
http://lib.ommolketab.ir
http//lib.ommolketab.ir

ADAPTING TO
WEB STANDARDS

Christopher Schmitt, Kimberly Blessing, Rob Cherny,
Meryl K. Evans, Kevin Lawver, and Mark Trammell

CSS and Ajax for Big Sites

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adapting to Web Standards: CSS and Ajax for Big Sites
Christopher Schmitt
Kimberly Blessing
Rob Cherny
Meryl K. Evans
Kevin Lawver
Mark Trammell

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the World Wide Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2008 by Christopher Schmitt and Kevin Lawver

Project Editor: Victor Gavenda
Production Editor: Hilal Sala
Development Editor: Wendy Katz
Copyeditor: Doug Adrianson
Tech Editor: Molly Holzschlag
Proofreader: Doug Adrianson
Compositor: Kim Scott, Bumpy Design
Indexer: Emily Glossbrenner
Cover design: Charlene Charles-Will
Interior design: Kim Scott, Bumpy Design

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every precaution has been taken
in the preparation of the book, neither the authors nor Peachpit shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear
as requested by the owner of the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-50182-0
ISBN 0-321-50182-9

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Acknowledgements
Adapting to Web Standards tackles the very real problems of reaching out and teaching people about Web
standards, but also how to incorporate those technologies into everyday workflows when swift and frequent
deadlines often crush progress.

Written to empower the individual designer and the large organizations to start working in the cor-
rect direction, Adapting to Web Standards required the involvement the hands of a great number of
professionals.

If you know Rob Cherny, you know a true Web specialist. He seems to cover every aspect of the DOM. His
presence is felt in the core of this book from the introduction up through the fourth chapter.

I’m not sure how Kimberly Blessing came into the book project. I believe it was during one of those mad, late
night pushes to get edits and reviews out the proverbial door when she chimed in to offered to write about
managing Web standards. That turned into Chapter 5 of the current book. I’m grateful for her time and sup-
port for this project.

Special thanks go to Meryl K. Evans, the content maven. She stepped in at the right moment to help tackle
the Tori Amos chapter.

I was honored when I talked to Kevin Lawver about building off his panel idea and turning into a book, he
not only supported it, but also wanted to be a part of the process. He did an amazing job in capturing a
small part of the Web standards process at AOL.

Thanks to the illustrator Rebecca Gunter for the illustrations for Kimberly’s chapter. You can find more of
her work at http://soap-committee.deviantart.com/.

Many thanks go to Molly E. Holzschlag for doing the technical editing chores of the book. Not sure how she
had the time to do this among her various other activities, but I’m sure someone who has written thirty-plus
books on Web development like she has could find the way. See http://molly.com.

Wendy Katz and Doug Adrianson helped guide the creation of the book with their timely questions and
editing skills.

Thanks to Victor Gavenda and Michael Nolan from Peachpit Press/New Riders for guiding the book from
concept to reality.

As anyone who has ever written a chapter for a book, it’s not easy. It’s a commitment demanding time and
focus that keeps people away from weekend getaways or get-togethers with friends and loved ones. I want
to let the ones closest to me know that I’m looking forward to our seeing you all and not boring you with
talk about Web standards.

For a while, at least.

Christopher Schmitt
christopherschmitt.com
Lead Author

http://soap-committee.deviantart.com/
http://molly.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

iv

About the Authors
Christopher Schmitt is the founder of Heatvision.com, Inc., a small new media
publishing and design firm based in Cincinnati, Ohio.

An award-winning web designer who has been working with the Web since 1993,
Christopher interned for both David Siegel and Lynda Weinman in the mid 90s
while he was an undergraduate at Florida State University working on a Fine Arts
degree with an emphasis on Graphic Design. Afterwards, he earned a Masters
in Communication for Interactive and New Communication Technologies while
obtaining a graduate certificate in Project Management from FSU’s College of
Communication.

In 2000, he led a team to victory in the Cool Site in a Day competition, where he
and five other talented developers built a fully functional, well-designed Web site
for a nonprofit organization in eight hours.

He is the author of CSS Cookbook, which was named Best Web Design Book of
2006, and one of the first books that looked at CSS-enabled designs, Designing
CSS Web Pages (New Riders). He is also the co-author of Professional CSS (Wrox),
Photoshop in 10 Steps or Less (Wiley) and Dreamweaver Design Projects (glasshaus)
and contributed four chapters to XML, HTML, XHTML Magic (NewRiders).
 Christopher has also written for New Architect Magazine, A List Apart, Digital
Web and Web Reference.

At conferences and workshops such as Train the Trainer, Web Visions and SXSW,
Christopher demonstrates the use and benefits of accessible and standards-based
designs. He is the list moderator for Babble (www.babblelist.com), a mailing list
community devoted to advanced web design and development topics.

On his personal web site, www.christopher.org, Christopher shows his true colors
and most recent activities. He is 6' 7" and doesn’t play professional basketball but
wouldn’t mind a good game of chess.

Kimberly Blessing is a computer scientist, technical leader, and Web standards
evangelist. At PayPal she leads the Web Development Platform Team, which is
responsible for driving the creation and adoption of standards through training
and process. She co-leads The Web Standards Project, a grass-roots organization
that advocates standards-compliance and use to browser manufacturers and
developers alike. A graduate of Bryn Mawr College’s Computer Science program,
Kimberly is also passionate about increasing the number of women in technology.
Her on-line presence is at www.kimberlyblessing.com.

www.babblelist.com
www.christopher.org
www.kimberlyblessing.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

v

Rob Cherny is the Lead Web Developer at Washington DC-based Web user expe-
rience consulting firm, NavigationArts. He has 11 years experience implementing
Web sites, content management, and Web-based applications, typically filling an
ambiguous space between the creative and technical teams.

Rob has introduced Web standards-based solutions as both an employee and a
consultant for a broad range of clients including Sallie Mae, Sunrise Senior Living,
the American Red Cross, Discovery, Weatherbug, Marriott, Freddie Mac, GEICO,
the US Department of Health and Human Services, and the US State Department.

He lives outside Boston, Massachusetts with his wife, two dogs, and three cats.
While not obsessively multitasking online in front of his computer he enjoys mov-
ies and hikes with his wife and dogs. He periodically blogs about Web design and
development on his personal Web site, www.cherny.com.

Rob holds a Bachelor of Arts in History degree from Towson State University in
Maryland.

Meryl K. Evans is a content maven and the author of Brilliant Outlook Pocket-
book. She has written many articles and contributed to books covering Web
design, business, and writing. Meryl has also written and edited for The Dallas
Morning News, Digital Web Magazine, MarketingProfs.com, PC Today, O’Reilly,
Pearson, Penguin, Sams, Wiley, and WROX. You can contact the native Texan
through her Web site at www.meryl.net.

Kevin Lawver has worked for AOL for over twelve years, building all manner
of web applications. He is a passionate advocate for standards-based develop-
ment and is currently AOL’s representative to the W3C Advisory Council and a
member of the CSS Working Group. He spends his time writing code, blogging,
preaching the gospel of web standards, and speaking at conferences about stan-
dards, mashups, best practices and Ruby on Rails. You’ll find Kevin on the Web at
http://lawver.net.

Mark Trammell has been chasing function and usability as a standard for Web
design since 1995. Mark has served as Web Standards Evangelist at PayPal and
directed the Web presence of the University of Florida. In his tenure at UF, Mark
led a widely acclaimed standards-based rebuilding of www.ufl.edu. To download
Mark’s interview with Jimmy Byrum, who is the Web developer at Yahoo! respon-
sible for the home page at yahoo.com, be sure to register this book online at
www.webstandardsbook.com.

www.cherny.com
www.meryl.net
http://lawver.net
www.ufl.edu
www.webstandardsbook.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

vii

Contents

Part 1: Constructing Standards-Based Web Sites 3
Introduction 

What Are Web Standards?. 6
Basic Benefits of Web Standards 6

Web User Interfaces 7
User Interface Planning 8

Web Site Planning Today 9
A New Approach: UI Architecture Plans 11

Chapter : Coding the Front End 
Where To Start . . 14
Document Structure: Markup Language Choices 15

HTML vs. XHTML. 15
DOCTYPE Switching and Browser Rendering Modes 21
To Validate or Not To Validate Markup. 32
Content and Structure: Design to Execution 34

Chapter : Presenting Cascading Style Sheets 
How Many CSS Files?. 48

CSS File and Linking Strategies 49
Microformats for Conventions, Meaning, and Utility 55

Microformats and POSH 56
Too Much Class . 59

Classic Classitis 60
Curing Classitis 61

CSS File Content Structure 65
Alternative Media CSS 67
Presentation Set Free 72

Chapter : Integrating the Behavior Layer 
Modern Ajax Methods 76

Modern, Progressive, and Unobtrusive Scripting 78
JavaScript Requirements: File and Function Inventory 80

Bad Script, Bad. 80
Unobtrusive Improvements 85
Pop-Up Windows. 88
Dynamic Elements and innerHTML 91

JavaScript Behavior with CSS and Presentation 93
Large Sites and Support for Multiple OnLoads 96

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii ADAPTING TO WEB STANDARDS

Custom Scripts vs. Frameworks 98
Example of jQuery Framework Code. 100
Frameworks Make Ajax Easy. 104
Frameworks in a Nutshell 106

Chapter : Developing Web Software Applications 
Web Apps Stuck in the Past 110

Software Quality and Inventory Analysis 110
Guidelines, Rules, and Web Standards 112

Rules To Code By 113
Better Forms with Modern Markup 113
Server-Side Frameworks and Template Tools 117

Microsoft ASP.NET Framework 121
ASP.NET Data Output 124
ASP.NET HTML Controls, Web Controls, and More 130

Content Management 135
Baseline Content Management. 135
Content Management and Clean Content. 136
Content Management Output and Modules 136
Content Management Templates 137
WYSIWYG for Content Authors 141
Third Parties 143

How To Approach Web Apps 144

Chapter : The Circle of Standards 
Organizational Inertia 148
Introducing the Circle 150

The Standards Manager 150
Standards Creation and Documentation 151
Training and Communication 154
The Quality Review Process 155

Setting the Wheel in Motion 157
Keeping Up Momentum 158
Conclusion . 158

Part 2: Case Studies 161
Practice Doesn’t Make Perfect 

Communication 164
Adaptation . 164
Persistence . 165
Trials and Tribulations 165

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents ix

Chapter : EverythingTori.com 
Backstage . 168

Digging into the World of Tori Amos 168
Putting the Design Process to Work 170
Building the Wireframes 170
Designing the Site 177
Behind the CSS Scenes 180

Launching the Site 190
Meet the Designer, Philip Fierlinger 191
End Song . 195

Chapter : AOL.com 
Setting Your Team Up for Success and Avoiding Failure 199

What Went Wrong 199
Designing for Performance 220

Estimating Performance Before You Write a Line of Code . . . 221
Performance Concerns 224
Interview: David Artz 229
Repeatable Steps 231

System Design and Architecture 232
The Buddy System 232
Get the Stubs Out 233
Thinking About Workflow 234

Front-End Wizardry 235
Making Your Markup Sing with DOCTYPE 236
CSS Best Practices 239
Accessible CSS 242
Performance in the Real World 248

Conclusion . 250

Afterword . 253

Appendix A: Targeting Web Browsers 254
Appendix B: Accessibility 259
Appendix C: Web Site Performance Tips. 261
Appendix D: CSS Selectors Reference 270

Index . 273

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this page intentionally blank)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Constructing
Standards-Based
Web Sites

Part1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction

Building Web sites has changed, and someone forgot to tell the architects.

 Web browsers’ support for modern techniques has allowed a new

degree of discipline and control in coding the front end of a Web site.

These new best practices are those dictated in what is commonly referred

to as “Web standards-based” design or development.

 A Web standards-based approach has countless benefits. The larger or

more complex a Web presence, the more critical Web standards become.

This is particularly true for an enterprise with many different properties,

channels, or brand considerations. Add to this the prospect of critical

Web-based applications and content management, and it becomes a man-

date to ensure a high level of quality at every tier of an online presence.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 ADAPTING TO WEB STANDARDS

To embrace standards is only the start. Some planning must occur to create a
standards strategy that will endure over time, be applied gracefully, and scale
within an organization, team, or enterprise. A solid foundation should be created
by getting back to the basics and building with deliberate choices instead of acci-
dental decisions.

This book will help a Web team reexamine why they are creating standards-based
Web sites and how best to do it. It will help evaluate what is in place now as well
as the impact of Web standards on a team or a Web site as a whole. It will also
assist with staying organized over time and in finding ways to improve stability
and reduce risk in Web applications. It will help create techniques that leverage
the unique strengths of Web standards in a CMS (Content Management System).
Finally, this book will finish by examining some process and staffing consider-
ations of Web standards.

What Are Web Standards?
Web standards is a term used to mean Web pages built using the open and com-
patible recommendations from the World Wide Web Consortium (W3C) and
other standards bodies as opposed to closed, proprietary, corporate feature sets.
These recommendations, combined with modern best practices, exploit the stan-
dardized power of the modern Web browsers that dominate the market today,
as opposed to out-of-date browsers that were feature-rich but inconsistent and
often incompatible. Placing a graphic that reads “This site designed for Netscape
Navigator” on the main page of a Web site should be a thing of the past.

Web standards fail gracefully when encountered by out-of-date browsers. The
standards are also intended to provide greater benefit for accessibility and for
other types of media. These techniques are built with intentional side effects that
can benefit users, the company, and the team responsible for creating the sites.
Whole books have been written on the subject.

Basic Benefi ts of Web Standards
Sites built with Web standards have many benefits, right out of the box, virtually
without robust technique or experience. These include

❖ Style and script reuse and consistency

❖ Reduced bandwidth use and caching of style and script files

❖ Faster rendering of pages

❖ Cleaner, easier-to-maintain code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part I Introduction 7

❖ Easier to make accessible for assistive technologies

❖ Easier to make search engine-optimized

❖ Increased compatibility between browser vendors

❖ Improved chances of document legibility for the next generation of browsers

❖ Increased readership for your site!

Web User Interfaces
In simple software terms, the front end of a Web site can be referred to as its user
interface (UI) layer. The UI layer of a Web site includes all the artwork, text, for-
matting commands, interaction instructions, and controls sent from a Web server
over the Internet to be viewed by a user inside a Web browser. A user may interact
or “interface” with the resulting Web page UI by clicking objects or typing, thus
providing input for a new request, which is then sent back over the Internet to the
Web server to start the cycle again (Figure in.).

Contrast this front end to server-side programming, which includes business logic
and direct interactions with databases or other data stores. Oftentimes a server-
side program must render a UI layer. By the same token, the UI layer can send

Figure in. The user
interface of a Web page
is composed of several
layers of technologies.

User Interface (UI) Layer

UI of <Web Page>
in Browser

JavaScript Behavior Layer

CSS Presentation Layer

(X)HTML Content & Structure

User Actions
and Input

Web Server:
server-side scripts,
databases,
business logic

IN
TE

RN
ET

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 ADAPTING TO WEB STANDARDS

directives or input to a server-side program and may contain some business logic.
This demonstrates how pervasive a UI is and how it touches every aspect of Web
sites, from the simplest static marketing page to intricate business logic.

When Web authors build a modern UI layer, they may include complex instruc-
tions or share code between pages and server-side programs to be more efficient.
Therefore, a redesign, or modifications to the UI, can get complicated or far-
reaching. Or both.

How can this code be managed in an effective manner, shared among large teams,
and remain efficient from a productivity standpoint over time?

User Interface Planning
The 1990s dot-com boom introduced horrible UI practices that led to bloated,
unstructured, risky, and inefficient construction of Web sites. The structure of a
simple Web page became an ugly mess referred to as “tag soup”—a virtual train
wreck of nested HTML tables and single-pixel transparent spacer GIFs that had
to be designed before work could begin on the page’s content or an application
(Figure in.).

Massive HTML documents were the norm, weighing down the user experience
and making the slightest modifications difficult. To enable user interaction via

Figure in. An
example of old-school
HTML code featuring
inline presentation,
event handlers,
tags—the usual
suspects.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part I Introduction 9

JavaScript was also a hack, with embedded event handling and code forks based
on proprietary browser techniques. Finally, to control any of the output on your
Web site or application required intertwining your content, presentation, and
application logic all together in layers, which introduced business risk and man-
agement hassles.

Web Site Planning Today
The vast majority of the effort and project planning on large-scale Web projects
today trivializes the UI layer and treats it as an afterthought, when in fact it can
deeply impact content management, Web applications, search engine optimiza-
tion (SEO), bandwidth costs, site performance, and maintenance efforts. Plans
typically start with the back-end software and only touch on the UI in terms of
design.

Fortunately, there are ways to pare down the long-term risks and remove the
constraints of traditional Web coding. Embracing modern techniques starts with
the W3C and its recommendations, often called Web standards.

The issue should be considered not only in terms of your design, but also where
the content management, applications, and other dynamic systems are con-
cerned. If a Web site is to reap the benefits of a Web standards-based UI, it needs
to be considered at all levels, and plans should be introduced that will allow the
site to grow intelligently.

The Keys to Web Standards
What, exactly, changes when you’re planning a site with a Web standards-based
approach?

First, on the UI layer, conforming to Web standards means 100% separation of
presentation from content and structure, as well as the scripting behavior of UI
elements. Second, on the back end, this means limiting the mixing of UI code in
the Web applications and CMS code that may need periodic updates, and apply-
ing the same strict separation as to any other static screen.

The distinct areas to concentrate on are

❖ Content and structure—the markup layer, usually made up of HTML (Hyper-
Text Markup Language) or XHTML (eXtensible HyperText Markup Language)

❖ The presentation layer—consisting of CSS (Cascading Style Sheets), which is
referenced from the markup and the sites scripts

❖ The behavior layer—the JavaScript elements that enable user events and
interactions

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 ADAPTING TO WEB STANDARDS

❖ The software and CMS layers—these have a UI of their own and often produce
the above UI layers

❖ The teams and processes that help to build all of the above

It is not difficult to attain UI layer separation in a static setting devoid of software
or large teams. The key is that the Web software needs to respect these distinc-
tions as well, and the project plans need to consider the UI layer as a first-class
citizen that needs to interact with all systems in an intelligent and thoughtful way,
not as a second-class citizen that is simply an afterthought.

Software Architecture Patterns
Layers of code serving different purposes are not a new concept for the software
industry. In fact, there are numerous examples of architectural design patterns
that software students have been studying for years. A good list with links to
examples of architectural design patterns can be found on Wikipedia at http://
en.wikipedia.org/wiki/Architectural_pattern_%28computer_science%29.

An example of a popular pattern called “model-view-controller” is, in simple
terms, something like the following:

❖ Model: Logical meanings of raw data used for various business purposes.
Think of the model layer as an application program interface (API) for other
parts of a program to connect with it. This layer is responsible for the compu-
tational footwork we rely on computers to do for us, like adding up the cost of
items in a shopping cart or determining if today is our wedding anniversary.

❖ View: This is the eye candy one sees when the model is rendered into a UI
layer or part of the UI layer. Think of an HTML+CSS web page from a Web
application as the view.

❖ Controller: Frequently event driven, it interprets and responds to user actions
and may drive changes to the model. Think of this as the layer responsible for
handling user actions which include, but are not limited to, mouse clicks or
Web-based form submissions.

To extend this model to Web software and Web standards, some have labeled
the UI layer separation of content, presentation, and behavior as a parallel to this
pattern, using the model (content and structure), the view (presentation), and
the controller (behavior). Experienced software architects are often quite eager to
embrace a layered front end whether they are familiar with Web design or not.

http://en.wikipedia.org/wiki/Architectural_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Architectural_pattern_%28computer_science%29
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part I Introduction 11

A New Approach: UI Architecture Plans
A traditional plan starts with back-end requirements and then builds on a UI layer
code as an afterthought. Today, using a modern Web standards-based approach,
teams should ask themselves the following:

❖ Is the UI layer built and structured for easy maintenance?

❖ How does the UI layer impact SEO?

❖ How does the UI layer interact with the site’s content management
system (CMS)?

❖ Is it possible to redesign or make simple design changes without deep
CMS impact or the need for CMS staff?

❖ What happens when it comes time to modify or enhance the UI?

❖ How do you integrate a UI with a Web application?

❖ What happens when the application logic changes?

❖ How risky is a design change to an application?

❖ Should mission-critical applications buckle under the pressure of needlessly
risky design, simple content, or script changes?

A well-planned Web standards approach will mitigate these risks at two levels:
first, the front-end code; and second, where the back end meets the front end.

Over time, for any site, these questions become big issues. Larger enterprises often
have a Web presence in place, and mass change will not be possible or will be too
difficult to achieve overnight. Incremental change may be required. Where the
line is drawn will be different in almost every case.

When planning for change, first figure out what needs to be designed, whether
it’s marketing content or an application, and how it needs to be rendered in the
browser. Second, make reasoned decisions based on the pros and cons of each
option. Finally, figure out how to get a site to its standards-compliance goals and
how to keep it that way.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1
Coding the Front End

Advocates of Web standards tend to be passionate, but far from unani-

mous. Disagreement is nothing new. The concept of “Web standards-

based” Web sites means different things to different people. Web

standards is the subject of many an argument online, and, to some, almost

a religious crusade. This is in part because there are many myths that sur-

round Web standards. To those who think they know what Web standards

are all about, it’s important to filter truth from all the noise.

 The most important aspects of Web standards-based Web sites are the

separation of content and structure (HTML or XHTML) from presenta-

tion (CSS) and behavior (JavaScript). These key characteristics are by far

the most critical ones, and will help provide most of the advantages of

 standards-based code, in particular easier site maintenance.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 ADAPTING TO WEB STANDARDS

One of the most intensely debated subjects within the realm of standards is the
myth that all code must be validated. Validation is seen as a critical aspect of Web
standards-based development, with its noble purpose of ensuring compliance
and compatibility, and providing help with debugging. Although no one would
ever suggest that the creation of invalid documents is a good thing, realities need
to mitigate this process, and be tempered with project priorities as necessary.
Both the advantages of easier maintenance and the realities of external factors
that impact validation may occur (and therefore conflict) in any development
environment.

Separation can coexist with legacy content and applications that are migrating to
a more standards-based approach, often preventing pure validation.

While this perhaps should be true in an idealistic sense, in reality Web standards
need not be all or nothing. Web teams can ease into standards and have them
coexist with legacy content and applications. It’s all really just about improving
your code. If legacy content exists or is full of markup that contains presentation
attributes, it doesn’t mean that new code needs to be the same way. Fix what can
be fixed and move forward in a methodical way. Some environments may not be
able to validate right away; that’s just fine, and is to be expected during any transi-
tion. Transitional specifications exist for those very reasons.

Other myths or exaggerations are that Web standards-based development means
not ever using tables and that design can be only “DIV-based.” This is a gross sim-
plification. Tables can be perfectly valid, and a bunch of DIVs in a document can
likewise be perfectly invalid and just used wrongly. Web standards-based markup
means using elements and attributes for what they were intended to be used
for: Tables are for tabular data, not for layout; headers are content headers; para-
graphs are paragraphs; and presentation of all elements should be controlled with
CSS. The truth of standards is in using code as it was intended to be. The project’s
success depends on being realistic.

There is no standards on-off switch for a Web team. Technique is everything, and
that discussion starts now. Looking deeper, there actually is a standards on-off
switch: It’s built into the Web browser. To learn about that, keep reading.

Where To Start
A Web standards strategy needs to start at the markup level, since that’s where
the offense of mixing HTML markup with presentation details is usually com-
mitted. Allowing a team to evaluate existing code and look at Web standards for
direction will shed light on what the ultimate standards strategy should be. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 15

more complex a site, the more barriers to an absolute pure standards approach
may exist. This may lead to compromises and a phased approach that moves to
standards over time. Such compromises are not ideal but sometimes they are
unavoidable.

Document Structure:
Markup Language Choices
Back in the day, building Web sites meant only one thing: using HTML. Over
time, some who took notice might have included features from HTML 3.2, 4.0, or
even 4.01.

Creative techniques were invented using HTML to design high-end sites involving
single-pixel GIFs and massive amounts of nested tables, which resulted in bloated
and inefficient front-end code. These techniques worked but were difficult to
maintain, because the technology was being used for things it was never intended
to do. Basic layouts and design treatments were effectively code hacks. Today
these hacks have been worked into marketing Web sites, Web software applica-
tions, and content management alike. Web browsers today can support a more
modern and disciplined approach that can help simplify all of these environments
through the adoption of Web standards-based code.

A Web standards-based approach means creating markup that conforms to the
spec as closely as can be accomplished. This typically means well-formed, cor-
rectly nested tags; accurate quoting of attributes; and properly structured code.
At first, these parameters sometimes put off Web authors who are caught off
guard by them, but oftentimes they find that following the guidelines actually sets
them free.

Choosing a markup language can be a tough decision, because there are multiple
options and some aspects are subjective at best, but in the end it is still technique
that matters.

HTML vs. XHTML
Today, the two basic choices are HTML 4.01 or XHTML 1.0. Both specifications
have gone a long way to improve the structure of Web markup and move presen-
tation information out of the markup and into separate files. Both languages are
recommended by the W3C and fully acceptable for producing Web sites. In fact,
the two languages are not that different, with the exception of some attributes,
deprecation of presentational elements, and XHTML’s adherence to XML syntax.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 ADAPTING TO WEB STANDARDS

HTML vs. XHTML Syntax Differences
There are a number of differences between HTML and XHTML. The bottom line is that XHTML
uses a stronger, XML-like syntax, whereas HTML is more forgiving with optional elements. Assum-
ing the document is valid:

• XHTML is XML, as well as being XSLT and XML tool-compatible.

• XHTML elements are lowercase.

• XHTML attribute names are lowercase.

• XHTML is case sensitive.

• XHTML elements match CSS selectors on a case-sensitive basis.

• XHTML attribute values are quoted, with single or double quotes.

• XHTML elements are all closed, including single, empty (also known as “replaced”) tags with a
trailing slash such as
 and

• XHTML requires that all non-empty tags, such as <td>, <p>, , have corresponding closing
tags </td>, </p>, .

• XHTML block-level elements generally do not appear inside inline elements.

• XHTML optional elements such as tbody are not represented in the DOM unless they are actu-
ally in the document.

• XHTML features XML’s “well-formedness,” meaning that tags are correctly nested in a tree struc-
ture where starting and ending tags do not overlap out of order.

• XHTML empty (single-tag or singleton) elements are closed with a trailing slash preceded by a
space for compatibility reasons (e.g.,
, <hr />, etc.).

• XHTML attributes may not use HTML attribute minimization; rather attributes must be fully
specified and quoted like others (e.g., selected=”selected”).

• XHTML elements are returned and specified in DOM JavaScripts in their correct case, whereas in
HTML they are always uppercase.

• XHTML 1.0 and HTML 4.01 Strict deprecate a number of tags and attributes that are allowed in
transitional varieties.

• XHTML-embedded CSS and JavaScript blocks are considered #PCDATA, and their content may
need to be wrapped in XML CDATA blocks; consider external scripts and style sheets.

• XHTML can, under some circumstances, force JavaScript to behave much differently than in
HTML (e.g., document.write sometimes will not work, etc.).

• XHTML name attributes are deprecated; use id attributes instead of, or in addition to, the name
attribute, depending on the need.

For more information, please see the W3C: www.w3.org/TR/xhtml1/#diffs.

www.w3.org/TR/xhtml1/#diffs
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 17

NOTE

XHTML 1.1 has been defined; however, by the specification it must conform
so closely to XML that the majority-share Web browser today has significant
trouble with it. This is, of course, Microsoft Internet Explorer, which has incom-
plete support for XML. That leaves HTML 4.01 and XHTML 1.0 as the most
realistic options.

For years, many Web standards advocates insisted that XHTML was the next
logical step for the Web and that it should be used for all markup. Some still feel
strongly that this is the case. Exceptions among experts exist, and in fact many
of the creators of browser software today favor HTML and consider most of the
XHTML on the Web to be invalid due to its being served from Web servers in
an incorrect manner (see sidebar “Controversy and the History and Future of
XHTML”). Everyone has an opinion, and a developer should always weigh the pros
and cons against the goals of his or her particular project.

Whatever option is subscribed to, HTML is here to stay, and it will be a very long
time before any Web browsers drop support for it. In the end, though, what really
matters is how a developer codes her or his language of choice, and in particular
how it relates to presentation and behavior.

Pros and Cons of HTML vs. XHTML
Here are a few of the many opinions about HTML and XHTML, starting with some
pros of HTML:

❖ HTML has an established authoring base with a smaller learning curve than
other markup languages. Most content authors understand the basics of
HTML syntax and need only learn the subtle nuances of using CSS as opposed
to presentational HTML. They need to unlearn a few bad habits and stop
thinking that elements and tags look a certain way because this will be con-
trolled via CSS. They will also need to learn to code the markup in a semantic
style, which will be explained further later.

❖ HTML is easier to integrate with legacy systems’ markup. This is a compel-
ling case in a large-scale enterprise environment that has lots of legacy code.
Some software simply will not produce valid XHTML and in situations like this,
HTML may be the only way to go.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 ADAPTING TO WEB STANDARDS

Controversy and the History and Future of XHTML
The specification for XHTML states that since XHTML is XML it should be
served over HTTP by Web servers as application/xhtml+xml. Now, the
major browser on the market, Microsoft Internet Explorer, does not support
XHTML served as XML and will only accept it served as text/html, like
traditional HTML. For this reason many advocates of XHTML promote some-
thing called “content negotiation,” which means serving the content with the
types the browser says it accepts. This is all fine, but others point out that
there are XHTML/HTML compatibility guidelines in the XHTML specification
that will allow XHTML to be served as HTML. It is important to note that
in these cases the browser sees the XHTML content as nothing more than
HTML with invalid attributes that are ignored, not as XHTML. A search online
for “XHTML considered harmful” will yield many results and much debate on
the matter.

In the meantime, HTML was left years ago without much of a future at the
W3C, XHTML was defined and embraced by standards advocates every-
where, and then XHTML 2 came along, breaking every imaginable rule of
backwards compatibility. It was practically ignored.

In 2004, staff at several browser companies, including Apple, the Mozilla
Foundation, and Opera, formed the WHATWG (Web Hypertext Application
Technology Working Group) when it seemed that the W3C was no longer
interested in a future for HTML. The WHATWG began to define a specifica-
tion called HTML 5 (and XHTML 5, not to confuse anyone) as well as exten-
sions to the way forms and Web applications might work in the future. The
W3C did not really comment on the new working group for several years.

Fast forward to 2006, when the W3C finally announced a new HTML work-
ing group of its own to help address the future of HTML and XHTML. The
WHATWG has offered up its specification, which blurs the lines between
HTML and XHTML considerably. The specification has been accepted by
the W3C as a starting point, and the debate has begun on the future of both
HTML and XHTML. Only time will tell.

For more information on both working groups:

www.w3.org/html/wg/
www.whatwg.org

Anyone can participate in either of these groups.

www.w3.org/html/wg/
www.whatwg.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 19

Some cons of HTML might be:

❖ Some consider HTML less robust and more prone to error due to its more
relaxed syntax requirements. This can lead to bad practices and confusion.

❖ Extraction, parsing, or manipulation of HTML content from existing docu-
ments or systems for other purposes is more difficult than with XHTML
because of the unpredictable nature of the markup.

❖ Staying with HTML as opposed to XHTML might indirectly discourage some
content production authors from learning more strict standards and adopting
best practices.

Some pros of XHTML are:

❖ XHTML is an XML-ready language. It follows the rules of XML and is therefore
compatible with XML-compatible tools, such as XSL parsers or other software
used to syndicate, parse, or manipulate the content.

❖ The rules that XHTML uses are often easier to learn and remember than those
of HTML; consistent XML rules are less prone to error than the flexible rules of
HTML, and XHTML has no optional closing tags or attributes.

❖ XHTML syntax is close to the XHTML-MP (Mobile Profile) and XHTML Basic
used by many mobile or handheld devices.

❖ Most authoring tools today support creation of valid XHTML.

And finally, some cons of XHTML might be:

❖ While some portions of the syntax are easier, other aspects, such as character
encoding and entities, are more difficult to grasp.

❖ Some find the controversy over mime-types not worth the trouble or too
difficult to deal with (see sidebar “Controversy and the History and Future of
XHTML”).

❖ Strict HTTP serving of XHTML as XML introduces issues that will catch some
authors off guard, such as JavaScript document.write statements not work-
ing, different interpretations of CSS, link target attributes being obsolete, and
IFRAME not being supported.

❖ XHTML may not be an option for legacy content stores in CMS tools or content
being served by third parties such as advertising servers (banner ads and so
forth). However, an author may opt for transitional code in some of these cases.

❖ XHTML 2.0 has called into question the “future proofing” of XHTML as a
language. This specification is hotly debated and may be radically reworked
or even abandoned (see sidebar “Controversy and the History and Future of
XHTML”).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 ADAPTING TO WEB STANDARDS

Transitional vs. Strict Flavors
Both HTML and XHTML have two “flavors” called Transitional and Strict, with
significant differences in syntax. The language and version flavor is specified at
the start of the document by a Document Type Definition (DTD) that identifies
which language the document is written in.

Transitional language versions:

❖ Include more presentation attributes and elements than the Strict, because
the intention is that in a strict mode the presentation information is fully
pushed out to the CSS files.

❖ Are considered to be a transitional bridge specification intended to move from
the lax rules to the more specific ones in the strict variation.

❖ May be used when there is legacy code that can’t be made fully Strict.

A common issue in an organization is that content is marked up with atrocious
code in a CMS because it has been around for years. The important thing to
note is that just because the legacy content stored in a CMS is a wreck, it doesn’t
mean new code needs to be. This should apply even with a transitional DTD: Just
because the presentational attributes and elements are valid, it does not mean
developers should use these presentational attributes and elements. Any new
code should use CSS. This begins a migration path where any new code is using
the strict rules.

The following table outlines attributes and elements that are invalid in strict
documents.

Table . Strict vs. Transitional Attributes and Elements

Strict Elements Deprecated Strict Attributes Deprecated

applet align (except tables)

basefont alink

center background

dir bgcolor

font
border

(except tables)

isindex color

iframe height

noframes hspace

continued on next page

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 21

Strict Elements Deprecated Strict Attributes Deprecated

listing language

menu link

plaintext name (allowed in HTML Strict)

s noshade

strike nowrap

u size

start

target

text

type

vspace

width (except images, objects, tables—except td)

Picking the language is the difficult part of the decision, but it’s important to
make a reasoned comparison of strict or transitional against the nature of the
destination environment.

NOTE

Some organizations will invest effort or time in using or writing software to
parse legacy content in HTML to convert it over to XHTML. With careful
execution, these techniques can also strip tags and other presentational
elements. This can be done typically through generous usage of regular expres-
sions or other string-parsing algorithms. Results may vary with this approach,
however, and great care should be used.

DOCTYPE Switching and Browser
Rendering Modes
Something that often comes as a surprise to Web authors switching to Web stan-
dards is that modern Web browsers have different rendering modes. This means
that based on the DTD, or Document Type Definition, the browser calculates and
interprets Web pages differently.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 ADAPTING TO WEB STANDARDS

DOCTYPE Presence
DOCTYPE presence, commonly called the “DOCTYPE switch” or “DOCTYPE
sniffing,” is the ability to assess and change the browser mode. In order to snap a
browser out of its old methods of rendering Web documents and into standards-
compliant rendering mode, the placement of valid DOCTYPE within a Web docu-
ment becomes exceptionally important.

Starting back in 2000 with Internet Explorer 5 for the Macintosh, the rendering
engines of most browsers toggle between what is commonly referred to as “quirks
mode” and “standards mode.” Netscape, Mozilla, Safari, Konqueror, Opera, and
Internet Explorer (for the PC above version 6.0) all have this feature built into their
rendering engines.

Any of the following will cause standards-compliant rendering in most browsers
today:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

Quirks mode is intended to use the less strict parsing rules and to be more for-
giving of code mistakes that were common in the 1990s. Authors have come to
know and expect certain subtle quirks (hence the name) that are actually invalid
behaviors.

Standards mode, on the other hand, introduces more rigid understandings of the
specifications. Based on further research of the standards, browser manufacturers
have attempted to get closer to the strict exactitude of the specifications. This has
had the effect of changing what Web authors had come to expect in many cases.

The typical practice in a Web standards-based approach is to strive to keep
the browser in standards mode at all times for more consistent behavior across
browsers and across platforms.

Determining the Browser Rendering Mode
Web authors can be sure they are in standards mode by using the DOCTYPEs
with URIs, as specified above. However, sometimes layout issues may arise
because an HTML element or comment is inserted prior to the DTD or due to
other unpredictable scenarios—which may trigger quirks mode. There are several

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 23

ways to tell which rendering mode the browser is using. One easy way is to open
the page in Mozilla Firefox, right-click (or Control-click on Mac) and select “View
Page Info.” The resulting dialog displays a number of pieces of useful information,
including the browser’s current render mode (Figure .).

There are subtle differences in DOCTYPE switching methods that force some
browsers into quirks mode while others are still in standards mode. At the code
level for most browsers, including IE, JavaScript can also be used to display the
rendering mode of the browser. Try out the following code:

function testRenderMode(){
 alert(document.compatMode);
}
window.onload = testRenderMode;

The possible values resulting from this code include “BackCompat” for quirks
mode and “CSS1Compat” for standards mode.

Oops, the Wrong Rendering Mode Broke the Page
It is not unusual to have a site or a series of templates built in a carefully crafted
Web standards-based structure, and then something just goes wrong, push-
ing the browser into the wrong rendering mode. The result is an entire page or

Figure . In Mozilla
Firefox, the Page Info
dialog shows the render
mode for the currently
visible page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 ADAPTING TO WEB STANDARDS

series of pages with widespread layout and alignment issues that were not there a
moment ago.

This can leave a whole team scratching their heads wondering what is going on.
Usually something has happened in terms of the design being incorporated with
some software backend or a CMS tool, or someone just inserted an HTML com-
ment before the DTD without realizing it.

Take, for example, the popular CSS gallery site CSS Beauty, designed, built, and
maintained by designer Alex Giron (Figure .).

Figure . Alex Giron’s
cssbeauty.com serves
as an inspiration portal
and a Web standards
resource.

CSS Beauty is coded to XHTML 1.0 Strict, and features a wide variety of carefully
aligned Web standards-related content featuring XHTML that starts out this way:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

<head>

<title>CSS Beauty | CSS Design, News, Jobs, Community, Web
Standards</title>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 25

<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8” />

For the sake of argument, assume for a moment that a mistake is made, and the
DOCTYPE declaration is removed from the site in its development environment
(this would never happen in production, unless he was editing live, which should
always be avoided). This would leave the document starting out raw with the
HTML element rather than the DOCTYPE.

<head>

<title>CSS Beauty | CSS Design, News, Jobs, Community, Web
Standards</title>

<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8” />

Alex would see something that was close to his normally appearing site for the
most part; however, a number of rendering issues would spring up (Figure .).

The result is an oddly mixed-up layout with changes all over the place, as opposed
to in one small area. How the introduction of quirks mode will affect page render-
ing will vary from site to site. Similarly, switching to standards mode from quirks
can also yield unpredictable results.

Figure . cssbeauty.
com breaks if the DTD
is removed and the
browser enters quirks
mode.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26 ADAPTING TO WEB STANDARDS

Adding back the DOCTYPE declaration is a simple thing in this case, but the
lesson to be learned is that when widespread layout issues start happening, these
problems are often symptomatic of a document-wide issue, such as the render-
ing mode, styles not being linked correctly, or missing tags in a sensitive location.
Quirks mode in particular can wreak havoc on a well-structured page. Using a val-
idation tool to check the syntax of the page can be a huge help in cases like this.

There are specific documented issues, some of which will be discussed below, that
exist for quirks and standards rendering modes. These often surface when code
is being mixed with legacy markup, when browsers are reviewed, or when new
designs are being produced. This is particularly an issue when looking at Internet
Explorer 5.0 and 5.5 because although they do not feature multiple rendering
modes, they are essentially always in “quirks” mode. This means designs will dis-
play differently than even in IE 6.0 as compared to 5.5 when working in a “stan-
dards” mode document because they are interpreted differently.

Figure . In quirks
mode, the information
footer on the home
page of cssbeauty.com
is broken.

For starters, there are extra background graphics behind the headers at the top of
the page. Additionally, the layout seems to have shifted up the page slightly and
the “Recommended” column is way off in the middle left compared to its usual
symmetrical alignment. Scrolling down the page, things get even worse. The entire
information bar at the bottom of the page has lost its background color, except
on hover, and the font sizes are off (Figure .).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 27

Legacy Markup and DOCTYPE Switching
In the 1990s Web authors often ignored the DOCTYPE declaration, since at that
time it was largely meaningless to Web browsers and was used simply for validat-
ing the document. Yet only a select few were doing this because the languages
were being used in odd ways, and much energy was being expended on catering
to the proprietary features of browsers. Most Web authors either misunderstood
or ignored the DOCTYPE, which in today’s world is in fact one of the most critical
parts of the document. So now, many of those authors spend their time dealing
with migrating from legacy markup to semantic markup.

Several common scenarios may come up while migrating to Web standards in
environments where legacy content and valid markup are mixed:

❖ Web standards means switching a Web site’s UI templates from an often com-
plicated HTML TABLE structure to a layout using clean tagged elements with-
out presentation attributes and CSS for positioning. However, some authors
might insert a new, valid DTD at the top of an existing page whose design uses
sliced images and a TABLE structure, only to discover that their layout shatters.

❖ New CMS templates might be introduced using modern layout code for the
page wrapper containing the branding, main, and global navigation. Then,
when this is applied to content areas coming out of the CMS, that content can
break.

❖ Web application developers might be using a new CSS-based design template
with a strict DTD for their application pages, and find that integration of these
pages with the new design template might break existing HTML.

The Boxes Were Measured All Wrong
When IE 4 came out in 1997, and when IE 5 for the Macintosh came out in 2000,
Microsoft seemed to be doing fairly well with its Web browsers. Not that they
were great, but in terms of CSS support and user adoption, they were simply
doing much better than Netscape 4 had fared. Netscape 6 was poorly received,
and Microsoft had essentially won the so-called “Browser War.” With Inter-
net Explorer 5 and 5.5 (the only games in town for many Web authors), it was
assumed by most developers that the CSS support that they were getting used to
was in fact correct. But just because something’s better or more popular doesn’t
mean it’s correct.

Building a CSS-based layout using the building blocks contained in IE 4 and IE
5.x was misleading. A layout on a Web page is described with elements and tags
representing a series of boxes and objects on a canvas—the document body. A
CSS layout is defined by a box composed of an element that has a content area;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28 ADAPTING TO WEB STANDARDS

padding around the top, right, bottom, and left; borders around the same areas;
followed by margins around the object as well.

The width of an object is technically defined by the content area alone; however,
these older versions of IE defined the width incorrectly, so any CSS object set with
a width is actually measured incorrectly. This can wreak serious havoc on layouts,
since the measurements for the dimensions of objects on pages are all wrong.
IE 6.0 in “standards” mode fixed this. However, it is now different from Internet
Explorer 4 and 5, so Web authors have to deal with more than one measurement
model while laying out pages using CSS (Figure .).

Figure . In Internet
Explorer versions 4,
5, 5.5, and version
6 in “quirks” mode,
the width of a box is
calculated to include
the size of its content
plus its border and
padding. The CSS layout
box model, on the
other hand, measures
the box and padding
separately from the
content.

CSS Layout Box Model

CSS Width is
Content Only

Content
Padding
Border
Margin

TOP

LE
FT

RIG
H

T

BOTTOM

What Microsoft did was define the width as including the content, padding, and
borders. To help correct this problem, Microsoft introduced the DOCTYPE switch
and “standards” and “quirks” modes that measure differently. However, their box
model was different previously, so the “standards” and “quirks” differences are
greater than many other Web browsers’ differences in these two modes. Other
browsers have smaller nuances that happen in “quirks” mode, but they need to be
watched for as well.

Web authors new to building Web standards-based layouts, but who may have
built pages using Internet Explorer 5.x’s CSS box model, are in for a surprise when
other browsers render the pages differently. Oftentimes, the belief is that other
browsers were getting it wrong, or something broke in IE 6.0. The truth is, some-
thing was fixed, and the other guys had it right.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 29

Unfortunately for the industry as a whole, the majority browser is Internet
Explorer, and so everyone suffers from different measurements, leading many to
believe that CSS support is hopelessly broken. There are ways to cope with these
differences, from sending different style sheets to IE 4 and 5 to creating special
selector “hacks” to be read only by specified browsers.

TIP

There are many, many references for quirks and standards modes in browsers,
but this is a good one:

www.cs.tut.fi/~jkorpela/quirks-mode.html

A Web search for “CSS box model hack” will yield many techniques for provid-
ing different measurements to different browsers.

A preferred method today for serving different styles to IE is using Conditional
Comments, described in the next chapter.

MSDN published an excellent document on the CSS changes in Internet
Explorer 6.0, which were significant and introduced the correct box model:
http://msdn2.microsoft.com/en-us/library/bb250395.aspx

The Table Gap
Another major area where the change to standards-based layout can cause
significant confusion is where TABLEs are being used for layout—they
no longer behave in the old, expected manner. CSS guru Eric Meyer has
explained some TABLE and image layout scenarios in an article online called
“Images, Tables, and Mysterious Gaps” (http://developer.mozilla.org/en/docs/
Images,_Tables,_and_Mysterious_Gaps).

In particular, he describes the trouble that can happen when a Web author takes
a site that originally used tables for layouts and converts it to strict mode with
XHTML or HTML. This usually results in some of the tables and images having
gaps where they used to be flush against one another.

The reason is that the correct default bottom alignment for images is on the base-
line of the text, leaving room beneath for the descenders (such as the letter “y”)
that hang below the line of text. When it was common to build Web sites with
images sliced up and set flush in tables against one another, Web browsers were
actually interpreting the specification and images behavior incorrectly by leaving
out this space. By default, images are inline elements intended to align with text.

www.cs.tut.fi/~jkorpela/quirks-mode.html
http://msdn2.microsoft.com/en-us/library/bb250395.aspx
http://developer.mozilla.org/en/docs/Images,_Tables,_and_Mysterious_Gaps
http://developer.mozilla.org/en/docs/Images,_Tables,_and_Mysterious_Gaps
http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 ADAPTING TO WEB STANDARDS

Here is an example of a table with two rows, with a 50px by 50px black graphic
set in a table with the cells set to be flush using a 50px height and all the spacing
removed, much like graphics were frequently set back in the day:

<html>
<head>
 <title>Table in Quirks Mode</title>
 <style type=”text/css”>
 <!--
 table { border: 1px solid #000; }
 td { font-size: 200%; height: 50px; }
 -->
 </style>
</head>

<body>

<table border=”0” cellspacing=”0” cellpadding=”0”>
<tr>
 <td>The quick brown fox jumped over the lazy...</td>
 <td>
 </td>
</tr>
<tr>
 <td>The quick brown fox jumped over the lazy...</td>
 <td>
 </td>
</tr>
</table>

</body>
</html>

The document above renders in quirks mode because it lacks a DOCTYPE decla-
ration, and has the graphics flush against one another, row to row (Figure .).

Figure . A common
technique in the 1990s
was to use tables to
place graphic elements
flush against each other.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 31

Taking that very same document without any modifications and slapping a strict
DOCTYPE declaration on the top of the file switches the document to be ren-
dered in standards mode in today’s browsers:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/
TR/html4/strict.dtd”>
<html>
<head><title>...

Opening up the file in a standards-compliant browser yields some surprising
results that include extra gaps appearing under the graphics in each row, blowing
out the carefully crafted and beautiful black square boxes (Figure .).

The quick and dirty lesson here is that a few simple rules in the CSS can address
these problems:

td img { vertical-align: bottom; }

Or even:

td img { display: block; }

Which solution is appropriate depends on the circumstances, and sometimes
it’s easiest to simply use both. In the end, however, these treatments are quite a
common scenario in a standards migration, which is exceptionally tricky to debug
unless the developer is intimately familiar with box model and alignment charac-
teristics from the specifications. Fortunately for everyone, experts like Eric Meyer
are around. With the small corrections applied by Meyer’s technique, the table
and graphics’ layout and rendering is fixed (Figure .).

Figure . A browser
in standards mode can
create gaps between
artwork in table cells.

Figure . Table
artwork gaps are easily
fixed with a little CSS.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 ADAPTING TO WEB STANDARDS

The bottom line is, when mixing legacy and modern code, be aware that the
unexpected can happen, and you may have to do some debugging to get around
the oddities that spring up.

To Validate or Not To Validate Markup
Correct code syntax is extremely important, particularly where XML, accessibility,
or alternative browsing devices are concerned. For a Web developer just starting
to use Web standards, a validation service is a great way to debug the code and
help achieve validation. Plus, it will help ensure the code will display consistently
in any browser that supports Web standards.

The W3C makes several validation tools available online:

❖ Markup Validation Service for HTML and XHTML (Figure .):

http://validator.w3.org/

❖ CSS Validation Service

http://jigsaw.w3.org/css-validator/

Figure . The
Web-based validation
services offered by
the W3C are excellent
resources.

Additionally, several tools exist to help Web authors validate their code right from
their Web browser:

❖ The Firefox browser Web Developer Extension from Chris Pederick

http://chrispederick.com/work/webdeveloper/

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://chrispederick.com/work/webdeveloper/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 33

❖ The Microsoft Internet Explorer Developer Toolbar

http://channel9.msdn.com/wiki/default.aspx/
Channel9.InternetExplorerDevToolbar

With the benefits of validation in mind, it is also important to note that validation
is a goal at one end of a spectrum running from transitional to strict code and is
much easier to achieve in smaller and controlled environments. The usual prac-
tice with a Web standards-based approach is to strive for strict validation.

