
[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

RELAX NG

By Eric van der Vlist

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00421-4

Pages: 506

RELAX NG is a grammar-based schema language that's both easy to learn for schema creators and
easy to implement for software developers In RELAX NG, developers are introduced to this unique
language and will learn a no-nonsense method for creating XML schemas. This book offers a clear-cut
explanation of RELAX NG that enables intermediate and advanced XML developers to focus on XML
document structures and content rather than battle the intricacies of yet another convoluted
standard.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

RELAX NG

By Eric van der Vlist

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00421-4

Pages: 506

 Copyright

 Foreword by James Clark

 Foreword by Murata Makoto

 Preface

 Who Should Read This Book?

 Who Shouldn't Read This Book?

 Organization of This Book

 Conventions Used in This Book

 Comments and Questions

 Powered by WikiML

 Acknowledgments

 Part I: Tutorial

 Chapter 1. What RELAX NG Offers

 Section 1.1. Diversity

 Section 1.2. Keeping Documents Independent of Applications

 Section 1.3. Validation Has Many Aspects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 1.4. The Best Way to Validate XML Document Structures

 Section 1.5. RELAX NG's Diverse Applications

 Section 1.6. RELAX NG as a Pivot Format

 Section 1.7. Why Use Other Schema Languages?

 Chapter 2. Simple Foundations Are Beautiful

 Section 2.1. Documents and Infosets

 Section 2.2. Different Types of Schema Languages

 Section 2.3. A Simple Example

 Section 2.4. A Strong Mathematical Background

 Section 2.5. Patterns, and Only Patterns

 Chapter 3. First Schema

 Section 3.1. Getting Started

 Section 3.2. First Patterns

 Section 3.3. Complete Schema

 Chapter 4. Introducing the Compact Syntax

 Section 4.1. First Compact Patterns

 Section 4.2. Full Schema

 Section 4.3. XML or Compact?

 Chapter 5. Flattening the First Schema

 Section 5.1. Defining Named Patterns

 Section 5.2. Referencing Named Patterns

 Section 5.3. The grammar and start Elements

 Section 5.4. Assembling the Parts

 Section 5.5. Problems That Never Arise

 Section 5.6. Recursive Models

 Section 5.7. Escaping Named Pattern Identifiers in the Compact Syntax

 Chapter 6. More Complex Patterns

 Section 6.1. The group Pattern

 Section 6.2. The interleave Pattern

 Section 6.3. The choice Pattern

 Section 6.4. Pattern Compositions

 Section 6.5. Order Variation as a Source of Information

 Section 6.6. Text and Empty Patterns, Whitespace, and Mixed Content

 Section 6.7. Why Is It Called interleave?

 Section 6.8. Mixed Content Models with Order

 Section 6.9. A Restriction Related to interleave

 Section 6.10. A Missing Pattern: Unordered Group

 Chapter 7. Constraining Text Values

 Section 7.1. Fixed Values

 Section 7.2. Co-Occurrence Constraints

 Section 7.3. Enumerations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 7.4. Whitespace and RELAX NG Native Datatypes

 Section 7.5. Using String Datatypes in Attribute Values

 Section 7.6. When to Use String Datatypes

 Section 7.7. Using Different Types in Each Value

 Section 7.8. Exclusions

 Section 7.9. Lists

 Section 7.10. Data Versus Text

 Chapter 8. Datatype Libraries

 Section 8.1. W3C XML Schema Type Library

 Section 8.2. DTD Compatibility Datatypes

 Section 8.3. Which Library Should Be Used?

 Chapter 9. Using Regular Expressions to Specify Simple Datatypes

 Section 9.1. A Swiss Army Knife

 Section 9.2. The Simplest Possible Pattern Facets

 Section 9.3. Quantifying

 Section 9.4. More Atoms

 Section 9.5. Common Patterns

 Chapter 10. Creating Building Blocks

 Section 10.1. Using External References

 Section 10.2. Merging Grammars

 Section 10.3. A Real-World Example: XHTML 2.0

 Section 10.4. Other Options

 Chapter 11. Namespaces

 Section 11.1. A Ten-Minute Guide to XML Namespaces

 Section 11.2. The Two Challenges of Namespaces

 Section 11.3. Declaring Namespaces in Schemas

 Section 11.4. Accepting Foreign Namespaces

 Section 11.5. Namespaces, Building Blocks, and Chameleon Design

 Chapter 12. Writing Extensible Schemas

 Section 12.1. Extensible Schemas

 Section 12.2. The Case for Open Schemas

 Section 12.3. Extensible and Open?

 Chapter 13. Annotating Schemas

 Section 13.1. Common Principles for Annotating RELAX NG Schemas

 Section 13.2. Documentation

 Section 13.3. Annotation for Applications

 Chapter 14. Generating RELAX NG Schemas

 Section 14.1. Examplotron: Instance Documents as Schemas

 Section 14.2. Literate Programming

 Section 14.3. UML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 14.4. Spreadsheets

 Chapter 15. Simplification and Restrictions

 Section 15.1. Simplification

 Section 15.2. Restrictions

 Chapter 16. Determinism and Datatype Assignment

 Section 16.1. What Is Ambiguity?

 Section 16.2. The Downsides of Ambiguous and Nondeterministic Content Models

 Section 16.3. Some Ideas to Make Disambiguation Easier

 Part II: Reference

 Chapter 17. Element Reference

 Section 17.1. Elements

 anyName

 attribute

 choice (in the context of a name-class)

 choice (in the context of a pattern)

 data

 define

 div (in the context of a grammar-content)

 div (in the context of a include-content)

 element

 empty

 except (in the context of a except-name-class)

 except (in the context of a pattern)

 externalRef

 grammar

 group

 include

 interleave

 list

 mixed

 name

 notAllowed

 nsName

 oneOrMore

 optional

 param

 parentRef

 ref

 start

 text

 value

 zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 18. Compact Syntax Reference

 Section 18.1. EBNF Production Reference

 """..."""

 "..."

 '''...'''

 '...'

 (nameClass)

 (pattern)

 *-nameClass

 -nameClass

 -pattern

 CName

 QuotedIdentifier

 Top level

 assignMethod

 attribute

 datatypeName

 datatypeName literal

 datatypeName param exceptPattern

 datatypes

 decl

 default namespace

 div

 element

 empty

 external

 grammar

 grammarContent

 identifier

 identifier assignMethod pattern

 identifierOrKeyword

 include

 includeContent

 inherit

 keyword

 list

 literal

 literalSegment

 mixed

 name

 nameClass

 nameClass|nameClass

 namespace

 namespaceURILiteral

 notAllowed

 nsName exceptNameClass

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 param

 parent

 pattern

 pattern&pattern

 pattern*

 pattern+

 pattern,pattern

 pattern?

 pattern|pattern

 start

 text

 Chapter 19. Datatype Reference

 xsd:anyURI

 xsd:base64Binary

 xsd:boolean

 xsd:byte

 xsd:date

 xsd:dateTime

 xsd:decimal

 xsd:double

 xsd:duration

 xsd:ENTITIES

 xsd:ENTITY

 xsd:float

 xsd:gDay

 xsd:gMonth

 xsd:gMonthDay

 xsd:gYear

 xsd:gYearMonth

 xsd:hexBinary

 xsd:ID

 xsd:IDREF

 xsd:IDREFS

 xsd:int

 xsd:integer

 xsd:language

 xsd:long

 xsd:Name

 xsd:NCName

 xsd:negativeInteger

 xsd:NMTOKEN

 xsd:NMTOKENS

 xsd:nonNegativeInteger

 xsd:nonPositiveInteger

 xsd:normalizedString

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xsd:NOTATION

 xsd:positiveInteger

 xsd:QName

 xsd:short

 xsd:string

 xsd:time

 xsd:token

 xsd:unsignedByte

 xsd:unsignedInt

 xsd:unsignedLong

 xsd:unsignedShort

 Part III: Appendixes

 Appendix A. DSDL

 Section A.1. A Multipart Standard

 Section A.2. What DSDL Should Bring You

 Appendix B. The GNU Free Documentation License

 GNU Free Documentation License

 0. Preamble

 1. APPLICABILITY AND DEFINITIONS

 2. VERBATIM COPYING

 3. COPYING IN QUANTITY

 4. MODIFICATIONS

 5. COMBINING DOCUMENTS

 6. COLLECTIONS OF DOCUMENTS

 7. AGGREGATION WITH INDEPENDENT WORKS

 8. TRANSLATION

 9. TERMINATION

 10. FUTURE REVISIONS OF THIS LICENSE

 Addendum: How to use this License for your documents

 Glossary

 A

 C

 D

 E

 F

 G

 I

 L

 M

 N

 P

 Q

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 R

 S

 T

 U

 V

 W

 X

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2004 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. RELAX NG, the image of a blood pheasant, and related trade dress are
trademarks of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.c.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with the Invariant Sections being no invariant sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in Appendix B, The GNU Free Documentation
License. All images are to be included verbatim when the document is copied, distributed, or modified
under the terms of the GFDL.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Foreword by James Clark
It is a pleasure to see this first book on RELAX NG, particularly as-at the time of writing-RELAX NG
does not enjoy the same level of usage and corporate support as its main rival, W3C XML Schema.
Clearly this book is not for those who like their technologies chosen for them by major vendors. But I
believe that for those who prefer to select their technologies for themselves, RELAX NG has
substantial utility.

Back in February 1998, when the XML 1.0 Recommendation was first introduced, XML was radical in
its simplicity compared to SGML. The innovation in XML was not so much in what it added to SGML
but rather in what it took away. However, XML is now part of a much larger family of standards from
the W3C. Collectively, these are much more complex than SGML ever was. It is hard for a newcomer
to understand what is the right way to use XML and what are the core ideas.

RELAX NG is based on a very clear vision of XML processing. XML is useful only because XML
processing components can interoperate. Most XML processing components do not input and output
arbitrary XML documents. To combine XML processing components reliably, it is therefore essential to
be able to specify the inputs and outputs of XML processing components and to verify mechanically
that components are behaving according to their specifications. The most important issue in doing
this is choosing which abstraction of XML to use for specifying the inputs and outputs of XML
processing components.

XML standardizes only a syntax, but if you constrain XML documents directly in terms of the
sequences of characters that represent them, the syntactic noise is deafening. On the other hand, if
you use an abstraction that incorporates concepts such as object orientation that have no basis in the
syntax, then you are coupling your XML processing components more tightly than necessary. What
then is the right abstraction? The W3C XML Infoset Recommendation provides a menu of
abstractions, but the items on the menu are of wildly differing importance.

I would argue that the right abstraction is a very simple one. The abstraction is a labelled tree of
elements. Each element has an ordered list of children in which each child is a Unicode string or an
element. An element is labelled with a two-part name consisting of a URI and local part. Each
element also has an unordered collection of attributes in which each attribute has a two-part name,
distinct from the name of the other attributes in the collection, and a value, which is a Unicode string.
That is the complete abstraction. The core ideas of XML are this abstraction, the syntax of XML, and
how the abstraction and syntax correspond. If you understand this, then you understand XML.

In my view, the most important lesson to learn from SGML is not the syntax but the concept of
generic markup. Generic markup means describing things in terms of their semantics rather than
their appearance. Generalizing, the lesson is to keep your data as independent as possible of
assumptions about how you are going to process it. The way to do this for XML is to focus on this
minimal labelled-tree abstraction. The more you build alternative abstractions on top of that and look
at XML instead as a serialization of some other abstraction such as an object or a remote procedure
call, the more you build in assumptions about how components will process XML and the less
rationale there is for using XML.

RELAX NG is based firmly on the labelled-tree abstraction. All a RELAX NG schema does is provide a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

way to specify a class of XML documents in terms of this abstraction. Other schema languages,
including W3C XML Schema, also provide this capability. Where RELAX NG differs from most other
schema languages is in what it leaves out. It leaves out alternative abstractions of XML (such as W3C
XML Schema's PSVI) that compete with the fundamental labelled-tree abstraction. It leaves out
anything for transforming the document no matter how simple (such as default attributes). It leaves
out anything used for parsing the document (such as entity declarations). It leaves out anything for
mapping between XML and programming language data structures or relational databases. Just like
XML itself, much of the advantage of RELAX NG stems from what it leaves out.

RELAX NG's vision of XML processing is not one that puts RELAX NG at the center of XML processing
to the exclusion of other technologies. Rather the RELAX NG vision is one in which XML, or more
precisely, the syntax and minimal labelled-tree abstraction implicit in that syntax, is at the center of
XML processing. The only thing you are locked into with RELAX NG is XML. This is why a lack of
vendor support need not prevent you from using RELAX NG. I hope RELAX NG will not only prove to
be useful in itself but also will be an example to the XML community of the benefits of focusing on
XML as XML.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Foreword by Murata Makoto
RELAX NG (pronounced relax-ing) is an emerging schema language for XML. RELAX NG provides
many advantages: simplicity, expressiveness, readability, and reliability, among others, and they are
well described in this book. Here I would like to point out one reason behind these advantages. The
design of RELAX NG has been guided by tree automaton theory, which is a well-established area in
formal computer science, and validators for RELAX NG are typically implemented as tree automata.
RELAX NG and validators may be compared to programming languages and compilers, which are
grounded on context-free grammars and parsing theory. In both cases, underlying mathematical
models provide simplicity, expressiveness, and reliability.

I have studied tree automata for structured documents since 1994. I have come to strongly believe
that a schema language for XML should be based on tree automaton theory. Although I was a
member of the XML Schema Working Group, I also felt that we need a simpler alternative to W3C
XML Schema. I thus designed RELAX Core, which was a simple schema language based on hedge
automata, an aspect of tree automation theory. James Clark then designed TREX, which embodied
many improvements (see his Foreword to this book). To provide a powerful alternative to W3C XML
Schema, RELAX Core and TREX were unified into RELAX NG at OASIS in 2001. Recently ISO/IEC JTC1
has published RELAX NG as a Final Draft International Standard without making any technical
changes.

RELAX NG has been successfully used in several projects. Some well-known ones are OASIS
DocBook, W3C XHTML 2.0, W3C RDF/XML Syntax Specification (Revised), and Text Encoding
Initiative. Although W3C has another schema language-namely, W3C XML Schema-the W3C does
not close its doors to RELAX NG but rather recognizes its advantages and uses it for XHTML 2.0, RDF,
and so forth. Some people use RELAX NG as well as W3C XML Schema happily, since Trang, a
schema converter by James Clark, allows conversion from RELAX NG to W3C XML Schema.

Quite a few implementations of RELAX NG are already available. They include validators, schema
converters, schema editors, data binding tools, and so forth. They are written in a variety of
programming languages such as Java, C#, and Python and can be used on platforms such as Linux
and Windows. Most of the implementations are free software rather than commercial products. With
the advent of XHTML 2.0, some commercial products for RELAX NG have started to appear.

As far as I know, this book is the first one dedicated to RELAX NG. Eric van der Vlist gradually
introduces basic concepts of RELAX NG with a number of examples. He further provides a reference
guide to all features of RELAX NG. I am convinced that every reader will feel comfortable with RELAX
NG.

RELAX NG would not be possible without the help of many individuals. Members of the RELAX NG
technical committee of OASIS are James Clark (chair), Mike Fitzgerald, David Webber, Josh Lubell,
Kohsuke Kawaguchi, Norman Walsh, John Cowan, and me. It was Jon Bosak (the father of XML) who
first encouraged the unification of TREX and RELAX Core. Haruo Hosoya has contributed to the
mathematical basis of RELAX NG. Kohsuke Kawaguchi, Tomoharu Asami, Masayuki Hiyama, Motohiro
Kosaki, Koji Yonekura, Ryosuke Nanba, Daisuke Okajima, Yushi Komachi, and Akira Kawamata
contributed to RELAX Core.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
The "X" in XML stands for "Extensible." XML is so extensible that I can invent new elements and
attributes as I write XML documents. There is a natural limit to this extensibility; I need to keep track
of the elements and attributes that I've created. Then I need to convey to the applications what my
document structures will look like. Explaining the new elements and attributes to my application is
necessary to help ensure that the application gets information it has a chance of understanding and
also to automate some of the most time-consuming (and boring) programming tasks. This is where
XML schema languages come into play.

XML schema languages are a nice idea as long as they don't become so complicated that XML
vocabularies built using them are difficult to extend. Unfortunately, that's what was starting to
happen before RELAX NG (REgular LAnguage for XML, New Generation) appeared. W3C XML Schema,
the dominant XML schema language, is so complex and incorporates ideas from so many conflicting
fields that it is difficult to learn, difficult to extend-yet its expressive power is still too limited to
describe all the possibilities offered by XML! Even though we can expect that many applications will
use this mammoth language, many people need a lighter-weight and simpler alternative.

RELAX NG provides that alternative. It is an XML schema language that is:

Focused on validating the structure of XML documents

Lightweight enough to be easy to learn, read, and write

Powerful enough to describe virtually any vocabulary that is based on well-formed XML 1.0 and
namespaces in XML

RELAX NG is easier, more reliable, and safer to use than W3C XML Schema because of two things:
RELAX NG has a sound mathematical grounding and focuses on doing a single thing perfectly
well-validating the structure of XML documents.

RELAX NG won't do fancy tricks or make you coffee, but if you need a schema language that's easy
to use and won't leave you in a labyrinth of obscure limitations, this is the language you should be
using. Furthermore, an excellent open source tool (James Clark's Trang) can convert your RELAX NG
schemas into other languages, including W3C XML Schema, if you still need to work with W3C XML
Schema-based systems. You can work sensibly in RELAX NG but still share your schemas with people
who use W3C XML Schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Who Should Read This Book?

Read this book if you want to:

Create RELAX NG schemas

Understand existing RELAX NG schemas

Discover that XML schema languages can be simple

To understand this book, you should already have a basic understanding of the structure of XML
documents, but do you not need to know any other XML schema language.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Who Shouldn't Read This Book?

You don't need this book if you use only existing RELAX NG schemas to validate XML documents. For
that, the documentation for the validator should be enough.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Organization of This Book

Part I

Chapter 1

This chapter explores XML validation, what schema languages do, and what makes RELAX NG
unique.

Chapter 2

This chapter introduces the background of RELAX NG itself and explores the notion of a
pattern, the elementary building block on which the whole language is built.

Chapter 3

This chapter builds, step by step, a first complete RELAX NG schema using XML syntax.

Chapter 4

XML syntax is very useful, but it is also verbose. This chapter introduces an alternative, a
compact (non-XML) syntax.

Chapter 5

Chapter 3s schema followed the structure of an instance document to create what is called a
Russian doll design. In this chapter, I show how named patterns can limit the depth of a
schema, provide reusability, and mimic DTD structures.

Chapter 6

Up to now, I've described only ordered sequences of elements. This chapter introduces new
compositors for defining choices between patterns.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7

This chapter introduces the mechanisms that constrain text values and the two datatypes
(string and token) built into RELAX NG.

Chapter 8

This chapter describes external datatype libraries that may be used in RELAX NG schemas, and
spends some time exploring the two datatype libraries that are most frequently used: the W3C
XML Schema library and the DTD compatibility library.

Chapter 9

This chapter explores one of the most powerful aspects of datatypes, the pattern facet of the

W3C XML Schema datatype library, and its particular flavor of regular expressions.

Chapter 10

Building on previous chapters, this chapter shows how to reuse and redefine the information in
grammars that can be merged.

Chapter 11

This chapter provides a brief explanation of XML namespaces and how RELAX NG supports their
use.

Chapter 12

This chapter covers the extensibility of schemas themselves and of the class of instance
documents described by a schema.

Chapter 13

Schema annotations are useful both for documentation targeted to human users and to provide
additional information to software. This chapter explores annotations and their applications,
including projects such as embedding Schematron rules in RELAX NG schemas, Bob
DuCharme's schema document pipeline proposal, and my own XVIF.

Chapter 14

This chapter explores how to generate RELAX NG from different sources, including instance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

documents (Examplotron), UML diagrams, spreadsheets, and literate programming.

Chapter 15

This chapter goes into the details of the simplification of RELAX NG schemas performed by
RELAX NG processors. These details explain some obscure limitations.

Chapter 16

One strength of RELAX NG is that it allows the creation of nondeterministic schemas. While this
is extremely convenient for validation purposes, it creates issues for datatype assignment. This
chapter examines schema determinism and ambiguity and their impact on the different uses of
RELAX NG.

Part II

Chapter 17

This chapter describes all the elements of the XML syntax with descriptions, synopses, and
examples.

Chapter 18

This chapter covers the components of the compact syntax, including descriptions, synopses,
and examples.

Chapter 19

This chapter describes W3C XML Schema datatypes, often used as an external datatype library
in RELAX NG schemas.

Part III

Appendix A

This appendix presents the ISO DSDL project, which includes RELAX NG as its Part 2.

Appendix B

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This book is being made available under the GNU Free Documentation License, which provides
certain freedoms related to copying, modifying, and distributing this book. This appendix
contains pointers to the online version of the book (which includes additional examples and
errata), as well as the text of the license.

Glossary

This glossary provides a concise explanation of terms used throughout the book.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

New terms where they are defined, pathnames, filenames, program names, hostnames,
domain names, and example URLs

Constant width

Code examples and fragments, element names, tags, attribute values, entity references,
processing instructions, keywords, operators, method names, class names, and literals

Constant width bold

User input

Constant width italic

Replaceable elements in code examples and fragments

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There's a web page for this book that lists errata, examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/relax

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

The GFDL release of this book, along with updates, is available at:

http://books.xmlschemata.org/relaxng

[Team LiB]

http://www.oreilly.com/catalog/relax
http://www.oreilly.com
http://books.xmlschemata.org/relaxng
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Powered by WikiML

Most of this book has been edited in a WikiWikiWeb powered by PhpWiki. PhpWiki is a PHP
implementation of the concept of WikiWikiWeb, invented by Ward Cunningham in 1995, and famous
for the simplicity of its text-based markup. The WikiWikiWeb pages have been converted to XHTML
pages using the parser developed by the WikiML project, and these pages have been transformed
through XSLT into DocBook for production at O'Reilly.

This is probably one of the first attempts to leverage something as simple to use as a WikiWikiWeb to
produce something as complex as a whole book marked up as DocBook. I have been surprised by the
smoothness of the whole process.

To learn more about these subjects, consult these sites:

http://c2.com/cgi-bin/wiki?WikiWikiWeb (WikiWikiWeb)

http://phpwiki.sourceforge.net (PhpWiki)

http://wikiml.org (WikiML)

http://www.w3.org/TR/xslt (XSLT)

http://www.oasis-open.org/docbook (DocBook)

[Team LiB]

http://c2.com/cgi-bin/wiki?WikiWikiWeb
http://phpwiki.sourceforge.net
http://wikiml.org
http://www.w3.org/TR/xslt
http://www.oasis-open.org/docbook
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

I would like to thank the RELAX NG OASIS Technical Committee for having created the subject of this
book, and especially Murata Makoto, James Clark, and John Cowan for the timely and highly accurate
answers they have provided to my many questions.

My own implementation of RELAX NG has proven to be most useful in gaining a deep understanding
of the language. I would also like to thank Uche Ogbuji, who has been my Python mentor during this
project and again James Clark for his detailed instructions of how RELAX NG can be implemented
using the derivative algorithm.

This book is the result of a collaborative work, and I thank all the people who contributed comments
and annotations, including J. David Eisenberg, John Cowan, and Dave Pawson, who have extended
their comments well beyond the scope of simple tech review and have significantly improved its level
of quality, as well as Tracey Cranston, who reviewed and edited the prose. This collaborative work
would never have started without my editor, Simon St.Laurent, who has believed in this book since
before its beginning and made it happen.

Finally, I need to thank my wife and children for their patience and moral support while I was busy
writing this book. Unlike in the preface of my previous book, I won't dare to promise that they will
recover their husband and father now that this book is over, as I fear that a new challenging project
might swallow me in the near future!

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part I: Tutorial

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. What RELAX NG Offers
RELAX NG emerged from many years of XML development in an attempt to solve a variety of
common problems raised in the creation and sharing of XML vocabularies. RELAX NG is not the only
option for solving many of these problems, but the way in which it addresses them makes it an
excellent candidate for many kinds of XML vocabulary development and processing.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 Diversity

I have heard people jest that XML stood for Excellent Marketing Language and I often felt that,
unfortunately, this had become a very accurate definition. Nevertheless, the official meaning of XML
is Extensible Markup Language, which remains slightly more accurate.

XML is extensible in the sense that it lets you define your own sets of elements and attributes which
can be used to express virtually any hierarchical structure. The extensibility of XML has been widely
used; some would even say overused. I've long since lost count of the different sets of XML elements
and attributes (let's call them XML vocabularies) used by different people for different applications.
Applications need to be able to tell whether documents conform to their expectations; this need
creates a need for validation tools capable of representing and testing each of these vocabularies.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 Keeping Documents Independent of Applications

In the XML world, XML documents can live their own lives independently of programs: they can be
edited, read, displayed, and transformed using generic tools independent of any particular
application. It's also vitally important that they can be validated independently of any application.
This validation requirement presents a serious challenge. The diversity of XML vocabularies is virtually
infinite. We certainly don't want to limit XML's extensibility because of the tools used to validate XML
documents. But that brings us to the next problem: there is diversity in what we can call validation.

This application independence raises some difficult issues in XML design and
usage. Some people have focused on the surface parallels between XML
document structures and object hierarchies. They say that XML is in the same
paradigm for data as object orientation and that XML is a perfect serialization
format for object systems. While that assessment is not completely without
basis, XML reintroduces a clean separation between data and processing. This is
the complete opposite of the basic object-oriented principle of encapsulating
both data and behavior into objects.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 Validation Has Many Aspects

Validation can be about checking the structure of XML documents. It can be about checking the
content of each text node and attribute independently of each other (datatype checking). It can be
about checking constraints on relationships between nodes. It can be about checking constraints
between nodes and external information such as lookup tables or links. It can be about checking
business rules. Taken liberally, it can be almost anything else, even spell checking.

All of these aspects are important for improving the level of quality of XML-based information
systems. I recently heard two presentations about two independent projects in very different
domains. Both came out with this alarming ratio: one out of ten real-world XML documents contains
errors. With such a high proportion, validation is not only useful but indispensable! The word
"alarming" is not overstating the case-imagine a banking system where 10% of the transactions
contain errors. Calling validation important, therefore, is an understatement.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.4 The Best Way to Validate XML Document Structures

RELAX NG won't solve all issues by itself. It isn't designed to solve every conceivable validation
problem. RELAX NG is, however, designed to be the best tool to solve two key pieces of the problem:
validating the structure of XML document and providing a connection to datatype libraries that
validate the content of text nodes and attributes. It's also designed to be used as a part of the ISO
DSDL framework, which deals with the larger issues surrounding validation. (DSDL is described in
Appendix A).

This tight focus makes RELAX NG very different from its main rival, W3C XML Schema. One of the
reasons for the complexity of W3C XML Schema is that it includes many features that have been kept
out of RELAX NG. W3C XML Schema cares not only about validating the structure of XML documents,
but also about validating the content of text nodes and attributes and checking the integrity between
keys and references. More importantly, W3C XML Schema addresses many issues beyond validation.
It attempts to be a modeling language that can classify the elements and attributes of XML
documents, identify their semantics, use these semantics as extensible object-like models, and
perform automatic binding between XML documents and objects. All these goals are admirable, but
too many of them are stuffed into a single technology.

During the development of RELAX NG, XML structure validation remained the focus. No compromises
were made in deference to other features. The result is that RELAX NG appears to be the logical
successor of XML DTDs and the best tool available to validate the structure of XML documents. RELAX
NG's expressive power is such that virtually any XML vocabulary may be described with RELAX NG.
That isn't true of W3C XML Schema, nor of DTDs. Perhaps most important for people who have to
write schemas, RELAX NG is also very simple: because it does less, the syntax is intuitive. It has
been kept simple. It isn't cluttered with complex limitations that take too much time to learn and
remember.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.5 RELAX NG's Diverse Applications

RELAX NG's tight focus doesn't mean that RELAX NG is a niche language meant to be limited to its
original goal. RELAX NG may well follow the path of XSLT (also developed by James Clark). While
XSLT's development was focused strictly on document transformation for formatting, it has become
the Swiss Army knife of XML developers. XSLT use has gone well beyond its expected boundaries, in
large part because it solves key problems effectively.

The same will likely happen with RELAX NG.

Recently, I had to write a converter for a flat, non-XML format into XML. The structure of the
resulting document was described by a non-RELAX NG schema. After various hacks to map the 400
different bits of information of this flat structure into elements and attributes, I found that the easiest
way to map them to XML was by using a RELAX NG schema.

I transformed the schema of the destination XML vocabulary into a simple RELAX NG schema. A
Python program then walked through that structure, parsing the flat document and dispatching the
information items to where they belonged. This was made easy by the uncluttered simplicity of the
syntax of RELAX NG. The process would have taken much more time with any other schema
language.

