to help when you're
defining all the states that a bug can be in are:

Think first about the reports that are most important for the project. Create
examples of these reports. Then design the workflow and states so that the reports
are easy to generate.

Minimize the number of possible states. Open and Closed are two good ones to
begin with. Many projects work well with only a few more states.

Walk through not only the expected workflow, but also cases where bugs are
moved to states by mistake. Make sure that users can recover from such mistakes
without an administrator's help.

Display a one-page diagram of the workflow's states and transitions somewhere
that is easy to find when using the bug tracking system. Make sure that the
diagram is updated when changes occur.

The administrator of the system should be able to change the name that users of the system see for
each field. Here's a true story: in one company I worked at, we changed the name of the state where
more information on a bug was required from Rejected to Returned, because people don't like feeling
rejected. This was easy to do only because the text displayed was not the name of the field in the
underlying database. An underlying database may have length and character restrictions on field
names, and the name of a field (or the names of choices for values in a field) may change over time.

Adding a new choice for an existing field is a regular activity and should be possible from the
command line, so that automated environments can do this as part of nightly builds. Adding a new
field happens less frequently, but does occur as a project changes. What existing bugs show as
values in the new field depends on the system. Some systems allow default values or have other
ways to update the field's value in a bulk operation.

Removing values from a field or removing fields is harder. One approach for values is to make the
values read-only and not selectable in a pop-up list. Deleted fields are usually not shown at all, even
in historical reports. A more accurate bug tracking system would show how fields were added and
removed when displaying the history of a bug. Merging and splitting fields generally requires access
to the underlying database and has all the same problems as a combination of adding or removing
fields. In some systems, unpredicted things happen if you add a field, delete it, and then want to add
it back with the same name. So don't do that.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3.7. Overloading Fields

One way in which bug tracking systems commonly grow is through the addition of new kinds of
information. Say you want to record the name of the customer who reported a bug, but there is
currently no specific field in the bug for this. The information often gets recorded anyway, often in an
existing text field. If the bug tracking tool supports searching text for keywords, this is often good
enough.

When this information becomes more important than having a vague sense that knowing which
customer reported a bug might be useful, there is a temptation to keep adding the information just
as before, maybe with some little separator characters to show that this information is different from
the rest of the field. This is bad for your bug data in the long run. All sorts of data gets merged into a
small number of fields. A common example is when severity inflation (see Section 7.3.4, earlier in
this chapter) has occurred and someone needs to quickly identify the bugs to be fixed for the next
release. He goes in, edits a convenient field such as the bug's description, and adds text such as
"MUST!:" or "_ _VITAL_ _:" to the description. Very ugly.

Getting rid of this kind of quick workaround later on is often harder than it might seem. Many bug
tracking tools support search but not search-and-replace in their text fields. New bugs get added with
misspellings of the text, and soon it's not clear to anyone when they should or should not add the
cryptic message. The answer to this problem is simple: if your bug's fields don't do what you need
them to do, modify the tool so that the fields do the right thing. Add a new field for new types of
information, though if it's unlikely to be used by many others, you might want to put it far down on a
screen where it won't distract from existing fields. If you are tempted to overload fields, first consider
the time that someone will have to spend to remove that ugly workaround when the proper field is
created later on.

7.3.8. Bug History

One of the marks of an adequate bug tracking system is the variety of reports that can be easily
constructed with it. A good bug tracking system will let you generate such reports with the added
dimension of time. Asking, "How many bugs are there?" is sometimes not as useful as asking, "Is the
number of bugs increasing or decreasing?" or "How long do most bugs take from being reported to
getting fixed?"

Some bug tracking systems do not support such historical reports; they can only recommend that
you run your reports regularly, collect the information somewhere else (such as in a spreadsheet),
and then create your own historical reports. This approach is particularly vulnerable to errors.
Correcting something in the way the report is created can invalidate all the prior results. It's much
better to be able to generate historical reports from within the bug tracking system itself.

Another important feature is the ability to see the history of a particular bug in full detailwhat
changed, when did it change, and who changed it? Different systems show the addition and removal
of fields in different ways.

7.3.9. Bug Statistics

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The state of software engineering being what it is, any means to measure progress toward a goal is
eagerly seized upon. Bug tracking systems can provide a comforting sense of tangible data about a
project. This is true only in a very general sense. There are generally no precise guidelines in a
project about when a bug should or should not be created, and there are good reasons why
developers aren't paid by the number of bugs they fix! Still, the science of statistics is designed to
handle this kind of uncertainty, and statistical analysis can be applied to bug tracking systems.

Some examples of questions with statistical answers that people like to ask about bugs are:

How long is a bug usually active?

How long does it take to get bug fixes retested?

How many bug fixes introduced new bugs?

How many bugs were found in each area of the product?

These are all interesting statistics, and sometimes they may be useful for warning a project when
something is going wrong with its development process. However, there are also a few good reasons
to be wary of relying too much on statistics from bug tracking systems:

"Bug sweeps" (meetings where many bugs are reassigned or deferred) can cause large
discontinuities in statistical trends. There will be no more nice bell-shaped curves after one of
these meetings.

Bugs are subjective, so one tester might submit many more bugs than another tester. This may
not mean that their respective areas really have any difference in the quality of source code.

As noted in Section 7.3.4, earlier in this chapter, severity and priority values tend to become
more urgent over time, even if the product's quality remains the same.

A still more theoretical approach is to create statistical models of the number of bugs in GNU/Linux
and Mozilla, as a couple of Oxford physicists named Challet and Du did in their paper "Closed Source
Versus Open Source in a Microscopic Model of Software Dynamics"
(http://tiago.com/doc/bug_dynamics.pdf). Note that the appearance of this reference in a book that
has the word practical in its title is meant only as a diversion from the business of doing useful things
with your own bug tracking system.

7.3.10. Writing an Effective Bug Report

The three key points to bear in mind when creating a bug report should be:

How to reproduce the bug, as precisely as possible, and how often this will make the bug appear

What should have happened, at least in your opinion

What actually happened, or at least as much information as you have recorded

Many applications can generate a textual description of how they have been installed and configured.

http://tiago.com/doc/bug_dynamics.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If such a description is available, you should always add it to the bug. The application may also
contain some tests to check that it is still configured correctly. If so, you should run the tests and
attach their results too.

As well as providing correct and useful information in the bug, it's important to check that you
behave as expected for the project. This is especially true for open source projects. Maybe you should
ask questions first on a users' mailing list before escalating the issue to a developers' mailing list? Or
you may mark a bug as maximum priority, because it's stopping your work, only to see it
downgraded because no one else is blocked by that bug. Etiquette is important, and imperious
commands to "fix this bug immediately" rarely help anything.

One common cause of frustration with bug tracking systems is related to how their information is
added. Bugs are too often added with vague descriptions, missing information, premature
conclusions, or a best guess at the real build label (see Section 3.5). A classic situation is when a
complex program has a bug deep inside it, but the only error message that is visible is one from
some unrelated area. That area often gets bugs from the deeper level assigned to it, much to the
frustration of the developer responsible for it. Adding some good local documentation to wherever
people add new bugs can go a long way to improving the quality of all the bugs.

Some useful documents with general advice about creating bugs include the Mozilla Project's "Bug
Writing Guidelines" (http://www.mozilla.org/quality/bug-writing-guidelines.html) and Simon
Tatham's "How to Report Bugs Effectively"
(http://www.chiark.greenend.org.uk/~sgtatham/bugs.html).

There are also many examples of more site-specific documents about writing bug reports; these
contain productspecific information such as descriptions of what each part of the product does. Two
of these are Opera's "Guidelines for Filing Good Bug Reports"
(http://www.opera.com/support/bugs/guidelines) and FreeBSD's "Writing FreeBSD Problem Reports"
(http://www.freebsd.org/doc/en_US.ISO8859-1/articles/problem-reports/article.html). Slightly off-
topic, but also useful, is Eric S. Raymond and Rick Moen's classic article "How to Ask Questions the
Smart Way" (http://www.catb.org/~esr/faqs/smart-questions.html). This document has some
excellent reminders and strong opinions about how to interact well with groups of technical
volunteers.

If you cut and paste text directly from some applications, you may find that
non-ASCII characters appear in the bug's text. This can often be seen with text
from Microsoft Word documents that use smart quotes. The end result looks
ugly and is sometimes confusing, so it's worth checking what a new bug's text
fields look like after you have submitted it.

http://www.mozilla.org/quality/bug-writing-guidelines.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.opera.com/support/bugs/guidelines
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/problem-reports/article.html
http://www.catb.org/~esr/faqs/smart-questions.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Integrating with SCM Tools

A common question when working with a particular bug is which files were affected by fixing the bug.
The answer can tell you which branches the fix was applied to, suggest areas for regression testing,
and even guide developers who are fixing similar bugs in the future. Without any integration with the
SCM tool, the usual way to find out this information is by looking at which files changed around the
time when the bug was fixed. This method is obviously prone to error and is also rather tedious in
practice.

There are usually other changes to source code that are not related to bugs; for example, a spelling
mistake in a comment doesn't usually need to be reported as a bug before it can be fixed. One
common way to integrate the SCM tool and the bug tracking tool is to mark a particular set of
changes that are being committed as related to a particular bug. This may done by using some
special string of text in a commit message such as For bug 12345, carefully designed to be detected
by the SCM tool, which then uses the bug tracking tool's API to add more information to the indicated
bug or bugs. The information that's added to the bug depends on the SCM tool, but the names and
versions of the affected files, along with the differences between the files or the changeset identifier,
are commonly used. The special text in the commit message can also be used to cause the SCM tool
to change the state of a bug.

This approach works reasonably well most of the time. It fails when developers forget to add the
special text to the commit message or mistype some keyword in the special text. The ability to go
back and mark a set of changes as associated with a bug after they have been committed is a good
idea. Another problem is if the bug tracking system is unavailable when the changes are being
committed. In this case, the changes can either be discarded, which means that the information in
the bug tracking system is imperfect, or saved for applying later.

An alternate approach is for the bug tracking system to regularly extract the commit messages and
their associated data from the SCM tool, and to use this information to regenerate the SCM-related
information in each affected bug. This is the approach taken by JIRA, and while it is somewhat less
scalable than adding the information at commit time, it does have the advantages of being more
robust and making it easier to correct mistakes.

Many bug tracking systems provide some support for integration with numerous SCM tools (for
example, CVS, Perforce, and ClearCase). For detailed information about how CVS and Bugzilla can be
integrated, see http://www.einval.com/~steve/software/cvs-bugzilla and http://kered.org/article-
2004.04.09-cvs_bugzilla_integration.html.

http://www.einval.com/~steve/software/cvs-bugzilla
http://kered.org/article-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.5. Checklist

This section contains a short list of questions that you should feel comfortable answering about your
current bug tracking system:

How long does it take to enter a new bug? (More than a minute for a simple bug can seem like
an awfully long time when you have do it over and over again.)

Can you find the definitions of the reports that you regularly run?

Can you make copies of these reports, edit the copies, or back up the definitions of the reports
to somewhere outside the bug tracking system?

How are bugs expected to progress through different states? Is there a diagram of this
anywhere that users of the bug tracking system can easily find?

How do you make sure that the correct people are aware of all changes to a bug?

If you wanted to reassign 20 bugs to someone, would you have to do this one bug at a time, or
is there an easier way?

Can you change a comment field in a bug after the fact?

How do you create historical reports using your bug tracking system?

How do you add or remove values such as release names from a field?

How do you modify the definition of a bug?

When is the data in the bug tracking system backed up? When was the backup last tested by
recovering it into a standby system?

How big an attachment is deemed reasonable to add to a bug? 100KB? 1MB? 10MB?

How regularly is your bug tracking system cleaned up?

How will you move your current data to your next bug tracking system?

Most importantly, does your current bug tracking system really help or hinder your project
overall?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. Documentation Environments
This chapter discusses what documentation provides for a product and who the customer is for the
different kinds of documentation. This chapter also shows that development environments for
documentation teams are similar to the development environments used by developers writing
source code.

Some of the most commonly used file formats and the related tools for creating documentation are
examined, and there is a discussion of how the different parts of creating the final versions of
documentation can be automated. This chapter doesn't discuss writing style, different hyphenation
schemes, or the flow of information in diagrams. I think that these topics are interesting, but they're
outside the scope of this book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1. Technical Documentation

The aim of technical documentation is to make a product easier for customers to use and, by doing
so, to reduce the effort (and cost) of supporting a product.

Documentation, at least for this book, is an umbrella-like term that covers:

All paper-based products with words and images

Online documents in formats suitable for viewing and printing

Videos and other recordings

Interactive training applications

Online community newsgroups, mailing lists, and weblogs

While interactive "wizards" in applications such as spreadsheets do make the product easier to use,
such wizards are usually considered part of the product, not part of the product's documentation.
Documentation can be for use by new or existing customers, for training sessions, consultants,
executive briefings, press briefings, and exhibition and conference work. It can even take the form of
books such as this one, which you may be reading in hardcopy, from a browser, or perhaps from
some PDA-like device of the future.

8.1.1. Is Documentation a Separate Product?

Some products are unusable without their documentation, in which case the documentation is
obviously a core piece of the product. (Some products are pretty unusable even with great
documentation, but that's a discussion for another time.) Most projects find that the overall
documentation of a product makes a large difference to the success of the product. In fact, if none of
the documentation for a product is important enough to affect the product's release date, is it even
worth the effort to ship the documentation with the product?

However, once an organization and its documentation group grows, the documentation is often
treated like a separate product, complete with its own product numbers and identifiers. This may just
be the same phenomenon as when different parts of the software become separated as the project
grows. For closed software, the existence of separate price lists apart from the main product price list
is one indicator of separated groups within a company.

To answer the question in the title of this section: most products need their documentation, and
therefore the documentation is part of the product. To put it another way, documentation isn't a
separate product, even if the group that produces it is separate from the group that writes the source
code for the rest of the product. The opposite of this idea resurfaces later in this chapter as one of
the Bad Ideas (see Section 8.7.1).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.1.2. Writing Documentation Is Like Writing Code

For whatever reasons, few technical writers are able (or choose) to write good source code. Likewise,
few developers are able (or choose) to create good documentation. This situation has been known to
lead to an unfortunate lack of interest within each group in the other's work. This is unfortunate
because both groups are necessary for a product to succeed. The lack of interest is particularly ironic
because the processes of writing code and writing documentation are more alike than not. Since both
activities are similar, what is helpful in a developer's environment is also similar to what helps
writers.

Table 8-1 shows how writing code and writing documentation relate to each other.

Table 8-1. Writing code versus documentation

Writing code Writing documentation

Source code is written in an editor or IDE. Text is written with an editor or word processor.

Compilers generate warnings and errors
about incorrect source code.

Spelling and grammar checkers generate warnings
and errors about incorrect text.

Machine-readable executables are
generated from source code.

Human-readable formats are generated from other
file formats.

Source code is ported to different platforms.
Different human-readable formats and languages are
generated from the same raw text.

If you don't have a compiler for a platform,
you can't port to that platform.

You may not be able to convert your document to a
particular format.

Direct similarities between documentation and writing code include the following:

Both have files that go through multiple versions, so both benefit from using an SCM tool.

Both benefit from making changes in the source files, not in generated files.

For both activities, the more steps there are between the source files and the final product, the
harder it is to understand where an error was introduced.

Debugging documents can be like debugging a product. Examples of questions asked during
debugging are "Which source file lines make the product behave in this way?" and "What
change in the documentation files made all these paragraphs narrower in the generated
document?"

Both benefit from usability testingfor example, whether a UI is easy to use and whether
information can be readily retrieved from a document.

Both products have errors, and their errors can usually be tracked using the same bug tracking
tool. Documentation can be treated as just one more part of the product.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Both need to track many different kinds of errors in their product. So both need tools to help
analyze their text or source code in ways that change over time. This is work beyond the
common spelling checks or compiler warnings; it can involve static analyzers (see Section 6.5.4)
or tools that check cross-references.

Both need to be packaged carefully for release as a product, and both benefit from automating
the process of generating a release.

Both groups often have a tendency to want to deviate from style guides, and they also avoid
tools that weren't invented locally.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.2. Documents and SCM

Anyone who has ever written even a small technical specification or article knows how useful it is to
be able to look at earlier versions of the document. All the same reasons that developers keep track
of source code changes with SCM tools apply to documentation: backing out unwanted changes and
mistakes, coordinating your work with that done by other people, and recording the documentation
as it was at the time of a release.

There are some SCM-related problems that occur more commonly when using an SCM tool to store
documentation. First, the file format of many documents may be binary rather than text-based, and
this makes merging from branches and integrating other people's changes more complex. Second,
binary files are often much larger than text files, so the space demands on the SCM tool are larger.

Other issues are more psychological. For instance, documentation of a product's API is often
generated from comments embedded in the source code. Javadoc (see Section 8.8, later in this
chapter) is one example of a tool that uses this idea. The problem is that when the API
documentation is reviewed, making the recommended changes to the documentation may involve
editing large numbers of files, and these files are no doubt tightly controlled as the release date
approaches. One way to avoid making accidental functional changes to the source code during these
edits is to use a tool such as diff to confirm before the commit that all the changes are related to
documentation. There are similar difference-checking tools for most documentation formats, either
standalone or as part of the main editing tool.

Even if the file format for the documentation is binary and your SCM tool doesn't support showing the
differences between two versions of a binary file, it's still worth using an SCM tool to track your
documentation. First, the documentation files will be backed up with the rest of the source code for
the product. Second, the SCM tool will let you recover the documentation as it was at any time in the
past. This is another reason to avoid directories with names such as version_1.0, version_1.1, and
version_2.0. Embedding the version name in an SCM-controlled filename or directory name is counter
to the whole idea of using SCM.

For longer-lasting archives of your documentation, the files for each release to customers should be
copied to CDs or DVDs, which should last for up to 10 years. If you want your documentation to last
much longer than that, use a format-independent storage medium: print it out. With luck, those
copies will make it to the next millennium, and the process of scanning printed text back into files will
have advanced still further. Section 10.1 discusses how to archive your documentation environment
in more detail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3. File Formats for Documentation

This section describes some of the commonly used formats for documentation files and discusses the
strengths and weaknesses of each file format. Some formats (such as XML) are more common as
source formatsthat is, the files where the raw content is added. Other formats (such as PostScript
and PDF) are more often used as release formatsthat is, the files that are available for customers to
use. Only a few formats (such as raw text files) are used as both source and release file formats.

Current best practice is to provide documents as both HTML web pages (for fast
access) and PDF (for downloading complete documentation packages and for
printing). It's helpful if you provide a single web page where all the different
formats for your documentation can be downloaded, so that people only have
to refer to a single URL. For example,
http://www.example.com/myproduct/docs, not
http://www.example.com/myproduct/pdf/manual and
http://www.example.com/myproduct/html/manual.

Some common requirements of a file format and the tools that support it are:

Typeset printing, often using different file formats, sizes, and layouts

Online viewing, often with hyperlinks

Images interleaved with text

Searching documents for text or formatting

Support for non-English languages and characters

Comments that can be mixed with text for reviews but that don't appear in the final product

Joining and splitting files

Generating lists of the differences between versions of the document, or diffability[1]

[1] The term diffability is used here to suggest how easy it is to run a command such as diff on files in a particular format.

In another context, diffability also refers to people with different abilities, rather than disabilities.

Text-based source file formats such as XML are considerably easier to modify from the command line
with simple tools that already exist. Modifying files in binary formats always requires more effort;
usually you have to convert them to a text-based format, make the changes, and then convert the
files back to the binary format.

Another aspect to consider carefully when choosing a file format is that of closed and open formats. If
your documents are stored in a proprietary, closed format, then your ability to convert the
documents to a different format is limited to the tools available from official vendors, or tools that use

http://www.example.com/myproduct/docs
http://www.example.com/myproduct/pdf/manual
http://www.example.com/myproduct/html/manual
http://lib.ommolketab.ir
http://lib.ommolketab.ir

a reverse-engineered understanding of the file format. Microsoft Word is the most common closed file
format; the other formats covered in this chapter are open formats. A strongly biased discussion of
open and closed file formats can be found at http://www.openformats.org. A partial list of open file
formats can be found at
http://directory.google.com/Top/Computers/Data_Formats/Open_Standards.

8.3.1. File Formats for Customers

The file format for most released documentation is either HTML or PDF, with Word sometimes being
used as well. PostScript is sometimes still used for academic papers. Raw text is used for small
documents, and its advantages and disadvantages are discussed in Section 8.4.1, later in this
chapter. This section briefly describes the HTML, PostScript, and PDF file formats.

8.3.1.1. HTML

Various file formats exist that are derived from the ISO-standardized SGML, notably any format
whose name ends in "ML" (which stands for "markup language"). HTML is the best-known one. It
consists of text with added structure in the form of elements such as <h1> for a header, <p> for a
paragraph, and for a hypertext link.

HTML files are, of course, what web browsers can display for online viewing. Some browsers support
vendor-specific extensions to basic HTML, but thankfully this seems to be increasingly rare. More
common problems nowadays are partial implementations of the HTML specification
(http://www.w3.org/TR/html) or issues with other technologies such as JavaScript or Flash.

Drawbacks of HTML, or sometimes of the way it is used, include the following:

HTML is not designed for printing, so you may see text or images move around or trail off the
edge of the paper.

Different web browsers treat the same HTML files differently, so manual testing using multiple
browsers is still a necessary part of releasing HTML documentation. Common problems are
graphics with some nearby text overlapping them, too much whitespace before and after
paragraphs or whole pages, or even pages that just won't display at all in some browsers.

Books and manuals can be hard to read sequentially if you have to keep scrolling and then
clicking links to go to the next paragraph. GNU manuals seem to be particularly prone to this,
with a web page for each Info node.

Support for mathematical equations in HTML is still limited; MathML (http://www.w3.org/Math)
is one effort to make this easier. The common solution of generating small images for each
equation seems clumsy to me.

HTML comments can't be nested, which makes commenting out sections of HTML awkward.
Also, they can't have a double dash in them, which makes adding ASCII art to them hard. To be
fair, HTML was designed to be simple to parse, at the expense of such infrequent uses of
comments.

http://www.openformats.org
http://directory.google.com/Top/Computers/Data_Formats/Open_Standards
http://www.w3.org/TR/html
http://www.w3.org/Math
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.1.2. PostScript

PostScript is a language from Adobe for controlling printed output, the first to do so in a general way
that worked well with printers from different manufacturers. Most printers still accept PostScript files
directly, which was what made PostScript the default language for printed documents until PDF
became more common toward the end of the 1990s.

The specification for the PostScript language is available at
http://partners.adobe.com/public/developer/en/ps/PLRM.pdf, and a tutorial and cookbook are
available at http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF.

8.3.1.3. PDF

PDF is a subset of PostScript, designed to avoid some of the problems of PostScript. Images and
fonts can be embedded directly into PDF files, and some of the necessary processing of the PostScript
has been already done for PDF files. PDF also has better support for links, searching, and
accessibility. The Acrobat reader from Adobe is distributed at no cost for a large number of platforms,
something that greatly encouraged the use of PDF after a slow start in the early 1990s. PDF is
currently the most common format for distributing documents over the Internet that are intended for
printing.

The specifications for PDF are available online at
http://partners.adobe.com/public/developer/pdf/index_reference.html. There are tools from Adobe
and other companies that can edit PDF directly, and there are also a few open source libraries for
working with PDF files. More often, PDF is generated by an application, just as PostScript was
generated. OpenOffice is one such application. One great place to start when looking for ideas for
PDF tools is PDF Hacks, by Sid Steward (O'Reilly).

http://partners.adobe.com/public/developer/en/ps/PLRM.pdf
http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF
http://partners.adobe.com/public/developer/pdf/index_reference.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4. Documentation Environments

This section describes four of the most common file formats and associated documentation
environments that are encountered in small to medium-sized software companies and in open source
projects.

8.4.1. Raw Text

Text files are the most easily created and portable open document format, but they have many
disadvantages. You can't change their formatting easily, since they usually have no formal structure
beyond a title and some section headings. They have no hyperlinks, they don't include images
(though ASCII art does have its own beauty), and non-ASCII characters are handled in different
ways by different tools. Another disadvantage is that the end of a line is marked differently on Unix
and Windows machines, though this is often well hidden from users. To improve the printed
appearance of text documents, care has to be taken to keep line lengths below about 80 characters.

Many IBM platforms use EBCDIC instead of ASCII for representing raw text, but fortunately
conversion of text files to and from ASCII is not difficult. Some text files handle non-English
characters by using the Unicode encoding standard (http://www.unicode.org).

If you are writing the basic documentation for open source projects, then raw text is probably still the
most common format, at least for small files such as README files, change logs, and release notes.
There is even an artist mode for Emacs that lets you create ASCII art freehand within your text.
However, raw text files are unlikely to provide what you want for the documentation of larger
projects.

8.4.2. FrameMaker

FrameMaker (http://www.adobe.com/products/framemaker) is a well-established commercial
document editor from Adobe that starts at $449 per user. FrameMaker has a choice of two native file
formats: the default, binary format (.fm files) and a text-based format called MIF that allows you to
modify the file via command-line scripts and also saves space with SCM tools. The MIF file format is
openly available at http://partners.adobe.com/public/developer/en/framemaker/MIF_Reference.pdf.
Recent versions of FrameMaker (7.0 and later) also have built-in support for working with XML as a
source file format.

FrameMaker is currently available only on Windows and Solaris. GNU/Linux is not supported, and
Adobe discontinued FrameMaker for Macintosh in 2004. The Solaris version comes with a tool named
fmbatch that allows you to manipulate .fm files from the command line, including converting to and
from MIF, and printing documents to PostScript. There is a similar tool for Windows named DZbatcher
available for download from http://www.datazone.com/english/overview/download.html.

Conversion to PDF is commonly achieved by printing the FrameMaker book as PostScript and then
using Adobe Distiller to produce PDF, which takes about one minute per hundred pages on an

http://www.unicode.org
http://www.adobe.com/products/framemaker
http://partners.adobe.com/public/developer/en/framemaker/MIF_Reference.pdf
http://www.datazone.com/english/overview/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

ordinary desktop machine. HTML can be produced dynamically by exporting the .fm file as XML and
then using XSL transformations to produce the HTML for web server pages. Alternatively, tools such
as "WebWorks Publisher Professional for FrameMaker" from Quadralay (http://www.quadralay.com)
are commonly used to generate HTML, though some customization for your own templates will likely
be necessary. The conversion process is illustrated in Figure 8-1.

Figure 8-1. Conversion of a FrameMaker document from .fm to PDF and
HTML

Apart from the official support web site and knowledge base, there is also a vocal FrameMaker
community based around http://www.freeframers.org. Thanks to the FrameMaker Developer Kit,
there are any number of plug-ins available for FrameMaker.

Though Adobe doesn't seem to be encouraging use of FrameMaker as strongly as in the past,
knowledge of FrameMaker is still considered to be a primary requirement for many technical
publication positions, and it's still the most common documentation tool for computer-related
companies, including Microsoft for its own technical documentation.

8.4.3. XML: DocBook and OpenOffice

The advantages of editing text-based documentation are many, but text needs some structure to
make it more useful. The most popular way to add structure has been to use one of the "markup" file
formats such as HTML or XML. HTML is adequate for displaying pages in web browsers but doesn't
contain enough markup for creating other kinds of documentation. Browsers are also very tolerant of
incorrect HTML, so they shouldn't be the only thing used to test that your HTML is correct.

XML is more flexible, and a number of different ways to represent documents in XML now exist.
These different ways are defined by the DTDs or schemas that describe which elements go where in
an XML document. The big promise of XML is that because it has a well-defined structure, you should
be able to transform XML files to other formats by using XSL scripts and other such tools. In practice,
this really is true, but is rarely quite as easy as it first sounds. Using an XML-based documentation
environment in 2005 requires a technical publications group whose members are willing to dig a little
to resolve the inevitable teething problems of being early adopters.

http://www.quadralay.com
http://www.freeframers.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.4.3.1. DocBook

DocBook (http://www.oasis-open.org/docbook) is another markup language definition that uses XML
(or less commonly, SGML, the big brother of XML). The XML DTD for DocBook is defined by OASIS, a
nonprofit standards body, and was created in the early 1990s. Though it was originally created as a
standard for computer documentation, DocBook can be used for any kind of documentation.
DocBook's strengths are that it is an open file format, is text-based so multiple people can work on
each file at once, and can be automatically converted to many different release formats. It is not
usually used in WYSIWYG editors (though they do exist) and it takes more effort to set up than other
documentation environments. DocBook is the primary source-file format for several large open
source projects including FreeBSD, Apache, Samba, GNOME and KDE, and the Linux Documentation
Project.