In larger companies with a multitude of systems, staff, software, internal, external,
and other unknown conditions, complete validation may simply have to wait.
Probably the most common scenario is to work from valid templates; then the
errors that crop up in the full site are likely to stem from external sources that
may be difficult to correct. In fact, in larger organizations validation can be nearly
impossible to achieve due to all of the external factors that may impact what is
ultimately being served up:

❖ Advertising servers

❖ Embedded third-party software, such as Web statistic tracking tools

❖ Content management tools

❖ Content management tools’ WYSIWYG editors

❖ Application code from software frameworks or development tools

❖ Staff skill levels or lazy developers who may be difficult to rein in

❖ Application service provider (ASP) hosted software, which may accept an
organization’s templates and styles but not generate validated code for their
portion of the software

In these cases, a Web team must determine what the appropriate tradeoff level of
validation is—strict vs. transitional DTDs, external vs. internal code, and so forth.

Particularly on an initial launch, there may be pressures and scheduling issues that
make tasks other than validation a higher priority when the site renders cor-
rectly in all the major browsers. Validation of a Web site’s code, free from errors, is
something that authors should strive for regardless of external realities, but typi-
cally has to be weighed against project realities.

In general, validation will be easier to get with a complete redesign that has fewer
external forces or small applications, but it matters most where portions of a site’s
content need to be reused or integrated with a service that expects to get, for
instance, valid code in an XML format. This can often mean the individual pieces,
such as content in the CMS, are the most important aspects to make valid.

http://channel9.msdn.com/wiki/default.aspx/Channel9.InternetExplorerDevToolbar
http://channel9.msdn.com/wiki/default.aspx/Channel9.InternetExplorerDevToolbar
http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 ADAPTING TO WEB STANDARDS

Content and Structure: Design to Execution
You never want to plan last. Knowing what needs to be built will help inform your
decisions while planning a site build. This means the teams responsible for the
design and those building the site, CMS, and applications need to begin to col-
laborate as early as possible in order to plan ahead.

Taking Inventory and Templates
Most design teams will have a series of graphics files that visually describe the
look and feel of the site based on all the project requirements. An inventory of the
designs, their similarities, and differences is a great place to start and will quickly
reveal the sheer volume of what needs to be built. Fortunately, with a Web stan-
dards-based approach this will be easier to manage than in the past, and organiza-
tions will likely need fewer templates than before.

Each unique design represents a grid and potentially a UI template that can be
applied as needed. Grouping similar derivatives of designs can create a hierarchy
and determine how many templates will need to be built to get an understanding
of the level of effort involved.

In a CSS and XHTML world, templates that are derivatives may have the same
exact underlying markup structure but have CSS that provides slight tweaks.
When putting templates into groups, Web authors should concentrate on layout.
Color changes can be addressed with CSS tricks, and the underlying structure
should be addressed in the CMS templates—just concentrate on the layout! Each
set of templates will have corresponding specifications from the UI design and
any application or CMS rules that may have been created. It may involve parts of
the grid coming and going, or possibly collapsing when an element is not pres-
ent. When dealing with potentially dozens or even several dozens of designs on
a massive Web site, pausing to collect and organize what really needs to be built
is immensely helpful (Figure .). This will also help as new pages are added later.

A UI template inventory is simply an exercise in grouping similar designs together
so Web authors will know what needs to be built. Some organizations find it valu-
able to literally print out all the designs and tape them to a wall in groups, labeling
them by number (or name) for easy reference. The subtle changes that don’t nec-
essarily require a new template might engender variants labeled, say, “template 3”
and “template 3a.”

Once again, this is a simple exercise in helping determine the complexity and level
of effort required, and to literally give the “big picture.” This is why frequently a
“big picture” on a big wall can actually help. It may sometimes be helpful to for-
mally document these groupings. In some cases, the inventory can be leveraged
when creating a style guide later.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 35

Figure . A UI template inventory will help organize what needs to be built.

Naming Conventions for IDs and Layout Blocks
Continuing to the next step, one of the obvious first decisions that must be made
when planning to break up artwork into markup and CSS is the structure of the
HTML documents. The old way of laying out a Web page involved complex nested
tables and bloated code, which was difficult to run through and understand at
a glance.

In a standards-based solution, the layout of the page is controlled with CSS, but
the structure of the page becomes a simple series of HTML elements. Since the
basic structure is typically a series of elements with ID attributes, creating a nam-
ing system for the IDs organizes the code. Mapping the naming system back to
the template inventory will help the whole Web team.

At some point, in a CMS phase for instance, developers may break the code
up into separate files. In these cases, it is very useful to have logical naming

Simple UI Template Inventory

Basic core set
of UI design
grids and
templates

Templates which
are derivatives;
code from basic
core set with
modifications
or collapsing
regions

Template 1 Template 2 Template 3

Template 1a Template 2a Template 3a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36 ADAPTING TO WEB STANDARDS

 conventions that describe the relative location of the DIV elements in the code,
because they may be seen out of context.

One way of doing this is to use a hyphenated hierarchy to indicate locations in the
document:

<div id=”nav”>
 ...
 <ul id=”nav-main”>
 ...

 <ul id=”nav-sub”>
 ...

</div>
<div id=”content”>
 <div id=”content-section”>
 ...
 </div>
 <div id=”content-main”>
 ...
 </div>
 <div id=”content-related”>
 ...
 </div>
</div>

Note that nav-main is inside nav and content-section is inside content. The
naming convention strongly conveys this information.

In larger teams, it may be a good idea to document the outline hierarchy of the
each template’s structure as part of the template inventory:

body
 div#nav
 div#nav-main
 ul#nav-sub
 div#content
 div#content-section
 div#content-main
 div#content-related

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 37

NOTE

Where it can be done, the usage of meaningful elements is preferable such as
with the usage of the elements above. This is because a <div> may be un-
necessary, as the styles can be applied to the element just as easily.

When naming the IDs and classes in a document, keep in mind that the goal at all
times is to separate content and structure from presentation. This means that for
classes and IDs it is best to call out what the item is or does, as opposed to what
it looks like. Note that in the example above, the content IDs were not named
left-rail, middle-column, or right-rail, as that would have merely reflected
their location on the page, rather than their function.

The W3C has an excellent note on its Web site discussing meaningful classes
here (www.w3.org/QA/Tips/goodclassnames). This discussion also introduces the
concept of semantics or meaning in markup.

Consider the following:

<style type=”text/css”>
p.rederror {color: red;}
p.bolduser { font-weight: bold; }
</style>

<p class=”rederror”>Warning: Username not found!</p>
<p class=”bolduser”><label for=”username”>Username:</label>
<input type=”text” id=”username” name=”username” /></p>

There are two things wrong with this from a best practices standpoint. Both
have to do with the naming of the classes on the <p> elements: rederror and
 bolduser both convey presentation information that implies what those ele-
ments look like. The standard practice is to avoid basing a name on a description
of a “physical” or visual characteristic.

A better solution might be:

<style type=”text/css”>
p.errormessage {color: red;}
p.userfield { font-weight: bold; }
</style>

<p class=”errormessage”>Warning: Username not found!</p>
<p class=”userfield”><label for=”username”>Username:</label>
<input type=”text” id=”username” name=”username” /></p>

www.w3.org/QA/Tips/goodclassnames
http://lib.ommolketab.ir
http//lib.ommolketab.ir

38 ADAPTING TO WEB STANDARDS

Note that this removes from the markup any indication what the element looks
like, so that when the site is redesigned the classes are still relevant and the
markup does not need to be updated. These also identify what the objects are, as
opposed to what they look like. This is especially important on a large-scale site
and where CSS is being used for layout—when changes happen in a redesign, the
CSS class names are of vital importance to an easy transition, and their meaning
should not be lost or confused because of a poor naming system that contradicts
what each object actually is.

IDs Names Are Unique in a Document
A common mistake made by newcomers to CSS and modern markup is some-
thing like the following:

<div id=”content”>This is my content on the right side.</div>
<div id=”main”>This is my content.</div>
<div id=”content”>This is also my content.</div>

That’s invalid code, because it calls out the same ID name multiple times in the
same document. It is important to note that IDs are always unique in an HTML or
XHTML document. This means that there is only one single instance of an ID per
page. An ID can exist once and only once in a document, despite what some Web
browsers might allow. The preceding example will have unpredictable results,
particularly when scripting is attached to the document.

Semantic Markup To Give Meaning
Once a Web team has selected a markup language and DTD strategy, the style of
XHTML or HTML markup is everything. In the Web standards world, Web authors
should immediately forget what the elements look like and start thinking about
what they mean in terms of “semantic markup.” “Semantic” means that the docu-
ments are marked up in a way that conveys information about what the content
is, as opposed to how it looks (which, remember, should be defined in the CSS).
Authors can begin to think of HTML and XHTML as lightweight XML to help get
their head around this concept.

Here is a screen that uses classic, old-school HTML to lay out a page (Figure .).

Examine the source for that simple article:

My Online Article Title<p>
May, 2007<p>
Hey everybody, welcome to my article. Today we’re going to be
talking about:<p>
Web standards-based markup

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 39

Figure . A simple
article document. There
is a right way and a wrong
way to mark up a simple
structure like this.

Cascading Style Sheets

XHTML

Let’s get started!

<table cellpadding=3 cellspacing=0 border=1 width=400>
<tr><td>
<i>About the author:</i>

Rob Cherny

Lead Developer

NavigationArts, LLC

7901 Jones Branch Road

McLean, VA, 22102 United States of America

703.584.8920
</table>

This code, common from the 1990s, does not follow a separation of content from
presentation in any way. It’s littered with presentation information and doesn’t
give meaning to any of the content elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

40 ADAPTING TO WEB STANDARDS

What about the following:

My Online Article Title<p>
May, 2007<p>
Hey everybody, welcome to my article. Today
we’re going to be talking about:<p>

Web standards-based markup

Cascading Style Sheets

XHTML

Let’s get started!
<table class=”box”>
<tr><td>
About the author:

Rob Cherny</
a>

Lead Developer

NavigationArts, LLC

7901 Jones Branch Road

McLean, VA, 22102 United States of America

703.584.8920
</td></tr>
</table>

This code uses CSS and pulls content and presentation information apart. So
what’s wrong with it and the first example? For starters, in both these examples,
the code as it relates to the content is meaningless.

Even more so:

❖ The first example uses the , , and <i> presentation elements, all of
which are deprecated.

❖ The second example features usage of elements around all the content
items, which does not convey that the information is a header, paragraph text,
or list.

❖ With the elements, the usage of the bigHeader class implies presenta-
tion information in its name.

❖ The <p> tags are being used at the end of each line and do not explain what
a paragraph is in the document so much as demonstrate what its presenta-
tion attributes might do: create a double line break. The list class on the last
 is just odd when there are perfectly good XHTML elements for lists:
 and .

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 41

❖ The double break at the end of the list is completely devoid of meaning in set-
ting up the text of the article following the list.

❖ Finally, both examples use a table to draw a box around the contact informa-
tion, when there is no actual tabular data.

POSH, or Plain Old Semantic HTML
The usage of clean, intelligent, semantic (X)HTML code has been called POSH, or
Plain Old Semantic HTML (http://microformats.org/wiki/posh) and is a funda-
mental building block of modern markup. The essential goal is clean, meaningful
markup without presentation elements or attributes. The elements used should
convey information about the structure of the content.

Contrast the code in the previous examples with the following (Figure .), and
note that superficially it looks virtually the same as the first.

Figure . The simple
article document, coded
with Web standards.

But note also that it conveys much more information in the markup itself:

<div class=”article”>
 <h1>My Online Article Title</h1>
 <h2>May, 2007</h2>
 <p>

http://microformats.org/wiki/posh
http://lib.ommolketab.ir
http//lib.ommolketab.ir

42 ADAPTING TO WEB STANDARDS

 Hey everybody, welcome to my article. Today we’re going to
 be talking about:
 </p>

 Web standards-based markup
 Cascading Style Sheets
 XHTML

 <p>Let’s get started!</p>
</div>
<div class=”credit”>
<h3>About the author:</h3>
<h4>Rob Cherny

 Lead Developer</h4>
<p>
NavigationArts, LLC

7901 Jones Branch Road

McLean, VA, 22102 United States of America

703.584.8920
</p>
</div>

The first two examples in the previous section are similar to many others com-
monly found online. The second of the two comes from a Web author who thinks
he is doing the right thing by pulling presentation information into CSS classes.
It is a good start, but it does not convey structure or meaning. It also continues
to rely on the presentation aspects of the <p> tag without marking any text as a
paragraph.

The third example is superior in many ways:

❖ The content is easier to read in the code.

❖ The article is surrounded by a <div> element with a class of article, and
the credit section is surrounded by a class of credit. This breaks the por-
tions of the code up from others and allows the usage of CSS, which does not
need extra classes added to the markup. A single class per section is easier to
remember, use, and document than several.

❖ Presentation elements such as the bold tag have been dropped in favor of
meaningful code. Additionally, usage of for emphasis as opposed to ital-
ics is preferred.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Coding the Front End 43

❖ The article title is marked up in an <h1> header element, indicating its impor-
tance above all the other content.

❖ The date is an <h2> second level header, demonstrating its position as second
most important on the page, but can still be given a unique CSS format in the
form of a CSS rule such as the following:

.article h2 {
 font: bold 16px Arial, Helvetica, Sans-Serif; margin-top: 0;
}

❖ Paragraph tags surround (and therefore identify) actual paragraphs of text,
rather than show up at the end of the lines of text.

❖ The list is marked up as a proper XHTML list, accurately identifying the list of
elements as such.

❖ The final sentence following the list is set off as a real paragraph, separate from
the list that precedes it.

❖ By identifying certain text as headers, on which many search engines place
importance, the cause of search engine optimization (SEO) is aided.

❖ Because each content element is marked up according to its function, the page
is made more accessible. For instance, assistive technologies contain tools to
help users navigate through headers on a page.

❖ The meaningless table has been replaced by a <div> with a class of credit,
which has CSS applied to create a border and set the width and padding.

Plain old semantic HTML (POSH) markup is a fundamental principle of Web
standards-based markup and will aid an organization in fully reaping the benefits
of modern best practices. It is “plain old” not because of its age, rather because
it is devoid of presentation aspects—which, again, are (or should be) handled by
the CSS.

POSH code brings meaning to content. Where authors can do it, they should
begin to introduce meaning to markup in order to convey as much information
about the content as possible. By its nature, it also means that all presentation
information is outside the document.

The wonderful thing about it is that with POSH you or a Web development team
can clarify, identify, or isolate the meaning of the content. This can also be used
with other technologies and techniques, such as microformats (discussed in the
next section), which are built on top of POSH.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

44 ADAPTING TO WEB STANDARDS

TIP

Web designer Dan Cederholm at SimpleBits.com has published an excellent set
of articles on his Web site that examine and discuss almost endless ways to mark
up different types of pieces of information in XHTML documents. He called
his series the “SimpleQuiz” (www.simplebits.com/notebook/simplequiz/
index.html).

Markup Wrap Up
Once a team has determined its markup language and its DTD, established how
many templates are needed, and begun to describe how the markup will be
coded, the next step is to apply styles to the markup.

The importance of this foundation of understanding and setting up valid markup
cannot be overstated. The markup is interconnected to all Web software on a site;
acts as a delivery mechanism for syndication; and is essential for accessibility, back-
wards compatibility, SEO, CMS template structure, and Web site performance. All
CSS and JavaScript is keyed off the decisions in the markup. For any and all of these
other technologies and components to work, valid markup needs to be in place.

www.simplebits.com/notebook/simplequiz/index.html
www.simplebits.com/notebook/simplequiz/index.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2
Presenting Cascading
Style Sheets

The presentation layer in Web standards-based Web sites is controlled

by Cascading Style Sheets (hereafter referred to as CSS). When an author

starts to build CSS files for a site, a number of factors should be consid-

ered. These can run the gamut from how many style sheets to the organi-

zation of the files’ content, and even determining what it means to write

efficient, scalable CSS.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48 ADAPTING TO WEB STANDARDS

How Many CSS Files?
One of the hardest questions is how many CSS files a project will need. This
depends entirely on the needs and size of a Web site. The answer, frankly, is: as
many as are needed (and this may evolve as the site is built). Some sites may need
a single style sheet, while others may need many. In larger sites, it may not make
sense to load all the CSS rules that are required on every page. One of the major
strengths of CSS is the rule cascade and how multiple files and sets of rules can be
merged by applying multiple sources of CSS to a single document. The challenge
is to structure the files in an intelligent way that scales well.

Designers and developers are commonly tempted to break CSS files up into func-
tion based on the types of rules. An example breakup is as follows:

❖ typography.css

❖ theme.css (or colors.css)

❖ layout.css

At our company, we’ve tried this approach and found it to be fundamentally
not worth the effort, with the negatives far outweighing the positives. With this
technique, a Web team could easily switch out the colors or the type styles by
using alternate style sheets. Sounds good, but in reality the maintenance issues,
particularly over time, skyrocket with this approach and are simply not worth it in
most cases. There needs to be a good reason to do this.

The issues that come up with broken-up CSS files include

❖ Debugging becomes difficult and time-consuming because each selector is
spread out among many files.

❖ Hidden dependencies between files begin to surface or even get lost.

❖ Less disciplined team members may violate the breakup of rules, resulting in
inconsistent distinctions between files.

❖ Debugging by editing multiple files becomes a hassle or debugging begins in a
single file and then solutions need to be broken up between files; sometimes
this last step does not happen, either on purpose or by accident.

❖ The CSS cascade and specificity is more difficult to manage.

❖ Increased overall size of the CSS for a site; each selector is repeated in each file.

❖ Web authors can be confused as to the nature of different rules and what files
the rules belong to. For instance, some rules, such as borders, provide both
layout and color.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 49

❖ Broken-up CSS files require additional HTTP requests for a full set of style
sheets—an unnecessary burden on both the Web browser and server.

The only time that this is a good idea is when there is in fact a solid requirement
for this approach, and even then, alternatives might exist.

For instance, a site may feature a JavaScript text-resizing widget. In this case, a
different style sheet for a different set of typography-related style rules may be
a good idea. However, it is important to note that even in this case a different
approach could be taken, and the extra file may not be required. Instead of using
a full alternative style sheet, consider applying a new class to a parent element
such as the <body> element or a content area. Resetting the base <body> text
size can be highly effective if designers are using relative font sizes and em- or
percentage-based units. Additionally, a single extra class on a parent element can
affect the font size of an entire <div> element or the entire document.

A JavaScript file may include the following:

var x = document.getElementsByTagName(“body”)[0];
 x.className = “altText”;

Where the style sheet contains rules such as this:

body {font-size: 1em;}
body.altText {font-size: 1.3em;}

The bottom line is, Web authors should be selective as to what rules are pulled
into different files, and consider the reasons for doing so as well as any alterna-
tives. Also, don’t create additional files for the heck of it when other techniques—
such as using a script, like above, rather than switching style sheets—may create
savings or keep the code cohesive.

CSS File and Linking Strategies
There are several different ways to construct a flexible and scalable CSS file struc-
ture. In all cases, there are tradeoffs between performance, modularity, and ease
of maintenance.

Linking a single CSS file will place all rules in a single location that is easy to man-
age, and you can use string searches to find appropriate rules and easily edit the
files. At the same time, a single CSS file can be enormous and difficult to man-
age across an enterprise with a multitude of business channels, requirements of
branding or functionality, or a growing team.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50 ADAPTING TO WEB STANDARDS

An exceptionally flexible approach is using modular sets of CSS files that serve dif-
ferent purposes. Using a series of linking CSS files, developers can easily mix and
match sets of @import rules of CSS files that serve different purposes.

Take a moment to consider the following structure. If XHTML template #1 con-
tains the following CSS link element:

<link href=”css/global.css” rel=”stylesheet” type=”text/css” />

Then, in the global.css file, the file contains no rules, but rather uses the
@import CSS command to bring in external CSS files (Figure .) for global pages
on the site:

@import url(styles.css);
@import url(nav-bar.css);
@import url(content.css);

Figure . A modular
CSS linking structure for
sharing CSS files.

Elsewhere on the site, XHTML template #2, which contains some applications and
forms, contains the following:

<link href=”css/global-apps.css” rel=”stylesheet” type=”text/css” />

Then, the global-apps.css file contains import statements for the following:

@import url(styles.css);
@import url(forms-brand.css);
@import url(forms.css);

Note that the link file allows for a modular inclusion of different CSS files based
on need (Figure .). Both files include styles.css as the core CSS. The styles
for forms in forms-brand.css and forms.css are not needed in the global pages,

Modular CSS—page 1

CSS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 51

and therefore those CSS files are not included on the global pages; however, they
can be linked locally from an application.

This has both advantages and disadvantages. The technique is a powerful
approach from a maintenance and distributed-team standpoint, where multiple
teams may need to import CSS files that are from a parent brand or some similar
scenario. Additionally, from a CMS or template-based site structure, this has the
added benefit of being able to add new CSS files without updating the XHTML
site templates, because only a change to the CSS link files is required. Also, from a
performance standpoint, if the forms rules are large in size, users do not need to
download that data before it’s needed.

However, this performance consideration should be carefully considered, because
there are also performance downsides. Essentially, for a given page a Web browser
and a server are going to have to create and execute lots of HTTP requests.
To load a single page with the second example above, four HTTP requests are
issued—which puts added burdens on both the client Web browser and the
Web server. Multiply that by the full number of users hitting a site at a given
moment and the number grows exponentially. This is one demonstration of how
the CSS setup alone can impact page load times and site performance. The pros
and cons of this type of approach should be carefully considered before being
implemented.

NOTE

Performance and load-time considerations will be examined more thoroughly in
Appendix C.

Figure . The same
modular CSS link structure
for another page uses some
of the same files.

Modular CSS—page 2

CSS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52 ADAPTING TO WEB STANDARDS

Site Section and Directory-Based CSS Files
A more conservative approach that scales well over a large Web presence is a well-
thought-out, directory-based setup for linking style sheets. A typical large-scale
Web site has global presentation-layer needs, and also, quite often, site- section
and even page-level needs. From these needs you can create a CSS directory
structure that will scale and can be easy to manage. The directory structure could
include:

❖ Global CSS folder/files

❖ Site-section or channel CSS folder/files

❖ Page-level CSS folder/files (includes home page)

❖ Media CSS folder/files (print, mobile, etc.)

❖ Internationalization CSS files (folders for en_US/, es_ES/, fr_FR/, etc. Note each
of these items consists of a language code followed by an underscore, followed
by the region.)

Most Web pages will only require the global and possibly site-section CSS files
(Figure .). Based on unique needs, authors can link page-specific CSS files, and
so forth. The biggest downside is that the site templates will require additional
<link> elements in the document’s <head> element depending on what section
of the site is being styled.

Figure . Using a
directory-based CSS
structure rather than
a modular structure
provides a more robust
and scalable CSS linking
structure.

Using this approach and routine evaluations of page-level files, authors can push
the rules up to site sections and then ultimately to the global files. This approach
will be examined more thoroughly in the upcoming section.

Site section and Directory-based CSS

Global CSS files

Site Section CSS files Page level CSS files

Media CSS files International CSS files

Web pages

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 53

This structure scales well and is easy for Web teams to manage. There are also
fewer questions on the maintenance side as to where to put, as well as where to
find, rules. Finally, there will be fewer HTTP requests than with multiple layers of
linked CSS files.

Merging Multiple CSS fi les
Another technique worth consideration is merging multiple CSS files. This can be
done during a build, deployment, or publishing process, or even in real time as the
files are served to the browser. Merging has the added benefit of allowing multiple
files to be managed by different teams, yet reducing the performance drag when
a single request is used. This technique has to be carefully planned and executed,
keeping all sites that might reference the CSS files in mind.

As a quick example, imagine a site that included these files in the documents’
<head> element:

<link rel=”stylesheet” href=”main.css” type=”text/css” />
<link rel=”stylesheet” href=”page.css” type=”text/css” />

Assume main.css contained the following:

body {font: bold 1.2em Sans-serif;}
.special { color: red; }
#content { font-size: 1em; }

Then, page.css had the following:

.other { color: green; }
#content { font-size: 1.2em; }
#content h1 { font-size: 1.5em; }

Obviously these are simple files for demonstration purposes only. Different teams
or team members could easily manage main.css and page.css separately, and it
would be easier to locate rules as needed in smaller files. However, before produc-
tion, a process might create a file called styles.css and link it to the document:

<link rel=”stylesheet” href=”main.css” type=”text/css” />

During deployment or even upon dynamic generation of the CSS, the files would
be merged. Keep in mind, if there are rules that depend on the cascade so they
should be in a certain order, then they should be merged in order as appropriate.

/* main.css */
body {font: bold 1.2em sans-serif;}
.special { color: red; }
#content { font-size: 1em; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54 ADAPTING TO WEB STANDARDS

/* page.css */
.other { color: green; }
#content { font-size: 1.2em; }
#content h1 { font-size: 1.5em; }

Fewer files are downloaded and linked. In this case, the effort would not be worth
it; however, with large sets of files for many properties, disparate teams, site sec-
tions, or micro-sites, then the benefit can help simplify the code in the actual
pages when deployed.

Conditional Comments for CSS and Internet Explorer
Microsoft Internet Explorer (IE) features some proprietary extensions that can
be helpful when dealing with some oddities in its CSS features. In particular, IE’s
“conditional comments” are useful when linking CSS files for IE. Check out the
following:

<!--[if lte IE 5.5]>
<link rel=”stylesheet” href=”patches/ie5.css” type=”text/css” />
<![endif]-->

Basically, this code is ignored by most browsers because the code wrapping the
<link> element looks like a standard XHTML comment. However, the expression
in the square brackets [if lte IE 5.5] means “if less than or equal to IE 5.5,” and
therefore IE’s parser knows to include this code, but only if the version number of
the browser is 5.5 or below. This can be useful when dealing with issues such as
the different box model measurements between IE 5.x and 6.x.

There is some controversy around code such as conditional comments, because
code is being introduced that is meaningless to anything but Internet Explorer.
Ideally, we should avoid targeting a specific browser whenever possible, even IE,
since this can lead to problems when new versions come out. Sometimes finding
alternative ways to code something might eliminate the need altogether.

Conventions for Files and Selector Case
Naming rules for CSS files themselves can be just about anything, so long as an
organization can agree to a system and keep it consistent. What matters more is
that the usage is consistent and makes sense.

Moving deeper into the CSS files’ content, an important aspect worth mentioning
is that CSS class names and IDs are case sensitive. Consider the following:

<style type=”text/css”>
.myRules { font-size: 1em; }
</style>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 55

<p class=”myrules”>
 My text will NOT be 1em because the case is not right.
</p>

Some Web browsers are more forgiving than others, but for cross-browser com-
patibility it is best at all times to remain true to CSS names being case sensitive.

CLASS CONVENTIONS

Remember that IDs and CSS classes should honor the rules of proper separa-
tion of content from presentation; they should describe what an object does or
the purpose it serves, not what it looks like. If the presentation attributes ever
change, the names might become disconnected or mismatched from the actual
attributes—not a pretty sight.

See Chapter 1 for CSS class naming-convention guidelines.

Microformats for Conventions,
Meaning, and Utility
Good news for authors who might be trying to decide what to call a CSS class:
There are protocols being established in the industry. A group of Web technolo-
gists have begun to collaborate and define best practices for defining, in a con-
sistent way, certain types of information that might be classified in CSS. These
nascent protocols for classifying objects and collections of information support
application programming interfaces (APIs) and data-mining activities, but also
establish simple models for those looking for naming conventions. Some of these
protocols have been called microformats.

Microformats, on microformats.org (Figure .), are defined as:

“Simple conventions for embedding semantic markup … that normalize exist-
ing content usage patterns using brief, descriptive class names often based
on existing interoperable standards to enable decentralized development of
resources, tools, and services.”
—www.microformats.org/wiki/what-are-microformats

Most expert Web standards-aware designers and developers today consider
microformats to be an excellent protocol to use for coming up with meaningful
naming conventions for some types of information on a Web site.

www.microformats.org/wiki/what-are-microformats
http://lib.ommolketab.ir
http//lib.ommolketab.ir

56 ADAPTING TO WEB STANDARDS

Microformats and POSH
Microformats are built on top of POSH to help deliver real meaning in HTML. So
POSH is an integral and critical part of a microformat.

Taking the example from the POSH section in Chapter 1 (see Figure 1.12), where
the document displayed an article introduction and the information about the
author of the article. The code looked like this:

<div class=”article”>
 <h1>My Online Article Title</h1>
 <h2>May, 2007</h2>
 <p>
 Hey everybody, welcome to my article. Today we’re going to
 be talking about:
 </p>

 Web standards-based markup
 Cascading Style Sheets
 XHTML

 <p>Let’s get started!</p>
</div>
<div class=”credit”>
 <h3>About the author:</h3>
 <h4>Rob Cherny

 Lead Developer</h4>

Figure . The home
page for microformats.
org.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 57

Microformats
The specifications being created at microformats.org are not only an excel-
lent source of inspiration for class names, but they may pave the way to a
more semantic Web. By marking up content of certain types in POSH and
standardized ways, the content is given meaning. Tools embedded in Web
browsers today (there are extensions for Mozilla Firefox already) can call out
that information and enable users to do useful things with it, such as adding
appointments to their calendar software or adding users’ contact information
to their address books.

Future tools may do even more. Search aggregators that mine for data such
as reviews of products, resumes, or even syndication of articles are a distinct
possibility.

There are a number of microformats already standardized, and more in devel-
opment every day. Some of these include

• hCalendar format for date and time (appointment) type information

• hCard format for contact information

• XOXO format for outlines

• hAtom format for syndication of blog articles

• hResume format for resumés

• hReview format for reviews

 <p>
 NavigationArts, LLC

 7901 Jones Branch Road

 McLean, VA, 22102 United States of America

 703.584.8920
 </p>
</div>

Concentrating on the credit portion, this bit of POSH code can be enhanced with
even greater meaning by overlaying a microformat. For instance, one way to assign
classes and pieces of information to the credit information might be:

<div id=”hcard-Robert-M-Cherny” class=”vcard”>
 <h3>About the author:</h3>
 <h4>
 Rob
 Cherny

http://lib.ommolketab.ir
http//lib.ommolketab.ir

58 ADAPTING TO WEB STANDARDS

 Lead Developer</h4>
 <p>
 NavigationArts, LLC

 7901 Jones Branch Road

 McLean,
 VA,
 22102

 United States of America

 703.584.8920

 </p>
</div>

This example adopts the hCard microformat defined at microformats.org. The
classes defined for vcard, given-name, additional-name, family-name, org, adr,
and so forth identify key pieces of information. While on the markup-heavy side,
it does, in a very granular way, specify the meaning of each element, which is of
potentially great use.

In XML, tags give meaning to each field of information. With microformats, valid
class and other attribute information can be added to the POSH code to enable
understanding of the granular pieces of information.

Pulling Information from a Page with Microformats
Using the hCard example above and an extension add-on for the Mozilla Firefox
browser, it is possible to demonstrate a simple example of how powerful micro-
formats can be. Michael Kaply at IBM has created an excellent extension called
Operator, which you can download and install from the Mozilla Add-ons site:
https://addons.mozilla.org/en-US/firefox/addon/4106

Once the extension is installed, users have either a new toolbar or a status bar
icon that becomes active when visiting a Web page with data embedded in a
microformat. The toolbar allows a multitude of ways to interact with a variety of
microformats (Figure .).

Since this example is an hCard, the Operator extension allows the user to export
the embedded contact information to a vCard file, which can be imported into
any software package that accepts that format, such as Microsoft Outlook. It is an
incredibly easy and powerful way to add information to an address book directly
from a Web page, particularly in a business environment (Figure .).

For a breakdown of CSS selectors, see Appendix D.

https://addons.mozilla.org/en-US/firefox/addon/4106
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 59

Figure . An hCard
microformat being
exported using the
Operator add-on for
Firefox.

Figure . A vCard
being imported to
Outlook from a Web
page via a microformat
and Operator.

Too Much Class
Web standards purists have coined the term classitis, which means putting too
many classes in a Web site’s markup and CSS. The term is a funny word for a valid
concern. Having dozens and dozens of CSS classes to remember, document, and
reference is difficult for Web authors and business users alike.

In the long run, a more practical, graceful, and scalable solution is to use ele-
ment and descendant CSS selectors. These selectors automatically apply styles to
XHTML elements without having to apply classes to every item.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

60 ADAPTING TO WEB STANDARDS

Classic Classitis
Descendent selectors match any element inside another element having a space
between the two elements.

div p {color: red;}

In this example, any <p> element that descends from a <div>element will be
red. This technique also works with classes and IDs. Using this simple technique,
authors can begin to remove the complexity from their CSS code.

Here is an example of classitis at work (Figure .). Note that styles are embedded
in the document for convenience alone, as this is not necessarily a best practice.

Figure . Superficially,
a document suffering
from “classitis” looks
just like any other.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>Classitis Example</title>
 <meta http-equiv=”Content-Type”
 content=”text/html;charset=utf-8” />
 <style type=”text/css”>
 /* elements */
 body { font-size: .9em; }
 /* main styles */
 .main { width: 200px; float:left; margin-right: 15px;}
 .main-header { text-decoration: underline; color:
 green; font-size: 1.2em; }
 .content { color: #666; font-size: 1em; }
 .main-list { list-style-type: square; color: #f60; }
 /* related styles */
 .main-related { width: 200px; float: left; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 61

 .rel-header { border-bottom: 1px dashed #f60; font-size: 1.2em; }
 .rel-content { color: maroon; font-size: .85em; }
 .rel-list { list-style-type: square; color: #666;
 font-size: .85em; }
 </style>
</head>
<body>
 <div class=”main”>
 <h1 class=”main-header”>My Header</h1>
 <p>
 My content goes here.
 </p>

 <li class=”main-list”>Item one
 <li class=”main-list”>Item two
 <li class=”main-list”>Item three

 </div>
 <div class=”main-related”>
 <h1 class=”rel-header”>My Related Header</h1>
 <p>
 My content goes here.
 </p>

 <li class=”rel-list”>Item one
 <li class=”rel-list”>Item two
 <li class=”rel-list”>Item three

 </div>
</body>
</html>

Curing Classitis
Examination of the above document reveals a number of areas that could be
improved upon. The code references an army of CSS classes that simply do not
need to be there. The author of this document has defined classes for each <div>,
all the headers, text, and list styles for each column in this simple two-column
document. All the classes make the document difficult to read and increase the
page weight needlessly. Most experts agree that classes should be reserved for
exceptions to the basic rules that are being set up for elements in a document.

Now look at an alternative example, which provides the same design in a more
graceful way (Figure .).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

62 ADAPTING TO WEB STANDARDS

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>Classitis Example</title>
 <meta http-equiv=”Content-Type”
 content=”text/html;charset=utf-8” />
 <style type=”text/css”>
 /* elements */
 body { font-size: .9em; }
 h1 { font-size: 1.2em; }
 ul li { list-style-type: square; }
 div { float: left; }
 /* main styles */
 #main { width: 200px; margin-right: 15px;}
 #main h1 { text-decoration: underline; color: green; }
 #main p { color: #666; font-size: 1em; }
 #main ul li { color: #f60; }
 /* related styles */
 #main-related { width: 200px; }
 #main-related h1 { border-bottom: 1px dashed #f60; }
 #main-related p { color: maroon; font-size: .85em; }
 #main-related ul li { color: #666; font-size: .85em; }
 </style>
</head>
<body>
 <div id=”main”>
 <h1>My Header</h1>
 <p>My content goes here.</p>

 Item one

Figure . Here is
the same page using
more efficient markup,
(without classitis). It
looks the same as the
version with classitis.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 63

 Item two
 Item three

 </div>
 <div id=”main-related”>
 <h1>My Related Header</h1>
 <p>My content goes here.</p>

 Item one
 Item two
 Item three

 </div>
</body>
</html>

Superficially, this document looks exactly the same as the first. However, there is
not a single class used: It has been reduced to a simple POSH document. Descen-
dent selectors allow authors to set styles via context; this can be a powerful tool.
This is not to say that classes should never be used; however, simplifying code in
complex environments is never a bad thing. A POSH approach with simple selec-
tors will get documents quite far and will be simpler to maintain.

Consider a situation where a designer might not be able to directly impact the
markup because of business reasons or software architecture limitations, and this
becomes even more powerful. Careful techniques involving hearty selectors and
design changes can be pushed down into code that authors can’t even touch!

Two Classes for the Price of One
Another robust technique worth noting is that the rules for markup allow mul-
tiple classes to be assigned to any given object. This is another powerful way to
avoid using extra classes when they are not necessary (Figure .).

Figure . The result
when multiple CSS classes
combined.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

64 ADAPTING TO WEB STANDARDS

Here’s another style sheet example:

.error { color: red; }

.errorExtreme { font-weight: bold; }

.extaError { font-weight: bold; color: red; }

Note there are three classes defined: one making text red, the second making text
bold, and the third combining both. Here is one usage of these classes in some
XHTML code, where both sets of text are bold and red, but the author added an
extra to combine classes, and they also had to create the last selector,
which does the same as the other two combined:

=<p class=”error”>
This is an EXTREME error.</p>

<p class=”extaError”>This is also an EXTREME error.</p>

Now, consider the same style sheet without the last selector (which is not actually
necessary):

.error { color: red; }

.errorExtreme { font-weight: bold; }

Finally, an author who exploits the features of standards-aware Web browsers can
combine the classes using space-delimited lists inside the class attribute of ele-
ments, like this:

<p class=”error errorExtreme”>This is an EXTREME error.</p>

Again, the result is simply less code, and fewer classes. Advanced usage of CSS
selectors takes Web standards-based techniques to the next level and can help
style sheets scale without too much complexity.

TIP

The W3C CSS recommendations reference all manner of fantastic selectors that
can be used to enhance the elegance and maintainability of CSS. While browser
support is inconsistent, newer, more modern browsers such as Mozilla Firefox,
Safari, Opera, and even Microsoft Internet Explorer 7 (and later) support most
of the CSS 2 selectors module and in some cases some items from the CSS 3
module.

The CSS 2 selectors can be found at www.w3.org/TR/REC-CSS2/selector.html.

The CSS 3 selectors can be found at www. w3.org/TR/css3-selectors/.

www.w3.org/TR/REC-CSS2/selector.html
www.w3.org/TR/css3-selectors/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 65

THE HIERARCHY OF RULES

CSS selectors carry with them the notion of “specificity,” which means how
detailed and specific the rules are drives which rule takes precedence when con-
flicting rules show up. For instance, ID selectors are more specific than elements,
and so forth. Specificity and other aspects of the “cascade” in CSS are described
in the CSS recommendation at www.w3.org/TR/CSS21/cascade.html.

CSS File Content Structure
Some Web authors agonize over the structure of the CSS files’ content. There are
no absolute rules.

#singleLine { border: 1px solid red; padding: 12px; display: inline;
}

Some CSS authors prefer single-line rules, while others prefer rules that span
multiple lines:

#multiLine {
 border: 1px solid red;
 padding: 12px;
 display: inline;
}

There aren’t a lot of compelling reasons to use one over the other, except possibly
for file size considerations where white space might be a factor. Whatever a team
does, it’s best to be consistent.

TIP

As part of their publishing procedure, some larger sites will employ a build pro-
cess that strips out white space to help optimize the CSS files to a smaller size.

A basic guideline for what order or how to group selectors in a CSS file might be

❖ Define rules that are basic elements that don’t depend on context.

❖ Define classes that are reused regardless of context.

❖ Define ID selectors roughly in their order, matching their usage in the markup.

❖ Define children of ID selectors based on rules set via context.

www.w3.org/TR/CSS21/cascade.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

66 ADAPTING TO WEB STANDARDS

Another technique that is sometimes helpful, but takes the multiple-line setup to
another level, is nesting CSS rules based on relationships, much like programming
code.

h1 {
 font-weight: bold;
 border-bottom: 1px solid blue;
}
#main {
 width: 600px;
 padding: 8px;
 float: left;
}
 #main h1 {
 font-weight: normal;
 border-bottom: 1px solid maroon;
 }
 #main p {
 margin: 0 0 12px;
 }
 #main p a {
 padding-right: 15px;
 background-image: url(“out.gif”);
 }
#siteinfo {
 position: absolute;
 bottom: 20px;
}
 #siteinfo p {
 margin: 0;
 }

Note how the indentations help provide context for the rules. This can get com-
plex to manage as the rules get deep, but it can also help the maintenance and
readability of the files. Rules that start as contextual might later be moved out
and up to where they are more generalized, and it’s important to watch the cas-
cade and the level of specificity.

Consider the rule defined for <h1> elements without the #main ID that is bold,
but with a blue bottom solid border, whereas the one in #main above is maroon
and not bold. In time, or after a redesign, it might be determined that the <h1>
elements should actually be all a normal font weight with a maroon bottom bor-
der. Rather than redeclare the rule, a maintenance activity would be to reorganize
the style sheet:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 67

h1 {
 font-weight: normal;
 border-bottom: 1px solid maroon;
}
#main {
 width: 600px;
 padding: 8px;
 float: left;
}
 /* note #main h1 is moved up and replaces the other rule */
 #main p {
 margin: 0 0 12px;
 }

Web Servers and CSS
If a CSS file does not seem to be applied to a document, and the page is dis-
played as plain text even though the files are properly linked, there may be a
mime-type issue with how the Web server is returning the files. Some Web
servers, usually older servers, will not be configured to correctly serve CSS files
to Web browsers.

In particular, Mozilla-based browsers can have issues with CSS files that are
not being sent with the correct content-type header on the HTTP response.
This can happen particularly with browsers that are stricter in their interpreta-
tion of standards, so a site may look fine in one browser but not render with
styles at all in another. Or, the file may work fine locally but blows up on the
server.

CSS files must be served to a Web browser with the text/css content-type.
With the popular Apache Web server (http://httpd.apache.org), this is a
simple addition to the .htaccess configuration file, stored in the site root,
as follows:

AddType text/css .css

Alternative Media CSS
One of the wonderful features of CSS is the ability to specify a specific media type
for CSS files. Possible options include “all,” “screen,” “print,” and “handheld.”

For instance, a file might be labeled “screen” and the rules in the file are only
applied to the document when viewed on a monitor screen:

http://httpd.apache.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

68 ADAPTING TO WEB STANDARDS

<link rel=”stylesheet” href=”screen.css” type=”text/css”
media=”screen” />

The use of print CSS can be a powerful asset in any organization. It can actually
reduce the workload where oftentimes a CMS or other software is employed to
create duplicate or simple versions of documents that are easier to render on
printed paper. This software may not be necessary if a print CSS file is attached.
This is done the same way as the screen file:

<link rel=”stylesheet” href=”print.css” type=”text/css”
media=”print” />

In this case, when used with the screen.css file above, there are no styles
applied from screen.css when the user clicks to print the file. However, the
styles from print.css are applied, allowing authors the chance to apply very
special formatting such as hiding menus and unnecessary design elements while
giving emphasis to the content.

TIP

A classic article, written by Eric Meyer in the online resource A List Apart, dis-
cusses print CSS in particular detail (http://alistapart.com/stories/goingtoprint/).

A Print Style Sheet Example
Many organizations are effectively using print CSS files to create printed versions
of their Web pages—which can be very nice, particularly for content articles
where a printed version might be of real importance. In these cases, content is the
critical factor, and the old paradigm of clicking print and getting something like
what is shown on screen is really going by the wayside. What is on screen does not
translate well to paper in most cases. An effective approach is to create a letter-
head-type style emphasizing the content and hiding unnecessary menus and so
forth.

An excellent example of the use of separate CSS style sheets for screen display and
for print can be seen at the site for the Web design agency NavigationArts. The
company’s site was a collaborative CMS implementation, the front end of which
was built using XHTML Strict and CSS by Web developer Michael Raichelson
(http://michaelraichelson.com).

The content pages of the site (www.navigationarts.com/insight/web-standards)
feature an inverted white logo graphic on an orange background (the company’s
signature color), and a basic three-column layout (Figure .). Across the top
is global navigation; the left side is main navigation; the middle content column

www.navigationarts.com/insight/web-standards
http://michaelraichelson.com
http://alistapart.com/stories/goingtoprint/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 69

features article content, details, and a graphic; and the right side features related
tools. Under the hood, the code features both screen- and print-specific style
sheets:

<link media=”screen” rel=”stylesheet” type=”text/css”
 href=” /_res/css/main.css” />
<link media=”print” rel=”stylesheet” type=”text/css”
 href=” /_res/css/print.css” />

First and foremost, it is important to recall that since the main.css file is set to
screen, none of its rules will apply when the user clicks the Print button. So, the
rules in print.css are coded from the ground up off a pure text display. Since
the main graphic used on screen is actually inverted white against a background
color, there’s some magic going on behind the scenes in a <div> element hidden
at the bottom of the document, which is exposed only when the printer CSS is
applied:

<div class=”ponly” id=”print-logo”>

</div>

This logo is used only for printed versions, and is grayscale for a good print rep-
resentation. The screen CSS defines a class ponly which is applied to any object
hidden on the screen, and therefore can be applied to many objects if necessary.

Figure . An
example content page
at navigationarts.com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

70 ADAPTING TO WEB STANDARDS

.ponly { display:none; }

The additional ID, #print-logo, is used to manipulate the position of the object
in the print.css file during printing. Since this image is located at the bottom
of the document, on-screen rendering or download times are not significantly
impacted, as it is the last thing downloaded. Another set of objects radically
manipulated when the page is sent to the printer is the footer (which also hap-
pens to be an hCard microformat, thank you), which on screen is at the bottom of
the page, and when printed is actually moved to the top of the printed page. But
how is all of this accomplished?

The print CSS starts by hiding all sorts of objects not required for printing:

#global-nav, #client-login,
#branding, #left-rail,#right-rail,
.geo, .include, .sonly, .honly, .license a,
#x, #x-insert, #x-image, #x-nav,
.readmore, .apply { display:none !important; }

Moving through the whole print.css file, there are even more elements, classes,
and IDs that are hidden. This demonstrates how this technique is in fact an exer-
cise in removing as much as possible. The above rules hide the global navigation
as well as the branding, white-on-color logo, and the right and left columns. This
essentially leaves the middle content and the footer, as well as the logo that is usu-
ally hidden at the bottom, at least on screen.

With this technique, there are a few more rules required for the printer CSS than
with printing techniques that share the screen and print rules. The reason is that
authors will need to set the fonts and colors for all type styles from scratch once
again, since not a single rule from the screen.css file is applied to the print ver-
sion. However, starting with a clean slate these days is typically more reliable for
print CSS, since browser support is inconsistent and poorly documented.

Some more rules:

body {
 font-size:12px;
 color:#000;
 background-color:#fff;
 font-family:Arial,Helvetica,sans-serif;
 padding:120px 10px 20px;
 margin:0;
}
div.vcard {
 font-size:11px;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Presenting Cascading Style Sheets 71

 position:absolute;
 top:25px;
 right:10px;
 text-align:right;
 width:400px;
}
div#print-logo {
 position:absolute;
 top:45px;
 left:10px;
}

The hidden print logo is not hidden in the print version, and both it and the
footer are set to absolute and moved to the top of the document to establish a
letterhead-like quality (Figure .). Notice how the body has a padding-top of
120px, which leaves room for the absolutely positioned letterhead style print logo

and hCard data. The result is a well-formatted and easy-to-read printed page that
emphasizes the content.

Using similar techniques can save time and effort on the server-side implementa-
tion of mixed-media and multiple-device publishing from a CMS or any other
tool. CSS support for handhelds gets better ever day, and it will only allow for

Figure . The print
CSS version of a content
page at navigationarts.
com.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

72 ADAPTING TO WEB STANDARDS

greater versatility as time goes by, lessening the burden and level of effort required
to provide alternative forms of publishing of the same content.

Presentation Set Free
CSS is critical to a Web standards-based approach, since in a standards world—
where HTML is virtually plain text—all presentation information is controlled
from the CSS. This has numerous advantages, all the more so the larger the site,
because all presentation information can be controlled from a manageable set
of files.

It is true, however, that the larger and more complex the site, the more of a chal-
lenge managing effective CSS becomes, due to sheer volume. Having a clean base
of markup and using effective linking strategies, combined with intelligent cre-
ation of selectors, will get a Web team halfway there already, providing them with
a newfound sense of freedom and flexibility. Each environment will be different,
of course, and it is important to make intelligent decisions on how to best manage
the volume of design information that CSS needs to handle.

Once a base of markup and design is in place, adding interaction is another critical
component to a modern Web site. Front-end markup impacts design, and both of
these technologies interact with the scripting layer as well.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3
Integrating the
Behavior Layer

Capturing, reacting to, and performing actions based on users’ interac-

tions with Web pages is the realm of the “behavior layer.” While HTML

and Web browsers have basic responses to “behaviors” such as clicking a

link or submitting a form, today these responses can be enhanced radi-

cally through the use of scripts sitting on top of the markup. The scripts

respond to logical decisions made by users, thereby creating a responsive

user interface (UI) and controlling what and when (or even if) anything is

actually sent to the server. Modern scripts can even control a UI by receiv-

ing data from the server and modifying an existing page without a full

page refresh.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

76 ADAPTING TO WEB STANDARDS

In a Web standards world, scripts and the behavior layer involve the careful appli-
cation of JavaScript to enable both an event layer and the appropriate reactions to
users’ actions. JavaScript needs to be consistent, well organized, and respectful of
the front-end presentation and structure layers.