Another example is taken from RELAX NG itself. As you will discover in Chapter 4, a non-XML
compact syntax is available for RELAX NG. This syntax is defined using an EBNF (Extended Backus-
Naur Form) grammar. Knowing James Clark, I was sure he had generated it from XML. When I wrote
the reference guide for this syntax (Chapter 18), I asked him to send me the source of this grammar
as XML. I was expecting a format like the DocBook EBNF module, but instead, of course, he sent a
RELAX NG schema! The syntax of RELAX NG is flexible enough to describe the productions of an
EBNF grammar. Chapter 18 was generated using this schema. It's a summary that doesn't
completely respect the semantics and restrictions of RELAX NG, but RELAX NG is still a useful way to
describe this EBNF.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.6 RELAX NG as a Pivot Format

These last two examples are a little bit extreme, but nevertheless RELAX NG appears to be the
perfect pivot format for tasks related to XML schema work in any schema language, providing a
useful common ground that developers can use to convert material between various schema forms.
Kohsuke Kawaguchi's work on the Sun Multi-Schema Validator (MSV) takes advantage of this
capability. Kawaguchi explained that the grammar-based schema languages supported by MSV
(DTDs, RELAX NG, Relax and W3C XML Schema) were all translated into a common data model by
the validator. The validation algorithm relied on this single data model. That data model is simply
RELAX NG. This clearly demonstrates that the expressive power of RELAX NG is so useful and flexible
that 99% of the constraints that can be described with other schema languages can be described
with RELAX NG.

RELAX NG's advantages can also be a major drawback: if RELAX NG has so much more expressive
power than other languages, it could mean that a schema written with RELAX NG would be
impossible to translate.

Fortunately, this issue is more theoretical than practical. Although there are situations in which
RELAX NG can't be translated into W3C XML Schema, they aren't likely to happen often in real-life
schemas. If you can imagine a situation in which it would happen in real life, you can always balance
your need to express such a schema in RELAX NG against your need to be able to publish a W3C XML
Schema schema. I am confident that most RELAX NG schemas can be translated into other schema
languages-even automatically. James Clark has developed Trang, a magic tool that takes a RELAX
NG schema and converts it into W3C XML Schema or a DTD
(http://www.thaiopensource.com/relaxng/trang.html).

RELAX NG's structures support both creation by hand and by auto-generation. RELAX NG can support
the growing number of applications that generate their schemas from logical models using high levels
of abstraction rather creating them from scratch. Whether you are using as your design tool UML, a
simple spreadsheet such as the OASIS UBL project, or sample documents like my Examplotron, it's
easier to derive a RELAX NG schema than to derive a schema using any other schema language.

[Team LiB]

http://www.thaiopensource.com/relaxng/trang.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.7 Why Use Other Schema Languages?

There are tools to convert to and from other schema languages; however RELAX NG is easier to
write, it's easier to generate, and it's easier for applications to use. As far as validation is concerned,
I see no good reason to use another tool. Even if your tools support only XML 1.0 DTDs or W3C XML
Schema, you can automatically generate those formats from RELAX NG.

RELAX NG is still a little bit behind, however, in datatype assignment and data binding. Datatype
assignment appears to be increasingly important for a whole set of applications, including many new
features of the XPath 2.0, XSLT 2.0, and XQuery 1.0 family of future W3C recommendations.
Because datatype assignment was out of the scope for RELAX NG during its development, RELAX NG
is very permissive about nondeterministic schemas. This permissiveness can lead to unpredictable
type assignment during processing. This is something worth keeping in mind when writing RELAX NG
schemas that will later be transformed into W3C XML Schema schemas. I will explain this subject in
detail in Chapter 16.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. Simple Foundations Are
Beautiful
RELAX NG is built using a set of simple pieces. Before proceeding into the details of how RELAX NG
assembles these pieces, it's worth exploring what these pieces are and what they'll contribute.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 Documents and Infosets

RELAX NG is an XML-based technology. RELAX NG schemas are commonly stored in XML documents
(called schema documents) and used to validate other XML documents (called instance documents).
While RELAX NG works with and uses XML documents, RELAX NG processors operate at a slightly
higher level of abstraction, called an infoset, rather than processing the actual text of the XML
document, which is called lexical processing.

An infoset is a logical view of the XML document, rather than the document as stored in a text file.
Most XML processors read (or generate) XML syntax but work internally on a representation that
omits a lot of details. To take a brief example, from a lexical perspective, which looks at the actual
contents of an XML document, <book id='b0836217462' available="true"/> is an empty tag
containing two attributes named id and available. The value of id is delimited with single quotes,
while the value of available is delimited with double quotes. Yet, from an infoset perspective, this
isn't an empty tag with particular syntax; the kind of quotation marks don't matter. It's a book
element with an attribute named id and a value of b0836217462, as well as an attribute named
available with a value of true. Elements, attributes, and text are often referred to as nodes in this

perspective, like nodes in an object tree.

There are a variety of different models for XML documents-specifications such as the Simple API for
XML (SAX), the Document Object Model (DOM), and XPath all have slightly different takes on what an
infoset is. As a first step toward coordinating these perspectives, the W3C created a
Recommendation: the XML Information Set (Infoset), which is available at
http://www.w3.org/TR/xml-infoset/. The XML Infoset defines an abstract model of XML documents
that uses a hierarchical structure described in terms generic and neutral enough to be acceptable for
use with a diverse range of specifications.

The XML Information Set describes elements as "element information items,"
attributes as "attribute information items," and so on. For convenience, this
book uses the RELAX NG convention-inspired by XPath-that refers to element
nodes, attribute nodes, and so on, rather than information items.

Schema languages work at the level of the XML Infoset, and their main goal is to define constraints
on a subset of the XML Infoset. Because they work at the XML Infoset level, they can't be used to
express constraints on things that don't belong to the XML Infoset. Thus such things as the order of
the attributes, their quotation style, or the number of spaces between them can't be constrained by
schemas. In addition, RELAX NG, like most schema languages, won't let you define constraints on
XML comments, processing instructions, or entity references. Schema languages focus on a core set
of features: elements, attributes, and textual content.

http://www.w3.org/TR/xml-infoset/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some schema languages, notably the W3C XML Schema (WXS) and the
Document Type Definitions (DTDs), also let you augment the infoset of a given
instance document with additional information. Both WXS and DTDs let you
specify default values for attributes. WXS also provides the ability to add
additional type information (the Post-Schema Validation Infoset, or PSVI), while
DTDs provide the opportunity to include entity definitions and ID information.
While RELAX NG does use the infoset as a base, it doesn't perform these kinds
of infoset augmentation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 Different Types of Schema Languages

While the different schema languages all operate on infoset views of documents, they have chosen
different ways of defining constraints:

Constraints may be expressed as rules. In Schematron, for instance, a schema is a set of rules
like "the element named book must have an attribute named id and this attribute's content

must match this specific rule...."

Constraints may be expressed as a thorough description of each element and attribute like
DTDs and W3C XML Schema: "it's an element named book, and it has two attributes named id
and available, which look like this...."

Constraints may be expressed as patterns. Patterns are used to match the structures of
permissible elements, attributes, and text nodes, much as the regular expressions used in
programming can be used to match characters in text. I will cover this third way of defining
constraints in detail in this book because this is the method that RELAX NG uses.

The first XML schema language was the Document Type Definition (DTD), which was part of XML 1.0.
DTDs provide more than just schema validation features-they include the definition of internal and
external entities-but their schema features focus on describing elements. Every element and
attribute used by the document type defined by the DTD must be described. Each element must have
a content model, identifying which child elements or text nodes are allowed, as well as a list of
permissible attributes, if any attributes are allowed. To avoid redundant declarations, DTD developers
may use parameter entities, which describe larger pieces of content models and work like a kind of
macro processing.

W3C XML Schema extends this foundation and defines several kind of components, including
elements, attributes, datatypes, groups of elements, and groups of attributes. (Datatypes are
containers for various kinds of content, from text to integers to dates.) The approach is still very
focused on elements and attributes, which are clearly differentiated.

RELAX NG, on the other hand, is based on the generic concept of patterns. Patterns are similar to the
XPath node sets, a collection of nodes with an internal structure. To begin with, a pattern can be
defined as the description of a set of valid node sets.

The difference between patterns and the other approaches may seem subtle, but a DTD or W3C XML
Schema element definition tries to give a description of the element itself. When RELAX NG defines
the same element, a pattern is defined that is checked against elements in the instance document to
see if they match, much as if it were a regular expression being used to match text. The difference is
miniscule on the surface, but the pattern approach gives far more flexibility to write, maintain, and
combine schemas.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 A Simple Example

Let's take a look at an example. Figure 2-1 shows the book element with its two attributes and four

different subelements:

Figure 2-1. A complete example of the book element

With a DTD and, to a lesser extent, with W3C XML Schema, you are stuck defining lists of attributes
and elements you can't mix or combine. W3C XML Schema has introduced the concept of types,
abstract descriptions that have no direct corollary in the contents of XML documents. Types provide
descriptions of the contents of elements or attributes, but types still can't be freely combined
together. This means that you can split the description of elements into blocks such as those shown
in Figure 2-2, but can mix the blocks in a limited number of ways.

Figure 2-2. The blocks of the book element, seen from a W3C XML
Schema perspective

RELAX NG patterns, however, can freely mix different types of nodes (elements, text and attributes).
Figure 2-3 shows how, if you want to, you can use RELAX NG to split the definition of the book
element into a first pattern composed of the attributes id, title, and author and the element
character, and then a second pattern composed of the available attribute and the other
character elements.

Figure 2-3. An alternate approach to the document structure, made
possible with RELAX NG

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The flexibility just demonstrated isn't only useful for combining complex patterns. It also maintains
the simplicity desired by RELAX NG schema designers who don't need or want to learn a long list of
design limitations that must be checked when they write and combine their schemas.

This generic concept of patterns is powerful enough to replace the specialized containers of DTDs and
W3C XML Schema. RELAX NG has no need for (and no notion of) specially reusable components.
Elements, attributes, and types are all embedded in patterns. These patterns are the reusable
building blocks of RELAX NG. They can be named, reused, and even redefined at will, combined
through operators to group them or to provide alternatives among them.

The benefit of having nonspecialized patterns is increased flexibility. These benefits are similar to
those seen in manufacturing: repeatedly using a small number of generic parts to create a unique
whole provides more flexibility and a higher number of possible combinations than using more
specialized pieces. This works for XML schema languages, too.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.4 A Strong Mathematical Background

This pattern-based approach is both new and old. It's new in the sense that the idea of patterns has
been applied to XML in RELAX and now in RELAX NG. It's old because it is the adaptation of
techniques and theories developed around regular expressions in the 1960s. The name "RELAX,"
which stands for REgular LAnguage for XML, suggests this related nature. ("NG" stands for New
Generation.) RELAX NG relies on both the strong mathematical theory underlying regular expressions
and on additional work done by Murata Makoto, which adapts the mathematical concept of "hedges"
to XML.

When I asked Murata Makoto, one of the fathers of RELAX NG, my first questions, he kindly pointed
me to the details of his work. I was shocked to see that I had forgotten all the mathematics I had
learned at school. I couldn't understand a word of it. Fortunately, I can assure you that you won't
need to understand hedges or any of the other math behind RELAX NG. Nevertheless, it's very
comforting to know that the schema language you are using has an elegant mathematical
background. It ensures that the design will work, and work well. While the math behind it is difficult,
the results it produces are surprisingly intuitive.

In keeping with its mathematical foundation, RELAX NG patterns are defined as logical operations
performed on sets of XML structures. This gives the specification a formalism that removes any
possibility of ambiguous interpretation. The lack of ambiguity is incredibly helpful for ensuring the
interoperability of different implementations of RELAX NG.

The strong mathematical background of RELAX NG didn't mean that everything needed to be
reinvented for RELAX NG implementers. On the contrary, the derivative algorithm used by James
Clark in his Jing RELAX NG processor was inspired by work done in 1964 on the derivation of regular
expressions. It recursively removes the nodes found in the instance documents from the patterns:
the document is valid if the patterns left after the last node are all optional.

Murata Makoto has adapted the well-known algorithm of finite state machines to cope with the level
of nondeterminism accepted by RELAX NG. He has, for example, used this to develop a RELAX NG
validator that is lightweight enough to be used in a mobile phone.

Apart from the fact that it can be implemented with well-known and well-documented algorithms,
developers of RELAX NG processors also appreciate the simplicity of its underlying model. This
simplicity should also guarantee a strong interoperability between implementations, unlike with some
more complex schema languages.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.5 Patterns, and Only Patterns

In science, strong theories tend to be simple, yet have almost infinite potential for complexity in
application. RELAX NG is, because of its simplicity, one of those theories that is easy to explain, easy
to implement, and generic and flexible enough to meet the most stringent requirements.

I'll present the RELAX NG patterns throughout this book, but I'd like to make a brief introduction
here. In RELAX NG, there are three basic patterns that match the three types of XML nodes:

Text nodes

Elements

Attributes

These basic patterns can be combined into ordered or nonordered groups and used in choices
defining alternatives among several patterns. The cardinality of a pattern (i.e., the number of times it
can appear in an instance document) can also be controlled. Text nodes can be also be constrained
as data, which can be limited to particular datatypes and possibly be split into list items. Lastly, a

whole set of features supports the creation of reusable libraries of patterns. Similar to patterns, name
classes define sets of elements and attributes that can be used to open a schema and control where
elements and attributes with unknown names may be included in the instance documents.

Some of these features have been defined to facilitate the work of writing RELAX NG schemas and go
beyond the basic (sometimes called "atomic") patterns. To avoid complicating the basic model with
these convenience features, the RELAX NG specification describes a simplification algorithm. This
algorithm is used internally by RELAX NG processors to transform a full schema into a simpler form
with fewer and simpler patterns. This algorithm is presented in Chapter 15.

RELAX NG doesn't pay attention to XML processing instructions and comments.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. First Schema
Throughout the book, we will work with variations of a document that describes a library. For a first
project, we will create a map from the document to the RELAX NG constructs that will create your
first RELAX NG schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 Getting Started

Example 3-1 shows the instance document used throughout the book as a foundation for RELAX NG
experimentation and development.

Example 3-1. Sample instance document

<?xml version="1.0"?>
 <library>
 <book id="b0836217462" available="true">
 <isbn>0836217462</isbn>
 <title xml:lang="en">Being a Dog Is a Full-Time Job</title>
 <author id="CMS">
 <name>Charles M Schulz</name>
 <born>1922-11-26</born>
 <died>2000-02-12</died>
 </author>
 <character id="PP">
 <name>Peppermint Patty</name>
 <born>1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>
 </character>
 <character id="Snoopy">
 <name>Snoopy</name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
 </character>
 <character id="Schroeder">
 <name>Schroeder</name>
 <born>1951-05-30</born>
 <qualification>brought classical music to the Peanuts strip</qualification>
 </character>
 <character id="Lucy">
 <name>Lucy</name>
 <born>1952-03-03</born>
 <qualification>bossy, crabby and selfish</qualification>
 </character>
 </book>
 </library>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.2 First Patterns

In plain English, the document, shown in Example 3-1 can be described as having:

One library element composed of:

One of more book elements having:

An id attribute and an available attribute

An isbn element composed of text

A title element with an xml:lang attribute and a text node

One or more author elements with:

An id attribute

A name element

An optional born element

An optional died element

Zero or more character elements with:

An id attribute

A name element

An optional born element

A qualification element`

The good news-and what makes RELAX NG so easy to learn-is that in its simplest form, RELAX NG
is pretty much a way to formalize the previous statements with simple matching rules. Terms
described in the plain English description have matching terms in the RELAX NG Schema document
that look a lot like XML:

A "library element" matches <element name="library">...</element>

An "id attribute" matches <attribute name="id"/>

"One or more" matches <oneOrMore>...</oneOrMore>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Zero or more" matches <zeroOrMore>...</zeroOrMore>

"Text" matches <text/>

"Optional" matches <optional>...</optional>

You saw in Chapter 2 that almost every XML structure is a natural pattern for RELAX NG. Further,
each RELAX NG element is a pattern; therefore, each RELAX NG pattern matches a structure from
the XML document. Let's now spend some time examining each basic pattern.

3.2.1 The text Pattern

This pattern is the simplest; it simply matches a text node. More precisely, it matches zero or more
text nodes. As you'll see in Chapter 6, the text pattern may also be used in the definition of mixed

content models, elements that may have both child elements and text nodes. For now, though, think
of text as matching a text node.

Because attribute values contain text, the text pattern can also match any attribute value. (The W3C

XML Infoset doesn't consider attribute values to be nodes, but RELAX NG does.)

The RELAX NG XML expression for text patterns is just:

 <text/>

3.2.2 The attribute Pattern

Not surprisingly, the attribute pattern matches attributes from an XML instance document. The
name of the attribute is defined in the name attribute of the attribute pattern. The content of an
attribute is defined as a child element of the attribute pattern.

To define the id attribute, you can write:

 <attribute name="id">
 <text/>
 </attribute>

In this brief example, you can see how the definitions given earlier apply here. The attribute's name,
id, is defined within the name attribute. The content, text, is in a child element.

This example reads as: "an attribute named id with a text value." Since any attribute can have a
value, the text pattern is assumed, so writing out <text/> is not required. Thus, the previous

definition is strictly equivalent to this shorter one:

 <attribute name="id"/>

The last thing to know about the attribute pattern is that while attribute names are defined by the
name attribute or the attribute pattern, it is also possible to define sets of possible names for an

attribute. This feature is explained in detail in Chapter 12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.3 The element Pattern

Just as the attribute pattern matches attributes, the element pattern matches elements. To define
the name element, write:

 <element name="name">
 <text/>
 </element>

Like the attribute pattern, it is possible to replace the name attribute of the element pattern with a

set of names. This practice will be explained in detail in Chapter 12.

Unlike attributes, not all elements accept text nodes. For that reason, the text pattern isn't implicitly

assumed for elements. In fact, there is no implicit content for elements. The content of each element
must be explicitly described, even if the description shows that the element is always empty.

Because a text pattern matches zero or more text nodes, the previous definition of the name element

also matches empty elements such as:

 <name/>

as well as elements such as:

 <name>Charles M Schulz</name>

There are additional ways to restrict text nodes. You'll see in Chapter 7 how to add additional
restrictions to text nodes to avoid empty elements if necessary. In Chapter 8, you'll learn how to use
the datatypes from W3C XML Schema to add more specific restrictions such as date or number
requirements.

Attributes can be added within elements. To define the title element, write:

 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>

You can see that an xml:lang attribute has been defined from the XML namespace. I will describe

the support of namespaces in Chapter 11, but here you can begin to see how straightforward it is.
The description of this attribute is added by inserting xml:lang as the name of the attribute. Any xml

prefix has been predeclared to refer to the XML namespace,
http://www.w3.org/XML/1998/namespace. This means that the previous address doesn't need to be

written out. For other namespaces, however, you need to declare the namespace using mechanisms
described in Chapter 11.

Note that RELAX NG is clever enough to know that attributes are always located in the start tag of
XML elements and that the order in which they are written isn't considered significant. This means
that the attribute pattern can be located anywhere in the definition of elements. It doesn't make a

difference if you write:

 <element name="title">
 <attribute name="xml:lang"/>
 <text/>

http://www.w3.org/XML/1998/namespace
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>

as before or if you switch the order of the attributes like this:

 <element name="title">
 <text/>
 <attribute name="xml:lang"/>
 </element>

In addition to text nodes and attributes, elements can also include child elements. You can define the
author element this way:

 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="died">
 <text/>
 </element>
 </element>

That's not exactly the right definition, since we want the born and died elements to be optional. To
make this happen, I need to introduce a new pattern: the optional pattern.

3.2.4 The optional Pattern

The optional pattern makes its content just that, optional; the element doesn't have to be there. To
specify that the born and died elements are optional, write:

 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>

Note that the markup and meaning are different from:

 <optional>
 <element name="born">
 <text/>
 </element>
 <element name="died">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <text/>
 </element>
 </optional>

And also different from:

 <optional>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </optional>

In the first case, each element is embedded in its own optional pattern. The two elements are thus

independently optional. I can include one, both, or none of them in valid instance documents.

In the second case, both elements are embedded in the same optional pattern. Thus I can include

either none or both in instance documents.

In the third case, the first optional pattern includes the born element and an optional died element.
Both or none of them can be in an instance document, but now there are more possibilities: the born
element can be there alone, or the born element can be there with the died element, but the died
element can't be there without the born element because of the way the elements are nested.

None of these combinations is "right" or "wrong"; they are just different pattern combinations that
allow different element combinations in the instance document. What's nice about RELAX NG is that
there are so few restrictions that almost any combination is allowed. Indeed, there are a few
restrictions, but you don't need to think about them until they're covered in Chapter 15.

3.2.5 The oneOrMore Pattern

The oneOrMore pattern specifies, as you might have guessed, that its content may appear one or
more times. oneOrMore specifies that a book must have one or more authors:

<oneOrMore>
 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="died">
 <text/>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </optional>
 </element>
</oneOrMore>

3.2.6 The zeroOrMore Pattern

The last pattern needed in our example is zeroOrMore. You'll have figured out that it specifies its
content to appear zero or more times. This example shows the character elements:

<zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <element name="qualification">
 <text/>
 </element>
 </element>
</zeroOrMore>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.3 Complete Schema

You now have all the patterns needed to write a full schema that expresses what we've discussed
about this example:

 <?xml version = '1.0' encoding = 'utf-8' ?>
 <element xmlns="http://relaxng.org/ns/structure/1.0" name="library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <oneOrMore>
 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>
 </oneOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <element name="qualification">
 <text/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

3.3.1 Constraining Number of Occurrences

RELAX NG directly supports four kinds of occurrence constraints on nodes: they may appear as
exactly once (the default), optional, zero or more, or one or more. These are the most common
cases in document design. If applications need a finer level of control, that can be achieved by using
or combining these four basic occurrence constraints. If, for instance, you need to define that each
book's description should have between two and six character elements, you can write the definition

as two mandatory characters followed by four optional ones:

<!-- 1 -->
<element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <element name="qualification">
 <text/>
 </element>
</element>
<!-- 2 -->
<element name="character">
 .../...
</element>
<!-- 3 -->
<optional>
 <element name="character">
 .../...
 </element>
 </element>
</optional>
<!-- 4 -->
<optional>
 <element name="character">
 .../...
 </element>
</optional>
<!-- 5 -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<optional>
 <element name="character">
 .../...
 </element>
</optional>
<!-- 6 -->
<optional>
 <element name="character">
 .../...
 </element>
</optional>

This is certainly verbose, but in later chapters, you will see how to define and reuse patterns to
reduce verbosity.

W3C XML Schema offers much more control over how many times an element
may appear, but this degree of control creates a number of processing
complexities. While RELAX NG's approach may, in this respect, seem less
powerful, it compensates by imposing far fewer costs.

3.3.2 Creating "Russian Doll" Schemas

Figure 3-1 shows the schema and the instance document side by side. Even though information has
been added to the schema that describes the content of the text nodes and the number of their
occurrences, the schema keeps the same hierarchical structure as the instance document.

Figure 3-1. Comparing the Russian doll schema structure with that of the
instance document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A schema in which different definitions are embedded in each other, like this one, in which the
definition of the library element physically contains the definition of the author element that
physically contains the definition of the name element-is often called a Russian doll schema after the

nested matruschka dolls. In Chapter 5, you'll see how Russian doll schemas can be broken into
independent patterns and then combined to reproduce the structure of the instance document. First,
we'll examine the equivalent compact syntax for RELAX NG in the next chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Introducing the Compact Syntax
Although the schema shown in Chapter 3 is simple, its XML representation is rather verbose. This is
neither surprising nor uncommon for XML vocabularies. In fact it conforms to the basic principles of
XML; the W3C Recommendation's design goals state that "XML documents should be human-legible
and reasonably clear" and that "terseness in XML markup is of minimal importance." Our schema is a
good example of a "human-legible and reasonably clear" document that's definitely not terse!

The principal goal of RELAX NG's XML syntax is to provide a serialization of RELAX NG schemas that
can be processed by computers using standard XML toolkits. To make it easier for people to read and
write RELAX NG schemas, however, James Clark introduced a second syntax that is strictly
equivalent to the XML syntax, a more concise compact syntax.[1]

[1] The compact syntax has been published as an official OASIS RELAX NG committee specification but has not
yet been submitted to ISO.

RELAX NG processors can support this compact syntax, but they aren't required to do so. If a RELAX
NG processor doesn't support the compact syntax, you can translate the XML syntax to and from the
compact syntax using existing translators. Because these two forms are strictly equivalent, there's no
loss of information during translation. Even comments and annotations (presented in Chapter 13) are
preserved in the process.

Syntactical details of XML, such as entity references or processing instructions,
are lost when the XML syntax is translated into the compact syntax, but this is
a limitation of the XML processing architecture rather than a limitation of RELAX
NG itself.

You'll see that the compact syntax is built on a mix of concepts borrowed from the definition of
structures in programming languages, notations from XML DTDs, and RELAX NG patterns. Element
and attribute patterns look like Java declarations, with their curly brackets preceded by a reserved
word, element or attribute, and their RELAX NG pattern name. Optionally, one or more, and zero
or more elements or attributes are represented by DTD qualifier suffixes (? for optional, + for one or
more, and * for zero or more).

The compact syntax is easy to use, especially (but not only) if you've ever worked with DTDs. You'll
find the syntax intuitive, simple, and familiar before the end of this book. In this chapter, we'll
explore the parts of the compact syntax that map to the RELAX NG patterns already discussed in
Chapter 3. Later chapters introduce new components for the compact syntax along with their more
verbose XML equivalents.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 First Compact Patterns

Let's explore how the patterns described in the previous chapter translate into the compact syntax.

4.1.1 The text Pattern

text is the simplest pattern in the XML syntax and is the simplest in the compact syntax as well. The
text pattern is just:

text

In this definition, the word text identifies the text pattern.

Of course, because both syntaxes are equivalent, all that's been said about text in RELAX NG's XML
syntax also applies to text in the compact syntax.

4.1.2 The attribute Pattern

For the compact syntax, the attribute pattern borrows Java's curly brackets:

 attribute id { text }

In this definition, the first word, attribute, identifies the attribute pattern; the second one, id, is
the name of the attribute. The curly brackets, {...}, delimit the definition of the content of the

attribute.

Because empty curly brackets ({}) look weird and might imply empty attributes rather than

attributes containing a text value, the convention of the XML syntax that makes a text pattern the
implicit content for attributes is abandoned in the compact syntax. The content of attributes must be
explicitly defined when you're using the compact syntax. In other words, in the compact system, the
following:

<attribute name="id"/>

translates into:

 attribute id { text }

while this:

attribute id { }

translates into a syntax error.

The compact syntax is position-sensitive, and words such as text and attribute are reserved words

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only when they appear in the first position. This is very convenient when you need to define
attributes (or elements) that have names that are the same as reserved words. For instance, you can
define attributes named text or even attribute without any precaution such as:

attribute text { text }
attribute attribute { text }

Because the compact syntax is position-sensitive, it isn't confused when reserved words are used as
attribute names. This is also true for the element pattern which you'll see in the next section.

4.1.3 Element

The simplest definition of the name element is:

element name { text }

To add an attribute to an element, you need a delimiter between the different pieces of content.
You'll see more use of delimiters and their meanings in Chapter 6, but for now, let's use a comma as
delimiter between content. This has the same effect as with XML syntax:

element title { attribute xml:lang { text }, text }

Whitespace (i.e., spaces, tabulations, line feeds, and carriage returns) isn't significant for the
compact syntax. The previous bit of code could also have been written:

element title {attribute xml:lang{ text }, text}

Many people tend to prefer to split up their code with whitespace so that there is only one definition
per line. This technique, with each line helping to guide a reader through the structure, is more
human-readable, but a RELAX NG processor won't have any problems understanding the content. It
treats both as equivalent.

The author element can be defined using more of the same components:

element author { attribute id { text }, element name { text }, element born
 { text }, element died { text } }

Again, all that I've said about the properties of the element pattern in the XML syntax is true for the
compact syntax: these are just two equivalent syntaxes for the same pattern.

4.1.4 The optional Pattern

The optional pattern is formalized as a trailing ? added after a definition, as is true in DTDs as well.
For example, to define the attribute id as optional, you'd write:

attribute id { text }?

Note that the qualifier ? must be added after the definition of the pattern but before the delimiter. If
you used this qualifier in the larger definition of the author element, it'd therefore look like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element author { attribute id { text }, element name { text }, element born
 { text }?, element died { text }? }

In Chapter 3, I mentioned that other combinations of optional and required elements can be
described using the optional pattern as a container. In the compact syntax, the optional pattern is

represented as a qualifier rather than a container, so you need a container if you wish to create the
same combinations. The container is a a set of parentheses (). The effect of parentheses depends on

the optional qualifier following them. Parentheses without a qualifier are effectively transparent; they
do nothing. The definition of author can be written as:

element author {(attribute id { text }, element name { text }, element born
 { text }?, element died { text }?)}

or:

element author { (attribute id { text }), (element name { text }),
 (element born { text })?, (element died { text }?) }

without changing its meaning. Parentheses are more useful (and are actually required) to write the
combinations mentioned in Chapter 3. Combinations such as:

<optional> <element name="born"> <text/> </element>
 <element name="died"> <text/> </element> </optional>

translate into:

(element born { text }, element died { text })?