The official documentation for DocBook is DocBook: The Definitive Guide, by Norman Walsh
(O'Reilly), which is also available online at http://docbook.org/tdg. Another useful book about
DocBook and using XSL to transform it to other formats is DocBook XSL: The Complete Guide, by
Bob Stayton (Sagehill), freely available online as HTML at http://www.sagehill.net/docbookxsl.

Generating simple HTML files directly from DocBook XML files works well enough for many web sites,
but for finer control over the released files' appearance, many DocBook-based environments use
XSL-FO (XSL Formatting Objects) as an intermediate file format. XSL-FO is XML that describes how a
document should appear, as opposed to DocBook XML, which describes the purpose of each part of
the document. Using stylesheets from http://docbook.sourceforge.net, the DocBook XML is
transformed into XSL-FO XML. From there, an XSL-FO tool can create PostScript, PDF, or a number
of other formats. The overall process is shown in Figure 8-2.

Figure 8-2. Conversion of a DocBook document from .xml to PDF and
HTML

The best-known open source FO processor is FOP (http://xml.apache.org/fop), from the Apache
Project. While it works fairly well, the current version of FOP does not implement some parts of the
FO specificationfor example, keeping titles and their text on the same page. The next version intends
to correct many of these problems.

Two commercial tools for working with FO are XEP (http://www.renderx.com) and the XSL Formatter
(http://www.antennahouse.com). There is a long comparison of which parts of the XSL-FO
specification are supported by different processors at
http://www.antennahouse.com/xslfo/comparison-fo.htm. There is also a book about this whole
process, XSL-FO: Making XML Look Good in Print, by Dave Pawson (O'Reilly). I also found the

http://www.oasis-open.org/docbook
http://docbook.org/tdg
http://www.sagehill.net/docbookxsl
http://docbook.sourceforge.net
http://xml.apache.org/fop
http://www.renderx.com
http://www.antennahouse.com
http://www.antennahouse.com/xslfo/comparison-fo.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

DocBook FAQ that he maintains at http://www.dpawson.co.uk/docbook to be a good online resource.

8.4.3.2. The tools used to write this book

O'Reilly uses FrameMaker 5.5.6 as the common file format for almost all of its books, including this
one. Authors write their text in one format, which is usually Microsoft Word or OpenOffice but can
also be DocBook or POD (for the first three, see the sections Section 8.4.4, Section 8.4.3.3, and
Section 8.4.3.1, respectively; POD is covered in Section 8.5, later in this chapter). The original is then
converted to FrameMaker, either by importing the source files directly or by using scripts to convert
the source files into XML that is suitable for importing by FrameMaker. The FrameMaker file is then
copyedited, figures are added, and an index is created; finally, the book is sent to the printing
company as a set of PDF files with the necessary cutting marks on the page edges.

This book was written using DocBook Lite (dblite), which is an O'Reilly-defined subset of DocBook
available from ftp://ftp.ora.com/pub/dblite/dblite.tar.gz. The text was added to the XML files using
Emacs and its PSGML mode, with one file per chapter and a single file named book.xml to bring all
the chapters together. The ability to tidy up a paragraph with fill-region-as-paragraph made
reading large amounts of marked-up text much easier.

Generating HTML was simple using the Perl script db2h that comes with the dblite package. This
script uses xsltproc (http://xmlsoft.org), a useful tool for running XSL scripts that is available for
Unix, Windows, and Mac OS X. The XSL script generates the HTML, with one web page per chapter
and a basic table of contents. Alternatively, a different XSL script can produce one HTML file per
section. Generating the HTML for this book took around 30 seconds on an ordinary desktop machine.

Generating PDF was harder work. The original tool chain for DocBook XML to PDF was to convert the
XML to LATEX, then generate a .dvi file from that, and then convert the .dvi file to PDF. Instead I
used FOP from the Apache Project, which is an open source tool to convert files from the XML format
named FO to HTML or PDF. FOP hides this intermediate step nicely, and I was able to create a single
PDF file, complete with bookmarks and internal hyperlinks, in under a minute on the same ordinary
desktop machine. The precise steps for RedHat Linux 8.0 were:

Install a JVM and set your JAVA_HOME environment variable to it. I used Sun's J2SE 1.4.2.1.

Download and unpack the file docbook-xsl-1.67.2 (gzip'd .tar or .zip, according to preference)
from http://docbook.sourceforge.net into the same directory as your source DocBook XML files.

2.

Create a file named fo-stylesheet.xsl in your source directory. This file is what you use to
customize the PDF output. Mine started off looking like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:exsl="http://exslt.org/common"
 extension-element-prefixes="exsl"
 exclude-result-prefixes="exsl"
 version='1.0'>
 <xsl:import href="docbook-xsl-1.67.2/fo/docbook.xsl"/>
 <xsl:param name="fop.extensions" select="1" />
 <xsl:param name="variablelist.as.blocks" select="1" />

3.

4.

http://www.dpawson.co.uk/docbook
http://xmlsoft.org
http://docbook.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

</xsl:stylesheet>

Download and unpack the file fop-0.20.5.bin (gzip'd .tar or .zip) from
http://xml.apache.org/fop/download.html#binary into a convenient directory, which should be
added to your PATH or otherwise made available at the command line.

4.

In your source file directory, type:

fop.sh -xml book.xml -xsl fo-stylesheet.xsl -pdf book.pdf

You may get some warnings about things not yet implemented by FOP. These can be ignored. (I
wish now that I'd sent a patch with a command-line argument to suppress such warnings.)

5.

The generated PDF file is named book.pdf and includes bookmarks and a hyperlinked table of
contents for books and manuals. If you need to change the locations of the various packages and
files, use absolute names. There are a large number of parameters for the DocBook generation of an
FO file, as documented at http://docbook.sourceforge.net/release/xsl/current/doc/fo.

Two things that I never got the FOP PDF generation to do well were keeping section headers and
their text together with soft pagebreaks, and handling long URLs across linebreaks. The latter
sometimes lead to ugly justification of the surrounding text, with the words padded out too far apart.

I found that the XML validation script xwf that came with dblite didn't give me enough information
about which line my errors were on, so I used xmllint instead, which comes with xsltproc. xmllint can
be run on the whole book or on individual chapters, which helps when tracking down things like a
subtly missing closing slash. Overall, I didn't find any open source XML tool that made it really easy
to find errors in a large document made up of multiple XML files.

8.4.3.3. OpenOffice

OpenOffice (http://www.openoffice.org) is a large open source office suite with a word processor,
spreadsheet, and presentation editor, among other applications. It is intended to compete with
Microsoft Office by running on not just Windows and Mac OS X, but also Linux and Solaris (and other
Unixes are in progress). The two big advantages of OpenOffice are that it's available at no cost and it
can read and write the file formats used by Microsoft Word, Excel, and PowerPoint, at least if their
more complex features aren't used. The problems arise when you use complex Excel macros or
newer features of Word. In this case, OpenOffice will usually ignore what it doesn't understand.

There is also a partly closed version of OpenOffice named StarOffice©, which has better support for
Asian fonts, more clip art, and a database. StarOffice is available from Sun
(http://www.sun.com/software/star/staroffice) for around $80 per user.

The native file format for OpenOffice is gzip'd XML files, but it uses a different set of DTDs and
schemas than DocBook. The configuration of OpenOffice is also controlled by XML files, which has
helped it to support many localized versions. Another of the strengths of OpenOffice is its ability to
generate PDF directly from the source files, though without bookmarks and internal hyperlinks.
Command-line tools are well supported by OpenOffice, but I recommend reading OpenOffice.org
Writer, by Jean Hollis Weber (O'Reilly), if you intend to generate HTML and PDF automatically from
OpenOffice as part of your documentation environment. There are a growing number of other

http://xml.apache.org/fop/download.html#binary
http://docbook.sourceforge.net/release/xsl/current/doc/fo
http://www.openoffice.org
http://www.sun.com/software/star/staroffice
http://lib.ommolketab.ir
http://lib.ommolketab.ir

OpenOffice books available; there's even one for dummies it seems.

If you're not generating complex documents and you really need to be able to edit the source files on
both Windows and GNU/Linux machines, then OpenOffice may work very well for you. New features
are still being added with each yearly release, so this tool is definitely one to watch for further
improvements.

8.4.4. Microsoft Word

Microsoft Word (http://www.microsoft.com/office/word) is part of the Microsoft Office suite of
programs. Microsoft Office runs on Windows and Macintosh and retails for $399 per user (though
installation on two machines is permitted); Word can also be purchased separately for somewhat
less. Word is the most common word processing tool in many companies today and is relatively easy
to use, at least for simple tasks. What you see on the screen while editing a document is, for the
most part, an accurate rendition of what you will see when you print the document. Editing simple
images is built into Word, though if you want to convert the images to a different format, you have to
cut and paste them to another application such as Microsoft Paint. If you need to view and edit Word
documents on platforms other than Windows or Macintosh, then OpenOffice (see the previous
section, Section 8.4.3.3) or AbiWord (http://www.abiword.org) are both able to handle basic Word
files.

The Microsoft Word file format, known casually as "doc" (from its default file extension, .doc) is a
proprietary format that has changed substantially between major versions of Microsoft Word. Word
files are large and quite complex since they can store macros, images, and previous versions of
documents. Word provides its own tool for clearly showing different people's edits with change bars
and color-coded lines below or through altered text.

There is a text-based, open file format named RTF (Rich Text Format) to which all Word files can be
exported, though some formatting information is lost during this process. A better approach with
more recent versions of Word is to use XML as a text-based export and import file format.

Each version of Word can import files from the previous major version, but this is not always true for
versions that are older than that. With Word 2003, support for exporting files to XML is much
improved, and if XML becomes a common choice for a source file format, then the upgrade problems
may be more easily solved in the future. Other risks of using Word as a documentation environment
are viruses disguised as Word macros and the fact that it is easy to accidentally leave information
from previous versions inside a document where others may see it.

HTML files generated from Word have traditionally contained large amounts of Microsoft-specific
HTML, along with a lot of directives to make the HTML resemble the printed page as closely as
possible. More recent versions of Word have the option to generate "filtered" HTML, which is cleaner
and smaller. Generating PDF from Word is possible with any number of small commercial converters,
and there is also the open source GhostWord project (http://ghostword.sourceforge.net). The overall
process is shown in Figure 8-3. For anyone putting together a documentation environment using
Word, Word Hacks, by Andrew Savikas (O'Reilly), contains many of the mechanisms and scripts used
by O'Reilly to produce PDF and HTML from the Word source files of most of its books.

Figure 8-3. Conversion of a Word document from .doc to PDF and HTML

http://www.microsoft.com/office/word
http://www.abiword.org
http://ghostword.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.5. More File Formats

There are a number of other file formats and tools used for creating documentation. These formats
and tools occupy odd niches; once they are established, the effort of converting to another format is
seen as unnecessary work.

TEX

.tex files are structured text files for use by Donald Knuth's open source TEX program and
extensions of it, such as LATEX (http;//www.tug.org). Not surprisingly (given its academic
background), TEX has excellent support for mathematical formulas, and so is commonly used
in universities for papers and theses. TEX-related tools usually produce .dvi output files,
suitable for conversion to PostScript or PDF.

TEX produces documents that are typographically excellent, though too many documents start
to resemble each other in appearance if the default templates are used. Various macros to
produce simple images with TEX files exist, but PostScript images can be also be referred to in
TEX documents.

Texinfo

Texinfo (http://www.gnu.org/software/texinfo) is the source documentation format for the
GNU Project. Online manuals and manpages are generated from the text-based .texi files.
Texinfo supports the idea of a tree of pages with links to other pages. With suitable macros,
TEX can read Texinfo files and PostScript images, and can generate PDF. The other format that
can be generated from Texinfo files using the makeinfo tool is .info files, which can then be
viewed with the command-line Info tool or from within Emacs. makeinfo can also generate
DocBook and XML output.

The move to Texinfo from troff (see the next item in this list) has meant, in some cases, that
the GNU manpage for a given command has become a minimal summary, along with a
suggestion to read the Info version of the file for that command. To avoid this two-step
process, you can always try the Info version first. Other irritations with the HTML generated
from Texinfo files are that some pages contain very little text, and the use of multiple HTML
files means having to follow a link to load a new web page for each successive text page, which
is a very slow way to read a lot of text (though you can generate a single output file by using
makeinfo's --no-split option). Luckily, most GNU manuals have other file formats, such as
PDF, available as well.

troff

The original text markup language of the 1970s is troff (http://www.troff.org), and it's still
found in the source files for manpages and some of the IETF RFC documents. There is a GNU
version named groff, and this has even been used to produce book-sized documents. There are

http://www.gnu.org/software/texinfo
http://www.troff.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

a number of specific macros defined for producing tables, figures, chemical diagrams, and so
on.

POD

POD (Plain Old Documentation) is a simple markup language created by Larry Wall for Perl
programs and other verbatim text, with default generators for HTML, manpages, TEX, and raw
text. The special character for POD commands is =.

The various file formats described in this chapter can often be identified by
which characters need to be escaped in the text and by how the tool commands
are specified. = is POD, @ is Texinfo, . is troff, <> is XML (so the document was
probably created in OpenOffice or DocBook), and \{ } is TEX.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.6. Automated Production of Documentation

Automation is just as useful when creating documentation as it is when writing source code. Every
manual step of the process is vulnerable to human error. So if there are fewer manual steps, then
the process becomes much more reliableand probably a little faster too.

One major benefit of regularly producing the final format of the files for the documentation is that it
reduces the pressure on the writers as the release date for a product approaches. Each time the
documentation is produced is a test of the production process, so there should be fewer nasty
surprises when the release is due.

Another benefit is that intermediate versions of the documentation can be distributed more easily for
reviews and beta releases. Just as with source code, regularly available proofs of the documentation
help you catch formatting errors when they creep in, not weeks later when it's much harder to work
out which particular change to the source files resulted in the changes in the documentation.

Some documentation requires so many manual modifications to an
intermediate file format during production that there can only ever be one
conversion from the input file format. A good example of this is creating a book
from Word files, using FrameMaker as an intermediate file format. There is no
easy way to record all the hyphenations, soft linebreaks, text-flow changes,
and moving of figures in the original Word source files. I think that this effort is
one of the great shortcomings of documentation environments as they are
nowno one would imagine modifying generated assembly code by hand.

Even if they can do it more often, why is it that many projects generate their documentation only
once or twice before creating a release? There are at least three reasons:

Generation of the documentation requires some specific tools that are not available on every
machine, and these tools are not cheap.

Generation takes a long time, with lots of manual intervention to answer questions, enter
values, and so on.

The final formats of the documentation are so close to the format that the writers use that they
see no need to view the documentation in its final formats.

Some responses to each of these problems are:

Putting copies of the tools on more than one machine is an insurance against the possibility of
that one vital machine failing just before the release is due. This insurance will cost something,
but what's the cost of not shipping on time? How long will it take you to reinstall and reconfigure
the required tools on a new machine?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the tools really must be used on just one machine, then there are a number of ways of
running a tool remotely. Source files can be made available using shared filesystems or can
even be copied from one machine to another. On Unix machines, rsh and ssh can be used to
run processes remotely, and GUI screens can be made to appear locally if necessary. For
Windows 2000 and later, there is the Remote Desktop tool, which makes it seem that you are
directly logged in to the remote machine. There is a similar product named VNC
(http://www.realvnc.com) for a larger number of platforms. Of course, with a single machine
there is also the issue of how to avoid problems when multiple people want to use the machine
at the same time. A simple lock file that is generated as part of using the tools can be used to
notify other people that someone else is already using the tools.

Every manual intervention will be done incorrectly by someone one day, which will make the
whole thing take even longer when you have to start all over again.

The number of interventions can be reduced in a number of ways. Some tools will let you use a
text file to provide canned responses to their questions. Other tools will let you pass in values to
a command-line version of the tool. Open source tools can have the local defaults hardcoded in
their source code. In the worst case, UI test tools can be used to enter the required values at
the appropriate times.

What the writers see is close, but not exactly the same. Every difference between what writers
see and what customers receive is a potential bug in the documentation. The analogous
situation with source code is when developers never really use the product as it is shipped to
customers, which is a surefire way to introduce bugs to a product.

http://www.realvnc.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.7. Bad Ideas for Documentation

The Bad Ideas in this section are mainly related to pitfalls with using documentation tools.

8.7.1. Releasing the Documentation Separately

One situation that arises quite frequently is that the release of a product is running late, and the
documentation for the release is running even later. The thought occurs to someone: "Perhaps we
could release the documentation separately?" Yes, you can indeed release documentation on a
different schedule from the product. Just as you could make a separate release of some binary library
files used by a product. However, keeping track of all the different versions involved will make your
release managers' work harder, and your customers' lives probably no better. Making sure that each
version of the product will always refer to the correct documentation is not impossible, but it is
fraught with potential errors. The long-term effect of releasing the documentation separately always
seems to be increased confusion.

A variant on that not-so-cunning plan is to ship an early (i.e., unfinished) version of the
documentation with the product, and then later on provide an updated version of the documentation
on a public web site. The idea is that the customer can then check for updates. Sometimes you see a
Help menu with View Documentation and View Latest Documentation. This idea is not a good one
either, for a number of reasons. The customer may or may not be connected to the Internet when
she wants to view the documentation. The customer may not be allowed to update the installed
documentation. The busy system administrator who installed the product will not have time to check
for updates and will likely disable automatic notification about available updates. Again, just say no,
and release the correct documentation as an integral part of the product.

8.7.2. Ransom-Note Cut and Paste

The way that different fonts in a document are displayed can vary widely from one editor and
platform to another. So long as all the glyphs (graphic symbols) for all the different characters are
present, this doesn't usually affect how the document is read. But sometimes two fonts that are
almost identical in appearance on one machine can appear quite different from each other on another
machine, or when transformed into another file format. What happens then is that when changes are
made in the document on one machine and the wrong font is used, maybe because "it looked close
enough," the changes stand out on the other machine like the cut-out letters in a Hollywood-style
ransom note.

For example, the original announcement document may have looked like this:

Here at Tasteful Pets we look forward to a deep and meaningful relationship with Rabbits, Inc.
and believe that their product FurWare is best of breed.

All the text is in one font. Then you decide to use this particular document as a template for your
next announcement. You copy the name and product of your new partner, Foxes, Inc., from some

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other document and paste it into the announcement. To your surprise, you see:

Here at Tasteful Pets we look forward to a deep and meaningful relationship with Foxes, Inc.
and believe that their product FoxyLadies is best of breed.

In this case it's pretty obvious that a different font was used wherever the new name was cut and
pasted from. But what if the fonts differed only by a single point size, or even worse, in some way
that your text editor doesn't even show you? Then the difference may not be at all obvious until the
document is viewed with a different editor or is converted to another file format such as HTML.

This can be especially embarrassing in press releases where company executives' names are
changed. The obvious solution to this is to make sure that when you cut and paste text, the fonts
match in name, not just by eye, and to preview the document on several different systems and file
formats. Another slow-but-sure fix is to select each paragraph in turn and reset the font or
formatting for the whole block. Remember: cut and paste is cool, but only if no one can tell you did it.

8.7.3. Old Versions That Never Die

Some tools such as Microsoft Word can save previous versions of a document as it is changed. This is
useful for generating change bars and similar editing marks. It's also a lot faster to append recent
changes internally when editing a document, rather than modifying the file in many places. However,
if you forget to remove the previous versions before you publish the document, the different versions
are all there for people to see.

This may be as harmless as people seeing your common spelling mistakes, or it may show changes in
financial information that were never supposed to be disclosed. This is of particular concern if the
document has been redacted (lines of text blacked out for reasons of security) and then the previous
version of the document contains all the sensitive information anyway. This has happened a number
of times in recent years, just because no one realized that the earlier versions were still present in
the file format when it was released.

8.7.4. Funky Filenames

Different filesystems have different quirks about how their files and directories are named. Using the
directory separator (/ on Unix, \ on Windows) in filenames is always a bad idea. Unix shells also use
some other characters, such as ; * ? > < $ % | , so avoid these too. Macintosh filenames should not
have colons in them. These rules are easy to follow by using only alphanumeric characters for
filenames. There is also the problem of case: File_A and file_a refer to the same file in Windows, but
they refer to two distinct files in Unix.

One common problem is that both Windows and Macintosh filesystems support spaces in filenames,
whereas Unix filesystems do so only grudgingly. Some Unix tools such as shells and their commands
will handle filenames with spaces by quoting the filename or preceding each space with a backslash
(\); it varies by shell. Other common command-line tools such as find and xargs will take extra
arguments to change how they use filenames, if you remember to add them. Older versions of CVS
and related SCM tools didn't handle spaces very well either.

If you are expecting to use files across multiple platforms, keep these issues in mind when creating
filenames. Renaming files later on is a tedious problem when the filenames have been used as part of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

links or images in a document.

8.7.5. Screenshots

Screenshots can be the bane of producing documentation on a tight schedule. They are tricky to
capture, tend to change dramatically as the product develops, may need editing to remove sensitive
information or spelling mistakes, and are often unreadable by the time a document is printed. A good
screenshot at just the right point in a document can indeed be worth a thousand words, but you can
describe many ideas better with just a few hundred well-chosen words. Far more helpful than an
outdated screenshot with hard-to-read text and fuzzy images is a clear set of conventions throughout
a document for describing the various prompts, the text that is entered, and any menu choices. If
you have a long list of steps to follow, provide ways to check that the steps are working correctly as
you go, rather than a screenshot of every other step.

If you must use screenshots (for example, in online help or tutorials), make sure that their file format
and the resolution at which they are acquired is appropriate for all the release formats. It's very
frustrating to click on a thumbnail image on a web site only to receive an image that is larger but still
too small for you to see anything useful! You may also want to print the documentation regularly to
make sure that the screenshots are still useful in black and white. Using links to screenshots rather
than embedding them directly within the source document can help reduce the size of the files, but at
the cost of more link checking as part of the production process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.8. Internal Project Documentation

Properly understanding a large amount of source code can take a long time, as described in Section
10.3.1. One thing that can help is having documentation that describes how the different functions
and methods in the code are supposed to be used.

The idea of documenting a function right where it's defined by adding comments to the source code is
an old one. Just like raw text files, these comments need some structure to be more useful. Code
documenters such as Javadoc and doxygen define special "tags" such as @return, which a method's
comment uses to describe what is returned from the method. Others such as DocJet parse the
comments as free text. Code documenter tools for languages that have classes are sometimes known
as "class browsers."

Javadoc© (http://java.sun.com/j2se/javadoc) is a tool that comes with the no-cost JDKs available
from Sun. It's easy to use to document a large amount of Java source code, though if there aren't
any comments, it becomes more of a class browser. It generates HTML reports by default, but is
extensible and can be used as a basis for any tool that analyzes Java source code. As of JDK 1.4, you
can define your own tags for the comments.

doxygen (http://www.doxygen.org) is an open source tool by Dimitri van Heesch that can analyze C,
C++, IDL, and Java source code; it can then produce a LATEX reference manual, HTML files, or XML
documents that describe the different elements of the program. doxygen has plenty of
documentation, which is a good thing because it has a lot of configuration knobs to play with. You can
create dependency diagrams, though this feature can take hours for projects with over 250,000 lines
of C source code. As well as a .tar file of its source code, doxygen has binary releases for GNU/Linux,
Windows, and Mac OS X.

One commercial code documenter is DocJet (http://www.tall-tree.com), which can analyze C, C++,
Visual Basic, some versions of IDL, and Java. Prices are on a complex sliding scale starting at $300
per user. The reason that DocJet stands out is that it parses both the programming language that is
being used and the natural language in the comments, so you don't have to add tags. It runs only on
Windows.

A few questions that are useful when evaluating this kind of tool are:

Can all the elements of a language be documented, not just functions and methods?

Is the location of comments flexible? Or must comments come before and never after a variable
or enum, for example.

Can you exclude parts of the product not just by class or filename, but also by method or
function name? Is this customizablecould you exclude all methods that started with my_get or
my_set?

Can you customize the reports generated by the toolfor localization or other customization, for
example?

http://java.sun.com/j2se/javadoc
http://www.doxygen.org
http://www.tall-tree.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Is the language that the tool accepts for comments checked for errors? For example, Javadoc
allows HTML in its comments, but you have to use a different tool to check the generated report
for incorrect HTML.

One benefit of using an IDE such as Visual Studio or NetBeans© is that generated documentation can
be added to the existing documentation. This also allows you to have real-time prompting for
functions' names and parameters from within the IDE, so you don't have to change to a browser
window to see the HTML report from a code documenting tool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.9. Checklist

Here are some questions you should feel comfortable answering about your current documentation
system. For the first set of questions, imagine that you've found a serious technical error in the
content of a document about your own product:

How do you tell someone that this error exists? Do you file a bug? Send her email? Annotate a
printout?

Can you easily find out who is responsible for the particular document?

Where do you find the version number of each document?

How do you know when to check for a corrected version?

Where would you go to find the corrected version?

Some more general questions to ask yourself about your documentation environment are:

Can you view and print the released documents from all the environments you work in?

When do updates to the documentation appear?

How is feedback from reviewers incorporated into your documentation? What sort of information
do you imagine is lost or garbled during this process?

When you want to resolve conflicting input from different reviewers, is there a record of who
approved each change to the document? This is often available either as part of the document
itself or by using an SCM tool.

What file formats do you deliver to customers, and why?

How long does it take to convert all the source files for your documentation to the formats that
are delivered to customers?

How much of the time generating the documentation is spent doing things manually that have
to be repeated every time the documentation is generated?

On how many different machines can you create the released versions of the documentation?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Releasing Products
This chapter discusses what is involved with making a product work somewhere other than where it
was created. The different areas are divided up into things that can be decided even before the first
release of the product to customers; various issues that come up during a release; and some things
to remember after a release has happened.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1. Overview

Releasing a product seems as though it should be the easy part after you've finally got your product
working, tested it, and documented it. In fact, making a product work properly somewhere other
than the environment in which it was developed is an area where many projects fall down. This is
unfortunate, because no one can use software that they can't even install.

If a release is something out of the ordinary for a project, then the whole project can become
distracted by the intensity associated with getting the release just right. People may have made
changes that break the release process, but it's hard to remember when those changes happened
because it's so long since the previous release. Finally, the product escapes. Everyone is exhausted,
and their only consolation is that they won't have to do that again for a while.

Just as regular automated builds help debug the build process before a crucial build is necessary, so
too does the regular, automated creation of releases greatly help debug the whole release process.
Automated release processes also help you avoid the temptation to give customers "engineering
specials" just because it takes too long to create an official release (see Section 9.2.9, later in this
chapter). Finally, an automated release process can help you ship products faster, since human error
is reduced.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2. Before the Release

Before the first release is even begun, you can make some decisions about how the product will
appear to customers. It's well worth writing these decisions down and making sure that everyone in
the project knows where to find the information. One key decision is how to decide when to ship a
release. Is the date to be driven by features, by accumulated bug fixes for customers, by the elapsed
time since the last release, by an approaching trade fair, or at the whim of someone in the project
with a strong opinion? A mixture of all of these is not unusual, but it's good to be clear about it from
early on, since many other decisions are driven by release dates.

Releasing a product is also where the differences between open and closed software become more
apparent. For instance, license keys make sense only for closed software, and older releases of open
source products are only ever maintained if there are sufficient people interested in doing so, since
there are usually no legal contracts involved.

9.2.1. System Requirements

What is needed by customers must be very carefully documented. For instance, what platforms
should the project's developers expect to support? Which browsers? Which versions of additional
libraries and infrastructure code? If this sort of information is not readily available, then the
environment used by each developer tends to diverge over time, and obscure bugs related to
unsupported platforms can creep into the product.

These requirements need to be unambiguous and easily available from within the project. Customers
need to be able to see this information before they begin to install your software; requirements are
usually also put on a web page somewhere. The list of requirements for installing a product should
include:

Hardware

CPU type, CPU speed, disk capacity, video card, display resolution, and any other specific
hardware.

Operating system

Each version of each supported operating system needs to be listed. If specific versions of
libraries or header files are shipped with an operating system and people may have upgraded
these files, then the versions of such service packs or patches are worth noting. Any specific
versions of drivers or firmware should also be noted.

Other software

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Any other software such as libraries, .jar files, and small utilities should be listed, together with
the supported versions.

License keys

If a customer needs a license key to use the product, provide information about how to obtain
a key and whether the key is needed before installing the product or before using the product.

Legal

Make sure that the requirements clearly describe the product's legal status (e.g., commercial,
GPL, or some other license). People need to know whether they are allowed to use what they
are installing.