In the past, JavaScript served a simple purpose: providing “stupid Web tricks”
with varying degrees of usefulness. Today, with full Document Object Model
(DOM) support, Asynchronous JavaScript and XML (Ajax), and richer experi-
ences possible, JavaScript is getting more attention. It is moving beyond its past
as a cut-and-paste language and is being adopted by large frameworks with very
object-oriented structures and mature design patterns.

In some large organizations or complex environments, JavaScript is frequently
applied as part of a front-end solution as well as the backend applications, yet it is
frequently implemented by an altogether different team.

In most cases, except for more complex Rich Internet Applications (RIAs), mod-
ern scripts should be enhancements to existing pages and be laid over the top in a
way that is not browser-specific and will allow the page to operate even if the user
has scripts disabled or some other issue prevents them from executing.

While the percentage of users browsing the Web without scripts is small, one of
the overarching tenets of modern best practices is that all types of users should
have access to content, including users who have scripts disabled. This tenet also
applies to the edge case where the site is developed for a specific browser and not
built with open standards. Pages that rely on scripts for fundamental features and
functionality, even items as mundane as links, go against this ideal and can cause
problems and potentially irritate users who don’t understand why something
might not be working.

Modern Ajax Methods
In February 2005, Jesse James Garrett of Adaptive Path published an article
discussing new techniques in Web scripting that had largely been operating
under the radar. (His article is located at adaptivepath.com/publications/essays/
archives/000385.php.)

Garrett’s article, called “Ajax: A New Approach to Web Applications,” defined
Ajax (short for Asynchronous JavaScript and XML) as a new platform for Web
technologies using JavaScript features to send XML communications from a Web
page in the background, without interruption, to the server, without refreshing
the browser window. There had been hacks and other workarounds for effects
like this for years involving things such as hidden <iframe> elements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 77

While the core technologies he discussed had been around since the late 1990s,
Garrett’s article, combined with modern browser support, suddenly set off a
virtual scripting revolution in Web development. When application developers
realized JavaScript could function in ways desktop software could, with data
interchange in the background, without users waiting for a form to be posted and
responded to, JavaScript suddenly got tons of attention—and much more respect.

The term Ajax (also seen as AJAX) is defined in many different ways these days:
from the strict background XML data interchange to a broad modern user experi-
ence featuring page updates, drag-and-drop, fades, animations, and other more
desktop-software-like effects (an example of which is shown in Figure .). In this
sense, it describes the use of modern browsers with robust JavaScript support on
faster and more advanced computers, combined with more prominent broad-
band access and traditional strict Ajax techniques.

Whatever the definition, it is clear that Ajax has brought specific attention to the
techniques supported by JavaScript in modern browsers. Combined with Web
standards-based approaches, it is quite a powerful “experience delivery” tool.

Figure . Apple’s Web Gallery, a feature of its .Mac service, makes extensive use of Ajax.
(Image courtesy of Apple.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

78 ADAPTING TO WEB STANDARDS

Web applications such as Google’s Gmail (www.gmail.com, Figure .) and Mee-
bo’s Web-based chat clients (wwwl.meebo.com, Figure .) are helping to popu-
larize Ajax-based techniques. They feature real-time, no-page-refresh applications
that in many ways mimic desktop software behaviors. One example in Gmail is a
background auto-save feature as you type the draft of your email message. Like-
wise, Meebo features a chat window where the conversation is updated in the
screen without a refresh—it can also be dragged around the screen just as on the
desktop. These basic, well-known features are powered by Ajax, and technically,
under the hood by JavaScript.

Modern, Progressive, and Unobtrusive Scripting
Most experts today agree that modern JavaScript needs to move far beyond its
early history of browser-specific techniques and inline code mixed within the
HTML markup of the Web site.

Some ways modern scriptwriters have been doing this include

❖ Adopting a new progressive pattern and philosophy in which all scripts are
“unobtrusive”

❖ Keeping the scripts’ code separate from the content and presentation layers
of the Web site, in external files where possible. If scripts were not separated,
then the strict separation of content and presentation would lose its effective-
ness. Unobtrusive scripts do not “intrude” into the other layers.

❖ Creating more mature, scalable, reusable, object-oriented code

❖ Using cross-browser feature sets rather than browser-specific proprietary ones

❖ In browsers visiting Web pages where the scripts do not work for some reason,
making sure the Web pages still work and degrade gracefully

JavaScript has really entered a time and a state of organization, discipline,
and responsibility. This is a far cry from the outmoded description given in
Wikipedia: “a clumsy, hackish language unsuitable for application development”
(http://wikipedia.org/wiki/Unobtrusive_JavaScript). Much of this bad reputation
is due to its marketing history and the coders writing JavaScript, but that is
changing. Doug Crockford, a frequent speaker on JavaScript, years ago wrote
that JavaScript was “the world’s most misunderstood programming language”
(www.crockford.com/ javascript/javascript.html).

JavaScript has earned the world’s respect for sure.

www.gmail.com
wwwl.meebo.com
www.crockford.com/javascript/javascript.html
http://wikipedia.org/wiki/Unobtrusive_JavaScript
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 79

Figure . Google’s
Gmail service uses an
enormous amount of
Ajax and JavaScript.

Figure . Online chat
service meebo.com also
uses generous amounts
of Ajax and JavaScript.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

80 ADAPTING TO WEB STANDARDS

JavaScript Requirements:
File and Function Inventory
Where the front end and the backend come together and interact with presenta-
tion and content—that’s where the scripting layer comes in. And in that impor-
tant place, it takes discipline to remove chaos, limit code bloat, and eliminate risk
of inconsistent implementations. With more scripts comes a bigger need for Web
teams to bring consistency and agree on internal standards and requirements. A
more disciplined approach means creating site-wide requirements; an inventory of
scripts, what they’re for, how to get to them; and even rules for writing new scripts.

Many larger organizations with legacy code are faced with massive collections of
scripts that are growing out of control. A common scenario is to see five differ-
ent pop-up window scripts, a massive but flawed browser-detection script, and
nowadays even several new Ajax scripts that do the same thing but are repeated
and all downloaded to the end user. Additionally, there may be dozens of inline
 document.write statements or other functions that modify the UI with font sizes
or colors. This is difficult to manage and violates the separation of the indepen-
dent layers of a given design.

As with any software, an evaluation should be made of all the required functional-
ity, a core set of functions created or agreed upon, and a standard way of interact-
ing with UI elements created. Scripts should be stored in a central location and
documented by a knowledgeable staff that is aware of what is available and what
is needed.

A reference for a JavaScript function can be just like any other programming lan-
guage. For instance, if there was a utility function to combine two strings together
(not that someone would ever need such a thing), it might be documented as
follows:

string myStringCombiner(string param1, string param2)
 Purpose: combines two strings, returns a new string
 Parameter Description
 param1 Required. First string to concatenate to the second.
 param2 Required. Second string to concatenate to the first.
Notes: Function is available by including base-functions.js.

Bad Script, Bad
So what does modern, Web standards-respectful JavaScript code look like?

Arguably, a good way to show what modern code can look like would be to start
with what not to do. Unfortunately, the bad code will look quite familiar.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 81

The next few sections will start with the beginnings of a source document that
includes some JavaScript and work through the code section by section, taking
note of the serious problems that are demonstrated.

This document is fairly close to nonsense, of course—certainly not an example of
good, modern scripting. With that in mind, a few years ago this would not have
been an unusual sight (Figure .):

Figure . A meaningless
JavaScript or “DHTML”
screen.

<html>
<head>
 <title>Old Skool JavaScript</title>
 <script language=”JavaScript”>
 <!-- // cloaking device
 b = navigator.appName
 function callMe(){
 if (b.indexOf(“Netscape”) >= 0) { // detect Netscape
 alert(“Sorry, this site is optimized” +
 “ for Internet Explorer!”)
 }
 else { alert(“We welcome you:”) }
 }

As the page loads, it performs a poorly thought-out browser detection, alerts
users of both Internet Explorer and Netscape (as near as it can determine), and
then sets up the user for a series of actions. These are the first offenses (we’ll
number them as we go along):

1. The script features a very weak user-agent-based browser-detection script for
questionable results.

2. The page appears to be targeted at Microsoft’s IE browser and assumes that
the only other browser coming to the site is going to be Netscape, which in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

82 ADAPTING TO WEB STANDARDS

today’s world is extremely unlikely. Today’s scripts should never assume the
audience is using a specific browser unless in a controlled environment.

3. The language attribute of the <script> tag is not required, and the type
attribute is missing.

 Moving further into the document:

 function goThere(){
 window.open(“http://cherny.com”,”myWindow”,
 “height=500,width=500,scrollbars=yes”)
 }
 function goHere(){
 window.open(“http://www.google.com/”,”myWindow”,
 “height=400,width=400,scrollbars=no”)
 }

 Here we have two functions that do virtually the same thing, although this
could be handled with a single, more robust function.

4. The script uses pop-up windows and has two functions to do this, when it
could use one (whether or not this should be done in the first place).

 More of the code:

 function hookUp(){
 var x = document.all.tags(“p”)
 var el = x[1]
 el.style.cursor = “hand”;
 el.style.width = “150px”
 el.style.height = “100px”;
 el.style.borderColor = “red”;
 el.style.borderWidth = “1px”
 el.style.borderStyle = “solid”;
 }
 var on = false;
 function update(){
 var x = document.all(“myDHTML”)
 if (!on) {
 x.style.width = “400px”;
 x.style.height = “auto”;
 x.style.borderColor = “green”;
 on = true;
 }
 else {
 x.style.cursor = “hand”;
 x.style.width = “150px”
 x.style.height = “100px”;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 83

 x.style.borderColor = “red”;
 x.style.borderWidth = “1px”
 x.style.borderStyle = “solid”;
 on = false;
 }
 }
 //-->
 </script>
</head>

 The preceding section is full of problems:

5. The script uses Microsoft’s proprietary document.all DOM technique, which
will work only in IE. Modern scripts should avoid using proprietary techniques
unless absolutely necessary.

 Separation of content from presentation places design into CSS; the above
code violates this practice by placing presentation information into the Java-
Script code. While scripts may need to make changes to page appearance,
they should reference CSS classes, just like markup can. Design updates to
the code above would be difficult at best and sabotage the code separation
of CSS.

6. The script in several places modifies .style properties, violating the separa-
tion of layers. Sometimes this can be necessary, but certainly not here.

 Modern scripting also means that scripts can and should be linked from
external files.

7. The full script is located in the <head> of the document, when it should be in
an external file.

 Now, the rest of the document body:

<body onload=”alert(‘We like Internet Explorer!’); hookUp()”>

What would you like to do now?
<p>
- <a href=”javascript:goThere()”
 onclick=”if (document.all){ alert(‘Do not leave my Web
site!’)}”>
 Go to this site?

- Or, maybe here instead?

- <a href=”#”
 onmouseover=”document.all(‘myDHTML’).style.visibility =
 ‘visible’;”>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

84 ADAPTING TO WEB STANDARDS

 Do you like DHTML?
<p onclick=”update()”
 id=”myDHTML”
 style=”visibility:hidden;”>
 This is my clickable DHTML box which changes size and shape.
 Try it! Click more than once!
 (Fun, right?)</p>

<script language=”JavaScript”>
<!--
callMe()
//-->
</script>

</body>
</html>

 The first two links open pop-up windows. The last is a DHTML box that
appears on mouseover to users of IE, and is clickable. When clicked, the box
changes size and color. Quite pointless, but it will demonstrate a number of
things for us.

 From a modern, progressive standpoint, the above code is atrocious.
Although many of its “offenses” were specified in context above, the rest of
the problems are general:

8. The HTML features several inline event handlers, which mixes behavior-
related code directly inside of the content and structure. Event handlers
should be dynamically wired up when the page loads using the DOM.

9. The first link features the javascript: pseudo-protocol and no actual URI
link. This type of link is nonstandard and can cause accessibility issues. No
clicks should ever rely on the javascript: pseudo-protocol.

10. The second link features the # href attribute with an inline onclick handler
and no actual URI that users without scripts can use. All links on a page
should have a real-link URI. If it is a script-dependent issue, then the page
objects should be added by the script.

11. The script also features inline logic, again using the document.all proprietary
DOM method. All logic should be in external files.

Not to mention all the calls to alert() are just annoying to any user. There may
even be more—frankly, it’s hard to keep track of them all. Of course this docu-
ment is nonsense, but a site may need to hook links up to some scripts and pro-
vide interactive widgets such as those on this page. Note also how poor markup
decisions are involved directly in the poor scripting decisions. It is all interrelated.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 85

Better Scripts
Today’s best practices recommend a number of techniques to help improve the
quality of JavaScript and how it interacts with the UI layer. As previously indi-
cated, these techniques are often referred to as “unobtrusive” JavaScript. Some
guidelines for unobtrusive JavaScript include

❖ Use W3C DOM techniques, as opposed to proprietary DOM methods, in
order to target Web standards-supporting browsers.

❖ Avoid targeting scripts at specific browsers unless absolutely necessary.

❖ Use external files where possible, so as to avoid inline code in the XHTML.

❖ Avoid inline event handlers.

❖ Avoid javascript: pseudo-link protocol usage.

❖ Use object detection, as opposed to browser detection, if possible.

❖ Create references to presentation elements through classes and IDs or through
distinctly separated, easy-to-modify code, if possible.

❖ Pages should work without scripts, if possible, and in older browsers.

❖ Dynamic elements, which are meaningless to users without scripts, should be
added by the scripts.

Consider these guidelines in terms of the functionality that is required for your
site. Modern browsers allow a pure separation of script from other layers, which
can also improve the quality of the code. Additionally, scripts for links and other
major functionality should never be tied to specific browsers unless there is a
compelling reason, and there must be fallbacks in case users have scripts disabled
or are using a different browser than expected. These days there are too many
browsers to target specific vendors (except in extreme compatibility conditions).
Using Web standards allows a single approach to maximize compatibility, because
new browsing technologies will use those standards as their starting point.

Unobtrusive Improvements
There are several ways the badly scripted page above can be brought up to speed:

❖ Convert pseudo-links to actual links.

❖ Remove scripts to an external file.

❖ Convert invalid HTML to semantic and valid code.

❖ Add dynamic elements via scripts.

❖ Hook up event handlers dynamically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

86 ADAPTING TO WEB STANDARDS

❖ Remove browser detection, since there is no reason to have it.

❖ Remove proprietary techniques and replace them with DOM standards.

External Files and Dynamic Hookups
A big issue above is the inline <script> tags. In some cases they may be difficult
to avoid, particularly in more complex environments where third-party code is
being inserted, but where it can be done, such as with the scripts at the top of the
example document above, scripts should be external files—for the same reasons
that CSS files are better kept separate. Benefits include cleaner code, increased
modularity, code sharing, and, when combined with other unobtrusive tech-
niques, the ability to change the code in one location instead of having to plow
through the content’s entire markup. A compelling enough reason is that it helps
enforce the purity of the separation of the documents layers.

A valid external <script> tag looks like this:

<script src=”unobtrusive.js” type=”text/javascript”></script>

Now, having moved the code outside of the document, what about all the refer-
ences to that code? To obtain pure separation of content from behavior, all the
inline event handlers need to go. Additionally, because the javascript: pseudo-
protocol is nonstandard, those will be removed and replaced with their actual
links (they are pop-ups; more on that in a bit). Also, the links that were in the
javascript: function get pushed back down to the HTML for compatibility’s
sake. Finally, the “DHTML” aspects of the page, which are fairly meaningless if the
user does not have JavaScript, are removed, to be added dynamically later.

With some cleaner, more “POSH” HTML as well, the code would look like this:

<body>
<p>What would you like to do now?</p>
<ul id=”myUL”>
 Go to this site?
 Or, maybe here instead?

</body>

Notice that with all the event handlers removed, the code has achieved a sepa-
ration of behavior from content and structure. So how is the code actually
executed? In most cases, modern Web developers attach events and behaviors to
a page on load, just not with a body onload attribute.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 87

In unobtrusive.js, the scripts need to begin with this form:

window.onload = function(){
 // our code will go here, added in the next few sections
}

This simple item of code allows the same functionality as the body onload attri-
bute. Not only will all the old code that was to execute on load be put here, but
new calls to set up the other functionality that used to be inline will be put here
as well. The modifications to the code will be further explained as the parts are
improved one by one in the following sections.

No Proprietary Code
One of the biggest issues in older scripts (and in this example) is reliance on pro-
prietary vendor techniques such as document.all, which has limited browser
support beyond Internet Explorer. Web standards support open, nonproprietary
technologies that work across browsers, and there are certainly alternatives
defined by the W3C in its Document Object Model. Two of these alternatives are

❖ document.getElementById(id)

Returns an element when passed an id that is the ID attribute of the element;
the ID needs to be unique in the document.

❖ element.getElementsByTagName(tag)

Returns a nodeList (JavaScript array) of the matching elements by tag.

There are several examples above where document.all can be seamlessly
swapped out with document.getElementById. Replace the following:

var x = document.all(“myDHTML”)

with this:

var x = document.getElementById(“myDHTML”)

And replace this:

var x = document.all.tags(“p”)

with this:

var x = document.getElementsByTagName(“p”)

These two methods are key to W3C-based DOM scripting.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

88 ADAPTING TO WEB STANDARDS

Pop-Up Windows
Most experts today recommend against opening links in external windows.
There are a variety of opinions on the matter, but with modern browsers that
support tabs, a huge volume of third-party add-ons that enable pop-up blocking,
and a general desire to cater to users who find multiple windows confusing,
pop-up windows are losing favor. Additionally, from a technical standpoint,
the old browser-based (nonscripted) method of opening windows with the
target=”_blank” method is not valid: The target attribute is deprecated in
XHTML transitional and removed altogether from XHTML strict.

However, the bottom line is that in many massive corporate environments these
arguments are still difficult to win; management typically wants users who are
leaving the corporate site to be directed to a new window in an attempt to keep
the main site in the background. Compelling content might keep a user there, but
that’s another discussion. There are many techniques to get around pop-up win-
dows, but creating them will be used here as an example of adding dynamic event
handlers to elements on a page that need actions hooked up to them—and can
degrade gracefully.

Adding Event Handlers and Scripting with Class
The first step in setting up proper event-handling was moving the links’ addresses
out of the JavaScript and into the href attribute to create real links as a part
of the conversion to more “POSH” HTML above. JavaScript developers should
always use real links when possible, because of usability and accessibility issues.
Dynamic behaviors should be an enhancement to a page rather than a necessity.
The conditions where dynamic behaviors might be considered a necessity is when
there are alternatives, there is a controlled environment, or the functionality is
not required.

One way of adding dynamic functionality to a page with an effective separation of
structure and behavior is to assign a CSS class to elements that require scripting
to be attached to them. Think of the elements with that specific class value as a
defined type of object on a page, and methods, events, and behaviors are assigned
to them with JavaScript. This “class” notion is in keeping with the object-oriented
term class, which programmers use and which defines a type of object collection
with properties and methods. The CSS class may or may not have presentation
information referenced in the CSS. If there is no presentation information, it is
safely ignored by the CSS, but can still be used by the JavaScript.

To use classes effectively, JavaScript authors often use a script function called
“getElementsByClassName()” which, like getElementsByTagName(), returns
a collection or array of elements. In this case, those returned have a given class

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 89

assigned to them. Searching through an entire document can be resource inten-
sive, so these searches are often limited by a tag or ID.

Here is an example script that finds elements in a document with a class name,
limited to a specific tag:

/* LF = low fidelity: this thing is basic,
 * folks, no spaces, a single class, etc.
 * there’s plenty other good ones out there,
 * this is for demo purposes only...
*/
function getElementsByClassNameLF(tagName,aClass){
 var z = [];
 if (!document.getElementsByTagName) return z;
 var x = document.getElementsByTagName(tagName);
 for (var i = 0; i < x.length; i++){
 if (x[i].className == aClass) z.push(x[i]);
 }
 return z;
}

An important feature to note is the check for !document.getElementsByTag-
Name, as this checks for support of an important object method which, if not
supported, will cause the script to give an error. Make sure the script is linked
from the document.

Now, classes and event handlers can be added to the two links without having the
code inline in the document.

First, the new links, with a class of “external”:

 Go to this site?

 Or, maybe here instead?

Second, the new window.onload uses the getElementsByClassNameLF():

window.onload = function(){
 // find a elements that have an ‘external’ class
 var linksExt = getElementsByClassNameLF(“a”,”external”);
 if (linksExt.length > 0){
 for (var i = 0; i < linksExt.length; i++){
 // add onclick handler to each!
 linksExt[i].onclick = function(){
 window.open(this.href,”ourExternals”);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

90 ADAPTING TO WEB STANDARDS

 return false;
 }
 }
 }
}

Adding classes to items in the document is just one way of adding functionality.
Expert Web developers have the full range of W3C DOM methods and properties
available to them, including walking the document tree and simply locating docu-
ment IDs directly.

One last thing to note on the pop-ups: Notice how the window.open references
this.href. Because links[i].onclick references the current item in the collec-
tion of returned links, this.href is a reference to that link’s href attribute. This
allows the links to stay in the document, and simply be used by the script via the
event handler that is dynamically created.

NOTE

The Web Hypertext Application Technology Working Group (WHATWG) has
included a powerful version of getElementsByClassName() in its Web Applica-
tions and HTML5 specifications, and this functionality is due to be included in
Firefox 3. As with much of the WHATWG’s specs, only time will tell if the W3C
HTML Working Group includes this in its future work.

The W3C defines a number of ways to add event handlers to page objects. The
bottom line is that inline event handlers are the method least recommended by
modern scripting gurus: Don’t use it unless there is a compelling reason. The W3C
DOM defines a standard addEventListener() method. Unfortunately, Internet
Explorer doesn’t support this method, and so you should look online for com-
patibility functions that will help bridge the gaps in support. Just do a search on
something like “attach JavaScript event listener.”

NOTE

It is important to note that the example script here is for demonstration pur-
poses only and does not have all the features of some functions by that name.
Search online for other, more powerful examples that support multiple and
combined classes; you’ll find many useful results, including an excellent script
from Robert Nyman and Jonathan Snook (www.robertnyman.com/2005/11/
07/the-ultimate-getelementsbyclassname/).

www.robertnyman.com/2005/11/07/the-ultimate-getelementsbyclassname/
www.robertnyman.com/2005/11/07/the-ultimate-getelementsbyclassname/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 91

TIP

A great place to start on cross-browser event handlers is Scott Andrew LaPera’s
now classic “addEvent()” and “removeEvent()” functions posted all the way back
in 2001 (www.scottandrew.com/weblog/articles/cbs-events)

Dynamic Elements and innerHTML
The remaining step in improving the sample page is to add dynamic elements
after the page has loaded. Unless the elements of the document can serve some
purpose when scripts are disabled, it may be best to add the elements after the
page has loaded.

The W3C DOM includes a whole series of functions for inserting content and
markup into a document. These are highly effective; however, for expediency,
Microsoft introduced a proprietary DOM extension called innerHTML that inserts
snippets of code into a document. As fate would have it, this method is not only
faster to code, but performs faster in the browser as well. The benefits were dif-
ficult to deny, so every other major browser vendor that supports W3C DOM
standards-based code has implemented this feature. That makes it exceptionally
safe and convenient to use. Although some purists balk at its use because it is
considered nonstandard, for our purposes here it is too convenient not to use.

NOTE

Just like getElementsByClassName(), innerHTML is part of the WHATWG’s
specifications offered to the W3C HTML Working Group. As with all its recom-
mendations, only time will tell if it is standardized.

In the case of our sample page, there is an object (a link in the original) that on
mouseover shows a box that can be resized (for whatever reason), and the box
changes its border color when clicked. This object will be inserted dynamically, as
it is meaningless without scripts.

TIP

Because content is being inserted into the DOM of the document, this code
needs to be placed before the code that was discussed above in the window.
onload for the pop-up. This is because when DOM modifications happen, event
handlers can be lost! There are ways around this; try searching online for “java-
script event delegation” for some helpful links.

www.scottandrew.com/weblog/articles/cbs-events
http://lib.ommolketab.ir
http//lib.ommolketab.ir

92 ADAPTING TO WEB STANDARDS

So here is some code that can insert the needed DHTML trigger to show the click-
able box:

window.onload = function(){
// code below here is new
// check if the needed functions are available
if (!document.getElementsByTagName) return false;

// object that will be hidden and shown
var str = ‘<p class=”’ + LaF.classInit + ‘” id=”’ +
 LaF.classId + ‘”>This is my clickable DHTML ‘ +
 ‘box which changes size and shape. Try it! ‘ +
 ‘Click more than once! (Fun, right?)</p>’;

// add it to the body of the doc
document.getElementsByTagName(“body”)[0].innerHTML += str;

// add trigger to list that will show the object onmouseover
var ul = document.getElementById(“myUL”);
if (ul){
 ul.innerHTML += ‘<span class=”’ + LaF.classLi +
 ‘”>Do you like DHTML?’;
 var myLi = getElementsByClassNameLF(“span”,LaF.classLi);
 if (myLi.length > 0) {
 myLi[0].onmouseover = function(){
 var sp = document.getElementById(LaF.classId)
 sp.className = LaF.classOff;
 }
 }
}
// add code to toggle the object when clicked
var box = document.getElementById(LaF.classId);
if (box){
 box.onclick = function(){
 box.className = (box.className == LaF.classOn) ?
 LaF.classOff : LaF.classOn;
 }
}
// code above here is new
/*
 * The modifications of the DOM above remove the Event Handlers
 * which we so carefully attach...sweet. so these need to happen
 * after any DOM mods. event delegation would resolve this.
 */

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 93

// find a elements that have an ‘external’ class
var linksExt = getElementsByClassNameLF(“a”,”external”);
if (linksExt.length > 0){
 for (var i = 0; i < linksExt.length; i++){
 // add onclick handler to each!
 linksExt[i].onclick = function(){
 window.open(this.href,”ourExternals”);
 return false;
 }
 }
}
}

There is a lot of code here, and it is beyond the scope of the discussion to explain
all of the nuances and techniques used in this JavaScript; however, there are a
number of things worth pointing out:

❖ The code uses several functions introduced already, including
document.getElementsByTagName, document.getElementById, and
getElementsByClassName.

❖ A string variable is created that is the HTML for the box that’s being hidden
and shown. It’s then appended with innerHTML to the body of the document.

❖ An item is added to the list to be the “Do you like DHTML?” trigger to show
the box. A element can be used instead of an <a> anchor element
because there is no actual link (it’s never going to take anyone anywhere).

❖ An event handler is added in the code to change the CSS class of the box when
the user passes her or his cursor over the trigger .

❖ Finally, the box that was added gets an onclick handler to also toggle its CSS
class.

It is also worth noting that there is a little more JavaScript required for this, as well
as some CSS. Notice how the script references the CSS classes via variables?

JavaScript Behavior with CSS
and Presentation
In the purest sense, if the JavaScript is going to be pulled out of the markup, and
the presentation information all lives in external files, shouldn’t the CSS be pulled
out of the JavaScript as well? That can happen only to an extent, and in this case
there is a demonstration of the presentation aspects of the JavaScript code now

http://lib.ommolketab.ir
http//lib.ommolketab.ir

94 ADAPTING TO WEB STANDARDS

being referenced by the classes in the CSS. The names of the class do appear in the
JavaScript, just as they appear in the markup of an XHTML document. The classes
and IDs are what bind everything together, in a manner of speaking. So in this
case, the classes were pulled into a simple JavaScript object literal, which could
be referenced and changed easily without plowing through any of the logic in the
JavaScript.

// Look and Feel object to pull
// superficial properties out of code,
// especially classes
var LaF = {
 classExt : “external”, // external link class from prior example
 classLi : “trigger”,
 classInit : “set”,
 classOn : “on”,
 classOff : “off”,
 classId : “myDHTML”
}

These are easily then referenced like this:

LaF.classLi // the class for the trigger to show the box

NOTE

For a more pure approach, a developer might code the JavaScript in a more
object-oriented way. This might be to create a series of objects for each “thing,”
where each has its own CSS properties to be inserted into the document and
add its own event handlers. This would separate and compartmentalize the
code in the JavaScript even more from a maintenance and scope perspective.

For the most part, and in the purest sense, JavaScript should not directly call
the .style property of any objects it is manipulating, so that the look and feel
of those objects may still be controlled via CSS. A lot can be done by setting
up different CSS classes, and those different CSS classes should be leveraged
where possible, in order to maintain the purity of the separation of layers in Web
 standards-based code. As in any situation, there are exceptions, degrees, and
nuances that may make it difficult to be 100% pure at all times; however, as with
any Web standards-based best practice, there are ideals to aspire to and to weigh
against business requirements.

A final note on the remaining CSS: A file is created and linked to the cleaned-up
document that includes some rules making the trigger look just like links
and to distinguish the two states of our changing box.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 95

a, span.trigger {
 text-decoration: underline;
 cursor: pointer;
 color: blue;
}
.off {
 cursor: pointer;
 width: 150px;
 height: 100px;
 border: 1px solid red;
}
.on {
 cursor: pointer;
 width: 400px;
 height: auto;
 border: 1px solid green;
}
.set {
 visibility: hidden;
}

This keeps the presentation aspects of the page in CSS, where they belong. The
final document is essentially the same as the original, but without the browser
detection and alerts, which served no constructive purpose (Figure .).

Figure . The improved,
unobtrusive script page.

Say, for example, however, that the span.trigger class needed to be renamed to
span.toggle for some reason. Then, using the JavaScript object literal, it is very
easy to locate and make that change, rather than having to plow through the
JavaScript logic:

// Look and Feel object to pull
// superficial properties out of code,
// especially classes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

96 ADAPTING TO WEB STANDARDS

var LaF = {
 classExt : “external”, // external link class from prior example
 classLi : “toggle”,
 classInit : “set”,
 classOn : “on”,
 classOff : “off”,
 classId : “myDHTML”
}

TIP

There is an enormous amount of new work being published online with regard to
modern JavaScript design patterns and object-oriented techniques. Try searching
online for “javascript object literals,” “object oriented javascript,” and “javascript
closures” for some examples. Or, download a framework such as those mentioned
in the next section and examine the source—it’s all there for the taking!

Large Sites and Support for Multiple OnLoads
On larger sites, there are likely to be any number of things that need to be added
to the page when it’s loaded. This can lead to conflicts because there may need to
be more than one onload JavaScript event handler:

window.onload = function(){
 // might be a couple of these?
}

There are several ways to deal with this. In a highly controlled environment, a
team can aggregate all these calls into a series of setup functions:

function setup(){
 productSetup();
 salesSetup();
 uiSetup();
}
window.onload = setup;

Each team member who needs something executed on load would have his or her
code added to the setup() function. This can be difficult to manage. The prob-
lem gets more complicated when some rogue developer tries to attach an onload
event to the <body> element, causing conflicts and events not firing.

Another way would be to create a function that will aggregate load events, which
programmer Simon Willison did and posted on his blog at http://simonwillison.
net/2004/May/26/addLoadEvent/.

http://simonwillison.net/2004/May/26/addLoadEvent/
http://simonwillison.net/2004/May/26/addLoadEvent/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 97

function addLoadEvent(func) {
 var oldonload = window.onload;
 if (typeof window.onload != ‘function’) {
 window.onload = func;
 } else {
 window.onload = function() {
 if (oldonload) {
 oldonload();
 }
 func();
 }
 }
}

Willison’s code above allows multiple load events to be queued up in sequence
and fire in order. To test this, all that is needed is a simple document that links to
a JavaScript file that includes the addLoadEvent() function, with some additional
code:

// global variable (typically, avoid this)
var x = “- Default value.”;

// define first
function customFunction(){
 // add to the default value to the global var
 x += “\n- This is added to the string first.”;
}

// call first
addLoadEvent(customFunction);
addLoadEvent(function() {
 // add to the default + first to the global var
 x += “\n- This is added to the string second.”;
});
addLoadEvent(function(){
 // alert the string showing the calling order
 alert(x);
});

When the page loads, the browser shows the order in which the functions have
been called (Figure .).

Whatever page-loading strategy an organization picks should be consistent.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98 ADAPTING TO WEB STANDARDS

Execute on Page Load, or Event on
DOM Document Load
When a page has enough content and artwork combined with scripts, a tra-
ditional onload event handler delays the attaching of all scripts until the full
document and all its assets, including graphics, have all loaded—which can
introduce performance delays where it may appear to the user that nothing is
happening, because the scripts have not fired yet.

A better idea is to attach all the dynamic behavior once the XHTML has
loaded, because the document’s full DOM is what is needed, not all the
graphics. Some industrious developers have figured out ways to attach scripts
once the DOM has loaded (just the XHTML, which is much quicker than
loading the full page). Try searching online for “domcontentloaded” or “dom-
loaded” for more information.

This can be a major performance win, and is discussed in Appendix C.

Figure . With
the right scripting
techniques, multiple
onload events can be
executed.

Custom Scripts vs. Frameworks
Depending on the experience of the team, resources, and requirements of a Web
project, many different JavaScript options exist. Sometimes only basic scripts are
needed and these can be found easily online and extended; however, the team
should be exceptionally careful with these, because there are mountains of poorly

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 99

written JavaScript code online. Additionally, grabbing large volumes of code from
varied sources can be risky and result in

❖ Inconsistent quality and browser-compatibility issues

❖ “Frankenstein”-like sets of functions that use different techniques and styles or
repeat core functions unnecessarily

❖ Maintenance problems

❖ Conflicts in variable and function names

Based on the requirements of a project, there are also “frameworks” and “libraries”
of packaged code and modules, which include utility functions and objects
that can be used to save time. Most are free and supported by communities,
such as the Prototype framework (www.prototypejs.org) or the jQuery library
(http://jquery.com). Some, such as Dojo (http://dojotoolkit.org), have sponsor-
ships from a number of big companies, yet are still free to use.

A popular framework can be of value because it’s very likely to have a higher level
of quality due to the number of users who have contributed and who have been
debugging. However, there are issues to consider:

❖ Does the framework include code and features you don’t need? Is using a
framework like using a sledgehammer on a thumbtack?

❖ Is downloading a large library of code to the browser on every page a worth-
while expense, performance-wise?

❖ Is the development path of the framework active and evolving?

❖ Is there an active community that can help troubleshoot problems?

❖ Does the framework make any unexpected modifications to the core Java-
Script objects that might conflict with other code?

❖ Does the framework adhere to best practices?

❖ Will the team be able to agree or set policy on a framework, and not have
some members using one framework and others going off on their own? There
is a cost associated with inconsistency.

Whatever decision is made, particularly in a diverse organization with a large Web
presence, the choice should be weighed carefully and implemented in a con-
trolled and consistent manner. The whole issue is essentially a build vs. buy (or, in
this case, use someone else’s) consideration, just like any other software compo-
nents to be included in a project.

www.prototypejs.org
http://jquery.com
http://dojotoolkit.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

100 ADAPTING TO WEB STANDARDS

Example of jQuery Framework Code
For the purposes of this discussion, it makes sense to demonstrate the power
available in using a JavaScript framework. It can save time, enforce a level of con-
sistency across an organization, and eliminate browser-related bugs. It can also be
a timesaver when performing common DOM operations against code.

First, let’s look at an example of a fairly modern, unobtrusive page with some
scripts attached (Figure .). Here’s the HTML:

Figure . A JavaScript
page without a
framework.

<ul id=”test-one”>
 Item One
 Item Two
 Frameworks
 Item Four
 Item Five

<p class=”event-class”>Testing Events</p>

<table id=”test-two”>
<tr>
 <td>Cell One</td>
 <td>Cell Two</td>
 <td>Cell Three</td>
</tr>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 101

<tr>
 <td>Cell Four</td>
 <td>Cell Five</td>
 <td>Cell Six</td>
</tr>
<tr>
 <td>Cell Seven</td>
 <td>Cell Eight</td>
 <td>Cell Nine</td>
</tr>
<tr>
 <td>Cell Ten</td>
 <td>Cell Eleven</td>
 <td>Cell Twelve</td>
</tr>
</table>

Now let’s add some scripts, including an onload handler, a dynamically added
event handler, and some solid getElementsByClassName() action for good mea-
sure. The following script does a few small things:

❖ First, it finds links in a list and compares them against the current address to
highlight the “current” page link.

❖ Second, it attaches a click event to a paragraph with a certain class attached.

❖ Third, it takes a specific table and zebra-stripes it; that is, it makes every other
row a different color by adding a class to each one.

Looking over the code, it is nice and unobtrusive and fairly well structured for the
demonstration purposes:

// get elements by class name (low fidelity)
function getElementsByClassNameLF(tagName,aClass){
 var z = [];
 if (!document.getElementsByTagName) return z;
 var x = document.getElementsByTagName(tagName);
 for (var i = 0; i < x.length; i++){
 if (x[i].className == aClass) z.push(x[i]);
 }
 return z;
}

// first/last child
function findLink(id) {
 var els = document.getElementById(id).getElementsByTagName(“a”);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102 ADAPTING TO WEB STANDARDS

 var i = 0;
 while (i < els.length){
 if (document.location.href.indexOf(els[i].href) != -1){
 els[i].className += “ on”;
 }
 i++;
 }
}

// zebra stripes (every other)
function makeStripes(els){
 for (var i=els.length-1; i>=0; i--){
 if (i % 2 == 0){
 els[i].className += “ even”;
 }
 }
}

window.onload = function(){
 var tab = document.getElementById(“test-two”);
 var x = tab.getElementsByTagName(“tr”);
 makeStripes(x);
 findLink(“test-one”);
 var ev = getElementsByClassNameLF(“p”,”event-class”);
 ev[0].onclick = function(){
 alert(“event added”);
 }
}

It would, however, take some time to put the code together and verify that it is all
working as intended, as it includes loops and arrays and so forth.

Now, the same document’s JavaScript code can be rewritten using the jQuery
library framework (Figure .), which has a pleasantly succinct syntax that’s easy
to pick up by coders and noncoders alike. One appeal of the jQuery framework is
its reliance on CSS selectors to locate DOM nodes in the document, which typi-
cally requires a complex set of operations using the W3C DOM code. Note how
much simpler the above code is, refactored using jQuery:

$(document).ready(function(){
 $(‘#test-two tr:even’).addClass(‘even’);

 $(‘#test-one a’).each(function(){
 if (document.location.href.indexOf(this.href) != -1) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 103

 $(this).addClass(‘on’);
 }
 });

 $(‘p.event-class’).click(function(){
 alert(‘event added’);
 });
})

It doesn’t take a JavaScript expert to notice how much more concise this code is,
compared to the dozens of lines of code in the other version. It can take four long
functions and distill them down to three easy statements.

What makes it so brief? The code uses the jQuery functions and syntax, which
abstracts the heavy lifting. What’s not seen above is there is also a 20KB file down-
loaded with that brief script, whereas in the first example, all that was shown was
all that was required.

But the code to do the work is much simpler: Where in the original the
 getElementsByClassName() function involved getting a reference to an array,
looping through all the items, and applying a click with a function reference, the
jQuery version simply does this:

$(‘p.event-class’).click(function(){
 alert(‘event added’);
});

Figure . The same
page as illustrated in
Figure 3.7, now using the
jQuery framework—looks
the same on the front
end, but the performance
is significantly improved
and the amount of code
is significantly decreased.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104 ADAPTING TO WEB STANDARDS

The power is in the exceptional $() function that takes all sorts of different selec-
tor references, such as #test-two tr:even, to retrieve every other row of a table.
There is a reference online (http://docs.jquery.com) that shows all the different
types of selectors that jQuery accepts. It supports CSS 1-3, XPath style selectors,
and a number of custom ones.

Frameworks Make Ajax Easy
One benefit many are finding with JavaScript frameworks is that most of them
make creation of Ajax code stunningly easy. For instance, using Ajax with jQuery
is quite simple.

Imagine a simple HTML document that links to the jQuery library (Figure .):

Figure . A sample
document with a link
that executes some
Ajax using jQuery.

<h1>Frameworks - With Ajax</h1>

<p>
This contains
a link
which will call a page from remote and load it into the page
without a refresh.
</p>

Now, link a simple script that unobtrusively adds a <div> element into which con-
tent can be loaded. The <div> is being added by the script because if the script
did not run, the <div> would be meaningless.

$(document).ready(function(){
 $(‘body’).append(‘<div id=”ajax-div”></div>’);
})

http://docs.jquery.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Integrating the Behavior Layer 105

Then, wire up an onclick for the link in the paragraph. The actual link’s href
attribute will be used, so that if the script fails for some reason, the browser will
still take and use the link value.

$(document).ready(function(){
 $(‘body’).append(‘<div id=”ajax-div”></div>’);
 $(‘p a’).click(function(e){
 var x = $(this).attr(‘href’);
 });
})

Now, so far none of this is even technically Ajax, unless DOM manipulation and
event handlers are added to the more broad definition. The actual Ajax in jQuery
is the following line of code:

$(‘#ajax-div’).load(x);

Which says, simply, load x into the <div> with the ID of #ajax-div (Figure .).
It doesn’t get much easier than that. So, the final script, with an additional line
of code that prevents the user, who just clicked the link, from being sent to the
other page, is:

$(document).ready(function(){
 $(‘body’).append(‘<div id=”ajax-div”></div>’);
 $(‘p a’).click(function(e){
 var x = $(this).attr(‘href’);
 $(‘#ajax-div’).load(x);
 e.preventDefault();
 });
})

jQuery also includes methods that perform HTTP get and post operations,
complete with error handlers and callback functions. Frameworks can be real
timesavers.

Figure . A
framework can make
Ajax easy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106 ADAPTING TO WEB STANDARDS

Frameworks in a Nutshell
The bottom line is that the decision to use a framework should be a reasoned and
thought-out decision, just like any other software choice. Frameworks are writ-
ten by people, and despite the large numbers of testers and contributors, bugs do
surface and they are difficult to troubleshoot due to the complex nature of their
code bases. There are frequently workarounds, however, due to the vast number
of ways the same tasks can be accomplished with these powerful tools. There are
pros and cons, and sometimes the con of a large code base for a few simple effects
is just not worth the extra bandwidth and downloads. Again, it is best to make a
reasoned decision.

It’s obvious that modern JavaScript programming has come a long way from the
simple tricks and copy-paste scripts of the 1990s. Today’s Web sites are being
built with a keen attention to separation of content from presentation, and this
separation is hobbled if the behavior layer of JavaScript is intermingled with the
other front-end code. Scripts are becoming more mature, including Ajax and W3C
DOM-based code as opposed to proprietary browser-specific code. Code can be
isolated and reused in external files and even cleaned up using an independently
tested and constantly evolving JavaScript framework.

In the end, however, a Web team should weigh the advantages of a scripting
framework against its own site’s and team’s needs. This will determine the best
approach—the one the team should stick with to avoid the inconsistencies of
days past.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4
Developing Web
Software Applications

Professional Web teams build Web sites not only to serve static content

but also to serve dynamic applications and sites from Content Manage-

ment Systems (CMS). These should employ user interface (UI)-layer code,

further subdivided into markup, CSS, and JavaScript. The importance

of this is magnified the larger the Web site or the longer the duration

between major site overhauls. Why not reduce dependence on backend

programmers or CMS experts, when the UI coders could largely manage

UI changes themselves?

 Add the challenge of integration with third parties and older and

newer Web properties from across a Web enterprise, and you’ll see there

are endless aspects that can benefit from Web standards. In fact, anything

within end-user interface has code that should be implemented using

Web standards-based techniques.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110 ADAPTING TO WEB STANDARDS

Web Apps Stuck in the Past
Many Web application developers learned HTML in the 1990s and haven’t
updated their coding techniques to incorporate lessons learned since then. It can
be an interesting experience to share new levels of separation and strict adher-
ence to a standard or specification with an application developer who’s grown
tired of the tag soup of yesteryear. Modern standards-based approaches are much
cleaner, more efficient and logical, and tend to appeal to software engineers’
sense of “either it works or it doesn’t”—often reviving their interest in front-end
development.

By definition, standards-compliant Web sites strive for strict adherence wherever
possible. When Web-based software intersects with or even produces UI layer
code, the same levels of discipline should be expected. This benefits the site and
the application in the long run by reducing the risks that come with a number of
software modifications. Web standards-based approaches increase compatibility
and accessibility, and reduce resources and efforts required to change the UI of
the application or the static portions of a site alike.

The problem is that there is a huge amount of archaic, undisciplined, or just
downright old-school code being implemented where Web software is concerned.
We need to take a comprehensive look at custom-developed, in-house software
and commercial product implementations to evaluate how and when sites’ soft-
ware can benefit from Web standards.

Software Quality and Inventory Analysis
In order to determine the nature of the situation, each and every piece of Web
software employed in a project should be inventoried, cataloged, and evaluated
for compliance (or noncompliance) with Web standards.

Web Application Development Problems
From a Web standards perspective, the trouble usually surfaces where the
application developers need to create their UI layer—in the areas of mainte-
nance, redesigns, subtle design tweaks, and of course accessibility and browser
compatibility.

Typically, a Web programmer is either dropping code into templates provided by
a design team or attempting to match a look and feel demonstrated in static rep-
resentations of their application. There are also software packages that generate
UI code with different levels of customization available. And, of course, applica-
tion programmers writing their own front-end code will achieve varying degrees
of standards compliance—some are quite successful and adept; others are not.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 111

A multifaceted problem, of course, but the point is that application frameworks,
education materials, generated code, and tools are seriously lacking in best-prac-
tices demonstrations. Many developers rely on some form of integrated devel-
opment environment (IDE), code libraries, or copied code that may or may not
follow any sort of best practices.

The results are backend code that produces ugly markup with inline presenta-
tion, table-based layouts, extra unnecessary markup, and front-end scripts that
conflict, are browser specific, or don’t take into account other front-end scripts.
Design changes become a real problem—and they don’t need to be.

The UI layer is either generated by human effort or it’s generated by software
(with little effort) and blindly accepted by humans.

But how much effort? Since today’s application engineers, server platforms, and
tools don’t typically create standards-based front-end code by default, the quality
is all over the board. It takes a certain amount of effort to achieve standards-com-
pliance on the front end of applications and content management. By establishing
a set of best practices for the UI code in server-side software applications, we have
something against which software can be evaluated for improvement.

It’s important to acknowledge that there is a real tradeoff between solving a
problem that will eliminate issues later and simply trying to get the product out
the door. Striving for Web standards-based UIs will, in the long run, reduce risk by
pulling apart the layers of application logic, presentation, and UI. However, some-
times it takes time to get there.

Evaluation Criteria
For each document within an application, a series of questions or evaluation
criteria should be considered:

❖ Where does the UI layer come from?

❖ How is the front-end code structured?

❖ Does it use valid HTML or XHTML?

❖ Is there a DOCTYPE declaration and is the document rendered in standards or
quirks mode?

❖ How are presentation aspects declared?

❖ Do the application developers understand the UI code?

❖ Do the UI programmers understand the backend code?

❖ How many staff members understand how the UI and the backend are
integrated?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112 ADAPTING TO WEB STANDARDS

❖ How is markup generated?

❖ Does the software reference any current presentation code, such as CSS files? If
so, which files? Are those files changing in a redesign?

❖ How tied to the backend business logic, if at all, is the front-end code?

❖ Is there any way to abstract the UI code from application code?

❖ If the application generates front-end code, is there any way to control how?

❖ If users have the ability to generate content or code, is there a way to lock
down what they can do?

❖ What is the level of effort involved in UI layer modifications?

❖ What is the risk to the application of UI layer modifications?

❖ What are the potential hazards or drawbacks of not redesigning the
application?

❖ What are the limitations of how third-party software may need to be
customized?

Clearly, there is an enormous amount of information to be collected, evaluated,
and weighed.

Can Applications Be Updated?
In the end, aspects of some software may be beyond help. There may simply be
no way to bring them up to date with the latest Web standards front-end code,
either due to architectural issues or unacceptable risk. In these cases, the efforts
become an exercise in compromise. Either there needs to be a long-term plan
to resolve the issues or both the users and the business will just have to suffer
through painful update processes.

This is essentially a tradeoff between short-term effort and risk, and long-term
effort and risk. Some partial solutions include either an implementation of some
styles (even extracts from or specific CSS files) or a superficial re-creation of the
look and feel for a given application. In the long run, though, the organization
suffers because it will become more difficult to apply changes to applications that
become special cases and need to be evaluated every time a change is made. The
critical turning point varies by organization.

Guidelines, Rules, and Web Standards
An organization’s Web applications can benefit from establishing standards,
coding guidelines, and interaction points and references for the way the UI code
should be written and styled.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 113

Rules To Code By
These are coding-quality and consistency standards much like those frequently
placed on application developers; however, they now extend to their front-end
code, which may be a new thing.

❖ Any UI code should be built following basic Web standards-based best prac-
tices involving the use of POSH, CSS, and unobtrusive JavaScript (as described
in Chapters 1, 2, and 3 respectively).

❖ Browser independence, accessibility, and graceful degradation are key.

❖ Programs should reference UI CSS classes and IDs by pulling them from
deep within application logic to reachable points in the code, so that making
changes to the presentation information poses minimal risk to the application.
These CSS classes and IDs might be superficial properties of object classes,
stored in configuration files, or application-level variables, so they can easily be
changed later.

❖ Avoid inline presentation styles or attributes at all costs.

❖ Collaborate on JavaScript applications with front-end coders to share scripts as
much as possible and avoid conflicts.

❖ Distill the applications to the most simple and semantic markup possible.

❖ Create basic, standard CSS rules for forms so that when new ones are added,
they can have CSS applied without effort.

By following these guidelines and adopting clean, separated, Web standards-based
code, you will ensure that applications and business-critical software won’t need
significant or risky modifications when a redesign is required.

Unfortunately, these sorts of guidelines can only go so far with software pack-
ages, tool kits, and code generated by IDEs or WYSIWYG editors. These tools let
authors go only so far to remove inline presentation settings, push the settings
into CSS classes, and so on. It may take some effort to examine alternative settings
or experiment with one feature over another to get the tools to do what needs to
be done. However, there are often simple steps to decouple application logic from
backend code.