The following:

<optional> <element name="born"> <text/>
 </element> <optional> <element name="died"> <text/> </element>
 </optional> </optional>

translates into:

(element born { text }, element died { text }?)?

4.1.5 The oneOrMore Pattern

The oneOrMore pattern is also a qualifier and, in the DTD tradition, is a plus sign (+):

element author { attribute id { text }, element name { text }, element born
 { text }?, element died { text }? }+

4.1.6 The zeroOrMore Pattern

Last but not least, the zeroOrMore pattern is the asterisk (*) qualifier:

element character { attribute id { text }, element name { text }, element born
 { text }?, element qualification { text } }*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 Full Schema

Now we have all the components needed to convert the full RELAX NG schema from Chapter 3 into
its compact syntax form; it's shown in Example 4-1.

Example 4-1. Compact syntax of full RELAX NG schema

element library {
 element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {
 attribute xml:lang { text },
 text
 },
 element author {
 attribute id { text },
 element name { text },
 element born { text }?,
 element died { text }?
 }+,
 element character {
 attribute id { text },
 element name { text },
 element born { text }?,
 element qualification { text }
 }*
 }+
}

In the following chapters, I give both the XML and the compact syntax for each example. You'll have
plenty of opportunities to get familiar with both.

Don't get confused by the similarities in name between the simple form of a
RELAX NG schema, described in Chapter 15, and the compact syntax. These
two notions work at different levels: the simple form is the result of
simplifications performed internally by RELAX NG processors on the data model
of the schema; the compact syntax is a different way to represent or serialize a
full RELAX NG document. The data models that result from the parsing of a full
RELAX NG schema are thus the same whether the schema is written using the
XML or the compact syntax and are simplified into the same simple schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.3 XML or Compact?

Figure 4-1 presents both syntaxes side by side. There are two things you'll immediately notice. The
compact syntax is much more, well, compact. The XML syntax is, just as you'd expect, XML. It works
well with generic XML tools (here a web browser), while the compact syntax isn't XML and must be
used with other tools (here the text editor vim with a plug-in that highlights RELAX NG's compact
syntax).

Figure 4-1. Comparing the RELAX NG XML syntax with its smaller
compact syntax counterpart

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These two statements summarize why both syntaxes are needed. The compact syntax is nice to work
with, and you'll probably find it more pleasant to use to edit your schemas and to document your
vocabularies. On the other hand, the XML syntax is wonderful if you want to generate RELAX NG
schemas, as in Chapter 14 or to generate anything out of your RELAX NG schemas using the XML
tools covered in Chapter 13. The ability to translate from one syntax to the other without information
loss guarantees that you can use either while having access to both.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Flattening the First Schema
If you look at the structure of the Russian doll-style schema, you'll see that it follows the structure of
the instance document it applies to, as shown in Figure 3-1. Writing the first schema has pretty much
been limited to inserting text, element, or attribute elements into the schema each time a text

node, element, or attribute was encountered in the instance document. This method of creating
schemas can be seen as a serialization of the XML infoset (i.e., of the structure available in the
document) and could, therefore, be easily automated.

Automated serialization is the principle behind Examplotron, a program
described in Chapter 14.

There are a couple of drawbacks to modeling documents with the Russian doll-style schemas,
however. First, they aren't modular and therefore become difficult to read and maintain when
documents are large or complex. Second, they can't represent recursive (self-referencing) models.
(Lists that may themselves contain lists are a common case of this model.)

The lack of modularity can be seen in a document as simple as the first schema, shown in Example 3-
1. There's a name element that uses the same model within both the character and author

elements.

Figure 5-1 shows how, in the first schema, you need to give the definition of what name means in

each context:

Figure 5-1. Two different definitions of name in the same schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You might think that the extra text won't make a difference, but that's not completely true. The
additional verbosity here is innocuous because the definition of the name element is simple, and thus

not verbose. The principle is the same if the definition is complex, however. It will require
redundancy. This redundancy makes maintenance of the schema more error-prone. If I need to
update the definition of the name element, I'll need to update it as many times at it appears, but I'll

give myself more room for mistakes. Common sense applies the same rules to XML schema
languages as to any programming language. Limiting repetitive work makes developers happy!

Another rule borrowed from programming languages concerns recursive models. Recursive models,
models that reference themselves, are those like XHTM in which, for example, div elements can be
embedded within other div elements without any restriction in the number of levels of embedding.
You can just copy the definition of the div element again and again, but it's both inefficient and
limiting. We need a way to define and reference the content model of the div element recursively. In

the course of this chapter, we'll examine cases of both modularity and recursive models.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 Defining Named Patterns

RELAX NG uses named patterns to address both modularity and recursion. Named patterns are
reusable patterns that can be referenced by their name.

In the XML syntax, named patterns are defined using define elements. To define named patterns
that contain the title element, write:

<define name="title-element">
 <element name="title">
 <text/>
 </element>
</define>

The compact syntax uses a construction similar to a programming language format. The same
definition would be written in the compact syntax as:

title-element = element title {text}

You're not limited to embedding a single element or attribute definition in a named pattern. Note that
the group shown in Figure 5-2, an id attribute, a name element, and an optional born element are
present in the same order and with the same definition in both the author and the character

element.

Figure 5-2. Groups of identical attributes on different element types

To define a named pattern for this group, write:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<define name="common-content">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
</define>

or:

common-content =
 attribute id { text },
 element name { text },
 element born { text }?

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 Referencing Named Patterns

Defining a named pattern is easy, as shown the earlier example, but referencing a named pattern
rather than defining it again is even simpler.

Using the XML syntax, references to named patterns defined elsewhere in the schema are done using
a ref element. For instance, to define the author element, use a reference to the name-element

pattern:

 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>

To reference a named pattern in the compact syntax, just use its name directly:

element author {
 attribute id { text },
 name-element,
 element born { text }?,
 element died { text }?
}

The same approach can reference the common-content named pattern:

 <element name="author">
 <ref name="common-content"/>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>

or:

element author {
 common-content,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element died { text }?
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 The grammar and start Elements

In the Russian doll-style, the definition of the root element (in this case, the library element) is

used as a container for the whole schema. When you define named patterns, you need a container to
embed both the named pattern definitions and the definition of the root element of the named
patterns. This definition of the root element, as well as definitions of all the patterns that may be
used within it, is what RELAX NG calls a grammar. It uses the grammar element. When you use a
grammar element, RELAX NG requires you to explicitly declare the root element or elements, using a
start element. An incomplete skeleton of the structure of the schema defining a pattern name-
element would thus be:

<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <element name="library">
 .../...
 </element>
 </start>
 <define name="name-element">
 .../...
 </define>
</grammar>

or, using the compact syntax:

grammar {
 name-element = .../...
 start =
 element library {
 .../...
 }
}

In the compact syntax, the grammar pattern is implicit. You can use it, but it isn't required.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.4 Assembling the Parts

You have seen the different bits and pieces needed to define and reference patterns. It's time to put
them all together and create a complete schema. The first exercise is to define a DTD-like RELAX NG
schema that defines each element and its own named pattern.

The full schema might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

 <start>
 <ref name="element-library"/>
 </start>

<define name="element-library">
 <element name="library">
 <oneOrMore>
 <ref name="element-book"/>
 </oneOrMore>
 </element>
</define>

<define name="element-book">
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="element-isbn"/>
 <ref name="element-title"/>
 <oneOrMore>
 <ref name="element-author"/>
 </oneOrMore>
 <zeroOrMore>
 <ref name="element-character"/>
 </zeroOrMore>
 </element>
</define>

<define name="element-isbn">
 <element name="isbn">
 <text/>
 </element>
</define>

<define name="element-title">
 <element name="title">
 <attribute name="xml:lang"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <text/>
 </element>
</define>

<define name="element-author">
 <element name="author">
 <attribute name="id"/>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 <optional>
 <ref name="element-died"/>
 </optional>
 </element>
</define>

<define name="element-name">
 <element name="name">
 <text/>
 </element>
</define>

<define name="element-born">
 <element name="born">
 <text/>
 </element>
</define>
<define name="element-died">
 <element name="died">
 <text/>
 </element>
</define>
<define name="element-character">
 <element name="character">
 <attribute name="id"/>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 <ref name="element-qualification"/>
 </element>
</define>
<define name="element-qualification">
 <element name="qualification">
 <text/>
 </element>
 </define>
</grammar>

Or:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

grammar{
start = element-library

element-library = element library {element-book +}

element-book = element book {
 attribute id { text },
 attribute available { text },
 element-isbn,
 element-title,
 element-author+,
 element-character*
 }

element-isbn = element isbn { text }

element-title = element title {
 attribute xml:lang { text },
 text
 }

element-author = element author {
 attribute id { text },
 element-name,
 element-born?,
 element-died?
 }

element-name = element name { text }

element-born = element born { text }

element-died = element died { text }

element-character = element character {
 attribute id { text },
 element-name,
 element-born?,
 element-qualification
 }

element-qualification = element qualification { text }

}

The DTD style just shown is pretty common, and finding the definition of each element in the schema
is easy, which is a great advantage. Another popular style, the content-oriented style, defines the
content of each element as a separate pattern:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <start>
 <element name="library">
 <ref name="library-content"/>
 </element>
 </start>

 <define name="library-content">
 <oneOrMore>
 <element name="book">
 <ref name="book-content"/>
 </element>
 </oneOrMore>
 </define>

 <define name="book-content">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <ref name="isbn-content"/>
 </element>
 <element name="title">
 <ref name="title-content"/>
 </element>
 <oneOrMore>
 <element name="author">
 <ref name="author-content"/>
 </element>
 </oneOrMore>
 <zeroOrMore>
 <element name="character">
 <ref name="character-content"/>
 </element>
 </zeroOrMore>
 </define>

 <define name="isbn-content">
 <text/>
 </define>

 <define name="name-content">
 <text/>
 </define>

 <define name="born-content">
 <text/>
 </define>

 <define name="died-content">
 <text/>
 </define>

 <define name="qualification-content">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <text/>
 </define>

 <define name="title-content">
 <attribute name="xml:lang"/>
 <text/>
 </define>

 <define name="author-content">
 <attribute name="id"/>
 <element name="name">
 <ref name="name-content"/>
 </element>
 <optional>
 <element name="born">
 <ref name="born-content"/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <ref name="died-content"/>
 </element>
 </optional>
 </define>

 <define name="character-content">
 <attribute name="id"/>
 <element name="name">
 <ref name="name-content"/>
 </element>
 <optional>
 <element name="born">
 <ref name="born-content"/>
 </element>
 </optional>
 <element name="qualification">
 <ref name="qualification-content"/>
 </element>
 </define>

</grammar>

Or:

grammar {

start = element library {library-content}

library-content =
 element book { book-content } +

book-content =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attribute id { text },
 attribute available { text },
 element isbn { isbn-content },
 element title { title-content },
 element author { author-content }+,
 element character { character-content }*

 isbn-content = text

 name-content = text

 born-content = text

 died-content = text

 qualification-content = text

 title-content =
 attribute xml:lang { text },
 text

 author-content =
 attribute id { text },
 element name { name-content },
 element born { born-content }?,
 element died { died-content }?
 character-content =
 attribute id { text },
 element name { name-content },
 element born { born-content }?,
 element qualification { qualification-content }

 }

As shown in Chapter 12, the style of your schema (Russian doll, DTD-like, or content-oriented, as this
last schema) has an impact on its extensibility. The last option (content-oriented) is the most
extensible.

Now let's revisit the "bizarre patterns" mentioned in Chapter 2 and shown in Figure 5-3.

Figure 5-3. Bizarre combinations of child content for a group

When you think about it, this case is not so uncommon. When you find it in its original form, it's a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

muddled mess: there's a first pattern named book-basic with the id attribute and the isbn and
title elements, one or more author elements, and an optional character element. There's a
second pattern that extends the first one. It's named book-extended and holds the available
attribute and zero or more character elements. It's confusing to write, certainly, and difficult to

follow. Still, this pattern gives the opportunity to disentangle the web of confusion.

Updating the "DTD-like" flavor of our schema to reflect this instance document is just a matter of
splitting up the definition of the book element:

<define name="element-book">
 <element name="book">
 <ref name="book-basic"/>
 <ref name="book-extended"/>
 </element>
 </define>

 <define name="book-basic">
 <attribute name="id"/>
 <ref name="element-isbn"/>
 <ref name="element-title"/>
 <oneOrMore>
 <ref name="element-author"/>
 </oneOrMore>
 <optional>
 <ref name="element-character"/>
 </optional>
 </define>

 <define name="book-extended">
 <attribute name="available"/>
 <zeroOrMore>
 <ref name="element-character"/>
 </zeroOrMore>
 </define>

Or, in the compact syntax:

element-book = element book {
 book-basic,
 book-extended
 }

 book-basic =
 attribute id { text },
 element-isbn,
 element-title,
 element-author+,
 element-character?

 book-extended =
 attribute available { text },
 element-character*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.5 Problems That Never Arise

Some restrictions that add a lot of complexity in other schema languages aren't issues for RELAX NG.
You've seen at least two places in this chapter in which restrictions are avoided. The first case
appears as the ability to define attributes wherever you want in your patterns. This reduction in rules
doesn't make a big difference when you define the content model of elements as straightforward as
those in our first schema, but it makes a huge difference when you start to combine patterns as
we've done with our bizarre model. Without this removal of restrictions, it would have been
impossible to define one attribute in the pattern book-extended and a second one in the pattern
book-basic.

The other nonrestriction is that RELAX NG pays no attention to the pattern used to match a node of
the instance document when there are several possibilities. Again, in our bizarre pattern, if you have
a document with a book having only one author, there is no way to tell if this author matches the
optional author element of the pattern book-start or the zero or more author elements of the
pattern book-author. This is considered an ambiguity that's intolerable to other schema languages.

In this case, RELAX NG holds that even though there is an ambiguity, because there is at least one
interpretation of the schema for which the document is valid, the document should be considered
valid. You'll learn more about these ambiguities and their consequences in Chapter 16.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.6 Recursive Models

As mentioned earlier, named patterns are the only way to represent recursive models. We don't yet
have all the building blocks needed to define a recursive XHTML div element, for example, but let's
start with a simpler example. If our library is divided into categories, each having a title, zero or
more embedded category elements, and zero or more books, you can write (assuming that named
patterns have been defined for the book element):

<define name="category">
 <element name="category">
 <element name="title">
 <text/>
 </element>
 <zeroOrMore>
 <ref name="category"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="book"/>
 </zeroOrMore>
 </element>
</define>

or:

category = element category{
 element title{text},
 category *,
 book*
}

Note that in this case, the recursive reference to the category named pattern must be optional.

Otherwise the document is required to have an infinite depth!

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.7 Escaping Named Pattern Identifiers in the Compact
Syntax

In the previous chapter, I introduced the compact syntax and noted that any word reserved for use
by RELAX NG can be used as an element or attribute name. That's no longer the case for the
identifiers of named patterns, because they can appear in the same position as the keywords.

If you want to define a named pattern named "text," "start," or "element," for instance, the identifier
of this named pattern can be confused with the keyword. In this case you need to escape being
confused with the identifier by a leading backslash. For instance to define (and by extension to make
a reference) to a named pattern named "start," write:

grammar{

start = \start

\start = element start { text }

}

In the XML syntax, this translates into:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <ref name="start"/>
 </start>
 <define name="start">
 <element name="start">
 <text/>
 </element>
 </define>
</grammar>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. More Complex Patterns
So far, I've described only sequentially ordered groups of elements and text nodes. Now you'll see
another class of patterns that describe unordered sequences and choices. Although this class of
patterns has no special name in the RELAX NG specification, I refer to them as compositors in this
book in analogy to the compositors that are defined by W3C XML Schema. The W3C's use of the term
compositors matches our usage: the name describes patterns composed of less complex patterns,
including the basic patterns we've been looking at such as element, attribute, and text.

One of the key differentiations between compositors and simple patterns is that compositors are
patterns that don't directly map to any individual element within the schema. I emphasize this
distinction because it can be easy to forget when focusing on a schema instead of the instance
document.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 The group Pattern

Here is the definition of our character element:

<element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
</element>

In this snippet of the schema, I haven't specified how the different nodes constituting the character
element must be composed. RELAX NG recognizes that we have used a group compositor. This group

compositor is implied in the XML syntax. You can see, in the compact syntax, that it looks like a
grouping of words: each component of the compositor is separated by a comma:

 element character {
 attribute id {text},
 element name {text},
 element born {text},
 element qualification {text}}

When using the XML syntax, the group compositor may also be explicitly specified, rather than

implied. The previous definition is strictly equivalent to this one:

<element name="character">
 <group>
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </group>
</element>

Because the order of attributes isn't considered significant by the XML 1.0 specification, the meaning
of the group compositor is slightly less straightforward than it appears at first. Here's the semantic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

quirk: the group compositor says, "Check that the patterns included in this compositor appear in the
specified order, except for attributes, which are allowed to appear in any order in the start tag."

A last thing to keep in mind about group compositors is that, as with compositors in general, there is

no such thing as already grouped elements for the pattern to map to in an instance document. The
notion of group is specific to the pattern that belongs only in our schema. (This means that there is

no hard border in instance documents to isolate nodes inside a group from nodes outside of the
group. You'll see later in the chapter that in certain conditions, nodes matching patterns defined
outside of a group can be "inserted" in the group.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 The interleave Pattern

The second compositor examined here, interleave, describes a set of unordered patterns-a set of

patterns considered valid when they match the content of the instance documents in any order.

As far as validation is concerned, this behavior is similar to the validation of
attributes in a "group" compositor up to the point that the algorithms to
validate attributes within groups are the same as the algorithm to validate any
node in interleave compositors. Of course, the validation of interleave

patterns doesn't mean that the order of elements and text nodes in the
instance document aren't reported to the application, only that they are allowed
to appear in any order.

To specify that character elements may accept child elements in any order, you just need to replace
our group pattern with an interleave pattern:

<element name="character">
 <interleave>
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </interleave>
</element>

In the compact syntax, interleave patterns are marked using an ampersand (&) character as a

separator instead of a comma, which is the mark of ordered groups:

element character {
 attribute id {text}&
 element name {text}&
 element born {text}&
 element qualification {text}}

These two equivalent schemas will validate character elements when child elements appear in any

order:

<character id="PP">
 <name>Peppermint Patty</name>
 <born>1966-08-22</born>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <qualification>bold, brash and tomboyish</qualification>
 </character>
<character id="Snoopy">
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
 <name>Snoopy</name>
</character>
<character id="Schroeder">
 <qualification>brought classical music to the Peanuts strip</qualification>
 <name>Schroeder</name>
 <born>1951-05-30</born>
</character>

Although interleave looks straightforward at this point, you'll see that it has more complicated

behavior and restrictions. In the last sections of this chapter, we'll look at some of the complexities.
You can skip them if they look overwhelming right now, but please remember to come back and
revisit them, especially if your interleave patterns produce unexpected results or error messages!

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 The choice Pattern

Let's add some flexibility to the name element so we can accept:

<name>Lucy</name>

and:

<name>
 <first>Charles</first>
 <middle>M</middle>
 <last>Schulz</last>
</name>

and:

<name>
 <first>Peppermint</first>
 <last>Patty</last>
</name>

To express this flexibility, use a choice pattern that accepts either a text node or a group of three

elements (one of which is optional):

<element name="name">
 <choice>
 <text/>
 <group>
 <element name="first"><text/></element>
 <optional>
 <element name="middle"><text/></element>
 </optional>
 <element name="last"><text/></element>
 </group>
 </choice>
</element>

The compact syntax uses a pipe, or logical "or" character (|) to denote choices:

 element name {
 text|(
 element first{text},
 element middle{text}?,
 element last{text}
)}

Note that you have to use parentheses to mark the boundary of the group pattern.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.4 Pattern Compositions

In the preceding example, we combined a choice pattern with a group pattern. This process can be

expanded so that there is virtually no restriction or limit on the way compositors can be combined. As
an example, let's say we want our character element to allow either one name element or the three
elements first-name, middle-name (optional), and last-name in any order, but require that they
appear before the born and qualification elements. To do that, write:

<element name="character">
 <attribute name="id"/>
 <choice>
 <element name="name"><text/></element>
 <interleave>
 <element name="first-name"><text/></element>
 <optional>
 <element name="middle-name"><text/></element>
 </optional>
 <element name="last-name"><text/></element>
 </interleave>
 </choice>
 <element name="born"><text/></element>
 <element name="qualification"><text/></element>
</element>

or, with the compact syntax:

element character {
 attribute id { text },
 (element name { text }
 | (element first-name { text }
 & element middle-name { text }?
 & element last-name { text })),
 element born { text },
 element qualification { text }
}

Note that two levels of parentheses have been added. In the compact syntax, operators determine
the nature of compositors (group, interleave, or choice). Operators can't be mixed within one set

of parentheses or curly brackets, so you need to use these parentheses to explicitly mark where each
compositor begins and ends.

These schemas validate any of the following (and varied) character elements:

<character id="PP">
 <first-name>Peppermint</first-name>
 <last-name>Patty</last-name>
 <born>1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</character>

<character id="PP2">
 <last-name>Patty</last-name>
 <first-name>Peppermint</first-name>
 <born>1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>
</character>

<character id="Snoopy">
 <name>Snoopy</name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
</character>

<character id="Snoopy2">
 <first-name>Snoopy</first-name>
 <middle-name>the</middle-name>
 <last-name>Dog</last-name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
</character>

<character id="Snoopy3">
 <middle-name>the</middle-name>
 <last-name>Dog</last-name>
 <first-name>Snoopy</first-name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
</character>

The flexibility and freedom with which you can combine patterns and the lack of restrictions
associated with these combinations sets RELAX NG apart from other XML schema languages.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.5 Order Variation as a Source of Information

Before moving on to text patterns and mixed content, the interleave pattern deserves more

attention. As already noted, calling these content models unordered is misleading. Although no order
is required by the schema, the nodes will be ordered in instance documents. The order in which they
appear in the document can be significant to the applications.

Going back to the example of first and last names: any application managing names will need to
know which is a first name and which is a last name. With a little additional effort, they can get the
information about whether the first name comes before or after the last name in a XML document.
The friendliest of these applications might also want to know whether you prefer to be called by your
first or last name first. Do you need to add an additional information item to the schema to carry this
information when you could just rely on the order of these elements in the instance document?

In other words, defining content using interleave patterns can be seen as degrading the usefulness

of a schema because it looks like the information about the order in which the elements were found
will be stripped from the document. That isn't a real problem; XML processors will still present all the
order information to your application. In fact, a content model defined with interleave patterns
allows more combinations than a content model that uses group patterns. Thus, with its additional
combinations, the interleave patterns can let document creators provide additional information that

would otherwise disappear into a fixed structure.

The one downside to using interleave patterns is that the freedom with which they can be used is

unfortunately specific to RELAX NG. If you need to insure that it will also be possible to model your
vocabulary with a more rigid schema language such as W3C XML Schema, you will often have to
restrict the usage of interleave patterns in your RELAX NG schemas.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.6 Text and Empty Patterns, Whitespace, and Mixed
Content

So far, we have used text patterns only within group patterns. It's important to remember,

however, that this pattern doesn't mean simply a text node but rather zero or more text nodes. This
statement deserves some exploration.

The reason why text patterns accept zero text nodes is linked to the policy adopted by RELAX NG

regarding whitespace. Whitespace processing rules are one of the fuzzier areas in XML. RELAX NG
has attempted to find the "least surprising" policy that supports the most common usages. You'll see
more whitespace processing when we study datatypes, but for now, let's say that RELAX NG doesn't
see any distinction between empty strings; no string at all; strings containing only whitespace before
or after an element node; and to a lesser extent, a single text child element containing only
whitespace.

For instance, in the following snippet:

<foo at1="" at2=" ">
 <bar/>
 <bar></bar>
 <bar>
 <baz/>
 <baz/>
 </bar>
 <bar>
 </bar>
</foo>

RELAX NG treats as insignificant the values of at1 and at2, the content of the first and second bar
elements, the text between the third bar start tag and the first baz element, the text between the
two baz elements, and even the text within the last bar element. RELAX NG's rules state that the

content should match either text or empty patterns. Here are two visible consequences for the
patterns we've seen so far:

Because text patterns match any text node, they must match strings that are either empty or

that contain only whitespace. Since there is no difference between empty strings and no string,
text patterns match zero strings; i.e., they are always optional.

Because empty patterns match zero strings and because there is no difference between no
string and empty strings or strings containing only whitespace, empty patterns also match

strings either empty or containing only whitespace.

In other words, the snippet shown here matches both content models in which all the occurrences
mentioned are described as text or empty patterns. If you add the rule-already used a lot but not

yet explained-that says you don't need to explicitly express empty patterns between elements, the
two schemas will both validate this instance document:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<element xmlns="http://relaxng.org/ns/structure/1.0" name="foo">
 <attribute name="at1"><text/></attribute>
 <attribute name="at2"><text/></attribute>
 <oneOrMore>
 <element name="bar">
 <choice>
 <text/>
 <oneOrMore>
 <element name="baz"><text/></element>
 </oneOrMore>
 </choice>
 </element>
 </oneOrMore>
</element>

or:

<element xmlns="http://relaxng.org/ns/structure/1.0" name="foo">
 <attribute name="at1"><empty/></attribute>
 <attribute name="at2"><empty/></attribute>
 <oneOrMore>
 <element name="bar">
 <choice>
 <empty/>
 <oneOrMore>
 <element name="baz"><empty/></element>
 </oneOrMore>
 </choice>
 </element>
 </oneOrMore>
</element>

After having seen why text patterns have to be optional, you need to see why it's also useful for
them to match multiple instances. When a text pattern is used with a group or choice pattern, it

doesn't make any difference because text nodes are merged when they are contiguous or separated
by infoset items not checked by RELAX NG, such as comments or processing instructions (PIs).
Within a group or a choice, there is no difference between a pattern that matches one or one or
more text nodes. The only place it can make a difference is thus within interleave compositors, and

that's the reason why this specificity has been introduced. Document-oriented applications, including
XHTML, TEI, and DocBook, provide numerous examples of elements that accept text and embedded
elements in any order (called mixed content), and in this case, it makes no sense to limit the number
of text nodes.

To introduce a mixed content model, let's extend the title element to include zero or more links
using some a elements with href attributes:

<title xml:lang="en">Being a
Dog
 Is a Full-Time
 Job
</title>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The content of the new title element can be described as an interleave pattern that allows zero or
more a elements and zero or more text nodes. The text pattern matches zero or more text nodes,

which will allow us to avoid specifying its cardinality. You can just write:

 <element name="title">
 <interleave>
 <attribute name="xml:lang"/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>
 <text/>
 </interleave>
 </element>

or, using the compact syntax:

 element title {
 attribute xml:lang {text}&
 element a {attribute href {text}, text}*&
 text
 }

Because this definition is quite verbose for a common task, RELAX NG has introduced a specific mixed
compositor, which has the same meaning as "interleave including a text pattern." These schemas

are strictly equivalent to:

 <element name="title">
 <mixed>
 <attribute name="xml:lang"/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>
 </mixed>
 </element>

The mixed compositor is marked using a mixed pattern in the compact syntax and can be written as:

 element title {
 mixed {
 attribute xml:lang {text}&
 element a {attribute href {text}, text} *
 }
 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.7 Why Is It Called interleave?

If interleave were only about defining unordered groups, why would it be called interleave and
not unorderedGroup or something similar? The interleave pattern has hidden sophistication. It isn't

only a definition for unordered groups, it's also a definition for unordered groups that let their child
nodes intermix within subgroups. Mixing is allowed even when these groups are ordered groups. I
promise this concept is simpler than it looks in this semiformal definition. An example will make it
easier to grasp.

That ordered groups can be immersed in an unordered group might be surprising. Let's try a real-
world metaphor to illustrate it. Imagine that the elements of a XML document are like a bunch of
tourists visiting a museum; you can then define the unordered sets as all the tourists visiting. The
ordered groups of tourists, who are within the unordered set, are following guides. There are many
ways to immerse ordered groups within the unordered set of museum visitors and to mix ordered
groups together. The interleave pattern describes one specific way to effect this immersion: when
the museum is an interleave pattern, the ordered groups preserve only the relative order of their

members. This not only allows individual tourists to insert themselves within a group, but also lets
two groups interleave their members.