Effort

Some indication of how long a simple installation should take is useful. Similarly, tell customers
whether installation of your product requires stopping other processes on the machine, or even
rebooting the machine. This is all helpful for planning ahead when installing products.

For all these requirements, it is very helpful if you include links to where the files can be downloaded
from or where to find more information about each requirement. If you can distribute any extra
required software with your product, this makes the whole process of using your product easier for
everyone (except maybe the release team).

9.2.2. Build Numbers

Build numbers are for internal use within a project, and a particular release number can have had
many build numbers as the release was developed. The next section looks at release numbers, which
are how customers distinguish between different released versions of your product.

The concept of build numbers is that each build that is used by people other than individual
developers should have its own unique identifying number. The build number should increase over
time, usually without gaps. There is no real need for customer releases to have build numbers (or at
least to show them) since that's what release numbers are for.

If SCM branches are used for development, then the build number should follow the branch, as
shown in Figure 9-1. This means that the build number on the main line always tells you the number
of builds since the last major branch. Do record when the builds started using the branch, so that
someone doesn't assume later on that all the builds for a particular release used that release's
branch.

Figure 9-1. Build numbers following a branch

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2.3. Release Numbering

The release number of a product is really part of marketing different versions of your product to
customers. People want to be able to tell different versions apart, so each release number should be
unique for all time, or at least for as long as the product is marketed under the same name. There's a
general expectation that the release numbers should increase over time and that some release
numbers are more significant than others. For instance, the first release of a product is usually
suspected of having more bugs than it should. Developers should treat release numbers like project
names (see Section 3.6.1) and expect them to change for nontechnical reasons at any time. Within
these guidelines, there are actually a number of widely used numbering schemes for releases.

A release number of the form major.minor.patch uses three separate integers; the major, minor, and

patch release numbers. This scheme communicates something about the degree of change and
maturity of each release. Version 1.0.0 is usually the first public release and bears the stigma of
being a "dot zero" release. Note that 1.0.9 can be followed by a 1.0.10 release or a 1.1.0 release.
Generally, the patch number is changed for bug-fix releases, the minor number is changed for
releases with new features, and the major number is changed for releases that break compatibility
with prior releases in some significant manner.

With this scheme, the question is what to call the releases prior to 2.0.0? One solution is to use 1.x.y
and then a build number to distinguish between builds. However, sometimes it's important to know
that this is going to be a 2.0 build for testing the upgrade process. In this case, the internal builds
can all be named 2.0.0 and the first customer release can be named 2.0.1. Build numbers should
always increase by one for simplicity, so try to avoid schemes such as starting customer releases at
build 1000.

One drawback of this scheme is that the only information about the order of releases is for the patch
releases; that is, you can assume that 1.1.2 was released after 1.1.1. We don't know from the
release number whether 1.1.2 was released before or after 2.0, since the 1.1 release could be a very
long-lived release. Figure 9-2 shows that a release number (1.1.0 in this case) can appear both on
the main line if it is built from there, and then later on a release branch, which can sometimes seem
counterintuitive. The build numbers and information about when the 1.1 release branch was created
can help avoid any confusion.

Figure 9-2. Release numbers and branches

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another scheme extends the major.minor.patch scheme by using even minor numbers to indicate

which releases are considered stable and odd minor numbers to indicate which releases are still in
development. GNU/Linux is the best known example of this scheme, where kernel Versions 2.3.x and
2.5.x are unstable, development versions and Versions 2.4 and 2.6 are the stable releases used by
most GNU/Linux distributions. Linux is currently ensuring stability by allowing changes for only a one-
week period after each release.

Another scheme uses numbers that asymptotically approach the intended release number. So after
customer release 1.2 comes customer 1.3, but the releases leading closely up to 1.3 are numbered
1.2.99.1 to 1.2.99.999. This approach has logic to support it but seems confusing in practice to some
people.

Yet another scheme you may see used is adding a suffix of "rcn" for "release candidate n." For
example, 4.0rc3 is the third candidate for the intended 4.0 release. When the final release candidate
is promoted to be the actual release, it is repackaged with no changes. This scheme seems a little
harder to parse algorithmically within an application, but its intent is clear.

Other, more creative release-numbering schemes include the one used by Donald Knuth for TEX,
which has successive releases numbered as 3.1, 3.14, and 3.141, with each release adding the next
digit from . Another idea to minimize disagreements over what the next version number should be is
to use complex numbers, with the real part assigned by one group (say, engineering), and the
imaginary part assigned by another group (say, marketing). This is what has effectively happened in
the past with large products such as Java and Windows. This is actually quite sensible: the real part
can be a build label such as the project name and the build number, and the imaginary part can be
the release number (or release numbers, for products on different platforms).

Whatever numbering scheme is chosen, the values must always be unique. For instance, periods are
what makes 1.11.2 different from 1.1.12. An alternative approach is to add leading zeros to the
numbersfor example, 01011002 instead of 1.11.2. Ideally, the release numbers should sort in a
predictable manner, so they can be compared conveniently within the product and can easily be
found in lists of releases in a bug tracking tool. Treating some version numbers purely as strings will
lead to ASCII sorting and lists such as release_1, . . . , release_101, release 2. Maintaining major,
minor, and patch numbers as integers accessible within a product's source code and other
development environment tools can make the sorting order more useful.

All these numbers can become confusing, especially when spoken aloud: was that "three one two,
build three" or "three one three, build two"? The numbers also begin to acquire deeper significance if
APIs are allowed to change only in minor releases and not in patch releases, or when support for a
release cannot be dropped until the major version number changes.

The internal engineering project name for the project is usually more useful than release numbers in
SCM tags and bug tracking tools. The actual release number can be chosen later on, closer to the
release date (Debian Linux does this). Some honesty should be encouraged here, thougha release

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shouldn't be declared a patch release just to reassure a customer that not too much changed,
especially if it's really a barely tested rewrite of a core part of the product.

9.2.4. Release Information

Once you have decided on a build-numbering scheme and a release-numbering scheme, there is the
question of what other information is needed about each build. Here are some suggestions for what
to record with each official build:

Project name

The internal project name for this build.

Build number

The build number that makes each build unique for the same release number.

Build timestamps

The times the build started and finished, including the time zone.

User

The username of the account that was used for the build. If the build tool is configured
correctly, the build should be independent of the user's particular environment, so this is a
safety check.

Build type

Was this build intended for internal testing or for customer use? Is it an official build by a
release team, or an unofficial build? Is it for an alpha or a beta release, or some other kind of
release-candidate build? Was it built with profiling, debugging, or optimizing enabled?

Build log

A link or location for the commands used during this build.

SCM details

The build label (see Section 3.5) used to tag the source files for this build, and the name of an
SCM branch if used. If confirmation of the SCM tool is required, then a manifest or BOM that
lists all the source files and their versions can be added.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bugs

Identifiers for any bugs that are related to this build.

Operating system and tools

If some parts of a release, such as a compiler or the operating system, are not controlled using
the SCM tool, then you can at least record information about them here. Most tools will
generate a version number if prompted correctly, and this can be generated as part of the build
tool's configuration stage, when it is making sure that it has the required tools for the build.

Size

Recording the size of a build is useful for tracking changes over time or checking that a build
seems superficially complete.

Test results

The versions and results of all automated tests that have been run on this build should be
easily available given a particular build label.

Once you have decided what information to record with a build (be generous here), you also need an
easy way to find that information. A simple text or XML file that is created with each build is one way.
If the information is embedded in the product, there should be some way to display the information
(for example, an About box for a UI, or a -version argument for a CLI). Note that this is entirely
separate from information gathered at runtime about a customer's environment. However the
information is accessed, it needs to be easy to use from a wide variety of tools.

Another useful idea is to create and document a standard way of referring to releases in the SCM
tool, in the bug tracking tool, and for other purposes such as coverage and profiling reports. When
you're trying to rebuild a release from source, it's irritating to have to wonder whether the tag was 1-
2-3, 1.2.3, or 1_2_3. Yes, you can probably look it up somewhere, but a common way of doing things
avoids even this effort. Some tools will have restrictions on the format of names. For instance, CVS
tags cannot start with a digit or have periods in them. Section 3.5 discusses this idea of build labels in
more detail.

9.2.5. Upgrading

Deciding how customers will upgrade to a newer release of your product is something you should do
before the first release. There are two aspects to upgrading: the political and the practical. The
political side is how to convince your customers to upgrade, whether it is for features, bug fixes, or
because you no longer want to provide support for an older release. Upgrades are extra work for
customers and always carry a risk. The risk for them is that the upgrade may not work; the risk for
you is that they may choose to use someone else's product instead of yours. Some customers and
some products can never be upgradedthink of the software in a household appliance such as a
toaster.

Setting expectations early on about how long a release will be supported can prevent some nasty

http://lib.ommolketab.ir
http://lib.ommolketab.ir

arguments years later. If the customer is a large company, its influence may be enough to force a
release to live forever, a sort of "living dead" horror film for those who have to maintain it. One
common way to write the expectations into a contract is to declare that a release will be supported
for one calendar year after the next major release (that is, any release where the major release
number changes).

Another question is whether patch releases are independent of each other, or whether they are
cumulative. That is, does release 2.0.8 also include all the bug fixes in releases 2.0.1 to 2.0.7? Most
customers assume that patch releases are cumulative, but if this is not the case, then a separate
numbering scheme for patches is necessary. The advantage of independent patches is that there is
less risk of destabilizing a large product when applying a patch. However, keeping track of which
patches have been applied can become very tedious for the customer and for your support team.

On the practical side of upgrades, there is the question of how to deprecate public APIs if they are
part of your product.[1] Deprecating part of an API tells customers not to use that piece of the API,
but that it should still work. If it doesn't work properly anymore, then you shouldn't continue to make
it available. Many compilers can generate warnings about using deprecated code, which is a great
way to make sure that customers using the API are aware of the changes, so long as the warnings
can be suppressed when not wanted. API changes should be marked as deprecated in one release
and then removed in a later release, giving customers time to update their code. Within the source
code, the old, deprecated methods should call the new methods to avoid code duplication. Old classes
should inherit from new classes, if possible.

[1] There seems to be frequent confusion between the words deprecate and depreciate. Deprecation is what happens to APIs

when you stop supporting parts of them. Depreciation is what happens when you drive a new car home and it's suddenly worth

only three-quarters of what you just paid for it.

Another question is the file format of upgrade packages. Generally, using the same package format
as the original release makes things seem simpler to the customer. Some installation programs are
written to require you to uninstall the product first before you upgrade, which always seems heavy-
handed to me. Of course, a customer's data and configuration information should never be lost due
to an upgrade.

Upgrades can fail after they have been installed, for a number of reasons. The converted customer
data for the new version may be larger than the installer estimated, causing a lack of disk space to
halt the product. The licensing scheme may have changed, and the upgrade was installed without this
having been noted. The previous version of the product may have been modified in ways that the
installer program knew nothing about, and those changes were lost in the upgrade. These are all
problems to consider carefully when designing an upgrade for a product.

Products that can have multiple versions of themselves running side by side can make testing
upgrades much easier for everyone. This is particularly important for large applications that take a
long time to move from evaluation to production. For instance, certifying upgrades of software
products in large telecommunication networks often takes many months.

Downgrading to a previous version is rarely supported well by most products. Database schemas or
configuration file formats may have changed, and there always is the question of what to do with
data that doesn't make sense in the older version. Unless the ability to downgrade is noted explicitly
in a product, it is wise to assume that only upgrades are supported.

9.2.6. Legal Licenses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Section 1.2 covers some of the different legal approaches to distributing both types of software.
Deciding on the legal ownership of your product before it is ever released has many advantages.
First, changing legal text can affect a large number of source code files, though the source code can
usually be updated by a straightforward automated search and replace of copyright notices. Second,
installation programs often display license agreements; these too can be changed in their source
form.

The largest problem with changing the license of your product is the unwanted publicity that can
arise. Changing a commercial End User License Agreement (EULA)for instance, to stop competitors
from using your product to improve their own productmay go unnoticed. Converting an open source
product to a closed license will usually draw some ire and lead to a few forked versions of the code.
Oddly enough, even changing a license from closed to open source seems to generate lots of
speculation about the business reasons behind the decision.

Some informed discussion before your product is released, together with clear and documented
decisions about why a particular license was chosen, will help make your legal status clear to
customers.

9.2.7. License Keys

This section is about how you allow people to use your productin the practical sense, not just in the
legal sense of the previous section. The kind of issues here are how to enable and disable different
parts of your product, usually according to how much someone has paid you.

Creating software that requires licenses is often frustrating for developers and customers. Developers
want to use it without generating licenses, so workarounds and back doors get built into the source
code. Customers are frustrated when a license server fails and stops them from using the product
they have paid for. So the first thing to consider is whether your product needs license keys at all. If
you want people to pay to use it, it probably does, though revenues can also come from installation,
configuration, and support consultancy on many open source products. If your product can be
decompiled or even run in a debugger, then whatever license scheme you use can be broken
eventually, given enough time and effort.

If licenses are required, then you need to decide whether they are per user, per machine, per OS, or
sitewide. Per-user licenses require some local administration; per-machine licenses will often break if
the IP address, network card, or other parts of the machine are changed. If the licenses are time
based (maybe because they are evaluation licenses), it's hard to guarantee that the clock on a
machine will always be accurate. Some licenses contact a central license server within the customer's
network or out on the Internet. Given time, such exchanges can be reverse engineered using
network sniffers, as Microsoft has found with Windows XP.

However you decide to restrict usage of the program, be careful about how the product operates
without the license. Make sure that any transaction or feature is atomic, so that it either works fully
or stops working entirely, but nothing in between. Menu choices may be grayed out or, more usefully,
they could bring up windows with text about what license is needed, how to obtain the required
license, and how to install it to make the software work. The same applies to command-line tools.
Hiding license information away in logfiles makes it harder for the customer to understand why your
software seems to be broken. A better mechanism to inform customers about when licenses will
expire and how to renew them is vital. For cheaper products, allowing the user to purchase a license
over the Internet with a credit card and to receive the license by email is one solution that can get
the product working quickly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the hardest things to decide about products that do use license keys is which features a
customer needs to evaluate the product and which features a customer will pay for. It's even harder
if there are different levels of licenses. Changing these requirements can result in much tedious
development work.

One suggestion is to implement licensing in your product in two layers. The lower layer is simply an
API for checking whether an operation is permitted. This can be used throughout the code as the
product is developed and new features are added. This way, features can be enabled or disabled
consistently at design time and can be checked for at many different locations in the software. The
higher layer is where a particular licensing scheme is implemented, by checking for different license
keys and then enabling or disabling the different pieces of functionality. When a different licensing
scheme is decided on, only the higher layer should need to change.

Developers using interpreted languages (such as JavaScript or Perl) or languages that use a virtual
machine (such as Java) should be particularly careful about decompilation, which will leave the
licensing scheme wide open to abuse. There are a number of obfuscation tools that can change the
symbols used in your product to make it harder to understand (e.g., by using short variable names
and confusing method names). For Java, DashO is one of the better commercial offerings, but the
battle between decompilers and obfuscators is a fast-moving one, so you should search for recent
evaluation reports before choosing an obfuscator.

Other ways to make a licensing scheme more robust are to avoid the string license in any variable
that is actually used for licensing; to store any vital secret strings as many smaller strings in different
parts of the product; and to check for valid licenses in different ways in many different locations.
Creating different releases of the product with the same release number but different ways of
checking for licenses means that a crack for one version won't work for every copy of that version.
One financial program detected that it was running without the appropriate license but stopped
working only about a month before various annual taxes were due, forcing people to purchase legal
licenses so that they could submit their paperwork.

9.2.8. Securing Your Releases

If your product is distributed over the Internet, then your customers need to have confidence that
what they download is the same package that you released. There have been numerous cases of web
sites being compromised and modified software being left for customers to download. Once installed,
the modified software can be used in turn to compromise even more machines.

One common way to increase confidence is to provide customers with checksums of the packages
they download, preferably through a separate channel such as an email message. The customer can
generate a checksum for the package that she downloaded and compare that checksum with the one
that she obtained from you in the email message. An even more secure option is to cryptographically
sign the release using a private key and then let customers use the associated public key to decrypt
the signature. PGP is a popular way of doing this, and a description of how to confirm releases of the
Apache web server can be found at http://httpd.apache.org/dev/verification.html. Another useful
resource is the "Strong Distribution HOWTO" article at
http://www.cryptnet.net/fdp/crypto/strong_distro.html. Java's JAR files (described in Section 9.4.2,
later in this chapter) and Windows executables can also be signed for security.

http://httpd.apache.org/dev/verification.html
http://www.cryptnet.net/fdp/crypto/strong_distro.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2.9. Quick Fixes and Engineering Specials

Among the things that plague software products as they grow are special releases. If they are not
carefully controlled, products have ways of getting released that make them practically impossible to
support.

One way this can happen with closed source products is when you are working with a customer to
debug a problem and it's too much overhead to generate a patch release for the customer, so you
give the customer the executables from a private build. Once the problem is fixed, the customer may
well not want to make any more changes, and so the engineering special becomes a de facto release.

Oddly enough, specials happen with open source software too. The usual symptom is someone
complaining that something in the product doesn't work as expected, and then you notice some
output text included in his bug report that doesn't exist in the product as it was released. It turns out
that you are trying to help him debug his modified version of the product, without knowing about the
changes he'd made. If such source code changes are necessary to fix a popular piece of functionality,
then they should be merged back into the project's source code; otherwise, the project will have
effectively forked, and unintentionally at that.

The best solution for closed source projects is to track every file given to customers as part of a
release and to define a process for unsupported releases. If this process is defined and well known
before engineering specials escape to customers, then most developers will be willing to follow it,
especially if its turnaround time is quick enough to help with debugging on-site problems.

One such minimal procedure for unsupported releases has the following requirements:

You should explain to the customer that this release is unsupported and what that means.
Documenting the agreement in writing will help everyone later on.

All source files involved in an unsupported release must be checked into the SCM tool and
labeled before release. This is an appropriate case for using a suitably named private branch of
just a small number of files.

The labels for each unsupported release should be recorded somewhere, along with the
customer's name, the date, and any related bug numbers.

The build information associated with the unsupported release should show who built it. This is
useful for finding holes in the process if an unaccounted-for release turns up later on in the field.

Once the customer is satisfied, you should tell her which official release will include the changes
that she helped to test.

Sometimes it's tempting to build time bombs (code to stop your product
working after a certain time) into unsupported releases, to make sure that
customers really do upgrade to an official release. This idea is not a good one,
since you never want to deliberately stop a paying customer from using your
software. It may also backfire and force you to ship an official release before it
is ready.

There is also the question of what to do when the source code is taken to a customer's site and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unsupported releases are created on the spot, perhaps for debugging a problem that can be
reproduced only at the customer's site. The same procedure can be followed. Ideally, the SCM tool
can work while disconnected from the main server. If not, then a local copy of the affected files can
be checked into a local SCM tool on the developer's laptop and then merged back into the original
versions back home each night. Having all the benefits of SCM while you are developing on-site is
very helpful anyway.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3. Creating the Release

Ideally, system testing should be performed on releases, rather than on builds without the final
packaging steps of a release. That way, when a particular release is deemed worthy of shipping to
customers, the release process can use a known set of files to build the release. This also ensures
that the installation software is tested, at least in the most common way that testers install the
software.

When a build is converted to a release for internal testing, or an internal release is converted into a
customer release, the following steps are commonly followed:

Obtain virgin copies of the correct files using the local SCM tool. The version of the product that
uses these files has already been built and tested.

1.

Set the release number and other build information, either in a file, a database, or on the
command line.

2.

Build the product for each platform.3.

Build the packages that are released to customers.4.

Update the release notes as part of the packages.5.

Retest the different packages prior to releasing them. Don't just check that the installer
worksrun as many of the unit and system tests as possible against the installed product.

6.

Use the SCM tool to tag all of the files that are part of the release, including all automated tests
and test results.

7.

Archive all customer releases and any other important builds.8.

9.3.1. Automated Releases

Automating the process of creating a release will reduce human error and speed up both regular
customer releases and emergency fixes. There are some common tasks that are awkward to
automate, so here are some ideas. Some of these ideas are also discussed in the context of how to
choose an automation environment (see Section 3.4).

First, use your build tool to create as much of the release as possible. Debugging a mixture of
different build and release tools only makes getting a process right much harder, and using one good
tool will save confusion. For instance, a single set of makefiles is much easier to work with than shell
scripts that call make and Perl scripts. Newer build tools including SCons and Ant have built-in
support for using various SCM tools to obtain the correct source files, for tagging the source files
after a build, and for creating different kinds of packages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The version number for a release is often set by hand (in one central location), and then a build
number is automatically incremented. Incrementing the build number requires storing the current
build number, as shown in Example 9-1. If a single build machine is used, then a simple text file may
suffice. A better scheme is to store the build number in a file that is controlled by the SCM tool. Just
to be sure, add checks to make sure that contents of the file storing the build number always
correspond to the build label used when tagging that file.

Example 9-1. Updating the release number using a shell script

#!/bin/bash
An example shell script to store the build number in a file.

The file where the current build number is stored between builds
CBN_FILE=/home/build/current_build_number
.
.
.
PREVIOUS_BUILD_NUMBER=`cat ${CBN_FILE}`
BUILD_NUMBER=`expr $PREVIOUS_BUILD_NUMBER + 1`
.
.
Build the product.
.
.
Make sure that you can work out whether the build number was updated
just by looking at the build log.
echo ${BUILD_NUMBER} > ${CBN_FILE}
echo "Build number ${BUILD_NUMBER} was recorded in ${CBN_FILE}"

If an IDE is being used to develop the product, take the time to find out whether the IDE can be
called by a build tool, or whether you have to export a build file from the IDE before you can build
from the command line. Some IDEs provide fewer ways to build products from the command line
than when using the GUI, which is frustrating to discover later on in a new project.

In older versions of Visual Studio, adding a /Y3 argument to msdev on the
command line is an undocumented way to display the time spent in each part
of the build.

Some tools used during a build require input from the user. If these inputs are textual, are
consistently in the same order, and consist of answers that are known ahead of time, then redirecting
the input to a file containing the required text can work. For example, if a configure file requires some
input, generate a suitable input file and pass it to configure with ./configure < configure.input.

Some of the visual tools used as part of a build may not provide any command-line interaction or
may have pop-up windows with choices that appear occasionally. GUI testing tools can sometimes
help you here, or the underlying API of the tool may be available for scripting, but maybe this tool
really isn't designed to be part of a build and release process?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When an automated build finishes, it's useful to tell people about it. If it failed, then project leaders
and developers should be told, particularly those who have committed changes to the source since
the last successful build. If it succeeded, then people such as the testers waiting for an internal build
should be informed. Email is one convenient way to do this, though changing who receives the email
requires aliases or some other minor email list management. Email can also be used later on for
working out when releases should have been available, but for one reason or another were late.
Another approach is to use RSS feeds, which each interested person can subscribe to. Some people
like to receive a brief text message about broken builds on their mobile phone, so they can track
down the cause of the breakage quickly.

Sometimes a build may hang, and no notification at all will appear. To make sure you are made
aware of this, a separate watchdog process can be started at the same time as the build. Assuming
that you can predict how long the longest build should take, the watchdog process can monitor the
build and look for some evidence that indicates that the build finished. One good piece of evidence is
the text of the email notification sent when the build is finished. If no such text or file appears after
the given time, then the watchdog should send out a "failed build" notification instead.

9.3.2. Automating Release Information

There are various kinds of information that can be generated automatically for a release, as
discussed in Section 9.2.4, earlier in this chapter. A common request from testers is for a list of the
bugs that are supposed to have been fixed in this particular release, along with the test reports from
any automated tests that were run as part of the build. This list of bugs can then be used for testing
and confirming that the bugs are indeed fixed. Producing this list automatically depends on whether
the bug tracking system has an API that can be queried from within an automated build process. If it
doesn't, then a file can be manually updated by developers, though of course this is prone to error.

If the bug tracking system can be queried from within a build, there are usually two approaches that
are used. If the current release number already exists in the bug tracking system, then a simple
query for the associated bugs is all that is necessary. Alternatively, if fixed bugs are in a state named
something like "Fixed but Not Yet Available," then the current release number needs to be added to
the bug tracking system metadata so that when the state of such a bug is changed to Fix Available, a
field such as "Fixed in Release" is filled in with the current release number.

Another common request is for a list of all bugs fixed since the a particular customer release. This is
often provided in release notes. When creating the names of releases within the bug tracking system,
make sure that the tool supports searching for bugs both using an exact release number and using a
pattern such as 1.3.* to find all bugs related to the 1.3 releases.

Other useful information for developers and testers is a change log, showing all the files that were
changed since the previous release and what those changes were. Since this can be a large amount
of information, an HTML change log with links to a graphical browser for the SCM tool is helpful.
Change logs are discussed further in Section 4.4.

Another action that can be automated is the assembly of release notes from fragments of text
associated with each bug or associated with a particular target release inside the bug tracking
system. This helps to make sure that lots of small pieces of information are put together in an
organized manner and none are accidentally left out.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.3.3. Developers as Customers

The version of a product with the fewest bugs is usually the one that runs on the same platform that
the product was developed on. This makes sense, because some bugs are only found by long-term
use. Similarly, a product behaves best when it is used in the same way that the developers and
testers used it when they created it.

One good idea is to make the released product resemble the versions that are used during
development as much as possible. For instance, if the product is run as a service under Windows,
build the product the same way for developers too. Make it easy for developers to build a release
package and install it on their machines.

Another good idea is to avoid using #ifdef RELEASE and the related compiler -D arguments to change
the build for a release. If system tests and other utilities have to be built for testing, then build them
separately from the main product. If there are still unavoidable differences between the development
and release builds, then try to capture all of them in a very small number of files, and then use the
build tool to choose which files to build. Debugging later on will also be easier when customers'
environments can be reproduced by developers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4. Packaging Formats

A released product usually consists of many files, all of which need to be carefully installed in different
places on each customer's machine. An appropriate file format for this collection of files has to be
chosen for the released package of a product. Sometimes simply unpacking a collection of files is
enough for the customer to use the product. For instance, when a product is distributed as source
code, a customer unpacks the source files and then follows the build and installation instructions that
are part of the package. This section describes some of the packaging formats used to release
software.

For most products, simply extracting the files from a package is not nearly enough for a complete
installation. Other steps in a successful installation may include running other programs, running
tests on the customers' machines, and preserving existing data and configuration settings. The
unpacking of files and each of the other steps could be done, one at a time, by the customer.
However, it's often more convenient to run a single installation program and have it perform all of the
different steps. Section 9.5, later in this chapter, describes some tools that can produce such
installation programs, or installers.

How an installation program actually packages a product's files is mostly
irrelevant to the customer, though many installers do use one of the packaging
formats described in this section. When you click on setup.exe for a Windows
installer, you neither know nor really care how the files are actually packaged
and compressed within the installer. However, if there is no separate
installation program, then you will need to know how to extract the product's
files from a particular packaging format.

The first guideline to follow when choosing a packaging format for your product is to use the most
common format for each platform and language. Windows packages commonly use WinZip, Unix
packages often use tar and then gzip or bzip2, and Java products are often distributed as JAR files.
Red Hat Linux uses rpm files, Debian uses deb files, and some other GNU/Linux distributions have
their own packaging formats. Since many products are downloaded rather than read from a CD or
DVD, compressing the package before releasing it is a normal part of releasing a product.[2] Quite
often, a build tool that is favored for a particular language will also support the most common
packaging format for that language. For example, Ant is used to build many Java products and can
also generate JAR files.

[2] The days of using 1.44MB floppy disks for installers have passed at last. Creating installers that would fit on those disksoften

breaking them up into a dozen or more disk imageswas a pain for everyone concerned. "Please insert disk 14 of 20," indeed.

9.4.1. Unix

The original packaging format is the one used by tar, a tape archive program that dates back to the
early days of Unix. To create an archive, or tarball, each file has an ASCII header with information
about the file prefixed to it, and each header refers to the next file in the archive. Each header also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

includes a CRC (cyclic redundancy check) to ensure that corrupted headers are detected. If all the
files in an archive are ASCII, then the whole tar archive is also ASCII.

Older tar files had limits on filename length (Solaris tar still does, apparently), but newer versions do
not. tar is most commonly used with a compression program such as gzip or bzip2 to produce
compressed .tar.gz (alternatively, .tgz) or .tar.bz2 files, respectively. These compression programs
are often fully integrated with tar nowadays, so creating a compressed tar file is done with a single
command. By default, a tar file preserves the directory hierarchy and the permissions of the files
inside it. However, there is no support in tar itself for cryptographically signing the generated tar
files. Another problem with the tar format is that extracting individual files is slow, since all the links
in the file headers have to be followed until the correct file is found. Although tar was originally Unix-
based, some Windows tools such as WinZip can now also unpack tar archives.