Better Forms with Modern Markup
Most Web-based applications include some variety of forms. It is not uncommon
for Web authors to use an HTML table to obtain a nice layout for these forms.

While there is nothing inherently wrong with this practice, tables are for tabular
data. Here there is no tabular data and no reason for the table. There are also

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114 ADAPTING TO WEB STANDARDS

presentational attributes such as bgcolor, align, and width, and no accessibility
gains from any modern Web standards-based approaches. Additionally, often this
form will include some server-side code to populate the values of the form (more
on that later).

For example, here is a table being used to display a very simple data form
(Figure .):

Figure . Forms are
typically coded using
HTML tables and
presentational markup.

<p>Please complete the following form:</p>
<p>User Information</p>
<form action=”submit.php” method=”post”>
<table width=”300” border=”0”>
<tr>
 <td bgcolor=”#cccccc” width=”30%” align=”right”>First Name:</td>
 <td><input type=”text” name=”txtFName” size=”30” /></td>
</tr>
<tr>
 <td bgcolor=”#cccccc” align=”right”>Last Name:</td>
 <td><input type=”text” name=”txtLName” size=”30” /></td>
</tr>
<tr>
 <td bgcolor=”#cccccc” align=”right”>Title:</td>
 <td><input type=”text” name=”txtTitle” size=”30” /></td>
</tr>
<tr>
 <td colspan=”2”><input type=”submit” value=”Go” /></td>
</tr>
</table>
</form>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 115

Consider a newer version of code for essentially the same form (Figure .):

<p>Please complete the following form:</p>

<form action=”submit.php” method=”post”>
<div id=”formBlock”>
 <fieldset>
 <legend>User Information</legend>
 <p>
 <label for=”txtFName”>First Name:</label>
 <input type=”text” id=”txtFName” tabindex=”1” />
 </p>
 <p>
 <label for=”txtLName”>Last Name:</label>
 <input type=”text” id=”txtLName” tabindex=”2” />
 </p>
 <p>
 <label for=”txtFName”>Title:</label>
 <input type=”text” id=”txtTitle” tabindex=”3” />
 </p>
 <p><input type=”submit” value=”Go” tabindex=”4” /></p>
 </fieldset>
</div>
</form>

Figure . Modern
markup makes it very easy
to code simple forms.

The above can be paired with the following CSS, which could be applied to every
form on a site to make them all follow the same setup. While this might seem like
extra code, setting up a consistent way that forms are to be marked and styled,
external to the program, is a huge benefit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116 ADAPTING TO WEB STANDARDS

h1 {
 margin: 0;
 font-weight: normal;
 font-size: 15px;
}
#formBlock {
 width: 300px;
}
#formBlock p {
 margin: 0 0 3px;
}
p {
 width: 100%;
}
label {
 background-color: #ccc;
 display: block;
 float: left;
 width: 28%;
 text-align: right;
 margin-right: 2px;
 padding: 2px 0;
}
input {
 float: left;
 width: 65%;
 margin-bottom: 4px;
 margin-top: 1px;
 padding: 1px;
}
input[type=submit] {
 width: 10%;
}
fieldset {
 border: none;
 padding: 0;
 margin: 0;
}
legend {
 font-weight: bold;
 margin-bottom: 12px;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 117

Looking at the new XHTML standards-based approach reveals several fundamen-
tal enhancements over forms created without a semantic approach:

❖ There is no longer a meaningless HTML table required for the markup of the
form.

❖ The form now features <label> elements that associate the text label with the
actual form control—a great accessibility and, in general, user-centric feature
supported by most browsers.

❖ A tabindex is applied, to facilitate a tabbing order and increased keyboard
accessibility.

❖ The form is grouped into a <fieldset> and labeled with a <legend>, which
groups and explains the form for greater accessibility.

❖ Because it is a much cleaner piece of code, the form itself, which is bound to
be tweaked by the application developers, is much easier to read and modify.

Server-Side Frameworks and Template Tools
Several Web scripting technologies have been around for some time, includ-
ing PHP (PHP: Hypertext Preprocessor), Classic ASP (Active Server Pages), and
Adobe (formerly Macromedia) ColdFusion, to name a few popular ones. These
language platforms for server-side tasks have models that put front-end alongside
backend code in the same files. On one line, authors will see programming logic
inside technologies delimiters (examples include <%...%> and the like), and then
the following line will have standard HTML. Additionally, the server-side code
will use print statements to output HTML, oftentimes with inline presentation
information.

There are also frameworks and coding techniques—such as the ColdFusion
Fusebox (fusebox.org) framework and the PHP Smarty templating system (http://
smarty.php.net)—that modularize these layers, attempting to pull the logic and
front end apart, creating template files that include front-end code while the
backend code is in different sets of files. In reality, the results are often mixed,
because the bottom line is that the server-side code still must output a UI.

The question in the end is this: What is the quality of the markup for the UI even
with it separated from business logic? All the application software tiers in the
world will not help if the basic HTML code violates best practices or resides in files
that the UI developers can’t control or wade through.

http://smarty.php.net
http://smarty.php.net
http://lib.ommolketab.ir
http//lib.ommolketab.ir

118 ADAPTING TO WEB STANDARDS

Simple Steps to Better Server-Side Scripts
All frameworks or templating systems aside, some simple steps can be taken to
limit the potential damage even with a barebones PHP or similar environment.
In the most basic sense, any application data output or UI code being generated
would be subject to the same rules that pertain to UI code that has nothing to
do with databases. The only difference is that such code is simply generated, as
opposed to coded by hand.

It should be noted that the challenges involved in producing clean separation of
server-side business logic and presentation layers are not unique to PHP, as most
server-side languages depend on good programming practices and discipline. PHP,
“Classic ASP,” and ColdFusion in particular share the characteristics of the applica-
tion logic frequently being embedded into the same files as the front end.

<?php
// Printing results out
echo “<table border=\”1\” width=\”400\”>”;
while ($row = mysql_fetch_assoc($result)) {
 echo “<tr valign=\”top\”>”;
 echo “<td bgcolor=\”#ffffcc\”>$row[‘username’]</td>”;
 echo “<td>$row[‘firstname’]</td>”;
 echo “<td>$row[‘lastname’]</td>”;
 echo “<td>$row[‘notes’]</td>”;
 echo “</tr>”;
}
echo “</table>”;
?>

The preceding code does a simple thing in PHP: It iterates through rows in a data
set returned from a database query. Most scripting languages like this have similar
techniques for outputting database results with looping structures. Obviously this
is a small and simple example, but it could be buried inside other looping struc-
tures or complex business logic.

There are drawbacks to the above PHP (and to other similar server-side code):

❖ Inline presentation elements are buried inside of the looping iteration.

❖ Design changes require changes to the application. A programmer may need
to be involved, instead of having it be a CSS change external to the application.

❖ Any time there needs to be a change to the way the table looks, a programmer
must locate the presentation code and make the modification directly inline
inside the application logic.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 119

❖ The presentation attributes are escaped because of the quoted attributes in
HTML, making the code difficult to manage.

❖ The presentation aspects must be applied manually to every table on the site.

While simple, this example demonstrates intermingling of code with presentation
attributes. Imagine that the results were in nested tables just to create borders
and menus, and there were different presentation attributes per column… the
code would begin to get quite hairy. A cleaner alternative is:

<style type=”text/css”>
#results {
 border: 1px solid #000;
 width: 400px;
}
#results td {
 border: 1px inset #000;
 vertical-align: top;
}
td.username {
 background-color: #ffc;
}
td.notes {
 color: gray;
}
</style>
<?php
echo “<table id=\”results\”>”;
while ($row = mysql_fetch_assoc($result)) {
 echo “<tr>”;
 echo “<td class=\”username\”>$row[‘username’]</td>”;
 echo “<td>$row[‘firstname’]</td>”;
 echo “<td>$row[‘lastname’]</td>”;
 echo “<td class=\”notes\”>$row[‘notes’]</td>”;
 echo “</tr>”;
}
echo “</table>”;
?>

While this shows only the CSS in a <style> block for convenience, it demon-
strates that to change the look of the table and the alignment of the table cell
content or font settings, not a single line of PHP would need to be touched. A
rudimentary example, to be sure, but the point is clear: The more complex the
business logic, the more benefit to the application logic in not having inline pre-
sentation information.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120 ADAPTING TO WEB STANDARDS

NOTE

In the table above, the ideal solution would also include a row with <th> ele-
ment table headers to label the columns. This is an added accessibility benefit,
as well as more semantic. If the design does not call for the headers to be
displayed, they can be hidden with some creative CSS, while still making them
available to assistive technologies.

The Problem
The benefit of technologies such as PHP or even Classic ASP is that the Web pro-
grammer has full control over the UI code being produced—an advantage that
shouldn’t be undervalued. Upkeep and maintenance of an application’s user inter-
face can get difficult in a team environment, where it is possible that the UI code
was not written by the programmer. In these cases, communication and simple
iterations of review are critical. Obviously, these are business procedures as
opposed to a coding technique, but these critical processes often do not happen.

The problem is, in today’s world there are many newer products and technolo-
gies gaining wide acceptance, which make reviews and UI development involve-
ment in the backend phases harder than ever. For complex business applications,
scripting languages like those discussed so far have fallen out of favor in some
circles because the framework itself doesn’t impose layered application architec-
tures. The onus is on the programmers to follow structured design patterns that
enforce good programming practices. Older tools such as PHP and ColdFusion
were often more accessible to UI designers or developers than some of the newer
technologies.

The fundamental problem remains, or has even gotten worse, in most new server-
side coding environments. It can apply whether it is inline server-side scripting
such as PHP or Classic ASP, or now ASP.NET, which has a layered approach that
attempts to separate business logic and backend code. It can also come up where
XSLT is being used to generate XHTML or HTML from XML.

So, what is this fundamental problem? While the software engineers were build-
ing with more mature and tiered backend to front-end environments such as Java,
ASP.NET, or XML/XSLT, the front-end designers and developers don’t know the
front-end portions of these software environments—and frequently never will.

Typically the front-end portions of these software platforms just output the same
bad legacy nonstandard code for the front end that they always have. The chal-
lenge is in pushing Web standards into the front end of these applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 121

Beware Server-Generated Code
Some more modern application environments have features designed to help
remove the “burden” of generating HTML or other UI code from the application
developers’ plate. The concept is that HTML (or XHTML) can be easily abstracted
and then dynamically generated by commands passed into the programming
language of the tool kit. These are usually properties assigned to data sets being
returned from database queries, or other similar structures that control the
dynamic output.

The problem with this is that both the design and the ultimate code that is out-
putted are largely at the mercy of the writers of the software framework that
abstracts and generates the code. Success also depends on the level of effort put
in by the programmer to exploit whatever UI features are available. Different
frameworks have different levels of quality. Authors will need to “view-source”
and actually observe how the markup code is structured when it is output as
opposed to just how it looks, because the markup is dynamically generated.

Nothing can replace the human element in most cases. It just takes that extra
step of seeing what the code is doing and figuring out how to mold it. Sometimes
there are things that can be done; sometimes there aren’t. Having made it this
far into this book, it should be obvious that getting the front end standards-
 compliant can be a significant benefit.

Microsoft ASP.NET Framework
One framework that has gained massive adoption, particularly in large commer-
cial enterprises, is Microsoft’s critically acclaimed ASP.NET framework (the succes-
sor to “Classic” ASP). The .NET foundation classes, objects, and APIs are powerful.

ASP.NET enforces, by its model, layers of code that abstract database and program
logic to a degree from “front end” files with the ASPX extension. These files are
HTML and custom ASP.NET tags, which will be discussed later. In theory, UI cod-
ers learn these tags to control the front end with hooks for the programmers to
use. This is certainly a possibility, but in reality is rarely done. The Web team would
need to make a conscious decision to educate the UI team and collaborate on
these efforts, and the UI team would have to be willing to learn. It could happen.

Typically, ASP.NET Web applications are created in an IDE called Microsoft Visual
Studio.NET. This IDE has a WYSIWYG window that complements the program-
ming view and allows programmers to rapidly drag form objects onto pages and
set properties, including presentation attributes, without writing a line of code.
These settings generate HTML.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122 ADAPTING TO WEB STANDARDS

Not That We’re Picking on ASP.NET
In fact, quite the contrary. The following examples demonstrate the power
and versatility of ASP.NET and similar application platforms in the hands of
someone who knows how to nudge the software to produce Web standards-
based code. Many such frameworks exist and most offer ways to tweak the
front-end output, but it takes that extra effort to get it there and locate the
features that help generate high-quality front-end code.

Platform to platform, the concepts are very much the same. The point is,
a little extra effort, taking the time to understand what is being output other
than “does it look right superficially,” allows users, your business, and everyone
to win. Application developers get pretty wound up in making their software
work and often don’t take those last steps. Of course, exceptions exist, but
this section isn’t targeted at those individuals.

From a Web standards standpoint, there are several issues that can be of concern
with Visual Studio.NET, particularly versions earlier than 2005, and ASP.NET’s
server-generated code:

❖ Most ASP.NET examples, which everyone learns from, feature bad code.

❖ Visual Studio.NET 2003 and earlier was notorious for (when a programmer
entered this design mode) rewriting and reformatting the HTML of the page in
question, even if it was created and carefully crafted in another application or
plain text editor by a UI coder.

❖ Form inputs and data controls can be ASP.NET “tags,” which frequently have
presentation attributes applied to them. The code output is often not valid
XHTML or HTML code, although in version 2005 this situation improved
greatly. These tag attributes output a massive amount of inline presentational
attributes if the author does not make the extra effort to control the output.

❖ In versions 2003 and earlier, when an author uses the built-in tools to create a
page, it creates HTML pages in quirks mode, because the DOCTYPE declara-
tion applied to the document does not include a URI.

❖ ASP.NET features “adaptive rendering,” which means the server makes deci-
sions about what type of UI layer code to send to the Web browser based on
server-side settings that “guess” the level of support a browser has for certain
technologies.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 123

❖ ASP.NET’s server-side code makes great use of ID attributes on the controls
embedded in the page code. Frequently, depending on the context, these IDs
are dynamically renamed based on their location in the document, so CSS
and JavaScript authors may have difficulty referencing page objects by their
IDs even though that is the open, internationally recognized, standards-based
way of doing things. In some cases a CSS class might be more appropriate, or
trying to apply the required ID to a parent element and referencing the object
by context. Ideally, front-end designers and backend programmers will collabo-
rate on setting UI IDs in the best way to leverage the strengths of both front-
end code and backend code—but this is not always the case.

It is interesting to note, however, that even these concerns can be mitigated with
some extra effort, time, and attention to the front-end aspects of the code.

TIP

One way to cope with “adaptive rendering” is to set the ClientTarget settings to
“Uplevel,” so ASP.NET will stop assuming the only browser with any advanced
features is Internet Explorer and will send advanced code to everyone. However,
this can open up trouble with regard to some features, particularly ASP.NET 1.1
JavaScript features, which might only be supported by IE because Microsoft
wrote browser-specific code in some places. Be aware, and carefully test before
deploying ASP.NET solutions. Further, these features changed slightly in ASP.NET
2.0—another reason to test early and often.

Big Improvements in ASP.NET .
In both ASP.NET 2.0 and Visual Studio.NET 2005, Microsoft made strong
commitments to make the generated code both more standards-compliant
and more accessible. Another improvement is that the new version of the IDE
rewrites much less code when in design view.

The controls and form code generated automatically by Visual Studio.NET
and the ASP.NET framework are generally XHTML Transitional-compliant by
the strict nature of the specification. However, the programmer must still go
to the extra effort of avoiding inline presentation attributes and making code
more accessible. In some cases there are better controls to use than others,
offering more flexibility in the code being output. The options to do this
improved in ASP.NET 2.0.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124 ADAPTING TO WEB STANDARDS

ASP.NET Data Output
Like other languages, ASP.NET features database output; however, one way
Microsoft implements this is through its server-side tags. These tags all have
presentation-related attributes that allow the programmer to control the XHTML
presentation aspects of the output. Here is a typical sample of controls using
an ASP.NET feature called a DataGrid control to output a table of items from a
database. This code is embedded in an ASPX file surrounded by the rest of the
document’s (X)HTML (Figure .).

Figure . An ASP.
NET DataGrid control
displaying data.

<asp:DataGrid ID=”catalog” runat=”server” AutoGenerateColumns=”false”
 CellPadding=”2” Width=”600” BorderColor=”black”>
 <ItemStyle Font-Names=”Arial” Font-Size=”12px”
 ForeColor=”#800000” VerticalAlign=”top” />
 <AlternatingItemStyle Font-Names=”Arial” Font-Size=”12px”
 ForeColor=”#400000” BackColor=”#cccccc” />
 <HeaderStyle Font-Bold=”true” Font-Names=”Arial” Font-Size=”15px”
 ForeColor=”white” BackColor=”black” VerticalAlign=”top” />
 <Columns>
 <asp:BoundColumn DataField=”Name” HeaderText=”Name” />
 <asp:BoundColumn DataField=”abbr” HeaderText=”Common Name” />
 <asp:BoundColumn DataField=”typeof” HeaderText=”Tech Type” />
 <asp:BoundColumn DataField=”notes” HeaderText=”Notes” />
 </Columns>
</asp:DataGrid>

This describes a data output table including alternating row colors. The attributes
that describe the look and feel of the table are just some of the options that are

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 125

available; the options are in fact extensive. The source of the data coming back is
in another layer of code, an ASP.NET feature for separating data and presentation,
which is, in theory a great idea. Here is the code the above sample generates:

<table cellspacing=”0” cellpadding=”2” rules=”all” border=”1”
id=”catalog” style=”border-color:Black;width:600px;border-collapse:
collapse;”>
 <tr valign=”top” style=”color:White;background-color:Black;
font-family:Arial;font-size:15px;font-weight:bold;”>
 <td>Name</td><td>Common Name</td><td>Tech Type</td><td>Notes
</td>
 </tr><tr valign=”top” style=”color:Maroon;font-family:Arial;
font-size:12px;”>
 <td>HyperText Markup Language</td><td>HTML</td><td>Markup
</td><td>Used to markup documents. Loose syntax.</td>
 </tr><tr valign=”top” style=”color:#400000;background-
color:#CCCCCC;font-family:Arial;font-size:12px;”>
 <td>eXtensible HyperText Markup Language</td><td>XHTML
</td><td>Markup</td><td>HTML as an XML syntax, XML-like strict
rules.</td>
 </tr><tr valign=”top” style=”color:Maroon;font-family:Arial;
font-size:12px;”>
 <td>Cascading Style Sheets</td><td>CSS</td><td>Presentation
</td><td>Separates design, look and feel information into separate
documents from the markup.</td>
 </tr><tr valign=”top” style=”color:#400000;background-
color:#CCCCCC;font-family:Arial;font-size:12px;”>
 <td>JavaScript</td><td>JS</td><td>Behavior, Interaction, Events
</td><td>Sometimes called the behavior layer, this controls user
interaction, events, and behavior of Web pages.</td>
 </tr>
</table>

The table is simple, with alternating colors and font family settings, and nicely
uses CSS as opposed to tags. However, this is a common sample of the
code used in tutorials in describing DataGrid use. The CSS gets repeated inline
within the generated code due to the use of the ASP.NET tagging attributes such
as ForeColor, BackColor, and others. Additionally, the top row of content, which
is intended to be a header row, is simply contained in <td> elements and is set as
bold.

It is a shame, because ASP.NET does in fact feature the ability to assign CSS classes
for most of these values, and in ASP.NET 2.0 there are features to generate <th>
elements for headers. The CssClass attribute is available for most tags and there

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126 ADAPTING TO WEB STANDARDS

are others that allow classes to be assigned to tags in many scenarios. Note the
UseAccessibleHeader attribute of the <DataGrid> element used below. It’s too
bad that programmers have to go out of their way to intentionally make the code
accessible, but that is the nature of the beast—and it’s fortunate the features are
there in ASP.NET 2.0.

Here are the small adjustments that can be made to the ASP.NET code to improve
the quality of the output:

<asp:DataGrid ID=”catalog” runat=”server” AutoGenerateColumns=”false”
 CssClass=”grid-class” UseAccessibleHeader=”true”>
 <ItemStyle CssClass=”item” />
 <AlternatingItemStyle CssClass=”item-alt” />
 <HeaderStyle CssClass=”item-header” />
 <Columns>
 <asp:BoundColumn DataField=”Name” HeaderText=”Name” />
 <asp:BoundColumn DataField=”abbr” HeaderText=”Common Name” />
 <asp:BoundColumn DataField=”typeof” HeaderText=”Tech Type” />
 <asp:BoundColumn DataField=”notes” HeaderText=”Notes” />
 </Columns>
</asp:DataGrid>

Pair the above code with CSS such as

.grid-class {
 border: 1px solid black;
 width: 600px;
 border-collapse:collapse;
}
.grid-class td {
 vertical-align: top;
 padding: 2px;
 border: 1px solid black;
}
.item {
 font: 12px arial, sans-serif;
 color: #800;
}
th {
 font: bold 15px arial, sans-serif;
 background-color: black;
 color: white;
 vertical-align: top;
 text-align: left;
 padding: 2px;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 127

.item-alt {
 font: normal 12px arial, sans-serif;
 background-color: #ccc;
}

In this case, the HTML table looks identical with a better, more Web standards
approach to the same code. Here is the new XHTML output (Figure .):

<table class=”grid-class” cellspacing=”0” rules=”all” border=”1”
id=”catalog” style=”border-collapse:collapse;”>
 <tr class=”item-header”>
 <th scope=”col”>Name</th><th scope=”col”>Common Name</th>
<th scope=”col”>Tech Type</th><th scope=”col”>Notes</th>
 </tr><tr class=”item”>
 <td>HyperText Markup Language</td><td>HTML</td><td>Markup
</td><td>Used to markup documents. Loose syntax.</td>
 </tr><tr class=”item-alt”>
 <td>eXtensible HyperText Markup Language</td><td>XHTML
</td><td>Markup</td><td>HTML as an XML syntax, XML-like strict
rules.</td>
 </tr><tr class=”item”>
 <td>Cascading Style Sheets</td><td>CSS</td><td>Presentation
</td><td>Separates design, look and feel information into separate
documents from the markup.</td>
 </tr><tr class=”item-alt”>
 <td>JavaScript</td><td>JS</td><td>Behavior, Interaction,
Events</td><td>Sometimes called the behavior layer, this controls
user interaction, events, and behavior of Web pages.</td>
 </tr>
</table>

Figure . The same
ASP.NET <DataGrid>,
with standards-based
enhancements, looks
the same.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

128 ADAPTING TO WEB STANDARDS

Note the addition of the <th> tags (complete with a scope attribute), CSS classes
on most elements including the alternating rows of color, and lack of (most) inline
presentation. While the code is not perfect, it is a great improvement, with a small
technique to improve the output. This sort of improvement requires front-end
coders with knowledge of the backend, or backend programmers who know the
front end.

There are a dozen or more options for tags to output ASP.NET database code.
Sometimes, another tag altogether might be a better option because there is
more control over what UI code is being produced. For instance, a Repeater
control is a great choice for simple data output, as it defines an output loop with
small templates of code an author can specifically set as she or he sees fit:

<asp:Repeater id=”catalog” runat=”server”>
<HeaderTemplate>
<table class=”grid-class”>
<tr>
 <th>Name</th>
 <th>Common Name</th>
 <th>Tech Type</th>
 <th>Notes</th>
</tr>
</HeaderTemplate>

<ItemTemplate>
<tr class=”item”>
 <td><%#Container.DataItem(“name”)%> </td>
 <td><%#Container.DataItem(“abbr”)%> </td>
 <td><%#Container.DataItem(“typeof”)%> </td>
 <td><%#Container.DataItem(“notes”)%> </td>
</tr>
</ItemTemplate>

<AlternatingItemTemplate>
<tr class=”item-alt”>
 <td><%#Container.DataItem(“name”)%> </td>
 <td><%#Container.DataItem(“abbr”)%> </td>
 <td><%#Container.DataItem(“typeof”)%> </td>
 <td><%#Container.DataItem(“notes”)%> </td>
</tr>
</AlternatingItemTemplate>

<FooterTemplate>
</table>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 129

</FooterTemplate>
</asp:Repeater>

The above code generates an HTML table as follows, and, paired with the same
CSS as in the first example, is fairly clean, and free of even more unnecessary inline
presentation attributes. While it is a little more code in terms of the Repeater
tags, it does give more control of the output (Figure 4.5).

Figure . Using an
ASP.NET Repeater
control to render the
same table with leaner
code, while still looking
the same.

<table class=”grid-class”>
<tr>
 <th>Name</th>
 <th>Common Name</th>
 <th>Tech Type</th>
 <th>Notes</th>
</tr>
<tr class=”item”>
 <td>HyperText Markup Language </td>
 <td>HTML </td>
 <td>Markup </td>
 <td>Used to markup documents. Loose syntax. </td>
</tr>
<tr class=”item-alt”>
 <td>eXtensible HyperText Markup Language </td>
 <td>XHTML </td>
 <td>Markup </td>
 <td>HTML as an XML syntax, XML-like strict rules. </td>
</tr>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130 ADAPTING TO WEB STANDARDS

<tr class=”item”>
 <td>Cascading Style Sheets </td>
 <td>CSS </td>
 <td>Presentation </td>
 <td>Separates design, look and feel information
 into separate documents from the markup. </td>
</tr>
<tr class=”item-alt”>
 <td>JavaScript </td>
 <td>JS </td>
 <td>Behavior, Interaction, Events </td>
 <td>Sometimes called the behavior layer, this controls
 user interaction, events, and behavior of Web pages. </td>
</tr>
</table>

This is a clean example of HTML code generated from ASP.NET server-side logic,
showing that reasoned application of the features does provide some control of
the output.

Looking over the tag-based code, it is obvious why Microsoft’s pulling the applica-
tion logic into other files and using these front-end ASPX files with tags is not a
bad concept. Some front-end teams could certainly manipulate and modify this
code without having to learn C# or Visual Basic.NET.

ASP.NET HTML Controls, Web Controls, and More
There are some other areas where ASP.NET commonly generates UI code for the
programmers. Instead of sticking to simple HTML tags, ASP.NET has features that
output HTML tags and provide server-side access to the document in ways quite
similar to the DOM, although with their own proprietary syntax. Examine the fol-
lowing screen and code (Figure .):

<script runat=”server”>
void Clicker(Object sender, EventArgs e)
{
 Response.Redirect(“http://www.cherny.com”);
}
void Page_Load()
{
 if (!IsPostBack)
 {
 // Web Controls
 myLink.Text = “Pro Web Book Dot Com”;
 myLink.NavigateUrl = “http://www.prowebbook.com”;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 131

 myLink.CssClass = “webControl”;

 // HTML Anchor Controls
 myOtherLink.InnerText = “NavigationArts”;
 myOtherLink.HRef = “http://www.navigationarts.com”;
 myOtherLink.Attributes.Add(“class”,”htmlControl”);

 // Label Control
 myLabel.Text = “Hey Look! This span is meaningless!”;

 // Literal Control
 myLiteral.Text = “ (A Bad Link!)”;

 // Paragraph HTML Control
 myPara.InnerHtml = “Pro Web Book “ +
 “Links Rock!”;

 // Paragraph HTML Control 2
 myPara2.Visible = false;
 }
}
</script>
<form id=”form1” runat=”server”>

 <asp:HyperLink runat=”server” id=”myLink” />

 <asp:LinkButton Text=”Click This”
 OnClick=”Clicker” runat=”server” />

<p><asp:Label id=”myLabel” runat=”server” /></p>
<p id=”myPara” runat=”server” />
<p id=”myPara2” runat=”server”>This will be hidden.</p>
</form>

Figure . Various
ASP.NET server controls
for outputting dynamic
content.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132 ADAPTING TO WEB STANDARDS

There is a lot to look at here, to illustrate a number of different points:

❖ The whole thing must be a <form> element with runat=server in order to
use the <asp:LinkButton /> control. This control should be avoided if pos-
sible, as will be seen in a moment when the resulting XHTML is examined.

❖ Note the first ASP.NET server tag in the unordered list is in the form of
<asp:HyperLink />. This is a Web Server Control that generates an HTML
link and provides program access to all the attributes and text of the tag, as
demonstrated in the <script> block above where the myLink references are
located.

❖ Note the second link has no href attribute and is also programmatically con-
trolled from the <script> block above. This is a server-side HTML control
(note the runat=server attribute) that also allows programmatic access to
the item’s attributes. This grants more control over the output but fewer
server-side features.

Adding an ID and the code runat=server to just about any HTML tag provides
access to the tags, which is exceptionally powerful because programmers can
control the tag’s visibility, content, and attributes with a few lines of code, located
at the programming layer.

Both link controls do virtually the same thing, and while the Web controls pro-
vide added features over and above the HTML controls, the Web control is less
predictable and features presentation attributes frequently used by program-
mers after the quick fix. When using Web controls, programmers should try to
stick to the CssClass attributes, avoid presentation attributes, and use HTML
controls for greater predictability in the code output, unless it is necessary for the
specific case.

Keep watching the paragraphs at the end of the document:

<p><asp:Label id=”myLabel” runat=”server” /></p>
<p id=”myPara” runat=”server” />
<p id=”myPara2” runat=”server”>This will be hidden.</p>

These are all executed server-side as well.

The <script> is the server-side code that is not sent to the browser, and fre-
quently this code is in a separate file altogether. It programmatically generates the
following XHTML (aside from some other .NET code that is meaningless to this
discussion):

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 133

<script type=”text/javascript”>
<!--
var theForm = document.forms[‘form1’];
if (!theForm) {
 theForm = document.form1;
}
function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
}
// -->
</script>

 <a id=”myLink” class=”webControl” href=”http://www.prowebbook.
com”>Pro Web Book Dot Com
 <a href=”http://www.navigationarts.com” id=”myOtherLink”
class=”htmlControl”>NavigationArts
 Click This

<p>Hey Look! This span is meaningless!
</p>
<p id=”myPara”>Pro Web Book Links Rock!</p>

Some more observations about the code output:

❖ Note that there are several ways to output a simple link in ASP.NET: the first
two as described above with Server and HTML controls and another that cre-
ates the third link, the <asp:LinkButton /> control.

❖ The third link code generated above demonstrates why it is best to avoid using
the <asp:LinkButton /> control under most circumstances, as it produces an
href attribute with a JavaScript link, which breaks every rule in this book.

❖ The <asp:Label /> control used in the first paragraph above outputs a
 for no reason. The label control is considered nice because program-
mers can assign presentation aspects to it, but it is possible to use the
<asp:Literal /> control instead, which outputs the lovely message “(A Bad
Link!)” above. It is often claimed that one downside to using this control is
that there are no presentation aspects for it—which is exactly why using it is a
great idea.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134 ADAPTING TO WEB STANDARDS

❖ Programmers can also control the text of tags with HTML controls for para-
graphs, as demonstrated by the paragraph above with the ID of myPara.

❖ Note that programmers can also hide and show HTML controls: The last para-
graph in the server-side code is set to visible = false and not sent to the
browser.

HTML controls offer ASP.NET code a lot of power, but for various reasons ASP.
NET tutorials downplay their use. From a Web standards perspective, however,
these are very powerful tools and often preferable to Web server controls.

ASP.NET Required Reading for Web Standards
When developing ASP.NET code, it is not too difficult to come closer to a
degree of professional Web standards. It is an exercise in making informed and
intelligent decisions about the code style.

Microsoft has posted on its MSDN (Microsoft Developers Network) Web
site an article to help authors convert to using ASP.NET’s Web standards and
accessibility features. This article should be required reading for all ASP.NET
technologists; unfortunately, it is buried on the site and the techniques are
not used in most of the ASP.NET examples online. The article can be found
here:

http://msdn2.microsoft.com/en-us/library/aa479043.aspx

Finally, Microsoft has released some open-source code that builds on the
extensible nature of ASP.NET, which allows authors to change the XHTML
output from a number of the ASP.NET tags built into ASP.NET. The code is
called the “ASP.NET 2.0 CSS Friendly Control Adapters” and can be found
here:

www.asp.net/cssadapters/

With a little extra effort, the server-side code generated by ASP.NET can
come fairly close to generating valid and accessible code.

Server-Side Collaboration with UI Designers
The bottom line is that programmers, developers, and designers should collabo-
rate as closely as possible when programming server-side applications, to make
sure the UI markup follows Web standards-based best practices. This often means
picking the right tool on the server. Keep the UI out of the application and use

www.asp.net/cssadapters/
http://msdn2.microsoft.com/en-us/library/aa479043.aspx
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 135

classes and clean code; this keeps the design in the hands of the UI team, reducing
risk and the potential need to involve a programmer just for a UI change. When
applications are complex or based on older code bases, compromises may be
necessary, but ultimate goals, standards, and guidelines should be set toward the
goal of bringing consistency in the long run.

Content Management
When a Web site needs to be updated by nontechnical users, gets larger, or
includes content that needs to be reused, cataloged, searched, or shared, the typi-
cal solution is content management software. Content management software is
one of the most common Web applications that any Web development team will
encounter. This is because it is a common solution to business users’ request for
more control over a site.

Unfortunately, content management applications often insist on producing their
own markup or require a fair amount of effort to shoehorn into a Web standards-
based world. Fortunately, this is often not as hard as it seems initially, at least with
a decent content application. Honestly, the hard part is often determining where
to look for the right pieces of code that actually generate output.

There are countless content management systems (CMS) of varying degrees
of flexibility and Web standards compliance. The flexibility, from a standards
perspective, depends on the nuances of the software’s capabilities as well as the
implementation, which is the responsibility of the Web team.

Baseline Content Management
The better CMS solutions allow a team to generate the UI code they want—as
opposed to what the tool wants. There are a number of ways Web standards can
assist with a content management solution:

❖ Abstracting content’s presentation away from the content store

❖ Employing fewer CMS templates through effective use of CSS

❖ Reusing content, because its markup will not be presentation-specific

❖ Simplifying content authors’ jobs, through fewer presentation aspects being
required of them

❖ Expanding the ability of redesigns with less CMS team involvement

http://lib.ommolketab.ir
http//lib.ommolketab.ir

136 ADAPTING TO WEB STANDARDS

Content Management and Clean Content
The simple process of storing content in a central content repository, with clean
markup, is in and of itself a good way to facilitate content reuse, because the
markup will be simple and can be styled with CSS on different portions of pages
based on context. Beyond that, here are some common best practices and sce-
narios involved in professional content management and design with CSS:

❖ Design with CSS based on context. For example, an article description can be
rendered as an <h1> level header set in a large maroon font on the article page,
but a smaller black font on the archive page, because the CSS can control that
difference.

❖ Store content in as plain a format as possible. Use as few CSS classes as you
can, and minimal if any presentation-specific element attributes.

❖ Stick to semantic markup alone, leaving the content marked up in a meaning-
ful and portable format that can be styled and reused at will. Recall that expert
CSS coders can apply different styles based on contextual position in the site
template via an ID or class.

❖ Teach content authors only basic HTML structure tags. Ideally, content
authors will need to learn few if any CSS classes. They just need to know that
the first-level header in the content area is an <h1>. Or, that making a plain
bulleted list will result in little icons for bullets, and the header in the related
content region on the right is dark blue. Design can all be applied via CSS and
not stored in the CMS content repository. Content authors can concentrate
on content, not design.

❖ Context on a given page is a useful tool, but context within a site can be
equally important. A common design scenario these days involves different
sections of a site having different color themes extended from the primary
brand. Content itself, stored in a database, does not need to know these
things, and should be portable between site sections. CSS can be driven from
a <body> tag class or ID set by site section, which can toggle different color
themes down through all semantic tags for that portion of the site.

Content Management Output and Modules
Content management tools can pose a challenge when it comes to figuring out
how to control the output and produce standards-based code. The hard part is
often determining where to start and whether the output can be controlled. Typi-
cally, a CMS outputs pages formatted with code sourced from one of several areas:

❖ Built-in modules that produce output based on proprietary features or out-of-
the-box functionality

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 137

❖ Page-level templates used to display different types of pages

❖ Browser-based word processor-type editors (used by content authors)

The most challenging portions of a CMS application in terms of outputting valid
standards-based code are often the built-in features over which a team has little
to no control. The features to watch out for include what someone claimed to be
the great thing about a tool since supposedly the tool can be installed and you
have a Web site out of the box.

Risky portions can include

❖ Administrative modules embedded on public pages

❖ Traffic-tracking code or built-in scripts

❖ Advertising modules

❖ Anything that generates menus

❖ Special controls that might produce lists of content (like a News or product
archive)

❖ Search results

TIP

Anything “out of the box” is suspect unless the tool has already been brought
up to modern standards.

A powerful tool will let a Web team have access to the code that produces this
output or insert custom modules that can replace or extend built-in functional-
ity. Ideally, there are built-in templates or snippets of code that can be updated.
Be especially wary of tools that claim to allow customization of the look and feel
through some sort of control panel, unless it actually exposes code that can be
modified.

Content Management Templates
Most CMS tools associate pages with templates, each of which is a reusable lay-
out. Authors pick the correct template for the section or type of page. The more
templates, the more the content authors need to keep track of—and the more
confusing site maintenance becomes. Intelligent use of CSS and Web standards
can actually mean fewer templates.

Templates are typically driven by the grid of the page, and this typically means dif-
ferent markup. In the Web standards and CSS world, this isn’t necessarily the case.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

138 ADAPTING TO WEB STANDARDS

Imagine a three-column layout such as what follows here (Figure .):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>Template One</title>
 <link rel=”stylesheet” type=”text/css” href=”style.css” />
</head>

<body class=”typeA”>

<div id=”wrapper”>
 <ul id=”nav”>
 Navigation 1
 Navigation 2
 Navigation 3
 Navigation 4

 <div id=”content”>
 <h1>Content Area</h1>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing
 elit. Nam sit amet nulla. Ut ut urna ac lectus</p>
 <p>Ut ut urna ac lectus tincidunt sollicitudin. Sed rutrum
 interdum lorem. Integer aliquam pellentesque
 neque.</p>
 <p>Curabitur a neque a libero gravida dignissim. Sed
 eget tellus.</p>
 </div>

Figure . A three-
column CMS template.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 139

 <div id=”related”>
 <h2>Related Links</h2>
 <p>Related Links and Content</p>

 Section 1
 Section 1

 </div>
</div>

</body>
</html>

The above document sample has three <div> elements with IDs: nav, content,
and related (or #nav, #content, and #related, in CSS selector terms). These can
be easily styled with CSS to be three columns. The content inside of the #content
and #related <div> elements might be created by a content author and is here
represented by “Lorem ipsum” and the “Related Links and Content” text respec-
tively. Furthermore, the related column link might even be generated dynamically
server-side, based on content relationships, and there may be cases where this
column is not needed.

Note the class on the <body> element. A content author might need to select this
template in order to queue up a page with the appropriate number of columns.
Program logic can tweak the <body> class of the document to restructure the
page into navigation and a single column of content so multiple templates do not
need to be created in the CMS tool, and so a content author does not need to
select a different template (Figure .).

Figure . With little
change to the CSS, the
same CMS template
can do two columns.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 ADAPTING TO WEB STANDARDS

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>Template Two</title>
 <link rel=”stylesheet” type=”text/css” href=”style.css” />
</head>

<body class=”typeB”>

<div id=”wrapper”>
 <ul id=”nav”>
 Navigation 1
 Navigation 2
 Navigation 3
 Navigation 4

 <div id=”content”>
 <h1>Content Area</h1>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing
 elit. Nam sit amet nulla. Ut ut urna ac lectus</p>
 <p>Ut ut urna ac lectus tincidunt sollicitudin. Sed rutrum
 interdum lorem. Integer aliquam pellentesque
 neque.</p>
 <p>Curabitur a neque a libero gravida dignissim. Sed
 eget tellus.</p>
 </div>
 <div id=”related”>
 </div>
</div>

</body>
</html>

The #related <div> is collapsed and no content is output. At the CMS level,
changing the <body> class to typeB switches the page layout without changes to
the markup and means one less template than might otherwise be required. This
also preserves the separation of markup from presentation. Here is the style sheet
required:

body { font: normal .9em Georgia; }
body.typeB #related { display:none; }
body.typeB #content { width: 600px; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 141

#nav { list-style-type: none; width: 100px; float: left;
 margin: 30px 0 0 5px; padding: 0; }
#content { width: 400px; float: left; margin-left: 10px;
 border: 1px solid red; padding: 3px; }
#related { width: 150px; float: left;
 border: 1px solid red; margin-left: 10px;
 padding: 3px; }

Content management tools are just another software mechanism to deliver a
Web site. They are a fact of life in larger organizations, and most are full-featured
development platforms that can be leveraged to allow standards-based output,
which can only help make a site more accessible or compliant. Whether the
tool features raw output or content being transformed from XML with XSLT
(eXtensible Stylesheet Language Transformations), the output should be clean
and thought through. As a complement, effective use of Web standards can also
reduce the number of CMS templates and make it easier to author content.

WYSIWYG for Content Authors
When working in Web content environments, most nontechnical content authors
use some form of lower-end WYSIWYG software tool to help facilitate content
entry. These tools can range from browser-based editors to tools like Adobe Con-
tribute for simple site maintenance. They are not development platforms such as
Adobe Dreamweaver or Microsoft Expression Web, and have far fewer features.
Just like any other software, these tools have configuration options and varying
degrees of Web standards compliance.

As a general rule, the strongest editor setup for content authors is one where as
many formatting features as possible are disabled, because the formatting fea-
tures rely on code that a Web team won’t be able to control. Effective support for
CSS is the key.

Browser-Based Editing
Browser-based editors have been around for a while. Microsoft first introduced an
ActiveX-based editing component in Internet Explorer 4. Since then, native Java-
Script support has been added and editors are usually script-based, Java-based,
Flash-based, or ActiveX-based. Script-based components for browser-based edit-
ing are showing up with support in most modern Web browsers, including Safari
and Opera. For widest compatibility, one of these should be chosen.

Unfortunately, out of the box these browser-based editors are not very robust.
Internet Explorer outputs tags and Mozilla generates inline styles. They
render exactly what the browser can render, but the editor features must largely

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 ADAPTING TO WEB STANDARDS

be built from the few hooks that are available in the browser’s DOM. That being
the case, it is exceptionally hard work to churn out a custom editor, although they
are getting better every day. You can find a modern editor to create valid code
and support CSS.

Editor Confi guration
Web developers should take steps to prevent these browser-based editors from
jeopardizing all the hard work that has gone into defining styles and coding stan-
dards for their sites. They may have to go so far as to integrate new user steps, or
even new software.

Considerations include

❖ Perform reviews of the WYSIWYG editor’s code output under a variety of situ-
ations. It’s not unusual for these editors to generate invalid code; however, the
marketplace is maturing, and many can output valid HTML or even XHTML
with configuration changes.

❖ Some editor tools include a source-code view. This may need to be disabled
or enabled depending on the skill levels of the authors. Some tools include a
permission model, which can enable the source code view for some users and
not for others.

❖ Features that control presentation should be limited. Disable features that
control font face, font colors, and background colors. These should be con-
trolled only from CSS.

❖ The editor should be able to apply CSS classes. A good editor will support
association of a CSS file with the editor. Some will require developers to config-
ure which items appear in the CSS class menus. The best will support context
and only allow application of some classes based upon the CSS rules, such as
not allowing a rule p.error to be applied to a .

❖ Support for CSS class application should include some facility to apply CSS to
specific elements. That is, it should be just as easy to apply a class to a as
an nested inside via a selection process of some form. A common way
to enable this is a simple click to select DOM tree in the status bar (body >
div > ul > li > a).

❖ CSS files that are associated with an editor may need to be an extract of the
main CSS files because the rules may be too complex to be interpreted, and
full context rules, such as <p> elements inside of #content as opposed to
#related, might not be supported or possible. Depending on the editing
context, multiple CSS files may be another solution.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  Developing Web Software Applications 143

❖ The editor should support basic XHTML semantic tags such as the built-in
headers (1–6), paragraph formatting, at least two types of lists, blockquote,
preformatted text, and addresses.

❖ A good editor will also strip garbage and invalid tags from content pasted
from the clipboard, or have multiple options for cleaning pasted content.
Often, content copied from word processors or Web pages will retain its for-
matting information when pasted into WYSIWYG editors. This information,
when introduced into valid code, often invalidates it, and can modify styles
that should be applied only from outside the content via the CSS.

❖ You may want to tell content authors that if their editing application won’t
strip invalid tags from incoming content, they should strip the formatting by
pasting that content into a plain text editor prior to pasting into the WYSI-
WYG editor.

❖ Ideally, locate a browser-based editor that can support as many browsers as
possible and achieve the above feature sets. It is not uncommon to find WYSI-
WYG editors configured only for IE; however, today editors are available for
Windows and Mac OSX in just about every browser.

Following the above rules and evaluation criteria can mean the difference
between creating a reliable, standards-complaint site and having a content editor
program destroy a lot of hard work. The quality and performance of any editor
program you’ve already got in production should be evaluated against these stan-
dards and modified to produce code that is as close to valid as possible.

Third Parties
Larger Web sites often need to propagate a certain look and feel to third-party
sites or business applications hosted elsewhere, such as an Investor Relations site
or perhaps a job board. These sites can be branded to look like the main site,
and users are intended to not know that they have navigated to another site
altogether.

Web standards-based approaches are ideal for such scenarios because not only
can the artwork and scripts be hosted on the main corporate servers, but so can
all the CSS files, or at least the CSS that controls the main look, feel, and corporate
brand standards. In these cases, a company can have third parties link to some
or all of the CSS files, and tweak them as necessary over time, with the changes
showing up without hosting the third-party applications.

In such cases, you will probably need to provide the third parties with documen-
tation of the correct style classes and image headers for certain design touches.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 ADAPTING TO WEB STANDARDS

You should also supply sample code, with example templates that represent how
the pages and designs should be built.

Just like any organization or software platform, however, third parties are going to
have varying degrees of ability to accommodate a Web standards approach. For
example, their platform may not be compatible with a corporate style sheet. In
these cases, compromise may be necessary. Again, this may mean simple extracts
of CSS files or creating different markup templates for the exceptions. In the long
run, however, a transition plan should be considered and discussed with third-
party vendors who can’t keep up with the rest of the industry.

How To Approach Web Apps
A Web standards-based approach means a strict separation of content from
presentation, so it follows that it also means the separation of business logic from
presentation. Web teams building Web-based applications and software can
benefit greatly from building their user interfaces with modern approaches that
reference CSS as opposed to inline presentational attributes.

Less inline presentation means less to risk to business logic when design changes
are pushed into software. Additionally, in a potentially complicated software
environment it can mean that the expert front-end developers can help make
these UI changes without having to update backend code or even involve backend
programmers.

A challenge going forward is to know where to start to update Web applications
and exploit the features of the technologies that are available. New features of
Web standards-based techniques can be a powerful ally for a Web team both
in Web applications built from the ground up and in commercial off-the-shelf
content management tools.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5
The Circle
of Standards

If you’re working for a multi-person organization, you’re probably used to

following rules: submitting timesheets, requesting time off, or following a

project process are just a few.

 But what about rules that guide the work you do? If you’re a designer,

you may be accustomed to following a style guide. Developers might

have a set of coding practices they’re asked to abide by. Do you have any

rules—or standards—like this that you’re asked to follow? If so—and be

honest!—how often do you follow them?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 ADAPTING TO WEB STANDARDS

Based on my own experience, I’d bet that you don’t follow them as often as you
should. Or, if you do follow your standards, you probably feel that others don’t.
Does this sound familiar?

From large corporations to small consultancies, a lack of standards and standards-
compliance impedes Web development progress. Why is this? And what can be
done to solve this problem?

Organizational Inertia
Let’s assume that you already have some sort of standards—design or technical—
in place. If you asked people why they don’t follow the documented standards,
what would they tell you (Figure .)?

While it may seem that the people are negative, it’s important for a manager to
deduce the deeper problems (Figure .).

Figure . What does it all mean?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  The Circle of Standards 149

What’s standing in the way of success is timely updates, regular communication,
and constant reinforcement, so what you need is a strategy for maintaining the
standards, communicating them appropriately, and ensuring their correct use.

And what if you don’t have any standards? You may have more inertia to over-
come than an organization that has something in place, but the same process will
help you get in gear.

You may be skeptical, but I know from experience that change is possible. I saw
it happen at AOL, where I worked on standards for five years. Its situation a few
years ago may not be unlike yours today. AOL had some standards documented
but they weren’t complete, nor were they regularly updated. There was some
management support for them, but that support was inconsistent. And there was
little communication about the standards, which meant that only a fraction of
the people were even aware of them.

All of that changed, thanks to the Circle of Standards.

Figure . The meaning behind the messages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150 ADAPTING TO WEB STANDARDS

Introducing the Circle
Instituting standards and getting people to embrace them is all about change. As
any business student will tell you, effectively instituting change is all about manag-
ing organizational behavior. And what’s the best way to manage change in organi-
zational behavior? The answer is process.

The Circle of Standards (Figure .) is a three-stage cycle that enables the suc-
cessful adoption and continued implementation of standards by addressing their
management, training and communication, and continual review—all of the
problem points identified above.

The Quality
Review Process

Standards Creation
and Documentation

Training and
Communication

Figure . The Circle
of Standards.

The Standards Manager
To get things started, the standards process itself must have a champion within
an organization. At the outset it’s not always possible for the champion to devote
full time to this role, but as standards become more and more important to the
organization, it becomes increasingly important to the organization’s manage-
ment team to put someone in charge of standards—a standards manager.