To return to XML and RELAX NG, let's examine the following schema:

<element xmlns="http://relaxng.org/ns/structure/1.0" name="museum">
 <interleave>
 <element name="individual"><empty/></element>
 <group>
 <element name="group-member1"><empty/></element>
 <element name="group-member2"><empty/></element>
 </group>
 </interleave>
</element>

or, using the compact syntax:

 element museum {
 element individual {empty} &
 (
 element group-member1 {empty},
 element group-member2 {empty}
)
 }

An individual represents an individual visiting the museum, while elements group-member1 and
group-member2 represent visitors in a group. Because interleave patterns are not ordered groups,

the following instance documents are valid:

<museum>
 <individual/>
 <group-member1/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <group-member2/>
</museum>

and:

<museum>
 <group-member1/>
 <group-member2/>
 <individual/>
</museum>

These documents are instances in which the element individual, which matches the first pattern in
the interleave pattern (i.e., the element pattern), is either before or after the elements group-
member1 and group-member2, which match the group pattern-the second subpattern of the
interleave pattern. Because the interleave pattern allows that the nodes matching its subpattern

to be mixed, the schema also validates this third combination:

<museum>
 <group-member1/>
 <individual/>
 <group-member2/>
</museum>

On the other hand, because of how the elements are ordered in the group declaration of the schema,

all the combinations in which the relative order between group members aren't respected are invalid.
Here's an example of such an invalid combination:

<museum>
 <group-member2/>
 <individual/>
 <group-member1/>
</museum>

The interleave pattern can also be used to mix two groups of patterns. In this case, the relative

order of the element of each group is maintained, but the elements of different groups may appear in
any order and the groups may be interleaved. For an example, let's look at the following schema:

<element xmlns="http://relaxng.org/ns/structure/1.0" name="museum">
 <interleave>
 <group>
 <element name="group1.member1"><empty/></element>
 <element name="group1.member2"><empty/></element>
 </group>
 <group>
 <element name="group2.member1"><empty/></element>
 <element name="group2.member2"><empty/></element>
 </group>
 </interleave>
</element>

or, using the compact syntax:

 element museum{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (
 element group1.member1 {empty},
 element group1.member2 {empty}
) & (
 element group2.member1 {empty},
 element group2.member2 {empty}
)
 }

This schema validates documents such as:

<museum>
 <group1.member1/>
 <group1.member2/>
 <group2.member1/>
 <group2.member2/>
</museum>

and:

<museum>
 <group2.member1/>
 <group2.member2/>
 <group1.member1/>
 <group1.member2/>
</museum>

where the groups are kept separated, but also:

<museum>
 <group1.member1/>
 <group2.member1/>
 <group2.member2/>
 <group1.member2/>
</museum>

or:

<museum>
 <group1.member1/>
 <group2.member1/>
 <group1.member2/>
 <group2.member2/>
</museum>

in which the groups are interleaved.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.8 Mixed Content Models with Order

You have seen that a pattern interleaved with a group is allowed to appear anywhere between the
patterns of the group. This feature may be used with a text pattern to define ordered mixed-content
models, in which the text nodes may appear anywhere but the order of the elements is fixed. These
content models are quite unusual in XML. A use case might be a data-oriented vocabulary such as
our library, in which optional text can be inserted to provide more user-friendly documentation:

<character id="Lucy">
 <name>Lucy</name> made her first apparition in a Peanuts strip on
 <born>1952-03-03</born>, and the least we can say about her is that she is
 <qualification>bossy, crabby and selfish</qualification>.
</character>

If you want to fix the order of the child elements, just embed a group pattern inside a mixed pattern:

<!--This schema is INVALID-->
<element name="character">
 <mixed>
 <attribute name="id"/>
 <group>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </group>
 </mixed>
 </element>

Per the definition of the mixed pattern, this is equivalent to:

#This schema is invalid
<element name="character">
 <interleave>
 <attribute name="id"/>
 <text/>
 <group>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 <element name="qualification">
 <text/>
 </element>
 </group>
 </interleave>
</element>

The text pattern matches text nodes before, after, or between the elements of the group, but as

you've seen with the previous museum example, the order of the elements in the group will still be
enforced. The compact syntax uses the mixed pattern with commas between subpatterns to express

this:

element character {
 mixed {
 attribute id {text},
 element name {text},
 element born {text},
 element qualification {text}
 }
 }

You have already seen that the compact syntax mixed pattern can be employed using ampersands
and commas to define unordered and ordered mixed patterns. An "or" (|) can also interleave text
nodes in choice patterns:

 element foo{
 mixed {
 (
 element in1.1 {empty},
 element in1.2 {empty}
) | (
 element in2.1 {empty}&
 element in2.2 {empty}
)
 }
 }

This mixed pattern is interleaving text nodes into either a group (denoted by a comma) of in1.1 and
in1.2 elements or (as shown by the pipe character) an interleave pattern (denoted by an
ampersand) of elements in2.1 and in2.2. In the first case, because of the semantics of group

patterns, the order between elements is fixed, while in the second case, the order doesn't matter.
Mixed-choice contents don't constitute new content models. They are equivalent to choices of mixed-
content models, and so, you can rewrite this schema as:

 element foo{
 (
 mixed{
 element in1.1 {empty},
 element in1.2 {empty}
 }
) | (
 mixed{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element in2.1 {empty}&
 element in2.2 {empty}
 }
)
 }
 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.9 A Restriction Related to interleave

You'll see the restrictions of RELAX NG in Chapter 15, but I need to mention the principal restriction
related to the interleave compositor, as it might affect you at some point if you combine mixed-

content models.

Let's extend our title element to allow not only links (a elements) but also bold characters marked
by a b element:

<title xml:lang="en">Being a
 Dog
 Is a Full-Time
 Job
</title>

Because text can appear before the a elements, between a and b, and after the b element, you might

be tempted to write the following schemas:

<element name="title">
 <interleave>
 <attribute name="xml:lang"/>
 <text/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>
 <text/>
 <zeroOrMore>
 <element name="b">
 <text/>
 </element>
 </zeroOrMore>
 <text/>
 </interleave>
</element>

or:

element title {
 attribute xml:lang {text}
 & text
 & element a {attribute href {text}, text} *
 & text
 & element b {text} *
 & text
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Running the Jing validator against this schema raises the following error:

Error at URL "file:/home/vdv/xmlschemata-cvs/books/relaxng/examples/RngMorePatterns/
interleave-restriction2.rnc",
line number 1, column number 2: both operands of "interleave" contain "text"

This error results because there can be only one text pattern in each interleave pattern. You have
seen that text patterns match zero or more text nodes, and in this case, the remedy is simple

enough: the schema must be rewritten as:

<element name="title">
 <interleave>
 <attribute name="xml:lang"/>
 <text/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="b">
 <text/>
 </element>
 </zeroOrMore>
 </interleave>
</element>

or:

element title {
 attribute xml:lang {text}
 & text
 & element a {attribute href {text}, text} *
 & element b {text} *
 }

This new schema is perfectly valid and does what we tried to do with our invalid schema.

In this example, diagnosing the problem was very simple, but in practice, the situation is often more
complex. There can be conflicting text patterns belonging to different subpatterns of interleave or
mixed patterns. When using pattern libraries (as shown in Chapter 10), the conflicting text patterns

often belong to different RELAX NG grammars, making it still more difficult to pinpoint the problem.
To make it even worse, the error messages from the RELAX NG processors are often quite cryptic, in
this case telling you there are conflicting text patterns in interleave patterns without saying where

they come from. Unfortunately, for now at least, you'll have to figure this out by yourself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The reason behind the restriction of only one text pattern in each interleave

pattern is to optimize RELAX NG implementations using the derivative method
described by James Clark. When processing mixed-content models, instead of
processing each text node, these implementations can simply memorize the
fact that this is mixed content and ignore each text node. To do so, the
implementation needs to be able to quickly find if a content model mixed or not
mixed. That's where the restriction makes a difference in terms of
programming complexity and execution speed.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.10 A Missing Pattern: Unordered Group

We have seen that the interleave pattern associates two different features and is both an

unordered group and something that alters the way subgroups can be combined. These two features
aren't totally independent because mixing child nodes is meaningful only when the order of the
subgroups isn't maintained, but they aren't totally dependent either. In theory, it's possible to define
a pattern with a meaning of "unordered group" that doesn't interleave child nodes and keeps groups
unaltered.

This pattern doesn't exist in RELAX NG for two reasons. First, it helps keep the language as simple as
possible. Also, although it is built on top of an abstract mathematical model, RELAX NG is also built
on top of the experience of its authors who have wanted to focus on general usages and best
practices amongst the XML community. The lack of a "unordered group with no interleaving" hasn't
been reported as a real-world limitation so far.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Constraining Text Values
RELAX NG focuses primarily on the validation of the structures of XML documents, rather than on
validation of the values placed within those structures. Despite RELAX NG's structure-centric
approach, it includes simple and efficient support for values, enumerations, lists and whitespace
processing, the subject of this chapter. (Developers who need more than this simple support may use
external libraries, the subject of the next two chapters.)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 Fixed Values

Sometimes documents need to include specific values for particular content. The value pattern can

check fixed values, such as version identifiers of XML vocabularies. The syntax and semantics of the
value pattern are straightforward: the pattern is matched only if the value found in the instance
document matches the value specified in the value pattern. For example, if you want a highly

specialized vocabulary to describe the book with the ISBN number 0836217462 and only this specific
book, you can replace the text pattern with a value pattern and write:

<element name="isbn">
 <value>0836217462</value>
</element>

or, using the compact syntax:

element isbn {"0836217462"}

and the schema will validate a book with a ISBN number equal to 0836217462 and refuse any other
ISBN number.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Co-Occurrence Constraints

Another, and considerably more frequent, use of value patterns is to define co-occurrence

constraints, in which the value of a node (often an attribute) changes the content model of another
node (often an element). In our library, the author and character elements are very similar. You
can group them under the person element and use a type attribute to differentiate between the kind

of "person" being described. To make the example clearer, to make it more visually obvious that
something is different between the two, I'm going add some additional elements describing
Peppermint Patty, creating an instance document that contains:

<person id="CMS" type="author">
 <name>Charles M Schulz</name>
 <born>1922-11-26</born>
 <dead>2000-02-12</dead>
</person>

and:

<person id="PP" type="character">
 <name>Peppermint Patty</name>
 <born>1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>
 <shoecolor>green</shoecolor>
 <hairstyle>thatched roof</hairstyle>
 <favoriteathlete>that black and white kid with the big nose</favoriteathlete>
 <likelycareer>olympic coach or unemployed gym teacher</likelycareer>
</person>

You can see that both examples use the person element, yet because of the type attribute's

contents, a different set of child elements is listed. Support for this approach is a key area in which
RELAX NG allows more functionality than other schema languages. In these kind of schemas,
validation tools need to recognize that the content models might vary depending on the value of the
type attribute. RELAX NG supports this feature using value patterns. If you want to require that all

the authors precede the characters, just update the definitions of the elements describing authors
and characters and keep them in sequence in the definition of the book element:

<element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <element name="person">
 <attribute name="type">
 <value>author</value>
 </attribute>
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="dead">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="person">
 <attribute name="type">
 <value>character</value>
 </attribute>
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 <optional>
 <element name="shoecolor">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="hairstyle">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="favoriteathlete">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="likelycareer">
 <text/>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </optional>
 <optional>
 <element name="shoecolor">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 </element>

or, using the compact syntax:

element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {
 attribute xml:lang { text },
 text
 },
 element person {
 attribute type { "author" },
 attribute id { text },
 element name { text },
 element born { text },
 element dead { text }?
 }*,
 element person {
 attribute type { "character" },
 attribute id { text },
 element name { text },
 element born { text },
 element qualification { text },
 element shoecolor { text }?,
 element hairstyle { text }?,
 element favoriteathlete { text }?,
 element likelycareer { text }?,
 element shoecolor { text }?
 }*
 }

The use of the value attributes in the declarations for the two person elements makes the first

declaration apply only to authors, and the second apply only to characters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While co-occurrence constraints provide powerful capabilities, they
unfortunately don't survive conversion to DTDs or W3C XML Schema. RELAX
NG has fewer restrictions on the XML structures it can describe than either of
those, as you'll see this in Chapter 16. RELAX NG's co-occurrence constraints
can't be expressed with W3C XML Schema, because this type of schema isn't
"deterministic." Some co-occurrence constraints can be expressed in W3C XML
Schema using either xsi:type when possible or xs:key as a tricky hack. These

methods don't work for the general case and aren't easy to implement in a
schema translator. For more information about this hack, see my book XML
Schema (O'Reilly).

The flexibility RELAX NG provides for defining co-occurrence constraints makes it a good tool to check
how styles are used in XHTML, OpenOffice, or Microsoft Office documents. For example, it's easy to
use such constraints on the XHTML class attributes so that a class "bar" is used only when
embedded in a class "foo". This feature is useful for checking style best practices in text documents

However, if you choose only one person element, it's to build on commonalities between these

elements. I might prefer to allow mixing of the definitions of characters and authors. I can express
this part of the schema as zero or more person elements having two possible definitions, such as:

<element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>
 <element name="person">
 <choice>
 <group>
 <attribute name="type">
 <value>author</value>
 </attribute>
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="dead">
 <text/>
 </element>
 </optional>
 </group>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <group>
 <attribute name="type">
 <value>character</value>
 </attribute>
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 <optional>
 <element name="shoecolor">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="hairstyle">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="favoriteathlete">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="likelycareer">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="shoecolor">
 <text/>
 </element>
 </optional>
 </group>
 </choice>
 </element>
 </zeroOrMore>
</element>

or, in the compact syntax:

element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attribute xml:lang { text },
 text
 },
 element person {
 (attribute type { "author" },
 attribute id { text },
 element name { text },
 element born { text },
 element dead { text }?)
 | (attribute type { "character" },
 attribute id { text },
 element name { text },
 element born { text },
 element qualification { text },
 element shoecolor { text }?,
 element hairstyle { text }?,
 element favoriteathlete { text }?,
 element likelycareer { text }?,
 element shoecolor { text }?)
 }*
}

Now that you have seen the definitions of the two contents for the person element next to each

other, you can see that an attribute and the two first subelements are common and can be
refactored to take advantage of this similarity. The definition of the person element can thus be

combined and simplified to:

<element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>
 <element name="person">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <choice>
 <group>
 <attribute name="type">
 <value>author</value>
 </attribute>
 <optional>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <element name="dead">
 <text/>
 </element>
 </optional>
 </group>
 <group>
 <attribute name="type">
 <value>character</value>
 </attribute>
 <element name="qualification">
 <text/>
 </element>
 <optional>
 <element name="shoecolor">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="hairstyle">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="favoriteathlete">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="likelycareer">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="shoecolor">
 <text/>
 </element>
 </optional>
 </group>
 </choice>
 </element>
 </zeroOrMore>
</element>

or:

element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {
 attribute xml:lang { text },
 text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 },
 element person {
 attribute id { text },
 element name { text },
 element born { text },
 ((attribute type { "author" },
 element dead { text }?)
 | (attribute type { "character" },
 element qualification { text },
 element shoecolor { text }?,
 element hairstyle { text }?,
 element favoriteathlete { text }?,
 element likelycareer { text }?,
 element shoecolor { text }?))
 }*
}

Note that in the compact syntax, I had to use double parentheses to express my choice, because the
operators used at any level must be homogeneous. You can't mix commas, pipes, and ampersands
within the same level; this mixing is ambiguous. Also, because I grouped the elements with the
attribute used to create the distinction between content models, I can refactor the id attribute and
the name and born elements and keep the type attribute and its two possible values in the choice.

This is possible not only because the example has been carefully prepared, but also because of the
semantic implicit to interleave given to the attribute patterns, which lets you locate the attribute
either inside or outside of the choice. Finally, note that this refactoring is just a syntactical variation.

Even when a situation arises in which such simplification is impossible, the co-occurrence constraint
can still be expressed, even though it will be more verbose.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Enumerations

An enumeration is a choice between several values. Enumerations are thus written in RELAX NG by
combining the choice pattern with the value pattern. In our library, a good candidate for an
enumeration is the available attribute, which can be defined as:

<attribute name="available">
 <choice>
 <value>available</value>
 <value>checked out</value>
 <value>on hold</value>
 </choice>
</attribute>

or:

attribute available {"available"|"checked out"|"on hold"}

This definition validates values such as "available", "checked out", and "on hold". It also validates
values such as " available ", "checked out ", or even " on hold " with multiple spaces, tabs or
carriage returns between "on" and "hold" or "checked" and "out". You will see the reason for this

behavior-and how to change it if needed-in the next section.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.4 Whitespace and RELAX NG Native Datatypes

RELAX NG includes a native type system, but this type library has been kept minimal by design
because more complete type libraries are available. It consists of just two datatypes (token and
string) that differ only in the whitespace processing applied before validation. The whole RELAX NG

datatype system can be seen as a mechanism for adding validating transformations to text nodes.
These transformations change text nodes into canonical formats (formats in which all the different
formats for a same value are converted into a single normalized or "canonical" format). The two
native datatypes don't detect format errors (their formats are broad enough to allow any value) but
still transform text nodes in their canonical forms, which can make a difference for enumerations.
Other datatype libraries, covered in Chapter 8, can detect format errors.

Enumerations are the first place you can see datatypes at work. Applying datatypes to enumeration
values is done by adding a type attribute in value patterns. Up to now, we haven't specified any
datatype when we've written value elements. By default, they have the default type token from the

built-in library. Text values of this datatype receive full whitespace normalization similar to that
performed by the XPath normalize-space() function: all sequences of one or more whitespace
characters-the characters #x20 (space), #x9 (tab), #xA (linefeed), and #xD (carriage return)-are

replaced by a single space, and the leading space and trailing space are then trimmed.

Reconsidering previous examples, writing:

<attribute name="available">
 <choice>
 <value>available</value>
 <value>checked out</value>
 <value>on hold</value>
 </choice>
</attribute>

or:

attribute
 available {"available"|"checked out"|"on hold"}

has used the default type value (token) and is equivalent to the following:

<attribute name="available">
 <choice>
 <value type="token">available</value>
 <value type="token">checked out</value>
 <value type="token">on hold</value>
 </choice>
</attribute>

or:

attribute available {token "available"|token "checked out"|token

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"on hold"}

When the token datatype is used, whitespace normalization is applied to the value defined in the

schema and to the value found in the instance document. The comparison is done using the result of
the normalization, which explains why "on hold" was matching " on hold " with spaces or tabs

added before, between, and after the words.

The name of the token datatype, borrowed from W3C XML Schema, is highly

confusing. In IT jargon, a token is a piece of a string between two delimiters,
what is called a "word" in plain English. The token datatype doesn't denote a

word. Otherwise, "on" and "hold" would be valid tokens; "on hold" wouldn't.
The token datatype is more a "token-ized" datatype, in the sense that it's a

string that can be easily cut into tokens when nonsignificant whitespace is
removed.

This confusion is dangerous because it can cause you to use the string
datatype when what you need is token. (You'll see later in this chapter that
using the string datatype should be reserved for select cases).

To suppress this normalization, you can specify the second built-in datatype, string, which doesn't

perform any transformation on the values before comparing them to the specified value:

 <attribute name="available">
 <choice>
 <value type="string">available</value>
 <value type="string">checked out</value>
 <value type="string">on hold</value>
 </choice>
 </attribute>

or:

attribute available {string "available"|string "checked out"|string
"on hold"}

Using the new definition, the value of our attribute must exactly match the value specified in the
schema: available, checked out, and on hold. No extra whitespace is permitted.

The native token and string datatypes have the same basic definition as the
W3C XML Schema token and string datatypes. The difference is that
additional restrictions, which can be applied using param attributes to the W3C

XML Schema datatypes, aren't available with RELAX NG's native datatypes.
More details are provided in Chapter 8.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.5 Using String Datatypes in Attribute Values

The lack of whitespace normalization with RELAX NG's string datatype may lead to some surprises.

When attributes are defined, the XML parsers must remove the linefeeds and carriage returns they
find there, which can lead to surprises in processing.

Attribute whitespace normalization can be confusing in several ways. Our previous schema specified
that the attribute that must match on hold always matches an attribute in which the space between
on and hold is replaced by a linefeed as in:

 <book id="b0836217462" available="on
 hold">

Attribute whitespace normalization is normal behavior in XML 1.0. All XML parsers must normalize an
attribute's value before reporting it to other applications, producing on hold, in this case. No schema

language can change this. These issues can also make it difficult to create schemas that include
strings that incorporate whitespace. This RELAX NG XML syntax schema requires new features in
order to be translated to the compact syntax:

 <attribute name="available">
 <choice>
 <value type="string">available</value>
 <value type="string">checked out</value>
 <value type="string">on
 hold</value>
 </choice>
 </attribute>

The compact syntax doesn't permit new lines within quotes. To translate this into the compact
syntax, we need to introduce a couple of new features to permit the inclusion of linefeeds in values.

The first way to include them is borrowed from Python. If instead of using single (') or double (")
quotes, you use three single (''') or three double (""") quotes, you can include nearly everything in
your values, including new lines:

attribute available {string "available"|string "checked out"|string
"""on
hold"""}

or:

attribute available {string "available"|string "checked out"|string
'''on
hold'''''}

The second way to allow new lines is through escaping the newline character using the syntax \x{A}
(where A is the Unicode value of newline in hexadecimal):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute available {string "available"|string "on hold"|string
"on\x{A}hold"}

This pattern specifies that the attribute can contain a value with a linefeed, something that can
happen in XML only if the newline in the attribute is explicitly specified through its numeric value,
such as:

 <book id="b0836217462" available="who
knows?">

These are unlikely cases, but now you know what to do if you encounter them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.6 When to Use String Datatypes

It's amazing to think that despite all the complex applications that have been made possible by SGML
and XML, whitespace processing-which seems as if it should be simple-has remained a nightmare
for users and programmers. The string datatype will expose you to all the issues related to

whitespace handling. A huge number of users and applications will modify whitespace in your
documents to meet their expectations, which can make your documents invalid.

The token datatype keeps this nightmare from creating problems, and that is why RELAX NG uses
token as its default datatype. Keep in mind that you shouldn't use the string datatype unless you

have a good reason to do so. If whitespace is genuinely significant to your information, use the
string type; otherwise, use the token type.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.7 Using Different Types in Each Value

In our previous schema, we were required to define the type for each value pattern:

attribute available {string "available"|string "checked out"|string
"on hold"}

This example doesn't show all that RELAX NG is capable of. There is no rule that keeps you from
using attributes that have different datatypes in an enumeration. Thus, although this example shows
an enumeration with datatypes that are all the same, you aren't restricted to using attributes with all
the same datatype in an enumeration.

This will become more interesting after Chapter 8 (when there will be more simple datatypes to work
with), but you can write:

<attribute name="available">
 <choice>
 <value type="string">available</value>
 <value type="token">checked out</value>
 <value type="string">on hold</value>
 </choice>
</attribute>

or, in the compact syntax:

attribute available {
 string "available"|
 token "checked out"|
 string "on hold"}

This schema normalizes whitespace to check the value checked out, defined as token, but doesn't do
any normalization when examining the other two values (available and on hold) defined as
string.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.8 Exclusions

What if, instead of giving a list of allowed values, you want to give a list of values that are forbidden?
The except pattern serves precisely this purpose.

To exclude the value 0836217462 from the possible ISBN numbers, write:

<element name="isbn">
 <data type="token">
 <except>
 <value>0836217462</value>
 </except>
 </data>
</element>

or, using the compact syntax:

element isbn {token - "0836217462"}

Although this statement looks simple, note that the type can be defined at two different levels here:
it must be defined in the data pattern and may also be defined in the value pattern; these two
definitions have a different meaning. The type attached to the data pattern defines a validation
performed on the text node, while the type attached to the value pattern defines how the value

should be interpreted and which whitespace processing should be performed.

In this example, both are token types, and values such as " 0836217462 " are excluded as well as
"0836217462". The token type, as noted previously, normalizes whitespace before making

comparisons. The two datatypes can also be mixed, as in:

<attribute name="available">
 <data type="token">
 <except>
 <choice>
 <value type="string">available</value>
 <value type="string">checked out</value>
 <value type="string">on hold</value>
 </choice>
 </except>
 </data>
</attribute>

or, using the compact syntax:

attribute available {token -(string "available"|string "checked out"|string
"on hold")}

In this case, the first control is done on the datatype token, and the comparison uses the datatype
string. To push this a little further, let's examine what happens when you use it with datatypes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(which are shown in Chapter 8):

<data type="integer">
 <except>
 <choice>
 <value type="integer">1</value>
 </choice>
 </except>
</data>

or, using the compact syntax:

integer -(integer "1")

In this case, both controls are performed on integers. This statement accepts any integer except
values representing "1" as an integer. ("1" and also "01" or "001" are forbidden.)

Now, consider:

<data type="integer">
 <except>
 <choice>
 <value>1</value>
 </choice>
 </except>
</data>

or, using the compact syntax

integer -("1")

The value has a default type of token so that "01" is normalized, then compared to "1" as a token.
The two aren't equal (as tokens) so the except isn't triggered; hence "01" is passed up to the next

level. Next, the data has a type of integer so that "01" (normalized by the previous step) is tested to
see if it's an integer. It is, so it's accepted as valid.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.9 Lists

RELAX NG supports the description of text nodes as lists of whitespace-separated values using the
list pattern. This is the only pattern that transforms the structure of the document at validation
time by splitting text values into lists of values. The benefit of doing so is that within a list pattern,

all the patterns that constrain data values can be combined with the compositors, which lets you
constrain the combination of these values.

If you use a list pattern without defining cardinality, you may not get what you expect. An attribute

defined as:

<attribute name="see-also">
 <list>
 <data type="token"/>
 </list>
</attribute>

or, using the compact syntax:

attribute see-also {list {token}}

doesn't match a list of tokens (such as see-also="0345442695 0449220230 0449214044 0061075647
0061075612") but rather only a list of exactly one token (such as see-also="0345442695"). This is
because the list pattern splits the text value into a list of values. This list is then evaluated against
the patterns that are included within the list pattern. If you want a list of any number of tokens,
use a zeroOrMore pattern to express that:

<attribute name="see-also">
 <list>
 <zeroOrMore>
 <data type="token"/>
 </zeroOrMore>
 </list>
</attribute>

Here's the compact syntax:

attribute see-also {list {token*}}

This definition treats the see-also attribute as a list of tokens and doesn't add any other constraints

(this result is of course different when there are more datatypes). You can use other compositors in
the list pattern exactly as in other contexts. To express that, you want a list with one to four

tokens, you would write:

<attribute name="see-also">
 <list>
 <data type="token"/>
 <optional>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <data type="token"/>
 </optional>
 <optional>
 <data type="token"/>
 </optional>
 <optional>
 <data type="token"/>
 </optional>
 </list>
</attribute>

or, using the compact syntax:

attribute see-also {list {token, token?, token?, token?}}

That is certainly verbose, but you've already seen there are no other options for defining the number
of occurrences with RELAX NG.

You can also constrain the values of these tokens through an enumeration:

<attribute name="see-also">
 <list>
 <oneOrMore>
 <choice>
 <value>0836217462</value>
 <value>0345442695</value>
 <value>0449220230</value>
 <value>0449214044</value>
 <value>0061075647</value>
 </choice>
 </oneOrMore>
 </list>
</attribute>

or:

attribute see-also {list
{("0836217462"|"0345442695"|"0449220230"|"0449214044"|"0061075647")+}}

A final point to note is that the list mechanism lets you define different constraints for different

members of a list. To illustrate this feature, let's say you wish to give the physical dimension of a
book by giving each of its three dimensions a unit, such as:

<book id="b0836217462" available="true" dimensions="0.38 8.99 8.50 inches">

In this case, you can define the dimensions attribute as:

 <attribute name="dimensions">
 <list>
 <data type="token"/>
 <data type="token"/>
 <data type="token"/>
 <choice>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <value>inches</value>
 <value>cm</value>
 <value>mm</value>
 </choice>
 </list>
 </attribute>

or:

attribute dimensions {list {token, token, token, ("inches"|"cm"|"mm")}}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.10 Data Versus Text

In Chapter 6, I provided a detailed description of the text pattern and its behavior within
interleave patterns. There's another pattern that also describes and attaches datatypes to text

nodes. Even though this pattern will become more useful with the introduction of the datatype
libraries in Chapter 8, it's worth examining its core features right now to be sure you've touched on
most of the definitions related to nodes.

The data pattern accepts a type attribute (as for the value pattern) and checks that the value is
valid per this type. Since our two built-in types accept any value, the data pattern with built-in types
is almost equivalent to a text pattern. However, the data pattern doesn't mean, like the text
pattern, "zero or more text nodes" but instead "one text node." The data pattern has been designed

to represent data. It's forbidden in mixed-content models because the authors of the RELAX NG
specification considered mixing data and elements poor practice.