When tar and bzip2 fail, the most common reason is an incomplete download or
a lack of space to decompress the files, not corrupted files in the archive.
Obvious, but well worth remembering.

Two other packaging formats are also encountered on Unix systems: cpio and pax. cpio
(http://www.gnu.org/software/cpio/manual) is intended more for system backups. pax (which may
stand for "portable archive exchange") is designed to combine the strengths of tar and cpio. A good
introduction to pax can be found at
http://www.onlamp.com/pub/a/bsd/2002/08/22/FreeBSD_Basics.html. Both cpio and pax can read
tar archives. Though they are almost unheard of nowadays, you may come across shar archives,
perhaps in old postings to USENET. These are simply shell scripts that unpack the files embedded
within them.

Other common packaging formats for GNU/Linux are Red Hat's rpm (http://rpm.org) and Debian's
deb (http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html), which both add more information to
the package formats so that the installers that use them can track which files were installed from
various packages by using a local database. Internally, rpm uses cpio archives and deb uses gzip-
compressed tar archives. Both formats can contain the binary executables or the source files for a
package. An extensive comparison of the differences between rpm, deb, and gzip'd tar files can be
found at http://kitenet.net/~joey/pkg-comp. A handy tool for checking that rpms are correctly
constructed is rpmlint, which used to be found at
http://people.mandrakesoft.com/~flepied/projects/rpmlint.

9.4.2. Windows

While there are versions of tar for most platforms, the most common packaging format for Windows
is zip, a freely documented format from PKWARE (http://www.pkware.com), which also sells
applications such as PKZip to create zip archives. Other Windows tools such as WinZip
(http://www.winzip.com) and 7-Zip (http://www.7-zip.org) also work with the zip format. Some of
these tools can extract files from many other packaging formats as well. Info-ZIP (http://www.info-
zip.org) is an open source, highly portable zip tool that runs on both Windows and Unix. Note that zip
is not related to the compression utility gzip.

http://www.gnu.org/software/cpio/manual
http://www.onlamp.com/pub/a/bsd/2002/08/22/FreeBSD_Basics.html
http://rpm.org
http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html
http://kitenet.net/~joey/pkg-comp
http://people.mandrakesoft.com/~flepied/projects/rpmlint
http://www.pkware.com
http://www.winzip.com
http://www.7-zip.org
http://www.info-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, unzipping an archive with WinZip converts any directory names that
are entirely uppercase to all lowercase, though there is an option for disabling
this overhelpful behavior.

JAR, the standard packaging format for Java products, is an extension of the zip format, with optional
signing and versioning abilities. Some of these extensions were later added to the zip format after
JAR was defined. You can also use jar to zip and unzip zip files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5. Installation Tools

The previous section described the various file formats that can be used to release a collection of files
(i.e., a package). This section describes installation tools, which are the tools that create installers,
which are the programs (and their datafiles) that actually run on the customers' machines. Installers
not only unpack and decompress the files from whatever package file format was used; they also
perform all the other steps necessary to make the product work on each machine. Table 9-1 shows
some of the different ways to install software, along with examples.

Table 9-1. Different ways to install software

Package contents Installation tool Installer

Source code
Packaging tool such as tar
or WinZip

Run a build tool such as make (e.g. , many
open source projects).

Run a custom build script (e.g. , some Perl
applications).

Compiled files

Unpack the executables (e.g., .exe files in a
self-extracting zip archive).

Packaging tool such as rpm
Unpack the files and execute other commands,
using an already installed application (e.g.,
rpm).

Specialized installation tool
such as InstallShield

Run the programs that were shipped with the
compiled files (e.g., most commercial
software).

Platform-independent
compiled files

Packaging tool such as jar
Unpack the files and execute other commands,
using an already installed application (e.g.,
JVM).

Installation tools can be thought of as specialized build tools: both kinds of tools
take a description of what needs to be built, including where to find the files for
the build, and both can produce executable programs. Both kinds of tools need
to show you what they did, and you need to be able to debug both the tool and
whatever is finally produced by the tool.

In the same way that each different kind of machine requires a different set of actions to install
software on it, so too do different installation tools exist for building installers for each platform. One
installation tool builds Windows executables, while another builds rpm packages for a GNU/Linux

http://lib.ommolketab.ir
http://lib.ommolketab.ir

distribution. The Java-based tool InstallAnywhere generates multiplatform installers from a single
specification, but this tool seems to be used mostly for creating installers for products written in Java.

9.5.1. Requirements

When evaluating an installation tool, be careful to distinguish between what the installation tool
should do and what the installers that it produces should be able to do. For instance, you may want
to produce installers that have Japanese text, but do you also need the installation tool to be
localized for Japanese?

Just as some projects choose to write their own build tool, some projects create their own installation
tools. This does have the advantage that the source code for the tool can be reviewed and tested as
exhaustively as the rest of the product. However, this approach is a substantial amount of overhead
for most projects, so carefully consider the existing tools first.

9.5.1.1. Tools

Some desirable characteristics of installation tools are:

Small, fast, repeatable

Just like a compiler, an installation tool should not produce overly large installers; it should run
as fast as possible; and the resulting files should be the same each time the tool is used.

Portable

The configuration files for the installation tool should be portable to other machines, and ideally
to other platforms. Absolute pathnames should not be part of the description of an installer. If
the description of the installers are in a text-based format, this makes comparison easier.

Debuggable

Debugging how an installation tool creates an installer and debugging what an installer did
when it ran are both tasks to consider when deciding how easy it is to work with each
installation tool. The ability to simulate running an installer can also ease its development
effort. Installer debugging logfiles should contain line numbers, timing information, and other
descriptions of each part of the installation tool as it was executed.

Automated

Integrating the installation tool with an automated build process should be possible, by using a
command-line version of the tool, for example. This includes signing packages.

Multilingual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An installation tool should be able to produce installers that are localized for different languages
while running on a nonlocalized machine. In other words, you could use a machine with an
English operating system to produce Japanese and German installers, as well as producing
English installers.

Produces installers for updates

The installation tool should be able to produce installers to update products that have already
been installed. Making customers uninstall a previous version of your product is ugly, and once
they've uninstalled your product, they might install someone else's product instead. Some
installation tools can produce installers that can be used to check periodically for updates over
the Internet.

Supports different media

You should be able to create an installer suitable for download from a web site, as well as an
installer for releasing on CDs or DVDs. The installation tool should be able to put the different
files onto multiple CDs or DVDs in such an order that the most common installation sequences
never require the customer to reinsert a disk.

Flexible

A good installation tool can be extended to do things during an install that no one imagined
when the tool was designed. Sometimes this is done with a scripting language.

Stable

Beware of the ability to automatically update the installation tool; such updates can make it
hard to be sure which version was used for each product. You should update only when you
have chosen to, not just because the tool prompts you to update. This feels like an installation
tool just demonstrating that it can create an installer for itself that checks for updates.

9.5.1.2. Installers

Some characteristics to look for in installers and uninstallers, no matter which platform or packaging
format is used, are:

Simple

The main purpose of an installer is to make a product work correctly on a customer's machine
and to do this as simply as possible. This means that wherever possible, the installer should
run tests (rather than asking the user questions) and then copy the product's files to the right
places on the machine. Anything other than major product configuration can be done by the
user after the install has finished, including entering license keys.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Atomic

A failed installation should remove all traces that it was ever there. Leftover files can make
subsequent installations fail in obscure and hard-to-debug ways.

Provides an installation summary

Before making any changes to the machine, the installer should show at least the product's
name and version, where it will be installed, how much space it will take up, and any other
useful configuration details.

Supports unattended installs

System administrators installing your product on numerous machines will want two things: the
ability to install it with no input, and the ability to customize the installer (for instance, by
adding other, unrelated packages). The first can be supported by reading responses from a
text file or even by using Expect (http://expect.nist.gov). For silent installs, the user should
also be able to redirect all output from the installer to a file. Many installation tools are able to
create installers for this kind of unattended install, but customization is less commonly
supported.

Some smaller, but helpful ideas for graphical installers are:

A map of where you are in the install, and some indication of how much longer the installation
should take

Go Back buttons, to let you return to previous screens and change the choices that you made
there

An option to restore the default choices on a screen

9.5.2. Unix

Installer programs for Unix have become more common since the 1990s, with the rise of GNU/Linux
and CPAN for Perl modules. The lack of standard locations for key files on a Unix machine means that
you always have to be aware of how each machine is configured, and so installation using source
code is more common in Unix than on Windows machines. I'd like to report that Unix configurations
have become more standard and that there was an obvious installation manager to choose, but I
can't. I recommend using the default installation tools that already exist on your machine and then
trying others if and when they fail. Using packages from a single source may help your installations to
succeed more often.

9.5.2.1. Source code and binaries

The source code to your product can be distributed using one of the packaged formats discussed in
Section 9.4, earlier in this chapter. They're easy to create and, if the customer has the right tool,
easy to unpack. The packaged files may contain ready-built binaries for each platform or, more

http://expect.nist.gov
http://lib.ommolketab.ir
http://lib.ommolketab.ir

commonly in the case of open source products, the actual source code itself.

There are de facto standards for files to help customers complete the installation of the product after
unpacking it. There are files such as README (start here first), LICENSE or COPYING (legal stuff),
HACKING (how to change the source code), and the vital INSTALL file, which usually tells you how to
actually use the product. Build tools such as GNU Autotools (see Section 5.5.3) provide help with
creating such files. Another, much more formal standard is the Linux Standard Base (LSB; see
http://www.linuxbase.org), which describes what to expect from a standard GNU/Linux machine.

Installing products from their source files is probably the most portable way to install software onto a
wide variety of Unix platforms. When the more convenient rpm or deb packages fail to work, or when
you want to know why the product isn't supported on your platform, it's time to "use the source,
Luke."

9.5.2.2. RPM package manager

The Red Hat distribution of GNU/Linux is responsible for creating the rpm format and its companion
installation tool (also named rpm), which now ships with each copy of Red Hat Linux. Various
products were repackaged in the rpm format for Red Hat, and web sites such as rpmfind
(http://rpmfind.net) grew up to help find RPMs for each package. rpm maintains a database on the
local machine to track every package that has been installed, and it's relatively easy to use.
However, if an installation fails because other packages have to be installed first, rpm simply leaves
you with the name of the missing packages, and it's back to rpmfind you gothere is no automatic
downloading of other required packages.

In an attempt to make the whole process of installing and upgrading packages a little easier, Red Hat
created up2date, an application with both command-line and graphical interfaces, to download and
install not only packages you specify, but also those required by your specified packages. However,
up2date requires that you sign up on the Red Hat Network and register your machine and its current
configuration.

Other choices for rpm-based installation managers are Yum (http://linux.duke.edu/projects/yum),
which is becoming the de facto standard for RedHat, and apt4rpm (http://apt4rpm.sourceforge.net),
which is a version of apt for rpms by Conectiva, the Brazilian GNU/Linux distribution (now part of
Mandrakesoft). Both of these installers can create their own package databases from the local rpm
one, use signatures, and download any other necessary packages. One installation manager that
claims to handle conflicts better than all others is the Python-based Smart Project Manager
(http://smartpm.org), developed by Gustavo Niemeyer, who was part of the team that created
apt4rpm.

To unpack the contents of the rpm file myproject-1.0.0-i586.rpm into a fresh
directory, simply type:

rpm2cpio project-1.0.0-i586.rpm | cpio -i --make-directories

9.5.2.3. apt

http://www.linuxbase.org
http://rpmfind.net
http://linux.duke.edu/projects/yum
http://apt4rpm.sourceforge.net
http://smartpm.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Debian Linux's deb packaging format also has its companion installation tool named dpkg, but the
installer tool that is more frequently used is apt (Advanced Packaging Tool), which has always
supported downloading the dependent packages needed to make an install succeed. apt's other
advantage over rpm is that it uses benchmark systems to determine which versions of software
should work best on your system. One GUI for apt is synaptic, but there are a number of others
available.

apt has also been made to work with rpms in a few different ways. The tool apt4rpm
(http://apt4rpm.sourceforge.net) is a version of apt for rpms. There is also alien
(http://www.kitenet.net/programs/alien), which is a package converter that can convert between
rpm, deb, and several other package formats, allowing you to use deb packages like rpm packages,
and rpm packages like deb packages.

9.5.2.4. CPAN

CPAN (Comprehensive Perl Archive Network) is a good example of a successful installer, though only
for products in one language: Perl. The command-line interface for using CPAN is straightforward,
and there are plenty of graphical interfaces available too. The modules are downloaded as gzip'd
tarballs of source code and built locally using make. Any other missing modules can also be
automatically downloaded. CPAN uses a worldwide collection of mirror sites, all containing the same
packages.

The strengths of CPAN are that the range of modules is enormous and that it is a focal point for the
Perl community. It has scaled well with a large number of users and is one reason for the popularity
of Perl. The main weakness is that all of the modules are developed independently, so you may end
up with long installation chains (see Section 9.6 later in this chapter) or with two different modules
needing different versions of another module.

9.5.3. Windows

Some good resources for lists of mainly Windows-related installation tools are the Open Directory
category at http://dmoz.org/Computers/Software/System_Management/Installers and InstallSite
(http://www.installsite.org/pages/en/msi/authoring.htm), which is a web site dedicated to Windows
installers and to InstallShield in particular.

9.5.3.1. Windows Installer

Windows Installer is the name of the installation toolset that has been released with all Windows
releases since Windows ME. Now at Version 3.0, Windows Installer produces MSI files that can be
executed to behave as an installer. The benefits of Windows Installer include atomic installs,
add/remove program integration, checking for files in use, and full support for automatic reboots. If
you want your product to be compliant with the Microsoft Windows Logo program
(http://www.microsoft.com/winlogo), then it has to be released as an MSI installer. This is one good
reason why all the commercial installation tools now support MSI.

The main drawbacks of Windows Installer are its complexity and the size of the generated installers.
Many of the restrictions imposed by earlier versions of the MSI SDK seem to have been fixed in the
latest version.

http://apt4rpm.sourceforge.net
http://www.kitenet.net/programs/alien
http://dmoz.org/Computers/Software/System_Management/Installers
http://www.installsite.org/pages/en/msi/authoring.htm
http://www.microsoft.com/winlogo
http://lib.ommolketab.ir
http://lib.ommolketab.ir

One interesting installation tool is WiX (http://sourceforge.net/projects/wix), which is used by
Microsoft internally to create MSI files. WiX uses XML for its configuration files. There is an overview
available at http://www.ondotnet.com/pub/a/dotnet/2004/04/19/wix.html.

9.5.3.2. InstallShield

InstallShield from Macrovision (http://www.installshield.com) is probably the most commonly used
commercial installation tool. InstallShield is also one of the oldest such tools. It costs $2,499 for the
top-level edition. Earlier configurations were not stored in XML, but they were mostly in text files. You
can build installers for a number of different platforms, but most InstallShield installers appear to be
for Windows. Available in English, German, and Japanese, InstallShield can produce installers in over
30 different languages. It has integrated support for Visual SourceSafe and a huge range of other
features, which explains the large number of choices on every screen of the UI.

Simple projects are easy enough to create using the wizards that come with the tool, but larger ones
can require some time to get right. The installer debugger and the binary install logs in C:\Program
Files\InstallShield Installation Information can help you greatly with this. There is a list of rather
overpriced InstallShield books at InstallSite (http://www.installsite.org/pages/en/books.htm), along
with a good community of users.

9.5.3.3. InstallAnywhere

InstallAnywhere from ZeroG (http://www.zerog.com), now also owned by Macrovision, is a good
example of a newer type of installation tool, one that uses the platform-independent nature of Java
for its installers. The cost for the top-level edition is $2,999. InstallAnywhere installers are specified
using XML configuration files created by a nicely uncluttered UI. Almost any platform that has a JRE
(Java Runtime Environment) is supported, both for the installation tool and for the installers that it
creates, so creating installers for many platforms is faster than usual. InstallAnywhere is focused on
releasing Java applications; it has a documented API so you can call it from other Java applications
and it even has an Ant task for creating installers. The tool is available in English, German, French,
and Japanese.

When you run an InstallAnywhere installer, it communicates very clearly what it is doing. There is a
list of steps to show you what stage the install is in, and there are thoughtful buttons to restore
choices on a page after you have messed around with them and forgotten what their original values
were. The summary page that is shown after the installer has gathered all the information it needs,
but before the install begins, is quite thorough.

To enable extensive logging in debug mode when you run an installer, press
and hold Ctrl on Windows or set the environmental variable LAX_DEBUG to TRue.

The disadvantage of all this portability is that the customer has to have a JRE on his machine to use
the installers that are generated by InstallAnywhere. This is hardly unlikely if the final application is a
Java application, but it can be a hindrance to installation. InstallAnywhere does let you bundle a JRE
together with the installer, but of course this makes the installer much larger.

http://sourceforge.net/projects/wix
http://www.ondotnet.com/pub/a/dotnet/2004/04/19/wix.html
http://www.installshield.com
http://www.installsite.org/pages/en/books.htm
http://www.zerog.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.5.3.4. Wise for Windows

Wise for Windows from Altiris (http://www.wise.com) is the other commercial installation tool that
seems to be most commonly used. The top-level edition retails for $1,999. There is a comparison of
Wise for Windows and InstallShield at http://www.installsite.org/pages/en/msi/comparison.htm, and
there are some more technical tips at http://www.ewall.org/ContentExpress-display-ceid-8.html.
Most reviews comparing InstallShield and Wise for Windows seem to feel that the two tools are
roughly comparable in what you get (both good and bad) for your money.

9.5.3.5. InnoSetup

InnoSetup (http://www.jrsoftware.org/isinfo.php) is an open source installation tool by Jordan
Russell. It has an active community and some enthusiastic users. However, InnoSetup runs only on
Windows, produces installers only for Windows, and does not use the MSI installer format provided
by Windows. There is good support for installers in languages other than English, and indeed a single
installer can be run using many different languages. Since the tool is written in Delphi, Pascal is used
to write any scripts that are executed by installers, but the UI is clear and a script debugger is nicely
integrated into it. The documentation is concise, and there are a number of third-party tools built on
top of InnoSetup. One well-known project that uses InnoSetup for its Windows releases is Subversion
(see Section 4.6.2).

9.5.3.6. NSIS

NSIS (Nullsoft Scriptable Install System) from http://nsis.sourceforge.net is another open source
installation tool that runs only on Windows and produces installers only for Windows. Originally
developed by Joost Verburg for the WinAmp music player, its claim to fame is that it adds only 34KB
of overhead, so its installers are almost as small as possible. Like InnoSetup, it doesn't use MSI, so
you can't create installers that are Windows Logo-compliant. NSIS is used by a number of low-cost
products, including Google's Gmail Notifier (http://toolbar.google.com/gmail-helper).

http://www.wise.com
http://www.installsite.org/pages/en/msi/comparison.htm
http://www.ewall.org/ContentExpress-display-ceid-8.html
http://www.jrsoftware.org/isinfo.php
http://nsis.sourceforge.net
http://toolbar.google.com/gmail-helper
http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.6. Installation IrritationsShip Happens!

Some common issues with installations from the project's point of view are:

Testing installs

Testing installs is hard since a single installer can change the entire environment of the
machine on which it was run, and can do this in ways that are hard to revert. One approach
that can help is to use Norton Ghost, g4u (Ghost for Unix), or VMware to create copies of the
system software, and to restore the machine's original state after each test install.

Automating the process of testing installs is also hard because many products' installers are
GUI driven, and it's also complicated to determine whether an install really succeeded or failed.

Testing localization

Ideally, you want to test every localized installer on an appropriately localized machine. This
problem grows linearly as you support your product in more languages, and automating this is
hard.

Automating installer creation

Automation of the installation tool as part of a release process, to create the installers for the
product, is also tricky. Command-line use of installation tools often doesn't seem to have had
the same amount of testing as the GUI versions of the same tools.

Installing third-party products

Bundling other products with your own product in the same installer is a common requirement,
since it makes installations simpler for customers. Simply invoking other installers from within
your installer is not very elegant, since the same questions may be asked of the customer over
and over again. Catching broken installs and uninstalling other products is also hard. Some of
Microsoft's products provide versions of themselves ("merge modules") that other installation
tools can integrate into their own installers.

Some irritations that customers often find with products' installers are:

Installation chains

If you know what other software is already on the machine that the installer was created for,
then you can bundle everything that your product needs into one installer. This is often the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

case for products for Windows. For products for Unix, especially open source products, the
chain of other software that also has to be installed is daunting to many customers. Sometimes
the chains turn into circles, or fail frustratingly when you are six levels deep.

Inappropriate privileges

Why should a user have to be root to install a package to her own Unix home directory? Why
should your child need to have Windows administrator privileges just to install a simple game?
Too many products assume they have to be installed as the superuser on a machine when they
don't really need to be.

Corrupted installers

Adding a virus or trojan horse to a publicly available installer is a classic approach for infecting
other machines. Consequently, making sure the installer you released is what customers
actually download and run is going to become even more important. I think that signed
packages and installers will become a requirement for all platforms, just as they are now for
embedded Windows devices.

Uninstallers

How does a customer know that uninstalling your product won't damage some other vital part
of his system? Just as installers describe what they are going to do before they do it, thus
giving customers a chance to cancel the installation if they're not comfortable about something,
so uninstallers should provide detailed information about what they are going to change.
Cryptic messages like "Couldn't remove all the files" are really irritatingthey could at least say
which files, and why they couldn't be removed!

Lost data

No data generated by someone using your product should ever be deleted, even if she unwisely
stored it in the same directory where the product was installed; all customer data is sacred.
This data includes how the customer configured your product.

Multiple versions

Make it very clear before an installer actually changes anything whether two versions of the
same product can coexist on the same machine. If not, then explain how the customer would
be able to restore the previous version if there are problems with the version currently being
installed. If this can't be done, then the customer may need two machines, one for production
use and one for development and testing new versions of various tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.7. After the Release

Once a release has shipped and the project team has celebrated and been given suitable mementos,
stock options, cash bonuses, and vacations in Hawaii, what comes next? If it was Version 1.0 and all
goes well, then more people will be using the release than any beta version, so they will probably be
finding more bugs. You may want to plan early for a 1.1 patch release soon after your 1.0 release
datesuch are the vicissitudes of producing software.

Even if you have confidence that you have recorded everything necessary using an SCM tool, most
people still prefer to preserve the actual source tree that was used to produce the release. This is
partly a defensive move in case the SCM tool fails in some way, but it also helps you cope with
unforeseen questions about the build later on (for example, "Was file A built before file B?").

The first step in preserving the build is to make the files read-only. One way to do this is to change
the file permissions. Another way is to copy the files to a CD or DVD and then make that copy
available online when requested. rsync is a standard Unix tool that can create a mirror image of the
files on another machine for backups. Norton Ghost or the open source g4u are useful for preserving
the entire contents of a hard disk when parts of the environment are not being managed by an SCM
tool.

It's a good idea to create a build-preservation policy, clearly summarized somewhere public. This will
avoid making one up on the spot when you start to run out of space to store the releases. (This is
also discussed in Section 10.5.) I recommend keeping all customer releases and internal releases that
had bugs filed against them available, and deleting all other releases older than a few weeks or
months. The reasoning for removing internal releases that have no bugs is that it's unlikely that they
will ever have any bugs. Enough generated files should be kept with each release to permit the use of
debuggers. If non-debug versions are released to customers, then keeping both the non-debug and
debug versions of the build is helpful for this.

Another task that may be necessary after a release is to prepare the source code and development
environment to be placed in escrow. This is to protect customers in the event that your company
goes out of business, in which case the source code to the product is released to them so that they
can maintain it as they feel the need to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.8. Checklist

This section contains a short list of questions that you should feel comfortable answering about your
own release process:

What's the next version number that your product will use? Who decides when it's time to make
a change to each part of the version number?

Where do you go to find the latest public release of your product?

How large is the latest release of your product? Which part of the product creates most of the
files that you deliver to your customers?

What other software does your product depend on, and which versions?

If your product needs license keys, where do you obtain these? How do customers obtain them?
How long does it take for a customer to obtain a new license key?

What kinds of changes are allowed in a patch release? In a minor release? In a major release?

Which versions of your product will operate correctly with each previous version of your
product? How does a customer know this?

Are a customer's data and configuration choices preserved when she upgrades your product?

Can a customer downgrade your product to an earlier version?

What's different between how developers run the product, how testers run the product, and
how customers actually install and use the product? Have these differences been the root cause
of any recent bugs?

If your product is available on the Internet, how does a customer prove that his downloaded
package contains the same bits that you released?

What help do you have in your product for supporting it once it has been released? Can a
customer easily display installation and configuration information, along with the results of any
diagnostic tests? Can you use this as part of a phone call or in email?

How many releases can your group really work on at the same time?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. Maintenance
In the long run every program becomes rococo, and then rubble.

Alan Perlis

"Epigrams in Programming"
ACM SIGPLAN, September 1982

This chapter describes how to maintain a development environment and what causes development
environments to change. Maintenance of software products is then discussed, along with some typical
maintenance tasks and how maintaining a product is affected by each part of a development
environment. The final section examines planned removal of things such as files and SCM tags that
have been generated while creating products.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.1. Maintaining an Environment

The useful life of the tools that make up a development environment is generally much longer than
the life of the products that were created using the environment. No one wants to have to use a
different bug tracking tool or a new build tool for every different release of the product. However,
environments and their tools do age with time, and as tools are replaced with other tools, the
environment gradually changes. The environment that you wrote code in 10 years ago is not the
same one that you use noweven Emacs and vi have changed in that time. It's also probably faster
now than it was back then.

What's important is that older tools and their environment still have to be maintained until all the
products that were developed with them are no longer supported. It's very frustrating to spend time
learning about an older version of a product and making changes to the source code, only to find that
you're unable to build and test that version, or that something else has changed in the environment
and now you have to spend time working out what it was.

Part of maintaining an environment is checking that the versions of the tools that you use are still
supported. Using the latest version of any tool is somewhat risky, but is acceptable if the tool does
just what you need it to. However, beware of the total amount of time that can be spent upgrading to
every new version of a tool.

Why do tools rot?

Code rot is a casual way of describing what happens when a piece of source code is not
regularly maintained. As the source code around it gradually changes, that piece of code
eventually stops working or, even more annoyingly, causes bugs to spontaneously
appear in the product. A similar kind of decay called tool rot occurs with development
environments when tools are not used for a while and then don't work when you want to
use them.

There are at least five common reasons why tools stop working properly when
development environments change:

Operating system changes

A tool may work with only certain versions of an operating system. If a developer's
machine is upgraded to a newer version of the operating system, then this may
prevent older versions of the product that still use the tool from being built.

Command-line argument and API changes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the arguments passed to a tool change in number or order, or the API to the tool
changes in some other way, then the tool may not work properly in older
environments.

Data format changes

If the format of the data given to a tool for input (or expected from a tool as
output) is changed, then the tool may stop working properly, or may create hard-
to-detect errors in the data when used in older environments.

Licenses

You may simply not realize that a license key for a tool has expired, especially if
the tool is part of an infrequently used older version of your environment.

Mergers and acquisitions

When companies or projects join forces, their development environments usually
undergo large changes. The best tools should win, but sometimes the survivors are
those that are used by the largest number of people, or that it would take the
most effort to migrate data from.

The remedy for tool rot is to regularly use the older environment. Changing either the
environment and tools or the product's use of the tools, but not both at the same time,
will also help you avoid tool rot.

The more common case is environments that are set up but never maintained until some key tool
stops working. Then the pressure to solve the problem, along with the ensuing discussions about
fixing or replacing the tool, can greatly distract people from developing the actual product. Instead,
it's far better to regularly monitor all the tools that are used, and to maintain a sense of the effort
and cost to make particular changes to your environment. You can then decide whether to postpone
upgrades and deal with the inevitable crises, or to spend the time to gradually upgrade tools before
they break. Also, mistakes happen and priorities change in a project. If you have a good
understanding of the costs of changing the environment's tools, then you're better placed to deal
with these unplanned changes.

Some estimated life spans of different kinds of tools in a typical small to medium-sized project are
shown in Table 10-1. These are the times before the tool is replaced with an entirely new tool, not
just the intervals between upgrades. The values are subjective, based on my own experience and
observations about when the larger open source projects have changed the tools in their
development environments over the past 15 years.