Depending on the size and reporting structure of an organization, it’s possible to
have one person fulfill this role; however, I usually suggest a team of at least two
people, even in the smallest organizations, for greater morale, workload balancing,
and redundancy.

Putting together a standards-management team is especially necessary when
managing standards for multiple disciplines (such as design and development).
Having more than one person addressing standards allows each individual to
focus on the standards that are most closely related to their area of expertise.

Here are a couple of sample organization charts for standards-management teams
(Figure .):

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  The Circle of Standards 151

Standards Creation and Documentation
The first and most important phase of this process is, of course, the creation
and documentation of standards. The success of the training and review phases
depends on this.

Merriam-Webster’s online dictionary defines standard as “established by
authority, custom, or general consent”; so some standards will be dictated (like
branding), some will document current practices (like page layouts or choice of
DOCTYPE), and the rest will be determined by interested parties who sit down to
resolve issues (like whether to indent code with tabs or spaces).

Standards are best set by the appropriate party or decision process and then thor-
oughly documented by someone who pays excellent attention to detail.

If you want a complete set of standards, look at your organization from various
perspectives, seeking to document the organization’s needs from every angle,
such as user experience and design (including user interface design, interaction
design, and visual design); technical implementation (including front-end, middle-
tier, and back-end coding); and potentially others including content (language
style, imagery, and photography) and marketing.

Figure . Typical
standards-management
teams.

Standards Manager

Design Standards
Program Manager

Technical Standards
Program Manager

Technical Standards
Manager

HTML/CSS Engineer
JavaScript/

Ajax Engineer
Accessibility Engineer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 ADAPTING TO WEB STANDARDS

TIP

The Web Style Guide, 2nd Edition by Patrick Lynch and Sarah Horton is a great
reference that has an outline many companies and sites start with and build on
(http://www.webstyleguide.com).

To help an entire organization to at least start from the same baseline of stan-
dards, it’s helpful to give everyone the same basic goals and rules. Table . pro-
vides a brief checklist of suggested content for both design and technical portions
of a project.

Table . A Standards-Based Content Checklist

For a design style guide For front-end technical standards

Browser support matrix Browser support matrix

Accessibility policy Accessibility policy

Optimization guidelines Optimization guidelines

Creative vision statement Coding rules (syntax and style) for
each language, including HTML, CSS,
and JavaScript

Branding, including logo usage rules Naming conventions and semantic
model

Grids, page layouts, and dimensions Standardized code snippets for
common UI elements

Persistent page objects (like header,
navigation, and footer)

Information on shared code libraries
and APIs

Color palette and typography Best-practice coding techniques

Content layouts and standard image sizes

Interactive elements (links, forms, menus,
wizards, dialog boxes, etc.)

Multimedia design information

Advertising considerations

Note that the first three standards are shared between design and technical
scenarios.

Getting started with creating and documenting standards can be easy or hard—
all depending on where your organization stands currently with respect to stan-
dards. Here are a few scenarios:

http://www.webstyleguide.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  The Circle of Standards 153

The Full Glass Scenario
Everyone in your organization is pretty much on the same page (Figure .).
Overall, there is clear creative direction and good code consistency. What are
you waiting for? Just do it! Start documenting the institutional knowledge. Peer
reviews of the documentation can catch most problems, and a final review by
a creative director or technical manager can garner the necessary management
signoff. Post the information online and/or print it out, and your standards
are official.

The Glass Half Full Scenario
Most people in your organization care about standards and want to be on the
same page, but things are a mess and no one knows where to start (Figure .).
Outsourcing would be beneficial in this case. Find a consultant who has experi-
ence in creating guidelines and standards documentation; he or she will ask the
right questions to help your organization determine what standards are needed. If
you have the budget, the consultant could also create your initial documentation,
so you start with solid groundwork.

The Empty Glass Scenario
Only a few people in your organization care about standards (Figure .). There’s
a lack of creative vision or code consistency, and leadership isn’t doing anything
to help. In this case, pull together the most talented, engaged people you can find
and start doing whatever you can. Evangelize your work to peers; demonstrate the
benefits to management. As more and more people buy in to even small portions
of your work, you’ll find that they’ll start to expect more. With that support, you
can grow into one of the other two scenarios!

A NOTE ABOUT OUTSOURCING

Even in cases where documenting standards in-house could be done very
rapidly, sometimes it can still be easier to outsource the production of a stan-
dards resource. I don’t say this as a former standards consultant—I say this as a
standards manager. While the consultant is busy writing documentation, you
can work to prepare the organization for what’s coming by building and training
a team of evangelists. On the other hand, if there’s no budget for a consultant,
you can engender support for the standards by divvying up smaller tasks, such
as creating figures, code samples, and downloadable templates, among a group
of designers or developers to lessen your workload.

Figure . Glass Full.

Figure . Glass Half
Full.

Figure . Glass Empty.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 ADAPTING TO WEB STANDARDS

As important as the standards themselves is the process by which your organiza-
tion plans to keep them updated. Standards need to be updated on a regular
basis—for example, as rebranding or redesign efforts take place or as new interac-
tion models or technologies are implemented.

To figure out how to manage standards updates, think about the rate of change
and the size of your organization.

In a large organization, change typically takes time, so quarterly updates may be
all you need. In a smaller organization that is changing rapidly, you may need to
manage monthly or biweekly updates. Plan for both best- and worst-case sce-
narios, and you’ll be prepared for whatever happens.

Training and Communication
As the standards start to take shape, be in constant communication with your
audience about what’s taking place: Send periodic newsletters, cross-communi-
cate among disciplines, meet with managers, conduct Q&A sessions, and report
upwards.

During the early stages, you may be able to experiment a bit with formats and fre-
quency, but try to establish a pattern of communication that can be maintained
for the long term. Eventually, you’ll have people trained to expect updates!

Planning for training programs can also begin as the content outline for the
standards is finalized. There are three kinds of training curricula that need to be
planned:

❖ Staff training—Level-setting intensive introductory training, required for
all staff as soon as possible following the completion of the standards. The
goal is to rapidly get everyone who has some functional relationship with the
standards up to speed with what’s in them. Functional relationships include
people managers, project managers, and product managers, so make sure
the content is customized for their needs as well the needs of the design and
technical staff.

❖ Individual training—For newcomers to the project/team/organization,
offered when the need arises. This may end up being the same curriculum as
in staff training, but may be presented in a different format (such as computer-
based training or video) to accommodate small groups of people.

❖ Routine training—Periodic refresher classes or updated training modules.
While the content of these courses won’t be determined at the outset, plan-
ning now will help set expectations for the future (and avoid unwelcome
surprises). Devise a tentative plan that addresses frequency, expected content,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  The Circle of Standards 155

delivery format, and recommended participation levels. Make sure that
people managers are aware of your schedule so they can plan for their teams’
participation.

As with the standards themselves, outsourcing the development of training pro-
grams can speed up the creation of coursework and presentation materials; it’s
also an excellent path when a large organization has few qualified trainers in-
house. A training consultant can also coach individuals within the organization to
prepare for future training efforts.

If the size of the organization doesn’t warrant bringing in consultants, or if the
budget isn’t available to make this possible, finding individuals in-house to help
develop and deliver the training program is key. You want to find people who can
rapidly learn and apply the standards and who have strong presentation and/or
written communication skills.

In both communications and training, be honest about the process by which the
standards were created and open about processes for updating and adding new
standards. Transparency into the process of how standards are made will demys-
tify them and make it easier for people to use them.

A FINAL NOTE

Finally, keep in mind that communication isn’t a one-way street; always ask for
feedback! Anyone participating in training should be given some sort of survey
at the end, and online communications should include some easy means for
asking questions.

The Quality Review Process
Once the standards have been created and everyone has been educated about
them, people should not simply return to their work and assume all is well.

Every project needs to be reviewed at specific milestones to ensure that the stan-
dards are being adhered to as well as to keep an eye out for new standards that
need to be documented.

Designers may be familiar with the design review process, which usually involves
a review by the person who owns the creative direction of the product. Other
aspects of the design review process vary from organization to organization. In
some but not all companies, peer and/or managerial reviews must be conducted
before the creative director will review a design.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156 ADAPTING TO WEB STANDARDS

On the technical side, developers may be accustomed to documenting their
development plans in a technical design document (TDD), which undergoes peer
and/or managerial review before work commences. In smaller organizations or on
smaller projects, the TDD may be skipped. A peer code review is probably more
common, to help developers find and resolve bugs.

Design and code reviews make for a good start, but aren’t enough to ensure
adherence to the standards. Why not? Unless your creative director crafts all of
the design standards and is thus intimately familiar with them, details are bound
to be missed. Peer code reviews are useful in cases where everyone’s a control
freak, but friends will sometimes go easy on one another and not call out inconsis-
tencies. You need a separate standards-compliance review as shown in Figure .,
conducted by the standards manager, to ensure total compliance.

Peer Review Standards Review Executive Review

Figure . Ideal user interface or visual design quality review process.

Standards TDD Review Peer Code Review Standards Code ReviewPeer TDD Review

Figure . Ideal development quality review process.

In the quality review process as shown in Figure ., peer reviews help individuals
prepare for standards-compliance reviews, and standards-compliance reviews are
required before creative or launch approval can be given.

For those already operating with some sort of review process, an additional
 standards-compliance review may sound like extra work that will slow opera-
tions. But if standards-compliance reviews are conducted regularly or on demand,
the overall time required is negligible. More importantly, in some cases, they can
garner huge gains, because the standards-compliance review may find potential
issues that can be fixed before any time is wasted waiting on the approval end.

These review processes work well when designers and developers are imple-
menting based on existing standards, but what happens when something new,
for which there is no standard, needs to be implemented? One of two things
can happen:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  The Circle of Standards 157

❖ The standard can be driven by the project team, closely monitored by the
standards manager, who will need to keep up with the project team on every
decision or execution point to ensure that a true standard can be derived from
the project work.

❖ The project team can hand off the standards-related work to the standards
manager, who then produces both the standard and the deliverable(s) needed
for the project.

Which way is better? I’m of two minds about this: I think the first scenario works
better for design projects and standards, and the second scenario works better for
development projects and standards. However, I’ve seen both work equally well
for each discipline, given the right level of involvement and communication. If you
devise a plan to handle both scenarios, you’ll be able to decide which will work
better for any given project.

Setting the Wheel in Motion
Now that you’ve learned about the Circle of Standards, how do you put it into
practice? First, find willing, strategic allies who can help you gather information
and from whom you can learn about aspects of the organization you’re not famil-
iar with.

If your organization has an operations manager or team, contact them and let
them in on what you’re trying to do. Seek out people in operations, as they tend
to be kindred spirits when it comes to instituting standards and modifying pro-
cesses to accommodate those standards.

Next, get organized! Inventory what standards you have, if any, and start a list of
what’s missing. Review current training materials to determine where they fall
short on evangelizing the standards. Iterate through your product development
life cycle (PDLC) to determine where reviews are or ought to be happening and
where standards could come into play.

Figure out who you need to sell on this methodology and how best to enlist their
support. Document your findings in a slideshow deck or manifesto, practice your
pitch, and set up a meeting to engage your targets. If you get some pushback or
even an outright dismissal, don’t give up. Persistence is crucial in standards evan-
gelism. Take a step back, restrategize, and try again.

All the while, keep working on crafting your standards and evangelizing them.
Grassroots work is just as important and effective as setting top-down policies.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

158 ADAPTING TO WEB STANDARDS

Keeping Up Momentum
Sometimes being a standards manager can seem like thankless work—relentlessly
pursuing stodgy executives, dealing with complaints from cranky designers and
developers—what’s the point? The point is to ensure that your organization pro-
duces consistent, high-quality work, which it wouldn’t be able to do without you.
Make sure the organization takes time to celebrate every success—every product
launch, every new standard, and every standards conversion. By recognizing the
projects and teams that implement the standards, people will come to realize that
standards are the key to success.

To keep up momentum, maintain a rotation of volunteers who work with the
standards manager. If you have representatives from different teams or disciplines
working with you, give them a break from time to time—not to discourage or
punish them, but as a reprieve from working an extra job! Finding additional
volunteers helps build support for the standards by including more people, and
giving people a short break from “imposing” the standards ensures they come
back to the effort energized and ready to do more.

If you’re able to have a whole standards team, make sure there’s variety in each
person’s work. Simply reviewing others’ work and writing documentation isn’t
enough to keep someone engaged, so offer them the chance to participate in
design or development work, to keep their skills up to date. Have them expand
their skill sets by giving talks or conducting training sessions. And always make
sure your team is having fun.

Conclusion
Standards evangelism is exciting work, but it’s also difficult work when you don’t
have a plan for making standards a reality. Process management might seem bor-
ing, but it’s a very useful tool in successfully changing organizational behavior. The
combination of the two—believe me—makes for dynamic, rewarding work.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part2

Case Studies

Part2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Practice Doesn’t
Make Perfect

The concept that practice leads to perfection is flawed. There is no per-

fect practice—merely perfect academic exercises such as school assign-

ments that can be done for instructors or proof of concepts created as

examples for clients.

 Technology, scope, client relationships and implementations could

always be done better when viewed in hindsight.

 This doesn’t mean we shouldn’t try for perfection.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 ADAPTING TO WEB STANDARDS

Only by going through real-world development with clients and attempting—
 successfully or not—to launch internal projects (often with punishing deadlines)
do we hone our skills, learn our lessons, and, importantly, become strong enough
and flexible enough to apply those lessons “the next time.” That’s striving for
excellence, also known as professionalism.

Although learning specific skills and techniques and standards is critical to our
becoming better developers, there are key areas that can be imparted only by
working on actual Web development projects: communication, adaptation, and
persistence.

Communication
The Internet is about communication. The list of technologies that facilitate
human contact goes on and on: instant messaging, email, VoIP when the tele-
phone gets dated. Those meetings your colleagues describe as too long and point-
less could instead be about finding consensus, focused on agreeing on the best
solutions, if everyone has already discussed the problems before they reached the
meeting room.

Adaptation
Beginning Web developers test—and sometimes break—the rules for good devel-
opment as they learn what works and what doesn’t. Of course it’s important to
pick up what’s right and wrong, black and white, but it’s equally important to
be able to see the grey, ambiguous area and know that the “best” solution isn’t
always, well, the best.

For example, sometimes loading a page up with the appropriate DOCTYPE-,
Section 508-compliant tags hinders Google too much for it to deliver a fast expe-
rience for its users, and you have to ditch the DOCTYPE tags. Even the best tech-
niques and technologies can be thrown out of the window as long as you know
how that will affect your audience. Adaptation is about knowing when to break
the rules for the right reasons.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Part II Practice Doesn’t Make Perfect 165

Persistence
Life happens. Vendors overstate their competencies. Clients change the scope of
their projects. Web developers get sick or, worse, go on honeymoons.

A professional takes on the project or part of the project he or she has been given
and doesn’t let go. Circumstances change, but a true professional makes sure a
project doesn’t get out of hand, persisting with the help of communication and
adaptation. It’s not easy—but then, nothing of value ever is.

Trials and Tribulations
The following case studies showcase how developers tackled their projects. They
used the skills and Web standards to the best of their abilities to create some of
the most highly profiled sites on the Web. Thankfully, their mistakes and failures
can be shared to allow us to better make the next generation of sites.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6
EverythingTori.com

Long after releasing her first single in 1980, singer-songwriter Tori Amos

continues going strong. It isn’t often a singer stays in the public eye for

over two decades, continually selling out concerts. The audience is bound

to see a change in the musician and her music when a career lasts that

long, and that certainly applies to Amos.

 For an artist, a Web site must reflect the artist’s persona and art. The

release of her album American Doll Posse put Amos’ focus on the strong

woman. The posse contains five different characters that together create

a complete woman and her role today. The album and tour involve four

other singers who each represent a “part” of Amos—accompanying Amos.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 ADAPTING TO WEB STANDARDS

So what did this mean for the Web site? Amos’ management wanted to create,
own, and manage a site separate from the record label’s site, ToriAmos.com. The
idea was to make it the authoritative site providing information about Amos’
career and not just her latest work. They used the domain ToriAmosCom.com
and posted a placeholder on the Web site—and they hired Philip Fierlinger to cre-
ate harmony between Tori’s music and her Web site (Figure .).

Fierlinger landed the project because of someone he knew who had worked
with Tori Amos. During initial discussions with Tori Amos’ team, Fierlinger found
them eager to build the site, but he discovered fan sites already doing a great job
providing regularly updated and high-quality content. Fierlinger delved deeper to
find the motivation for building the site, while considering his concerns that the
management team would have limited access to content for logistical and legal
reasons. He nearly talked himself out of a job during this discovery phase.

Backstage
A passionate designer, Fierlinger wouldn’t design a Web site without meaningful
and compelling reasons. He wanted to provide fans a place where they could get
content and have an experience that they couldn’t find on any other site. He con-
tinued to review the official record label site and fan sites, and discovered these
sites were missing the components of good design from the audience’s perspec-
tive, such as usability and a well-thought-out information architecture.

He began the project by exploring Tori Amos-related Web sites to see what was
out there and where the gaps were. As soon as the project received direction,
Fierlinger proceeded with the project using the standard Web design process,
from building the wireframes and getting feedback on the initial comps to build-
ing the site’s structure and taking advantage of the power of CSS.

Digging into the World of Tori Amos
The record label’s site looked slick, but had Flash usability issues and content
based on what the record labels believed important, not what the fans wanted.
On the other hand, fan sites like The Dent (www.thedent.com) contained obses-
sively detailed and relevant content, and provided a stunning experience. But
while the content more than satisfied fans’ thirst for Tori Amos-related informa-
tion, its design lacked the quality demanded by the management team. Here In
My Head (www.hereinmyhead.com), another fan site, succeeded in the area of
design and contained up-to-date content.

www.thedent.com
www.hereinmyhead.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 169

Figure . The
official Tori Amos site,
EverythingTori.com,
after launch.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 ADAPTING TO WEB STANDARDS

After completing his research, Fierlinger believed he could build a site that
complemented fan sites and the label site while offering higher design standards
and unique content. Although he wouldn’t control or maintain the content, he
believed he could encourage the application of good content practices by build-
ing the site with the right content management system (CMS), including a blog
that listed events, and providing RSS feeds.

Furthermore, he gave the team suggestions and ideas for content, even some that
didn’t make it past the concept stages. One idea proposed that band members,
Tori, fans, and other artists record their impressions and stories on audio and
video resembling DVD commentaries. Another involved creating e-cards with
interactive music that played audio and animation, like little digital vignettes.
Neither idea made the cut because of the time and effort involved, and because
providing the fundamentals had a higher priority.

Putting the Design Process to Work
The project took five months, from July through November 2004. Fierlinger used
the following basic Web design process:

❖ Gather requirements

❖ Develop concepts

❖ Create information architecture

❖ Design comps

❖ Provide time and budget estimates

❖ Receive feedback, iterate, and resolve the overall design direction

❖ Design and build

❖ Iterate, iterate, iterate

Applying Web standards best practices also played an important part in the proj-
ect, says Fierlinger, because Web standards provided better usability and acces-
sibility, helped with search engine optimization, encouraged smart and flexible
engineering as well as visual design flexibility, and afforded him the opportunity
to stretch his design skills. At the time of the project, many designers hadn’t
adopted Web standards.

Building the Wireframes
Not surprisingly, as in so many Web projects, creating content for the site was a
slow and difficult process. Fierlinger, knowing that this process is usually underes-
timated, started requesting content early on in the project. The client submitted

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 171

CDs with photos and short audio clips with interviews; the client wanted the full
record catalog, tour history, press clippings, and links to Tori Amos’ charity as
content along with an online store. Based on this information, Fierlinger drafted a
high-level information architecture that defined the main parts of the site:

❖ Music

❖ Tours

❖ Photos

❖ Videos

❖ Press

❖ FAQ

❖ News and blog

❖ Footer utilities: Email a friend, subscribe, contact, site credits

Fierlinger put together the initial wireframes linking the frames to create a click-
able prototype, as shown in Figure .. Instead of pen and paper, he used Flash

Figure . The
clickable prototype.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 ADAPTING TO WEB STANDARDS

for the wireframes and screenflows, because the application simplifies the process
of sketching ideas and wiring them together to see how things flow and to find
the gaps.

Based on this architecture, Fierlinger created the full-blown wireframes shown in
Figure ., and discussed them with the client over the phone. He documented
changes through several iterations. The wireframes included everything the client
wanted to do and the time and cost estimates for the project using a spreadsheet
outlining milestones, tasks, costs, and timeframes. The designer started by design-
ing the wireframes with a grand vision and then stripped it based on the client’s
feedback.

As expected, the client wanted a lower time and cost estimate. So the designer
returned to the designing board and redacted the sitemap with red slashes to
offer two additional approaches, as Figure . shows. The client received a choice
of a full-blown version, a scaled-back version, and a basic version. The client chose
the scaled-back version.

Figure . The full-blown wireframe.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 173

Figure . The redacted plans.

After making that decision, the designer switched from holding phone discussions
to conversing with the client via videocasts, which helped him explain and clarify
ideas as they developed.

After agreeing with the wireframes and sitemap, Fierlinger reviewed thousands
of Web site screenshots that he had collected over the years for inspiration and
reference. He flagged those that had elements he thought would work for the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 ADAPTING TO WEB STANDARDS

project. Using those elements and adding typography and photos of Tori Amos,
he mixed the assets. He shared his favorites with the clients so they could pick the
aspects and elements of the designs they liked. These set the tone for the design
direction shown in Figures . and ..

Figure . The first of
two prototypes for the
site’s look and feel.

Figure . This second
prototype provided
another option for
the design direction
decision.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 175

The client loved both collages, especially the typography shown in Figure .
and the texture and scrapbook feel from Figure .. Based on that feedback,
Fierlinger combined the elements of the wireframes to create detailed comps,
as shown in Figures ., ., and .. The design process continued iteratively,
with Fierlinger posting the latest designs on the staging site for the client’s review
and updating the designs based on client input.

Figure . Client preferred the
typography shown in this prototype.

Figure . Client
chose the scrapbook
look and feel from this
prototype.

Figure . First comp
based on the client’s
input.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 ADAPTING TO WEB STANDARDS

Figure . Initial
detailed comp of the
Galleries section.

Figure . Detailed
comp of the Music
section.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 177

Designing the Site
During the design phase, the designer searched for a CMS for the site. While he
could’ve built the whole site from scratch in Dreamweaver, he opted not to go in
that direction, as this approach would make it difficult for the client to update
the content. He investigated blog engines and open-source CMS solutions. He
considered Movable Type, but shied away due to concerns about the application’s
complexity and its limited PHP support.

The PHP-based ExpressionEngine had potential, with its design flexibility and
powerful features. He decided to use it, though first he had to learn how to use
it himself. Conceptually, ExpressionEngine worked like other blog engines, but
in practice it more closely resembled a big CMS system or Dreamweaver due to
its use of object-oriented templates and subtemplates. The object-oriented and
modular application used a different approach for site modeling and content
creation. Adopting ExpressionEngine required changing the way of thinking about
and building a Web site that runs on a CMS.

Figure . shows ExpressionEngine’s control panel, which gives only a small
taste of the application’s power. It lets designers hack things in interesting ways,
and blend in custom PHP code as needed. In a typical project, Fierlinger generally
avoided adding much customized PHP. However, for this project, the gallery struc-
ture needed heavy-duty PHP. The nature of the content required a gallery format,
so the designer needed to figure out the best way to design and build the gallery.

It would’ve been simple to build the gallery as a basic blog sequence in which
users accessed entries sequentially with a preview and links to the next and previ-
ous entries. However, the designer wanted to offer more by setting up the gallery

Figure . Expression-
Engine did the grunt
work in managing the
site behind the scenes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178 ADAPTING TO WEB STANDARDS

to appear as a set of pages containing a manageable number of thumbnail pre-
views. He had customized a CMS for a photography site, so he adopted that same
approach, which gave him the ability to generate an entire site design and layout
as a gallery structure. Figure . shows the front page of the Galleries section.

Figure . The
home page of the
photo gallery contains
thumbnails of several
separate albums, each
of which contains
collections of photos.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 179

The most challenging part of designing the gallery was getting the thumbnail
subsets to paginate, or automatically break up by pages. The gallery displayed
up to nine thumbnails per page. If the gallery has more than nine images, then
the CMS he designed created a new page for the next set of nine thumbnails. He
applied the concept, not the code, from his photography site CMS, and built the
gallery in ExpressionEngine with customized PHP. The gallery turned out well (see
Figures . and .) because of the mind-bending amount of work he invested
in building it.

Figure . The Fade
To Red Era gallery.

Figure . Second
page of the Fade to Red
Era gallery.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180 ADAPTING TO WEB STANDARDS

With the CMS decided, the project moved forward using the following build
process:

❖ Design the layouts in Photoshop.

❖ Use Dreamweaver for designing the HTML and CSS structure.

❖ Carve the design file for background images.

❖ Build the initial templates so they work on the local machine to test and
ensure all code works before migrating.

❖ Migrate everything into ExpressionEngine.

❖ Add dynamic elements in ExpressionEngine—the biggest job.

❖ Tweak the design, HTML, and CSS in ExpressionEngine.

In working on the design approach, Fierlinger wanted to ensure the layouts were
scalable. This scalability would allow the site to accommodate content, large and
small, so the content could grow along with the site. To build a flexible structure
for scalable layout, he used grid patterns with CSS, which play well together, since
CSS provides the freedom to work with an underlying grid pattern without the
restrictions that come with hard, formal, and obvious boundaries.

The flexible and scalable structure led Fierlinger to use backgrounds to loosen up
the grid, to extend and overlap the edges, and to create a highly textured scrap-
book feel. Though he designed the site with content scalability in mind, nothing
will scale elegantly in situations where the copy, being either too short or too long
for a given space, doesn’t synchronize with the design.

Behind the CSS Scenes
Since ExpressionEngine relied on PHP, the site loaded CSS using PHP with @
import to separate the code from style. This allowed the site to import section-
specific styles for each area of the site. In spite of these advantages, the site con-
tained many <div> tags, leading to a case of “Divitis,” a common Web site ailment.
The main role of <div> is to group the page into sections, such as the navigation,
header, footer, and body. For EverythingTori.com, no other solution accomplished
what the site needed. Though having many <div> elements and classes adds
as much weight to a page as tables do, CSS still has advantages over tables. For
instance, those using screen readers experience fewer problems with CSS than
with tables. After all, it was 2004—a time when CSS wasn’t widely adopted by
designers and supporting browsers.

The site’s subtle background images led to unforeseen issues cropping up in the
design. For example, the home page’s “Musings & News” height is shorter than the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 181

background image, so the design crops it to the height of the block. Fortunately,
it works naturally for the site with its use of textures and randomness to give it a
scrapbook look and feel.

But the designer worried more about making the background images seamless
while overlapping or tiled vertically or horizontally. Beyond that, it was better for
the design to look random.

In dealing with browser issues, Fierlinger relied on “build, test, build, test, repeat”
until the design behaved the way it should. He aimed to ensure the site worked
with Internet Explorer 5.5 and FireFox 1.5 (remember, this was 2004). When he
couldn’t find a solution for a situation, he resorted to the magic bullet: the under-
score hack. The underscore hack isn’t valid CSS, but it did the trick:

hr {
 height:3px;
 _height:4px;
}

The three-pixel positioning looked right in every browser except Internet Explorer;
four pixels worked better for IE. The underscore acts like a comment, and most
browsers ignore anything with an underscore in the CSS. Internet Explorer is an
exception, however, so it dutifully obeys the style following the underscore. (To
make it work, the underscored attribute must come after the original attribute so
IE obeys the “last command” it receives.)

While some purist designers believe that using the hack is a sin, Fierlinger believed
the hack was, at least, more elegant than other hacks. So what if the site didn’t
validate? The site would survive, and serve its purpose.

Another interesting aspect of the site comes in the sharing of the same HTML
structure while giving each section a distinctive look through the different back-
ground textures. The texture frames the page and the custom imagery to define
each section. Each section also features different search field and button styles.
The underlying HTML all comes from the same template, demonstrating the
beauty and ease of using CSS to separate structure and presentation. Figure .
shows an overview.

Most sites feature a <div> to frame the header, usually something like #header.
In the case of the Tori site, using a header <div> would have restricted the back-
ground textures to a limited space. To get the textures to extend and flow into
the overall page, Fierlinger used #body to define the background imagery. Notice
that the page includes a drop shadow, adding dimension and depth and enhanc-
ing its tactile feel. He added a #page-shadow <div> with a margin-left of 780px

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182 ADAPTING TO WEB STANDARDS

to extend the shadow to the full page width, to accommodate varying browser
widths. Thus, starting from the minimum page width of 780px, the background
image extends to the right infinitely with the use of repeat-x. In some cases,
 Fierlinger added a background image in the #page <div> to frame the page
content. The following CSS contains sitewide styles as well as styles specific to
sections:

#page-shadow {
 top:0;
 height:200px;
 margin-left:850px;
 }
#memento {
 position:absolute;
 top:0px;
 left:320px;
 }
#tori {
 position:absolute;
 top:77px;
 left:17px;
 }

Figure . High-level overview of the different sections along with their <divs>.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 183

#main-nav {
 position:absolute;
 top:136px;
 width:760px;
 margin-left:20px;
 height:50px;
 border:0px solid green;
 }
#main-nav a {
 display:block;
 height:30px;
 margin-right:20px;
 text-decoration:none;
 float:left;
}
#nav-home {
 width:46px;
 background: url(“../img/nav/home.gif”) no-repeat 0 -30px;
 }
#main-nav a:hover#nav-home {
 background-position: 0 0;
}
#nav-musings {
 width:126px;
 background: url(“../img/nav/musings.gif”) no-repeat 0 -30px;
 }
#main-nav a:hover#nav-musings {
 background-position: 0 0;
}
#nav-music {
 width:48px;
 background: url(“../img/nav/music.gif”) no-repeat 0 -30px;
 }
#main-nav a:hover#nav-music {
 background-position: 0 0;
}
#nav-tours {
 width:48px;
 background: url(“../img/nav/tours.gif”) no-repeat 0 -30px;
 }
#main-nav a:hover#nav-tours {
 background-position: 0 0;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184 ADAPTING TO WEB STANDARDS

#nav-galleries {
 width:65px;
 background: url(“../img/nav/galleries.gif”) no-repeat 0 -30px;
 }
#main-nav a:hover#nav-galleries {
 background-position: 0 0;
}
#nav-press {
 width:46px;
 background: url(“../img/nav/press.gif”) no-repeat 0 -30px;
 }
#main-nav a:hover#nav-press {
 background-position: 0 0;
}
#search {
 position:absolute;
 top:140px;
 left:577px;
 border:0px solid yellow;
}
#search-box {
 width:124px;
 font-size:.9em;
 border:none;
 padding:6px 8px 6px 4px;
 border:0px solid black;
 float:left;
 }
#search-button {
 border:0px;
 width:66px;
 height:25px;
}
#search p {
 border:0px solid white;
 text-align:right;
 color:#999;
 font-style:italic;
 padding:0;
 margin:0;
 }
#search a:hover {
 color:#666;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 185

The following code comes from the Tours section’s CSS to show how its header
differs from other sections:

body {
 background: #F3F7F7 url(../img/tours/bkgd.jpg) no-repeat;
}
#page-shadow {
 margin-left:850px;
 background:url(../img/tours/page-shadow.gif) repeat-x 0 0;
}

#mic-chord {
 position:absolute;
 top:0px;
 left:320px;
}

#nav-tours {
 width:48px;
 padding-bottom:20px;
 background: url(../img/tours/tours-current.gif) no-repeat 0 0;
 }
#main-nav a:hover#nav-tours {
 background-position: 0 0;
}
#search-box {
 background:url(../img/tours/search-box.gif) no-repeat 0 0;
 _background-attachment:fixed; /* underscore hack for IE
positioning */
 _width:120px; /* underscore hack for IE positioning */
}

#search-button {
 _height:28px; /* underscore hack for IE positioning */
 background:url(../img/tours/search-button.gif) no-repeat 0 0;
}
#tours {
 display:block;
 float:left;
 width:181px;
 height:51px;
 }
#intro {
 width:46em;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

186 ADAPTING TO WEB STANDARDS

 float:left;
 padding-left:10px;
 padding-bottom:30px;
 }

.featured {
 display:inline;
 float:left;
 width:170px;
 padding-right:20px;
 margin-bottom:20px;
 }
.featured img {
 width:170px;
 height:108px;
}
.featured a img {
 padding: 0 2px 2px 0;
 margin-bottom:5px;
 background:url(../img/drop-shadow.gif) no-repeat 100% 100%;
 }
.featured a:hover {
 text-decoration:none;
}

.featured a:hover .title {
 text-decoration:underline;
}
.featured .title {
 font: 1.25em “Arial Black”;
 }
.featured h3 {
 font-size:.9em;
 font-style:italic;
 font-weight:normal;
 padding:0;
 margin:0;
}
.duct-tape {
 position:absolute;
 padding-left:70px;
 margin-top:-8px;
 z-index:2;
 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 187

img.duct-tape {
 width:40px;
 height:15px;
 border:none;
 }

Here’s the HTML for the headers on the home page:

<title>Everything Tori | Home</title>

<style type=”text/css”>
@import url(“http://everythingtori.com/go?css=core/general-css”);
@import url(“http://everythingtori.com/go?css=home/home-css”);
</style>
<script type=”text/JavaScript”>
<!--
function MM_openBrWindow(theURL,winName,features) { //v2.0
 window.open(theURL,winName,features);
}
//-->
</script>
</head>
<body>

<div id=”page-shadow”> </div>

<div id=”sitewide-store-link”><a href=”http://www.thetoristore.com/”
target=”_blank” title=”Link opens in a new window.”>visit the Tori
Store</div>
<div id=”sitewide-mail-link”><a href=”Javascript:MM_openBrWindow(‘/
mailing.html’,’mailing’,’width=400,height=450’)” title=”Link opens in a
new window”>Join the Tori mailing list</div>
<div id=”main-nav”>
 <a href=”http://everythingtori.com/go/home/” id=”nav-home”

class=”hide-text”>Home
 <a href=”http://everythingtori.com/go/musings/” id=”nav-musings”

class=”hide-text”>Musings & News
 <a href=”http://everythingtori.com/go/music/” id=”nav-music”

class=”hide-text”>Music
 <a href=”http://everythingtori.com/go/tours/” id=”nav-tours”

class=”hide-text”>Tours
 <a href=”http://everythingtori.com/go/galleries/” id=”nav-

galleries” class=”hide-text”>Galleries

http://lib.ommolketab.ir
http//lib.ommolketab.ir

188 ADAPTING TO WEB STANDARDS

 <a href=”http://everythingtori.com/go/press/” id=”nav-press”
class=”hide-text”>Press

</div>
<div id=”search”>
<form method=”get” action=”http://www.google.com/search”>
 <input type=”text” name=”q” maxlength=”255” value=””

id=”search-box” />
 <input type=”image” src=”img/x.gif” value=”submit” alt=”Search

(using Google)” title=”search using Google” id=”search-button”
/>

<p>search using Google</p>
 <input type=”hidden” name=”domains” value=”everythingtori.com”

/>
 <input type=”hidden” name=”sitesearch” value=”everythingtori.

com” />
</form>
</div>

Compare the home page HTML to the Tours section’s header HTML:

<title>Everything Tori | Tours</title>

<style type=”text/css”>
@import url(“http://everythingtori.com/go?css=core/general-css”);
@import url(“http://everythingtori.com/go?css=tours/tours-css”);
</style>
<script type=”text/JavaScript”>
<!--
function MM_openBrWindow(theURL,winName,features) { //v2.0
 window.open(theURL,winName,features);
}
//-->
</script>
</head>
<body>

<div id=”page-shadow”> </div>

<div id=”sitewide-store-link”><a href=”http://www.thetoristore.com/”
target=”_blank” title=”Link opens in a new window.”>visit the Tori
Store</div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 189

<div id=”sitewide-mail-link”><a href=”Javascript:MM_openBrWindow(‘/
mailing.html’,’mailing’,’width=400,height=450’)” title=”Link opens in a
new window”>Join the Tori mailing list</div>
<div id=”main-nav”>
 <a href=”http://everythingtori.com/go/home/” id=”nav-home”

class=”hide-text”>Home
 <a href=”http://everythingtori.com/go/musings/” id=”nav-musings”

class=”hide-text”>Musings & News
 <a href=”http://everythingtori.com/go/music/” id=”nav-music”

class=”hide-text”>Music
 <a href=”http://everythingtori.com/go/tours/” id=”nav-tours”

class=”hide-text”>Tours
 <a href=”http://everythingtori.com/go/galleries/”

id=”nav-galleries” class=”hide-text”>Galleries
 <a href=”http://everythingtori.com/go/press/” id=”nav-press”

class=”hide-text”>Press
</div>
<div id=”search”>
<form method=”get” action=”http://www.google.com/search”>
 <input type=”text” name=”q” maxlength=”255” value=””

id=”search-box” />
 <input type=”image” src=”img/x.gif” value=”submit” alt=”Search

(using Google)” title=”search using Google” id=”search-button”
/>

<p>search using Google</p>
 <input type=”hidden” name=”domains” value=”everythingtori.com”

/>
 <input type=”hidden” name=”sitesearch” value=”everythingtori.

com” />
</form>
</div>

Adding #memento gave each section a defining symbolic image, which seamlessly
integrated the background texture and the page shadow. Other standard header
elements include the #tori logo, the #main-nav, and #search. The search input
field #search-box and the #search-button use background graphics to blend
smoothly with the overall page texture. To achieve that effect, the search button
used a fully transparent x.gif so that it can use the same HTML template sitewide,
and then the CSS defined the custom background image for the button and the
input field.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

190 ADAPTING TO WEB STANDARDS

Launching the Site
Many Web design projects tend to have project-management and designer/client
communications challenges. Fierlinger worked closely with Chelsea Laird from
The Bridge Entertainment Group, Tori Amos’ management company, during con-
struction of the site. Chelsea handled the content loading, along with the day-to-
day client coordination. As the project neared completion, the project involved
many content and design changes. The team coordinated and managed all of the
work online, including uploading the changes directly to the site. Communica-
tions relied heavily on email exchanges and daily instant-messaging conversations.

The team selected the go-live date to coincide with the launch of a new book
and album. As with most design projects, something entered late in the game—
 suddenly, the client wanted a new section of the site dedicated to the book proj-
ect. The team rushed to put together a blog section for the book and launch the
site. Adding the new section was easy because all of the elements for the frame-
work were in place.

Upon site launch, fans raved about the new site, to the great relief of the design
team. Only one major issue occurred after launch. The site contained full-length,
high-quality MP3 files for every track from every album and single Tori Amos
released. It was a great idea, but the challenge came in preventing the ability to
illegally download the tracks. Fierlinger monitored the Web site’s traffic and the
forums for people discussing the site. More importantly, he wanted to watch for
the possibility of someone copying all the MP3 files.

Within a couple of weeks after launch, someone figured out how to do it, and
mentioned it in one of the forums. As a result, the client edited all of the tracks
down to 30-second samples.

The designer continued supporting the site until the management team got into
the swing of updating and editing content, and they took control of it.

The site has been successful for over three years now. Fierlinger kept an eye on
the site by subscribing to its RSS feed and receiving user feedback through emails.
He concluded that the site continued to perform well and was doing exactly as
expected. The client has successfully added new pages or sections, and frequently
updated the content. Furthermore, the home page changed nicely to reflect the
newest project. Thanks to the planning for growth and evolution, the original
structure has adapted well to continuous changes.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 191

Meet the Designer, Philip Fierlinger
Philip Fierlinger’s parents ran an animation studio out of the family’s home, sur-
rounding him with the whole design and production process. He took an inter-
est into computers as a child and learned BASIC by playing around with Beagle
Brothers, the first “open source” code he ever used. Eventually, he expanded his
knowledge to include databases, and created a contact database for his mom. He
studied industrial design in college, completing his final semester in an intern-
ship with a top-secret startup called General Magic in Silicon Valley. Though he
received an internship offer from Sony in New Jersey, he couldn’t pass up the
opportunity to work with the original Macintosh team on a new handheld com-
puter platform.

How did you get started in Web design?

In 1994, I started Turntable with my brother, Peter. We believed we could create
interactive designs and do development better than many of the companies
we knew. With no money and nothing to lose, we applied their powerful ideas
and passion to build a prototype of an interactive online music store. This
came at a time when Mosaic [one of the earliest Web browsers] didn’t exist;
people considered CD-ROMs an expensive and unattainable technology; and
14.4 BPS modems were state-of-the-art technology, only known to über geeks.
The store focused on the ability to browse an online music catalog, to listen to
samples, to watch music videos, and to buy music online. This idea was almost
10 years ahead of its time.

 We pitched our prototype to several major record labels. They were baffled
and perplexed. They had no idea what to do with us. Although they were
impressed, they were unconvinced that what they saw was relevant to their
business. I emailed Ian Rogers, a kid in Indiana who did a fan site for the Beastie
Boys. I told Rogers about an idea for a Beastie Boys CD-ROM that connected
to and integrated with his fan site. It turned out the Beastie Boys hired Rogers,
who pitched my idea to the band. Within a few weeks, I went to L.A. to do a
QuickTime VR [experimental technology then still in development at Apple]
shoot of the Beastie Boys’ studio. Those of us involved in this project were
among the first to use QuickTime VR. We also worked out a deal with Micro-
soft to include Internet Explorer 1.0 on the CD because of the difficulties in
dealing with Netscape. This tie-in was one of the first browser bundle deals.

 The Beastie Boys project established our company as a leading digital design
and development company. We had no trouble landing projects from big-
gies like Apple, Palm, and Macromedia. We continued to take on projects for

http://lib.ommolketab.ir
http//lib.ommolketab.ir

192 ADAPTING TO WEB STANDARDS

underground bands we loved, including Dr. Octagon, the Invisible Skratch,
Piklz, Money Mark, and Mo’Wax.

 Thanks to our relationship with Macromedia, we developed the first Shock-
wave audio player soon after Shockwave came out. Later, I started working
on Flash 4, when Flash came with programming capabilities. Unexpectedly,
we stayed busy during the dot-com days by designing and developing sites for
many crazy startups.

 By 2001, I moved to New Zealand with my wife and son, where I went to work
for the country’s top Web agency, Shift (shift.co.nz). The company gave me the
incredible opportunity to work with a team of young designers doing some of
the best design work in the world. With Shift, I put my Flash skills to work in
building powerful cultural Web sites—a stark and refreshing change from the
dot-com and rock-star Web sites.

 During my time with Shift, I learned heaps about designing for large-scale
online publishing, giving me the skills to design for scalability and performance
and develop flexible templates using dynamic grid systems. Obviously, this
experience with Shift prepared me for the Tori Amos project.

 While I worked on the Tori Amos site, I worked on a redesign for NewZealand.
com at Shift. The redesigned site won a Webby Award for best tourism site
and a nomination for best home page design, and another Webby the follow-
ing year. I moonlighted on projects for U.S. clients while still working full-time
for Shift in New Zealand. I worked with U.S. clients, including DreamWorks,
Comcast, Warner Brothers, and Capitol, and many others from New Zea-
land—the geographical separation didn’t cause any issues.

 Not one to shy away from new things and innovation, I helped form Xero.com,
a startup based in New Zealand, which created an online accounting system.
As lead interaction designer, I enjoyed the challenge of turning the boring and
painful world of accounting into a sexy, simple, and fun experience. It was an
appreciated chance to focus on a product and continuously refine it, rather
than switching between projects and clients.

How did you take an interest in Web standards?

I started moving away from designing and building static sites into creating
dynamic, data-driven sites. In the process, the limitations of defining visual
design in HTML became painfully obvious. Building database-driven sites frees
up the content into an abstract object that you can manipulate independently
of the code and the visual presentation. If you use HTML for both structure

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 193

and style, then you are very limited in what you can do with your content. Any
changes you want to make require editing code across every page and tem-
plate in your site. Everything is hard-coded. Changes are painful and extremely
prone to errors. Plus, your design options are very restricted.

 Ideally you want to write and edit your code in one place and have it refer-
enced in many places across your entire site. CSS is designed to do exactly
that: You can make one simple change in one class and it instantly changes
your design wherever you use that class reference within your entire site. That
makes building sites very efficient. It also gives you a lot of design flexibility
and freedom.

 Of course, massive credit is due to Jeffrey Zeldman for his crusade to make
people aware of CSS and Web standards, plus David Shea for putting together
the CSS Zen Garden, making the path to better design and development quite
obvious.

 For these reasons, I applied Web standards to EverythingTori.com.

What are the more common issues you run into with CSS? How do you deal with
them?

Browser issues and general quirks make working with CSS tedious. It’s amazing
how quickly you can get 90% of your design built in CSS. Finishing that last
10%, getting things pixel perfect, can be excruciating. The problems become
exponential when you’re targeting a wider range of browsers, especially older
ones. Therefore, I try to limit the number of target browsers and keep it to the
most current. Of course, IE is always the biggest nightmare, and there’s gener-
ally no avoiding it.

 Also, it’s very annoying that tables handle many layout and grid structures
exactly how you want, much easier and more predictably than using CSS
floats, but they often don’t play well with CSS and they have their own draw-
backs. Being able to use the table attributes of CSS would be great, if browsers
supported it properly. CSS still isn’t ideally suited as a complete publishing
solution. It was never really designed to handle grid layouts with multi-column
flow, so the solutions people use are all hacks. It would be wonderful if CSS 3
became mainstream, but it seems like that day, sadly, is still far off.

Who or what influenced you?

My biggest influence is my wife Hadley (www.shescrafty.com). It’s extremely hard
to pass the wife test, and it’s a great feeling when it happens. Over the years,
I’ve collected screenshots of any Web site that catches my eye. I wish I’d been

www.shescrafty.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

194 ADAPTING TO WEB STANDARDS

doing it my whole career, because there are some sites that are long gone that
I wish I could refer to. I often peruse my collection for ideas and inspiration.
Here’s a short list of some of the sites and designers that always grab my atten-
tion and give me ideas:

❖ grant.robinson.name—online home of one of the best designers and Flash
developers I have ever had the pleasure to work with

❖ Shift.co.nz

❖ 37Signals.com

❖ Google.com

❖ Flickr.com

❖ Odopod.com

❖ CSSZenGarden.com

❖ CactusLab.com

❖ l3che.com

❖ cape-acrona.com

❖ ths.nu

❖ AestheticApparatus.com

❖ Ourcommon.com

❖ Wrecked.nu—the original Wrecked.nu had incredible textures and
interactions.

❖ Urban Outfitters—for years I collected their print promos at their stores;
their emails can be really excellent.

❖ Iso50.com

❖ SecondStory.com

❖ Gutterlife.com

❖ 24-7media.de

❖ Miikasaksi.com—his original site Smallprint.net had a huge influence
on me.

❖ Dooce.com—she used to do constantly changing, beautiful headers for her
old site.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  EverythingTori.com 195

End Song
These sites undoubtedly influenced Fierlinger’s works, as some of their elements
appeared on his designs. And as an innovative designer, his work most likely influ-
enced many other designers. Concerning the Tori Amos project, Fierlinger said he
was happy with the project and its results. He had fun designing and building it,
since it gave him the opportunity to design something visually expressive with a
solid and smart structure. Furthermore, he had creative freedom and the client
listened to his ideas and direction. In turn, the client provided him with great
guidance, feedback, and support for managing the content.

Looking back at a project, most designers, including Fierlinger, cringe at all the
glaring imperfections taunting them. They dwell on the things they didn’t have
time to fix, or discover that the client mucked things. For EverythingTori.com,
Fierlinger was completely satisfied with, well, everything. He didn’t see anything
he wished he could’ve done differently. The fast-changing world of Web design
and development can quickly outdate a Web site, but not with EverythingTori.
com. He can look back on this project with complete satisfaction.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7
AOL.com

AOL has a long and conflicted history with the Web. AOL started its “life”

as an Internet Service Provider (ISP), and all the content viewed by our

members—before the Web was born—was experienced in a series of pro-

prietary screens we called “forms.” As a company, it took a while for us to

“get” the Web and understand the value of moving our content out of the

AOL client and onto the open Web. The company’s main portal, AOL.com,

had already been around for years (see Figure .), more of a marketing

site than a content portal.

This first-person perspective is provided by Kevin Lawver, a 12-year veteran of AOL’s Web
development teams.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

198 ADAPTING TO WEB STANDARDS

Figure . AOL’s home
page circa 2000.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 199

In 2005, Jon Miller, AOL’s then-CEO, started a project to change all of that.
He wanted AOL to open up, to get all of our content onto the Web and out-
side of the traditional desktop client. The first step to this was to open up the
company’s home page. As with most high-profile projects with a lot of execu-
tive involvement, the timeline was short, the list of requirements long, and the
expectations high.

A small group of folks did the development work on AOL.com, integrated all the
different Web services, wrote all the code, and worked with our internal experts
in design, optimization, and accessibility to make it work in as many browsers as
possible, as quickly as possible, and available to as many people as possible.

This chapter shares, directly and indirectly, some of the processes, techniques, and
lessons they learned while building and maintaining one of the largest and most
highly trafficked sites on the Web.

Setting Your Team Up for Success
and Avoiding Failure
Launching a complete redesign of your company’s site, knowing that you’re facing
dozens of integration points and an army of stakeholders, all under a tight dead-
line that the entire company knows about, is daunting. That AOL.com launched
on time (or at all) was due more to the efforts of the team setting themselves up
for success at the very beginning of the project than to any other factor.

The key to speeding things up during the process of defining the requirements
and design for AOL.com was getting the developers involved in the process early.
We’ll discuss what went wrong with the project, and how the development team
compensated and handled those setbacks by “cheating ahead” and being flexible.