This restriction applies to all patterns that match a single text node (data, value, and list) that can

never be associated with patterns matching sibling elements (elements that can add the same parent
element in the same instance document). In practice, this means you can't use a data pattern to

describe content models such as:

 <price><currency>USD</currency>20</price>

or:

 <price>20<currency>Euro</currency></price>

These content models were considered poor practice by the authors of the RELAX NG specification.
They advise reformulating them as:

 <price>
 <amount>20</amount>
 <currency>USD</currency>
 </price>

or:

 <price currency="USD">20</price>

This is the second time RELAX NG has given priority to good practices over the ability to describe all
the combinations possible according to the XML recommendation. (The first one was the no
"unordered noninterleaved" pattern in Chapter 6.) This case actually increases the complexity of the
implementations of RELAX NG processors, which must check that data patterns aren't included within

mixed content models. The support of data in mixed-content models would have been possible using
the general algorithms without any additional complexity. The only benefit for RELAX NG processors
is that they can skip whitespace occurring between two elements, but this benefit seems really
minimal compared to the possibilities that are lost by this restriction.

This restriction appears to come from a strict distinction between data- and document-oriented

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications of XML. Mixed content has been considered an aspect of document-oriented applications,
which shouldn't need datatypes, while datatypes are limited to data-oriented applications, which
shouldn't need mixed content.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Datatype Libraries
In Chapter 7, I presented the basics of the data pattern using the highly restricted, built-in datatype
library. The extreme simplicity of the built-in type library-limited to the two datatypes string and
token-shouldn't be seen as a limitation of RELAX NG. Instead, it is a fundamental design decision:

validating the structure and validating the content of XML documents are different problems that are
better solved by different tools working in close cooperation.

The RELAX NG strategy is thus to rely on external pluggable libraries for the validation of the content
of the text nodes and attributes. There is no limit to the potential variety of external type libraries
that can be implemented and used by a RELAX NG schema. The designers of RELAX NG think that
there is probably room for both generic type libraries and application-specific type libraries that meet
the needs of a specific domain such as mathematics, physics, or business.

It's also possible to implement type libraries specific to particular programming languages. For
example, my Python implementation of RELAX NG supports a native Python type library, which maps
the built-in types and allows developers to define restrictions using the Python syntax.

That said, it is expected that most users will choose generic XML type libraries ranging from a library
emulating DTD datatypes to the W3C XML Schema datatype library. (The ISO DSDL activity includes
work on a datatype library, but it isn't published yet.) In this chapter, I'll introduce the most
commonly used and widely supported libraries-the W3C XML Schema and DTD compatibility type
libraries.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 W3C XML Schema Type Library

W3C XML Schema simple types required several chapters in my XML Schema (O'Reilly) book to
explain completely, but I'll try to give a brief overview here so that you can use the basic features
within RELAX NG schemas. You will find additional detail about the simple types' definitions in
Chapter 9 and Chapter 19, and you are of course welcome to read Chapter 4, Chapter 5, Chapter 6,
and Chapter 16 of my XML Schema book to get a deeper understanding of their behavior.

The W3C XML Schema datatypes that can be used in a RELAX NG schema are the predefined W3C
XML Schema types-those defined in the W3C XML Schema Recommendation itself as opposed to
user-defined types, which are derived from the predefined types using the W3C XML Schema
language and can't be used from a RELAX NG schema. You'll see that restrictions (called facets in the
terminology of W3C XML Schema) can be applied to these datatypes using the RELAX NG param

pattern, so some customization is possible.

RELAX NG's support for named patterns makes it effectively possible to derive
types from W3C XML Schema simple types despite RELAX NG's lack of support
for the W3C XML Schema type derivation system. This might be a bit confusing
right now, but it will become clearer with examples; RELAX NG borrows the
most basic part of W3C XML Schema datatypes without borrowing its syntax or
its derivation methods.

8.1.1 The Datatypes

The W3C XML Schema predefined datatypes are divided into primitive and derived types. Primitive
types are basic types that don't share a common foundation of meaning and behave differently from
each other. Derived types are built on the foundations of primitive types, sharing the semantics of its
primitive type. Derived types are provided for the convenience of users, since it is expected that they
will be commonly used and shouldn't need constant reinvention.

The other idea that needs to be introduced before we start is the concept of lexical and value spaces:
lexical space is the string as it appears in the XML document (after whitespace normalization), while
value space is the matching value as interpreted by the datatype library. The distinction is important
because all the facets save one (the pattern facet, which is covered in depth in Chapter 9) act on

the value space.

The next few sections will give a brief presentation of the datatypes, organized by their primary
types.

8.1.1.1 String datatypes

The string datatypes include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

string

This is the only datatype for which no whitespace normalization is done. There is no restriction
on the lexical or value spaces of this datatype, which is identical to the string RELAX NG built-
in type. The difference is that restrictions can be applied through param patterns on the W3C

XML Schema string type.

normalizedString

A string, but intermediate whitespace processing is performed on this datatype: occurrences of
whitespace-including tabs (#x9), linefeeds (#xA), and spaces (#x20)-are replaced by the
same number of spaces (#x20), but no space-collapsing or trimming is performed. Just as for
the string datatype, there are no restrictions on the lexical or value spaces of this datatype.

token

This datatype is similar to the built-in token datatype: whitespaces are normalized, i.e., all the

sequences of whitespaces are replaced by a single space, and the leading and trailing spaces
are removed. Including token and string, this is the third and last datatype that has no
constraint on its value or lexical spaces. (Also note that all the datatypes except string and
normalizedString follow the same normalization rules as the token datatype.)

language

This datatype was created to accept all the language codes standardized by RFC 1766. Some
valid values for this datatype are en, en-US, fr, or fr-FR.

NMTOKEN

This datatype corresponds to the XML 1.0 Nmtoken (Name token) production, which is a single

token (a set of characters without spaces) composed of characters allowed in an XML name.
Some examples of valid values for this datatype are "Snoopy", "CMS", "1950-10-04", or
"0836217462". Invalid values include "brought classical music to the Peanuts strip "
(spaces are forbidden) or "bold,brash" (commas are forbidden).

NMTOKENS

The lexical and value spaces of NMTOKENS are whitespace-separated lists of NMTOKEN

components.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name

This datatype is similar to NMTOKEN with the additional restriction that the values must start
either with a letter or the characters ":" or "_". This datatype conforms to the XML 1.0
definition of a Name. Some examples of valid values for this datatype are "Snoopy", "CMS", or
"_1950-10-04-10:00". Invalid values include "0836217462" (can't start with a number) or
"bold,brash" (commas are forbidden). This datatype shouldn't be used for names that may be
qualified by a namespace prefix; another datatype, QName, has a specific semantic for these

values.

NCName

This is a noncolonized name as defined by Namespaces in XML 1.0: a Name without any colons.

As such, this datatype is probably the predefined datatype that is closest to the notion of a
name in most of the programming languages (some characters such as "_" or "." may still be a
problem in many cases). Valid values for this datatype include "Snoopy", "CMS", "_1950-10-04-
10-00", or "1950-10-04". Invalid values are "_1950-10-04:10-00" or "bold:brash" (colons

are forbidden).

ID

The lexical space of ID is the same as the lexical space of NCName. As defined by the W3C XML

Schema recommendation, there is one constraint added to its value space: there must not be
any duplicate values in a document. RELAX NG doesn't allow datatype libraries to perform this
type of check. This is a job for the DTD compatibility feature, as you will see at the end of this
chapter. Its specification asks RELAX NG processors supporting this feature to enforce ID
uniqueness for W3C XML Schema ID datatypes. Other implementations just check its lexical
space as a NCName.

IDREF

The lexical space of IDREF is the same as the lexical space of NCName. Just as for ID, W3C XML

Schema adds the constraint that it must match an ID defined in the same document. RELAX
NG makes this behavior optional for RELAX NG processors supporting the W3C XML Schema
type library without supporting the DTD compatibility feature.

IDREFS

The lexical space of IDREFS is a whitespace-separated list of NCName values. Just as for ID and
IDREF, W3C XML Schema adds the constraint that each of the values must match an ID defined

in the same document. RELAX NG makes this behavior optional for RELAX NG processors
supporting the W3C XML Schema type library without supporting the DTD compatibility feature.

ENTITY

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lexical space of ENTITY is the same as the lexical space of NCName. Also provided for
compatibility with XML 1.0 DTDs, an ENTITY value and must match an unparsed entity defined

in a DTD.

ENTITIES

The lexical and value spaces of ENTITIES are the whitespace-separated lists of ENTITY

components.

8.1.1.2 URIs

Strictly speaking, anyURI, the only member of this family, isn't considered a string because its value

can be different from its lexical representation to compensate for the differences of format between
XML and URIs, as specified in RFCs 2396 and 2732. These RFCs aren't very friendly toward non-
ASCII characters and require many character escapes that aren't necessary in XML.

As an example of this transformation, the href attribute of an XHTML link written as:

 World/Français

is converted to the value:

http://dmoz.org/World/Fran%C3%A7ais/

in the value space.

Also note that the anyURI datatype doesn't pay attention to xml:base attributes that may have been

defined in the document.

8.1.1.3 Qualified names

Up to now, I have only briefly mentioned XML namespaces. I'll focus on them in Chapter 11, but we
need to use some of their concepts right now. If you're not familiar with namespaces, you can skip
this section: you don't need qualified names quite yet. Even if you are a XML namespace guru, I
wouldn't recommend that you use them as they complicate many kinds of processing enormously.

What we're talking about here is different from using qualified names for element and attribute
names. Using qualified names for element and attribute names is defined by the recommendation
"Namespaces in XML 1.0" (you can find it at http://www.w3.org/TR/REC-xml-names), and there isn't
much debate left on the subject. Here, I am speaking of using qualified names in element or attribute
values. This usage is much more controversial because it creates a dependency between markup and
its content.

Because of this dependency, you can't consider a qualified name string datatype, as its prefix is only
a shortcut to the associated namespace URI. The value space of a qualified name is thus not what

http://dmoz.org/World/Fran%C3%A7ais/
http://www.w3.org/TR/REC-xml-names
http://lib.ommolketab.ir
http://lib.ommolketab.ir

you see, but a tuple-two things combined, composed of the associated namespace URI (replacing
the prefix) and its local part (i.e., what is after the prefix and the colon).

For instance, if the xsd prefix has been associated with the namespace URI
http://www.w3.org/2001/XMLSchema, a qualified name (QName) xsd:language would thus have a
value that is the tuple {http://www.w3.org/2001/XMLSchema, language}. It can be considered
equal to a QName foo:language if the prefix foo has been associated with
http://www.w3.org/2001/XMLSchema or language if http://www.w3.org/2001/XMLSchema has

been defined as the default namespace.

There are two QName datatypes, which RELAX NG treats as equivalent:

QName

A namespace-qualified name. The lexical space is the set of colonized names consisting of a
prefix; a local name separated by a colon or a local name only if no prefix is used. The value
space is the set of tuples {namespace URI, local name} as explained previously. Note that for

a QName to be considered valid, the prefix must be defined through a namespace declaration
in the scope of the location where it is used.

NOTATION

In W3C XML Schema, NOTATION is a QName that is used as a notation in a W3C XML Schema.

Because RELAX NG has no equivalent syntax for declaring notations, RELAX NG processors
treat NOTATION as a synonym for QName.

8.1.1.4 Binary string-encoded datatypes

XML 1.0 isn't designed to store binary content: binary content must be encoded as some form of
string before it can be included in an XML document. W3C XML Schema has defined two primary
datatypes to support two encodings: one that is commonly used (base64) and one that is newer
(hexBinary). These encodings may include any binary content, including text formats whose content

may be incompatible with the XML markup. Other binary text encodings can also be used in XML
(such as uuXXcode, Quote Printable, BinHex, aencode, or base85, to name a few), but their values
aren't recognized by W3C XML Schema.

hexBinary

This datatype defines a simple way to code binary content as a character string by translating
the value of each binary octet into two hexadecimal digits. (This encoding shouldn't be
confused with the encoding method called BinHex, introduced by Apple and described by RFC
1741, which includes a mechanism to compress repetitive characters.) A UTF-8 XML header
such as <?xml version="1.0" encoding="UTF-8"?> encoded in hexBinary is:

3f3c6d78206c657673726f693d6e3122302e20226e656f636964676e223d54552d4622383e3f.

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

base64Binary

This mechanism uses the encoding known as base64, which is described in RFC 2045. It maps

groups of 6 bits into an array of 64 printable characters. The same header encoded in
base64Binary is:

PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4NCg= =.

The W3C XML Schema Recommendation missed the fact that RFC 2045
requests a line break every 76 characters. This omission has been clarified in
an errata. The consequence of these linebreaks being thought of as optional by
W3C XML Schema is that the lexical and value spaces of base64Binary can't be

considered identical.

8.1.1.5 Numeric datatypes

Numeric datatypes are built on top of four primitive datatypes: decimal for all the decimal types
(including the integer datatypes, which are treated as decimals without a fractional part), double and
float for single- and double-precision floats, and boolean for Booleans.

The first family of numeric datatypes is derived from the primitive type decimal:

decimal

This datatype represents decimal numbers. The number of digits can be arbitrarily long (the
datatype doesn't impose any restrictions), but obviously, since a XML document has an
arbitrary but finite length, the number of digits of the lexical representation of a decimal value

needs to be finite. Although the number of digits isn't limited, the next section (concerning
facets) shows how the author of a schema can derive user-defined datatypes with a limited
number of digits if needed. Leading and trailing zeros aren't considered significant and may be
trimmed. The decimal separator is always a dot (.), and a leading sign (+ or -) may be used,
but any characters other than the 10 digits zero through nine are forbidden, including
whitespace inside the value. Allowed values for decimal include 123.456, +1234.456, -.456 or
-456.

integer

This datatype is a subset of decimal, representing numbers that don't have any fractional

digits in its lexical or value spaces. The characters that are accepted are reduced to the digits
zero through nine, with an optional leading sign. Like its base datatype, integer doesn't

impose any limitation on the number of digits, and leading zeros aren't significant. Note that
the decimal separator is forbidden even if the numbers following the decimal are omitted or
zeros.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nonPositiveInteger

nonPositiveInteger is the category for integers that are negative or zero (zero is neither

positive nor negative).

negativeInteger

Contains an integer whose value is less than zero.

nonNegativeInteger

Contains a positive or zero integer value.

positiveInteger

Contains an integer whose value is greater than zero.

long

Contains an integer between -9223372036854775808 and 9223372036854775807; i.e., the
values that can be stored in a 64-bit word.

int

Contains an integer between -2147483648 and 2147483647 (32 bits).

short

Contains an integer between -32768 and 32767 (16 bits).

byte

Contains an integer between -128 and 127 (8 bits).

unsignedLong

Contains an unsigned integer between 0 and 18446744073709551615; i.e., the values that can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be stored in a 64-bit word.

unsignedInt

Contains an integer between 0 and 4294967295 (32 bits).

unsignedShort

Contains an integer between 0 and 65535 (16 bits).

unsignedByte

Contains an integer between 0 and 255 (8 bits).

The second family is made of the float and double datatypes, which represent IEEE simple (32 bits)

and double (64 bits) precision floating-point types. These store the values in the form of a mantissa
and an exponent of a power of 2 (m x 2e), allowing a large scale of numbers in a storage that has a
fixed length. Fortunately, the lexical space doesn't require powers of 2 (in fact, it doesn't accept
powers of 2), but instead uses a traditional scientific notation based on integer powers of 10. Because
the value spaces (powers of 2) don't exactly match the values from the lexical space (powers of 10),
the recommendation specifies that the closest value is taken. The consequence of this approximate
matching is that float datatypes are the domain of approximation; most of the float values can't be

considered exact and are approximate.

These datatypes accept several special values: positive zero (0), negative zero (-0) (which is less
than positive 0 but greater than any negative value); infinity (INF), which is greater than any value;
negative infinity (-INF), which is less than any value; and "not a number" (NaN).

The last member of the numeric types family is boolean, a primitive datatype that can take the
values true and false (or 1 and 0, which are considered equivalent).

8.1.1.6 Date and time formats

Dates and times are probably the most controversial aspect of W3C XML Schema datatypes. In order
to meet the requirements of dates on the Web, the W3C XML Schema Working Group attempted to
define a value space for a subset of the ISO 8601 date formats-a syntactical specification of how
dates should be exchanged on the Web.

The result is complex and yet fails to satisfy the experts of date and time representations, doesn't
support any other calendar system than Gregorian, and has no support for localization.

One of the fuzziest aspects of these datatypes is that many of them (such as dateTime, which I'll

introduce in a moment) accept values with and without time zones. This creates two classes of
values, which can't be reliably and accurately compared.

Let's take a closer look at this important distinction before I present the details of these datatypes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Two dateTime values that include a time zone can be compared easily. W3C XML Schema states that
a dateTime value without a time zone has an undetermined time zone, but that you can still compare
two of these to each other. Things get fuzzy when you want to compare a dateTime value with a
time zone and a dateTime value without. All you know about the dateTime value that has an

undetermined time zone is that it can be in an interval from 14 hours before UTC to 14 hours after
UTC. You can never conclude that the two dateTime values are equal. You can say only that one

value comes before the other when they are different enough.

Why 14 hours? No, that's not a typo! National regulations have some level of flexibility with the time
zones used in their countries, so that the time zone they use can vary from their geographical time
zone. This variation can even change throughout the year, with many countries having winter and
summer times. As a result, when the W3C published the W3C XML Schema recommendation, the
maximum number of hours of difference in time zones was not between -12 and +12 hours from UTC
but between -13 and +12 hours. And because the W3C doesn't expect that national authorities will
ask their permission or send prior notification if they want to enlarge this interval, they have added a
security margin and written the -14/+14 hours interval into their recommendation.

Because computers aren't fond of fuzziness, it is certainly a very good practice
to use time zones with your dateTime values!

Here are the date, time, and related datatypes defined by W3C XML Schema:

dateTime

This datatype is defined as representing a "specific instant of time." This instant is a subset of
what ISO 8601 calls a "moment of time." Its lexical value follows the format CCYY-MM-
DDThh:mm:ss, in which all the fields must be present and may optionally be preceded by a sign

and leading figures, if needed, and also followed by fractional digits for the seconds and a time
zone. The time zone may be specified using the letter "Z," Zulu, which identifies UTC, or by the
difference of time with UTC. As you've seen, a value such as 2001-10-26T21:32:52 that's
defined without a time zone can't be compared to 2001-10-26T21:32:52+02:00 or 2001-10-
26T19:32:52Z, which have a time zone. The last two values, which have a time zone, are

considered equal because they identify the same moment.

date

This datatype has the same lexical space as the date part of dateTime with an optional time

zone and represents a period of one day in its time zone, "independent of how many hours this
day has." The consequence of this definition is that two dates defined in a different time zone
can't be equal, except if they designate the same interval (2001-10-26+12:00 and 2001-10-
25-12:00, for instance). Another consequence is that, as with dateTime, the order relation

between a date with a time zone and a date without a time zone can be only partially
determined.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

gYearMonth

A Gregorian calendar month: a period of one calendar month in its time zone. Its format is the
format of date but leaving out the entry for the day: 2001-10, 2001-10+02:00, or 2001-10Z

for instance ("g" stands for Gregorian).

gYear

A Gregorian calendar year: a period of one calendar year in its time zone. Its format is the
format of gYearMonth without its month part: 2001, 2001+02:00 or 2001Z, for instance (note

that these three values identify three different periods and aren't considered equal).

time

The lexical space of time is identical to the time part of dateTime. The semantic of time

represents a point in time that recurs every day; the meaning of "01:20:15" is "the point in
time recurring each day at 01:20:15 am." Like date and dateTime, time accepts an optional

time-zone definition. The same issue arises when comparing times with and without time
zones.

gDay

The lexical space of gDay is ---DD with an optional time zone specification, and it represents a

recurring period of one day in the specified time zone occurring each Gregorian calendar
month. ---01 represents, for instance, the first day of each month with an undetermined time

zone. Dates are pinned down depending on the number of days of each month; in February, for
instance, --31Z occurs on February 28th (or 29th for leap years).

gMonthDay

The lexical space of gMonthDay is --MM-DD with an optional time-zone specification, and it

represents a recurring period of one day in the specified time zone occurring each Gregorian
calendar year. For instance, Christmas day in the United Kingdom is --12-25Z.

gMonth

The lexical space of gMonth should have been --MM with an optional time zone, but a typo in
the W3C XML Schema recommendation has specified it as --MM-- which you can still find in
some tools even though an erratum has corrected it to --MM. It represents a recurring period of

a calendar month in its time zone. The months of January in Paris, for instance, are
represented as --01+01:00.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

duration

The lexical space of duration is PnYnMnDTnHnMnS. Each part (except the leading "P") is

optional. A significant amount of complexity comes from the fact that you can mix quantities
expressed as months (which have a variable number of days) with quantities expressed as
days, such as, for instance, P1Y2M8DT123S, which means a duration of 1 year, 2 months, 8

days and 123 seconds. I won't enter into the detail of the algorithms here, but formatting this
leads to a partial order relation between durations that don't make it difficult to manage
processing of this datatypes when all its parts are used.

8.1.1.7 Examples

After that long and dense enumeration of types, let's see how to add W3C XML Schema datatypes to
our first schema. The most natural choices seem to be:

id

If we use the ID datatype for IDs, their uniqueness will be checked by RELAX NG processors
that support the DTD compatibility feature.

xml:lang

The natural candidate for xml:lang is language.

available

We can use boolean for this attribute.

born and died

date seems the right choice, since we have been lucky enough to have ISO 8601 dates in our

instance documents.

Other elements containing text

We have no reason to preserve whitespace in these elements and will use token datatypes for

all of them.

Our first schema could thus be rewritten as:

 <element xmlns="http://relaxng.org/ns/structure/1.0" name="library"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <oneOrMore>
 <element name="book">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="NMTOKEN"/>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token"/>
 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <element name="name">
 <data type="token"/>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <optional>
 <element name="died">
 <data type="date"/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <element name="name">
 <data type="token"/>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <element name="qualification">
 <data type="token"/>
 </element>
 </element>
 </zeroOrMore>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </oneOrMore>
 </element>

or:

 element library {
 element book {
 attribute id {xsd:ID},
 attribute available {xsd:boolean},
 element isbn {xsd:NMTOKEN},
 element title {attribute xml:lang {xsd:language}, xsd:token},
 element author {
 attribute id {xsd:ID},
 element name {xsd:token},
 element born {xsd:date},
 element died {xsd:date}?}*,
 element character {
 attribute id {xsd:ID},
 element name {xsd:token},
 element born {xsd:date},
 element qualification {xsd:token}}*
 } +
 }

Note the declaration of the datatypeLibrary in the XML version, while the W3C XML Schema

datatype library has the special privilege of having its prefix built into the compact syntax: I have
used the xsd prefix without needing to declare any datatype library! You will see later on that this

isn't the case for the DTD compatibility type library.

The previous chapter explained that datatype declarations are kind of a transition to a data pattern

and aren't inherited by child patterns. I'll illustrate this now that we have a richer set of datatypes at
hand.

In the schema just written, I have defined the available attribute as boolean but our instance
documents have used only one of the two syntaxes for boolean (true or false) and not used the
other equivalent one (0 or 1). We may want to exclude this second syntax for boolean (for instance,

if our application hasn't been designed to support it). In this case, we can just exclude these two
values:

<attribute name="available">
 <data type="boolean">
 <except>
 <value>0</value>
 <value>1</value>
 </except>
 </data>
</attribute>

or:

attribute available {xsd:boolean - ("0"|"1")}

This looks rather natural, but why does it work? It works because RELAX NG forgets that the type of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the attribute is boolean as soon as we've left the data pattern and instead uses the default type
(RELAX NG's built-in token type) to test that the value is neither 0 nor 1. If RELAX NG didn't forget

the type of the attribute, the schema would have removed the entire lexical space of "boolean" and
would have been impossible to use because 0 and false are equivalent (and 1 and true too).

You have seen a situation where we rely on the fact that the types used in the data and value

patterns are different. You will find other situations in which you will want them to be the same. In
that case, you need to repeat the type attribute. If your applications are designed to accept both
formats for the available attributes, and if you need to test that the books are available, you might
prefer to use the same type for both patterns. In this case, you can write:

<attribute name="available">
 <data type="boolean">
 <except>
 <value type="boolean">false</value>
 </except>
 </data>
</attribute>

or:

attribute available {xsd:boolean - (xsd:boolean "false")},

You can now rely on the datatype boolean to exclude both 0 and false, which are equivalent. Of

course, in the case of booleans, the number of possible values is limited. You can simplify the schema
to:

 <attribute name="available">
 <value type="boolean">true</value>
 </attribute>

or:

attribute available {xsd:boolean "true"}

but this doesn't make my point. This trick also works for other datatypes.

8.1.2 Facets

The restrictions, known as facets, that a user can apply to predefined W3C XML Schema datatypes, in
the W3C XML Schema recommendation can be applied in a RELAX NG schema. This is done using an
element named param. The param elements are directly included within data patterns and appears
before the optional except pattern covered in the previous chapter. These param elements have a
name attribute, which identifies a facet, and their text content is the value of the facet. When several
param elements are included, all the constraints must be met (in other words, the result is a logical

"and" of all the conditions). Also note that the same facet can't be repeated twice except for the facet
named pattern.

The vocabularies used by RELAX NG and W3C XML Schema are slightly different. What RELAX NG
calls param is called facet by W3C XML Schema, while what is called a pattern by RELAX NG
shouldn't be confused with the facet named pattern by W3C XML Schema. Also note that as you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have seen previously, what RELAX NG calls whitespace normalization isn't the same as the
whitespace processing applied to the W3C XML Schema normalizedSpace datatype.

The facets defined by W3C XML Schema are:

whiteSpace

This somewhat controversial facet can't be used in RELAX NG.

enumeration

This facet can't be used in RELAX NG because it is equivalent to RELAX NG's own
enumerations; RELAX NG's should be used instead.

pattern

This is the only facet that is applied to the lexical space. All the other facets work in the value
space only. This facet checks whether the data matches a regular expression. This facet is
covered in Chapter 9. For the moment, let's just say that it is a superset of Perl regular
expressions (anchored to the beginning and the end of the values to match), and that it
doesn't support the POSIX-style character classes defined in Perl. It includes a few XML
goodies, supports all the Unicode classes and blocks, and defines a special construct to define
differences between character classes.

length

Available only for string, binary, and list datatypes. For string (and string-like) type, this
defines the number of Unicode characters; for binary (i.e., hexBinary and base64Binary)
datatypes, it defines a number of bytes; and for list datatypes (entities, idrefs and
NMTOKENS), it defines the number of tokens in the list.

maxLength

Same meaning and restrictions as length but defines a maximum length.

minLength

Same meaning and restrictions as length but defines a minimum length.

maxExclusive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applies only to decimal, integer (and derived), float, and double and all the date time and

duration datatypes. It defines a maximum value that can't be reached. Note that, for date
times and duration datatypes, the relation of order between two values is partial and that the
result can't always be determined.

minExclusive

Same restriction as maxExclusive but defines a minimum value that can't be reached.

maxInclusive

Same restriction as maxExclusive but defines a maximum value that can be reached.

minInclusive

Same restriction as maxExclusive but defines a minimum value that can be reached.

totalDigits

Applies to decimal, integer, and derived types to define the maximum number of digits (after
and before the decimal point). As all the facets do (except pattern), this facet works on the

value space; "000001.10000000" (for instance) would be considered to have only two digits.

fractionDigits

Applies to decimal types to define the maximum number of fractional digits (those after the
decimal point). As all the facets (except pattern), this facet works on the value space;

"000001.10000000," (for instance) would be considered to have only one fractional digit.

Again, after this enumeration of facets, let's see how to apply some of the following to improve our
library schema:

xml:lang

We might want to ignore the regional differences and accept only two-character codes using
the length facet.

isbn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There would be much more to check on ISBN number, but we might want to use a pattern to

confirm that it's composed of nine digits terminated by a character that is either a digit or the
character "x."

born and died

Assuming that our library is interested only in recent books we could check that they belong to
the 20th or 21st centuries (in other words, between 1900 and 2099). We might also want to
confirm that our dates don't specify a time zone, since we've seen that comparing dates with
and without time zone is fuzzy and that the instance documents seen up to now have no
timezones.

Other text data

The maximum length can be constrained using a maxLength facet.

Here's the corresponding schema:

 <element xmlns="http://relaxng.org/ns/structure/1.0"
 name="library" datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <oneOrMore>
 <element name="book">
 <attribute name="id">
 <data type="ID">
 <param name="maxLength">16</param>
 </data>
 </attribute>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="NMTOKEN">
 <param name="pattern">[0-9]{9}[0-9x]</param>
 </data>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language">
 <param name="length">2</param>
 </data>
 </attribute>
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id">
 <data type="ID">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <param name="maxLength">16</param>
 </data>
 </attribute>
 <element name="name">
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 <element name="born">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
 </element>
 <optional>
 <element name="died">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id">
 <data type="ID">
 <param name="maxLength">16</param>
 </data>
 </attribute>
 <element name="name">
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 <element name="born">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
 </element>
 <element name="qualification">
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 </element>
 </zeroOrMore>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 </oneOrMore>
 </element>

or:

 element library {
 element book {
 attribute id {xsd:ID {maxLength = "16"}},
 attribute available {xsd:boolean "true"},
 element isbn {xsd:NMATOKEN {pattern = "[0-9]{9}[0-9x]"}},
 element title {
 attribute xml:lang {xsd:language {length="2"}},
 xsd:token {maxLength="255"}
 },
 element author {
 attribute id {xsd:ID {maxLength = "16"}},
 element name {xsd:token {maxLength = "255"}},
 element born {xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }},
 element died {xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }}?}*,
 element character {
 attribute id {xsd:ID {maxLength = "16"}},
 element name {xsd:token {maxLength = "255"}},
 element born {xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }},
 element qualification {xsd:token {maxLength = "255"}}}*
 } +
 }

Note the usage of regular expressions in the pattern facets. The set of facets provided by W3C XML
Schema isn't particularly rich, so the pattern facet acts as a Swiss Army knife, helping you to do all
the tricky tasks other facets can't do. Regular expressions and pattern are explained in Chapter 9.