Table 10-1. Typical tool life spans

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tool Life span (years)

SCM tool 5-10

Build tool 8-15

Test environment 3-6

Bug tracking system 3-5

Documentation environment 5-10

Ideally, a development environment's own SCM tool should be able to track all the changes in the
development environment, including changes to the SCM tool itself. In practice, many of the tools
used in an environment are inconveniently large for tracking with existing SCM tools. Operating
systems can be checked in to SCM tools but they rarely are, for just this reason. In this case, making
copies of the important disks, CDs, and DVDs is appropriate. Another approach that's quicker when
you want to reproduce an environment later on is to use Norton Ghost, g4u, or VMware to create
copies of key machines, and then to store those copies elsewhere.

Even if the original files for the tools themselves are too large for your SCM tool, you can use files
that describe the environment, and these files can be controlled using your SCM tool. One approach
is to use a collection of files named the environment documents. Some of these files are updated by
hand (for example, when processes and policies change). Other files can be automatically updatedfor
instance, if the build tool generates a list of tools used and their versions. This is also a good place to
record the location of copies of large tools.

Another aspect of a development environment that needs to be regularly maintained is the test
environment, since making changes in an older environment is doubly hard if you don't have the
same test environment that was originally used. Just as with the current environment, it's important
to be able to use both development and production machines in an older environment.

10.1.1. Migrating Your Data

The purpose of many tools such as SCM tools and bug tracking systems is to make stored
information easily accessible. Part of maintaining an environment is migrating data from one tool to
another as you change which tools are in active use.

Good practice with data is to use well-defined and open (i.e., license-free) file formats. Structured
ASCII text, XML, and Ogg Vorbis for audio are all examples of open formats.

Before adding data in whatever format a specific tool uses, you should ask yourself how you could
extract the data in the future. Many tools such as Microsoft Word use proprietary formats that only
tools from the creator can fully understand. This is, of course, part of the sales strategy for such
tools: if you can't extract your files and data from the tool, you are locked in to the tool and can be
forced to pay for upgrades, generating more income for the product. The simple test of how easy it
will be to migrate away from a tool is to search the tool's documentation for "export" and "Save As."
Count the number of different formats that are supported and compare this to the number of
different data formats that the tool can import. The numbers should be about equal.

Data migration is one part of defining an exit strategy for the tools in your environment. You can't

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define the tools that you will use five years from now, but you can make it easier to change to those
tools when you have to.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.2. What Is Product Maintenance?

One simple definition is that it's everything that comes after the first release, whether adding new
functionality or fixing bugs. It's certainly true that for many products much of the code is written for
that first release and then never drastically changed, unless it's eventually discarded for a completely
different set of files. Another way to define maintenance is that for many companies and projects, all
releases except the next onethe one that is still to comeare in maintenance mode. This includes any
version of the product that is actually in use by customers.

Being in maintenance mode usually means that fewer people and resources are assigned to that
version of the product, and sometimes these are the less experienced or less expensive people and
resources. There are fewer and less-frequent changes committed to the source code, and there are
quite likely fewer builds. Less effort is spent testing, so fewer bugs are found, at least by the
developers and official testers. In the maintenance phase, bugs are reported mostly by customers.

Figure 10-1 shows some estimated life spans of typical software products; note that products spend
most of their life in maintenance. For example, if a short-lived product has one major release each
year, and each major release is expected to have a useful life of at least three years by the time
everyone has upgraded from it, then two-thirds of its life span is spent in maintenance. The amount
is about the same for long-lived products.

Figure 10-1. Life spans of typical products

Since so much of a product's lifetime is spent being maintained, it's worthwhile seeing how a
development environment can help with it.

10.2.1. Developing for Easier Maintenance

How to write code is not the main focus of this book, but here are a few suggestions for making your
source code easier to maintain. The next section, Section 10.3, also discusses tools and books that
can help when it comes to understanding code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember that source code is a communication from human to human, as well as from human
to machine.

The less code there is, the less there is to maintain. Eliminate all commented-out code and code
surrounded with the ugly #ifdef NOTDEF directive. It's still in the SCM tool if you need it later. If
it's code for logging or debugging, use a proper framework for these, not ad hoc commented-
out code.

Avoid or clearly document functions and methods that need to be called in a certain order or
that should not be called more than once. Treat functions with side effects with great caution;
avoid writing them if at all possible.

Describe the current implementation before you change it. This helps to make the changes clear
for you, and it's useful as a reminder later on of how it all used to work.

Finally, consider why code rot occurs in your project. Perhaps it is due to particular changes that
occur regularly or to individual practices by certain people. If you can see a pattern, then you may be
able to change it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3. Product Maintenance Tasks

This section describes some typical tasks that occur for products in maintenance mode and how the
tools in the development environment can help with each task.

10.3.1. Understanding Code

Whether you wrote it or not, there's always a certain amount of time spent coming back up to speed
on any piece of code. A good description of the key classes and methods or functions, or even a UML
diagram, can go a long way here. Comments on how each class or header file is expected to be used,
together with comments for each method or function and descriptions of their expected arguments,
will also speed up your understanding.

There are some tools that can help with understanding legacy code. After grep, the simplest of these
are etags and cscope, both of which generate information about source files that editors such as
Emacs and vi can use to locate definitions and uses of keywords. Some editors, code browsers, and
class navigators will analyze the structure of the product's source code and allow you to jump from
one area to other connected areas. This is something that you should expect from any decent IDE.

Some of the more interesting tools are those that can help with refactoring a product. Refactoring is
reorganizing source code so that it is easier to understand but behaves exactly as it did before being
refactored. These tools often have a deeper understanding of programming languages than ordinary
text editors, so they can do things such as rename a variable throughout a product; create a method
from a section of code and insert a call to the new method; or add a new parameter to a method and
also to all the places where the method is used. However, just as when you use a calculator instead
of mental arithmetic, it's still important to know what the tool is really doing and to understand which
cases it doesn't handle well. Currently, Java and .NET are the languages with the largest number of
refactoring tools.

Tools such as Javadoc and doxygen, which are both described further in Section 8.8, can produce
documentation about each part of the source code. doxygen is particularly useful for showing the call
graphsthat is, which methods call which other methods. Schema analysis for relational databases is
another area where automated tools can help you understand what an existing product does.

In the end, however, understanding a complex system is a subjective thing. I've even seen people
tape printouts of code to a large wall and color-code different lines by hand. There are a number of
other approaches to and ideas about reading code on the Wiki page at http://c2.com/cgi/wiki?
TipsForReadingCode. One book with an extensive pattern-based approach to understanding source
code is Object Oriented Reengineering Patterns, by Serge Demeyer, Stephane Ducasse, and Oscar
Nierstrasz (Morgan Kaufmann). Another book, which has excellent step-by-step descriptions of how
to understand and change existing products, is Working Effectively with Legacy Code, by Michael
Feathers (Prentice Hall). A book with a much less formal approach, but still with many practical
observations, is Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code, by
"Reverend" Bill Blunden (APress).

http://c2.com/cgi/wiki?
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.3.2. Reproducing a Build

Often the first thing to be done when maintaining a product is to reproduce a particular build,
whether for debugging or for adding functionality. Actually, if you are just trying to understand a
particular bug or debug a core file, you may well be able to use the read-only version of the build's
source files and its generated files, if they have been kept (see Section 9.7). Still, if the bug involves
anything more than changing a configuration, you will probably need to be able to reproduce the
build yourself to fix it.

This is when you get to discover whether your toolsmith really did save everything that you needed,
either with your SCM tool or by copying it elsewhere. Comparing the files generated by your own
build to those from a known build is a useful technique for finding out what changed and whether the
changes were expected. Of course, dates and usernames may have changed, but sometimes it's
worth using tools such as diff and od (a Unix tool for octal dumps) to compare the generated files at
the bit level. Once you know that you have accurately reproduced the build, you can make your
changes with a much greater level of confidence.

10.3.3. Handling Product Name Changes

After the product hath been released once or twice, a new marketing direction shall arise and
require a different name for the product. And lo, Engineering shall wail and gnash their teeth,
for they did hardcode that name in many, many places.

Book of Lessons Learned the Hard Way

Product name changes are something to expect right from the moment when you are first developing
the product. An internal project name chosen by engineering, not by marketing, should be used for
things such as directories, filenames, documentation, and any other aspect of a project that is
tedious to change. Ideally, the product name should be stored in one location in the source code, for
just this sort of situation. This is doubly true for products that are localized for many languages.
Section 3.6.1 has some guidelines on choosing project names.

However, even with the wisest forethought, changing the name of a product can still be a tedious
task. The first step is to make a global search, ignoring case, for the offending text in all the source
code and configuration files. GUIs are particularly hard hit by such changes if their screen layouts are
changed by the size of the product name. The actual global replacement of the name is usually
straightforward enough using flexible tools such as Perl scripts. I strongly recommend doing a test
run somewhere that you will be able to create a list of all the changes, for careful inspection. The
easiest way to do this is to use the project's SCM tool.

Of course, product names creep into more than just source code. SCM labels, the names of build
targets, bug tracking metadata, and documentation are all affected. Some of these will be easy
enough to change, but others such as database field names are much more work. Images, such as
screenshots used in documentation, will probably have to be inspected manaually. In general, each
time you use a product name anywhere in the environment, consider what it would take to change
that name later on.

10.3.4. Handling Company Name Changes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If your product is produced for a company, don't use the company name throughout the source code,
except in boilerplate copyright text. Company names are part of marketing and do change over time
with different marketing approaches. Company names also change when companies are bought or
sold. This kind of change is particularly hard on Java applications because they tend to use the
company's domain name as part of their Java package names (e.g., example.com and
com.example.myproduct, respectively).

A more subtle form of company name change occurs when your company has a contract to produce a
special version of your software for someone else, who is misleadingly known as the original
equipment manufacturer (OEM). Depending on the agreement, you may have to remove your
company's name from anything that the OEM's customers will see, including configuration files. So
it's a good idea to define the current name of your company and the name of the vendor of the
product as separate strings in your source code.

The mechanics of changing a company name are essentially the same as changing a product name
(see the previous secton, Section 10.3.3). There may be more versions of the namefor instance, with
"Ltd." and without "Ltd."and there may be other variations on abbreviations such as "Inc" and "Inc."
to deal with. Also, if the company name appears in copyright notices in source code, a new line with
the new company name and the current date needs to be added, leaving the lines with the old
company name and dates in place.

10.3.5. Handling Copyright Date Changes

Copyright law varies widely from country to country, and each software license has its own quirks,
but a common requirement seems to be recording when it was that source code files were changed.
SCM tools will readily tell you this information, but it seems that the years themselves have to be
embedded in the source files. So most source files now have lines of text at the top of each file with
comments such as:

Copyright © 2000-2005. Acme Corporation, Inc.

Whether or not this copyright notice is actually necessary (and I've heard different legal opinions), it
persists. Then someone notices that the ending year (say 2005) is last year and she wants to update
all instances of 2005 to 2006. A simple global replacement is fine, if you make sure that only actual
copyright lines are changed and that no copyrights in third-party source code are modified. Usually
someone else in the project then points out that only the files that really were changed in 2006
should be updated, which means that someone has to create a list of all files that have been modified
in the last year. At least an SCM tool makes this relatively easy. To list all the files that were changed
in a CVS repository in 2005, change to a top-level directory and type:

cvs -q log -NRS -d "01 Jan 2005 00:00:00<31 Dec 2005 23:59:59" .

If your machine is in a different time zone from the CVS server, then you may need to adjust the
times to account for the difference between the time zones. Newer versions of CVS allow you to
specify the time zone to be used with the log command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.4. Product Maintenance and Development
Environments

This section discusses how maintaining a product is helped by each part of a development
environment. The next section discusses the process of deleting things such as SCM tags, files from
builds, test results, and documents.

10.4.1. SCM

The different parts of an SCM tool that particularly help with maintaining an existing product are:

Change logs

Change logs will show you exactly what has changed in a given version since it was last
released. They're also good for finding the right people to talk to about the changes in that
version, and deciding which areas of the product ought to be retested.

ACLs

Limiting who is permitted to make changes to a release branch should mean that the amount
of change to it is limited, which should in turn reduce the amount of manual retesting that is
needed later on.

Annotation

The ability to know who changed each line, and in which revision, makes it easier to
understand the purpose of specific changes. This is a major feature for large open source
projects, where the developers may never have actually met each other.

Removing unused files

Periodic sweeps through the source code to remove files that are entirely unused is safer when
SCM tools are used.

What do you do if you find you didn't add everything that you needed to reproduce a build into the
SCM tool? Perhaps some patches were applied to the operating system but not noted anywhere.
Perhaps the compiler used was a particular version that's no longer available? The first thing to do is
add the missing requirement to your environment documents (as introduced in Section 10.1, earlier
in this chapter) and keep those documents under SCM control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The second thing to do is revisit the precise checked-out source files that were used for the build, if
they are still available (see Section 9.7). Can you narrow down the effects of the unrecorded change?
If you rebuild using a copy of these files and the current environment, which files are unchanged and
which files are totally different? The next thing to do is find a machine that is unchanged since the
time that the original build was created. Maybe the environment on that machine will give you some
clues about what changed? Good luck, and remember to add the information that you do discover to
your environment documents.

10.4.2. Building

After you've made changes as part of maintaining an older version of a product, automated builds for
all the product's supported platforms can help to catch platform-specific errors quickly, before the
changes become too distant in the collective memory of the group.

Automated builds also help to detect when changes to your development environment have broken
your ability to recreate older builds. For instance, imagine that you make a change in the current
version of your product and that the changed source code doesn't compile with the older version of
the compiler used for a previous release. An automated build using the older environment can tell
you about this explicitly, possibly even before you try to port the change back to the earlier version
of the product. This gives you a clear understanding of which changes to the product make an older
environment unusable.

10.4.3. Testing

Large numbers of automated unit and system tests are what most people want when they are
maintaining a program. Tests for the new functionality are good, but knowing that you haven't just
introduced bugs into a shipping product is even better. Of course, no test suite has 100% coverage
or accuracy, so just because the automated tests pass cleanly doesn't mean you don't need to review
the code changes and have other people confirm the test results and run manual tests.

The drawback of having large numbers of automated tests is that they increase the number of tests
that have to be maintained. At least if you maintain the source code for the product and the tests
that go with it at the same time, then the whole product gets changed at the same time. This is also
a good argument for why unit tests should be built every time the product is built.

10.4.4. Bug Tracking

One of the most frustrating parts of maintaining a product is when a bug has to be fixed in multiple
releases of a product. This is one place where a bug tracking system can help or hinder the
maintenance effort. Sadly, tracking one bug in multiple releases is rarely done well by current bug
tracking systems, as discussed in Section 7.3.3.

Even if tracking a bug in different releases is not as clear as it could be, if your bug tracking system is
integrated with your SCM tool, then you may be able to tell which releases a bug has been fixed in by
looking at the precise file changes that are associated with the bug.

During maintenance, assigning priorities to bugs often seems to become harderegos outside the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

project are now involved. On the other hand, there may be fewer bugs to deal with now that the
release is in maintenance mode. Historical reports are just as useful with maintenance releases as
with cutting-edge releases, especially if you can track how long it takes for bugs to get fixed. You
may even be able to use this as a selling point for your product.

10.4.5. Documentation

Many different aspects of documentation need to be considered during maintenance. The original
requirements documents may need to be updated if a change is not simply for a bug fix. Any major
changes to the source code should be reflected in the source code's comments, especially comments
that are no longer accurate after the change. The customer documentation for the product may also
need to change as part of the maintenance change. Internal documentation may need to be
regenerated after a change, though this is usually something done by the automation environment.

A bug that is associated with a particular change may contain text to appear in the release notes for
the next release. It's helpful if all of these pieces of text can be assembled automatically from the bug
tracking system into a release notes document. Many open source projects contain a file named
CHANGES or ChangeLog that describes the changes made to a product in each release. There is a
GNU standard for change logs as part of the coding standards at
http://www.gnu.org/prep/standards/standards.html#Change-Logs.

10.4.6. People and Politics

People who write software are often neophiliacs ("lovers of the new") by nature, so getting their
attention to help fix older bugs is hard. You may hear them say, "But that's already fixed in the latest
version," which often implies, "You should upgrade to it and live with the possible presence of other,
different bugs." Sadly, such a reply may also imply, "Fixing that bug in your version is a low priority
for us because we don't make any money by fixing old versions of our software."

This tendency to neophilism can also lead to maintenance tasks being considered less prestigous
within a project. To avoid this slur, some projects assign maintenance tasks to all members of the
project, which makes particular sense if the original authors of the code are still present. Other long-
standing projects have two teams that leapfrog over each other, with the team that maintains the
oldest version of the product also developing the newest version when work on it begins.

http://www.gnu.org/prep/standards/standards.html#Change-Logs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.5. Cleaning Up Your Environment

Part of maintaining a development environment is deciding when to throw things away. Taking out
the trash isn't anyone's favorite chore; it usually gets ignored for as long as possible, and the bigger
the trashcan, the worse it smells when you do finally take it out. This section discusses how you can
make this chore less tedious by carefully planning it beforehand and then automating it as much as
possible.

Before deleting any file that took longer than an hour to generate, it's a good
idea to compress and archive such files to CDs, DVDs, or backup tapes. If
possible, do this yourself so that it's not a burden on an IT department. Then
keep these archives in folders or boxes with something like "Discard after 2006"
written on them.

SCM

The purpose of SCM tools is to store as much information about their contents as possible, so
in some sense it's ironic that we have to clean them up. Storage space is finite, though this is
rarely a problem unless you have many copies of binary files, or large files that differ greatly
from each other. Backups are harder and take longer as repositories become very large, but
that too can be dealt with as necessary. The real clutter in an SCM repository is actually dead
branches and hundreds of dusty tags on files. This clutter can make it hard for people to see
the changes of interest to them.

For a medium-sized project producing a few builds per week for testing purposes, some
guidelines for removing tags and branches are:

Most importantly, never remove a tag for a released version of the product, or a branch
for a released version of the product.

Remove tags for internal builds older than six builds (or two weeks) that have no bugs
filed against them. If no one has used a particular build by then, they probably aren't ever
going to.

Lock private branches a month after the last change to them, or when their users have
finally merged them into another branch.

Archive and then delete private branches after two more releases of the productif the
changes on the branches haven't been used by then, the product has probably changed
too much for those changes to still be useful.

There are projects that periodically remove all revisions of files except for the versions of files
that are tagged. This seems extreme to me, since sometimes changes in developing source
code are where the mistakes to be avoided in the future are recorded.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Builds

For internal builds, the ones that are used only for testing, keep the entire build directory with
all its object files for the last two or three builds, if space permits. For builds older than that,
you can most likely just keep the generated packages or executables and delete the object files
and the source code used to produce the build.

If an internal build is older than six builds (or two weeks) and has no bugs filed against it, then
that build can be removed entirely.

Testing

Just deleting the actual files related to the build doesn't mean that the build is gone, of course;
it still exists as a tag in the SCM tool. Once the tag for a build has been removed, then the test
results for that build can also be deleted.

Full-time testers quite often have personal storage space or databases allocated to them, and
they may well create very large amounts of data while they run tests. The temptation is to
keep everything because "the bug might reappear" or "a similar bug might reappear." One
useful guideline here is to ask how long it would take to recreate the data if it were needed,
and then to delete the largest files that are easiest to reproduce.

Bug tracking systems

Section 7.3.2 also discusses cleaning up bug tracking systems, but the most common kind of
clutter is the labels for all the builds that different bugs appear in. Removing a choice from a
drop-down box of builds should not change any bugs that already exist, though it may make it
harder to modify existing bugs later on. Periodic scans of bug tracking systems for overly large
attachments are also part of maintaining the tool.

Documentation

Documentation directories seem to be traditional areas where things are never thrown away.
Consequently, they come to contain layer upon layer of unusable documents. One way to avoid
this quagmire is to keep documents in formats that work well with your SCM tool, and to then
store different versions of the documents using the SCM tool. Too many "documentation" files
turn out to be copies of other documents, and then the copies diverge and neither can be
deleted.

Section 11.5 contains some ideas about how to avoid content rot on project web sites, and
many of these ideas are applicable to the rest of a project's documentation.

Releases

The obvious rule for releases is never to delete anything that has ever been distributed to
customers. Very old releases should certainly be archived; they should also be made
unavailable, or harder to find, on your web site or FTP server. The download statistics for each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

release package come in handy for checking what is still used. Section 9.7 has more
suggestions about what to keep and what to discard from releases.

Something else that can take up a great deal of storage is files from customers, especially if
the files include core dumps from crashed programs. Even text-based logfiles can be quite
large sometimes. The most important thing is to be able to identify a bug or customer issue
related to each file. Otherwise, you'll never know whether you can delete these files.

Files from customers can also contain sensitive information, so make sure you know who is
allowed to access them, or scramble the sensitive parts without affecting the issue. This is
another good reason to delete these files and their backed-up copies after a certain time.

People

Removing a person from a project doesn't mean rewriting history to make it seem that he
never existed. Disabling his accounts, stopping access to the various tools in a development
environment, removing him from email aliases, and redirecting his email should all be as
automated as possible. The details of changes to source files, bugs, test results, and
documentation should all keep the person's name, but all uses of his name as a contact within
the project should be changed. If it isn't possible to remove the person's account without all
references to him being removed too, perhaps his account can be renamed in some consistent
way? Be careful to avoid reusing a username, though; for example, if two people named John
Smith work on the same project at different times, use different usernames for each of them.

Documents, source code, and test definitions that contain the name of their current owner
should be updated. Another place to make sure that the person's name is removed is any part
of the project web site that refers to him as a contact for something. This can be avoided in the
future by using email aliases such as scm-admin, bug-admin, and build-admin for different
areas of the environment.

One subject that is rarely discussed is what to do when someone working on the source code
dies, and you're the one who has to take over her code. All of the above guidelines for
removing someone from a project still apply, but you may feel awkward when you come to
change or delete her work. My suggestion is to put a memorial comment block in the code with
an injunction to future developers not to remove it, ponder your own mortality for a while, and
then move forward.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.6. Checklist

This section contains a short list of questions to ask yourself about how your own development
environment is maintained and also how your project's products are maintained:

Who is responsible for deciding when tools or operating systems need to be upgraded or
replaced?

Who makes sure that new licenses are acquired for tools before the existing licenses expire or
are exceeded?

How much of your development environment can be controlled using your SCM tool? Can your
SCM tool track changes to itself?

How long does each release of your product last? How long is it supported by your project or
company, and how long is it actually used by customers?

Which areas of your product are the hardest ones to work on? Why? What could make them
easier to maintain?

Which parts of your product would you most like to refactor or rewrite? How do you know
whether the time spent refactoring or rewriting them would actually make them easier for
anyone else to maintain?

What finite resources are used by your development environment? How long could you use your
environment if nothing were ever discarded?

Do you know who is permitted to make changes in product releases that are in maintenance
mode?

How confident are you that your unit and system tests let you know if your maintenance
changes have broken something unexpectedly?

How do you decide what to test in a maintenance release of your product?

How do you know who to contact about each part of the product in earlier releases?

Do you have processes defined for removing files, SCM tags, builds, test definitions and results,
bug tracking information, and releases from your project?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. Project Communication
The speed of the project is proportional to the speed at which information moves between
people's heads.

Alistair Cockburn

The End of Software Engineering

This chapter discusses how communication can be improved within a project by using a range of
different tools, including web pages.

Imagine if all builds took no time at all and we all wrote perfect code. Then the limiting factor in how
long software takes to write would probably be how well the people in a project communicated ideas
with each other. Even back in the real world, where we all have to wait for our builds and where bugs
somehow spontaneously appear in our code, poor communication in a project still wastes enormous
amounts of everyone's time. Many cases of poor communication are for complicated and emotional
reasons, and when a group of people don't want to communicate with each other about something,
no mere tool can make it happen. However, providing a group with different communication tools can
encourage them to communicate better.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.1. Tools for Communication

Some of the most helpful tools for project communication have common characteristics. These
characteristics are:

Easy to use

If a tool is hard to use, people will use other tools instead. Obvious, but often overlooked.

Context

Who is speaking? When did they speak? Who were they talking to? Without this kind of
context, all communication becomes harder to understand.

Active and passive modes

Sometimes you want to find information or actively seek someone out. Other times you want
the information to be sent to you, with no action needed on your part. A good environment can
provide both kinds of communication.

Archives

Communications that can be stored, printed out, and searched are more useful than those that
are ephemeral or just a mass of data.

Some communication tools that are commonly used in software projects are:

Web sites

Web sites, Wikis (which are web sites that anyone can edit, with the editing being done via a
web page) and weblogs (online diaries, also known as blogs). These are all simple to browse
actively (though they are not always easy to follow) and they can sometimes be searched.

Email

Email, mailing lists, web-based groups such as Yahoo! Groups, and newsgroups. Email is the
common denominator, and everyone on the project already uses it. It's easy to be a "lurker"
and passively receive information. Messages are often archived, and following a conversation
by subject or thread usually works well enough.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RSS feeds

RSS feeds are places that RSS reader applications can regularly poll for information. Most
weblogs and many news sites already have RSS feeds. Some automation environments can
provide RSS feeds about the state of the build. Many web browsers also have RSS readers
already built in.

Messaging

Instant messaging (IM) and SMS text messages on mobile telephones are used by some
groups for short conversations. Some IM conversations are archived for later reference.

Telephone

Telephones are easy enough to use, but they actively interrupt other people, and voicemail
messages are tedious to search through. Section 12.4 discusses other problems with
telephones in a development environment.

Office navigation aids

The basics for finding people in an office are a list of telephone numbers that is regularly
updated and name tags on cubicles and offices. A map of where people sit and a web page with
photographs of people's faces are even better.

Wise users of each of these tools know when it's time to put the tools aside and to try to talk to the
other people face to face. All the tools listed above deliver compressed forms of communication, and
some information is inevitably lost in the compression. Subtle tones of voice, quick facial expressions,
and body posture are all part of complete communication. If you are in a company, find the people
involved and find a good-sized conference room; corridor communication is only good for short
conversations and it can disturb other people who are working.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2. A Project Web Site

The best idea that I know of for helping a group to communicate clearly is a good set of web pages.
Even the best web page won't replace other forms of communication, but it can be a central place to
store many of the results of using the other tools to communicate. A web site can be useful both for
relatively static information (such as how to build the product) and also for more dynamic information
(such as the latest commits to the project or the current state of the automated builds).

Some general suggestions for a project's web pages include:

Host the web site on a server with enough resources to run other jobs, as well as serving up
web pages. There are always periodic jobs that are more convenient to run on the same
machine as the active collection of web pages. Larger jobs can always be run elsewhere and
their results can be copied over to the web server.

Create an email alias for each area of the web site and make this address prominent on each
area's web page. Example addresses are scm-admin for SCM-related questions, build-admin for
build-related questions, and bug-admin for questions about bug tracking in the development
environment.

When someone leaves the project, wait a month and then scan the web pages for references to
him, then update the pages with the relevant contacts or remove the references. The
information is still there in the SCM tool. Updating the web pages doesn't mean erasing his
name as though he never existed; you're just removing him from the current contacts.

11.2.1. Access Control

One issue that is part of making the project's information available on a web site is how to restrict
access to it. In an open source project, this is usually a question of who is allowed to change the
information, which then comes down to commit rights (see Section 12.5). Still, in some open source
projects, some bugs are marked as private if they are related to security risks.

In a closed source development environment, the web site should be accessible only from within the
private network. In some companies, the engineering group doesn't want salespeople selling features
they may have seen being added to the source code, since the features may never be released. Many
companies consider the list of bugs in a product to be sensitive information.

The simplest way to restrict access to sensitive areas of the web site is to configure your web server
to request a username and password for certain locations. There is a good tutorial about
authentication, authorization, and access control for Apache at
http://httpd.apache.org/docs/howto/auth.html. You can also use .htaccess files on a per-directory
basis, but this is less efficient. If the information on sensitive web pages is going to go over a public
network, or any part of the network contains a wireless link, or the physical security of the network is
in doubt, then make sure that URLs use https:// rather than http://.

http://httpd.apache.org/docs/howto/auth.html
https://
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3. Different Areas for the Project Web Site

This section contains some of the information that I've found useful on the project web pages that I
have created. There is very little about web page design in this section; basically, the web pages
should be as clear as possible, with as few clicks as necessary to get from any page to any other
page. For medium-sized projects, most of the key information for each area should be able to fit on a
single web page. The web pages should also work on every browser used by anyone in the project,
including text-based browsers such as Lynx running over slow connections.

Much of the information can be described using simple HTML, which makes retrieving it faster than
having to open PDF or Word files. Many automated tools that generate reports already generate
HTML. If not, then tools exist to convert the report to a format more suitable for browsing.