What Went Wrong
No project is perfect, and AOL.com had its fair share of problems from the start.
The AOL.com redesign was the cornerstone of AOL’s move from being primarily
a dial-up ISP, built around yearly client releases, to a Web company built around
Web products supported by advertising and premium services. This was a bold
move by the company’s CEO, Jon Miller. He wanted to make a statement to the
company, AOL’s users, and the market that AOL was changing, and AOL.com was
the main vehicle for that change. That kind of visibility to all parts of the com-
pany and to upper management meant that almost every product decision went

http://lib.ommolketab.ir
http//lib.ommolketab.ir

200 ADAPTING TO WEB STANDARDS

through several layers of management in order to come back to the team as an
actual requirement. This created “swirl,” which is deadly if you’re looking at a hard
end date.

Another important part of this project, as with most large development efforts,
was communication. Because of all the groups involved both in the requirements
phase and in integration, there were copious opportunities for communication to
break down, for things to get missed, and for unforeseen problems to cause major
delays.

A third issue was dealing with a development process that didn’t fit the project
and caused more problems than it solved.

To wrap up this section, we’re going to talk about attitude, and how to think of
development as a craft. During the interviews conducted for this book, it became
clear that a common thread ran through all them: These folks all treated their
profession as a craft. We’ll define what it means to be a craftsperson and how that
can help you deal with even the most problematic projects.

We’ll start by letting the main players introduce themselves and explain their roles
on the team.

Let’s start with you, Michael—what do you do?

Michael Richman: I’m the technical lead and architect on AOL.com backend and
front-end and client-side.

And for people reading the book who don’t know what an architect does…?

Michael: I help to shape the decisions on the best way to implement each of the
requirements that come to us, balancing all of the stakeholders’ concerns. So,
my goal is always to make every constituency happy. That includes product,
project management, portal, the performance team, the accessibility team,
the QA team, the development team, and ops. So, basically, in every step of
the way I want to meet the requirements either perfectly or better than they
envisioned it. I want to do it in a way that makes it easy to test.

 I want to try to repass the requirements and anticipate what extra requests
are going to come down the pike in the future to kind of get ready for those.
So when we design the solution and design the implementation of a require-
ment or set of requirements, we want to do it in a way that’s flexible enough
so when they inevitably come in with a different spin on it, we actually have
already done that.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 201

 And then, also, we’ve learned over the past few years to keep in mind the
accessibility and the performance teams’ requirements as well, which was
definitely a learned behavior.

And Kevin, what about you?

Kevin Luman: I’m the technology manager for AOL.com, which always involves
me being the first line of, I don’t want to say, defense…

If it is, it is.

Kevin: [laughs] Or point of contact, you could say, between all of these groups.
It doesn’t mean they don’t go to Michael or any other individual contributor.
But I see one of my main goals as trying to filter out as much as I can so that
when they come to the team, at least the request comes with as much meat as
possible, as well-formed as possible, so they can continue doing what it is that
they love, which is writing software.

When I worked in Search, we used to call that the “umbrella.” Is that how you
still see it?

Kevin: Yeah—my job is to keep the rain off.

Michael: I like to think of Kevin more as a momma bird…We have a dev team of
tiny chicklets sitting in a nest squawking with their beaks open waiting for the
manna to fall from heaven. Oh no, I’ve mixed my metaphors.

Kevin: I think it’s probably appropriate, especially in this place and this product
where it really is a never-ending onslaught of just random requesters for a
feature or just they want information. It could be other technologists looking
for data.

 Michael would never be able to do his job if he was having to do nothing but
field these requests on top of all the other requests that really are related to a
particular release we’re working on at that point in time…so I’m trying to do a
lot of advance work too.

 It’s not only protecting but sheltering the team from a lot of these requests.
But it’s actually working to refine them, as well as trying to do some
advance work.

We’ll continue the interview in the following sections to illustrate exactly how
Kevin and Michael led the team through the different challenges they came upon
(and continue to—the team is still together and still working on AOL.com, so a lot
of these lessons are from more than just the one redesign we’re discussing in this
chapter).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

202 ADAPTING TO WEB STANDARDS

Rowing Through the Swirl
The number of stakeholders in AOL.com was daunting. Every decision was up for
debate at several levels of management, from directors all the way up to the CEO
of the company. This created a lot of uncertainty, misinformation, and a con-
stantly moving target. This made it very difficult for design and development to
move forward on anything other than the most preliminary of explorations.

How would you guys define swirl?

Kevin: For me, the experience is generally comes from a lack of defined leader-
ship in that it creates a vacuum, and swirl is kind of an appropriate metaphor
in that people just kind of move around and there’s no real goal or aim. They
tend to debate and go to these meetings upon meetings on just something.
And it’s somewhat aimless. I think an example right now that I’m working
with is the Mexico and Puerto Rico portal. They want to start it but they’re
not quite sure how. It’s not in the official channels even. It’s not on the Plan of
Record [a list of priorities for a particular business unit within AOL].

 And they’re asking me about the level of effort. Well, hey you guys, first let’s
step back, because they’re starting to swirl. And if you let it continue on that
path, the worst possible scenario is people actually start doing work on this
thing that’s not quite defined. And who knows if it has executive sign-off to
even launch if it got code ready.

I see two types of swirl: Vertical, which is where a product manager makes a
decision, people start moving on it, their boss remakes the decision, it goes
up, like hail where it starts as a raindrop but it keeps getting kicked up and
down the management chain until it becomes this gigantic ball of ice and
crushes your car.

 And then there’s horizontal swirl, where it’s just peers, and you can’t decide
on what the priorities are, and therefore you get into a stalemate and end up
not accomplishing anything. I think AOL.com had both because everything
had to go way up the management chain. And even when it went up all the
way, it sometimes came down totally different.

Kevin: It comes down filtered or reinterpreted. I see a lot of it, and it looks like it
arises from an offhand comment that an executive makes that is interpreted
as a mandate.

Michael: I would only add that swirl is largely marked by a series of unproductive
and circling meetings.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 203

Kevin: And I would add, part of my job if I’m doing it correctly is that Michael’s
not, and the rest of the team are not, in those meetings. Hopefully I’m success-
ful, for the most part.

That leads right into my next question: How do you stop swirl and get some-
one to make a decision? And how do you make progress while it’s going on,
because you still have a hard date at the end?

Kevin: The biggest thing is finding out what are the decisions to be made, and
defining that. And from my experience, what we try to do is just tell them:
“Stop. And step back. What are the goals you are after?” And then, if they don’t
know, tell them: “Well then, why don’t you take a couple of days, write a PRD
[Product Requirements Document] or an email, or document in some way
what it is you’re after, and come back.”

Michael: The other aspects of it I think are effective are having a really strong
facilitator on meetings, and a very strong position when you’re representing
the dev team and saying: “We can do this, whatever you want to do once you
define it, but here are the impacts.” And it’s one of the things that we do, if
there’s swirl going on, we say: “We need to know by this date, or the date slips
day for day.”

 And that’s the kind of thing that’s really effective, because the dates are really
important to upper management, usually. So as soon as you put it in very real
terms and put your stake in the ground, you have to say: “Hey, you can’t do
work until what you are supposed to do is clearly defined.”

 So that’s one mistake. The other way around for the mitigated is to say: “You
have until next Monday, or next month,” or whatever it is, give them a specific
date, say: “This is when we need to know the final requirement, if we are to
keep the schedule. If you don’t care about the schedule, then you can take as
much time as you want, we’re not going to work on anything.”

Kevin: Generally, we say we’re going to continue proceeding upon the current
path, or whatever path, but generally it’s current path, and like Michael was
saying, at such and such point, it’s too late. Without impact. Like, this is the
point we can’t absorb it anymore. Or, beyond this, if it’s not in their work too
far in development, we’ll have to scapegoat.

Communication Is Everything
As soon as requirements came up, Kevin and Michael started doing research.
They did their best to uncover integration points and potential problems, and
communicate those back to the team. The larger a project team is and the more

http://lib.ommolketab.ir
http//lib.ommolketab.ir

204 ADAPTING TO WEB STANDARDS

groups it involves, the more important communication becomes. A good proj-
ect manager is essential to getting the right information to the right people, but
developers often lack communication skills or inclination to communicate prob-
lems and issues back to the team. It’s not a sign of weakness to have issues; it’s a
fact of life in every development project. Being able to communicate effectively is
a key skill that developers need to cultivate: communicating just the facts, with-
out emotion, while explaining the likely consequences and possible solutions.

You’ve mentioned setting deadlines and measuring the impacts. How do you
develop this skill of laying out those facts and communicating them up in a
way that will drive people to do the right thing?

Michael: I think a lot of that has to do with our track record as a team. I mean,
you can do that if have a strong position and a strong way of delivering it. We
have a really good working relationship with Product and Project Manage-
ment, and we have also a good history on delivering things on time, and have
been fairly accurate on our estimates. So, maybe that’s somewhat of a credibil-
ity issue. But I think you can do it also if you are just confident in your delivery,
frankly.

 And it doesn’t have to be antagonistic. I’m not painting an adversarial picture,
it’s more…collaborative.

What I’ve always tried to do is to be as transparent as possible. To build trust.
So I figure, if they know everything I’m doing, there’s not that question of,
“Well, is that padding, are they overestimating a feature because they don’t
really want to do it?” Right?

Michael: Yeah, kind of like our reviews…

Kevin: …in the standard document I do for LOEs (Level of Effort), right? Where it’s
a very formal, tabular format; I repeat their product request. We go through
it, we put the hours there, how many developers can work on it; and then all
of our assumptions. So they see what we’re thinking, what we were thinking
when we came up with this.

 And I think that leads to that sort of transparency, credibility, and you build
that. You know, you won’t have it at [first], but the more open and transparent
you are with your internal processes, especially in dev, I think kind of nips in
the bud any of those distrusts.

Right. You’ve both touched on it: Trust is key. And, you didn’t use these words,
but “constructive” and “collaborative…” You don’t just say “Oh, this is a
stupid idea.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 205

Kevin: Yeah, you say “Here are the issues that we have, technically, with this idea;
and here’s what we’ve seen work with other products.” It usually comes up
with regard to a feature that maybe, you know technically as a developer, is
just crazy, as far as a request goes. But you don’t want to say: “Hey, that’s a
crazy obscene request,” you know? Just tell them the facts: “That’s going to be
weeks of development.”

 But I always say, that’s only half. Because I’ve seen that happen before with
other managers and leads, where it’s just shoot down, shoot down. And
Michael is very good at this…you want to do it in a constructive way, and you
can do that in telling them a cost. Because that’s really what they want to hear
and what, more than anything you could say, will kind of hit them with the
reality of it, is just the time it will take, and the cost.

But you don’t want to leave them hanging there, right, with their product up
in the air?

Kevin: Right, you need to think about, can that feature, if tweaked another way,
can they get half of what they want? Can they get 95% of what they want, if
they’d just drop maybe one particular piece?

Michael: Right. Mostly you have think that the product-owners don’t really know
where they benefit from the collaborative relationship with dev.

Kevin: It builds trust.

Michael: Yeah. The other thing—the only negative effect of being kind of reac-
tionary to crazy requirements is that you don’t want a product to be gun-shy,
and that’s what you get with that. You want them to think pie-in-the-sky,
because for all you know, they’re going to think of a really neat feature that is
actually easy to implement, whereas if you have this kind of knock-heads rela-
tionship where they’re somewhat timid about bringing requirements, or they
perceive it as complicated or difficult to implement, they might just not bring
it, and you definitely don’t want that.

Kevin: And that’s what I say: If it’s an us-versus-them, an adversarial relationship,
and not a team…you’ve lost before you’ve started. If that’s how you’re coming
in as a dev team approaching your product, whether you’re a contractor or
internal—you’ve lost before you’ve started. It’s not that they’re your customer,
it’s that they’re your peer, your equal, and we’re all trying to create this one
product, and we all have come at it with a different aspect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

206 ADAPTING TO WEB STANDARDS

Battling the Waterfall: Getting Involved Early
When the project started, AOL still operated in the “waterfall” method of devel-
opment. Each group involved in a project did its bit pretty much in isolation:

❖ Business owners created requirements and produced a Product Requirements
Document (PRD).

❖ Designers produced user interface and visual designs, and went through a
lengthy review process through several layers of management, and then pro-
duced a Design Requirements Document (DRD).

❖ Development didn’t usually start development until at least the PRD was com-
plete and signed off on. Once the PRD was signed off, the development lead
produced a Technical Requirements Document (TRD) and a System Design
Document (SDD).

This model is great if you want to produce a lot of documentation, are working
on huge projects with lots of integration, and have both a long development cycle
and a known end date far in the future; and it was developed while AOL was pro-
ducing client software that had maybe two releases a year. It’s not so great if you
have to produce a final product very quickly, or for things that move quickly, like
most Web applications. Most teams at AOL are switching to the more agile and
collaborative Scrum model of development but AOL.com is a good example of
a team working around a cumbersome process to get things done the right way,
and to get them done more quickly than working within the usual system would
have allowed.

During the requirements-gathering phase, while the PRD was still being created,
Kevin Luman and Michael Richman would find requirements that felt very close
to final and start working on them. This might be as small a thing as looking for
services within the company that provide that feature, or building infrastructure
to feed the user interface. That “cheating ahead” allowed them to make progress
while the rest of the organization made up its collective mind, and get some time
back for the inevitable last-minute changes and additional requirements.

David Artz and Kevin Lawver were involved in the design process from the begin-
ning, weighing in on both potential performance problems and technical feasibil-
ity. They worked with designers and executives to lay out the pros and cons of
each and give guidance where needed. Their success proves the point that it’s
essential to have the developers get involved early on. We’ll talk more about this
in detail in the next section.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 207

So the big question—and I think the one that developers are most concerned
with—is: How do you insert yourself into the process early on while still
being collaborative and constructive and not coming off as intruding on the
process?

Kevin: A lot of it, again, comes back to that trust factor in a team. If you have that
trust, you are invited. And if you don’t, then I would reach out and tell them,
“Hey, we are really interested in what is going on in design. Could we come to
one of the meetings?” Just ask. Let them know, it’s not the whole team, but we
would like to get some insight.

 I think we are still using the waterfall and it has actually been pretty produc-
tive. The way we do it is that a lot of it is in parallel, just kind of staggered, like
in a staggered, parallel well. Take the co-brands (advertising features on AOL.
com): I have done a lot of work without even Michael there, working with
them in the PRD and even like the DRD requirements and just sanity checks.
Then bringing Michael in when it is a little more baked. That’s how I have seen
what’s been going on.

Michael: I think that’s right. Interestingly, we are probably not as involved as the
Scrum process has the whole team involved and everybody involved. But it
hasn’t really presented too much of a problem for us.

 Recently we actually had a Scrum-like brainstorming session for requirements
and it was really productive. I think everybody thought so—product, QA,
development, everybody. Several ideas from that made it into the next set of
requirements.

 So I don’t know that we as a team really know the full benefits of the more
Scrum-like process because we haven’t done it so much. But, like I said, we
haven’t really run into many problems with the process probably because we
are a tight team. Maybe we don’t know what we are missing, what potentially
great things could have come out of the last year and a half or two years if we
had been doing that process. But to the extent that we have had the involve-
ment, it has been working fine.

Kevin: But I wonder too, and having not done Scrum I don’t know. Like Michael
mentioned, we could be missing out. The process right now—the sort of
waterfall-ish process we use, the parallel waterfall, has been working well. We
have been getting tons of releases out on time.

 I don’t know if AOL.com as a product would lend itself to Scrum very well,
given that a lot of it is date driven. From upper management and—sometimes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

208 ADAPTING TO WEB STANDARDS

not necessarily so much from upper management but because of contracts
that are due. Especially with co-brands—you will get a contract that has to
be done by this timeline. And they really need that projection, especially with
sales, because marketing and sales sell ahead and they need to know, “OK,
what are the new spots going to be? And when are they going to be delivered?”

 Maybe Scrum can be worked in that. I don’t know.

It can. So to go back, it sounds like the “how” is you just have to build that trust
relationship. You have to start by being open and transparent and putting
your cards on the table first, before anyone else will.

Michael: Yeah, it’s funny how we keep going back to that—much more than I had
anticipated.

That’s come up more and more for me recently. All development problems and
everywhere that a project goes wrong is very rarely technology. It’s almost
always people. And it all comes back to trust. If development doesn’t trust
design and vice versa, then you don’t have that collaboration because col-
laboration is built on trust. If design thinks that we are going to use that
against them or not implement what they deliver and we think that they are
going to give us crap that is not implementable, well, that is exactly what
you’re going to get.

 It’s the same relationship on either side of the development. You’ve got
product. If you don’t trust product you’re not going to believe that what they
want is actually what they want. If QA doesn’t trust development, then their
estimates are going to get blown up and you’re never going to launch any-
thing on time.

Kevin: There is also something I know that we touched on with maybe some of
the lower stakeholders. Like say, for us, it may be the accessibility team or the
performance team. And especially in 2005 we were really good as far as us
bringing them to the table. And I think that built a lot of trust too.

I want to go back to that in a minute. Michael mentioned it earlier about antici-
pating both consequences and people that we need to go and talk to. But
just to finish the wrap-up on the getting involved—so, as the tech manager,
you are involved really early.

Kevin: Yeah. I help manage swirl and help refine requirements, and then, when
they are a little more solid, Michael comes in and he can poke and prod a bit
but they are pretty well vetted.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 209

 Then the same thing happens with design. I get involved early on with sketches
and then Michael comes in when things are little more baked. And I think
being a developer has helped tremendously.

So if you weren’t a developer before you were a manager, would you have
Michael involved earlier in the process?

Kevin: Yeah, I would have to bring him in a lot earlier on. I don’t know how much
of that kind of parallel stuff we could do if that were the case, though, because
Michael would be stretched too thin.

That’s true. You would need another.

Michael: You would almost need, like, tag team leads, so that one person could be
leading the current development cycle while the next lead is working on the
design and brainstorming stages.

Kevin: And I don’t know if I am writing myself out of a job. [laughter] But I am
kind of doing that, and cultivating that, for other reasons, like bringing Jason
up as another type lead.

 From an advantage perspective, I want him to grow. I want all the members
of my team to grow for their own careers’ sake. I am self-interested, of course.
I’m looking out for the company. I also want redundancies. But that also helps
with, in this perspective, if I weren’t able to technically evaluate things on my
own, I could have Jason lead.

Well, it almost doubles your capacity at that point. You can be involved in two
projects extremely early on and then bring them in and you don’t really mess
up a current development cycle, you can just do more because you have
more resources.

 Now I want to go back. I think it is really important to be able to anticipate
problem spots. This is going to be really hard to answer. It’s a skill. I think
anyone can do it. It’s just a skill. So how do you develop that skill? Is it just
experience, or are there other things that you can do?

Kevin: Like share tips.

Michael: And like the skill of anticipating the future requests and having that
influence how you implement current requests.

Yes, all of that. I’ve called it “cheating ahead”—Mark Robinson’s term—where
you can see a requirement and you know the kernel of it. You can distill
and synthesize it quickly and turn it into something that you can do before

http://lib.ommolketab.ir
http//lib.ommolketab.ir

210 ADAPTING TO WEB STANDARDS

maybe it’s absolutely final. I think you’ve both mentioned that. How do you
do that? How do you learn to boil those down?

Kevin: One of the things I do—and I did actually even in the very first beta—was
early prototyping. And I know there’s other people on the team. Michael has
done that as well. Even just now. Right? With the “draggable” make-this-my-
home-page kind of thing.

 So, we do a lot of that. A request will come in. I worked on prototypes for AIM,
supertab, video. Those are ones that we knew, even before the DRD was com-
plete, getting that done so you can scope it when you do your LOEs. You’ll be
able to anticipate some of how it would work and feed that back to the prod-
uct people with advice on how you think it should probably work, technically
as well as program-full.

 I think that helps a lot, especially with some of the more meaty problems that
are going to be hard to LOE. Some of these easier ones we’ve got down and any
experienced developer knows. Some little piece-of-the-page widget with 10
links is going to take them a number of hours.

 But some advanced AIM supertab, integrating in a new API you’ve never really
looked at, it’s going to be a complete SWAG unless you’ve done prototyping
beforehand.

Michael: In terms of implementing requirements, implementing features in such
a way that leaves the door somewhat open for future aspects of them, one of
the things that that makes me think of is the whole…Two different ends of the
spectrum are the person who has developed the skill to do that really well, and
I don’t know if you want to use the AOL.com team as an example of that or
not, I don’t know. We do it pretty well.

 So compare that to the other end of the spectrum. I always think of, like, the
outsourcing teams, right? Not to bash India, but the biggest problem that I’ve
had working with developers in India is usually that they need letter-by-letter
instruction on how to implement things, and they don’t stray from it.

 And they need letter-by-letter instructions on the details, like implementation
details, which is really what you’re talking about. We’re talking about how you
implement something, which decisions you make to lead you down one path
versus another.

 Like, Path A will be a very limiting path for the future but will still fulfill the
requirements. Whereas Path B will fill the requirements and leave you open.

DEFINITION

SWAG, in case
you are curious,
stands for Stupid
Wild Ass Guess.

DEFINITION

SWAG, in case
you are curious,
stands for Stupid
Wild Ass Guess.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 211

Kevin: One example that came to mind that you always do and the team does
well, is published parts on the page. Take for example that link-list module. The
list of links. They’ll say, “OK, we just want the links. And we want six.” So, [our
response is] usually, “They want six. Let’s put 10.” For when that one more or
two more come in, as well as, “Let’s make the title publishable.”

 Because, yeah, even when they say they want it to be the “happy, fun module,”
tomorrow it might be the “extremely happy, fun module.”

Michael: Yeah. That captures the whole mantra that we have that nothing is hard-
coded. We hard-code nothing. If we can, we make the configuration publish-
able. We make everything tweakable and publishable through a tool.

 My goal, as I always state it, is to write myself out of the process. That’s always
been my goal. And maybe it comes from the fact that the best developers are
the laziest developers. Right? In a way. Because I want to do the least amount
of work in the future.

 So, the better I write the thing today, the less I have to do later. And when
the requests come down the pike for things, I can say that’s publishable, and
everybody’s happy. So, definitely, the “hard-code nothing” mantra is a big one.

Kevin: There’s a danger here, though, and I’ve seen it: over-engineering.

Michael: Sure, yeah. There’s definitely the balance. You definitely have to keep the
balance.

So, is that purely experience? To develop…what’s that line?

Michael: I think in a way that it’s a continuum of experience and intuition. And if
you don’t have the intuition, you need more experience to make up for it.

 Probably, some people can come out of their development training and start
on day one, and since they’re a very intuitive person on this level, they can
make guesses as to how to do things. But if you don’t have that, you need to
use the past experience to build that up.

So, a lot of it just is having the experience to develop that intuition and say, “I’ve
seen this before…”

Michael: Yes, exactly.

“…And this is what worked last time and this is what didn’t.” I think the other
part is creativity. I find this in hard-core computer science guys who come
out of college with a master’s in computer science, where everything is a [xx].
It’s all the same solution, it doesn’t matter what the problem was.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

212 ADAPTING TO WEB STANDARDS

 Where if you have some creativity, you can find a different solution that may
be more…And part of that is knowing when to shut the creativity off, too.

Michael: Yeah. There is definitely the art aspect of it. I mean, that’s why it’s hard.
It’s not like you can apply a formula to it and make it work. I just keep com-
ing back to the whole outsourcing thing, when you have a cultural difference
between the majority of the developers that we run into from India, who really
do need that lock-step set of instructions.

 And there isn’t necessarily that learned behavior from the last project to the
next project. It’s like, you finish one project—and this is not just India, this is
anybody—there are some people who…A project is very discrete. You have
your requirements, you do your requirements, you’re done with that project,
and you forget it.

 And you go on to the next project. And you have those requirements and
there is no relationship between those requirements and the ones in the last
project. Even though those are two completely different projects, you have to
bring…

 I think, in order to achieve this kind of creativity, intuition, and learned behav-
ior thing, you have to bring forward everything you learned from the last
 project—what went wrong and what went right, and what they wanted after it
was done, to say how should I have done that—to every future project.

 It’s the way you can keep honing the skill and the direction.

Treating Web Development as a Craft
There’s as much art to Web development as there is science. In several discus-
sions about Web development, it’s come up that the best developers consider
what they do a craft to be honed instead of just a job. Some attributes of a
craftsperson are

❖ passion

❖ dedication

❖ curiosity

❖ creativity

❖ intuition

❖ problem-solving

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 213

All are skills that can be developed, even if you don’t have an innate talent for
them. When you start thinking of your code as art, something should fundamen-
tally change in how you do your job. Code is created to get something from one
point to another. Art creates pleasure. When you get true pleasure from creating
artful code, you’ve successfully joined the guild of Web craftspeople. The skills
learned along the way help make even the most troublesome projects easier
to manage, and are all you need to find at least something in each one to get
excited about.

Hopefully, you became a developer because you’re passionate about the Web
and building things on the Web (sites, applications, widgets, Web services, or
whatever). Sometimes, that passion wanes, or moves, and that’s OK. But, if you’re
passionate, you’re more likely to explore and spend your time looking for the
most elegant, simplest solution possible to every problem. As you develop your
problem-solving skills, you move beyond solving problems just in code, and
start thinking about and solving problems for the entire project, even if it’s not
in your discipline or your responsibility. The willingness to look outside of your
own domain is a good indication that you’ve crossed the line from “assembly-line
worker” to craftsperson.

A large part of problem-solving is the ability to take previous experience and
apply it to current problems. Being able to think about past problems and see
how they apply to the current problem is a key skill. Craftspeople rarely make the
same mistake twice, and develop the intuition necessary to know which direction
to head. Part of applying past experience is introspection and being honest about
assessing how well you’ve accomplished something. Without that, you won’t be
able to apply those lessons to future problems, because you won’t have under-
stood what exactly you learned from a problem.

There is a challenge here for managers to give their people opportunities for
development, and empower them to develop the skills of a craftsperson. It helps
a great deal if management encourages developers to feel ownership over their
small piece of the project. They may be given a fairly limited task but they should
be given the freedom to solve that problem in their own way. Depending on the
experience level of the developer, there may need to be some more mentoring
or validation of code, but giving developers freedom to explore possibilities and
choose the best one for themselves can help them develop that sense of owner-
ship. Also, the more developers know about where their tasks fit into the big
picture, the more likely they are to feel like what they’re doing matters and the
more likely they are to develop that sense of ownership.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

214 ADAPTING TO WEB STANDARDS

Part of my discussion with Michael Richman and Kevin Luman centered around
coming up with a definition of craftsman and how they develop passion, owner-
ship, and empowerment in developers on their team.

Kevin: I guess it’s the difference between thinking of yourself, too, as a craftsman
or an assembly-line worker. If you’re a craftsman and you really care and you’re
really into what you’re doing and the products you create and your output,
I think that sort of mind-set leads more towards wanting to explore other
avenues and different levels, or different ways of approaching problems. And
introspection and reflection on what things worked and what things didn’t.

Michael: Developers are problems-solvers, right? The more line-worker develop-
ers are problem-solvers only on the code level, but the more expansive, crafts-
man developers are problem-solvers for all aspects of the project, and that’s
where you get the people aspect.

 So, anticipating future requests and future needs is about problem-solving for
your customers. And you have to think about all possible customers, product
QA, ops, performance, accessibility, the users, the publishers, and the dev
team.

 You’ve got to think of everybody and try to solve everybody’s problems. That
also may mean trying to think of what the problems are around that project
for each of those groups.

But the craftsman ideal isn’t just a skill, it’s an ethic. How does that assembly-
line developer become a craftsman and treat his or her work as not a science
but an art?

Kevin: Part of it, they have to be empowered to be able to do so. And treated
like a craftsman and not an assembly-line worker. And that’s where you are
more of a team, and you feel a vested interest in a product. I think that helps,
certainly.

 I think we’ve probably seen that in Big Bowl (a publishing system used on a lot
of AOL content channels). You can do the opposite, where you take craftsmen
and turn them into assembly-line workers.

By removing any creativity?

Kevin: Yeah. You take a person and you say, “Today you’re going to work on pets.
And you’re going to get this feature in. Here it is, the requirements.” I’m tech
manager and I’m just doling out requirements that have come in this pipeline.
Like, never-ending feature requests or enhancements. And I’m responsible for
this N number of channels, and my team, I just plug in different developers
into different requests.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 215

 And there’s no care or concern. Code needs to be nurtured too. I mean, it’s
living, especially if you have multiple developers working in that code. At some
point, it’ll become unmanageable.

 If people aren’t stopping and saying, “It’s time for a re-factor,” they’ll just keep
cutting and pasting the same stuff over and over again, or repeating the same
errors over and over again.

 Or, even worse, they have a myopic view of the product itself, and the code
base. And they don’t see what impact their changes may have.

That small set of requirements is sort of the product as a whole.

Kevin: Yes, the only person they’re trying to please is their manager, the tech
manager. And that’s it, because they are an assembly-line worker. And there’s
the manager. You clock in, you clock out, you just do what you’re told to do.
You could be replaced easily by a WYSIWYG editor.

Michael, what’s your definition of a craftsman?

Michael: This is a hard question. I try to think about the people on the dev team
that I work with, who I’ve seen evolve into more craftsmen-like developers.
And I’m asking myself, “Why? Did I have any influence on that?” Possibly. And
if so, how?

 What I think of is, it’s just that I try to communicate in every meeting the pro-
cess of thinking about something that leads me to suggest the way that they
do it. I don’t just say, “Do it this way.” We have a conversation about, “This is
something that I want to make publishable and here’s why. Why don’t you do
it this way, because it’ll leave the door open in the future for this request that’s
going to come down the pike.”

 For me, it’s about trying to solve everybody’s problems with the particular
implementation. That’s not really a definition of a craftsman but it’s the way I
think about it from a coding point of view.

 I haven’t mentioned this, but I definitely engage it and feel it: I love coding.
And I love coming up with the creative and elegant and simplest solution to
the problem, in code, that does all of these things for everybody. This is start-
ing to sound super-geeky, but I really do love opening up VI and getting the
code.

 In fact, that’s one of the first things I do when “architecting.” I do think about
it, but documentation for architecture doesn’t work for me. I actually code to
architect.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

216 ADAPTING TO WEB STANDARDS

And you doodle.

Michael: Yeah.

Kevin: I think one of the key defining factors for a craftsman is passion. If you
don’t have a passion for what you’re doing, it’s going to reflect in your code.
And everything you do. It’s going to reflect in your interactions with the peo-
ple you work with, your customers, QA, Ops, whoever it might be.

 It’ll permeate throughout, and it will be reflected throughout. So, a passion
for what you’re doing is one of the must-haves of a craftsman. I don’t know if
it’s the whole definition of a craftsman, but it’s definitely a requirement for
becoming a craftsman.

 And I don’t think people necessarily come with a passion. There’s some people
who get in the field with passion, some people get into it because they think
it’s a high-paying job—and, hey, that’s fine—it doesn’t mean that they can’t be
passionate or become passionate.

 And the organization can help in that respect. Or it can hurt, as we’ve seen. It
can take that passion away, just as easily.

How do you figure out what that passion is, and how to take assembly-line
workers—or people who may have at one time had that spark—and reignite
it? Because you’re right, being a craftman is all about being passionate about
what you do, whatever it is. And when you have that passion, you want to
get better at it.

Kevin: And please the people, the stakeholders involved.

That’s the difference between creating code and creating art. Code is to get
something from Point A to Point B, and art is to create pleasure in some-
thing, whatever it is. So, I think we have a definition. It’s passion—that’s all
good. But how do you ignite it? Michael mentioned empowerment.

Michael: Yeah, Kevin mentioned empowerment too. But I was going to echo it,
because I think that’s one of the key ways. If you let someone get in on the
ground floor and have some kind of stake in the thing they’re going to be
developing, then they’ll definitely care about it more.

 As opposed to just kind of doling out the requirement at the end of the line,
saying, “You’re the last cog in the widget.” That’s wrong…“The last cog in the
line to spit out the widget.” [laughs]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 217

 I think that’s definitely one way of doing it, giving people a voice in the whole
process.

Kevin: And to be honest with AOL.com, in the “what you see” we really don’t have
a lot of say or empowerment.

So, it’s really finding the spot where you can empower people within the process.

Kevin: Exactly. That’s what I said. But it doesn’t mean that you’re powerless. So,
what are the spots where you can effect change? For instance, we’re proud of
what we’ve done in maintainability of code, in performance, and in accessibil-
ity. Because those are the things we can instill and we can succeed in, regard-
less of the feature.

So, part of empowerment is ownership. How do you make people feel that they
own their piece of it? Is it freedom to fail, freedom to experiment? What is it?
How do you do it?

Michael: How do we do that, Kevin? [laughter] I’m not sure we do do that. Do
people feel like they do have ownership over their pieces? I think some people
do and some people don’t on our particular team.

 And in a way, that’s like the people who do are the ones who choose to. And
the people who don’t, choose not to. Now, are we asking how do we “make” or
encourage the people who don’t feel the ownership to feel it? I don’t know. I
mean, there’s a certain limit. Some people just don’t want it.

Right. And I don’t think we’re saying there’s not a place for the assembly-line
worker.

Michael: I guess it comes down to the style in which you manage and lead the
team. Because if you leave it open and leave it as a…

Kevin: I don’t micro-manage.

Michael: Right. There’s no micro-management and there’s no dictation of how
things should go.

Kevin: Michael! I don’t micro-manage! Repeat after me! “Kevin Luman does not
micro-manage.” [laughter]

Michael: Right. And I don’t micro-architect.

Kevin: Yep, it’s true. Even when you’re telling people, in the end, that you’re right.
Everyone gets assigned a task to do but it keeps going down. They still have
freedom within that to be creative.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

218 ADAPTING TO WEB STANDARDS

 I try and psych people up: “Hey, this is a really good, meaty problem.” Like,
it’s going to be interesting. Here are some of the problems and it’s going to be
interesting finding how we do this in an elegant, maintainable way.

 And as a manager, I at least try to spark that. “OK, do they think it’s cool?” Can
you at least drive that?”

And if they don’t, you give them a carrot for the next one… You say, we just
have to get this done, the next thing will be…

Kevin: I have to do that too. If there’s some people who don’t want…Like, take the
CSS, like some of the Web developer or Web technologist types, now engi-
neers, who have had to take on the ownership of a lot of the CSS.

 One of the things I’ve tried to do with the team is make sure all the engineers
write their own CSS. But we still have our gurus, who shoulder bigger burdens
of it. And it’s like, some releases there’s a lot more of it; others, less. But I still
try to give everyone on the team something challenging and interesting when
I can.

 And if things are crunched, we might, of course, have to move it off to some-
one else.

So, you guys let your developers give their own estimates, right? Do you guys LOE
everything?

Michael: Yes, and it works. I think we’re pretty cognizant of when we’re utterly
insane. We try to keep in mind how long it will take a particular person to
accomplish something.

Kevin: We definitely give the LOE with that in mind. As a manager, I have to be
thinking, what’s the acceptable max? And part of doing that would be know-
ing that if it gets to a certain limit, someone—like maybe a Michael—will have
to lead, to step in and help out. But you also hope that’s part of the training.

You set them up for success.

Kevin: Yeah. And learning, and growth.

Which is great, because that encourages the craftsman development. “I’m not a
hired gun to just do this one thing. I can branch out. And now I know, even if
I don’t necessarily like this and I’m not passionate about that kind of devel-
opment or whatever, I’ve got the experience and I can speak the language.”
So that’s a really good thing.

Kevin: And they own more of the project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 219

Right. And you get more coverage. So, if somebody gets hit by a bus, you’ve got
backup. [laughter]

Kevin: Which goes both ways. It’s not just on the harder stuff. It’s also why I
want—and I’ve tried to push—all the engineers to be doing the CSS. It’s some-
thing they should know as well. For a throughput, as well. And I think it is
growth, if they like it or not. I think, as a developer, if you’re in this, you should
know that.

Right. Definitely. So, anything we missed? Anything else you guys want to share?

Kevin: A wrong turn for me—they’re not major ones, but minor ones that I con-
stantly try to catch myself on—is not communicating enough. Forgetting to
make sure, oh, yeah, I should have put QA on that mail, got them involved
earlier on this.

 Or even right now when I’m doing prototyping, make sure to cc: Michael (lead
software design engineer) or Jason (senior software engineer), so they’re up to
speed, as much as they want to be. If they’re really busy, Michael and I kind of
do this, have this agreement: If I see him and he knows, it’s not a priority, I’m
not looking for a response, it’s informational only. If he’s really busy, he won’t
look at it. If he’s not, he has time.

This has highlighted that your relationship is as important as almost any of the
other parts to the success of anything you do. If you don’t have a good rela-
tionship with whoever’s in charge of managing or requirements and resourc-
ing, you’re sunk.

Michael: Yep.

Kevin: Yeah, relationships are crucial.

Well, it goes back to the communication in the end. The reaching out early and
knowing who to pull in, and when, is essential.

Kevin: And that helps to build the trust.

Right. When you don’t surprise people at the last minute with stuff, that really
helps. Because they’re more likely to cut you some slack the next time that
there is an emergency.

Kevin: Well, and there’s a give and take that goes back to what Michael was say-
ing. There’s this balance with everything you have to weigh. And if accessibility
digs in their heels, they could make life really tough for us.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

220 ADAPTING TO WEB STANDARDS

 But if they trust us, and when we say, “Hey, this is going to be really tough. Can
we go this step and work on addressing that feature release?“ a lot of times
they say, “Yeah.” Because they trust us, that we’re not just going to keep punt-
ing it off down the road. Then you’ve got to follow up and do what you’ve
promised.

This comes up a lot. So you don’t say “No,” you say, “We can’t do it now. And
here’s why. But we can do it here. Is that OK?” And nine times out of 10
they’ll say it’s fine. Because you have to make sure that you tell them, “Well,
if we stop everything we’re doing, and do this one thing that you want, it’s
going to cost you. If we wait, you get it just a little bit later than that. But you
still get everything you asked for.”

Kevin: Again, teams want to succeed. Teams want to win. And if everyone’s on the
team, they’re focused on that goal of winning, more so than their own particu-
lar fiefdom or agenda.

Hopefully, you can see throughout the interview that Kevin and Michael have a
great relationship, and that helps them a great deal in dealing with the stress of
the day-to-day challenges of working on AOL.com.

Designing for Performance
The design goal for AOL.com was to create something that looked and felt like
AOL, but was cutting-edge and differentiated the site from its competitors. To
that end, before there were even any specific requirements set down for this
project, and just to get an idea of what the product team was looking for, the
design team came up with several dozen initial concepts for the look and feel of
the site—extremely creative and beautiful designs. Unfortunately, most of them
contained several elements that just couldn’t be implemented in modern Web
browsers, or would cause major performance problems.

And therein lay the rub: performance. The site needed to load and be usable over
a dial-up connection in less than 10 seconds. This meant that everyone involved
had to compromise: Designers had to let go of some visual flair, and development
had to come up with some new ways of doing things.

Fortunately for AOL.com, they were able to do all of that. Development was
involved from the very beginning of the design process, and worked with the
designers to make sure that what was designed could be faithfully created in
“real life.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 221

David Artz and I were involved very early on in the process, brought in to com-
ment on how things could be implemented and to find performance problems in
the designs. We worked with the designers on each revision, providing comments,
suggestions, and, in some cases, prototypes to show how each design element
impacted performance. This meant a lot of revisions from the designers until we
got to the final design for the product.

DESIGN IS A TEAM EFFORT

For many projects, design happens in a vacuum, without feedback or input from
development. This leads to unreasonable requirements, broken expectations,
and missed deadlines. There’s absolutely no reason for this to happen if design
and development work together from the start.

Estimating Performance Before
You Write a Line of Code
David and I wanted to see if we could estimate the page size before we started
development, and came up with a couple methods for doing so that ended up
working quite well.

Before we get into that, we need to take a step back and talk a little bit about
tools. I love tools, and have built several over the years to help me determine
how well I was doing my job (building Web pages). One of these was a script that
ripped pages apart and told me what percentage of the document was markup.
This became a personal guidepost for how well I was marking things up. The per-
centage goal was based on how complex the design was, of course, but I tried to
keep my documents to less than 50% markup. Unfortunately, the more complex
the design and data, the more markup you need to represent that data. A com-
plex data table is going to have far more markup than a blog, for example.

My original script was a page built for AOL’s server, and no longer exists. But I’ve
recreated the basic methodology here as a JavaScript bookmarklet (remove all the
line breaks if you actually want to use it):

javascript:
function recurseNodes(node) {
 var total = 0, kids=node.childNodes, n=kids.length, i=0;
 for (i=0;i<n;i++) {
 t = kids[i];
 if (t.nodeType == 3) {
 total+=t.nodeValue.length;
 } else if (t.childNodes.length > 0) {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

222 ADAPTING TO WEB STANDARDS

 total+=recurseNodes(t);
 }
 }
 return total;
}

function pageSize() {
 var d=document;
 var h=document.getElementsByTagName(“html”)[0];
 var text=recurseNodes(h);
 var markup = h.innerHTML.length;
 var p = (text/markup)*100;
 var m=h.innerHTML;alert(“Text: “+text+”, HTML: “+markup+”, text
percentage of whole: “+p+”%”);
}

pageSize();

If you create a bookmark in your browser with that code in it (again, with line
breaks removed), you can click that bookmark on any page, and it will throw an
alert with the size of the “text” content of the page, the size of the markup, and
the percentage of the whole document that’s textual content. It’s not perfect, but
it’s a fun, quick test to see if you’re meeting your goal.

Table . shows the results from some popular commercial sites.

Table . Amount of Text Content on Selected Popular Sites

Web Site
Amount of Text

(in bytes)
Total Content

(in bytes)
Text % of total

content

Amazon.com 37,322 141,481 26.4%

AOL.com 13,808 62,233 22.2%

CNN.com 20,281 117,459 17.3%

eBay.com 28,427 70,772 40.2%

Google.com 1,385 5,136 27%

MSN.com 7,482 43,335 17.3%

MySpace.com 12,435 47,178 26.6%

Yahoo.com 85,176 115,704 73.6%

Steve Chipman has also written a bookmarklet called “Page Info” that does that,
and more. You can find it at his Web site: http://slayeroffice.com/?c=/content/
tools/pagenfo.html.

http://slayeroffice.com/?c=/content/tools/pagenfo.html
http://slayeroffice.com/?c=/content/tools/pagenfo.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 223

David and I did a quick spin around the Web looking for comparable portals and
did some checks to see how they were doing with their markup and what per-
centage of the whole it was. From that unscientific assessment, we concluded that
if we could hit 1:5 ratio of text to markup (that’s 20%), we’d be OK.

It all starts with content. Early on, our design team produced wireframes with
example content provided by the editorial group. We took those, copied all the
text out into a blank text file, got the size of it, and then multiplied it by five to
get what we thought the markup size would be. That gave us our initial load time
estimate. We knew that we couldn’t be any faster than that initial number.

Once we left the markup, we had to start guessing about images, CSS, and Java-
Script. There were some scripts we knew we had to include for reporting and
advertising, but we also knew that we’d need a certain amount of JavaScript for
actual functionality. We assumed that the site would have about half as much
JavaScript as it had markup, and the CSS would be about one-third the size of
the markup. These were just guesses. We ignored most of the art (because we
assumed it would be pulled in through CSS after the page had loaded) except
the photos. We found photos that were roughly the same dimensions, optimized
them, and then added their size to the total.

Once we had all those numbers, we could come up with an estimate for how large
the page would be once it was built, based solely on the design mockup. We did
this for each of the designs, presented them to the designers and product owners,
and made our suggestions.

Having numbers is always good—even if they’re only for comparison—and they
helped us back up our opinions about each feature’s piece of the overall perfor-
mance picture.

To illustrate, here’s an example “worksheet” for figuring it out:

1. Enter the number of characters in the document:

2. Markup size = line 1 � 5:

3. List known required JavaScript and CSS files and their sizes:

4. Application JavaScript = line 2 � .5:

5. Application CSS = line 2 � .33:

6. Combined size of photos:

Just fill in the data as you get it, and you can get a pretty good estimate of how
long it’s going to take for a user to load your page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

224 ADAPTING TO WEB STANDARDS

If you take just line 2, that’s the number of bytes users have to download if they
have all the other content in their cache. This is a user who comes back using the
same browser and either just reloads the page or comes back the next day.

If you take the numbers from the lines 2 through 5, you have the number of bytes
that the user without any of your content in their cache has to download in order
to get to “first render” (when content is first displayed in the browser), as long as
all your JavaScript files are in the <head> of the document.

Performance Concerns
There are several things to keep in mind when dealing with performance. There
are many compromises to be made between the different pieces of content on
the page, and many things that can be done to make sure the most important
content on your page shows up first while the rest of the page loads. The first
step is to determine which sections of the page are the most important. Usually,
they’re near the top left corner of the page. Let’s look at AOL.com as shown in
Figure .:

Figure . The AOL.
com homepage: Most
important content near
the top left. (©2007 AOL
LLC. All Rights Reserved.
Used with permission.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 225

The first thing you see is the AOL logo, and then the search box. The next section
is the “dynamic lead” that rotates through five different editorial mini-pages. To
the right of that is a small toolbox with the six most popular activities on AOL.
Then, you see the first ad. All of these things are “above the fold,” meaning that
90% of the audience will be able to see them without needing to scroll.

When you bring up AOL.com in a browser over a slow connection, you get usable
content fairly quickly—as quickly as your browser can download the HTML and
initial CSS and JavaScript. As shown in Figure ., everything else loads as it
comes in, but the page is usable as soon as that initial chunk of content comes in.

Figure . HTML
text-based content
loads in fast.

The user isn’t waiting for an ad to render or any onload events to fire in order to
use the page. Everything is functional as soon as the first render happens.

Getting to this stage isn’t easy. It means a lot of work up front to make sure that
all of that important content is actually in the document, and sometimes breaking
some principles of “progressive enhancement.” It all depends on the goals of your
site. If you’re a portal and you want to drive people to your content, and allow
them to get to what they want to do quickly, maybe this is the right approach
for you.

All content on AOL.com is delivered compressed. Take a look at total amount of
data that is ultimately delivered:

❖ 44 kilobytes of HTML

❖ 62 kilobytes of JavaScript

❖ 40 kilobytes of CSS

http://lib.ommolketab.ir
http//lib.ommolketab.ir

226 ADAPTING TO WEB STANDARDS

However, when it’s compressed, you’ll see that it’s actually only

❖ 12 kilobytes of markup

❖ 24 kilobytes of JavaScript

❖ 9 kilobytes of CSS.

That means the browser will render the content a lot faster, because it spends less
time waiting for content to download.

Compression is great for text content. As you can see, you can greatly reduce
the size of markup, JavaScript, and CSS. The same can’t be said for compress-
ing images or other binary files; you’ll get some benefit there but the big win is
for text.

NOTE

Please see Appendix C for more information on compression.

Let’s go through how AOL.com has maximized performance by looking at what
has to download in order for the most important content on the page to be
usable before all of the art has downloaded and before the onload event has fired.
We’ll walk through the pieces of content downloaded and when things happen in
the browser. Figure . illustrates the process outlined below.

 1. Markup is downloaded, decompressed, and turned into a DOM.

 2. JavaScript and CSS files in the <head> of the document are downloaded,
decompressed, and parsed.

 3. The browser starts rendering, stopping as it hits <script> elements in the
document to either run or download scripts. The first script outside the
<head> the browser finds on AOL.com is for reporting; it shows up right
after the <body> tag, so no content is rendered until that file is downloaded,
parsed, and run.

 4. The browser renders the header, which contains the logo and the search box.

It encounters another script element. This one puts focus on the search box,
so users can search right away without needing to click in the field first.

 5. Minor scripts write out the Sign In/Sign Out links.

 6. The Dynamic Lead is loaded—first all the markup, and then the three script
elements that start the rotation.

 7. The rest of the content in the left column is loaded.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 227

Figure . The complete
AOL.com, fully loaded.
(©2007 AOL LLC. All
Rights Reserved. Used
with permission.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

228 ADAPTING TO WEB STANDARDS

 8. The right column starts rendering. The “Communication Center” renders
first, followed by a script that sets a class on the dropdown arrows next to
“Money,” “Music,” “My AOL,” and “Video.”

 9. Several placeholders for advertising render, but not until after all the content
on the page is displayed. (We’ll talk more about this later.)

10. The rest of the right column renders.

11. The footer renders.

12. The scripts that call the ads are run. Once the ads render, they’re moved into
the correct spots in the right column.

Among those familiar with progressive enhancement, that list may raise an eye-
brow or two. That’s fine, because AOL.com is also accessible—since all the impor-
tant content is on the page, screen readers easily handle it. All of the JavaScript
has accessible alternatives. We’ll talk more about accessibility later on.

AOL.com is a site that people come back to—to check mail, read the news, hear
the latest albums, or get stock quotes. To improve their experience with the site,
files are cached, meaning users don’t have to download the files every time they
request the page. Now, because the content of the page changes so frequently,
the HTML is never cached. But all JavaScript, CSS, and images are cached, for vari-
able amounts of time. For example

❖ HTML: never cached

❖ Images: 24 hours

❖ JavaScript: 30 days

❖ CSS: 30 days

This is great, because as long as someone uses the same browser and doesn’t
empty his cache, he’ll never need to go back to the server to download those
files—greatly reducing the amount of time it takes to load the page.