Also note that facets only define restrictions. You can't extend the lexical space of a datatype through
a facet (though you can create a choice between two types to merge their lexical space).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 DTD Compatibility Datatypes

DTD compatibility is both a library that checks the lexical spaces of its ID, IDREF, and IDREFS

datatypes and a more expansive feature. This library adds to the normal RELAX NG processing and
enforces DTD-like rules on the schema and on the instance document. This package is designed to
facilitate the transition from DTDs to RELAX NG by emulating the attribute types ID, IDREF, and
IDREFS. The DTD compatibility feature checks whether ID values are unique within a document and
that IDREF and IDREFS are references or whitespace-separated lists of references to ID values

defined in the document. It also checks the schema itself to ensure that datatypes are used only in
attributes. Unlike their W3C XML Schema counterpart, these datatypes have no facets.

That's pretty much all you have to know about this library. Let's use it straightaway to define the id

attributes in our library:

<element xmlns="http://relaxng.org/ns/structure/1.0" name="library"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <oneOrMore>
 <element name="book">
 <attribute name="id">
 <data datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"
 type="ID"/>
 </attribute>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="NMTOKEN">
 <param name="pattern">[0-9]{9}[0-9x]</param>
 </data>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language">
 <param name="length">2</param>
 </data>
 </attribute>
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id">
 <data datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"
 type="ID"/>
 </attribute>
 <element name="name">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 <element name="born">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
 </element>
 <optional>
 <element name="died">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id">
 <data datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"
 type="ID"/>
 </attribute>
 <element name="name">
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 <element name="born">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
 </element>
 <element name="qualification">
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

or:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 datatypes dtd="http://relaxng.org/ns/compatibility/datatypes/1.0"
 element library {
 element book {
 attribute id {dtd:ID},
 attribute available {xsd:boolean "true"},
 element isbn {xsd:NMTOKEN {pattern = "[0-9]{9}[0-9x]"}},
 element title {
 attribute xml:lang {xsd:language {length="2"}},
 xsd:token {maxLength="255"}
 },
 element author {
 attribute id {dtd:ID},
 element name {xsd:token {maxLength = "255"}},
 element born {xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }},
 element died {xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }}?}*,
 element character {
 attribute id {dtd:ID},
 element name {xsd:token {maxLength = "255"}},
 element born {xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }},
 element qualification {xsd:token {maxLength = "255"}}}*
 } +
 }

As already mentioned, the DTD compatibility feature has been designed to provide compatibility with
the features of the DTD, and that includes emulating some of their restrictions. I have already
mentioned that these datatypes can be used only in attributes, not in elements. I need to mention
another limitation that can be more insidious and has bitten renowned experts trying to do things
such as write RELAX NG schemas for XHTML.

This rule might be called the "consistent attribute definition rule." Because a DTD won't allow you to
give two different definitions of the content of an element, RELAX NG enforces the rule that if an
attribute id is defined as ID, IDREF, or IDREFS in an element somewhere in a RELAX NG schema, all

the definitions of the same attribute under the same element must use the same type.

The simplest schemas, which don't meet this standard and thus aren't correct with respect to the
DTD compatibility feature, are schemas that contain multiple declarations of the same element and
attributes with different types, such as:

<?xml version="1.0" encoding="UTF-8"?>
 <element name="foo" xmlns="http://relaxng.org/ns/structure/1.0"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0">
 <element name="bar">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 </element>
 <zeroOrMore>
 <element name="bar">
 <attribute name="id">
 <data type="token" datatypeLibrary=""/>
 </attribute>
 </element>
 </zeroOrMore>
 </element>

or:

 datatypes dtd="http://relaxng.org/ns/compatibility/datatypes/1.0"

 element foo {
 element bar {
 attribute id { dtd:ID }
 },
 element bar {
 attribute id { token }
 } *
 }

Here, there are two definitions of bar with id attributes having competing types. Because one of
these types is a dtd:ID type, this practice is forbidden.

A situation tougher to detect and tougher to fix is when one of these competing definitions uses
patterns that allow name classes to permit the inclusion of any element, such as you will see in
Chapter 12. This situation can create serious complications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.3 Which Library Should Be Used?

All the RELAX NG implementations must support the native datatype library; many of them also
support the DTD compatibility datatypes library and the W3C XML Schema datatypes library. That
means that if you want to define a token or string datatype, you can often choose between the
native library and W3C XML Schema datatypes, and if you're defining ID, IDREF, or IDREFS, you can

often choose between the DTD compatibility library and W3C XML Schema datatypes.

8.3.1 Native Types Versus W3C XML Schema Datatypes

The criteria for choosing between native or W3C XML Schema datatypes to define string and token

types is simple: if you need facets, use W3C XML Schema datatypes. If you don't, use native
datatypes: your schema will be more portable, because the RELAX NG processors aren't obliged to
support the W3C XML Schema type library.

8.3.2 DTD Versus W3C XML Schema Datatypes

When you need to define a datatype covered by both DTD and W3C XML Schema-i.e., ID, IDREF, or
IDREFS-a similar rule of thumb applies. If you use the DTD compatibility library, your schema should

be slightly more portable, but you will lose the facets.

The other factor to take into account is that the rules applied when you use the DTD compatibility
feature are strict and consistent over different implementations; when you use the W3C XML Schema
type library, a processor should apply these same rules if and only if it also supports the DTD
datatype library. Processors that support only W3C XML Schema datatypes are supposed to check
only the lexical space of these datatypes.

In practice, that means you can use ID, IDREF, or IDREFS datatypes from the W3C XML Schema

library, but that it is safer to debug your schema using an implementation that supports both the
DTD and the W3C XML Schema type libraries.

If you design a RELAX NG schema using W3C XML Schema's ID, IDREF, and IDREFS, and then test it

with an implementation that supports only W3C XML Schema datatypes, the rules of DTD
compatibility will not be enforced. When you use the same schema and instance documents with a
RELAX NG processor supporting both the DTD and W3C XML Schema datatypes, you get tighter
control; the instance documents and even the schema that were previously valid may suddenly
become invalid or incorrect because of this control.

Here's a simple example of a schema that defines ID elements. It's correct for RELAX NG
implementations that supporting W3C XML Schema datatypes without supporting the DTD
compatibility layer, and yet it doesn't use the DTD compatibility feature for RELAX NG
implementations supporting both.

 <?xml version="1.0" encoding="UTF-8"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <element name="foo" xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <zeroOrMore>
 <element name="bar">
 <element name="id">
 <data type="ID"/>
 </element>
 </element>
 </zeroOrMore>
 </element>

or:

 element foo {
 element bar {
 element id { xsd:ID }
 } *
 }

Other examples include schemas that don't respect the rule by which the definitions of attributes
holding these datatypes must be consistent throughout the schema.

The reason for this behavior is that although I've often mentioned the "DTD compatibility datatype
library" for clarity all over this chapter, DTD compatibility is more than a datatype library. Per the
RELAX NG formal specification, a datatype library must be decoupled from the validation of the
structure of the document, and the context passed to the datatype library is restricted to the
namespace declarations available under the node being validated. This context itself is an exception
required to process qualified names. The datatype library has thus not enough information to do the
tests required to support DTD compatibility: it doesn't even know whether the data to validate has
been found in an element or an attribute. This aspect of the DTD compatibility is thus a feature and
not a datatype library as defined per RELAX NG.

When you use a datatype from the datatype library
http://relaxng.org/ns/compatibility/datatypes/1.0, you're actually doing two different

things:

Using a datatype library that restricts the lexical space of your data and value patterns.

Requesting testing to ensure that the ID are unique, and that the IDREF and IDREFS are

referring to IDs and lists of IDs.

Applied to the W3C XML Schema datatype library, this translates as: if these datatypes are used,
trigger the ID DTD compatibility feature when available.

[Team LiB]

http://relaxng.org/ns/compatibility/datatypes/1.0
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. Using Regular Expressions to
Specify Simple Datatypes
Among the many facets available for restricting simple datatypes, the most flexible is based on
regular expressions. The pattern facet can be a last resort when all the other facets are unable to

express needed restrictions on a user-defined datatype.

There is a terminology clash between RELAX NG's patterns and the pattern

facet of W3C XML Schema. To limit the risk of confusion, I refer to the facet as
the pattern facet or "regular expression."

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 A Swiss Army Knife

The pattern facet (like regular expressions in general), is like a Swiss Army knife when constraining

simple datatypes. It can be used for many functions and can compensate for many of the limitations
of the other facets; it's often used to define user datatypes in various formats, such as ISBN
numbers, telephone numbers, or custom date formats. However, just like real Swiss Army knives,
there are limits to its usefulness.

Cutting a tree with a Swiss Army knife is time-consuming, tiring, and dangerous. Writing regular
expressions can also become time-consuming, tiring, and dangerous as the number of combinations
grows. You should try to keep them as simple as possible.

A Swiss Army knife can't change lead into gold, and no facet can change the
primary type of a simple datatype. A string datatype restricted to match a
custom date format will still retain the properties of a string and will never
acquire the facets of a datetime datatype. This means there's no effective way

to express localized date formats.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 The Simplest Possible Pattern Facets

In their simplest form, pattern facets may be used as enumerations applied to the lexical space

rather than on the value space.

If, for instance, you have a byte value that can take only the values 1, 5, or 15, the classical way to
define such a datatype is to use RELAX NG's choice pattern:

<choice>
 <value type="byte">1</value>
 <value type="byte">5</value>
 <value type="byte">15</value>
</choice>

or:

element foo {
 xsd:byte "1"
 | xsd:byte "5"
 | xsd:byte "15"
}

This example is the normal way to define this datatype if it matches the lexical space and the value
space of an xsd:byte. It grants the flexibility to accept the instance documents with values such as

1, 5, and 15, but also 01 or 0000005.

As far as validation alone is concerned, if you want to remove the variations with leading zeros, you
can use another datatype such as token instead of xsd:byte in your choice pattern:

<choice>
 <value type="token">1</value>
 <value type="token">5</value>
 <value type="token">15</value>
</choice>

or:

xsd:token "1"
| xsd:token "5"
| xsd:token "15"

However, you might have good reasons to use xsd:byte. For example, you can use it if you're

interested in type annotation and want to use a RELAX NG processor supporting type annotation.
That processor can usefully report the datatype as xsd:byte and not xsd:token.

One of the peculiarities of the pattern facet is that it is the only facet constraining the lexical space.
If you have an application that doesn't like leading zeros, you can use pattern facets instead of

enumerations to define your datatype:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<data type="byte">
 <param name="pattern">1|5|15</param>
</data>

or:

xsd:byte {pattern = "1|5|15"}

Here, I am still using the xsd:byte datatype with its associated semantics, but its lexical space is

now constrained to accept only 1, 5, and 15, leaving out any variation that has the same value but a
different lexical representation.

This constraint is an important difference from Perl regular expressions, on
which W3C XML Schema pattern facets are built. A Perl expression such as
/15/ matches any string containing 15, while the W3C XML Schema pattern

facet matches only the string equal to 15. The Perl expression equivalent to this
pattern facet is thus /^15$/.

This example has been carefully chosen to avoid using any metacharacters within pattern facets,
which are: . \ ? * + { }()[and]. You'll see the meaning of these characters later in this chapter;

however, for the moment, you just need to know that each of these characters needs to be escaped
by a leading backslash to be used as a literal. For instance, to define a similar datatype for a decimal
when lexical space is limited to 1 and 1.5, write:

<data type="decimal">
 <param name="pattern">1|1\.5</param>
</data>

or:

xsd:decimal {pattern = "1|1\.5"}

A common source of errors is that normal characters shouldn't be escaped: you'll see later that a
leading backslash changes their meaning. For instance, \P matches all the Unicode punctuation
characters, not the character P.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 Quantifying

Despite similarities on the surface, the pattern facet interprets its value in a very different way than
value does. value reads the value as a lexical representation and converts it to the corresponding
value for its base datatype, while the pattern facet reads the value as a set of conditions to apply on

lexical values. When you write:

 pattern="15"

you specify three conditions (first character equals 1, second character equals 5, and the string must
finish after the 5). Each of the matching conditions (such as first character equals 1, and second
character equals 5) is called a piece. This is just the simplest form for specifying pieces.

Each piece in a pattern facet is composed of an atom identifying a character, or a set of characters,

and an optional quantifier. Characters (except special characters, which must be escaped) are the
simplest form of atoms. In the example, I have omitted the quantifiers. Quantifiers may be defined
using two different syntaxes: using either special characters (* for 0 or more, + for one or more, and

? for 0 or 1) or a numeric range within curly braces ({n} for exactly n times, {n,m} for between n and

m times, or {n,} for n or more times).

Using these quantifiers, you can merge the three pattern facets into one:

<data type="byte">
 <param name="pattern">1?5?</param>
</data>

or:

xsd:byte {pattern = "1?5?"}

This new pattern facet means that there must be zero or one character (1) followed by zero or one
character (5). This is not exactly the same meaning as the three previous pattern facets because
the empty string "" is now accepted by the pattern facet. However, because the empty string
doesn't belong to the lexical space of the base type (xsd:byte), the new datatype has the same

lexical space as the previous one.

You can also use quantifiers to limit the number of leading zeros; for instance, the following pattern

facet limits the number of leading zeros to up to 2:

<data type="byte">
 <param name="pattern">0{0,2}1?5?</param>
</data>

or:

xsd:byte {pattern = "0{0,2}1?5?"}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.4 More Atoms

Atoms that exactly match a character are the simplest atoms that can be used in a pattern facet. The other
atoms that can be used in pattern facets are special characters, a wildcard that matches any character, or

predefined and user-defined character classes.

9.4.1 Special Characters

Table 9-1 shows the list of atoms that match a single character, exactly like the characters you've already seen,
but they also correspond to characters that must be escaped or (for the first three characters on the list) that are
just provided for convenience.

Table 9-1. Special characters

Character Description

\n Newline (can also be written as
 - because it's an XML document).

\r Carriage return (can also be written as ).

\t Tabulation (can also be written as)

\\ Character \

\| Character |

\. Character .

\- Character -

\^ Character ^

\? Character ?

* Character *

\+ Character +

\{ Character {

\} Character }

\(Character (

\) Character)

\[Character [

\] Character]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.2 Wildcard

The dot character (.) has a special meaning; it's a wildcard atom that matches any valid XML characters except
newlines and carriage returns. As with any atom, a dot may be followed by an optional quantifier; .* (dot,

asterisk) is a common construct to match zero or more occurrences of any character. To illustrate the usage of
.* (and the fact that the pattern facet is a Swiss Army knife), a pattern facet can define the integers that are

multiples of 10:

<define name="multipleOfTen">
 <data type="integer">
 <param name="pattern">.*0</param>
 </data>
</define>

or:

multipleOfTen = xsd:integer {pattern = ".*0"}

9.4.3 Character Classes

W3C XML Schema has adopted the classical Perl and Unicode character classes (but not the POSIX-style
character classes also available in Perl), and user-defined classes are also available.

9.4.3.1 Classical Perl character classes

W3C XML Schema supports the classical Perl character classes plus a couple of additions to match XML-specific
productions. Each class is designated by a single letter; the classes designated by the upper- and lowercase
versions of the same letter are complementary:

\s

Spaces. Matches XML whitespace (space #x20 , tab #x09 , linefeed #x0A , and carriage return #x0D).

\S

Characters that aren't spaces.

\d

Digits (0 to 9, but also digits in other alphabets).

\D

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characters that aren't digits.

\w

Extended "word" characters (any Unicode character not defined as punctuation, separator, or other). This
conforms to the Perl definition, assuming UTF-8 support has been switched on.

\W

Nonword characters.

\i

XML 1.0 initial name characters (i.e., all the letters plus _). This is a W3C XML Schema extension of Perl

regular expressions.

\I

Characters that may not be used as a XML initial name character.

\c

XML 1.0 name characters (. : - plus initial name characters, digits, and the characters defined by Unicode
as "combining" or "extender"). This is a W3C XML Schema extension of Perl regular expressions.

\C

Characters that can't be used in a XML 1.0 name.

These character classes can be used with an optional quantifier like any other atom. The last pattern facet that

you saw:

multipleOfTen = xsd:integer {pattern = ".*0"}

constrains the lexical space to be a string of characters ending with a zero. Knowing that the base type is an
xsd:integer , is good enough for our purposes, but if the base type had been an xsd:decimal (or xsd:string),

you can be more restrictive and write:

multipleOfTen = xsd:integer {pattern = "-?\d*0"}

This syntax checks that the characters before the trailing zero are digits with an optional leading - (you'll see
later how to specify an optional leading - or +).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.3.2 Unicode character classes

Patterns support character classes matching both Unicode categories and blocks. Categories and blocks are two
complementary classification systems: categories classify the characters by their usage independently of their
localization (letters, uppercase, digit, punctuation, etc.); blocks classify characters by their localization
independently of their usage (Latin, Arabic, Hebrew, Tibetan, and even Gothic or musical symbols).

The syntax \p{Name} is similar for blocks and categories; the prefix Is is added to the name of categories to
make the distinction. The syntax \P{Name} is also available to select the characters that don't match a block or

category. A list of Unicode blocks and categories is given in the specification. Table 9-2 shows the Unicode
character classes, and Table 9-3 shows the Unicode character blocks.

Table 9-2. Unicode character classes

Unicode character class Includes

C Other characters (nonletters, nonsymbols, nonnumbers, nonseparators)

Cc Control characters

Cf Format characters

Cn Unassigned code points

Co Private-use characters

L Letters

Ll Lowercase letters

Lm Modifier letters

Lo Other letters

Lt Titlecase letters

Lu Uppercase letters

M All marks

Mc Spacing combining marks

Me Enclosing marks

Mn Nonspacing marks

N Numbers

Nd Decimal digits

Nl Number letters

No Other numbers

P Punctuation

Pc Connector punctuation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unicode character class Includes

Pd Dashes

Pe Closing punctuation

Pf Final quotes (may behave like Ps or Pe)

Pi Initial quotes (may behave like Ps or Pe)

Po Other forms of punctuation

Ps Opening punctuation

S Symbols

Sc Currency symbols

Sk Modifier symbols

Sm Mathematical symbols

So Other symbols

Z Separators

Zl Line breaks

Zp Paragraph breaks

Zs Spaces

Table 9-3. Unicode character blocks

AlphabeticPresentationForms EnclosedAlphanumerics Malayalam

Arabic EnclosedCJKLettersandMonths MathematicalAlphanumericSymbols

ArabicPresentationForms-A Ethiopic MathematicalOperators

ArabicPresentationForms-B GeneralPunctuation MiscellaneousSymbols

Armenian GeometricShapes MiscellaneousTechnical

Arrows Georgian Mongolian

BasicLatin Gothic MusicalSymbols

Bengali Greek Myanmar

BlockElements GreekExtended NumberForms

Bopomofo Gujarati Ogham

BopomofoExtended Gurmukhi OldItalic

BoxDrawing HalfwidthandFullwidthForms OpticalCharacterRecognition

BraillePatterns HangulCompatibilityJamo Oriya

Pd Dashes

Pe Closing punctuation

Pf Final quotes (may behave like Ps or Pe)

Pi Initial quotes (may behave like Ps or Pe)

Po Other forms of punctuation

Ps Opening punctuation

S Symbols

Sc Currency symbols

Sk Modifier symbols

Sm Mathematical symbols

So Other symbols

Z Separators

Zl Line breaks

Zp Paragraph breaks

Zs Spaces

Table 9-3. Unicode character blocks

AlphabeticPresentationForms EnclosedAlphanumerics Malayalam

Arabic EnclosedCJKLettersandMonths MathematicalAlphanumericSymbols

ArabicPresentationForms-A Ethiopic MathematicalOperators

ArabicPresentationForms-B GeneralPunctuation MiscellaneousSymbols

Armenian GeometricShapes MiscellaneousTechnical

Arrows Georgian Mongolian

BasicLatin Gothic MusicalSymbols

Bengali Greek Myanmar

BlockElements GreekExtended NumberForms

Bopomofo Gujarati Ogham

BopomofoExtended Gurmukhi OldItalic

BoxDrawing HalfwidthandFullwidthForms OpticalCharacterRecognition

BraillePatterns HangulCompatibilityJamo Oriya

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ByzantineMusicalSymbols HangulJamo PrivateUse

Cherokee HangulSyllables PrivateUse

CJKCompatibility Hebrew PrivateUse

CJKCompatibilityForms HighPrivateUseSurrogates Runic

CJKCompatibilityIdeographs HighSurrogates Sinhala

CJKCompatibilityIdeographsSupplement Hiragana SmallFormVariants

CJKRadicalsSupplement IdeographicDescriptionCharacters SpacingModifierLetters

CJKSymbolsandPunctuation IPAExtensions Specials

CJKUnifiedIdeographs Kanbun Specials

CJKUnifiedIdeographsExtensionA KangxiRadicals SuperscriptsandSubscripts

CJKUnifiedIdeographsExtensionB Kannada Syriac

CombiningDiacriticalMarks Katakana Tags

CombiningHalfMarks Khmer Tamil

CombiningMarksforSymbols Lao Telugu

ControlPictures Latin-1Supplement Thaana

CurrencySymbols LatinExtended-A Thai

Cyrillic LatinExtendedAdditional Tibetan

Deseret LatinExtended-B UnifiedCanadianAboriginalSyllabics

Devanagari LetterlikeSymbols YiRadicals

Dingbats LowSurrogates YiSyllables

You'll see in the next section that W3C XML Schema has introduced an extension to regular expressions to specify
intersections, This extension can define the intersection between a block and a category in a single pattern

facet.

Although Unicode blocks seem to be a great way to restrict text to a set of characters you
can print, display, read, or store in a database, they aren't designed for this purpose, and
you must be careful when using them so. John Cowan, who has taught courses on Unicode
and enjoys obscure alphabets, wrote about this topic:

It's important to note that Unicode blocks are a very crude mechanism for
discrimination: not everything needed to write Greek is in the Greek block, and there
are no less than five Latin blocks, one of which (Basic Latin; i.e., ASCII) contains
many script-independent symbols. The blocks were originally created solely for
internal Unicode organizational purposes, and have spread to the outside world
somewhat randomly.

The five Latin blocks mentioned by John are BasicLatin, Latin1Supplement, LatinExtended-
A, LatinExtendedAdditional, and LatinExtended-B.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.3.3 User-defined character classes

These classes are lists of characters between square brackets that accept - signs to define ranges and a leading ̂

to negate the whole list: for instance, the following defines the list of letters on the first row of a French
keyboard:

[azertyuiop]

This expression specifies all characters between a and z:

[a-z]

This expression specifies all characters that aren't between a and z:

[^a-z]

This expression defines characters - ^ and \ :

[\-^\\]

This expression specifies a decimal sign:

[\-+]

These examples demonstrate that the contents of these square brackets follows a specific syntax and semantic.
Like the regular expression's main syntax, there's a list of atoms, but instead of matching each atom against a
character of the instance string, you define a logical space. Brackets operate in a space between the atoms and
more formal character classes.

The caret (^) is a special character that has a different meaning depending on its location. A negator when it

appears at the beginning of a class, the caret loses this special meaning and acts as a normal character when it
appears later in the class definition.

The support of the escape format #x XX (such as in #x2D) is a frequent source of

confusion. Because this format is used in the W3C XML Schema recommendation to
describe characters by their Unicode value, some people have thought to use it in regular
expressions, but it is not meant to be used that way. If you want to define characters by
their Unicode values, you should use numeric entities instead (such as - if you are
using the XML syntax or the syntax for escaping characters in the compact syntax \x{2D}

). Note that in both cases, the reference is replaced by the corresponding character at
parse time and that the regular expression engine will see the actual character instead of
the escape sequence.

Also, some characters may or must be escaped: \\ matches the character \ . In fact, in a class definition, all the

escape sequences you saw as atoms can be used. Even though some special characters lose their special
meaning inside square brackets, they can always be escaped. So, the following:

[\-^\\]

can also be written as:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[\-\^\\]

or as:

[\^\\\-]

because when they are escaped, the location of the characters doesn't matter.

Within square brackets, the character \ also keeps its meaning of a reference to a Perl or Unicode class. The

following:

[\d\p{Lu}]

is a set of decimal digits (Perl class \d) and uppercase letters (Unicode category "Lu").

Mathematicians have found that three basic operations are needed to manipulate sets and that these operations
can be chosen from a larger set of operations. In square brackets, you've already seen two of these operations:
union (the square bracket is an implicit union of its atoms) and complement (a leading ^ realizes the complement

of the set defined in the square bracket). W3C XML Schema extends the syntax of Perl regular expressions to
introduce a third operation: the difference between sets . The syntax follows:

[set1-[set2]]

Its meaning is that all the characters in set1 that don't belong to set2 , where set1 and set2 can use all the

syntactic tricks you saw earlier.

This operator can perform intersections of character classes (the intersection between two sets A and B is the
difference between A and the complement of B), and you can now define a class for the BasicLatinLetters as:

[\p{IsBasicLatin}-[^\p{L}]]

Using the \P construct, which is also a complement, you can define the class as:

[\p{IsBasicLatin}-[\P{L}]]

The corresponding definition is:

<define name="BasicLatinLetters">
 <data type="token">
 <param name="pattern">[\p{IsBasicLatin}-[\P{L}]]*</param>
 </data>
</define>

or:

BasicLatinLetters = xsd:token {pattern = "[\p{IsBasicLatin}-[\P{L}]]*"}

9.4.4 Or-ing and Grouping

I used an or in the first example pattern facet when I wrote "1|5|15" to allow either 1, 5, or 15.

Or s are especially interesting when used with groups. Groups are complete regular expressions, which are

themselves considered atoms and can be used with an optional quantifier to form more complete (and complex)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

regular expressions. Groups are enclosed by parentheses. To define a comma-separated list of 1, 5, or 15,
ignoring whitespace between values and commas, the following pattern facet can be used:

<define name="myListOfBytes">
 <data type="token">
 <param name="pattern">(1|5|15)(*, *(1|5|15))*</param>
 </data>
</define>

or:

myListOfBytes = xsd:token {pattern = "(1|5|15)(*, *(1|5|15))*"}

Note the reliance on the whitespace processing of the base datatype (xsd:token collapses the whitespace). You

don't need to worry about leading and trailing whitespace that's trimmed; single occurrences of spaces were
tested with the * atom before and after the comma.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.5 Common Patterns

After this overview of the syntax used by pattern facets, let's see some common pattern facets you

may have to use (or adapt) in your schemas or just consider as examples.

9.5.1 String Datatypes

Regular expressions treat information in its textual form. This makes them an excellent mechanism
for constraining strings.

9.5.1.1 Unicode blocks

Unicode is one of XML's greatest assets. However, there are few applications able to process and
display all the characters of the Unicode set correctly and still fewer users able to read them! If you
need to check that your string datatypes belong to one (or more) Unicode blocks, you can use these
pattern facets:

<define name="BasicLatinToken">
 <data type="token">
 <param name="pattern">\p{IsBasicLatin}*</param>
 </data>
</define>

<define name="Latin-1Token">
 <data type="token">
 <param name="pattern">[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*</param>
 </data>
</define>

or:

BasicLatinToken = xsd:token {pattern = "\p{IsBasicLatin}*"}

Latin-1Token = xsd:token {pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"

Note that such pattern facets don't impose a character encoding on the document itself and that, for
instance, the Latin-1Token datatype validates instance documents using UTF-8, UTF-16, ISO-8869-

1 or another encoding. (This statement assumes the characters used in this string belong to the two
Unicode blocks BasicLatin and Latin-1Supplement.) In other words, even the lexical space reflects

some processing done by the parser, below the level you can control with a schema.