11.3.1. Home Page

The home page is the default page for the web server. It should have links (often in a menu on the
lefthand side) to the main page for each of the other areas. Other useful information for the home
page could include:

Messages about server outages and other current project-related news. When news items
become old, move them to a separate location; don't delete them.

A link to FAQs.

The current status of various important builds.

A search box for different parts of the web site.

Adding some RSS newsfeeds can also encourage people to revisit the page throughout the day. The
feeds can even be project-related ones.

11.3.2. Getting Started

One use of a project's web site is to help people to get started with the project. One document is the
"I'm New Here" document. Other documents can be the "New Developer," "New Tester," "New
Writer," and "New Toolsmith" documents. In theory, you should be able to give a new member of the
project the URL of the home page and leave her alone for a few hours. Good information for the "I'm
New Here" document includes:

Names, email addresses, and locations of IT people and toolsmiths

A step-by-step guide to setting up an account on a machine and accessing email

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Names of important servers, what accounts or permissions to ask for, and a basic overview of
the local network

Which directories and files are backed up, and when

How to find a list of contacts for each project

A link to a map of where people are located, with their time zones if the project is global

Once the new project member has a working environment, she can use the "New X" documents for
information that is more specific about what she will be doing. An important part of these documents
is a step-by-step guide to the basics of the job. For developers, this would be how to check out
source code, how to build the product, and how to run it. For testers, the document would include
where to get internal releases, how to install them, and how to run the automated tests.

This is a good time to ask people to write down what they didn't understand or felt was missing from
these documents. Every question you answer in these "Getting Started" documents is a question that
you or someone else won't have to answer later many times. (Actually, what you'll have to say many
times is, "Let me show you where that question is answered," but that beats having to explain
something or other that you've just forgotten the details of because you haven't done it yourself for
three or four months.)

11.3.3. Specifications

The specifications web page is similar to any library, helping you to both find and read different kinds
of documents. Grouping the documents into functional and implementation specifications and
providing a place for developers' written notes about each feature in the product can help other
readers later. A clear separation between speculative specifications and ones that describe what
actually exists in the product is also helpful.

One very useful document that can be automatically generated is a list of the available documents
sorted by when they where first created and when they were last modified. Most documents that are
wanted by people are recently written or recently updated documents.

A good search tool is particularly important for this part of the web site. Section 11.4.3, later in this
chapter, discusses this in more detail. The formats allowed for specification documents should be
indexable by search engines and should be convenient for all members of the project to read and
modify. PDF files are great for printing, but unless you have the right tools to modify them, people
will have to create other files for comments on them. Plain text, Word, and HTML are some file
formats commonly used for project specifications. Chapter 8 has more details about these and other
file formats for documentation.

11.3.4. SCM

Useful information about the local SCM environment includes:

Files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Graphical browsing of the hierarchy of files managed by the SCM tool. You should be able to
locate any single file and inspect and compare different versions of the file. It is also very
convenient to be able to search for text in both past and present versions of files, and to be
able to restrict the view of files to a particular branch. Tools that do this include ViewCVS
(written in Python), CVSWeb (older, in Perl), Bonsai (Perl), and FishEye (a Java servlet). Some
commercial SCM tools such as BitKeeper and Perforce have their own UI for browsing
directories.

Change logs

Change logs for the mainline and other branches, also arranged by project, showing the
names, versions, commit messages, and usernames, grouped and sorted by time. Tools that
do this include cvs2cl for CVS and FishEye.

Branches

A list of major branches, their names, purpose, and creation dates. If a branch is unavailable
for commits, then a message about who to contact to change this is a good idea.

SCM tool

More information about the SCM tool, including details about how to configure it for each
project. Providing some contact names or an scm-admin email alias for further questions about
the tool is very useful.

11.3.5. Building

Information about builds for the projects includes:

Current state

If automated builds are running, a web page is a great place to display the results, especially if
there are many different platforms and products being built continuously. The reports should
include links to build logs and change logs. If there were any warnings or errors generated by a
build, then another useful idea is links to the files and line numbers that generated them. LXR
(http://lxr.sourceforge.net) is an open source tool that can create versions of source files that
can be browsed, complete with cross-references to each file.

Another useful page is a description of all failures of automated builds that were intended for
other people, including the root cause of the failures. Documenting this is painstaking work, but
it pays off when people begin to mutter that "there seem to have been lots of broken builds
recently." The information on this page can show whether they are really right, or this is just a
vague impression.

"How Not to Break the Build"

http://lxr.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A document describing the minimal process to follow when committing changes to the source
code. When a build does break, check whether the root cause was a failure to follow this
document; if not, add sufficient details to the document to stop whatever the actual cause was
from happening again.

"How to Fix the Build"

The counterpart of "How Not to Break the Build," this document describes where to find
information about when the build broke, which files or tools changed since the build last
succeeded, and who made those changes. This document should also describe how to rerun the
unit tests.

Supported environments

A single, authoritative place for project members to find out which machines, operating
systems, and tools, and their versions, are supported for the project. Reports of other
unsupported versions that have been found to work, or not work, can also go here.

Build tool

More information about the build tool and the specific details about how it is used in various
projects goes here. Providing some contact names or a build-admin email alias for further
questions about the tool is very useful.

Historical information

Tracking the size of the product and how long builds take can be useful information for finding
out what's making the product so large, or why builds take so long now.

11.3.6. Testing

Useful information for testers and other people includes:

Current state

The latest results of running the system tests on different releases, including releases internal
to the project and releases for customers. Test reports should include links to the definition of
each test.

"How to Fix a Test"

This document describes the processes for confirming that a test is failing and for escalating
the problem appropriately.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Test tools

A description of the tools used for testing, along with more information about using and
modifying the tools. Providing some contact names for further questions about each different
tool is helpful.

11.3.7. Bug Tracking

Almost all bug tracking systems now have interfaces that can be used through a web browser. This
allows you to refer to the following information from your project web site:

Bugs

Access to the bug tracking system. To help infrequent users, include a way to get a reminder of
the username and password.

Common reports

Links to common reports for developers, testers, writers, and managers.

Submitting a bug

Some guidelines for how to submit a bug for each project. A useful document here would
include a summary of each area of the product and guidelines for choosing an area for a new
bug.

Bug tracking system

More information about the bug tracking system and how it is configured locally for your
projects. Providing some contact names or a bug-admin email alias for further questions about
the tool is useful.

11.3.8. Documentation

Useful information about a project's documentation environment includes:

Documents

Links to both released and latest versions of the product documentation. The release process
should automatically update the links to the latest versions.

Review process

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A description of how the project usually reviews documents and provides feedback.

Building the documentation

The tools required and the process to create the documentation as it is distributed to reviewers
and customers.

Documentation tools

More information about the documentation tools themselves. Contacts within the project for
each tool are also useful here.

11.3.9. Releases

Information about releases can include:

Releases

Instructions for finding and downloading internal and external releases, often using their build
labels (see Section 3.5). The release process should automatically update this page as releases
appear and are approved.

Creating a release

A step-by-step description of the process of creating a release. This is a good place for further
details about what each step does in the automated parts of the release process.

Roadmap

A link to a description of the features planned for each future release. This could also appear in
the specifications web page.

Release tools

More information about the release tools themselves. Names to contact for each tool are also
useful here, as is a rel-admin email alias.

11.3.10. Maintenance

Useful information about maintaining a product includes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Design

A description of the architecture of the product, ideally including both the original design and
subsequent modifications.

Implementation

Notes about the intentions of various developers who have worked on each part of the product.
Previous maintainers may have kept notes about their understanding of each part, too. A good
description of the directory hierarchy for the source code and the intended use of each
directory.

Coding standards

Coding standards for the project, to be followed by future maintainers.

Deprecation

A document describing how to deprecate parts of a product's public API.

11.3.11. Support

The support group will want information such as:

Support tools

Links to the main tools used for tracking customer issues, such as ticket systems, knowledge
bases, and other informative articles. Also links to tools developed by support for their own use
when diagnosing customer problems.

Customer information

A document describing what information to gather from a customer with a problem and, more
importantly, why the information is useful and to whom.

Privacy

A document about the privacy guidelines for customer information and data.

Triage

A description of the basic steps for investigating a problem with the product. For example, how
to debug a core file from a crash of the product and how to copy logfiles and core files to
developers and testers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.3.12. Project Management

Useful information about the people involved in a project includes:

Projects

A list of all the projects, past and present, and email aliases for contacting the members of that
project. A list of the names of the products for each project, including internal project names
and older names, is also a good starting point for understanding what is going on.

People

The people in each project and contact information for them. Charts showing the structure of
different groups and people's roles in each project can help guide others when trying to decide
whom to contact. If the group is part of a company, then a map of the offices (i.e., a floor plan
labeled with who sits where) is great. Of course, someone has to update the map when people
change where they are working.

Resources

A list of the key machines used in the project. For each machine, list its purpose, location,
owner, maintainer, backup strategy, and an estimate of the time it would take to recreate it
from scratch. This can really help when assessing the largest physical risks to a project.

Email archives

An interface for browsing and searching a centralized archive of the messages to email aliases
for each project. Creating such an archive saves multiple people from doing the same thing
within their own mail clients.

Statistics

Project statistics can include the number of lines of source code, the top ten committers, the
complexity of the code, and the estimated value of the code (e.g., using SLOCCount; see
Section 6.5.3). These values are often inaccurate, but are at least entertaining. Historical
trends are more useful than absolute values here.

11.3.13. About the Web Site

All the other web pages discussed so far contain information about projects and their products. This
web page is about the project web site itself:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sitemap

What information is available on the web site. This page should be automatically generated.

Changing pages

The instructions for how to modify a page. These have to be simple, ideally simple enough to
add as a footer to the bottom of every page on the web site.

Changing the web site

A description of how the web site is structured and how to modify the structure of the web site.

Usage statistics

Statistics about how the web site is used. For example, the most popular pages, the pages no
one ever uses, and pages that produce "404 Page Not Found" errors. A list of recently changed
pages is also helpful if you are an administrator for the web site trying to monitor what
information people most want. The changes to the static parts of the web site can often be
tracked using change logs, assuming that these static parts are stored using an SCM tool.

Web tools

Information about how to run a link checker for the web site and about other web-related tools
such as HTML Tidy (http://tidy.sourceforge.net).

Contact details

An email alias for contacting the people responsible for running the project web site.
webmaster or web-admin seem popular. I know of at least one church that uses websexton for
this alias.

http://tidy.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.4. Creating the Web Site

This section discusses the process of creating a web site for a project. As with many parts of a
development environment, the simplest possible solutions are often the best. There are thousands of
complicated web sites that describe how to design and build complicated web sites. To me, this
seems like too much hard work for a site whose aim in life is to help communication between project
members.

Let's assume that you know how to write basic HTML and already have a web server such as Apache
(http://www.apache.org) running on a machine. The web server reads files from a group of
directories and returns them to the visitors to the web site. You will also want to be able to run some
other tasks on the same machine, mostly for generating dynamic web pages.

The first thing to make sure of is that you have a process for updating web pages in a controlled
fashion. To make this easy, I suggest using an already familiar tool such as your SCM tool to control
your HTML files. Some writers may be more comfortable with HTML editors that have built-in support
for copying files to and from a web server. Even so, they should keep versioned copies of the sources
to their web pages using an SCM tool.

11.4.1. Static Web Pages

The simplest solution that I have found for web pages that don't change very often starts with a
small number of HTML files. Static files make life easy for a web server: they take less work to return
to visitors and they can be mirrored on multiple web servers for redundancy and to spread the load.
To update the web pages that people see when they are browsing, you can simply arrange for
commits to these files to also check them out to whatever location the web server reads them from.

To do this with CVS, check out the HTML pages just once to get started, and add the line:

^html/* $CVSROOT/CVSROOT/update_web_site

to your CVSROOT/commitinfo file. Then add an executable shell script named update_web_site to
your CVSROOT directory and also name it in the checkoutlist file. Now whenever files in the html top-
level directory in the repository are committed, the script update_web_site will be run. If the web
server's pages are in /var/www/html, then the script should contain:

#!/bin/bash

cd /var/www/html
sleep 1
cvs -q update -dP &

The -q argument causes CVS to show only the filenames that are updated, and -dP will make sure

http://www.apache.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

that directories appear properly. The sleep 1 and & are necessary so that CVS doesn't interfere with
its own system of locks on files in the repository. The disadvantage of this approach is that as the
number of HTML files grows, it takes longer to update them all, and thus longer to commit a change
to just one file.

Another approach for simple content is to use SCM browsing tools (such as ViewCVS and CVSWeb)
and instead of using simple filenames in the web site's <a> links, use links that download and display
the pages directly from the SCM browsing tool. For instance, a link from the home page to a page
about builds might usually look like:

Builds page

but if you want to use ViewCVS to always return to the latest version of the file, you would change
the link to look like:

<a href="http://cvs.example.com/cgi-bin/viewcvs.cgi/*checkout*/
builds.html?rev=HEAD&content-type=text/html">Builds page

Of course, this approach does increase network traffic and the load on the SCM tool, in this case the
CVS server at cvs.example.com. For moderately busy web sites, this approach seems to be
responsive enough that most people can't tell when ViewCVS is being used.

For convenience, use CSS stylesheets to define the appearance of your web pages. This makes it
easy to change the appearance of the whole web site from a single location.

If possible, avoid JavaScript and HTML frames for this kind of simple page: JavaScript is not always
enabled in people's browsers and doesn't work at all with text browsers; frames make me feel like
I'm reading a web page through a keyhole.

You can produce the illusion of menus expanding when clicked to show further
choices, while using only HTML. First create an HTML fragment for each page
that shows the menu for that page already expanded. Then include the HTML
fragment in the page, so when that page is selected in the menu, the menu
appears to expand as the HTML fragment shows all the other choices.

11.4.2. Dynamic Web Pages

Dynamic web pages are pages that are regenerated each time someone visits them. If you are using
Apache as a web server, then Server Side Includes (SSIs) can work well for small amounts of
dynamic information. SSIs are described in the Apache tutorial "Introduction to Server Side Includes"
(http://httpd.apache.org/docs/howto/ssi.html); basically, you write HTML comments that tell the web
server to insert some text or other content in place of the comment. For instance, the HTML text:

Today is <!--#echo var="DATE_LOCAL" -->

will be appear on the visited web page as:

http://httpd.apache.org/docs/howto/ssi.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Today is Fri Jan 28 20:59:54 PST 2005

There are all sorts of SSI commands available; they can be used to run a command and insert the
command's output or to include other fragments of HTML. Web pages that use SSIs often have a
filename with an .shtml suffix to distinguish them from HTML pages that don't have dynamic content.

If SSIs don't meet your needs, then it's time to investigate CGI (Common Gateway Interface) scripts.
These are executables placed in designated locations on the web server. These scripts are typically
written in Perl, Python, or PHP, but can in fact be ordinary shell scripts or any other executable file.
When the script is visited, it is executed on the server and the HTML that it generates is returned to
the visitor. Since these scripts are running on your web server and use arguments passed in by the
visitor, security becomes a significant problem. You may also want to limit how often a script can be
run, and checking for this within every CGI script can become tedious.

For those who feel that CGI scripts are overkill for a simple project web site, there is another
approach. Using crontab or a scheduled task in Windows, arrange for the dynamic pages to be
regenerated every minute or two. Say you want to include some news headlines in the home page of
the web site. You can periodically run a script that will download the headlines, massage them into
appropriate HTML for your page, and add a header and footer to the page. So long as people are
aware of when the information on the page was last generated and when it will be regenerated, this
approach seems to work well enough for small to medium-sized projects.

11.4.3. Indexing and Searching

Before you can search for anything on a web site, you will need to run an indexing program on the
files. This may take some time and effort to get right, so when adding search capability to your
project web site, decide carefully about:

Which files and documents you want to index and which ones you don't.

How you want to group files so that visitors can search in specific areas of the web site or
exclude other areas from a search.

How much support for complex searching you want. Different indexing and search programs
support different search patterns and syntaxes.

For an extensive collection of search tools, see http://www.searchtools.com/tools. One of the better
open source search tools is ht://Dig (http://www.htdig.org). ht://Dig is a spider search engine, which
means that it follows all the links within your web site. It can use external programs to index a wide
variety of file types and it supports a good range of search patterns through the use of Boolean
expressions and wildcards.

The higher-end approach to searching and indexing is to purchase a Google Search Appliance
(http://www.google.com/enterprise/gsa), which is a piece of hardware that you connect to your
network and allow to "crawl," indexing everything that it can reach. As of early 2005, these
appliances start at $4,995 for the Google Mini. If your web site is public and paid advertisements are
acceptable, you can have Google WebSearch index your site and provide your search interface for
you.

http://www.searchtools.com/tools
http://www.htdig.org
http://www.google.com/enterprise/gsa
http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.5. Avoiding Content Rot

Nothing endures but change.

Heraclitus of Ephesus (c.535-475 BC)

Creating simple web pages and making some of them dynamic and searchable is actually the easier
part of setting up a good web site for a project. The harder part is making sure that the information
stays correct. As soon as someone has written down the steps to do something, the process may
change and make the web page incorrect. Such "content rot" may seem at times to be as inevitable
as the second law of thermodynamics. The key ideas of this section are how to help project members
remember to update the information, one piece at a time. Ideas to help keep the information on the
web pages accurate are:

A designated librarian

Someone has to want to have accurate information on the web site. This person is acting as
the librarian for the project. It could be a manager, a writer, or even the toolsmith. This person
should monitor the content changes in the web site to make sure that links work and page
formatting is consistent. If he is involved in the development and testing of the project, then he
may know who to ask for updates to pages. When email is sent to the team about some
change, the librarian can be the person to send back a request or reminder to update the
related information on the web site.

Easy updates

The process to change a page has to be as easy as possible. This is the advantage of Wiki-
based web pages, where the Edit button is right next to the content. Failing that, you can add
text to the bottom of every page containing the name of the file for the current web page and
the commands to check it out using the SCM tool.

Timestamps

Sometimes just knowing when a page was last changed is enough to decide whether its
contents should be updated. The date can be found from your SCM tool, rather than relying on
people to change a date by hand. Copyright dates are usually unhelpful for this purpose.
Extracting the name of the person who made the last change from the SCM tool can provide a
good starting contact for making future changes.

Templates

A small set of template files for web pages helps people add new information to the web site in
a consistent manner. The templates can also contain comments about the steps to follow to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

add a new page to the web site.

Another approach is to add empty web pages for people, but only if they let you identify them
on such pages in a large font stating who is responsible for adding content.

Link checking

A sure sign of a decaying web site is when all the interesting links don't work. You can use one
of the open source link-checking tools, such as linklint (http://www.linklint.org) or checklint
from W3C (http://validator.w3.org/checklink), to check that the URLs referenced on your web
site aren't broken. These tools can also be run as part of your automation environment.

Web logs

Many web servers can tell you from their logs which files are most visited, from which you can
create your own list of the files that are almost never visited. These files are often the ones
that have become useless and need to be updated or discarded. Note that this doesn't refer to
those cheesy counters that appear on some dusty home pages.

http://www.linklint.org
http://validator.w3.org/checklink
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. Politics and People
This chapter concludes this book with a look at what a toolsmith can do for a project , what a
toolsmith shouldn't do, and what to look for on a résumé for a toolsmith. The chapter finishes with
some of the most complex issues that can affect projects. These issues involve people more than
process and are sometimes referred to with a grimace as "political problems." These sections are
included in a book with a practical focus because it's good to be forewarned (or reminded) about
some of the people-related problems that arise so often in projects. Some of the ideas mentioned
along with the problems might even help ease your pain.

First, for anyone who wants to understand more about the kind of person who enjoys writing
software, there are some classic books on the subject. Good places to start are The Psychology of
Computer Programming, by Gerald M. Weinberg (Dorset House), and Computer Power and Human
Reason, by Joseph Weizenbaum (Freeman), particularly Chapter 4, "Science and the Compulsive
Programmer." Another way of seeing how people think about writing software is to look at the
phrases in "The Jargon File" (http://catb.org/~esr/jargon), which is maintained by Eric S. Raymond
and was also published as The New Hackers Dictionary (MIT Press).

http://catb.org/~esr/jargon
http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1. The Role of the Toolsmith

In traditional factories (that is, factories that produce things you can actually pick up and drop on
your toes), there is often a tools department. This department is responsible for producing and
maintaining the tools used by the other workers. The members of the tools department are called
toolsmiths. Much of this book has been about choosing and using different tools to provide a
satisfying software development environment. The people who do this are acting as toolsmiths for
their software projects. However, in many projects the position of a toolsmith is not properly filled,
and each worker just uses whatever tools are familiar and comfortable. Interestingly, this is the same
situation that small-scale craftsmen were in before the Industrial Revolution.

The Apprentice

A traditional introduction of an apprentice to the toolsmiths in a factory:

Senior worker to Apprentice: Go down to Tools and tell 'em you need a long weight.

(Later on . . .)

Apprentice to Toolsmith: I need a long weight!

Toolsmith: Fair enough, you just wait right there and I'll be with you in a while.

And indeed the apprentice had a long wait ahead of him.

(More of these "sleeveless errands" can be found at
http://www.museumofhoaxes.com/af_1700s.html.)

Some smarter companies and projects do have people who are specifically designated toolsmiths for
the software. These organizations believe that, just as a product works better when it has been
designed (rather than being allowed to just grow irregularly over time), a well-thought-out
environment produces better products than does an environment that is a haphazard collection of
whatever tools seemed useful at some point. For instance, this book was produced with the
assistance of the Production Tools group at O'Reilly, which supports the production editors who
shepherd a book from the author's source files to the printed copy and online version.

I'm not aware of any hard financial or organizational results to justify employing a toolsmith for your
project, but the idea of a tools department seems to have generally done good things for the
Industrial Revolution, so I recommend it.

So, what is the role of a toolsmith? Each of the chapters in this book describes a part of what a
toolsmith can be expected to be involved in. To recap, these areas are: SCM, builds, testing, tracking
bugs, documentation, release, and maintenance. Any and all of these areas are good places for

http://www.museumofhoaxes.com/af_1700s.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

toolsmiths to contribute to a project. In the wide-ranging paper "The Computer Scientist as Toolsmith
II" (http://www.cs.unc.edu/~brooks/Toolsmith-CACM.pdf), Fred Brooks (author of The Mythical Man-
Month) wrote:

If the computer scientist is a toolsmith, and if our delight is to fashion power tools and
amplifiers for minds, we must partner with those who will use our tools, those whose
intelligences we hope to amplify.

A good question is "What does a toolsmith usually not do?" The toolsmith should not try to be an
architect or designer for the project. The toolsmith should also not be a long-term developer for the
project. The thought behind both of these opinions is that anything long-term that distracts the
toolsmith from the development environment means that the environment stops being maintained,
and then the rest of the group will suffer as a consequence. However, as discussed below, a few
weeks spent developing, testing, and documenting by a toolsmith can produce a crystal-clear
understanding of the real problems faced by those groups.

Since a toolsmith is a service provider, some customer-service types of activities are often helpful:

Gather feedback from the group regularly. What are the top three irritations? What solutions
can they suggest? If they aren't too vague, you can file bugs on these problems and update the
bugs as changes are made.

Don't let fires burn out of control. As soon as there are whispers of discontent about some
aspect of the environment, create a document about how it's supposed to be used, print copies
of the document to give out to project members, and offer to give a short talk about it. If there
really is a problem, then create a bug about it and refer people to the bug to add comments. If
possible, schedule a time when the problem can be fixed.

Providing regular updates about the status of the environment (what's working, what's broken,
and when will it be fixed) to the group and to management will also help manage their
perceptions of the environment's status.

Keep a clear trail of decisions and feedback from all parties. Sign all your email
cryptographically, print out key documents, and store them securely off site. Keep records not
just of license files, but also who was responsible for choosing each tool.

Another valuable form of feedback for the toolsmith is to have to use the environment he has
created, also known as "eating your own dog food." Though I don't recommend this as a long-term
practice (since it distracts from the maintenance of the environment), this is a good idea in the short
term. For instance, try entering six bugs in one sessionwhich is the slowest part of the whole
process? Debug a problem in a file that is used by large numbers of other files and see how slow the
rebuilds really are. Try to fix a broken unit test and then rerun the test suite by hand. I guarantee
that the results of these activities will bring a clearer understanding of a group's complaints to any
working toolsmith.

A toolsmith should also try to avoid making off-the-cuff policy decisions about subjects such as who
has access to different parts of the source code, when SCM branches are created, or whether a
particular bug really is a critical show-stopper. The toolsmith provides mechanisms to support policies
and may well make strong recommendations about how to use the tools, but policy decisions really
ought to come from the project leaders and managers.

A good toolsmith also has to be nonpartisan about tools that she does not control. The classic

http://www.cs.unc.edu/~brooks/Toolsmith-CACM.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

example here is the choice of file editors for Unix: Emacs or vi. Both editors are in common use, and
the arguments about which is better, and better for what, have raged for decades now. A toolsmith
cannot dismiss one editor or the other, no matter her personal preferences (even mine are
considered secret). However, it is fair for a toolsmith to restrict official support to a limited number of
tools, in order to be able to provide adequate time for each one.

12.1.1. How to Choose a Toolsmith

While there is rarely a clear career path for software toolsmiths (most of us seem to be developers
who have come to specialize in tools), here are some ideas for what to look for on a résumé or to ask
for in a job description for a toolsmith:

Experience with at least two different SCM tools, two different build tools, and two different bug
tracking systems.

Both administrative and user experience with tools. There is a world of difference between using
a tool and administering the same tool for a large group of people.

Demonstrated ability to identify the causes of problems in a development environment in a
systematic way.

Ability to summarize problems in an environment, to propose and evaluate solutions for the
problems, and then to implement the solutions in a reasonable amount of time.

For each of the projects he has been involved with, can he identify the most significant mistakes
that he personally made? If he says there were no mistakes, either hire him immediately or
treat the rest of his comments as highly suspect!

What books, magazines, newsgroups, mailing lists, web sites, or weblogs that discuss tools and
development environments does she read on a regular basis? Appendix B contains suggestions
about some appropriate ones you should expect to hear.

It's interesting to note that while many of these abilities are very similar to those required for
developers writing code, it is not essential (though it is definitely helpful) for a toolsmith to be able to
write source code. In a few projects, the managers are the toolsmiths for the project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.2. When Good Projects Go Bad

What are the signs that an environment or a whole project is in trouble? One major red flag for
project rot is when the documentation, tools, or platforms are never updated. Another clue is when a
product depends on old, unsupported versions of compilers and operating systems, since eventually
the product will become unwanted or unusable by customers. If the documentation is never updated,
it's often more confusing than not having it there at all. These changes occur over a period of years,
so they are long-term indicators of trouble.

Specific signs to look for in a project are web sites full of outdated documents, and too many of the
web site's pages left blank, to be filled in later, which really means never. In companies, outdated
organization charts with too many unfamiliar names are a warning, as are mythical team meetings
that never, ever happen.

Another clear sign of a project losing momentum is when people within the project can no longer say
who owns each part of the project. As people leave and their areas are not passed on to others,
those parts become stale, scary places where the rest of the group fears to make changes. Just to be
safe, they will often not apply even small changes being made throughout the rest of the product to
these areas. Even in projects that claim to practice "egoless programming," where any developer can
make changes in any part of the code, people still know who to ask about each area.

Other obvious signs of a project in trouble are bored developers and the consequent high turnover as
they leave for more interesting projects. One cause of such boredom can be lack of vision for the
project, so that there are not enough new ideas to keep anyone interested. "Us and them" ways of
talking about different groups in a company, or treating another group as though they are
competitors, or communication failures due to personal animosity between developersthese are all
signs that a project is having difficulties. Boredom and unowned code will also lead to increased
numbers of broken builds and bugs that reappear after they were supposedly fixed.

On a more positive note, one sign of a project turning around is when people get around to doing
things that they could have done a long time ago. Deleting old source code is a good example of this
(it's still safe in the SCM repository if you need it).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.3. Awkward People

It's a stereotype with a strong basis in fact: people who write code for a living or for pleasure are
often more introverted than people who sell things or teach other people all day. As with every
stereotype, you can think of exceptions, but it's a good place to start making some more
generalizations about people in projects. The descriptions below can apply to any group of people,
but it's cheap entertainment to place people you know into the categories. You can even make up
some more categories of your own:

The Great Leader

One of the people who came up with the ideas for the project in the first place. Usually
overwhelmed with requests for information or meetings, and this makes her terse. Prone to
venting about other people's code and rewriting it overnight.