All of this caching introduces a problem: What if you need to make a change to
the CSS or JavaScript? There’s a chance that users won’t see that change for a
month. AOL.com solves this by versioning all JavaScript and CSS files in the URL. If
you look at the page, you’ll see a URL that looks like this:

http://www.aolcdn.com/_media/aolp_v21/main.css

The “v21” piece is the version. There’s a configuration option to tell what version
the page should load. This gets around the caching problem easily; since it’s a
brand new file, all users should see the changes as soon as the file’s published.

http://www.aolcdn.com/_media/aolp_v21/main.css
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 229

One last tip on reducing load time: Reduce the number of files you make the
browser download. Your overall file size might be OK, but if that’s split up over
a couple hundred files, your page will feel a lot slower than it should. There are
several reasons for this:

❖ In Internet Explorer, only two files at a time will be downloaded from any one
domain.

❖ Every file you download has anywhere from one-half to several kilobytes of
HTTP headers that come along with it. This can greatly increase the total
amount of data users have to download to see your page. HTTP headers aren’t
compressed, so there’s very little you can do to reduce this size.

❖ All the JavaScript and CSS files you put in the <head> of your document must
be downloaded before the browser will try to render the page. Since all CSS,
link, and style elements have to be specified in the <head> anyway, it should
all be one file.

❖ JavaScript “blocks” page rendering (meaning the browser won’t display any
content below that <script> tag until the script is done downloading and
running), even when the scripts are pulled in inside the body of a document.
This means that the browser will stop rendering when it gets to a <script>
element and wait for that to download or execute before continuing.

Performance is an ongoing process. Especially for legacy projects, you’ll want to
start small and make incremental improvements. If you’re starting with a clean
slate, you’ll want to do as much as you can up front to make sure your page is as
fast as possible. Just because more users are on high-speed connections doesn’t
mean they’re getting more patient. If anything, they’re less patient—expecting
everything to load instantly. The closer you can get to “instant,” the more satisfied
users will be with your site.

Interview: David Artz
David Artz leads AOL’s Optimization team, which looks at AOL products and
provides feedback on how to make them faster, in addition to tools for measuring
a site’s performance. He did a lot of work with the AOL.com team to make sure
the page loaded as quickly as possible.

What’s your role at AOL?

AOL’s Optimization team is focused on improving the speed and accessibility of
AOL’s Web sites. We do this by providing clear, measurable standards in Web
site optimization and by documenting and evangelizing best practices and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

230 ADAPTING TO WEB STANDARDS

solutions in achieving a more “optimized” experience. We also consult and
provide real-time feedback and analysis on high priority products such as AOL.
com throughout the entire design process.

What’s the difference between “perceived” and “real” performance?

When you start digging into performance, you quickly realize there’s a blurry
line when it comes to deciding when a page is “loaded.” Do you count the
stuff loading below the fold? What about objects and scripts engineered to
load last?

 Perceived performance is the user’s perception of the speed of the page, and
when it’s ready enough for them to start using. Though this can vary for differ-
ent users, I generally say it’s when all graphics, text, and essential functionality
above the fold (browser window without scrolling) is ready to use.

 Real performance is much easier to measure, which is typically why it serves as
our benchmark when managing performance-improvement efforts. It’s when
all objects on a page are loaded in, no matter where they load in the document
or if the user even needs them.

 Our team places much emphasis on perceived performance, and uses tech-
niques such as moving scripts from the <head> element to the bottom of the
body, system text and CSS for design elements, load status messages, strategi-
cally ordering HTML content, and loading content only when the user scrolls
to see it.

What tools do you use?

We use HTTPWatch and a homegrown tool lovingly named “PAT” (Performance
Analysis Tool) that generates charts and reports based on data from HTTP-
Watch. PAT will parse HTTPWatch’s logs, and give us the opportunity to clas-
sify objects as advertisements, code, graphics, etc., so we have a good idea of
where our KB and requests are going, and then estimate load time based on
that data for various connection speeds.

 We also have a tool that is a hit with our execs called Webometer, which
quickly loads a site and its competitors in a Web browser, giving instant data
on comparative performance.

What should developers do first when judging a design for performance?

If you want to truly estimate, you have to imagine the outcome of the resulting
build, which may be tough on new projects or if you’re new to Web devel-
opment. Also, a more experienced developer (especially one who’s been

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 231

through my training) will have an arsenal of tools that can make any design
perform well.

 This could be a chapter in itself, but the steps I would follow are

1. Get a spreadsheet; you’ll want to tally up K size and number of objects.

2. Based on the amount of text and the complexity of the layout, calculate
how big the CSS and HTML will be (this is one of those experience-depen-
dent ones).

3. Look at the design and think through how many and how heavy the
graphics and photos will be when sliced.

4. Estimate the client-side JavaScript file size you will need—this can get big if
you need to use shared libraries.

5. Tally up the results, and divide total KB by the speed you’re targeting
(DSL = 768 kilobits = 96 kilobytes per second).

6. Account for object requests by multiplying by 40ms per object for Java-
Script and 20ms for CSS and images.

 In general, all a developer can do is push for lighter design and less functional-
ity, and think where we can be clever by moving requests later in the page.

How do you keep track of performance over time?

On the Operations side of the AOL house, we have automated tests that run over
the week, which we use as a pulse on our top sites and their competitors. Our
goal at AOL is to be faster than the competition, and be optimized for perfor-
mance using the latest techniques regardless.

Repeatable Steps
There are concrete steps you can take during the design process to make sure
your site will perform when you’re done with development. We talked about
them fairly quickly, so here’s a quick list of things to make sure you do whenever
you start the design process:

❖ Involve development early.

❖ Use available tools to get the numbers from competitors or comparable sites.

❖ Use those numbers to set performance goals for your project.

❖ Scrutinize each revision of the design for potential performance pitfalls.

❖ Measure and get numbers—the more “real” you can make those numbers,
the better.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

232 ADAPTING TO WEB STANDARDS

❖ Think about performance up front. The more work you can do during the
design phase, the better you’ll be in the long run.

Performance is a process. The last point in the list above is really important, so
I’ll repeat it: The more work you can do up front, the better. The time you spend
finding problems early in the process will save hours and hours of debugging and
hair-pulling later on when the design’s been agreed upon and you have to get it
working.

System Design and Architecture
On large projects like AOL.com, no one is ever working alone. There are Web
services to integrate, databases and Web servers to set up, repositories to create,
art to cut, and various other tasks that have to get done before you can flip the
switch and launch something. On a project this large, no one person does all of
these things. This section’s not going to discuss most of these in detail but will
address how you can approach the monumental integration and technical design
tasks associated with building something this large.

The Buddy System
When it comes to developing Web applications, the buddy system is definitely
the way to go. Pairing up your backend/middleware developer with your front-
end developer as a team to work very closely together is a great way to get things
done quickly. They should work together to design Web services and tools so you
end up with a seamlessly integrated product instead of a bunch of duct tape.

There are several benefits to this way of working:

❖ The producer and consumer of Web services (JSON, XML) for the page are on
the same page. This means the services and the code to interact with them will
be as efficient as possible.

❖ No one person has to worry about everything. Dividing responsibilities
between the front end and middleware is a nice clean line. You can have some
crossover, but you know who “owns” each piece.

❖ Although there’s an owner for each piece, there’s also backup. Having someone
close by to bounce ideas off of and answer questions is always helpful.

❖ Two is a small enough number that there’s not a lot of communication over-
head. Most problems can be solved over an instant message or a quick phone
call. There’s no need to schedule big conference calls with dozens of people
and juggle schedules.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 233

Two seems to be the right number when working on a project of this size. You’ll
need to have many more folks working on other pieces, like publishing tools,
managing other projects that feed pieces of the main one (Web services, integra-
tion points, etc), designers, operations, database administrators, etc. But, pairing
the developers on the project works well.

Get the Stubs Out
The days of flat Web pages are over. For the most part, no one writes just HTML
and publishes it as a single document, at least not for large sites like AOL.com.
That means Web services, scripting languages, and integration with other systems.

When it comes to designing Web services, there is no such thing as a vacuum. A
Web service should never be designed without thinking about how a developer
would go about consuming that service. That means thinking in terms of sim-
plicity, what steps someone will have to take to interact with your service, and
making those steps as simple as possible. The easiest way to do this is to create
stubs—example responses or processes that take a request and return a canned
(fake) response. This gives the consumers of your Web service a chance to play
around with it and give you feedback before you go through the trouble of actu-
ally hooking it up with any backend systems. This is a good way to make sure your
“buddy” (the one we paired you up with in the last section) will be able to work
quickly and with confidence once the “real” service is ready.

Things to think about when creating stubs:

❖ Don’t just think about what happens when things work—think about when
things aren’t going so well. What does an error response look like? How can
you tell the consumer of your service whether to try again or give up?

❖ What kinds of data can be returned? Can you get more than a set number of
items back? For example, if your service returns search results, what does it
look like when you get two results back? Three? Ten? None?

❖ Do you need to provide more than one “flavor”? How do you provide both
XML and JSON responses?

❖ Can any programming language consume your services? Validate your assump-
tions and make sure that you’re not tying yourself to a single way to consume
the service.

Stubs allow for integration to happen before all the pieces are ready. This means
each party responsible for a piece of infrastructure or any front-end developer
could be finished with their work long before you’re ready to integrate with them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

234 ADAPTING TO WEB STANDARDS

If you’ve done your job correctly, and the real service matches the stubs, it’s just a
small configuration change to point from the stub to the real thing.

Stubs also give you something to test against. When you have the real service
ready to go, you should always go back and compare it to the stubs to make sure
you’ve remained consistent. There isn’t much point in creating stubs if the end
result is totally different.

Creating stubs for all of your Web services not only saves you time, it gives you
a reference implementation you can give to other folks who might need to
integrate your services. You don’t need to give them access to a live production
machine to develop with. They can develop and test against the stubs and then
test against the live service once they’re done. It saves load on your production
environment, and means a lot less hassle for folks who may work remotely or
outside of your corporate firewall.

Thinking About Workfl ow
Consumers (we call them “users”) aren’t the only ones who interact with your
product. In the case of AOL.com, there’s an entire army of folks who do editorial
work on the individual pieces of the page. They’re spread across organizational
units, and they all have their own concerns and requirements for the tools they
use to publish content. These requirements may include licenses for photography,
content that needs to go live and come down at a particular time, different meth-
ods for formatting, different feeds they need to integrate, or ways to track con-
tractual obligations. All of these requirements need to be addressed and handled
by the publishing tools you create to drive the site.

In many cases, the tools are the last things to be built because they’re seen as the
least important. They’re not. When you think about all the hours that each of
those editors spends in those tools, and all the times they do the same thing over
and over again, any wasted steps or broken tools could end up costing your com-
pany thousands, if not millions, of dollars in lost productive time.

One way to go about building tools is to first gather information from the edito-
rial staff:

❖ What do you need to do to get from “nothing” to a finished product you can
publish on the site?

❖ Are there concrete, reproducible steps you can document?

❖ What tools do you use now?

❖ What do you like about them?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 235

❖ What’s wrong with them?

❖ How often will you be using the tool?

That’s just a sample. There are some questions you might want to avoid. Don’t ask
about flexibility or uptime. No matter if they need it or not, the response is always
“100% flexible and available 100% of the time.” No one needs a tool that’s 100%
flexible, and most publishing tools don’t need to have 99.999% uptime. Flexibility
is expensive. The more flexible a tool is, the more options it needs to have, which
cuts down on how quickly you can do the things you do most often.

There’s also a danger in asking people what they want. They may not know, or
may not know quite how to ask for the thing they really need. How do you get
around the fact that human beings are unreliable? Watch them work. This may
seem uncomfortable, but having someone walk you through exactly how they do
their job is a much more enlightening process than asking them questions. Spend
an hour or two watching them do their job and take notes. This will give you a lot
of insight into what they really spend their time doing and what the tool needs to
do in order to help them do it more efficiently.

Often, tools are designed by the developer, which can lead to problems. It’s a
good idea to have a designer spend some time on the workflow around tools.
They shouldn’t spend their time making it “pretty,” but a good interface designer
spending an hour or two making sure the tool makes sense is a good investment.
Developers have a habit of thinking of what a tool is doing underneath the inter-
face, which leads to some strange interactions for the people using the tool. The
input of a thoughtful designer will help will make the tool’s “user experience” a lot
smoother.

Being considerate of the users of the tools used to publish the site will almost
always lead to better content, and the cost savings can be pointed to as a real win,
no matter how big the company is.

Front-End Wizardry
You can have the fastest Web server, database, and cache server, and you may
be connected to the Internet with the fastest pipe possible—and your users
may still think your site is slow. There is a tendency in technology organizations
to give less time or discipline to front-end code, even though the vast majority
of time between when a user makes a request and when content is displayed
is spent downloading and rendering that content. No amount of performance
optimization on the backend will improve that experience; the only way to make

http://lib.ommolketab.ir
http//lib.ommolketab.ir

236 ADAPTING TO WEB STANDARDS

things feel faster is to show the same discipline on the front end that you use in
your server-side code. This section will introduce the basics of standards-based
development, and some best practices you can use to whip your markup and CSS
into shape.

Making Your Markup Sing with DOCTYPE
Early on in the process of designing and developing AOL.com, the team met often
to discuss markup best practices, performance, and to make sure that all of them
were on the same page. Prior to this, my work on improving performance for AOL
Search taught me that one of the best ways to improve performance was to use
semantic markup, and a DOCTYPE that put modern Web browsers into “stan-
dards mode.” We chose that same approach for AOL.com.

But before we get into that, let’s take a step back. Some of the words in the previ-
ous paragraph may be English but might not make any sense unless you’re already
a part of the Web standards “club.”

What Came Before
In the old days, everyone used HTML tables to determine the layout of their
pages. This worked, but created bloated, hard to maintain documents that took a
long time for browsers to download and then render.

This model was OK. It mostly worked, and allowed people to build complex
layouts on the Web. Unfortunately, it wasn’t very flexible or maintainable, and
it punished users because their browsers had to try to figure out how to draw
gigantic mazes of nested tables (according to several people who work on browser
rendering engines, rendering tables is one of the hardest things they have to do).

The lingua franca of the Web, HTML, was also a problem. HTML 4 didn’t enforce
its rules. To write valid HTML 4, you could leave tags unclosed, have both
unquoted and quoted attributes, use both upper- and lower-case tags, and there
was no need to provide a DOCTYPE, telling the software consuming the docu-
ment what specification the document conformed to. This meant that browsers
had to guess about where a particular tag ended, which led to a gigantic set of
tests the browser had to do before it could even consider rendering the document.

Thankfully, no one has to live with that pain any more.

DOCTYPE Switching
The advent of XHTML 1.0 and CSS 2.0 gave browsers a chance to break from the
old rendering model of HTML 4 (now called “quirks mode”). XHTML took some
of the rules of XML and applied them to HTML’s vocabulary. The rules are simple

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 237

but allow browsers (or any other parser) to very quickly decipher the document’s
structure and move on to rendering. For a document to meet the standards of
valid XHTML, it has to

❖ Use a DOCTYPE as the first content of the document. The DOCTYPE for
XHTML 1.0 transitional is:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

❖ Have an opening and closing <html> element as the root element of the
document.

❖ Have an opening and closing <head> element as a child of <html>.

❖ Have an opening and closing <body> element as a child of <html> and as a
sibling of <head>.

❖ Have an opening and closing <title> element as a child of <head>.

❖ Set all tags in lowercase.

❖ Have closed tags. For example, if you create a paragraph tag, it should look like
this: <p></p> instead of just <p>.

❖ Set all attribute names in lowercase.

❖ Enclose all attribute values in quotes.

These rules are fairly easy for browsers to enforce, and, equally good news, there
aren’t that many of them, which means browsers can render that content faster.

Browsers were able to introduce a feature called DOCTYPE switching, which
allowed them to very quickly decide what kind of document they were dealing
with and change the rendering mode appropriately. The two modes are called
quirks mode and standards mode. (Firefox has a third mode, but it’s not differ-
ent enough to talk about.) Quirks mode is the old model, where the browser goes
through all of the different tests it used in the “old days” to create something to
render. Standards mode does away with most of those tests and gets to some-
thing renderable much faster. In many cases, just changing from quirks to stan-
dards mode can provide a 10x improvement in rendering speed.

How do you tell the browser to render a document in standards mode? By using a
DOCTYPE! It’s highly recommended that you use XHTML 1.0 Transitional (see the
rules list above for the exact text). This provides the same vocabulary of available
tags while giving you the benefit of standards mode. XHTML 1.0 Strict removes
several elements (most importantly, iframe) that limit its usefulness.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

238 ADAPTING TO WEB STANDARDS

Once your document is rendered in standards mode, you’re not done. You need
to then make sure it’s valid, using either a built-in validator (most good text edi-
tors and WYSIWYG editors have them built in now) or by using the W3C’s valida-
tor at http://validator.w3.org. Having a valid XHTML document is just the first
step to producing a good product, but it’s an important one. It’s a good initial test
of quality. If the document validates, it means you can be reasonably sure that the
CSS you write will find the right elements and do what you expect it to.

Semantic Markup
Even with a valid XHTML document, it’s still possible to use HTML tables for lay-
out and continue creating bloated, unmaintainable pages. But part of the benefit
of having your document render in standards mode is that you need less markup
to handle your layout, because most of the instructions for how the browser
should display your document is in an associated CSS file (which we’ll get to in a
little bit).

Instead of relying on tables, it’s now possible to use the entire HTML vocabulary
to express so much more than how a document is supposed to look. It’s now pos-
sible to express what the content of a document means. If there’s a list of items, it
should be marked up with list elements. For example, in the old days, lists might
be marked up like this:

• Oranges

• Apples

• Grapes

• Pears

But, today, you should use HTML lists:

 Oranges
 Apples
 Grapes
 Pears

By default, that gives you the default styling of a list, but it also opens up a lot
of possibilities. If you want to take that list and turn it into a navigation bar, or
maybe just a comma-separated list on a single line, you could accomplish it with
CSS. Compare that to the fate of the previous, old-timey example—what you see
is all it’s ever going to be, and no amount of CSS is going to save you.

This new way, HTML lists, will also result in less markup (not in that example, but
there will be a better one in a minute). Because you’re now able to use the entire

http://validator.w3.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 239

vocabulary that HTML has to offer, you can use the “right” element for content
instead of using meaningless elements like <div> or . For example, most
sites have a navigation bar at the top of their sites that contains a list of links.
Many sites have something very close to the following to represent that list of
links:

<div id=”navigation”>
 <div id=”link-one”>home</div>
 <div id=”link-two”>about</div>
 <div id=”link-three”>help</div>
 <div id=”link-four”>login</div>
</div>

Many sites don’t even use links there but use <spans> with onclick events. Why
they do this boggles the mind, but it certainly exists out there in the wild. A bet-
ter, smaller, and more semantic way to represent that list might be:

 <li id=”home-link”>home
 <li id=”about-link”>about
 <li id=”help-link”>help
 <li id=”login-link”>login

The first snippet contains 272 characters. The second contains 247 characters, a
savings of almost 10%. Over an entire document, especially when replacing layout
tables with more semantic elements, that savings can grow to as much as 50%.

Using semantic markup instead of table-based layouts or using <div>s and
s for everything can greatly reduce the amount of markup in your docu-
ment, which means your users have a better experience with your products.

CSS Best Practices
Cascading Style Sheets were introduced to the Web in 1996. Until Netscape 4.7
and Internet Explorer 4 came out, CSS was only good for setting fonts and maybe
text color, because the browsers hadn’t implemented it fully yet.

Thankfully, today’s modern browsers have reasonably interoperable implementa-
tions of CSS, which gives developers and designers a lot of freedom when it comes
to styling semantic content.

AOL.com had very aggressive performance targets for broadband and dial-up
users, which meant that the more style information that could be pushed into
cached CSS files, the better.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

240 ADAPTING TO WEB STANDARDS

CSS Goes First
Before a browser renders any part of the page, it will download all CSS and
JavaScript files in the <head>. Once those files are downloaded and parsed, the
browser will usually try to render as much of the HTML document as it has.

It’s a good idea to put the link to your CSS file as the first thing in the <head> after
the <title> element. This gives your browser a head start (no pun intended) on
downloading it and building out the CSS DOM. The fewer CSS files the browser
has to deal with, the simpler that CSS DOM, and the faster the browser can ren-
der the page.

One Style to Rule Them All
One of the things the team learned during performance testing, especially for
broadband users, is that as bandwidth goes up, the browser’s CPU and connec-
tions-per-host become the largest bottlenecks for performance. According to the
HTTP 1.1 specification, a browser is only allowed to open two connections for
each domain. That means if you have two style sheets on the same domain, your
browser can’t download anything else while it’s working on those two files. The
fewer files you make your users download, the faster your page will load, no mat-
ter how much bandwidth the user has available.

What that means for your site, as it did for AOL.com, is you should put all your
CSS into one large style sheet. It may seem like a pain, but there are several tricks
you can use to keep yourself sane while working with one large file that contains
all your styles.

The best place to start is to have good markup, which we talked about in the
previous section. This will help you write less CSS, and CSS that’s easier to keep
organized. By giving yourself logical hooks to style by, and semantic classes and
IDs, you’ll be able to navigate the different sections of your CSS much like you
navigate through the HTML that makes up the document.

You should pick a structure for your CSS document that works for you. You can
use the one below, or pick one of your own, but keep it consistent. The closer you
can keep your CSS selectors to the order they appear in the document, and the
more specific your selectors are, the easier it will be to find things when you need
to change something.

Here’s a sample:

body {
 width:80%;
 margin:0 auto;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 241

 padding:0
 font:76% arial, helvetica, sans-serif;
 background:#fff;
 color:#000
}

h1, h2, h3, h4, h5, h6 {
 margin:0;
 padding:0;
}
#header {
 margin:0;
 padding:1em;
}

#header h1 {
 padding:1.5em
}

#header h1 a {
 display:block;
 color:#333;
 text-decoration:none;
}

#content {
 margin:0 1em 0 0;
 padding:1.2em;
}

There’s no HTML document to refer to but here’s the basic order:

❖ Generic HTML selectors

❖ General use class selectors

❖ ID selectors for major sections of the document

❖ Descendent selectors for that section

The properties within a declaration are also kept in order, just to keep things clear
when reading the file. This helps for documentation purposes and troubleshoot-
ing. Pick an order that makes sense to you and that you can stay consistent with.
Here’s one possibility:

1. Width

2. Floating

http://lib.ommolketab.ir
http//lib.ommolketab.ir

242 ADAPTING TO WEB STANDARDS

3. Margins and padding

4. Borders

5. Fonts

6. Colors

7. Text styles

If you can keep your CSS files in sync with your HTML document, you’ll be better
off when you need to troubleshoot those styles, or if you need to hand that docu-
ment off to someone else. Whoever takes it over should easily be able to figure
out your convention and make sense of it.

Accessible CSS
One of the coolest accessibility features that AOL.com has is how it handles resiz-
ing fonts. It resizes not only the text on the page, but the entire layout and major
images as well. This section will show you how that’s done, by building a much
simpler document and applying the same principles.

The Document
As you’ll see, this is a much simpler version of the layout that AOL.com uses.
Here’s the markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>
 <title>Accessible CSS Example</title>
 <link rel=”stylesheet” type=”text/css” href=”accessible.css”/>
</head>

<body>
 <div id=”header”>
 <h1>AOL.com</h1>
 </div>
 <div id=”content”>
 <h3>This Section’s Title</h3>
 <p class=”image”><img src=”example-image.jpg” alt=”This image
is just an example.”/></p>
 <p>Welcome to my example document. What do you think? Isn’t
it swell?</p>
 </div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 243

 <div id=”navigation”>
 <h3>Tools</h3>

 mail
 money
 music
 AIM
 MyAOL
 video

 </div>
 <div id=”footer”>
 AOL LLC | AOL International | Terms of Use | Privacy Policy |
Trademarks | Customer Support
 Accessibility Policy | AOL Unsolicited Bulk E-Mail Policy |
Advertise With Us | Download AOL | Beta | Site Map
 </div>
</body>
</html>

Figure . shows what it should look like in a browser.

Right, not the most attractive thing you’ve ever seen. That’s about to change.

Figure . The basic
AOL.com, stripped of
styles.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

244 ADAPTING TO WEB STANDARDS

Initial Styles
Let’s start by putting in some generic styles and styling the major sections of the
site, and see where that gets us.

Here’s the CSS:

body {
 margin:0 auto;
 padding:0;
 font: 76% arial, helvetica, sans-serif;
 background:#fff;
 color:#000;
}

h1, h2, h3, h4, h5, h6 {
 margin:0;
 padding:0;
}

#header {
 background:#036;
 padding:1em;
}

#header h1 a {
 color:#fff;
 text-decoration:none;
}

#content {
 float:left;
 padding:1em 0;
}

#content h3 {
 padding:.5em;
 background: #036;
 font-size:1.2em;
 color:#fff;
}

#navigation {
 float:right;
 padding:1em 0;
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 245

#navigation h3 {
 padding:.3em;
 font-size:1.1em;
 background:#063;
 color:#fff;
}

#footer {
 clear:both;
 padding:1em 0 .5em 0;
}

Figure . shows what it should look like now in your browser.

Figure . The basic
layout of the AOL.com
page forming.

The Tricky Bit
Now comes the fun part! AOL.com pulls off its trick by using em values for con-
tent and image widths, so that’s exactly what we’re going to do. If you look at the
initial styles we created for our example document, you should see the following
declaration:

body {
 margin:0 auto;
 padding:0;
 font: 76% arial, helvetica, sans-serif;
 background:#fff;
 color:#000;
}

DEFINITION

An em is a unit of
measurement that
is set relative to
the font size of the
current element.

DEFINITION

An em is a unit of
measurement that
is set relative to
the font size of the
current element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

246 ADAPTING TO WEB STANDARDS

Since modern browsers all set their default font size to 16 pixels, 76% of that is
12px. Everything we do from this point on will be relative to the font size we set
on the <body> element. For example, to get a width of 755px at the default font
size, the browsers set the width of their containing <div> to 62.5em (because
755 � 12 = 62.5). All of the other elements that are resized when the user changes
font size are set up using this formula.

Taking the CSS we had from the previous step, we’ll add widths to the <body>
 element, the content and navigation <div>s, and the example image.

Here’s the CSS:

body {
 width:62.5em;
 margin:0 auto;
 padding:0;
 font: 76% arial, helvetica, sans-serif;
 background:#fff;
 color:#000;
}

h1, h2, h3, h4, h5, h6 {
 margin:0;
 padding:0;
}

#header {
 background:#036;
 padding:1em;
}

#header h1 a {
 color:#fff;
 text-decoration:none;
}

#content {
 width:40em;
 float:left;
 padding:1em 0;
}

#content h3 {
 padding:.5em;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 247

 background: #036;
 font-size:1.2em;
 color:#fff;
}

#content p.image {
 float:left;
 padding:0 .25em .25em 0;
}

#content p.image img {
 width:16.66em;
 height:12.5em;
}

#navigation {
 width:22.5em;
 float:right;
 padding:1em 0;
}

#navigation h3 {
 padding:.3em;
 font-size:1.1em;
 background:#063;
 color:#fff;
}

#footer {
 clear:both;
 padding:1em 0 .5em 0;
}

Looking at the widths, Table . shows what we have.

Table . Converting to Em-based Measurements

Region Width em/px Height em/px

body 62.5/755 auto

#content 40/480 auto

#content p.image img 16.66/200 12.5/150

#navigation 22.5/270 Auto

http://lib.ommolketab.ir
http//lib.ommolketab.ir

248 ADAPTING TO WEB STANDARDS

Figure . shows what it should look like in any modern Web browser (tested in
IE6, Opera 9.5, Firefox 2.0, Safari 2.0, and Firefox 1.5).

And Figure . shows it with the font one step larger.

This approach gives you a lot of flexibility; more importantly, it gives your users a
lot of flexibility. When they resize the text in their browser, it’s not crammed into
a tiny little space. The container grows with the text, instead of staying the same
size and ruining the visual look of your site.

Figure . Setting up
the columns.

Figure . Resizing the
fonts.

Performance in the Real World
One of the biggest challenges in any site is performance. We talked at the begin-
ning of this section about the work you can do up front to give yourself the best
opportunity to have a well-performing site. Now it’s time to talk about what you
do with the live product to make sure your users have the best possible experi-
ence. The three most important things you can do to maximize performance
for your users, no matter their connection speed, are caching, compression, and
reducing the number of objects users have to download. We’ll discuss best prac-
tices and pitfalls around each.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 249

Caching
We’ve talked about caching before, but it’s important enough to repeat when it
comes to real-world performance.

There are very few things that users really need to download every time they visit
your site. Usually, the large majority of content users have to download won’t
change every time they view the page. To give your users the best possible perfor-
mance, it’s a good idea to cache the content that doesn’t change frequently. This
usually includes CSS, JavaScript, and images. Since the HTML for dynamic sites is
just that—dynamic—there’s no good way to cache it.

The easiest way to tell a browser to cache a file is to set the “Expires” HTTP header
to some far-distant date. Setting this depends on your Web server and program-
ming language. If you have a CDN (Content Delivery Network), it may do this for
you. Let’s look at a couple examples from AOL.com. All of the CSS and JavaScript
files have an Expires date set 30 days in the future. So, for a whole month, users
will use the cached version of the CSS. The navigational images also use the same
Expires date. All of the programmed images have an Expires time of only 24 hours
in the future, since those change frequently—potentially several times a day. If
you use Apache as your Web server, you can use the following in your .htaccess
file to do the same thing:

ExpiresActive on
ExpiresByType “text/css” “now plus 1 month”
ExpiresByType “image/jpeg” “now plus 1 year”
ExpiresByType “image/png” “now plus 1 year”
ExpiresByType “image/gif” “now plus 1 year”
ExpiresByType “text/javascript” “now plus 1 month”

This does raise one problem: What if you have to make a change? Currently, AOL.
com will publish a file with a whole new URL and change the HTML to point
to it. This gets around users having the file cached and makes sure they get the
updates.

There are many different ways to handle caching and updating content, but this
approach has worked well for AOL.com.

Compression
One of the best things you can do to improve performance is to compress all your
non-binary files. There are several points where you can do this compression: by
hand on the file system, in the Web server, or in your router. AOL.com currently
uses the router to do the compression, but most modern Web servers have com-
pression either built in or provided by a plug-in.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

250 ADAPTING TO WEB STANDARDS

Compressing text content (HTML, CSS, and JavaScript) can provide a savings of
up to 50% in the amount of data sent over the Internet. There’s a little overhead
on the user’s machine when the content is decompressed, but 90% of the time it
is much faster to decompress the file than download it, even over a high-speed
connection. Compressing binary files such as images, though, usually provides no
benefit, and creates files larger than the original.

Reducing Objects
As connection speeds increase, the bottleneck for users displaying your page
moves from downloading the content to parsing and rendering. There is also a
hard limit on the number of files that browsers will download at a time. Internet
Explorer (all versions) will only download two files per host at a time. This means
that if all your files are on the same domain (like www.aol.com), IE will only
download two of those files at a time, no matter how fast the connection is. The
default for Firefox is four files per domain (although this is easily tweaked either
by using the preferences or the FasterFox extension). Also, the more complicated
your CSS and JavaScript, and the more files they’re split up across, the more work
the user’s browser has to do to create the initial Document Object Model and the
CSS Object Model, and to decide what the Cascade and Inheritance for all those
styles are.

The more you can combine CSS and JavaScript into single files, the better. Cur-
rently, AOL.com has one main JavaScript and CSS file. There are a couple of other
JavaScript files, but they’re for external advertising and reporting systems. All of
the JavaScript, Flash, and CSS files downloaded by ads aren’t loaded until after the
browser’s “onload” event has been fired.

Conclusion
The team behind AOL.com is a first-rate group of developers and designers work-
ing in a very closely watched fishbowl and under a lot of internal pressure. AOL.
com is the front page not only of that domain but of all AOL products. That
means everyone wants a piece of them and their every move is scrutinized. Under
this pressure, this world-class group turned out a world-class portal—not only
in how it looks and works but in accessibility, performance, and in ease of adding
new features. I’m proud of the very small part I could play in the process of devel-
oping AOL.com, and to have worked with such an amazing group of professionals.

AOL.com isn’t perfect—no site is—but the things it does well, it does very well.
Those are the parts I felt were important to share: the way the team works
together, Web standards, accessibility, and performance. Hopefully, you can take
the lessons we learned on this project and apply them to your own.

www.aol.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter  AOL.com 251

Cascade and Inheritance

CSS Inheritance
For some CSS properties, the child elements inherit the properties of their
parents. A paragraph element, for example, is the child of the body element
(i.e., the paragraph is “contained” inside the body). As such, it inherits certain
CSS rules that we might define for the body. For example, consider the follow-
ing style sheet:

body {
 font: 13px sans-serif;
 color: #555;
}
p {
 color: red;
}

By default, the paragraph element inherits both the font and color settings
of its parent: the body element. So, any text within a paragraph tag is also a
13-pixel sans-serif font—we need not duplicate that rule by putting it in the
paragraph selector. If we want to style the text inside of our paragraphs differ-
ently than the parent element, we can override the inherited values.

So, here, while we colored the text of the body element gray, we’ve overrid-
den that color in the paragraph element by specifying that its text should be
colored red.

The Cascade
A wonderful benefit of CSS is the Cascade. Think of a large site that has dif-
ferent sets of content, just as a large company would have different depart-
ments, each with its own unique issues and jargon. Think of how much would
work would get done if Human Resources department employees could only
talk shop with Product Marketing employees.

To accommodate the presentation of this large site’s different content, we
can write two or more style sheets for each department’s section, and import
them into a master style sheet—in essence, layering the styles rather than
maintaining one large style sheet that would encompass the entire site. This
gives developers the freedom to create and adapt the presentation layer as
they see fit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This page intentionally left blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inspiration Never Arrives in a Vacuum
Sometimes inspiration comes as a serendipitous lightning bolt, arriving through
a programming trick from a book, a color scheme seen in a restaurant ad, or an
online chat with a colleague.

More often it comes from experience—the well-earned lessons from past mis-
takes, put to good use for current and future projects.

However, experience can sometimes be a handicap. Time-tested, well-used advice
can become glaringly obsolete in an instant, especially in an industry in which
communication happens as rapidly across the ocean as across the office.

The maturing of browsers led developers to move away from Web pages bloated
with way too much presentational HTML and toward semantically lean, elegantly
marked up pages.

The late arrival yet quick distribution of Microsoft Internet Explorer 7 for Win-
dows finally allowed CSS developers to broaden their designs.

Google Maps showed programmers that JavaScript could be used to redefine
surfing habits. With Ajax-enabled sites, gone are the days when a quality Web
experience involved a full-page refresh after every click of the mouse.

Developments like these prove that the Web design industry has matured but, by
nature, is never static.

Professionals must continually learn and relearn their trade, casting aside old Web
development dogma when it becomes necessary to do so. As the set of Web stan-
dards becomes better, so too do the designers and developers improve their craft.

Web professionals like you and the people featured within these pages, helping to
create the shape of Web standards, are the true inspiration. Keep up the fantastic
work.

Christopher Schmitt
July 2007
Cincinnati, Ohio

Afterword

253

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Targeting Web Browsers

Every Web site has different types of visitors. A Web standards-based approach
is by its nature more forgiving of the differences in Web browsers because
 standards-compliant sites are based on open standards, not proprietary technol-
ogy. Additionally, Web standards professionals make fewer assumptions about the
types of visitors who come to their sites and don’t assume that all of them will be
using the same browser.

That said, every organization is going to have a different type of audience, be it a
business-to-business audience, business-to-consumer segment, students, govern-
ment, or just a cross-section of society at large. It can be very useful for a Web
team to know what Web browsers to “target” while working.

Just about every Web server keeps logs of the visitors it serves, and this informa-
tion includes data on what Web browsers and operating system (OS) platforms
those visitors are using. This is done by inspecting the HTTP_USER_AGENT
header of every HTTP request.

Web standards experts all agree on at least one important rule: Never assume a
single browser is the only audience of the site. Attempt to cater to all, using the
open standards instead of proprietary technologies.

Web Log Analysis
Most major Web sites and companies have made some form of commitment to a
software package that can help analyze their server logs. This is critical informa-
tion for any professional Web team. Every project and every business is going to
have different needs. If there has been no commitment to a software package,
there are volumes of free, commercial, and open-source tools that can analyze
logs from a variety of Web servers.

Appendix A

254

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A Targeting Web Browsers 255

Some software packages are free or affordable. Even the free (or almost-free)
packages provide robust reporting features. Often analysis packages require code
(which, keep in mind, is not always compliant with Web standards) to be inserted
in the documents on a Web site for enhanced statistical data that typical logs
don’t provide. Tools like these are particularly valuable if a developer does not, for
whatever reason, have access to his or her own raw Web server logs.

One such toolkit is Google Analytics (www.google.com/analytics). Google’s service
(Figure a.) provides reporting data over time on a number of key design- and
UI-related areas, including

❖ Browser and OS platform versions

❖ Screen resolution

❖ Screen colors

Figure a. Google
Analytics offers many
useful features for
Web designers.
(http://analytics.
blogspot.com/2007/05/
new-version-of-google-
analytics.html)

www.google.com/analytics
http://analytics.blogspot.com/2007/05/new-version-of-googleanalytics.html
http://analytics.blogspot.com/2007/05/new-version-of-googleanalytics.html
http://analytics.blogspot.com/2007/05/new-version-of-googleanalytics.html
http://analytics.blogspot.com/2007/05/new-version-of-googleanalytics.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

256 ADAPTING TO WEB STANDARDS

❖ Languages

❖ Plug-in support (Java and Flash)

❖ Connection speeds

Modern Web Browsers
Professional Web designers and developers have been able to embrace Web
standards because the vast majority of users are surfing the Web with a modern
browser. These browsers support enough of the standard that Web teams can
effectively code to it while keeping the content and critical features of the site
usable and accessible by browsers that may be using a text-only version of a site.
For instance, Netscape Navigator 4 typically is served usable, accessible text due
to its inability to support enough of the Web standards in use today.

Modern Web standards-compliant browsers are typically considered to be any-
thing greater than or equal to

❖ Internet Explorer 5+ on Mac

❖ Internet Explorer 5+ on the PC

❖ Safari on Mac OS X

❖ Konqueror (uses WebCore/KHTML like Safari)

❖ Netscape 6 (any Gecko-based browser, including Netscape Browser 8)

❖ Opera 6

❖ Mozilla Firefox on PC/Mac

Since the Web standards-aware browsers have been available for some time, there
are sets of Web standards-based browsers that are considered to have troubling
(or buggy), if not impossible to cope with, levels of Web standards support. These
include:

❖ Konqueror using KHTML code base (basically Safari)

❖ Internet Explorer 5.x on both Windows and Mac OS

❖ Safari 1.x

❖ Netscape 6 and 7

❖ Opera 6 through 8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix A Targeting Web Browsers 257

TIP

An excellent, modern, and forward-thinking resource example for setting
browser policy is the Yahoo! UI Graded Browser Support system developed at
Yahoo!. These standards are based on Yahoo!’s browser’s statistic data, which is
an excellent cross-section of the Web. This can be referenced online at http://
developer.yahoo.com/yui/articles/gbs/.

Alternative Devices
A professional Web team needs to assume that an unpredictable variety of non-
traditional devices will be used to browse its site. Some of these include

❖ Text-based browsers such as Lynx

❖ Assistive technologies like screen readers, such as JAWS or Window-Eyes

❖ Game consoles

❖ Mobile or handhelds such as PDAs (Personal Digital Assistants) and cellular
and smart phones

Web teams should become familiar with these alternative devices and learn how
to support them (Figure a.).

Figure a. Opera
Software produces
Opera Mini, an
exceptionally powerful
mobile Web browser
for handhelds and cell
phones.

http://developer.yahoo.com/yui/articles/gbs/
http://developer.yahoo.com/yui/articles/gbs/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

258 ADAPTING TO WEB STANDARDS

Company Policy
Whatever degree of browser support an organization chooses, it should be an
educated decision that is regularly evaluated, at the very least once a year. It
should be documented and integrated in the Web team’s Quality Assurance (QA)
process. This requires software and hardware configurations being made available
to test with. Not having access to testing software or hardware can mean lost
customers, opportunities, and revenue—and even, in some cases, open up the
potential for legal action.

At the same time, unless you are working in a controlled environment where
the users’ software can be guessed or controlled (such as a corporate intranet),
even browsers that are “not supported” should be given something that can be
accessed or information about what software is supported.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Accessibility

Appendix B

The W3C has created a number of best-practice recommendations with regards
to Web standards-based approaches to accessibility. Traditionally, terms like Sec-
tion 508 (government regulations around accessibility) have left many a designer
with feelings of dread, believing that they will have to seriously hold back their
designs.

Happily, with the little effort it takes to follow professional best practices, Web
designers or developers can get their code closer to purely accessible than ever
before. A team needs only to make reasoned decisions and produce thoughtful
markup, CSS, and in particular scripting (which should not be 100% required for
a site to work) in order to come fairly close. Accessibility should always be in the
back of a designer’s mind when creating the UI and when a developer is program-
ming backend software. The main areas of concern—the ones in which it’s most
challenging to attain accessibility successes—are the one-off scenarios, integra-
tion with third parties, potential CMS or other software issues, and multimedia.

In addition to the W3C, governments worldwide are also defining standardsfor
acceptable levels of accessibility. Some of the accessibility guidelines include:

❖ United States Federal Government Section 508, www.section508.gov/

❖ W3C Web Accessibility Initiative (WAI) Web Content Accessibility Guidelines
1.0 (WCAG), www.w3.org/TR/WAI-WEBCONTENT/

❖ W3C WAI WCAG 2.0, www.w3.org/TR/WCAG20/

❖ W3C Accessible Rich Internet Applications (WAI-ARIA) Suite,
www.w3.org/WAI/intro/aria

Each set of guidelines defines different levels of accessibility. Typically, an organi-
zation should decide which of these levels to shoot for and begin plans to test and
evaluate based on that target as part of its QA process.

259

www.section508.gov/
www.w3.org/TR/WAI-WEBCONTENT/
www.w3.org/TR/WCAG20/
www.w3.org/WAI/intro/aria
http://lib.ommolketab.ir
http//lib.ommolketab.ir

260 ADAPTING TO WEB STANDARDS

Resources
In addition to the accessibility standards listed above, here is a list of resources to
start developing more accessible Web sites for your audience:

❖ Adobe Accessibility Resource for Acrobat and Flash Design, www.adobe.com/
accessibility/index.html

❖ Six Principles of Accessible Web Design: An Introduction to the WAI Page
Author Guidelines, www.hwg.org/resources/accessibility/sixprinciples.html

❖ Dive into Accessibility. A 30-day primer on Web site accessibility,
http://diveintoaccessibility.org/

❖ Know Your Users: Web Accessibility from the User's Perspective. A video
featuring demonstrations of assistive technologies for the Web, www.
fresnostate.edu/webaccess/users/default.html

❖ Communicating With and About People with Disabilities. A handy resource
with tips on how to talk to people with intellectual, cognitive, or developmen-
tal disabilities, www.dol.gov/odep/pubs/fact/comucate.htm

❖ Screen Reader Simulation, www.webaim.org/simulations/screenreader/

❖ Low Vision Simulation, www.webaim.org/simulations/lowvision.php

❖ Countering Design Exclusion: An Introduction to Inclusive Design by Simeon
L. Keates and P. John Clarkson. ISBN: 1852337699.

❖ A List Apart’s Accessibility section. A Web design magazine containing expert-
written articles on current topics of accessible Web design, www.alistapart.
com/topics/userscience/accessibility/

www.adobe.com/accessibility/index.html
www.adobe.com/accessibility/index.html
www.hwg.org/resources/accessibility/sixprinciples.html
http://diveintoaccessibility.org/
www.fresnostate.edu/webaccess/users/default.html
www.fresnostate.edu/webaccess/users/default.html
www.dol.gov/odep/pubs/fact/comucate.htm
www.webaim.org/simulations/screenreader/
www.webaim.org/simulations/lowvision.php
www.alistapart.com/topics/userscience/accessibility/
www.alistapart.com/topics/userscience/accessibility/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Web Site
Performance Tips

Appendix C

When Web teams consider performance, they usually think of server-side issues
such as server hardware performance, application software performance, and
bandwidth considerations. The main thing that they associate with performance
as it relates to client-side considerations is…a few graphics, and that’s about it.

The truth is, there are a number of client-side performance issues, many of which
are quite effective in affecting the user-perceived speed of a Web site. The “time
to display” in the browser and the time for the page to be ready for the user to
interact with it is possibly the most important aspect of performance from a user
perspective. User perspective is everything.

UI coders have to take a lot into account when creating the UI layer of a site,
and they are fortunate if they have opted for a Web standards-based approach,
because it is more efficient than the older methods. Modern pages are lighter
weight, and there is some evidence they are rendered faster in the browser. Cer-
tainly, leveraging the browser’s cache for presentation and scripts can be benefi-
cial because that information does not have to be downloaded every time.

The usual design rules apply about keeping file sizes to a minimum. But this
applies to graphics, CSS files, JavaScript, Flash files, and anything else that a Web
page has to load. However, the actual structure of the page, the way it’s put
together, where it is requesting the files from, and the way artwork is cut can all
have tremendous impact on the load time in a Web browser.

A number of industry experts, including the Yahoo! UI team (www.yuiblog.com)
in particular, have published research on page-loading and the way browsers make
requests to the server (see the links at the end of this section for more of the

261

www.yuiblog.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

262 ADAPTING TO WEB STANDARDS

research). Their and others’ research is of immense value to front-end develop-
ers looking for optimizations. Of particular interest is how Web browsers request
files, in what order, and what they can and cannot do in parallel.

Some interesting performance tips from Yahoo! UI and others include

❖ Fewer files mean faster load times, even if some of those files are larger than
smaller sets of smaller-sized files. This is because each HTTP request the
browser makes and the server responds to is exceptionally time-intensive.

❖ Combining images and using CSS to position and clip the graphics to show
parts of them at a time can speed up load times, because of fewer HTTP
requests. These images are frequently referred to as “CSS Sprites.”

❖ Consider, either as part of a build process when deploying a Web site or in
real time, merging numerous CSS and JS files into their own single file in order
to reduce HTTP requests. Another way to dynamically merge files is to use
server-side scripts.

❖ A browser can load CSS files simultaneously; however, once it hits a <script>
tag, the browser suspends other load operations and loads each <script>
individually in sequence. Once the scripts are completed, the browser then
proceeds with loading the page. This can seriously skew load times.

❖ To help mitigate multiple <script> tag load impacts, consider placing
<script> tags just before the closing <body> tag to allow the page to load
before the scripts.

❖ Execute page-building JavaScript when the document has completed loading,
as opposed to when the whole page loads (also known as window.onload).
For more information, see the performance experiment section following this,
and the sidebar “Execute on Page Load, or Event on DOM Document Load” in
Chapter 3.

❖ Spread images or scripts out over multiple DNS names so the browser can
request more files simultaneously. These can be simple DNS CNAMES, as
the IP address doesn’t matter. There is a limit to this benefit, so reading the
research on this technique is recommended (see notes below).

❖ Enable gzipping or compression of HTTP served content. Almost all Web
servers today and Web browsing clients can serve and accept compressed
content; this can shave a lot of size off the downloaded files.

❖ Where there are large numbers of scripts required but selectively used,
authors should consider investigating a technique called “Lazy Loading” or
“On-Demand” script loading, which allows only basic scripts to be loaded until
extra libraries are needed, which are then loaded dynamically without a page
refresh.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix C Web Site Performance Tips 263

❖ Modern JavaScript can get fairly bloated, so consider using one of several
online tools that strip unnecessary code and white space from scripts to make
the files smaller. Two examples are Douglas Crockford’s JSMin (crockford.
com/javascript/jsmin.html) or Dean Edwards’ Packer (http://dean.edwards.
name/packer/).

NOTE

For the above and more, including additional tips and further explanations,
please see some of the following original research and resources online:

Performance Research, Part 1: What the 80/20 Rule Tells Us About Reducing
HTTP Requests
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/

High Performance Web Sites: Rule 1—Make Fewer HTTP Requests
developer.yahoo.net/blog/archives/2007/04/rule_1_make_few.html

Optimizing Page Load Time
www.die.net/musings/page_load_time/

A Performance Experiment
How do some of these techniques fare in the real world? Where can the savings
actually happen? It’s important to remember that different types of sites will fare
differently based on their makeup and what techniques are employed on them.
For example, large news or e-commerce sites and the typical Web designer’s blog
are different types of sites altogether, with diverse server needs and volumes of
traffic. Additionally, a number of other variable factors also affect performance,
from the quality and type of Internet connection to the speed of the computer
being used.

To get real-world examples, metrics must be pulled from large sites with hundreds
of assets and thousands of users. These sites can be literally hundreds of kilobytes
in file size. You can also extrapolate large-site performance benefits from small-
scale examples, such as blog pages, which are often 100KB or smaller. That’s the
test we’re going to try here.

The Basic Setup
Using a dial-up connection and the excellent Mozilla Firefox extension Firebug
(www.getfirebug.com), you can inspect the download requests of a given Web
page using its networking tools. These tools display a graph of each object, its
file size, and the time to download it in comparison to other objects on the page.

www.die.net/musings/page_load_time/
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/
www.getfirebug.com
http://dean.edwards.name/packer/
http://dean.edwards.name/packer/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

264 ADAPTING TO WEB STANDARDS

Firebug is free, open source, and a highly recommended tool for debugging every-
thing from CSS to JavaScript and Ajax.

Starting with a small-scale blog that features 112KB of files, Firebug shows that
these files are broken down into 22 unique requests that take roughly 20.44 sec-
onds to download over a dial-up connection.

Consider also that the JavaScript, when building advanced page effects, typically is
loading a number of scripts onload—when the document has finished loading—
and that will not happen until 20 seconds after the page is initially loaded.