9.5.1.2 Counting words

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The pattern facet can limit the number of words in a text block. To do so, we will define an atom,
which is a sequence of one or more word characters (\w+) followed by one or more nonword
characters (\W+), and thus control the number of occurrences of this atom. If you're not very strict

about punctuation, you also need to allow an arbitrary number of nonword characters at the
beginning of our value and deal with the possibility of a value ending with a word (without further
separation). One way to avoid any ambiguity at the end of the string is to dissociate the last
occurrence of a word, making the trailing separator optional:

<define name="story100-200words">
 <data type="token">
 <param name="pattern">\W*(\w+\W+){99,199}\w+\W*</param>
 </data>
</define>

or:

story100-200words= xsd:token {pattern = "\W*(\w+\W+){99,199}\w+\W*"}

9.5.1.3 URIs

The xsd:anyURI datatype doesn't care about making relative URI references into absolute URI

references. In some cases, it is wise to require the usage of absolute URIs, which are easier to
process. Furthermore, it can also be useful for some applications to limit the accepted URI schemes,
which can easily be done by a set of pattern facets such as:

<define name="httpURI">
 <data type="anyURI">
 <param name="pattern">http://.*</param>
 </data>
</define>

or:

 httpURI= xsd:anyURI {pattern = "http://.*"}

9.5.2 Numeric and Float Types

While numeric types aren't strictly text, pattern facets can still be used to constrain their lexical

form and effectively, their content.

9.5.2.1 Leading zeros

Getting rid of leading zeros is quite simple but requires some precautions if you want to keep the
optional sign and the number itself. This can be done using pattern facets such as:

<define name="noLeadingZeros">
 <data type="integer">
 <param name="pattern">[+-]?([^0][0-9]*|0)</param>
 </data>
</define>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:

noLeadingZeros= xsd:integer {pattern = "[+-]?([^0][0-9]*|0)"}

Note that in this pattern facet, I chose to redefine all the lexical rules that apply to an integer. This
pattern facet gives the same lexical space applied to an xsd:token datatype as on an xsd:integer.

You can also rely on the expectations of the base datatype and write:

<define name="noLeadingZeros">
 <data type="integer">
 <param name="pattern">[+-]?([^0].*|0)</param>
 </data>
</define>

or:

noLeadingZeros= xsd:integer {pattern = "[+-]?([^0].*|0)"}

Relying on the base datatype in this manner can produce simpler pattern facets, but it can also be

more difficult to interpret because you have to combine the lexical rules of the base datatype to the
rules expressed by the pattern facet to understand the result.

9.5.2.2 Fixed format

The maximum number of digits can be fixed using xsd:totalDigits and xsd:fractionDigits.

However, these facets are only maximum numbers and work on the value space. If you want to fix
the format of the lexical space to be, for instance, DDDD.DD, you can write a pattern facet such as:

<define name="fixedDigits">
 <data type="decimal">
 <param name="pattern">[+-]?\.{4}\..{2}</param>
 </data>
</define>

or:

fixedDigits= xsd:decimal {pattern = "[+-]?\.{4}\..{2}"}

9.5.3 Datetimes

Dates and time have complex lexical representations. Patterns give you extra control over how they
are used.

9.5.3.1 Time zones

The time-zone support of W3C XML Schema is quite controversial and needs some additional
constraints to avoid comparison problems. These pattern facets can be kept relatively simple

because the syntax of the datetime is already checked by the schema validator, and only simple
additional checks need to be added. Applications that require their datetimes to specify a time zone

http://lib.ommolketab.ir
http://lib.ommolketab.ir

may use the following template that checks if the time part ends with a Z or contains a sign:

<define name="dateTimeWithTimezone">
 <data type="dateTime">
 <param name="pattern">.+T.+(Z|[+-].+)</param>
 </data>
</define>

or:

 dateTimeWithTimezone= xsd:dateTime {pattern = ".+T.+(Z|[+-].+)"}

Simpler applications that want to make sure that none of their datetime values specify a time zone
can simply check that the time part doesn't contain the characters + - or Z:

<define name="dateTimeWithoutTimezone">
 <data type="dateTime">
 <param name="pattern">.+T[^Z+-]+</param>
 </data>
</define>

or:

dateTimeWithoutTimezone= xsd:dateTime {pattern = ".+T[^Z+-]+"}

In these two datatypes, the T separator is used. This separator is convenient because no occurrences

of the signs can occur after this delimiter except in the time-zone definition. This delimiter would be
missing if you want to constrain dates instead of datetimes, but, in this case, you can detect the time
zones on their colon instead:

<define name="dateWithTimezone">
 <data type="date">
 <param name="pattern">.+[:Z].*</param>
 </data>
</define>
<define name="dateWithoutTimezone">
 <data type="date">
 <param name="pattern">[^:Z]</param>
 </data>
</define>

or:

dateWithTimezone= xsd:date {pattern = ".+[:Z].*"}
dateWithoutTimezone= xsd:date {pattern = "[^:Z]"}

Applications may also impose a set of time zones to use:

<define name="dateTimeInMyTimezones">
 <data type="dateTime">
 <param name="pattern">.+(\+02:00|\+01:00|\+00:00|Z|-04:00)</param>
 </data>
</define>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:

dateTimeInMyTimezones= xsd:dateTime {
 pattern = ".+(\+02:00|\+01:00|\+00:00|Z|-04:00)"
}

You can also constrain xsd:duration to a couple of subsets that can be reliably compared. The first

datatype consist of durations expressed only in months and years, and the second will consist of
durations expressed only in days, hours, minutes, and seconds. The criteria used for the test can be
the presence of a D (for day) or a T (the time delimiter). If neither character is detected, the

datatype uses only year and month parts. The test for the other type can't be based on the absence
of Y and M because there is also an M in the time part. You can test to ensure that, after an optional
sign, the first field is either the day part or the T delimiter:

<define name="YMduration">
 <data type="duration">
 <param name="pattern">[^TD]+</param>
 </data>
</define>
<define name="DHMSduration">
 <data type="duration">
 <param name="pattern">-?P((\d+D)|T).*</param>
 </data>
</define>

or:

YMduration= xsd:duration {pattern = "[^TD]+"}
DHMSduration= xsd:duration {pattern = "-?P((\d+D)|T).*"}

It may seem tricky, but this is a powerful tool for resolving complex problems simply.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Creating Building Blocks
You have seen how named patterns can give some modularity to our schemas and how they can
define recursive content models. In this chapter, I'll show how patterns can serve as building blocks
in libraries of content models that can then be assembled into complete schemas. To do so, I'll
introduce new RELAX NG patterns that control the inclusion of schemas.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 Using External References

External references offer a powerful but simple mechanism for including a pattern contained in an
external document at any location in a schema. This feature works through raw inclusion of the
referenced external document. The externalRef pattern is replaced by the content of the document.

That document may be a complete RELAX NG schema, though that isn't required, but a valid pattern
is required.

10.1.1 With Russian Doll Schemas

You may want to reuse existing schemas as a whole, without modifying any of their definitions.
Imagine, for instance, that we have defined two grammars in two schemas to describe our author
and character elements. First, create a RELAX NG schema, author.rng, to describe our authors:

 <?xml version="1.0" encoding="UTF-8"?>
 <element name="author" xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 <optional>
 <element name="born">
 <data type="date"/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <data type="date"/>
 </element>
 </optional>
 </element>

or, in the compact syntax, author.rnc:

 element author {
 attribute id { xsd:ID },
 element name { token },
 element born { xsd:date }?,
 element died { xsd:date }?
 }

Then create a second schema, character.rng, to describe our characters:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <?xml version="1.0" encoding="UTF-8"?>
 <element name="character" xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 <optional>
 <element name="born">
 <data type="date"/>
 </element>
 </optional>
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </element>

or, in the compact syntax, character.rnc:

 element character {
 attribute id { xsd:ID },
 element name { token },
 element born { xsd:date }?,
 element qualification { token }
 }

To combine these components into a schema describing our library, use externalRef patterns:

 <?xml version="1.0" encoding="UTF-8"?>
 <element name="library" xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <oneOrMore>
 <element name="book">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="token" datatypeLibrary=""/>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token" datatypeLibrary=""/>
 </element>
 <oneOrMore>
 <externalRef href="author.rng"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </oneOrMore>
 <zeroOrMore>
 <externalRef href="character.rng"/>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

In the compact syntax, externalRef patterns are represented using the keyword external:

 element library {
 element book {
 attribute id { xsd:ID },
 attribute available { xsd:boolean },
 element isbn { token },
 element title {
 attribute xml:lang { xsd:language },
 token
 },
 external "author.rnc" +,
 external "character.rnc" *
 }+
 }

The externalRef pattern performs direct inclusion: when a RELAX NG processor reads a schema, it
replaces externalRef with the contents of the referred document.

10.1.2 With Flat Schemas

The previous example used externalRef to include the content of Russian doll schemas, but this also

works with flat schemas. For instance, we might change our author schema, author.rng, to read:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <start>
 <ref name="element-author"/>
 </start>

 <define name="element-author">
 <element name="author">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 <optional>
 <ref name="element-died"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </optional>
 </element>
 </define>

 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>

 <define name="element-died">
 <element name="died">
 <data type="date"/>
 </element>
 </define>

 </grammar>

or the compact syntax, author.rnc, to:

 start = element-author
 element-author =
 element author {
 attribute id { xsd:ID },
 element-name,
 element-born?,
 element-died?
 }
 element-name = element name { token }
 element-born = element born { xsd:date }
 element-died = element died { xsd:date }

And our character schema, character.rng, to:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <start>
 <ref name="element-character"/>
 </start>

 <define name="element-character">
 <element name="character">
 <attribute name="id">
 <data type="ID"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </attribute>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 <ref name="element-qualification"/>
 </element>
 </define>

 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>

 <define name="element-qualification">
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 </grammar>

or, in the compact syntax, character.rnc:

 start = element-character
 element-character =
 element character {
 attribute id { xsd:ID },
 element-name,
 element-born?,
 element-qualification
 }
 element-name = element name { token }
 element-born = element born { xsd:date }
 element-qualification = element qualification { token }

The schema using externalRef and external in the previous section will have no difficulty using

these flat schemas in place of the Russian doll versions.

10.1.3 Embedding Grammars

This seems straightforward and logical, but why does this approach work? How come there is no
collision between the named patterns element-name and element-born defined in both author.rng
and character.rng? Why is it that the start patterns defined in author.rng and character.rng don't

http://lib.ommolketab.ir
http://lib.ommolketab.ir

apply to the schema for our library?

This works because of a RELAX NG feature called embedded grammars. As I have already mentioned,
externalRef patterns perform strict inclusion of the referred schema. Using our last example, this

means that our resulting schema is:

 <?xml version="1.0" encoding="UTF-8"?>
 <element name="library" xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <oneOrMore>
 <element name="book">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="token" datatypeLibrary=""/>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token" datatypeLibrary=""/>
 </element>
 <oneOrMore>
 <grammar>
 <start>
 <ref name="element-author"/>
 </start>
 <define name="element-author">
 <element name="author">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 <optional>
 <ref name="element-died"/>
 </optional>
 </element>
 </define>
 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>
 <define name="element-born">
 <element name="born">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <data type="date"/>
 </element>
 </define>
 <define name="element-died">
 <element name="died">
 <data type="date"/>
 </element>
 </define>
 </grammar>
 </oneOrMore>
 <zeroOrMore>
 <grammar>
 <start>
 <ref name="element-character"/>
 </start>
 <define name="element-character">
 <element name="character">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 <ref name="element-qualification"/>
 </element>
 </define>
 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>
 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>
 <define name="element-qualification">
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>
 </grammar>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

or, in the compact syntax:

 element library {
 element book {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attribute id { xsd:ID },
 attribute available { xsd:boolean },
 element isbn { token },
 element title {
 attribute xml:lang { xsd:language },
 token
 },
 grammar {
 start = element-author
 element-author =
 element author {
 attribute id { xsd:ID },
 element-name,
 element-born?,
 element-died?
 }
 element-name = element name { token }
 element-born = element born { xsd:date }
 element-died = element died { xsd:date }
 }+,
 grammar {
 start = element-character
 element-character =
 element character {
 attribute id { xsd:ID },
 element-name,
 element-born?,
 element-qualification
 }
 element-name = element name { token }
 element-born = element born { xsd:date }
 element-qualification = element qualification { token }
 }*
 }+
 }

Here we are thus embedding grammars within our schema, and they behave as patterns. In fact
there's even more than that: for RELAX NG, grammars are patterns! The meaning of these patterns
is twofold:

As far as validation is concerned, embedded grammars are equivalent to their start patterns:
the grammar describing the character element, for instance, matches instance nodes
corresponding to its start pattern-i.e., instance nodes matching the pattern element-
character, which is what was expected.

Grammars also set the scope of their definitions: start and named patterns defined in a

grammar are visible only in this grammar. Their scope (the location where they can be referred
to) is strictly limited to the grammar in which they are defined.

Applied to our example, the strict scoping of start and named patterns means that:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The born pattern of the grammar describing the character element can't be seen from its
parent grammar-i.e., the grammar describing the library and book elements. Nor can it be
seen from its sibling grammar-i.e., the grammar describing the author element. The same
applies to start patterns.

Unlike common usage among programming languages, the scopes of start and named
patterns don't include embedded grammars. start and named patterns defined in the grammar
describing the library and book elements aren't visible in the embedded grammars.

10.1.4 Referencing Patterns in Parent Grammars

This strict isolation of start and named patterns in their grammars is usually convenient when you

create references to external grammars. It means that external grammars can be written
independently without risk of collision or incompatibility. You can safely take any RELAX NG schema,
drop it into a new schema, and see it as a single pattern without any risk of collision.

On the other hand, that approach doesn't let you modify what you include (you will see how to do so
in the next section) nor even let you leverage a set of common named patterns. In our example,
since there are already \\ two definitions of element-name and element-born, it's a good thing that

they are both isolated in their grammars. If you were designing the same building blocks from
scratch, however, you'd probably want to have only one definition of these two elements that could
be shared by the author and character elements. In fact, if you followed the principle "if it's written
more than once, make it common," you'd also want to share the definition of the id attribute.

Parent references let you make an explicit reference to a pattern from the parent grammar-i.e., the
grammar embedding the current one. In this case, you need to add the definition that you want to
share in the top-level schema even if you don't use all of them in this schema:

<?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <start>
 <element name="library">
 <oneOrMore>
 <element name="book">
 <ref name="attribute-id"/>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="token" datatypeLibrary=""/>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token" datatypeLibrary=""/>
 </element>
 <oneOrMore>
 <externalRef href="author.rng"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </oneOrMore>
 <zeroOrMore>
 <externalRef href="character.rng"/>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </start>

 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>

 <define name="attribute-id">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 </define>

 </grammar>

or:

 start =
 element library {
 element book {
 attribute-id,
 attribute available { xsd:boolean },
 element isbn { token },
 element title {
 attribute xml:lang { xsd:language },
 token
 },
 external "author.rnc"+,
 external "character.rnc"*
 }+
 }
 element-name = element name { token }
 element-born = element born { xsd:date }
 attribute-id = attribute id { xsd:ID }

Now, to make a reference to the named patterns element-name, element-born, and attribute-id
in the embedded grammars, use a pattern called parentRef. This pattern makes author.rng look

like:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <ref name="element-author"/>
 </start>
 <define name="element-author">
 <element name="author">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <parentRef name="element-name"/>
 <optional>
 <parentRef name="element-born"/>
 </optional>
 <optional>
 <ref name="element-died"/>
 </optional>
 </element>
 </define>
 <define name="element-died">
 <element name="died">
 <data type="date"/>
 </element>
 </define>
 </grammar>

and the character.rng schema now looks like:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <ref name="element-character"/>
 </start>
 <define name="element-character">
 <element name="character">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <parentRef name="element-name"/>
 <optional>
 <parentRef name="element-born"/>
 </optional>
 <ref name="element-qualification"/>
 </element>
 </define>
 <define name="element-qualification">
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </grammar>

The parentRef pattern is translated to a parent keyword in the compact syntax. The author.rnc

schema looks like:

 start = element-author
 element-author =
 element author {
 attribute id { xsd:ID },
 parent element-name,
 parent element-born?,
 element-died?
 }
 element-died = element died { xsd:date }

while the character.rnc schema looks like:

 start = element-character
 element-character =
 element character {
 attribute id { xsd:ID },
 parent element-name,
 parent element-born?,
 element-qualification
 }
 element-qualification = element qualification { token }

You are using these features in the context of multiple schema documents, but the semantic of the
externalRef pattern itself remains the same. This schema is equivalent to the same schema, with its
externalRef patterns expanded in a single monolithic schema with two embedded grammars:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="library">
 <oneOrMore>
 <element name="book">
 <ref name="attribute-id"/>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="token" datatypeLibrary=""/>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token" datatypeLibrary=""/>
 </element>
 <oneOrMore>
 <grammar>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <start>
 <ref name="element-author"/>
 </start>
 <define name="element-author">
 <element name="author">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <parentRef name="element-name"/>
 <optional>
 <parentRef name="element-born"/>
 </optional>
 <optional>
 <ref name="element-died"/>
 </optional>
 </element>
 </define>
 <define name="element-died">
 <element name="died">
 <data type="date"/>
 </element>
 </define>
 </grammar>
 </oneOrMore>
 <zeroOrMore>
 <grammar>
 <start>
 <ref name="element-character"/>
 </start>
 <define name="element-character">
 <element name="character">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 <parentRef name="element-name"/>
 <optional>
 <parentRef name="element-born"/>
 </optional>
 <ref name="element-qualification"/>
 </element>
 </define>
 <define name="element-qualification">
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>
 </grammar>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </start>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>
 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>
 <define name="attribute-id">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 </define>
 </grammar>

or, in the compact syntax:

 start =
 element library {
 element book {
 attribute-id,
 attribute available { xsd:boolean },
 element isbn { token },
 element title {
 attribute xml:lang { xsd:language },
 token
 },
 grammar {
 start = element-author
 element-author =
 element author {
 attribute id { xsd:ID },
 parent element-name,
 parent element-born?,
 element-died?
 }
 element-died = element died { xsd:date }
 }+,
 grammar {
 start = element-character
 element-character =
 element character {
 attribute id { xsd:ID },
 parent element-name,
 parent element-born?,
 element-qualification
 }
 element-qualification = element qualification { token }
 }*
 }+

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 element-name = element name { token }
 element-born = element born { xsd:date }
 attribute-id = attribute id { xsd:ID }

You can see how start and named patterns have been defined in each of the three grammars

composing this schema:

element-died is defined in the grammar defining the author element and can be used only in

this grammar.

Similarly, element-qualification is defined in the grammar defining the character element

and can be used only there.

element-name, element-born, and attribute-id are defined in the top-level grammar. They
can be used in this grammar through normal references (i.e., ref patterns) and can also be

used in its child grammars (i.e., the grammars that are directly embedded into this one, using a
parentRef pattern).

There are two more things to note about the parentRef pattern:

If the depth of nesting of grammar is higher than two, you may run into trouble because you
can make a reference only to your immediate parent grammar, not to the other grammar
ancestors. The RELAX NG working group has considered this issue but hasn't found any real-
world use case for generalizing parentRef patterns to greater depths of nesting. If you find

one, they will probably welcome a mail on the subject! In practice, if you need to do so, you
can, as a workaround, define named patterns in the intermediary grammars that can act as
proxies.

Now that we've added the parentRef patterns to our two schemas, author.rng and
character.rng can't be used as standalone schemas for validating documents with author or
character root elements. Using them now requires that they be embedded into grammars that

provide the definitions for the named patterns they are using to be complete and operational.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 Merging Grammars

In the preceding sections, you have seen how an external grammar can be used as a single pattern.
This is useful in cases in which you want to include a content model described by an external schema
at a single point, not unlike when you mount a Unix filesystem. The description contained in the
external grammar is mounted at the point where you make your reference.

The main drawback to this approach is that you can't individually reuse the definitions contained in
the external schema. To do so, you need a new pattern, with a different meaning, which will let you
control how two grammars are merged into a single one.

10.2.1 Merging Without Redefinition

In the simplest case, you will want to reuse patterns defined in common libraries of patterns without
modifying them. Let's say we have defined a grammar with some common patterns, common.rng,
which can be reused in many different schemas, such as:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>

 <define name="attribute-id">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 </define>

 <define name="content-person">
 <ref name="attribute-id"/>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </define>

 </grammar>

or common.rnc, in the compact syntax:

 element-name = element name { token }
 element-born = element born { xsd:date }
 attribute-id = attribute id { xsd:ID }
 content-person = attribute-id, element-name, element-born?

These schemas are obviously not meant to be used as standalone schemas: they have no start

patterns and would be invalid. However, they contain definitions that can be used to write the
schema of our library. To employ these definitions, use include patterns and provide a supporting

framework. In the XML syntax, this looks like:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <include href="common.rng"/>

 <start>
 <element name="library">
 <oneOrMore>
 <element name="book">
 <ref name="attribute-id"/>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="token" datatypeLibrary=""/>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token" datatypeLibrary=""/>
 </element>
 <oneOrMore>
 <element name="author">
 <ref name="content-person"/>
 <optional>
 <ref name="element-died"/>
 </optional>
 </element>
 </oneOrMore>
 <zeroOrMore>
 <element name="character">
 <ref name="content-person"/>
 <ref name="element-qualification"/>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </start>

 <define name="element-died">
 <element name="died">
 <data type="date"/>
 </element>
 </define>

 <define name="element-qualification">
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 </grammar>

The include pattern is translated to an include keyword in the compact syntax:

 include "common.rnc"
 start =
 element library {
 element book {
 attribute-id,
 attribute available { xsd:boolean },
 element isbn { token },
 element title {
 attribute xml:lang { xsd:language },
 token
 },
 element author {
 content-person,
 element-died?
 }+,
 element character {
 content-person,
 element-qualification
 }*
 }+
 }
 element-died = element died { xsd:date }
 element-qualification = element qualification { token }

Note that the name of the include pattern is slightly misleading. The include pattern here doesn't
include the external grammar directly. (You have seen that this was the job of the externalRef

pattern.) Instead, it includes the content of the external grammar, performing a merge of both
grammars. This is exactly what you need; it allows you to make references to the named patterns
defined in the common.rng grammar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The result of this inclusion is thus equivalent to the following monolithic schema:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <!-- Content of the included grammar -->
 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>
 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>
 <define name="attribute-id">
 <attribute name="id">
 <data type="ID"/>
 </attribute>
 </define>
 <define name="content-person">
 <ref name="attribute-id"/>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 </define>
 <!-- End of the included grammar -->
 <start>
 <element name="library">
 <oneOrMore>
 <element name="book">
 <ref name="attribute-id"/>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="token" datatypeLibrary=""/>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token" datatypeLibrary=""/>
 </element>
 <oneOrMore>
 <element name="author">
 <ref name="content-person"/>
 <optional>
 <ref name="element-died"/>
 </optional>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 </oneOrMore>
 <zeroOrMore>
 <element name="character">
 <ref name="content-person"/>
 <ref name="element-qualification"/>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </start>
 <define name="element-died">
 <element name="died">
 <data type="date"/>
 </element>
 </define>
 <define name="element-qualification">
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>
 </grammar>

or, in the compact syntax:

 element-name = element name { token }
 element-born = element born { xsd:date }
 attribute-id = attribute id { xsd:ID }
 content-person = attribute-id, element-name, element-born?

 start =
 element library {
 element book {
 attribute-id,
 attribute available { xsd:boolean },
 element isbn { token },
 element title {
 attribute xml:lang { xsd:language },
 token
 },
 element author {
 content-person,
 element-died?
 }+,
 element character {
 content-person,
 element-qualification
 }*
 }+
 }
 element-died = element died { xsd:date }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element-qualification = element qualification { token }

10.2.2 Merging and Replacing Definitions

In the previous example, we were lucky. The definitions of the common patterns included matched
exactly what we needed. In the real world, this isn't always the case. It is quite handy to be able to
replace definitions found in the grammar that we're including when they might conflict with other
aspects of our schema design.

Let's say that we have already written this very flat version of our schema, called library.rng:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <start>
 <ref name="element-library"/>
 </start>

 <define name="element-library">
 <element name="library">
 <zeroOrMore>
 <ref name="element-book"/>
 </zeroOrMore>
 </element>
 </define>

 <define name="element-book">
 <element name="book">
 <ref name="attribute-id"/>
 <ref name="attribute-available"/>
 <ref name="element-isbn"/>
 <ref name="element-title"/>
 <oneOrMore>
 <ref name="element-author"/>
 </oneOrMore>
 <zeroOrMore>
 <ref name="element-character"/>
 </zeroOrMore>
 </element>
 </define>

 <define name="element-author">
 <element name="author">
 <ref name="content-person"/>
 <optional>
 <ref name="element-died"/>
 </optional>
 </element>
 </define>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <define name="element-character">
 <element name="character">
 <ref name="content-person"/>
 <ref name="element-qualification"/>
 </element>
 </define>

 <define name="element-isbn">
 <element name="isbn">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 <define name="element-title">
 <element name="title">
 <ref name="attribute-xml-lang"/>
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 <define name="attribute-xml-lang">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 </define>

 <define name="attribute-available">
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 </define>

 <define name="element-name">
 <element name="name">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 <define name="element-born">
 <element name="born">
 <data type="date"/>
 </element>
 </define>

 <define name="element-died">
 <element name="died">
 <data type="date"/>
 </element>
 </define>

 <define name="attribute-id">
 <attribute name="id">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <data type="ID"/>
 </attribute>
 </define>

 <define name="content-person">
 <ref name="attribute-id"/>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 </define>

 <define name="element-qualification">
 <element name="qualification">
 <data type="token" datatypeLibrary=""/>
 </element>
 </define>

 </grammar>

or, in the compact syntax, library.rnc:

 start = element-library
 element-library = element library { element-book* }
 element-book =
 element book {
 attribute-id,
 attribute-available,
 element-isbn,
 element-title,
 element-author+,
 element-character*
 }
 element-author = element author { content-person, element-died? }
 element-character =
 element character { content-person, element-qualification }
 element-isbn = element isbn { token }
 element-title = element title { attribute-xml-lang, token }
 attribute-xml-lang = attribute xml:lang { xsd:language }
 attribute-available = attribute available { xsd:boolean }
 element-name = element name { token }
 element-born = element born { xsd:date }
 element-died = element died { xsd:date }
 attribute-id = attribute id { xsd:ID }
 content-person = attribute-id, element-name, element-born?
 element-qualification = element qualification {token}

This might be a good schema to use in production to validate incoming documents from a variety of
patterns, so you wouldn't want to modify it. However, you might have a new application that doesn't
work at the level of a library but only at the level of a book. This application needs to validate
instance documents with book root elements. Of course you wouldn't want to copy and paste the

definition of our existing schema into another one because that would mean maintaining two different

http://lib.ommolketab.ir
http://lib.ommolketab.ir

versions with similar content.

This is a case in which you would want to redefine the start element of our schema. To do so, use
an include pattern, embedding the definitions that must be substituted for the ones from the
included grammar in the include pattern itself:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="library.rng">
 <start>
 <ref name="element-book"/>
 </start>
 </include>
 </grammar>

or:

 include "library.rnc" {
 start = element-book
 }

Note how the new definitions are embedded directly in the include pattern; the content of the
include pattern is where all the redefinitions must be written. This short schema includes all the
definitions from library.rng and redefines the start pattern. It validates instance documents with a
book root element. Since we are performing an inclusion instead of a copy, we will inherit any

modifications made to library.rng.

We have been able to redefine the start pattern, but each named pattern can also be redefined
using the same syntax. Let's say for instance that I am not happy with the definition of the element-
name pattern and want to check that the name is shorter than 80 characters. If I don't want to (or

can't) modify the original schema, I can include it and redefine this pattern:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <include href="library.rng">
 <define name="element-name">
 <element name="name">
 <data type="token">
 <param name="maxLength">80</param>
 </data>
 </element>
 </define>
 </include>
 </grammar>

or:

 include "library.rnc" {
 element-name = element name { xsd:token{maxLength = "80"} }
 }

Here again, the grammar of library.rnc is merged with the grammar of the new schema (which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

happens to be empty) but before the merge, the definitions that are embedded in the include

pattern are substituted to the original definitions.

The new definition can be as different from the original one as I want. While it might not always be
good practice, I can, for instance, redefine attribute-available and replace the attribute by an

element:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <include href="library.rng">
 <define name="attribute-available">
 <element name="available">
 <data type="boolean"/>
 </element>
 </define>
 </include>
 </grammar>

or:

 include "library.rnc" {
 attribute-available = element available { xsd:boolean }
 }

This seems rather confusing (the named pattern is called attribute-available, and it's now

describing an element), but the schema is perfectly valid and describes instance documents in which
the available attribute is replaced by an available element. The same approach can also remove

this attribute:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="library.rng">
 <define name="attribute-available">
 <empty/>
 </define>
 </include>
 </grammar>

or:

 include "library.rnc" {
 attribute-available = empty
 }

Note how this uses a new pattern named empty. This pattern matches only text nodes made of

whitespace, and it has the same effect as if the named pattern had been removed from the schema.