The Quiet Hacker

Doesn't bother talking much, just writes the code. Email exchanges with him can be cryptic as
he assumes that you have recently read all the same source code that he has immersed
himself in.

The Whiner

Everyone else's interfaces don't work well for what she wants to do. Everyone's else's
documentation is unhelpful. The project is out to get in her way.

Standards Guy

Has a touching belief that following published standards is always the Right Thing for the
project. Horrified by interoperability tests where software fails to interoperate despite being
standards-compliant.

Ms. Inflexible

Doesn't see why she should change her code when you can change yours. When you do change
your code to work with hers, she fails to let you know that she changed her code in an entirely
different way.

Mothman

He flitters from tool to tool, project to project, drawn to the bright lights, justifying this with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

belief that he will surely pass on fruitful ideas to each one. Everybody remembers him, but
people often have difficulty remembering exactly what he did for the project.

Afraid-to-Code

It all seems so overwhelmingwhere should she start? Daunted by the fear of breaking
something, she does nothing.

When-I-Wrote-Code

Used to be a developer, but is now a manager frustrated by developers. "When I wrote code, I
didn't make any mistakes" is one of his thoughts, but he's not foolish enough to voice it aloud.

Just don't forget to notice how people don't really fit in a single category, because we are all a
mixture of these types, and still more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.4. Twisted Communications

As soon as a project has more than one person working on it, communication within the group
becomes vital. By default, communication seems to occur in the slowest, most error-prone ways that
it can. If there is some choice between two things, then both choices will usually be made within a
project, sometimes at the same time!

Everyone who has been frustrated by the bugs and extra work due to lack of common knowledge in a
group suspects that improving communication within a project will improve the product. They're
usually correct, but it's quite hard to improve poor communication right when it is happening. Some
instances of twisted and tangled communication include:

Email arguments

Email is fine for short discussions without interrupting the whole group, but it's very hard to
resolve disagreements using only email. After a couple of back-and-forth emails, it can help if
you reduce the number of recipients to the minimum and, if possible, go and talk to each other
face to face, and then write the resulting decision down and send it out to tie up the email
exchange. If you're getting annoyed by someone's email, don't use email to replyor at least
wait five minutes before sending the mail. What you intended as a witty retort may seem like
provocative noise when reread later.

Bug thrashing

Changing the state of a bug from Open to Closed to Open to Closed because there's a
disagreement about the bug, or when there is managerial pressure to resolve it, is no way to
solve anything. It only demonstrates that the group is not communicating properly. One helpful
resolution that is sometimes possible is to reclassify the bug as a feature request. Otherwise,
talk and listen to each other.

Noise in commit messages

"Fixed Paul's ugly code." "I hate this parser!" "Stupid customer request implemented against
my better judgment." Such commit messages seem funny at the time or may temporarily
relieve some frustration, but remember that the purpose of SCM tools is to store information
for a long time. None of these messages will tell someone looking at the code two years from
now why you bothered to change it at all; it's just noise to be ignored. Take a breath and write
a message that you might want to find yourself reading a few months from now. Huge
messages rarely get fully read either. If the message is that large, then add it to the project
documentation elsewhere and refer to that file in the commit message.

Overly terse sentences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Just as too much content can hinder communication, so can too little. Concise and clear is
good; overly terse or silent is just incomplete and frustrating to the listeners. It can also,
correctly or incorrectly, give the impression that you are not really participating in a group.

Offensive code comments

Opinions are part of communication, and everyone expresses their opinions in different ways.
Comments that seem fine in the context of a few beers can seem overly harsh when written
down and read later by someone without the same alcoholic context. Making offensive
comments about other companies can bite you when you want to sell the source code to
someone else. Expletives are usually just noise in code comments, but if they reach customers
(for example, in log messages), then extra work may be required of everyone to remove them
later on. Just stick to the facts in your source code comments.

The Linux kernel "swear count" graphs at http://www.vidarholen.net/contents/wordcount show
how this phenomenon has decreased as GNU/Linux has matured.

Telephones

Telephones at work are a terrible way for developers to communicate! They interrupt the focus
that is necessary for writing good code, and they don't help you communicate particularly
clearly with the other person. They interrupt everyone else around them with their noise, and
there's not even a record of the conversation after you're done. People who listen to their
messages on speakerphone still amaze me. Caller ID can help somewhat, as do turning down
the ringer volume and making sure that your voicemail greeting suggests that the caller use
email instead. Even with all the drawbacks of email, I think that it is far preferable to
telephones in a development environment.

Paging systems

I once worked in a company that used an overhead paging system with loudspeakers in the
corridor ceilings to find people, to announce meetings, and for anything else that was
considered sufficiently interesting to someone. These pages interrupted the useful work of an
entire company dozens of times per day, truly a net loss to that company. The only interesting
pages came when the CEO was annoyed at someone and snarled at them publicly to come to
his office.

Those are plenty of reminders of what can go wrong with communicating with other people. Chapter
11 contains many ideas for how to improve the communication within a project.

http://www.vidarholen.net/contents/wordcount
http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.5. Commit Rights

The question of commit rightsthat is, who gets to change the source files of a projectis a common
ground for disagreement. Numerous open source projects have split over this. This is hardly
surprising, since the source code is what defines what the product does, and whoever is granted
sufficient access to a centralized SCM tool gets to define the source code. All product design and
management is just wishful thinking until it becomes committed source code. Since commit rights are
a sensitive issue, it is politically wise to make sure that changes to them have at least an agreed-on
policy and a plausible audit trail.

In software companies, the usual procedure for deciding who has commit rights is quite simple: if you
are paid to write code, then you have to able to commit that code. Nontechnical managers may
sometimes also acquire commit rights, but their changes will be scrutinized carefully. Some
methodologies declare that anyone in the project can modify any source file, but wise developers
respect each other's work and make major modifications to source code written by other developers
only after some discussion, or to fix a broken build. Occasionally, a truly irritating developer may be
prevented from changing all files outside her given area, but this is a very strong sign of distrust.

In open source projects, the decision to grant commit rights is usually based on whose code the
project leaders trust. Most projects have a personal email address or a mailing list to send requests
for commit rights to. Most projects expect that the requester has previously submitted a number of
useful bugs and patches to the source code for the project. When commit rights are denied,
frustration tends to make the requester either give up on making contributions or flame the entire
project and all the leaders. For this reason, it is helpful if open source projects describe what is
expected of developers with commit rights and how to request commit rights; they should also clearly
communicate the reasons for denying someone commit rights.

It's also helpful with open source projects if there is a document describing how
to submit patches in a suitable format for project members to commit. Some
projects have very specific requirements about how patches should be
generated and what is needed in a patch (e.g., does documentation have to be
updated too?)even the format of the subject of an email message is sometimes
minutely specified. If you are dealing with hundreds of different patches, you
will want to optimize how they are presented.

A related question is "Who gets read rights?" In closed source projects, this is often just the
developers and their managers. Well-meaning sales and marketing people have inferred (and sold)
features from the current, buggy source code of the next release too often to make it wise to give
everyone in the company access. Open source projects give read rights to everyone, by definition;
but again, just because there is functionality in the source code doesn't mean that it works yet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.6. Automation Discipline

The theme of automation has been mentioned numerous times throughout this book. Perhaps the
best thing about automation for most people is that it is impersonal in nature. Imagine yourself as a
developer who has committed code that has broken the build and stopped other developers from
making progress. You'd want to know about this mistake as soon as possible, but you don't really
want other people moaning at you, or your manager hovering over you. A machine-generated email
is a pleasant way to become aware of your errors. Your manager and colleagues can expect you to
act on the email without having to come and hound you; this in turn builds trust over time.

That said, some form of Pavlovian training may be necessary to reach such a state of trust within the
group. Effective forms of carrot and stick are numerous. Free lunch can be provided at the end of a
week with no broken builds (or whatever the current problem is). Glowing lava lamps and traffic
signals have been used to proclaim the state of the build
(http://www.onjava.com/pub/a/onjava/2004/11/10/automation.html). Those who hinder others can
make small payments into a group fund, with proceeds to be spent on something for the group. I
have an ugly picture of a cat with tearful eyes painted on black velvet that people who break the
build have to hang in their cube for a day. A public summary of the state of the group can also do
some good, just like the signs you see in factories proclaiming "42 accident-free days."

I find the most useful encouragement is to make sure that the expected process to avoid problems
has been documented (e.g., "How Not to Break the Build"), and then to ask precise and detailed
questions when there is a problem until everyone understands which part of the process was not
followed and why. The process may really need amending, in which case everyone wins. If not, the
business of being quizzed may dissuade future offenders.

http://www.onjava.com/pub/a/onjava/2004/11/10/automation.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.7. What Do Developers Really Want?

The ideas in this section are taken from informal polls of colleagues at different companies and from
my own observations of any number of small frustrations that have become larger problems in
various projects that I have worked on. You may object that chairs and coffeemakers are expected
parts of a work environment, not rewards, but there's a world of difference between the basic and
the exceptional versions of both of them. Every one of the ideas here helps people feel happier about
working on a project and, in my opinion, they're all much better rewards than boring coffee mugs
and T-shirts:

Not too many interruptions

The actions of writing code, tests, and some kinds of documentation have a startup effort
associated with remembering how the different pieces work together. Every interruption means
that time has to be spent getting back into the task. Too many meetings, noisy telephone calls,
long hallway conversations, or mobile phones left on desks can all interrupt developers.
Interruptions may not always be from other people: this also applies when builds take long
enough for a developer to become distracted by the latest news on Slashdot.

Fast connections

Finding examples of how to use a subtle language construct, other peoples' diagnoses of the
error messages that you're seeing, documentation for installing and using a new toolall these
activities are greatly enhanced with a good Internet connection. A slow connection also allows
people to get distracted.

Ergonomic peripherals

The amount of painful damage to peoples' wrists in the software industry from using poor and
badly placed keyboards is absolutely incredible. The cost of a good keyboard tray, one that can
be moved up and down (in and out is really just for convenience), is under $200. There are
also numerous ergonomic keyboards available for under $200.

Good monitors

Flickering or dim monitors are distracting and tiring for people's eyes. Flat-screen monitors are
no longer as expensive as they once were, and they take up less desktop space, too. Small
screen sizes mean that more time is spent closing and opening windows or moving them
around, and it feels like you're working through a keyhole.

As an aside, it's just basic politeness not to touch other people's monitorsjust as you wouldn't
smear someone's glasses or their car's rearview mirror.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Good chairs

Good back support is essential, as is adjustable height. Surfaces and material should be just
soft enough and breathable. Some people find armrests on chairs interfere with using a mouse,
so armrests should be detachable. Chairs should not be covered with any material that
generates large amounts of static electricity, such as nylon.

No drafts

Air conditioning vents should not blow cold air down onto people, because drafts are
distracting.

Personal disk space

Many people listen to music while they work and need a place to keep their MP3 files. Space on
a server can let them listen to music from different machines. The backup policy on this disk
space can be different from that on other servers, and disk quotas can be imposed.

Many developers find that being allowed time and disk space to work on personal projects for a
few hours a week helps keep them stimulated about their main project.

Kitchen

Soda machines, coffeemakers, microwaves, and refrigerators are all useful for finding the
energy to focus on developing code. Kitchens are also places where people talk, so a
whiteboard is a good addition to the kitchen.

Low effort for background tasks

There are things that project members just shouldn't have to waste their time on. Filling in
forms for office supplies is one. Repeated issues with basic office cleaning and maintenance is
another. Small frustrations can become focal points for irritation about other aspects of a
project, and then they become regular distractions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.8. An Upbeat Ending

My advice to those finding themselves becoming toolsmiths is to make it clear to everyone that this is
what you are doing, to ask regularly for feedback about tools and the local environment, not to speak
your mind too quickly, and to wait a couple of minutes before sending email, especially mail that you
think is witty. With a good attitude, being a toolsmith can be a very satisfying way to use your time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. How Tools Scale
If you change the order of magnitude of a problem, then it becomes a different problem.

Anonymous

This appendix discusses how tools scale as a project grows. When a project grows, there are a
number of ways it can grow:

More files and directories, which demands more from the underlying filesystem. The subjective
experience of working with 100 files in a single directory is quite different from that of working
with 1,000 files.

Longer files, with more functions, methods, and classes in those files. A 1,000-line file can often
be edited much more easily than a 100,000-line one. Generated source files can reach such
sizes.

More generated files that need to be combined. Linking 100 object files into a library is much
faster than linking 1,000 such files together. Creating a .jar file from 1,000 .class files is quite
different from creating one with 10,000 .class files. That's not even trying to resolve references
between the files, just handling an order of magnitude more files.

Different versions of the same product are produced from the same source code.

More products are produced using the same source code in different ways.

One purpose of the results in this appendix is to encourage toolsmiths to measure the tools that they
support. Writing small project generators is an interesting challenge of making sure that the
generated projects resemble real projects. I'm not aware of any public project that generates
skeletons of projects' source code, but I think this would be an excellent tool to create. It could also
be used to demonstrate best practices for creating build files for different build tools and to
demonstrate how different SCM tools scale.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1. Scaling of Compilers

To investigate some of the issues of how a compiler scales, I wrote a small generator program to
generate C source code files. This made it easy to vary the number of source files, the number of
functions per source file, and the number of included files. Two separate compile scripts were also
generated: one that used static libraries (one library per source file) and one that used a single
(large) command line with all the object files explicitly named in the command.

The source files that were created were named source_0.c through source_<N>.c, where <N> was
the number of files created. Each .c file contained a variable number of functions and looked like the
following:

void file_0_fn_0() { }
.
.
.
void file_0_fn_9() { }

Source files that were used for testing scaling with the number of included files looked like:

#include "file_0_include_0.h"
.
.
.
#include "file_0_include_9.h"

void file_0_fn_0() { }
.
.
.
void file_0_fn_9() { }

and each header file contained the appropriately numbered copy of this:

#ifndef FILE_0_INCLUDE_0_HDR_GUARD
#define FILE_0_INCLUDE_0_HDR_GUARD

#define DEFINITION_0_0 "ABC"

#endif

A single main.c file contained extern references to all of the defined functions and a call to each
function. Durations were measured using the GNU time tool.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1.1. How the Compiler gcc Scales

This section describes some simple measurements of the generated projects that were made using a
laptop named matt-laptop, with a 300MHz Pentium II CPU and 192MB RAM, lightly loaded, running
Red Hat Linux 8.0, and using gcc 3.2.

In summary, as the number of files being compiled increases, the time taken also increases linearly.
As the size of the files being compiled increases, and all else is equal, the time taken also increases
linearly. Link times also increase linearly as the number of object files or library files being linked
together increases. To study how the gcc preprocessor scales by itself, Section A.1.1.4, later in this
appendix, shows what happens when the number of #include lines in each source file is increased
(each header file was a different file). This change seems to have a smaller effect on the relative
compilation times.

The purpose of these figures is to compare how the time taken by a well-known
compiler changes with different arguments, not to compare gcc to other
compilers.

A.1.1.1. Number of source files

With 10 uniquely named functions per source code file, the time to compile and link a single
executable from different numbers of source files is shown in Figure A-1.

Figure A-1. Compiler time versus number of source files

A.1.1.2. Number of functions

For a project with 100 source files, the time was measured for compiling and linking a single

http://lib.ommolketab.ir
http://lib.ommolketab.ir

executable with a varying number of functions in each source file. The results are shown in Figure A-
2.

Figure A-2. Compiler time versus number of functions per source file

A.1.1.3. Number of libraries

For a project with 10 functions per source file, and with one library file per source file, the time to link
a single executable is shown in Figure A-3.

Figure A-3. Linker time versus number of library files

A.1.1.4. Number of included files

A project with a large number of included files was generated. Each included file was unique, and all
the included files were guarded with unique guard strings, as is common with C header files. For 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

functions per source file and 100 source files, Figure A-4 shows the effect of the number of included
files on the overall compiler time. Disk access and whether a file is already cached in memory
probably have more effect than processor speed does in this case.

Figure A-4. Compiler time versus number of included files

Most compilers are collections of fairly complicated separate tools such as preprocessors, compilers,
and linkers. Each of these applications has its own performance characteristics. So the simple
analyses of this section should be taken only as a rough indicator of how a build process will scale.
Before deciding on a build tool, it is good practice to generate some large projects that resemble your
application and to test the performance of potential build tools with these projects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2. Scaling of Build Tools

A.2.1. Comparing Recursive and Included make

There are two different ways that projects using make generally set up their makefiles. The first way,
known as recursive make, is probably still the more common of the two ways. With recursive make,
a top-level makefile contains a list of subdirectories, each of which has its own makefile. During a
build, make recursively descends into each subdirectory and executes the instructions in the makefile
there.

The other model, called included or nonrecursive make, was popularized by Peter Miller's classic
paper "Recursive Make Considered Harmful," which suggests that the overhead of the time spent
starting make with all the different makefiles becomes substantial as the project grows. A different
idea is to create one large makefile before you start the build that includes all the makefiles that exist
in each subdirectory. Debate over the two approaches still continues, and their results for a simple
project are compared in Table A-1. The build state names are the ones that were defined in Chapter
5.

Table A-1. Recursive make and included make

Build state Recursive duration (seconds) Included duration (seconds)

Virgin 10.2 10.1

Changed 1.1 0.4

Up-to-date 1.1 0.3

Clean 2.5 1.5

These results were obtained on matt-laptop, the same machine that was used for the results in
Section A.1.1, earlier in this appendix. In each case a virgin version of the same generated project
with 10 subdirectories, each of which had 10 leaf subdirectories (i.e., subdirectories that have no
subdirectories), was used. In each leaf subdirectory, there was one C source file with just one
function defined in it. The recursive makefiles each had calls to each subdirectory's makefile with
$(MAKE) -C dirname. The included top-level makefile had 100 include statements, one per leaf

subdirectory. Each of the leaf source files was compiled into a static library, producing 100 such
libraries in total. At the top level, a C source file used each of the 100 functions, and thus was linked
with all 100 libraries. The changed build involved changing the modification time of the leaf file that
was built last in a virgin build.

Table A-1 shows that virgin builds take about the same time with either scheme, since compile time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is the dominant factor, but all other kinds of builds take approximately half the time if you use the
included makefile approach.

There are other, similar results by Boris Kolpackov, available from
http://kolpackov.net/projects/build/benchmark.xhtml.

http://kolpackov.net/projects/build/benchmark.xhtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. Resources
This appendix lists some sources of information about software tools and development environments.
Many of these sources are the ones I found most useful while researching this book. The actual steps
involved in choosing and then changing to a new tool are described in Section 3.7.1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.1. Online

The online resources are divided, somewhat arbitrarily, into places with content and places that focus
more on discussion. For instance, an article on one author's web site may be discussed somewhere
else such as on Slashdot or in a weblog.

B.1.1. Content

The web sites in this section contain original articles with generally useful content and less ranting
than some of the discussion sites listed in Section B.1.2, later in this appendix:

IBM Developer Works (http://www.ibm.com/developerworks)

Lots of good, short articles from a variety of authors.

Advogato (http://www.advogato.org)

A wide range of articles on all aspects of software, with some thoughtful comments.

Freshmeat (http://freshmeat.net/articles)

Lively editorial articles, some of which cover tools and development environments.

TestingFoundations (http://www.testing.com)

Contains the work of Brian Marick, author of The Craft of Software Testing (Prentice Hall). A
new book, Scripting for Testers (Pragmatic Bookshelf), is apparently in progress.

David A. Wheeler's Personal Home Page (http://dwheeler.com)

Lots of good articles, especially on security and SCM.

Brad Appleton's Home Page (http://www.cmcrossroads.com/bradapp)

Many SCM-related articles.

Artima (http://www.artima.com)

Regularly has wide-ranging software-related articles. Run by Bill Venners.

http://www.ibm.com/developerworks
http://www.advogato.org
http://freshmeat.net/articles
http://dwheeler.com
http://www.cmcrossroads.com/bradapp
http://www.artima.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Jeffreys Copeland & Haemer's "Work" Columns (http://alumnus.caltech.edu/~copeland/work)

A wonderful series of articles written by two guys named Jeffrey, originally published in the
now-defunct magazines RS/Magazine and SunExpert, that cover many different aspects of
tools. In my opinion, these well-written articles deserve a far wider audience.

Steve McConnell (http://www.stevemcconnell.com)

Many articles and presentations from the author of Code Complete and other books about the
process of writing software.

Ian SommervilleSoftware Engineering (http://www.comp.lancs.ac.uk/computing/resources/IanS)

Articles by the author of the textbook Software Engineering, who has taken a leading role in
computer science education.

B.1.2. Discussions

The web sites in this section generally contain links to articles and contain discussions about the
articles:

Slashdot (http://www.slashdot.org)

Current news of a technical or geeky nature, with links to developer-related articles and lots of
comments, some of which are even on-topic. Well-established, widely read and quoted, with
plenty of strong opinions. Many of the comments show a bias toward Unix and Linux.

Joel on Software (http://joelonsoftware.com)

A weblog and also numerous questions each day in the "Business of Software" and "Design of
Software" sections. Lots of tools-related discussion, but fewer comments than on Slashdot.

StickyMinds.com (http://www.stickyminds.com)

Articles related to tools and some recommendations for books. Also publishes the magazine
Better Software.

Newsgroups

comp.software.testing and comp.software.config-mgmt sometimes have interesting discussions
on tools for testing and SCM. Their FAQs have some tool lists but tend to feel dated, perhaps
due to the general move away from newsgroups.

http://alumnus.caltech.edu/~copeland/work
http://www.stevemcconnell.com
http://www.comp.lancs.ac.uk/computing/resources/IanS
http://www.slashdot.org
http://joelonsoftware.com
http://www.stickyminds.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tool-specific mailing lists

One sign of a good tool is the tone of community around it. Every tool is different, but if there
is a mailing list for users or developers, subscribe to it. The archives of these mailing lists can
be the best place to look for bug fixes, workarounds, and ideas for customizing the tool. Some
developers write weblogs that include information about the tool, or they record IM sessions for
later use.

B.1.3. Directories

Directories are web sites organized by topic into categories. When you want to make sure that you
haven't forgotten about some tool or other when considering your options, a directory of available
tools is useful.

Open Directory (http://dmoz.org)

The Open Directory Project claims to be the largest human-edited directory of the Web. Just as
Yahoo! created its own categories for the Web, the Open Directory Project has created
categories, but in a nonproprietary fashion. Most tools appear in some category or other here.

Google Directory (http://directory.google.com)

The Google Directory uses the Open Directory hierarchy as the basis for its own directory. The
Computers category at http://directory.google.com/Top/Computers is a good place to start
when searching for information about development environments. The Programming and
Software categories contain many links to different tools.

CM Crossroads (http://www.cmcrossroads.com)

This is a site focused on configuration management in a broad sense, with numerous SCM-
related articles, polls, forums, and job postings.

Wikipedia (http://wikipedia.org)

The Wikipedia is a multilingual Wiki with unusually helpful, though brief, articles about
everything anyone has bothered to write about, which turns out to include lots of software
development tools. Since it is a Wiki, content changes faster than on most other web sites.

Epinions (http://epinions.com)

Epinions is a shopping comparison web site, but its Programming Tools section has reviews on
many software toolsat least, the ones people have paid money for. Some of these reviews are
quite insightful.

http://dmoz.org
http://directory.google.com
http://directory.google.com/Top/Computers
http://www.cmcrossroads.com
http://wikipedia.org
http://epinions.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.2. Magazines

All the magazines in this section have web sites where you may be able to pick up a free trial
subscription, since their income is mostly based upon advertising in the magazines:

ACM Queue (http://www.acmqueue.org)

A collection of general programming articles each month, with a useful number of ones about
tools and different development environments.

Software Development (http://www.sdmagazine.com)

Lots of articles about different tools, and the annual Jolt awards for tools. Part of CMP's
Developer Network, which includes Dr. Dobb's Journal, BYTE.com, C/C++ Users Journal, and
The Perl Journal.

Better Software (http://www.stickyminds.com/BetterSoftware/magazine.asp)

Mostly articles about general software development, but some tool-specific articles.

Java Developers Journal (http://jdj.sys-con.com)

One of a number of language-specific magazines from Sys-Con Media; often has articles about
tools for projects written in Java.

http://www.acmqueue.org
http://www.sdmagazine.com
http://www.stickyminds.com/BetterSoftware/magazine.asp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3. Books

The books listed in this appendix cover each of the named topics in a general sense. Books that cover
just one specific tool are listed in the chapter that discusses such tools. For instance, books that are
just about CVS are referred to in the Section 4.6.1.

B.3.1. Automation and General Tools

Pragmatic Project Automation. Mike Clark. Pragmatic Bookshelf. 2004.

This book describes good automation practices using CruiseControl (see Section 3.4.4).

Essential Open Source Toolset: Programming with Eclipse, JUnit, CVS, Bugzilla, Ant, Tcl/Tk, and
More. Andreas Zeller and Jens Krinke. Wiley. 2005.

B.3.2. Software Configuration Management

Open Soure Development with CVS, Third Edition. Karl Fogel and Moshe Bar. Paraglyph Press. 2003.

Also available online at http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf. This book covers
much more than just CVS; SCM best practices and different approaches to open source
development are also discussed. The names of the authors alternate on different editions.

Pragmatic Version Control with CVS. Dave Thomas and Andy Hunt. Pragmatic Bookshelf. 2003.

This book and the next one in this list are from the same series; they discuss using SCM tools
in the context of an automated development environment.

Pragmatic Version Control with Subversion. Mike Mason. Pragmatic Bookshelf. 2005.

Software Configuration Management Patterns. Stephen P. Berczuk and Brad Appleton. Addison-
Wesley. 2002.

http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf
http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3.3. Building Software

Managing Projects with GNU make, Third Edition. Robert Mecklenburg. O'Reilly. 2004.

As the title suggests, this book is mainly about make, but the third edition has useful
discussions of how build tools scale, performance, portability, and debugging build files, all of
which have relevance beyond make.

Multi-Platform Code Management. Kevin Jameson. O'Reilly. 1994.

One of the earliest books to describe a complete build environment in detail.

B.3.4. Testing Software

This section includes books that refer to testing environments, not just books about how to test
software.

Pragmatic Unit Testing in Java with JUnit. Andy Hunt and Dave Thomas. Pragmatic Bookshelf. 2003.

Pragmatic Unit Testing in C# with NUnit. Andy Hunt and Dave Thomas. Pragmatic Bookshelf. 2004.

Test Driven Development: By Example. Kent Beck. Addison-Wesley. 2002.

Managing the Testing Process, Second Edition. Rex Black. Wiley. 2002.

Testing Computer Software, Second Edition. Cem Kaner, Jack Falk, and Hung Nguyen. Wiley. 1999.

Effective Software Testing50 Specific Ways to Improve Your Testing. Elfriede Dustin. Addison-Wesley.
2003.

B.3.5. Tracking Bugs

Are there any books about what you want in a bug tracking system? I've never seen one.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3.6. Documentation Environments

Word Hacks. Andrew Savikas. O'Reilly. 2004.

LaTeX: A Document Preparation System (User's Guide and Reference Manual). Leslie Lamport.
Addison-Wesley. 1986.

This book is also a good example of how to describe using a documentation tool.

B.3.7. Releasing Products

Ship it! A Practical Guide to Successful Software Projects. Jared Richardson and Will Gwaltney.
Pragmatic Bookshelf. 2005.

B.3.8. Maintenance

Working Effectively with Legacy Code. Michael Feathers. Prentice Hall. 2004.

Refactoring: Improving the Design of Existing Code. Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Addison-Wesley. 1999.

Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code. Reverend Bill Blunden.
APress. 2003.

B.3.9. Politics and People

The Mythical Man Month. Frederick P. Brooks. Addison-Wesley. 1975.

Though it describes the way your father wrote code, most of it still rings true. Much of what is
written in this book is now assumed knowledge in the software industry.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Facts and Fallacies of Software Engineering. Robert L. Glass. Addison-Wesley. 2003.

Lots of opinions, with good justifications and rebuttals.

Great Software Debates. Alan M. Davis. Wiley. 2004.

A series of short essays on different topics, ranging from academia to industry and back. Not
really debates, but thought-provoking writing anyway.

B.3.10. Developing Software

Some of these books are specific to languages or methodologies, but I have found them all useful at
one time or another.

The Practice of Programming. Brian Kernighan and Rob Pike. Addison-Wesley. 1999.

The related web site is at http://cm.bell-labs.com/cm/cs/tpop.

The Art of Unix Programming. Eric S. Raymond. Addison-Wesley. 2003.

Also available online at http://www.catb.org/~esr/writings/taoup. Contains many examples of
the ideas in this book, with a Unix bias.