The site features

❖ Four CSS files: a 47-byte file, a 13KB file, a 5KB file, and a 738-byte print style
sheet

❖ Three JavaScript files in the document’s <head>: one 18KB file, one 2KB file,
and a 20KB file from an external site for statistics tracking

❖ Three other 20KB JavaScript files from external sources for small advertising
promotions

Examine the initial, out-of-the-box graph from Firefox. The same graphic and list
of files would be almost exponentially larger on an enterprise-scale site, and so
would the download times and numbers of files (Figure c.).

Looking at the graph, you can add up the times and see the point at which the
CSS and JavaScript in the document’s <head> are loaded, the document itself, and
also the point at which the artwork and other files are loaded:

❖ The HTML document itself takes 2.5 seconds to load.

❖ The CSS files are loaded with some overlap to the document, but with a little
extra time compared to the HTML document.

❖ As expected, the three JavaScript files in the <head> are loaded one file at a
time, in sequence, while nothing else is loaded; however, this process does not
start until after 2.5 seconds or so.

❖ By the time these JavaScript files are loaded, almost six additional seconds have
passed.

❖ Roughly eight seconds pass before the first graphic is loaded, due to waiting on
these other requests.

❖ It can be safely assumed that at a certain point, the document is rendered in
the user’s window, and colors and layout are applied from the CSS, at least
after 2.5 seconds for the CSS to load, although no artwork is displayed in those
first eight seconds.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix C Web Site Performance Tips 265

Far from a scientific analysis, but an interesting story nonetheless, in particular the
portion where the scripts are loaded one at a time and in sequence.

Now, consider for a moment that there has been some optimization already at
this point. The first, 18KB JavaScript file is a white space-packed JavaScript file that
was compressed from 50KB to 18KB. A 50KB file on a 56Kbps dial-up connection
would take a full six seconds to download, all while nothing else is happening.
This alone would push out the time to display any artwork to something like 11
seconds.

Finally, this script actually queues up several JavaScript events and actions unob-
trusively and loads the scripts, not at the end of the page load as per usual, but
once the HTML document’s DOM has loaded, cutting that time down from 20
seconds to eight seconds. This is a huge performance boost (read more about it in
the JavaScript sidebar “Execute on Page Load, or Event on DOM Document Load”
in Chapter 3).

Merging Files and Moving Scripts
A first pass through can easily optimize the files’ linking and placement inside the
document with a couple of easy steps:

❖ Merge the CSS files.

❖ Merge the JavaScript files.

❖ Move the JavaScript files to the bottom of the document just before the clos-
ing <body> tag.

Figure c. The base page load performance graph in the Firebug Firefox add-on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

266 ADAPTING TO WEB STANDARDS

Before merging the files, the script and link tags looked like this:

<link rel=”stylesheet” type=”text/css” href=”/-/css/cdc.css” />
<link rel=”stylesheet” type=”text/css” href=”/-/css/cdc-print.css”
 media=”print” />
<script type=”text/javascript” src=”/-/js/jquery.js”></script>
<script type=”text/javascript” src=”/-/js/cdc.js”></script>
<script src=”http://www.google-analytics.com/urchin.js”
type=”text/javascript”>
</script>

Additionally, the cdc.css file used @import to bring in two further CSS files,
cdc-main.css, and geshi.css. The @import directive is a common technique to
screen out old browsers that don’t support more modern CSS commands. Com-
bining the CSS files is a fairly straightforward process of taking the content of
cdc.css, main.css, geshi.css, and cdc-print.css, and saving them off into a
single linked file called cdc.css.

One immediate problem is that the CSS links to a print-specific CSS file,
cdc-print.css, and if that content is pushed into cdc.css then there has to be
a way to specify that its rules are print-specific. The CSS specification solves this
dilemma through the use of inline media handlers. Using an @media declaration,
which is wrapped around the rules that apply, means that the cdc.css file looks
like this:

/* content from the other css files here */
@media print {
 /* content from the cdc-print.css file such as: */
 #nav { display: none; }
 #content { position: static; }
}

It seems odd because it’s not typical to see curly braces {} inside of other curly
braces {} in CSS. Now, with a single file the media type is set to all, which, much
like @import, can help screen out older, unsupported browsers:

<link rel=”stylesheet” type=”text/css” href=”/-/css/cdc.css”
 media=”all” />

Beyond this, the JavaScript files (the ones that can be combined) are combined
and moved out of the document’s <head> and placed just before the closing
<body> tag:

<script type=”text/javascript” src=”/-/js/cdc.js”></script>
<script src=”http://www.google-analytics.com/urchin.js”
 type=”text/javascript”></script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix C Web Site Performance Tips 267

</body>
</html>

So, the cdc.js file contains both jquery.js and cdc.js. Unfortunately, the last file
is from another source, and can’t be combined.

Combining the CSS and JavaScript files reduces the number of HTTP requests
on this page to 18 requests—down from 22. There is now one main CSS file and
one main JavaScript file, which replaces the three scripts that used to be in the
document’s <head>.

The results can show how these simple steps can speed up the user’s experience.
First, the download time is reduced, albeit only about a second on a site as small
as this. It is, however, interesting that even a small page can have a small perfor-
mance boost. One can imagine the effect on a large site, with a server having to
respond to thousands of users. Here, reduction to four fewer requests made for a
small savings in terms of download time, however, the server itself has less work to
do. The busier the site, the more that will add up (Figure c.).

Figure c. The base page load performance after reducing the number of linked files
and moving the JavaScript before the closing <body> element.

Another item worth noting is that it is now only roughly 2.5 seconds before the
page is downloading the attached artwork—vividly increasing the user’s percep-
tion of how responsive and well-performing the site is. The main page’s scripts
being downloaded at the end of the body document has not delayed the load-
ing of the artwork and other assets, because (as has been noted) loading scripts
prevents other files from loading. Now, this operation happens at the end of the
document.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

268 ADAPTING TO WEB STANDARDS

HTTP Compression
HTTP 1.1 file compression has been supported by most Web browsers for years.
Unfortunately, for years common Web browsers such as Netscape 4 had excep-
tionally buggy implementations. With that said, Web servers had some question-
able implementations as well. Today, most major Web browsers have shaken the
bugs out and server technology has also caught up to some degree. With Apache
there is mod_deflate, mod_gzip, and even PHP has some built-in real-time com-
pression options. Microsoft’s Internet Information Server (IIS) also supports com-
pression, although it is complicated to set up, and often third-party add-ons can
assist or even augment its features.

For demonstration purposes, the last step in the experiment is to enable HTTP
compression on the server side for the JavaScript and CSS files. Note that in this
demonstration, the HTML document has not been compressed, although docu-
ment compression is almost more common and can yield spectacular results as
well, sometimes on the order of a 60% savings. These are all text-based files, which
are easy to compress and produce wonderful savings that really pay off.

How compression can be enabled is complex and beyond the scope of this discus-
sion; however, many resources online are available and should be read carefully.

Loading up the test page and tracking the Firebug graph shows some impressive
results (Figure c.):

❖ On a dial-up connection, the page now loads in 16 seconds (a three-second
gain for a user is exceptional).

❖ 20KB in CSS has been reduced to 5KB.

❖ 20KB in JS has been reduced to 10KB.

Figure c. The page with HTTP compression enabled.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix C Web Site Performance Tips 269

This is a benefit in terms of both server-side bandwidth costs and downloads for
users, and the impact on page document weight is obvious. Note that one of the
JS files could not be merged or compressed because it was hosted on an outside
server.

Remember that these experiments were performed on a small-scale site with
low traffic. The results on enterprise sites—with high bandwidth costs, a greater
quantity of assets, larger file sizes, and more users—can provide an exceptional
payoff.

TIP

Compression can be tricky for many reasons, in particular due to its sordid his-
tory and inconsistent support by browsers. Attempts to configure or implement
HTTP compression should be performed carefully and with ample research,
experiments, and lots and lots of testing. The tests should be tested. And then
tested again. Search online for help with regard to PHP compression, Apache
mod_deflate, mod_gzip, or IIS utilities.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CSS Selectors Reference

Appendix D

Obviously, browser support for CSS selectors varies, so testing is critical. What follows is an overview of just
some of the available CSS selectors. These and more can be found in the CSS specifications, as described at
www.w3.org/TR/REC-CSS2/selector.html.

Selectors

E Type or Element selector Matches any E element

p {color:red;}
<p>This text is red</p>

E.warn Class selector Matches element E with class of warn

div.warn {color:red;}
<div class=”warn”>This is red</div>

Classes can be used by themselves to apply to any element:

.warn {color:red;}
<div class=”warn”>This is red</div>
<p class=”warn”>So is this</p>

#myid ID selector Matches any E element ID equal to myid

#myid {color: red;}
<div id=”myid”>Text inside will be red.</div>

E F Descendant selector Matches any F element that is a descendant of an E element

div p {color:red;}
<div><p>This text is red.</p></div>
<p>This text is not.</p>

270

www.w3.org/TR/REC-CSS2/selector.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Appendix D CSS Selectors Reference 271

E > F Child selector Matches any F element that is a direct child of an element E.
White space around > is optional.

li > p { color: red; }

 <p>This text is red.</p>

<p>This text is not.</p>

E + F Adjacent selector Matches any F element immediately preceded by an element E

h1 + p { color: red; }
<h1>Header</h1>
<p>Paragraph is red.</p>
<p>But not this one!</p>

E:first-child The :first-child pseudo-class Matches element E when E is the first child of its parent

li:first-child { color:red; }

this will be red
this will not be

E:link :link pseudo-class Matches elements E that are links, typically a anchor links in
(X)HTML

a:link {color:black;}
a {color:blue;}
<p>
 This is black.
 This is blue.
</p>

E[foo] Attribute selector Matches any E element with the foo attribute set
(whatever the value)

a[href] {color:green;}
<p>
 this, is a green link
 this, is not
</p>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

272 ADAPTING TO WEB STANDARDS

E[foo=val] Attribute selector Matches any E element with the foo attribute set exactly to “val”

a[rel=external] { color: green; }
<p>
 this matches, and is green
 this is not green
</p>

E[foo~=val] Attribute selector Matches any element E with an attribute matching foo exactly in a
space-separated list

a[rel~=example] {color: green;}
<p>
 this is green
 this is not
</p>

E[foo|=val] Attribute selector Matches any element E with the foo attribute set where the first
part of a hyphenated value is “val”. This is typically for language
attribute matching.

a[lang|=en] {color:green;}
<p>
 this matches, and is green
 this is not green
</p>

* Universal selector Matches any element, any rule applied here applies to any and all
tags, including forms, etc.

* {color: red;}

Everything will be red. Typically avoided.

A better use of the universal selector is inside of something; however, the same caveats apply:

#box * {margin: 0;}
<div id=”box”>
 <p>Everything in this div will have no margin.</p>
 Everything!
</div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index

24-7media.de, 194
37Signals.com, 194

A
A List Apart, 68
accessibility, 6, 120, 123, 228, 242
Active Server Pages. See ASP
ActiveX-based editing, 141
Adaptive Path, 76
adaptive rendering, 122, 123
addEvent() function, 91
addEventListener() method,

90
administrative modules, 137
Adobe

ColdFusion, 117, 118, 120
Contribute, 141
Dreamweaver, 141, 177, 180

advertising modules, 137
advertising servers, 33
AestheticApparatus.com, 194
AJAX, 77. See also Ajax
Ajax, 76–79, 104–105, 106
alternative media CSS, 67–72
Amazon.com, 222
Amos, Tori, 167–168. See also

EverythingTori.com

AOL
and Circle of Standards, 149
as ISP, 197, 199
proprietary screens, 197
waterfall method of

development, 206
and Web, 197, 199. See also

AOL.com
AOL.com, 197–251

and accessibility, 228
amount of text content on,

222
and CSS, 239, 240, 242
design challenges, 199–200,

202
design goal, 220
home page, 198
interviews with main players,

200–220, 229–231
Optimization team, 229–230
performance concerns,

224–229, 248–250
prototypes, 210
resizing of fonts in, 242–248
and Scrum model, 207–208
use of em-based

measurements in, 245–248

Apache Web server, 67, 249
APIs, 10, 55, 121, 150, 210
Apple, 18, 77, 191
application program interface, 10.

See also APIs
architectural design patterns, 10
architecture

information, 168, 170, 171–172
software, 10, 63, 120
system, 232–235
user-interface, 11

Artz, David, 206, 221, 229-231
ASP, 33, 117, 118, 120, 121
ASP.NET, 121–135

and accessibility, 123
adaptive rendering, 122, 123
CSS Friendly Control

Adapters, 134
data output, 124–130
DataGrid control, 124–127
HTML controls, 130–135
improvements in, 123
JavaScript features, 123
power of, 121, 122
Repeater control, 128–129
required reading, 134
server controls, 131, 132

273

http://lib.ommolketab.ir
http//lib.ommolketab.ir

274 ADAPTING TO WEB STANDARDS

ASP.NET (continued)
server-side code, 120, 123,

134–135
tags, 122
Web applications IDE, 121
Web controls, 130–135
and Web standards, 122–123,

134
ASPX extension, 121, 124
Asynchronous JavaScript and

XML, 76. See also Ajax

B
backend applications, 76, 80
backend code

creating standards for, 151
documenting, 151
leveraging strengths of, 123
optimizing, 235
separating application logic

from, 113, 117, 120
ugly markup in, 111
updating, 144

backend programmers, 109, 123,
128, 144

behavior layer, 7, 9, 10, 75–76, 106
best practices. See also Web

standards
content management, 136
CSS, 239–242
JavaScript, 76, 85
markup, 236

blog engines, 177
blog microformat, 57
bottlenecks, 250
box model hack, CSS, 29
browser-based editors, 141–143
browser detection, 85, 86
browser rendering modes, 21–26
Browser War, 27
browsers. See Web browsers
buddy system, 232–233
built-in scripts, 137

C
caching, 228, 249
CactusLab.com, 194
cape-acrona.com, 194
Cascade, 250, 251
Cascading Style Sheets. See CSS
case studies

AOL.com, 197–251
EverythingTori.com, 167–195

CDNs, 249
Cedarholm, Dan, 44
chat clients, 78
cheating ahead, 199, 206, 209–210
Chipman, Steve, 222
Circle of Standards, 150–158

and AOL, 149
defined, 150
description of phases, 151–157
illustrated, 150
putting into practice, 157–158
role of standards manager

in, 150
class names, 37–38, 54–55
Classic ASP, 117, 118, 120, 121
classitis, 59–64
clickable prototypes, 171–172
CMS

and dynamic applications, 109
for EverythingTori.com, 177
flexibility of, 135
meaning of acronym, 6
output/modules, 136–137
for photo galleries, 178–179
separating from UI code, 9
and site planning, 34
and UI architecture plan, 11

CMS layer, 10
CNN.com, 222
code

backend. See backend code
estimating performance before

writing, 221
front-end. See front-end code
libraries of packaged, 99
proprietary, 87

scalable, 49, 52, 78, 180, 192
separating UI and CMS, 9
server-generated, 121
validating, 14, 32–33, 238

code reviews, 156
coding guidelines, 113
coding practices, 147
ColdFusion, 117, 118, 120
color themes, 136
communication

during site-design process, 173,
190, 203–204

of standards, 150, 154–155
technologies, 164

compression, 225–226, 249–250
comps, 175–176
conditional comments, 29, 54
Content Delivery Networks, 249
content management, 135–144.

See also CMS
baseline, 135
best practices, 136
and browser-based editors,

141–143
and clean content, 136
output/modules, 136–137
purpose of, 135
templates, 137–141
tools, 33, 136
and WYSIWYG editors,

141–143
content negotiation, 18
context, 136
Contribute, Adobe, 141
controller layer, 10
craft, Web development as,

212–220
creativity, 213, 214
Crockford, Doug, 78
CSS, 47–72

alternative media, 67–72
and AOL.com, 239, 240, 242
best practices, 239–242
and browser-based editors,

142–143

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 275

class names, 37–38, 54–55
classes. See CSS classes
conditional comments, 54
and content management, 136
directory-based, 52–53
for EverythingTori.com,

180–189
file content structure, 65–67
file structure, 48–55
importance of, 72
inheritance, 251
layout box model, 28
linking strategies, 49–51
linking third-party sites to,

143–144
meaning of acronym, 9
merging, 53–54
modular, 50–51
naming conventions, 54–55
performance considerations,

51
selectors, 58, 59, 60, 64–65
W3C recommendations, 64, 65
Web browser support for, 27,

64, 193, 239
Web servers and, 67
and WYSIWYG editors, 141

CSS Beauty, 24–26
CSS classes

avoiding overuse of, 59–64,
136

and browser-based editors, 142
combining, 63
naming, 37–38, 54–55
pulling presentation

information into, 42
referencing, 83, 113
scripting with, 88–91

CSS Friendly Control Adapters,
ASP.NET, 134

CSS Validation Service, 32
CSSZenGarden.com, 194

D
data forms, 114
database queries, 118
DataGrid control, ASP.NET,

124–127
deadlines, project, 204
descendent selectors, 59, 60
design

documents, 156, 206
interaction, 151, 192
judging for performance,

230–231
patterns, 10
process

communication during,
173, 190, 203–204

for EverythingTori.com, 170
important steps in,

231–232
as team effort, 221

Design Requirements Document,
206. See also DRDs

design review, standards, 155, 156
designers, Web, 191, 194
Developer Toolbar, Microsoft

Internet Explorer, 33
directory-based CSS, 52–53
DIV-based design, 14
<div> tags, 180
Divitis, 180
DOCTYPE presence, 22
DOCTYPE sniffing, 22
DOCTYPE switching, 22, 27,

236–238
Document Object Model, 76, 87.

See also DOM
Document Type Definition, 20.

See also DTD
Dojo, 99
DOM

and event handlers, 91, 98
inserting content into, 91
and JavaScript, 76, 85
meaning of acronym, 76
proprietary techniques, 83, 85
and W3C, 85, 87, 91

Dooce.com, 194
downloading files, 250
DRDs, 206, 207, 210
Dreamweaver, 141, 177, 180
DTD

and browser rendering modes,
21

and markup language versions,
20

meaning of acronym, 20
strategy, 38

dynamic behaviors, 88
dynamic elements, 85, 91–93

E
eBay.com, 222
em-based measurements, 247
em values, 245
email, 164, 190
event handlers, 85, 88–93, 98,

101, 105
EverythingTori.com, 167–195

build process, 180
building wireframes for,

170–176
CMS for, 177
CSS for, 180–189
design process, 170
designer of, 168, 191–195
designing, 177–180
detailed comps for, 175–176
developing time/cost

estimates for, 172
downloading of songs from,

190
launching, 190
main parts of, 171
vs. other Tori Amos sites,

168–170
prototypes for, 171–172,

174–175
purpose of, 168
scalability of, 180
updating, 190
user feedback, 190

http://lib.ommolketab.ir
http//lib.ommolketab.ir

276 ADAPTING TO WEB STANDARDS

Expression Web, 141
ExpressionEngine, 177, 179, 180
eXtensible HyperText Markup

Language. See XHTML
eye candy, 10

F
fan sites, 168
FasterFox extension, 250
Fierlinger, Philip, 168, 191–195
file caching, 228, 249
file compression, 225–226,

249–250
file downloads, 250
Firefox

and CSS selectors, 64
downloading files in, 250
Operator add-on, 58–59
Page Info dialog, 23
quirks/standards mode in, 22
Web Developer Extension, 32

Flash-based editing components,
141

Flash developers, 194
Flickr.com, 194
forms, 113–117
frameworks, 98–106

ASP.NET, 121–135
creating Ajax code with,

104–105
vs. custom scripts, 98–99
jQuery, 100–104
server-side, 117–121
troubleshooting, 106

front-end code
bloated/inefficient, 15
markup for, 72
and performance

optimization, 235
rules for, 113
technical standards, 152
and UI architecture plans, 11

Fusebox, 117

G
galleries, photo, 178–179
Garrett, Jesse James, 76
getElementsByClassName()

function, 88–90, 101
getElementsByTagName()

function, 88
Giron, Alex, 24
Gmail, 78, 79
Google, 78, 79, 194, 222
graphics. See also images

aligning, 30, 31
background, 26, 189
loading of, 98
and performance analysis

tools, 230, 231
taking inventory of, 34

Gutterlife.com, 194

H
handheld CSS, 67, 71
hAtom format, 57
hCalendar format, 57
hCard format, 57, 58
headers, 136, 185–189
Here In My Head fan site, 168
Horton, Sarah, 152
href attribute, 88
hResume format, 57
hReview format, 57
HTML

converting to XHTML, 21
as light-weight XML, 38
meaning of acronym, 9
old-school, 8, 38–39
server-generated, 121
tables, 113–117, 236, 238
Transitional vs. Strict, 20–21
and W3C, 18
vs. XHTML, 15–21

HTML controls, ASP.NET, 130–135
HTTPWatch, 230
HyperText Markup Language. See

HTML
hyphenated hierarchies, 36

I
ID attributes, 35–38
IDEs, 111, 113, 121, 123
IE. See Internet Explorer
images. See also graphics

aligning, 29, 30
background, 26, 180, 181
caching, 228, 249
compressing, 226, 250
CSS resizing of, 242
galleries of, 178–179
gaps between, 29
sliced, 27, 29, 231

inertia, organizational, 148–149
information architecture, 168, 170,

171–172
inheritance, 251
inline event handlers, 85, 90
innerHTML, 91
instant messaging, 164, 190
integrated development

environment, 111. See also IDEs
interaction design, 151, 192
interactivity, 7, 8, 72, 75, 191
Internet Explorer

ActiveX-based editing
component, 141

and adaptive rendering, 123
and addEventListener()

method, 90
and ASP.NET, 123
conditional comments, 29, 54
and CSS layouts, 27–29
and CSS selectors, 64
Developer Toolbar, 33
downloading files in, 250
linking CSS files for, 54
and standards-compliant

rendering, 22, 26
and XHTML, 18
and XML, 17

Internet Service Providers, 197
inventory

JavaScript file/function, 80
standards, 157
UI template, 34–35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 277

Iso50.com, 194
ISPs, 197

J
Java-based editing components,

141
JavaScript, 80–106

and ASP.NET, 123
best practices, 76, 85
custom vs. frameworks,

98–106
DOM support, 76, 85
examples of bad, 80–84
file/function inventory, 80
modern/progressive, 78, 106
multiple onloads support,

96–98
object-oriented, 94, 96
presentation aspects of, 93–94
pulling CSS out of, 93
purpose of, 76
requirements, 80
unobtrusive, 85–86

job boards, 143
jQuery framework, 99, 100–104

K
Kaply, Michael, 58
Konqueror, 22

L
l3che.com, 194
LaPera, Scott Andrew, 91
Lawver, Kevin, 197, 206
legacy markup, 17, 26, 27
Level of Effort documents, 204.

See also LOEs
LOEs, 204, 210, 218
Luman, Kevin, 201, 206
Lynch, Patrick, 152

M
.Mac service, 77
markup

best practices, 236
and DOCTYPE switching, 27,

236–238
semantic, 38–41, 55, 136, 236
for simple forms, 113–117
validation tools, 32–33

markup languages, 15–21, 38, 44
markup layer, 9
markup percentage, estimating,

221–224
MarkupValidation Service, 32
Meebo, 78, 79
menus, 137
Meyer, Eric, 29, 31, 68
microformats, 55–59
microformats.org, 55, 56, 57
Microsoft

ASP.NET framework, 121–135
Developers Network Web

site, 134
Expression Web, 141
Internet Explorer. See Internet

Explorer
Outlook, 58
Visual Studio.NET, 121–123

Miikasaksi.com, 194
Miller, Jon, 199
model layer, 10
model-view-controller pattern, 10
modular CSS, 50–51
Movable Type, 177
Mozilla

Add-ons site, 58
browser, 22, 67. See also Firefox
and browser-based editing, 142

Mozilla Foundation, 18
MP3 files, 190
MSDN Web site, 134
MSN.com, 222
MySpace.com, 222

N
naming conventions, CSS, 35–38,

54–55
NavigationArts, 68–71
nesting

CSS rules, 66
tables, 8, 15, 35, 119, 236
tags, 15

Netscape, 22, 27
news archive, 137
Nyman, Robert, 90

O
object detection, 85
Odopod.com, 194
onload event, 96–97
Opera, 18, 22, 64
Operator add-on, Firefox, 58–59
Optimization team, AOL.com,

229–230
organization rules, 147
organizational inertia, 148–149
Ourcommon.com, 194
Outlook, Microsoft, 58
outsourcing

project development, 210, 212
standards documentation, 153
training programs, 155

P
Page Info bookmarklet, 222
Page Size bookmarklet, 221–222
passion, 216
PAT, 230
PDLC, 157
Pederick, Chris, 32
peer code reviews, 156
performance

analyzing, 230
designing for, 220–232
optimizing, 248–250
perceived vs. real, 230

Performance Analysis Tool, 230
photo galleries, 178–179

http://lib.ommolketab.ir
http//lib.ommolketab.ir

278 ADAPTING TO WEB STANDARDS

PHP
benefits of, 120
creating better scripts with,

118–119
and ExpressionEngine, 177
meaning of acronym, 117
and Movable Type, 177
purpose of, 117

PHP: Hypertext Preprocessor, 117
PHP Smarty, 117
Plain Old Semantic HTML. See

POSH
pop-up windows, 82, 88–90
POSH, 41–43, 56–58, 63
PRDs, 203, 206
presentation elements, 42
presentation information

changing, 113
and class names, 37
controlling from CSS, 72, 88
inline, 117, 119
and JavaScript, 93
pulling into CSS classes, 42
separating content from,

39–40, 83
separating from markup, 15
in Transitional vs. Strict

language versions, 20
presentation layer

contents of, 9
creating/adapting, 251
illustrated, 7
keeping scripts’ code separate

from, 78, 118
for typical large-scale Web

site, 52
and Web standards, 9, 47

print CSS, 67, 68–72
print style sheets, 68–72
problem-solving skills, 213, 214
process management, 158
product development life cycle,

157
product lists, 137
Product Requirements Document,

203, 206

progressive enhancement, 225,
228

project deadlines, 204
proprietary code, 87
Prototype framework, 99
prototypes, 171–172, 174–175,

210, 219
pseudo-links, 85

Q
quality review process, standards,

150, 155
quirks mode, 22, 25–26, 29, 236,

237

R
Raichelson, Michael, 68
removeEvent() function, 91
rendering modes, browser, 21–26
Repeater control, ASP.NET,

128–129
RIAs, 76
Rich Internet Applications, 76
Richman, Michael, 200, 206
Robinson, Grant, 194
Robinson, Mark, 209
rules. See also best practices

breaking, 164
following, 147
for front-end code, 113
nesting CSS, 66

S
Safari, 22, 64
Saksi, Miika, 194
scalability, 49, 52, 78, 180, 192
screen CSS, 67, 69
screen readers, 180, 228
script-based editing components,

141
<script> tag, 86
scripts. See also JavaScript

adding event handlers to,
88–91

best practices, 76, 85
built-in, 137
custom, 98–99
improving, 85–86
modern/progressive, 78

Scrum model of development,
206, 207–208

SDDs, 206
search engine optimization, 7, 9,

43, 170. See also SEO
search results, 137
SecondStory.com, 194
semantic HTML, 41–43
semantic markup, 38–41, 55, 136,

236
SEO, 9, 11, 43, 44. See also search

engine optimization
server-side frameworks, 117–121
server-side programming, 7–8
setup() function, 96
Shift.co.nz, 194
SimpleBits.com, 44
SimpleQuiz series, 44
site bottlenecks, 250
site-design process

communication during, 173,
190, 203–204

for EverythingTori.com, 170
important steps in, 231–232
as team effort, 221

Smallprint.net, 194
Snook, Jonathan, 90
software architecture, 10, 63, 120
 trigger, 94–95
standards. See also Web standards

communicating, 154–155
creating, 151–154
defined, 151
documenting, 151–154
getting feedback on, 155
outsourcing, 153
quality review process,

155–157
training programs, 154–155,

158
updating, 154

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index 279

Standards, Circle of. See Circle of
Standards

standards-based Web sites, 5–6.
See also Web standards

standards-compliance reviews,
156

standards consultants, 153
standards-management team,

150–151, 158
standards managers, 150–151,

153, 158
standards mode, 22, 29, 236, 237
Strict language versions, 20–21,

237
stubs, 233–234
style guides, 147, 152
style sheets, 47. See also CSS
SWAG, 210
swirl, 202–203
system design, 232–235
System Design Document, 206

T
tables

gaps in, 29–32
as layout tool, 29, 113, 236, 238
nested, 8, 15, 35, 119, 236
rendering, 236

tag soup, 8
target attribute, 88
TDDs, 156
technical design documents, 156
Technical Requirements

Document, 206
technical standards manager, 151
template inventory, 34–35
template tools, 117
templates

content management, 137–141
user interface, 34–35

text-to-markup ratio, estimating,
221–224

TheDent.com, 168
third-party sites, 143–144
ths.nu, 194

ToriAmos.com, 168
traffic-tracking code, 137
training programs, standards,

154–155, 158
Transitional language versions,

20–21, 237
TRDs, 206

U
UI architecture plans, 11
UI code changes, 109
UI designers, server-side

collaboration with, 134–135
UI layer, 7–11

code changes, 109
components of, 7
illustrated, 7
importance of, 9
planning, 8–11
standards-based, 9–10, 11, 111

UI template inventory, 34–35
unobtrusive JavaScript, 85–86
Urban Outfitters, 194
user interface layer. See UI layer

V
validation, code, 14
validation tools, 32–33, 238
vCard files, 58, 59
view layer, 10
Visual Studio.NET, 121–123
VoIP, 164

W
W3C

and class names, 37
CSS recommendations, 64, 65
and event handlers, 90
and markup languages, 15,

16, 18
meaning of acronym, 6
validation tools, 32, 238
and Web standards, 6

waterfall method of development,
206, 207

Web applications, 109–144
ASP.NET, 121
coding guidelines, 113
development problems,

110–111
evaluation criteria, 111–112
how to approach, 144
standards-compliant, 109, 110,

144
updating, 112, 144
using buddy system to

develop, 232–233
Web-based chat clients, 78
Web browsers

accommodating out-of-date, 6
and CSS layouts, 27–29
and CSS selectors, 64
and DOCTYPE switching, 237
downloading files in, 250
editing components, 141
standards-compliant rendering

in, 21–26
validating code from, 32–33
and XHTML, 18, 237

Web-design process
communication during, 173,

190, 203–204
for EverythingTori.com, 170
important steps in, 231–232
as team effort, 221

Web designers, 191, 194
Web Developer Extension,

Firefox, 32
Web development, as craft,

212–220
Web Gallery, Apple, 77
Web Hypertext Application

Technology Working Group.
See WHATWG

Web pages. See also Web sites
created printed versions of,

68–72
interactivity in, 75
user interface of, 7–8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

280 ADAPTING TO WEB STANDARDS

Web scripting, 76, 117. See also
scripts

Web servers, 7, 67, 232, 235, 249
Web services, designing, 233–234
Web sites. See also Web pages

branding, 143
estimating text content on,

222
propagating to third-party

sites, 143–144
standards-based, 6. See also

Web standards
UI layer of, 7–11
updating, 135. See also content

management
Web software applications. See

Web applications
Web standards

and accessibility, 6
and ASP.NET, 122–123, 134
benefits of, 6–7
case studies

AOL.com, 197–251
EverythingTori.com,

167–195
and code validation, 33
and content management, 135

and CSS, 47, 72
defined, 6
developing strategy for, 14–15
disagreements about, 13–14
myths about, 13–14
and organizational inertia,

148–149
and tables, 14
and third-party sites, 144
and UI layer, 9–11, 111
and Web applications, 109,

110, 144
Web statistic tracking tools, 33
Web Style Guide, The, 152
Web user interfaces, 7–11. See also

UI layer
Webometer, 230
WHATWG, 18, 90, 91
Willison, Simon, 96
wireframes, 170–176
work rules, 147
workflows, 234–235
World Wide Web Consortium, 6.

See also W3C
Wrecked.nu, 194
WYSIWYG editors, 33, 113,

141–143, 238

X
XHTML

converting HTML to, 21
history/future of, 18
vs. HTML, 15–21
as light-weight XML, 38
meaning of acronym, 9
server-generated, 121
standards of valid, 237
Transitional vs. Strict, 20–21,

237
XML, 15, 16, 17, 18
XOXO format, 57

Y
Yahoo.com, 222

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Since its inception by Stanford graduate students Jerry Yang and

David Filo in January of 1994 as “Jerry’s Guide to the World Wide

Web,” Yahoo! has built itself into one of the leading destinations

for information and entertainment on the Web.

Reinventing
Yahoo!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

BC-2 ADAptinG to Web StAnDArDS

An Interview with Jimmy Byrum
Yahoo!’s status as a bellwether of the Web was apparent in its recent push for
standards. its implementation of Web standards and creation of tools to build
standards-based Web applications has not only created a fresh, uniform look and
feel, but Yahoo! has garnered a great deal of goodwill with the Web community
by openly releasing its research—and the fruits of that research—on its developer
site, developer.yahoo.com.

We chatted with Jimmy byrum, a Web developer instrumental in building the new
Yahoo! home page, to discuss the redesign process at Yahoo!.

Mark Trammell: Did your position change when you went out to London? Is it
the same sort of position?

Jimmy Byrum: it’s similar. i wanted to have less responsibility, so i could focus on
traveling around europe. So, moving to London was more of a personal thing than
a work thing—i had been working 12+ hour days in Sunnyvale for a few years. by
then, i thought, “Yeah, i could move to London, travel around europe, work eight-
hour days, and that’d be fine.”

i still worked on the front pages for a while, the european front pages. it was inter-
esting, because there’s a lot of talk in the States about how to make international-
izable code. For the most part, i take my code from the States and make that work
for different countries. the interesting part was seeing where i succeeded and
failed as far as internationalization went.

that was probably one of the best things i learned thanks to the move. now i
think that internationalizing code is extremely easy—ridiculously easy, from a
front-end engineer’s perspective. i can see some crazy issues on the back end,
especially multibyte characters. but from a front-end perspective, i’m amazed that
we didn’t figure it out sooner.

MT: How did having the history of going through the Yahoo redesign help?

JB: that was a huge project on its own, plus i had the opportunity of seeing the
way Yahoo approached it. i think the way many U.S. companies approach interna-
tionalization is they make a product and then they think, “How do we make this
ready for other countries?” Had i known more at the time, i could have done it so
the pages were immediately ready for other countries. it’s just a mindset change
like any other best practice.

if you have a best practice for how to do things in CSS, then you can have a best
practice for how to make code that’s internationalizable, and it’ll just work. Well,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

� ADAptinG to Web StAnDArDS

i shouldn’t say, “it’ll just work”—any time you say that, something seems to go
wrong. rather, it’ll be on the way to working.

MT: Regarding redesign process at Yahoo, were you on board at Yahoo before
this discussion of a redesign, or did they bring you on board for that?

JB: i coded the previous home page as well, so i came in the mid-to-late redesign
stage of the previous home page. i built that one. that was a completely different
project than the latest home page. i also maintained and developed that home
page and did the entire preface for the new one. So, yes, i was there.

MT: So did you choose the team? How did Yahoo build the team?

JB: Yahoo wanted to redesign the new one, and all previous iterations of the
Yahoo home page were more iterations than a complete redesign. though the
company would think the page looked different, it still had the same basic struc-
ture. it would still even have the same widths of the columns, for instance.

And so with the new one, we decided that we wanted to do something different.
We hired many new people, or brought people from other areas of Yahoo to the
front-page team. Yahoo hired more engineers, kept a designer who was there for
almost as long as i was, a good senior product manager, and a program manager.
i had never heard of a program manager before that project. He managed the
overall project. Actually, there were a few product managers, and the program
manager managed them.

All of this came together in that the team consisted of the senior product man-
ager, the senior designer, me, and everyone else to an extent. the main people
designing were the senior product manager and the senior designer and i worked
with both of them on how to make things, and what we could do. the senior
designer would say, “We want to do this.” i would respond, “Well, we can do this,
but it’s going to cost us this much in code, this much in speed,” and we would talk
through that.

MT: When you say, “We want to do this,” who was “we”?

JB: the senior product manager and the senior designer. What they would do is
talk to all the senior people on the team asking, “Can we do this?” i would come
in and help with ideas. Mainly the senior back-end engineer and i would say if it’s
possible or not. then the senior product manager and senior designer would get
buy-ins from the top execs.

Many times we would mock up things or we put them into usability testing,
where people came in the lab on Yahoo’s campus. it’s like presenting all the

 reinVentinG YAHoo! BC-3

http://lib.ommolketab.ir
http//lib.ommolketab.ir

BC-4 ADAptinG to Web StAnDArDS reinVentinG YAHoo! �

evidence for a case to the senior executives to say, “this is why we want to make a
drastic change to the home page.” that was the general process.

once we got the buy-in from senior executives, we developed it and eventually
did external bucket tests. it’s a very small percentage of the traffic, about 0.4%,
but that’s a lot of people with the home-page traffic.

MT: You said that the previous iterations were an iterative process. In making
changes over time, was there a lot of A-B testing involved? How did the team
make those decisions?

JB: that’s what we did most of the time in between finishing the first redesign i
worked on and starting the new page. Sometimes we would conduct five to ten
different bucket tests, and ran them for about four weeks. We’d simultaneously
run up to 10 tests and then review all of the data. Yahoo had a data analysis group
working on the charts, the graphs, and the numbers.

MT: You said that folks came to the campus to do testing, but was there test-
ing out in the field?

JB: there was for the new home page. they did do some testing where the user
research people—obviously invited—went to people’s homes, to see how they
used it and looked at what they did on the page.

they often traveled to different parts of the country, or different parts of the
world. it was interesting just to see the results that they got. they made up differ-
ent types of personas of people who use the front page and how they used it and
why they used it. that was just another revelation of how much work went into
just one page.

MT: How did the team make decisions? How much would the site comply
with Web standards and validating code? Was that a big discussion or taken
as a given?

JB: From the coding perspective, things like that were mostly in my court, in cases
where i was the lead front-end engineer. i told the team that i believe in standards
and writing accessible code. Yahoo, as a whole, was very much into that. i sat
with a blind guy, our lead accessibility guy, and we browsed the page together. He
would tell me what worked and what didn’t work. i made many accessibility deci-
sions just by sitting with someone using a screen reader.

i made the decision to do it and worked it into my time estimates. i told the prod-
ucts people and everyone else why.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

� ADAptinG to Web StAnDArDS reinVentinG YAHoo! BC-5

MT: With the home-page redesign, the team probably had to somehow push
it out to other areas in Yahoo. How did that happen?

JB: nate Koechley drove the front-end engineering at Yahoo for the GUi and
accessible code. i think nate was the first person, back in 2004, who brought up
LSMs (layered semantic markup), which is the precursor to keeping HtML, CSS,
and JavaScript separated.

Developers coded things so they worked without the JavaScript and things like
that. nate was the first person who pushed it, back in 2004, and then i and oth-
ers bought into it. eventually, web-dev/front-end engineering agreed that this is
what we need to do. if anyone at Yahoo pushed it, it was those of us in front-end
engineering.

MT: Was there a training program put in place, or was it more of “Point to
these references and go learn?”

JB: At the time when i joined, i was WebDev #24 at Yahoo. Front-end engineering
contained only 24 people. back then, we’d gather in a conference room and just
talk about it. We also relied on email discussion lists and mockups. We didn’t have
any accessibility experts at the time. in fact, we took our best guess on how screen
readers worked at the time.

Around 2004 and 2005, we operated in terms of, “Well, we think this works and
this is good,” and tried to get contacts with the JAWS people to see if they could
help us. they advised us to an extent, but we started learning more about it once
we had someone at Yahoo who used it as his only Web browser.

Web standards and accessibility started with us holding discussions and using
email lists. now there are over 200 WebDevs in Sunnyvale, so we have classes, best
practices Web pages, documentation, and standardization. Standardization is
weird because if you standardize too many things, you take some of the thinking
out of the job’s daily routine.

MT: But to an extent, isn’t that a good thing?

JB: Yes, yes. YUi (Yahoo user interface) is great, i love the JavaScript portions of
YUi, because it’s all these things like drag-and-drop that i would bang my head
against for a while to build a good implementation, and now i can just go and take
it and it works.

the reason that i don’t like to take all the thinking out of the job is that you can
take something that’s prepackaged, but you don’t know why it’s done the way
it’s done. And i think knowing why it’s done that way is important, because you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

BC-6 ADAptinG to Web StAnDArDS reinVentinG YAHoo! �

understand that code better and you’re going to incorporate that into everything
else you write.

MT: So what tools does Yahoo use to make sure people understand the deci-
sions that were made?

JB: Understanding why comes from just communicating with each other through
discussions, email lists, wiki pages, or talking to each other. We can also audit sites
and do code reviews, but you can’t do a code review with 200 people.

i’d say the best way that i’ve seen it done is, let’s say you have a person at Yahoo
who absolutely believes in standards and wants to enforce them. You make sure
all your team leads believe in those standards, and those team leads can make
sure that their team follows through on them. that’s what i did.

Honestly, working on the front page, you get the best developers. However, if any-
one wrote code that i thought was not as accessible or took a shortcut, i’d request
changes or say we’re not ready to push the code until this gets fixed. i don’t pass
the code until it works, because no one else will do it except for nate and me, and
the minority community of Web developers who pay attention to standards. the
people using the Web and developing for the Web looked at it and paid attention.

MT: With the redesign, it was nice to work on the code from the beginning.
How possible do you think it is to take an existing site and bring it up to the
standards that everyone wants?

because i was working on the home page from the beginning, i could make the
decision to make it standards compliant, and i could do that without worrying
about buy-ins. but with an existing site, you need buy-ins, because they’re think-
ing that we need to keep adding features while you’re thinking about making the
code good. Making code good, aside from the benefits that we know about, many
people don’t see the benefit of it.

MT: And discussions become esoteric, like whether you should try to style for
Netscape 4.

JB: i will say that one thing that Yahoo had to face with this redesign—and we
actually had a bit of discussion about it—is for the old page to separate HtML,
styling, and behaviors; it could have had more, but it was a good step in the right
direction. We also had a tables-based page, so that it would look good on nS4.

We also had a blacklist in Apache that would route nS4 and ie3 to the tables-
based page. it was important for business to ensure this page looks good every-
where. We finally have a true semantic page built with a base of HtML, adding
styles and then adding behaviors in the newest page. So if you go to the page in

http://lib.ommolketab.ir
http//lib.ommolketab.ir

� ADAptinG to Web StAnDArDS reinVentinG YAHoo! BC-7

nS4, you get the “upgrade browser” message along with links to modern brows-
ers, i believe. We went in that direction with the argument that we’re presenting
visitors with usable data because nS4 can process H1s and lists without a prob-
lem. From there, we progressively enhanced the page for newer browsers.

MT: How much Apache detection was going on since you would hand NS4 a
different page?

JB: right. With this redesign, we used to have a whitelist for the CSS page (CSS as
opposed to the other page that used all tables) where we said, “We know ie5 and
above is fine on this page, so go ahead. And we know Mozilla whatever-dot-what-
ever is fine, go ahead.” then we switched to a blacklist that let everyone in. the
only Apache detection we do now is send people on mobile browsers to mobile
sites. All in all, we switched from a whitelist setup to a blacklist setup, so we’re
letting more people in, giving them valid markup, and presenting features to the
browsers that can handle it.

MT: Since Nate worked on the YUI stuff, was that stuff available to you as
part of the redesign in terms of the timeline?

JB: the YUi stuff, i believe, was still in beta when we were getting ready to go for
it. A small portion of the work that i did for the old home page and the redesign
was incorporated into the YUi stuff. So it was give and take. they’d give us good
code, then i’d change it around and explain the reasons i did it a certain way and
then work it into the YUi stuff.

So for the Spirit project—Spirit being the home page—it was half-and-half. Hon-
estly, it was like that in general; the YUi guys are open. if anyone else can improve
something in the library or find a better way to do something, we just work with
each other to incorporate it and make sure it’s all as strong as possible. So, the
general thing is i worked with them to develop YUi and in the end we used YUi
stuff heavily in the Spirit page.

MT: How long did the whole process take?

JB: i think the official project took one year. Which, at the time, i was like, “one
year?! it’s one page!” but then after doing that year i thought, “oh, well, fair
enough.”

MT: How many people were centrally involved in actually building the page?

JB: So you mean like product people, designers, back-end engineers, front-end
engineers?

MT: Start with front-end engineers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

BC-8 ADAptinG to Web StAnDArDS reinVentinG YAHoo! �

JB: there were two of us before the project started, and the other guy left to go to
a startup, so i think i was the only one when the project started. We got a second
guy full-time for front-end either right when the project started or shortly after.
i would say two full-time for the duration, and we also got a third front-end guy
who we borrowed from time to time from another group.

MT: Were there dedicated back-end engineers, or were cycles just siphoned
off here and there?

JB: there was a front-end engineering manager, who didn’t really code much, he
just managed the front-end engineers, and i believe there were actually two back-
end engineers who were coding full-time, and an engineering manager.

My manager and the engineering manager worked with each other more on
scheduling whose time is going toward what in the grand scheme of things. the
back-end engineer would pull in people from other projects. overall, it was two
full-time on front-end, two full-time on back-end, we each had a manager, and we
would pull in people from other projects as well if we needed particular expertise.

MT: What about product folks?

JB: there was a senior product guy who worked with three product managers.
there were three product managers working on specific parts of the page.

MT: Like how it would integrate into Messenger?

JB: exactly. it was amazing because one portion of the page was sort of a product.
So the product managers would do that and the senior guy would oversee the
whole thing, and he also worked in-depth on a lot of it. there were two full-time
designers and a design manager.

We made an open request to the design community and said, “Send us your
designs for the new home page,” and we worked with Hillman Curtis. the dude is
amazing; you want to work with him no matter what.

MT: When the goals of the redesign came about, how many people had input
into what they were going to be?

JB: to broadly answer that question: input? A lot of people. because it’s the front
page of Yahoo, everyone wants to have his or her input, and every executive is
going to give his or her input on something. As far as when it comes down to who
is making the decisions, i would say there was a group of about four people, and
that would be top executives and the senior designer, senior product person. they
would battle it out, and we would see who won.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

� ADAptinG to Web StAnDArDS reinVentinG YAHoo! BC-9

MT: So, did the management allow the goals to stay constant through the
whole thing and be somewhat broad, overarching goals? What were they, and
did they change over the course of the redesign?

JB: there were obviously goals to increase number of searches. Generally, i would
say the goals were to make the page better for the users, to make a cool page that
people would actually enjoy using. Something that’s not just a Web page, but
more interactive and gives you reasons to come back to it.

i would say that largely those goals stayed constant and what we argued the most
about was how we were best going to achieve those goals. Some people worried
about risk because it was a big change. people were concerned thinking thoughts
like, “oh my God, are we going to screw everything up by changing it?” i would
attribute the personalities of the people who were making the decisions as being
willing to take the risks, believing that this is the best way to do it, so we’ll take the
risk and do it.

While the main goals were maintained, there were other broad goals to make
the page more fun, and these goals were very hard to quantify. but we quantified
them through user feedback and by looking at clickthrough rates on A-b tests to
see, were people clicking on more stuff, were they interacting with more parts of
the page, and so on.

MT: During the redesign process, did the higher executives want to see deliv-
erables along the way?

JB: oh, yes.

MT: How many sets of deliverables that went up to them?

JB: i would guess, just as far as designs went, not even including any code or
HtML mocks, they probably looked at 20 or 30 different designs, with many dif-
ferent variations of that. We tested many designs, and after we tested a bunch,
say 10, we’d asked which did the best out of the 10. based on the answer, we took
the best ones from there and tested another 10 to see which were the best ones.
there were meeting rooms with walls covered with printouts of different designs
that we were testing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Adapting to Web Standards: CSS and Ajax for Big Sites
	Contents
	Part 1: Constructing Standards-Based Web Sites
	INTRODUCTION
	What Are Web Standards?
	Web User Interfaces
	User Interface Planning

	CHAPTER 1: CODING THE FRONT END
	Where To Start
	Document Structure: Markup Language Choices

	CHAPTER 2: PRESENTING CASCADING STYLE SHEETS
	How Many CSS Files?
	Microformats for Conventions, Meaning, and Utility
	Too Much Class
	CSS File Content Structure
	Alternative Media CSS
	Presentation Set Free

	CHAPTER 3: INTEGRATING THE BEHAVIOR LAYER
	Modern Ajax Methods
	JavaScript Requirements: File and Function Inventory
	JavaScript Behavior with CSS and Presentation
	Custom Scripts vs. Frameworks

	CHAPTER 4: DEVELOPING WEB SOFTWARE APPLICATIONS
	Web Apps Stuck in the Past
	Guidelines, Rules, and Web Standards
	Microsoft ASP.NET Framework
	Content Management
	How To Approach Web Apps

	CHAPTER 5: THE CIRCLE OF STANDARDS
	Organizational Inertia
	Introducing the Circle
	Setting the Wheel in Motion

	Part 2: Case Studies
	PRACTICE DOESN'T MAKE PERFECT
	Communication
	Adaptation
	Persistence
	Trials and Tribulations

	CHAPTER 6: EVERYTHINGTORI.COM
	Backstage
	Launching the Site
	Meet the Designer, Philip Fierlinger
	End Song

	CHAPTER 7: AOL.COM
	Setting Your Team Up for Success and Avoiding Failure
	Designing for Performance
	System Design and Architecture
	Front-End Wizardry
	Conclusion

	Afterword
	Appendix A: Targeting Web Browsers
	Appendix B: Accessibility
	Appendix C: Web Site Performance Tips
	Appendix D: CSS Selectors Reference
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