Mastering Regular Expressions, Second Edition. Jeffrey E. F. Friedl. O'Reilly. 2002.

This is the book to build your confidence in what you can do with all of your text-based tools.

Code Complete, Second Edition. Steve McConnell. Microsoft Press. 2004.

The second edition has a related web site at http://cc2e.com.

The Pragmatic Programmer: From Journeyman to Master. Andrew Hunt and David Thomas. Addison-
Wesley. 1999.

Expert C Programming. Peter van der Linden. Prentice Hall. 1994.

If only for the terrible puns, this is my favorite advanced C book.

Programming Pearls. Jon Bentley. Addison-Wesley. 1986.

A strongly pragmatic approach to programming, with lots of references to development
environments.

http://cm.bell-labs.com/cm/cs/tpop
http://www.catb.org/~esr/writings/taoup
http://cc2e.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.3.11. General Design

Much of what makes a product or tool useful is a good design. Listed below are two books that, while
not directly related to software design, will encourage deeper thought about the issues behind
designing things.

Notes on the Synthesis of Form. Christopher Alexander. Harvard University Press. 1964.

The basic idea is simple: make your categories fit how you work, not the other way around.
This building architect's books helped inspire the various books about software patterns.

How Buildings Learn. Stewart Brand. Penguin. 1995.

A fascinating book describing how buildings change, with lots of photographs and drawings
showing the same buildings changing over time. The different aspects of a building such as
internal layout and services change at different rates, just as software products change their
different parts at differing rates. No answers, but plenty of ideas to consider about how to
design things that can change gracefully over time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.4. Conferences

SDExpo (http://www.sdexpo.com)

Lots of software tool vendors. Organized by the same company that produces the magazine
Software Development.

Emerging Tech (http://conferences.oreillynet.com/etcon)

A general technology conference, but with some good presentations on different tools and their
technologies.

LinuxWorld Expo (http://www.linuxworldexpo.com)

Obviously specific to one operating system, but with lots of speakers who are experienced
software developers and toolsmiths.

ICSE (http://www.icse-conferences.org)

International Conference on Software Engineering, organized by the ACM and IEEE. Mostly
papers from academia, but useful for seeing what ideas other people have already
investigated.

http://www.sdexpo.com
http://conferences.oreillynet.com/etcon
http://www.linuxworldexpo.com)
http://www.icse-conferences.org)
http://lib.ommolketab.ir
http://lib.ommolketab.ir

B.5. University and College Courses

Computer Science is no more about computers than astronomy is about telescopes.

E. Dijkstra

The above epigraph may explain why no universities or colleges appear to have courses that discuss
software development environments in any detail. Programming courses will usually have some
documentation about their local development environment, but no discussion of why it was chosen.
Some adult education courses may cover some of the tools discussed here, but usually without very
much context.

If you do know of any academic courses that discuss how to create a practical software development
environment, I'd be very interested to know about them. Maybe you're interested in teaching others
what you know about this subject? Such a course would probably discuss SCM tools, build tools,
testing tools, bug tracking systems, documentation, and releasing software. My contact details can be
found at http://www.pobox.com/~doar.

http://www.pobox.com/~doar
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

Abby Fox was the production editor and copyeditor for Practical Development Environments . Matt
Hutchinson proofread the book. Sanders Kleinfeld and Claire Cloutier provided quality control. Johnna
VanHoose Dinse wrote the index.

MendeDesign designed and created the cover artwork of this book. Karen Montgomery produced the
cover layout with Adobe InDesign CS using the Akzidenz Grotesk and Orator fonts.

The animals on the cover of Practical Development Environments are goldfish (Carassius auratus).
Goldfish can in fact be gold, orange, white, black, blue, brown, silver, bronze, and red. Moderately
hardy, goldfish have an average life span of around 10 years. The oldest goldfish on record lived for
over 43 years.

The early history of the cultivation of goldfish is unclear, but it is generally accepted that by the time
of the Sung dynasty (960-1280), goldfish were being bred in China. However, it was not until around
1500 that goldfish first appeared in Japan, and they did not find their way into Europe until the
seventeenth century.

Marcia Friedman designed the interior layout. Melanie Wang and Phyllis McKee designed the interior
template. This book was converted by Keith Fahlgren to FrameMaker 5.5.6 with a format conversion
tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Adobe's Meridien; the heading font is ITC Bailey; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by
Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe
Photoshop CS.

The ichthyographic portion of this colophon was written by the book's author. The word colophon is
derived from the Greek kolophon, meaning "summit" or "finishing touch."

The online edition of this book was created by the Digital Books production group (John Chodacki,
Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

AAA (authentication, authorization, and accounting)

access, SCM

accessibility, bug tracking

accounting

ACL (access control list)

 CVS and

administration, PDEs

Ant 2nd 3rd

 build files

 Davidson, James Duncan

 dependency and

 Maven

 parallel builds

 platform dependency

 properties and

 slow startup

 tasks, JDiff and

 weaknesses

 XML and

 limitations

Anthill

APIs (application programming interfaces)

Appleton, Brad (SCM)

Arch 2nd

 ArX

 changesets

 CVS and

 documentation

 history of

 Lord, Tom

 merged files

 SCM and

 tools

atomic operations, Subversion

attachments, bug tracking and

Austin, Chad (SCons)

authentication

authorization

Autoconf

Automake

automated releases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 automated release information

automation

 consequences

 debugging and

 discipline

 documentation

 installation tools

 output and

 problems with

 resources and

 testing automation, reasons for

automation environments

 Anthill

 batch files

 CI and

 CruiseControl

 shell scripts

 Tinderbox

Autotools [See GNU Autotools]

awkward people

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

backups

 CVS

 PDEs

 SCM

 corruption detection

 disaster recovery and

 intrusion detection

batch files

 automation environments

 build tools and

 testing environment

 watchdog timers

Berliner, Brian (CVS)

BerliOS

binary files

 CVS

 Subversion

 Unix installation tools

BitKeeper 2nd

 McVoy, Larry

 Torvalds, Linus

Blandy, Jim (Subversion)

BoostJam

boundary conditions, testing and

BPM (business process management), integration and

branch point tags

branches

 preprocessor directives instead of

 SCM

 naming

 tag comparison

 SCM tools

Brooks, Fred

bug tracking 2nd

 accessibility

 area

 attachments and

 bug state

 Bugzilla

 change management

 cleanup and 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 custom systems

 definitions

 entering bugs

 FogBugz

 formats

 future environments 2nd

 GNATS

 history of bugs 2nd

 internationalization

 JIRA

 multiple releases

 overloading fields

 product maintenance and

 product multiplication

 reports 2nd

 reviewing bugs

 scalability

 schedules

 SCM tool integration

 searches

 severity inflation

 spam and

 statistics

 TestTrack

 tools

 Bugzilla

 custom

 FogBugz 2nd

 GNATS

 JIRA 2nd

 selection tips

 spreadsheets

 TestTrack 2nd

 user list

 workflow

Bugzilla

build dependencies

 changes

 explicit

 functional dependency analysis

 implementation files and

 implicit dependencies

 makefiles

 troubleshooting

build files 2nd

 Ant 2nd

 dependency tree

 example

 Jam

 labeling

 makefiles 2nd

 names of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SCons 2nd 3rd

build labels

build numbers, release preparation

build states

 changed

 clean

 interrupted

 targets and

 up-to-date

 virgin

build tools

 Ant 2nd 3rd

 Autoconf

 Automake

 batch files and

 comparison chart

 custom

 GNU Autotools

 Hello World program

 Jam

 Libtool

 make 2nd

 documentation

 gmake

 problems

 scalability

 SCons 2nd 3rd

 selection tips

 shell scripts and

 switching

builds

 changes

 checklist

 clean builds

 cleanup and

 command-line length

 filename formats

 identifying

 interpreters

 labeling

 product maintenance and

 reproducing, product maintenance and

 scheduling

 servers, slow builds and

 slow builds

 ccache and

 distributed compilation

 parallel builds and

 servers

 staged builds and

 source code

 stages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 build commands

 build file read

 command execution

 configuration

 dependency calculation

 target definition

 what to build

 tools, unit tests

 troubleshooting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

capturing output, testing and

ccache, slow builds and

Cederqvist, Per (CVS)

centralized SCM tools

change logs

 CVS 2nd

change management

changed build state

changes in builds

changesets 2nd

 Arch

 CVS

checking out copies, CVS

CI (continuous integration)

classic environments, tools for

clean builds 2nd

cleanup, maintenance and

ClearCase

CLI (command-line interface), bugs and

clocks

 make and

 synchronization

closed development

CMS (change management systems)

Cockburn, Alistair

code rot

CollabNet

collaborative development environments

college courses

Collins-Sussman, Ben (Subversion)

command-line length

commit rights

commits, CVS

communication

 people and

 project web site

 access control

 areas

 content rot

 creating

 tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

company name changes, product maintenance and

comparison tests

compilers

 scalability

 source code

components, project

configure script, Autoconf and

conformance tests

connectivity, SCM tools and

Copeland, Jeffrey

copyright date changes

corruption detection

coverage tools, testing and

CPAN (Comprehensive Perl Archive Network) installer (Unix)

Crain, Charles (SCons)

cross-compiling

CruiseControl

customer tests

CVS (Concurrent Versions System) 2nd

 ACLs and

 Arch and

 backups

 Berliner, Brian

 C++

 Cederqvist, Per

 change logs 2nd

 changesets

 checking out copies 2nd

 clients

 clock synchronization

 commits

 diffs

 directories

 empty

 top-level

 documentation

 edits

 file browsing

 Grune, Dick

 history of

 Hoyle, Tony

 keywords, merges and

 Kingdon, Jim

 modules

 output

 Polk, Jeff

 repository

 sandbox

 shell prompt

 strengths

 strings, merges and

 Subversion and 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 symbolic links

 updates

 weaknesses

 working copy

CVSROOT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

Davidson, James Duncan (Ant)

debugging 2nd 3rd [See also bug tracking]

 automation and

 batch files and

 GNU Autotools

 installation tools and

 make

 shell scripts and

declarations in header files

defects

DejaGnu testing environment

 Elliston, Ben

 Savoye, Rob

dependencies

 Ant

 build dependencies

 changes

 explicit

 functional dependency analysis

 implementation files and

 implicit

 makefiles

 troubleshooting

 calculation

 make and

 platform dependency, Ant

 SCons

dependency tree

developers as customers

development

 closed

 documentation

 implementation and

 maintenance

 marketing

 open

 overview

 product marketing

 project failure

 release

 requirements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sales

 specification writing

 support

 testing

diff tool, merging and

diffability

diffs

 CVS

Dijkstra, E.

directories

 CVS

 empty

 top-level

 renaming, Subversion

dirty secrets

disaster recovery

disk space, SCM tools and

distributed compilation, slow builds and

distributed SCM tools

DocBook

 documentation files

DocJet, internal documentation

documentation

 Arch

 as separate product

 automation

 cleanup and

 CVS

 environments

 FrameMaker

 Microsoft Word

 text

 XML

 file formats

 HTML

 LaTeX

 PDF

 POD

 PostScript

 TeX

 Texinfo

 troff

 filenames

 future environments

 GNU Autotools

 internal

 introduction

 make

 overview

 pitfalls

 previous versions

 product maintenance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ransom-note style

 SCM

 SCons

 screenshots

 separate release

 tools

 writing, compared to writing code

doxygen, internal documentation

dpkg installation tool (Unix)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

edits, CVS and

Electric Make

Elliston, Ben

 DejaGnu

 GNU Autotools

email, integration and

empty directories, CVS

environments

 automation environments

 Anthill

 CruiseControl

 Tinderbox

 classic, tools for

 modern, tools for

 outsourcing

 tools, future

explicit build dependencies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

faults of omission, testing and

Feldman, Stuart (make)

file browsing in CVS

file formats, documentation

 HTML

 LaTeX

 PDF

 POD

 PostScript

 TeX

 Texinfo

 troff

filenames

 allowed/disallowed

 documentation

 formats

files

 batch files

 build files 2nd

 example

 README files

 renaming, Subversion

FishEye 2nd

Fitzpatrick, Brian (Subversion)

FogBugz

 Spolsky, Joel

Fogel, Karl

 Subversion

formats

 documentation

 filenames

Fowler, Martin

FrameMaker documentation files

FSF (Free Software Foundation)

functional dependency analysis

future environments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

GForge

gmake

GNATS

 Kehoe, Brendan

 Manson, Bob

 Merrill, Jason

 Seidl, Heinz G.

 Svendsen, Yngve

 Walstrom, Chad

 Zamazal, Milan

GNU Autotools

 debugging

 documentation

 Elliston, Ben

 Hello World program

 MacKenzie, David

 Taylor, Ian Lance

 Tromey, Tom

 Vaughan, Gary

Goat book

GPL (General Public License)

grist, Jam

Grune, Dick (CVS)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

Haemer, Jeffrey

Hancock, Kevin (Subversion)

header files

 declarations

 Jam

Hello World, GNU Autotools

Heraclitus of Ephesus

Hoyle, Tony (CVS)

HTML documentation files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

i18n (internationalization)

identifying build tools

implementation

 files

 build dependencies and

 header files

 introduction

implicit build dependencies

incidents

included make

InnoSetup installation tool

InstallAnywhere installation tool

installation

 chains

 corrupted installers

 installer requirements

 issues

 multiple versions

 privileges

 testing

 third-party products

 tools

 automation

 debugging

 flexibility

 installer automation

 installers

 language

 media support

 portability

 requirements

 size

 stability

 Unix

 update installers

 Windows

 uninstallers

InstallShield installation tool

integration

 BPM and

 bug tracking and SCM tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CI

 email and

 middleware and

 PDEs and 2nd

 URLs and

internal project documentation

internationalization (i18n)

interoperability tests

interpreters

interrupted build state

intrusion detection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

Jam

 BoostJam

 build files

 grist

 header files

 language

 phases

 Seiwald, Christopher

 weaknesses

Jamfiles 2nd

Java

 CVS clients

 source code, import lines

Javadoc, internal documentation

JDiff

 Ant tasks

 API stability and

JIRA bug tracker 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

Kehoe, Brendan (GNATS)

Kernighan, Brian

Kingdon, Jim (CVS)

Knight, Steven (SCons)

Knuth, Donald (TeX) 2nd

 release numbering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

L10n (localization)

labeling builds

labels

languages, installation tools and

LaTeX

Leblanc, Steve (SCons)

legal licenses, release preparation and

Libtool

license keys, release preparation and

localization (L10n)

locking models

logs

 change logs

 cleanup, automation and

Lord, Tom (Arch)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

machines, names for

MacKenzie, David (GNU Autotools)

maintenance

 cleanup

 code rot

 introduction 2nd

 migration and

 product maintenance

 bug tracking

 build reproduction

 builds

 code

 company name changes

 copyright date changes

 documentation

 people and

 politics and

 product name changes

 SCM and

 testing and

 tool rot

 tools life span

make 2nd

 Automake

 cake

 clock

 cook

 debugging

 dependency analysis and

 documentation

 Feldman, Stuart

 gmake

 history of

 included

 makefiles 2nd

 Paul's rules of

 syntax

 makepp

 McGrath, Roland

 Miller, Peter

 nmake

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 nonrecursive

 parallel builds

 portability and

 problems with

 recursive

 Smith, Paul

 speed

 Stallman, Richard

Manson, Bob (GNATS)

Maven

McConnell, Steve

McGrath, Roland (make)

McVoy, Larry (BitKeeper)

memory analyzers, testing and

merges

 Arch and

 CVS

 keywords

 strings

 diff tool

 madness

 patch tool

 SCM

Merrill, Jason (GNATS)

Microsoft Word documentation files

middleware, integration and

migration, maintenance and

Miller, Peter (make)

modern environments, tools for

modules, CVS

multiple machines for testing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

names

 branches

 changes, product maintenance and

 machines

 projects

 tags

newsgroups, tool selection and

nonrecursive make

NSIS (Nullsoft Scriptable Install System) installation tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

online resources

open development

Open Directory Project, tool selection and

open source products

OpenOffice, documentation and 2nd

OSI (Open Source Initiative)

output

 automation and

 capturing, testing and

 CVS

outsourcing your environment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

packaging releases

 Unix

 Windows

parallel builds

 Ant

 Electric Make

 make

 SCons

 slow builds and

patch tool, merging and

Paul's rules of makefiles

PDEs (preconstructed development environments)

 benefits

 BerliOS

 CollabNet

 comparison chart

 GForge

 improvements

 integration and

 Savane

 SourceForge 2nd

PDF (Portable Document Format) documentation files

people

 awkward

 commit rights

 communication and

 developers

 toolsmith's role

Perforce

 Seiwald, Christopher

performance tools

 SCM tools

 testing and

Perlis, Alan 2nd

personal tools quiz

Pike, Rob

Pilato, C. Michael (Subversion)

platform dependency, Ant

POD (Plain Old Documentation) documentation files

Polk, Jeff (CVS)

portability

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 batch files

 installation tools

 make and

 PDEs

 shell scripts and

PostScript documentation files

preparing to test

preprocessor directives, branches and

product maintenance

 bug tracking and

 build reproduction

 builds

 code

 company name changes

 copyright date changes

 documentation

 people and

 politics and

 product name changes

 SCM and

 testing and

product marketing

product releases [See releases]

projects

 components

 internal documentation

 names

 troubleshooting

properties, Ant

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

ransom-note style of documentation

RCS (Revision Control System)

 Tichy, Walter

README files

recommended tools

recursive make

refactoring, SCM and

releases

 automated

 completion

 creating

 developers as customers

 future environments

 installation issues

 installation tools

 introduction

 maintenance and

 numbering

 Knuth, Don

 overview

 packaging

 Unix

 Windows

 preparation

 build numbers

 engineering specials

 legal licenses

 license keys

 numbering

 quick fixes

 release information

 security

 system requirements

 upgrades

 release information

 automated

replication, SCM tools

reports

 bug tracking and 2nd

 generating, shell scripts

 tests

http://lib.ommolketab.ir
http://lib.ommolketab.ir

repository, CVS

resources

 automation and

 books

 conferences

 magazines

 online

 university/college courses

revision control

Roach, Anthony (SCons)

RPM, installation tools and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

sandbox (CVS)

Savane

Savoye, Rob (DejaGnu)

scalability

 bug tracking

 tools

 build tools

 compilers

schedules, bug tracking

scheduling builds

SCM (software configuration management)

 access

 Appleton, Brad

 Arch

 backups

 branches

 naming

 tag comparison

 corruption detection

 disaster recovery

 documentation and

 drawbacks

 intrusion detection

 merging

 need for

 product maintenance

 refactoring and

 revision control

 security

 tags

 branch comparison

 naming

 uses

 version control

 Wheeler, David A.

SCM tools 2nd

 Arch

 BitKeeper 2nd

 branches

 bug tracking tools

 centralized

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cleanup and

 ClearCase

 comparison chart

 connectivity and

 CVS 2nd

 disk space and

 distributed

 FishEye 2nd

 Perforce

 performance and

 replication and

 Visual SourceSafe

SCons 2nd 3rd

 Austin, Chad

 build files 2nd

 programming langauge

 Crain, Charles

 dependencies, scanning

 documentation

 extensibility

 Knight, Steven

 Leblanc, Steve

 modularity

 parallel builds

 Roach, Anthony

 SCM tool integration

 Sidebotham, Bob

 signature files

SConscript files 2nd

screenshots, documentation

scripts

 development

 shell scripts

searches, bug tracking

security

 PDEs

 release preparation

 SCM

 Wheeler, David A.

Seidl, Heinz G. (GNATS)

Seiwald, Christopher

 Jam

 Perforce 2nd

serial models

servers, slow builds and

severity inflation, bug tracking

shell prompt, with CVS branch name

shell scripts

 automation environments

 build tools and

 report generation

 script development

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 testing environment

 watchdog timers

Sidebotham, Bob (SCons)

signature files, SCons

SilkTest testing environment

slow builds

 ccache and

 distributed compilation

 parallel builds and

 staged builds and

Smith, Paul (make)

software builds [See builds]

software development [See development]

Sommerville, Ian

source code

 build files and

 builds

 code rot

 compilers

 Java, import lines

 product maintenance and

 static code analyzers, testing and

 Unix installation tools

SourceForge 2nd

spam, bug tracking and

Spolsky, Joel (FogBugz)

spreadsheets, bug tracking and

stability, installation tools and

staged builds, slow builds and

stages of a build

 build commands

 build file read

 command execution

 configuration

 dependency calculation

 target definition

 what to build

Stallman, Richard (make)

startup, Ant

states of a build

 changed

 clean

 interrupted

 targets and

 up-to-date

 virgin

static code analyzers, testing and

Stein, Greg (Subversion)

strings, CVS merges and

Subversion

 atomic operations

 binary files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Blandy, Jim

 Collins-Sussman, Ben

 CVS and

 directories, renaming

 files, renaming

 Fitzpatrick, Brian

 Hancock, Kevin

 Pilato, C. Michael

 Stein, Greg

 versioned metadata

Svendsen, Yngve (GNATS)

symbolic links, CVS

synchronized clocks, CVS and

syntax

 Jamfiles

 makefiles

system requirements, release preparation and

system tests

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

tags

 branch point tags

 SCM

 branch comparison

 naming

targets

 build states and

 definition

Taylor, Ian Lance (GNU Autotools)

Tcl, CVS clients

TDD (test-driven development)

technical documentation [See documentation]

temporary files, cleanup, automation and

test tools

 coverage tools

 memory analyzers

 performance tools

 static code analyzers

testing 2nd

 automating testing, reasons for

 boundary conditions

 builds and

 comparison tests

 conformance tests

 customer tests

 environment evaluation

 environments

 batch files

 checklist

 DejaGnu

 shell scripts

 SilkTest

 xUnit

 faults of omission

 installs

 interoperability tests

 introduction

 Kernighan, Brian

 multiple machines

 output capture

 Pike, Rob

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 preparations for

 product maintenance and

 reporting

 system tests

 types

 unit tests

 build tools

 xUnit 2nd 3rd

TestTrack

TeX documentation files

 Knuth, Donald

Texinfo documentation files

text files, documentation

Tichy, Walter (RCS)

Tinderbox, automation environments and

tools

 bug tracking

 Bugzilla

 custom

 FogBugz

 GNATS

 JIRA

 selection tips

 spreadsheets

 TestTrack

 build tools [See build tools]

 changing, steps for

 classic environments

 communication

 documentation

 future environments

 installation tools

 automation

 debugging

 flexibility

 installers 2nd

 language

 media support

 portability

 requirements

 stability

 Unix

 update installers

 Windows

 life span estimate

 modern environments

 recommendations

 scalability

 build tools

 compilers

 selecting

 test tools

http://lib.ommolketab.ir
http://lib.ommolketab.ir

toolsmith, role of

 Fred Brooks

top-level directories, CVS

Torvalds, Linus (BitKeeper)

tracking bugs [See bug tracking]

troff documentation files

Tromey, Tom (GNU Autotools)

troubleshooting

 build dependencies

 builds

 projects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

uninstallers

unit tests

 build tools

university courses

Unix

 installation tools

 release format

up-to-date build state

updates

 CVS

 installers

upgrades, release preparation

URLs, integration and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

Vaughan, Gary (GNU Autotools)

Venners, Bill

version control

versioned metadata, Subversion

virgin build state

Visual SourceSafe

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

Walstrom, Chad (GNATS)

watchdog timers

 batch files

 shell scripts and

web site forums, tool selection and

web sites

 communication and

 access control

 content rot

 creating

 project web site areas

What do developers really want?

Wheeler, David A.

Windows

 installation tools

 release package

Windows Installer installation toolset

Wise for Windows installation tool

Word documentation files

working copy, CVS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

XML

 Ant

 build files

 limitations

 documentation

 DocBook

 OpenOffice

XP (extreme programming) methodology

xUnit 2nd 3rd

 test environments

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Z]

Zamazal, Milan (GNATS)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Practical Development Environments
	Table of Contents
	Dedication
	Copyright
	Preface
	What This Book Is About
	What This Book Is Not About
	Who Should Read This Book
	What's Inside
	Style Conventions
	Using Code Examples
	Safari Enabled
	Comments and Questions
	Acknowledgments

	Chapter 1. Introduction
	Section 1.1. Developing Software Products
	Section 1.2. Open and Closed Software Development
	Section 1.3. Dirty Secrets of Software Projects
	Section 1.4. What Does
	Section 1.5. A Personal Tools Quiz

	Chapter 2. Project Basics
	Section 2.1. The Parts of a Project
	Section 2.2. Software Configuration Management
	Section 2.3. Building Software
	Section 2.4. Testing Software
	Section 2.5. Tracking Bugs
	Section 2.6. Writing Documentation
	Section 2.7. Releasing Products
	Section 2.8. Maintenance
	Section 2.9. Recommended Tools

	Chapter 3. Project Concepts
	Section 3.1. Preconstructed Development Environments
	Section 3.2. Why Integration Is Helpful
	Section 3.3. Why Automation Is Vital
	Section 3.4. Automation Environments
	Section 3.5. Labeling Builds
	Section 3.6. Naming Projects and Machines
	Section 3.7. Choosing New Tools
	Section 3.8. Internationalization and Localization
	Section 3.9. Authentication, Authorization, and Accounting

	Chapter 4. Software Configuration Management
	Section 4.1. Why Do I Need SCM?
	Section 4.2. What SCM Is and Is Not
	Section 4.3. Drawbacks of SCM
	Section 4.4. A Typical Day's Work with SCM
	Section 4.5. SCM Annoyances
	Section 4.6. SCM Tools
	Section 4.7. Comparison of SCM Tools
	Section 4.8. Wider Uses of SCM
	Section 4.9. Checklist

	Chapter 5. Building Software
	Section 5.1. How Software Gets Built
	Section 5.2. Build States: Virgin, Up-to-date, Changed, Interrupted, Clean
	Section 5.3. Build Dependencies
	Section 5.4. Common Build Problems
	Section 5.5. Build Tools
	Section 5.6. Comparison of Build Tools
	Section 5.7. Changing Your Build Tool
	Section 5.8. Checklist

	Chapter 6. Testing Software
	Section 6.1. Different Kinds of Tests
	Section 6.2. Why Automate Your Tests?
	Section 6.3. Evaluating Test Environments
	Section 6.4. Test Environments
	Section 6.5. Types of Test Tools
	Section 6.6. The Difficult Parts of Testing
	Section 6.7. Checklist

	Chapter 7. Tracking Bugs
	Section 7.1. Tool Requirements
	Section 7.2. Bug Tracking Tools
	Section 7.3. Bug Tracking Annoyances
	Section 7.4. Integrating with SCM Tools
	Section 7.5. Checklist

	Chapter 8. Documentation Environments
	Section 8.1. Technical Documentation
	Section 8.2. Documents and SCM
	Section 8.3. File Formats for Documentation
	Section 8.4. Documentation Environments
	Section 8.5. More File Formats
	Section 8.6. Automated Production of Documentation
	Section 8.7. Bad Ideas for Documentation
	Section 8.8. Internal Project Documentation
	Section 8.9. Checklist

	Chapter 9. Releasing Products
	Section 9.1. Overview
	Section 9.2. Before the Release
	Section 9.3. Creating the Release
	Section 9.4. Packaging Formats
	Section 9.5. Installation Tools
	Section 9.6. Installation IrritationsShip Happens!
	Section 9.7. After the Release
	Section 9.8. Checklist

	Chapter 10. Maintenance
	Section 10.1. Maintaining an Environment
	Section 10.2. What Is Product Maintenance?
	Section 10.3. Product Maintenance Tasks
	Section 10.4. Product Maintenance and Development Environments
	Section 10.5. Cleaning Up Your Environment
	Section 10.6. Checklist

	Chapter 11. Project Communication
	Section 11.1. Tools for Communication
	Section 11.2. A Project Web Site
	Section 11.3. Different Areas for the Project Web Site
	Section 11.4. Creating the Web Site
	Section 11.5. Avoiding Content Rot

	Chapter 12. Politics and People
	Section 12.1. The Role of the Toolsmith
	Section 12.2. When Good Projects Go Bad
	Section 12.3. Awkward People
	Section 12.4. Twisted Communications
	Section 12.5. Commit Rights
	Section 12.6. Automation Discipline
	Section 12.7. What Do Developers Really Want?
	Section 12.8. An Upbeat Ending

	Appendix A. How Tools Scale
	Section A.1. Scaling of Compilers
	Section A.2. Scaling of Build Tools

	Appendix B. Resources
	Section B.1. Online
	Section B.2. Magazines
	Section B.3. Books
	Section B.4. Conferences
	Section B.5. University and College Courses

	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