The include patterns have the effect of merging the content of their grammar, after replacement of

the redefined patterns, with the content of the current grammar. This means that these redefinitions
can make references to any definition from either the including or the included grammars. If you
want, for instance, to add zero or more email addresses to the author element while retaining a flat

structure, write:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <include href="library.rng">

 <define name="element-author">
 <element name="author">
 <ref name="content-person"/>
 <optional>
 <ref name="element-died"/>
 </optional>
 <zeroOrMore>
 <ref name="element-email"/>
 </zeroOrMore>
 </element>
 </define>

 </include>

 <define name="element-email">
 <element name="email">
 <data type="anyURI">
 <param name="pattern">mailto:.*</param>
 </data>
 </element>
 </define>
 </grammar>

or:

 include "library.rnc" {
 element-author =
 element author { content-person, element-died?, element-email* }
 }
 element-email =
 element email {
 xsd:anyURI { pattern = "mailto:.*" }
 }

Here the redefinition of the element-author pattern is making three references to three named
patterns. content-person and element-died are defined in library.rng-i.e., the grammar that is
included. The third, element-email, is defined in the top-level grammar-i.e., the including

grammar.

10.2.3 Combining Definitions

When I've replaced the definitions in previous examples, the original definition was completely
replaced by the new one. This can make the maintenance of these schemas more complicated than it
should be. In the last example, if the included schema (library.rng) updated and the definition of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element-author changed to add a new element to include a telephone number, this addition would
be lost if I didn't add it explicitly in the including schema. As far as the element-author pattern is

concerned, this redefinition is no better than a copy and paste. A mechanism more similar to
inheritance would help with this.

To keep the definition from the included grammar, combine a new definition with the existing one
instead of replacing it. Unlike redefinition, the combination of start and named patterns doesn't take
place in the include pattern itself but rather is done at the level of the including grammar. It isn't

even necessary to include a grammar to combine definitions, but the main interest of combining
definitions is to combine new definitions with existing ones from included grammars.

There are two options for combining definitions: choice and interleave.

10.2.3.1 Combining by choice

When definitions are combined by choice, the result is similar to using a choice pattern between the

content of the definitions. A use case for this combination would be to define a schema accepting
either a library or a book element from the schema used in the previous section. In the XML
syntax, combining by choice is done through a combine attribute:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="library.rng"/>
 <start combine="choice">
 <ref name="element-book"/>
 </start>
</grammar>

In the compact syntax, combining by choice uses the |= operator (instead of =) in the definition:

include "library.rnc"
start |= element-book

Note that in both cases, the combination is done outside the inclusion. Its effect is to add a choice
between the content of the start pattern. The definition becomes equivalent to:

<start>
 <choice>
 <ref name="element-library"/>
 <ref name="element-book"/>
 </choice>
</start>

or:

start = element-library | element-book

The logic behind this combination is to allow the content model corresponding to the original pattern
while also allowing different content to appear. This is different from the logic behind pattern
redefinitions, in which the original pattern is replaced by a new one.

Named patterns can also be combined. If you want to accept either an available attribute or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element, you can write:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <include href="library.rng"/>

 <define name="attribute-available" combine="choice">
 <element name="available">
 <data type="boolean"/>
 </element>
 </define>

</grammar>

or:

include "library.rnc"
attribute-available |= element available { xsd:boolean }

Another interesting and common case involves making this attribute optional, by combining this
pattern by choice with an empty pattern:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">

 <include href="library.rng"/>

 <define name="attribute-available" combine="choice">
 <empty/>
 </define>

 </grammar>

or:

include "library.rnc"
attribute-available |= empty

Adding a choice between a defined component and nothingness may seem like a roundabout way to
make the component optional, but it works with a minimum need to modify included schemas.

10.2.3.2 Combining by interleave

You have seen how an "old" pattern can be replaced by a new one using pattern redefinition and also
how to specify a choice between an old definition and a new one using a combination by choice. The
last option is to combine by interleave. The logic here is to allow pieces to be added to the original
content model and to let these pieces be interleaved-i.e., added anywhere before, after, and
between the subpatterns of the original pattern.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Earlier, I added an email element to the content of the author element using a redefinition. You can
also use a combination by interleave to add this email pattern to the content-person pattern:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <include href="library.rng"/>

 <define name="content-person" combine="interleave">
 <zeroOrMore>
 <ref name="element-email"/>
 </zeroOrMore>
 </define>

 <define name="element-email">
 <element name="email">
 <data type="anyURI">
 <param name="pattern">mailto:.*</param>
 </data>
 </element>
 </define>

</grammar>

or, in the compact syntax:

include "library.rnc"
content-person &= element-email *
element-email =
 element email {
 xsd:anyURI { pattern = "mailto:.*" }
 }

The effect of this combination by interleave is that the content-model pattern is now equivalent to
an interleave pattern embedding both the original and the new definition:

<define name="content-person">
 <interleave>
 <group>
 <ref name="attribute-id"/>
 <ref name="element-name"/>
 <optional>
 <ref name="element-born"/>
 </optional>
 </group>
 <zeroOrMore>
 <ref name="element-email"/>
 </zeroOrMore>
 </interleave>
</define>

or:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

content-person =
 (attribute-id, element-name, element-born?) & element-email *

This definition allows any number of email elements before the name element, between the name
element and the born element, and after the born element.

The logic here is to allow extension by adding new content anywhere in the original definition. This is
neat and safe if the applications that read the documents are coded to ignore what they don't know.
In our example, if I design an application to read the original content model, this application will be
just fine with the new content model if it ignores the email elements that have been added.

You've seen how a combination by choice can make a pattern optional. Combination by interleave
can't reverse the process, but it can make a pattern forbidden. If you don't want to end up with a
schema that won't validate any instance document, you must be careful when working with a pattern
to which reference is made optional, such as the element-died pattern:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="library.rng"/>
 <define name="element-died" combine="interleave">
 <notAllowed/>
 </define>
</grammar>

or:

include "library.rnc"
element-died &= notAllowed

Here, we interleave a new pattern, notAllowed, with the content of the named pattern element-
died. The effect of this operation is that this pattern will no longer match any content model. This is
OK because the reference to the element-died in the definition of the author element is optional.
The effect is that a document can be valid per the resulting schema only if there is no died element.

What about combining start patterns by interleave? This may seem weird or even illegal because
you've seen start patterns in a context in which they define the root element of XML documents. A

well-formed XML document can have only one root element, but schemas can permit a variety of
different root elements in their models.

Another example in which combining by interleave is handy and very widely used is if you add
attributes to a named pattern. In this case, the unordered interleave doesn't make any difference
because attributes are always unordered.

10.2.4 Why Can't Definitions Be Defined by Group?

You have seen how to combine definitions by interleave and choice, and because group is the third

compositor, you might be tempted to combine definitions by group. Unfortunately, definitions of
named patterns are declarations. Since the relative order of these declarations isn't considered
significant, combining definitions by group wouldn't give reliable results and has thus been forbidden.
This issue doesn't arise with choice and interleave compositors, because the relative order of their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

children elements isn't significant for a schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.3 A Real-World Example: XHTML 2.0

Let's leave our library for a while to look at XHTML. XHTML modularization breaks the monolithic
XHTML 1.0 DTD into a set of independent modules described as in independent DTDs. Those modules
can be combined to create as many flavors of XHTML as people may want. However, this has proven
to be one of the most challenging exercises for schema languages. In their Working Drafts, the W3C
HTML Working Group, the group in charge of XHTML, has published a set of RELAX NG schemas to
describe XHTML 2.0. Its many interconnected modules illustrate the flexibility of RELAX NG to
perform this type of exercises.

The solution chosen by XHTML 2.0 (see
http://www.w3.org/TR/xhtml2/xhtml20_relax.html#a_xhtml20_relaxng for more detail) is to define
each module in its own schema and then include all these modules in a top-level schema (called the
RELAX NG XHTML 2.0 Driver). The driver schema looks like this:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar ns="http://www.w3.org/2002/06/xhtml2"
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:x="http://www.w3.org/1999/xhtml">

 <x:h1>RELAX NG schema for XHTML 2.0</x:h1>

 <x:pre>
 Copyright ©2003 W3C® (MIT, ERCIM, Keio), All Rights Reserved.

 Editor: Masayasu Ishikawa <mimasa@w3.org>
 Revision: $Id: ch10.xml,v 1.7 2004/01/05 20:47:21 becki Exp $

 Permission to use, copy, modify and distribute this RELAX NG schema
 for XHTML 2.0 and its accompanying documentation for any purpose and
 without fee is hereby granted in perpetuity, provided that the above
 copyright notice and this paragraph appear in all copies. The copyright
 holders make no representation about the suitability of this RELAX NG
 schema for any purpose.

 It is provided "as is" without expressed or implied warranty.
 For details, please refer to the W3C software license at:

 <x:a href="http://www.w3.org/Consortium/Legal/copyright-software">
 http://www.w3.org/Consortium/Legal/copyright-software</x:a>
 </x:pre>

 <div>
 <x:h2>XHTML 2.0 modules</x:h2>

 <x:h3>Attribute Collections Module</x:h3>
 <include href="xhtml-attribs-2.rng"/>

http://www.w3.org/TR/xhtml2/xhtml20_relax.html#a_xhtml20_relaxng
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <x:h3>Structure Module</x:h3>
 <include href="xhtml-struct-2.rng"/>

 <x:h3>Block Text Module</x:h3>
 <include href="xhtml-blktext-2.rng"/>

 <x:h3>Inline Text Module</x:h3>
 <include href="xhtml-inltext-2.rng"/>

 <x:h3>Hypertext Module</x:h3>
 <include href="xhtml-hypertext-2.rng"/>

 <x:h3>List Module</x:h3>
 <include href="xhtml-list-2.rng"/>

 <x:h3>Linking Module</x:h3>
 <include href="xhtml-link-2.rng"/>

 <x:h3>Metainformation Module</x:h3>
 <include href="xhtml-meta-2.rng"/>

 <x:h3>Object Module</x:h3>
 <include href="xhtml-object-2.rng"/>

 <x:h3>Scripting Module</x:h3>
 <include href="xhtml-script-2.rng"/>

 <x:h3>Style Attribute Module</x:h3>
 <include href="xhtml-inlstyle-2.rng"/>

 <x:h3>Style Sheet Module</x:h3>
 <include href="xhtml-style-2.rng"/>

 <x:h3>Tables Module</x:h3>
 <include href="xhtml-table-2.rng"/>

 <x:h3>Support Modules</x:h3>

 <x:h4>Datatypes Module</x:h4>
 <include href="xhtml-datatypes-2.rng"/>

 <x:h4>Events Module</x:h4>
 <include href="xhtml-events-2.rng"/>

 <x:h4>Param Module</x:h4>
 <include href="xhtml-param-2.rng"/>

 <x:h4>Caption Module</x:h4>
 <include href="xhtml-caption-2.rng"/>
 </div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <div>
 <x:h2>XML Events module</x:h2>
 <include href="xml-events-1.rng"/>
 </div>

 <div>
 <x:h2>Ruby module</x:h2>
 <include href="full-ruby-1.rng"/>
 </div>

 <div>
 <x:h2>XForms module</x:h2>
 <x:p>To-Do: work out integration of XForms</x:p>
 <!--include href="xforms-1.rng"/-->
 </div>

 </grammar>

Don't worry for the moment about the ns attribute (Chapter 11), nor about the foreign (non-RELAX
NG) namespaces and the div elements (Chapter 13). One of these modules, the Structure Module,
defines the basic structure of a XHTML 2.0 document. For instance, the head element is defined as:

<define name="head">
 <element name="head">
 <ref name="head.attlist"/>
 <ref name="head.content"/>
 </element>
 </define>

 <define name="head.attlist">
 <ref name="Common.attrib"/>
 </define>

 <define name="head.content">
 <ref name="title"/>
 </define>

or:

head = element head { head.attlist, head.content }
 head.attlist = Common.attrib
 head.content = title

This example shows another design decision. For each element, the XHTML Working Group decided to
define a named pattern with the same name as the element (head) and two separated named
patterns to define the list of its attributes (head.attlist) and its content (head.content). This

design decision makes it easy for other modules to add new elements and attributes just by
combining these named patterns by interleave. For instance, the Metainformation Module adds a
meta element to the content of the head element by combining via interleave the head.content
pattern with zero or more meta elements:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:x="http://www.w3.org/1999/xhtml">

 <x:h1>Metainformation Module</x:h1>

 <div>
 <x:h2>The meta element</x:h2>

 <define name="meta">
 <element name="meta">
 <ref name="meta.attlist"/>
 <choice>
 <ref name="Inline.model"/>
 <oneOrMore>
 <ref name="meta"/>
 </oneOrMore>
 </choice>
 </element>
 </define>

 <define name="meta.attlist">
 <ref name="Common.attrib"/>
 <optional>
 <attribute name="name">
 <ref name="NMTOKEN.datatype"/>
 </attribute>
 </optional>
 </define>
 </div>

 <define name="head.content" combine="interleave">
 <zeroOrMore>
 <ref name="meta"/>
 </zeroOrMore>
 </define>

 </grammar>

or:

 namespace x = "http://www.w3.org/1999/xhtml"

 meta = element meta { meta.attlist, (Inline.model | meta+) }
 meta.attlist =
 Common.attrib,
 attribute name { NMTOKEN.datatype }?
 head.content &= meta*

The fact that the content models are combined by interleave guarantees independence between
modules: you can add or remove modules independently of each other. It also guarantees the
independence of the resulting schema over the order in which the different modules are included in
the top-level schema; you can switch the Metainformation Module and the Scripting Module, which
both add content into the head element, without any impact on the set of valid documents.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This modularity fully relies on combinations by interleave and RELAX NG would have no easy solution
if you want to add content, for instance, to what has already be defined in the head element. Of
course, if you're interested only in the Structure Module and want to add a foo element after the
title element, you can redefine head.content:

 <include href="xhtml-struct-2.rng">
 <define name="head.content">
 <ref name="title"/>
 <element name="foo">
 <empty/>
 </element>
 </define>
 </include>

However, this doesn't take into account all the content added by the other modules into the head

element.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.4 Other Options

What if you really need a feature that's missing in RELAX NG to create building blocks? What if, for
instance, you need to reuse a name class or a datatype parameter defined once and only once in
multiple locations of a schema?

If this were an absolute requirement, which isn't often the case, you would have to use non-RELAX
NG tools or features. RELAX NG has an advantage over DTDs or W3C XML Schema in that there are
two possible syntaxes, leaving the option to work with either XML mechanisms with the XML syntax
or plaintext tools with the compact syntax.

There is no limit to the tools to produce our result, but let's set up a possible use case and some
examples of implementations.

10.4.1 A Possible Use Case

Let's just say you want to specify the set of possible characters in your documents and that you want
to implement this rule in your RELAX NG schemas. The pattern you might have in mind to perform
this restriction could be the one that's an example in Chapter 9. It's not very complex, but not very
simple either:

 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"

Of course, you might want to easily update it if you had to. You wouldn't want to have to copy it in
each datatype definition, and you might want to use this pattern in different contexts over different
datatypes and eventually combine it with other parameters.

10.4.2 XML Tools

XML parsed entities (internal or external and in the internal DTD or in an external DTD) may be used
in the above case. Using internal entities in an internal DTD, you can, for instance, write:

 <?xml version = '1.0' encoding = 'utf-8' ?>
 <!DOCTYPE element [[
 <!ENTITY validChars "<param name=
'pattern'>[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*</param>">
]>
 <element xmlns="http://relaxng.org/ns/structure/1.0" name="library"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <oneOrMore>
 <element name="book">
 <attribute name="id">
 <data type="NMTOKEN">&validChars;</data>
 </attribute>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="NMTOKEN">&validChars;</data>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token">&validChars;</data>
 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id">
 <data type="NMTOKEN">&validChars;</data>
 </attribute>
 <element name="name">
 <data type="token">&validChars;</data>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <optional>
 <element name="died">
 <data type="date"/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id">
 <data type="NMTOKEN">&validChars;</data>
 </attribute>
 <element name="name">
 <data type="token">&validChars;</data>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <element name="qualification">
 <data type="token">&validChars;</data>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

The trickery here is the definition of an entity for the parameter:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ENTITY validChars "<param name=
'pattern'>[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*</param>">

And to use this entity where you need it; for instance:

<data type="token">&validChars;</data>

What about the compact syntax? The compact syntax doesn't support entities, but if you convert this
schema into the compact syntax (using Trang), you get:

 element library {
 element book {
 attribute id {
 xsd:NMTOKEN {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"
 }
 },
 attribute available { xsd:boolean },
 element isbn {
 xsd:NMTOKEN {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"
 }
 },
 element title {
 attribute xml:lang { xsd:language },
 xsd:token {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"
 }
 },
 element author {
 attribute id {
 xsd:NMTOKEN {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"
 }
 },
 element name {
 xsd:token {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"
 }
 },
 element born { xsd:date },
 element died { xsd:date }?
 }*,
 element character {
 attribute id {
 xsd:NMTOKEN {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"
 }
 },
 element name {
 xsd:token {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 },
 element born { xsd:date },
 element qualification {
 xsd:token {
 pattern = "[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*"
 }
 }
 }*
 }+
 }

This means that as long as you keep the XML version as your reference for this schema, you can
easily get the compact syntax but can't go the other way round (compact to XML) without losing the
entity definition. The fact that this example uses an XML mechanism has broken the round-tripping
between the two syntaxes.

Other XML tools (such as XInclude or writing the schema as a XSLT transformation) can be used with
pretty much the same effect. Depending on the case, these solutions are supported by the parser
that parses the RELAX NG schema (this is the case with out internal entity) or requires a first phase
during which your schema is compiled into a fully compatible RELAX NG schema.

For an example, let's use XSLT. When you need to do simple stuff, XSLT has a simplified syntax in
which the xsl:stylesheet and xsl:template elements may be omitted (exactly like the RELAX NG
grammar and start elements may be omitted in a simple RELAX NG schema). This means that if we

just want to use XSLT for its simplest features (here only to expend the values of variables), we can
write our schema as:

 <?xml version = '1.0' encoding = 'utf-8' ?>
 <element xmlns="http://relaxng.org/ns/structure/1.0" name="library"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xsl:version="1.0">
 <xsl:variable name="validChars">
 <param name='pattern'>[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*</param>
 </xsl:variable>
 <oneOrMore>
 <element name="book">
 <attribute name="id">
 <data type="NMTOKEN"><xsl:copy-of select="$validChars"/></data>
 </attribute>
 <attribute name="available">
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="NMTOKEN"><xsl:copy-of select="$validChars"/></data>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token"><xsl:copy-of select="$validChars"/></data>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id">
 <data type="NMTOKEN"><xsl:copy-of select="$validChars"/></data>
 </attribute>
 <element name="name">
 <data type="token"><xsl:copy-of select="$validChars"/></data>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <optional>
 <element name="died">
 <data type="date"/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id">
 <data type="NMTOKEN"><xsl:copy-of select="$validChars"/></data>
 </attribute>
 <element name="name">
 <data type="token"><xsl:copy-of select="$validChars"/></data>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <element name="qualification">
 <data type="token"><xsl:copy-of select="$validChars"/></data>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

Applied to any XML document, this transformation produces a RELAX NG schema in which the XSLT
instruction:

<xsl:copy-of select="$validChars"/>

is replaced by the content of the variable $validChars:

<param name=
'pattern'>[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*</param>

10.4.3 Text Tools

Text tools are somewhat more limited. You can use only tools that, like the XSLT example just

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown, require a first phase to produce a schema. One of the first tools that comes to mind to people
familiar with C programming is the C preprocessor (CPP). The syntax for defining a text replacement
with CPP is #define and references are done using the name of the definition. Something equivalent

to our two previous examples could thus be:

 #define VALIDCHARS pattern = '[\p{IsBasicLatin}\p{IsLatin-1Supplement}]*'
 element library {
 element book {
 attribute id {
 xsd:NMTOKEN {
 VALIDCHARS
 }
 },
 attribute available { xsd:boolean },
 element isbn {
 xsd:NMTOKEN {
 VALIDCHARS
 }
 },
 element title {
 attribute xml:lang { xsd:language },
 xsd:token {
 VALIDCHARS
 }
 },
 element author {
 attribute id {
 xsd:NMTOKEN {
 VALIDCHARS
 }
 },
 element name {
 xsd:token {
 VALIDCHARS
 }
 },
 element born { xsd:date },
 element died { xsd:date }?
 }*,
 element character {
 attribute id {
 xsd:NMTOKEN {
 VALIDCHARS
 }
 },
 element name {
 xsd:token {
 VALIDCHARS
 }
 },
 element born { xsd:date },
 element qualification {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xsd:token {
 VALIDCHARS
 }
 }
 }*
 }+
 }

When compiled through CPP, this gives a fully valid RELAX NG schema (compact syntax) in which the
occurrences of VALIDCHARS have been replaced by the parameter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Namespaces
Namespaces can be both simple and complicated. The very first example schema in this book
included an attribute from the xml:lang namespace and it didn't seem like a big deal. However, if

you think about it more carefully, you'll see that namespaces present two different challenges to
schema languages. The first is that schema languages need to provide a way to specify which
namespaces apply to the elements and attributes that are described; the second is how to cope with
extensibility, one of the objectives of XML namespaces.

In this chapter, we'll take a closer look at these two challenges and how RELAX NG addresses them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 A Ten-Minute Guide to XML Namespaces

Let's examine the motivations behind XML namespaces. The first motivation is to have namespaces
replace the formal public identifier (FPI), an inheritance from SGML. These identifiers provide a way
to identify which vocabulary, or set of names, is being used in a document. The XML/SGML way of
identifying the vocabulary used in our library would be to add a public identifier to the document type
declaration such as:

<?xml version="1.0"?>
<!DOCTYPE library PUBLIC "-//ERICVANDERVLIST//DTD for library//EN" "library.dtd"/>
<library>
...
</library>

This DOCTYPE declaration contains an FPI (-//ERICVANDERVLIST//DTD for library//EN) and the
location of the DTD describing the vocabulary (library.dtd). XML requires that the DOCTYPE
declaration always provide a SYSTEM identifier-a location-when a PUBLIC identifier is used, though
PUBLIC identifiers aren't required when SYSTEM identifiers are used. The creators of XML 1.0 didn't

want to require parsers to include the tools (typically XML catalog processing) for resolving formal
public identifiers to addresses, but they kept the option open. Because the DOCTYPE declaration

provides the parser with identification of the DTD rather than the identification of the abstract set of
names, this approach is generally sensible.

The first goal of XML namespaces is to provide identifiers for the abstract notions of vocabularies and
namespaces without linking these identifiers directly to the technical implementations (DTDs,
schemas, or whatever) that define or enforce what they are. These identifiers are no longer FPIs like
those used in doctype declarations but Uniform Resource Identifiers (URIs, or, to be picky, "URI
references"). These identifiers can be applied to every element and attribute in a document, not just
the document as a whole. To assign a namespace to all the elements from Example 3-1, you can use
an xmlns attribute to assign a URI to the default namespace:

<?xml version="1.0"?>
library xmlns="http://eric.van-der-vlist.com/ns/library">
...
</library>

The identifier for my namespace is the string http://eric.van-der-vlist.com/ns/library. There

doesn't need to be any document at this address-it's only a label. Though it looks temptingly like a
hyperlink, it's not designed to be used that way. Namespaces are identifiers that give a hint about
ownership. The assumption is I create a namespace only if I own the domain it uses and that I won't
use the same identifier to identify several different things. XML namespaces per se don't define any
way to associate resources such as schemas or documentations with a namespace URI. (For a
mechanism that does that, see Resource Directory Description Language at http://rddl.org.)

The namespace declaration xmlns="http://eric.van-der-vlist.com/ns/library" has been
applied to the document element (library), and that declaration is inherited by all its child elements,

unless the child elements provide their own namespace declarations and override it.

http://eric.van-der-vlist.com/ns/library
http://rddl.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The second goal of XML namespaces, and the place where it goes farther than FPIs in DOCTYPE

declarations, is to provide a way to mix elements and attributes from different namespaces in a
single document. In our library for instance, the library and book elements use a vocabulary
specific to libraries, while the author element can use a vocabulary for human resources. The
character element can be a mix of both: the character element itself and the qualification
element would be from the library namespace, while the name and born elements would be from the

HR vocabulary. Figure 11-1 shows how this might look in the XML document.

Figure 11-1. A mix of elements in different namespaces

Applying namespaces to the elements can be achieved using the xmlns declaration as we have

already seen:

 <?xml version="1.0"?>
 <library xmlns="http://eric.van-der-vlist.com/ns/library">
 <book id="b0836217462" available="true">
 <isbn>0836217462</isbn>
 <title xml:lang="en">Being a Dog Is a Full-Time Job</title>
 <author id="CMS" xmlns="http://eric.van-der-vlist.com/ns/person">
 <name>Charles M Schulz</name>
 <born>1922-11-26</born>
 <dead>2000-02-12</dead>
 </author>
 <character id="PP">
 <name xmlns="http://eric.van-der-vlist.com/ns/person">Peppermint Patty</name>
 <born xmlns="http://eric.van-der-vlist.com/ns/person">1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>
 </character>
 <character id="Snoopy">
 <name xmlns="http://eric.van-der-vlist.com/ns/person">Snoopy</name>
 <born xmlns="http://eric.van-der-vlist.com/ns/person">1950-10-04</born>
 <qualification>extroverted beagle</qualification>
 </character>
 <character id="Schroeder">
 <name xmlns="http://eric.van-der-vlist.com/ns/person">Schroeder</name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <born xmlns="http://eric.van-der-vlist.com/ns/person">1951-05-30</born>
 <qualification>brought classical music to the Peanuts strip</qualification>
 </character>
 <character id="Lucy">
 <name xmlns="http://eric.van-der-vlist.com/ns/person">Lucy</name>
 <born xmlns="http://eric.van-der-vlist.com/ns/person">1952-03-03</born>
 <qualification>bossy, crabby and selfish</qualification>
 </character>
 </book>
 </library>

Applying namespace declarations to every element rapidly becomes very verbose. To reduce this
verbosity, XML namespaces provide a way to assign prefixes to namespaces. These prefixes can then
be applied to the names of the elements (and attributes) to identify their namespaces. The
namespace declared using the xmlns attribute is called the default namespace because it's assigned

to elements that have no prefix. The previous document can be rewritten using the default
namespace for the library and by assigning an hr prefix to the other namespace:

 <?xml version="1.0"?>
 <library
 xmlns="http://eric.van-der-vlist.com/ns/library"
 xmlns:hr="http://eric.van-der-vlist.com/ns/person">
 <book id="b0836217462" available="true">
 <isbn>0836217462</isbn>
 <title xml:lang="en">Being a Dog Is a Full-Time Job</title>
 <hr:author id="CMS">
 <hr:name>Charles M Schulz</hr:name>
 <hr:born>1922-11-26</hr:born>
 <hr:dead>2000-02-12</hr:dead>
 </hr:author>
 <character id="PP">
 <hr:name>Peppermint Patty</hr:name>
 <hr:born>1966-08-22</hr:born>
 <qualification>bold, brash and tomboyish</qualification>
 </character>
 <character id="Snoopy">
 <hr:name>Snoopy</hr:name>
 <hr:born>1950-10-04</hr:born>
 <qualification>extroverted beagle</qualification>
 </character>
 <character id="Schroeder">
 <hr:name>Schroeder</hr:name>
 <hr:born>1951-05-30</hr:born>
 <qualification>brought classical music to the Peanuts strip</qualification>
 </character>
 <character id="Lucy">
 <hr:name>Lucy</hr:name>
 <hr:born>1952-03-03</hr:born>
 <qualification>bossy, crabby and selfish</qualification>
 </character>
 </book>
 </library>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If preferred, for symmetry, you can use a prefix for both namespaces:

 <?xml version="1.0"?>
 <lib:library
 xmlns:lib="http://eric.van-der-vlist.com/ns/library"
 xmlns:hr="http://eric.van-der-vlist.com/ns/person">
 <lib:book id="b0836217462" available="true">
 <lib:isbn>0836217462</lib:isbn>
 <lib:title xml:lang="en">Being a Dog Is a Full-Time Job</lib:title>
 <hr:author id="CMS">
 <hr:name>Charles M Schulz</hr:name>
 <hr:born>1922-11-26</hr:born>
 <hr:dead>2000-02-12</hr:dead>
 </hr:author>
 <lib:character id="PP">
 <hr:name>Peppermint Patty</hr:name>
 <hr:born>1966-08-22</hr:born>
 <lib:qualification>bold, brash and tomboyish</lib:qualification>
 </lib:character>
 <lib:character id="Snoopy">
 <hr:name>Snoopy</hr:name>
 <hr:born>1950-10-04</hr:born>
 <lib:qualification>extroverted beagle</lib:qualification>
 </lib:character>
 <lib:character id="Schroeder">
 <hr:name>Schroeder</hr:name>
 <hr:born>1951-05-30</hr:born>
 <lib:qualification>brought classical music to the Peanuts strip
 </lib:qualification>
 </lib:character>
 <lib:character id="Lucy">
 <hr:name>Lucy</hr:name>
 <hr:born>1952-03-03</hr:born>
 <lib:qualification>bossy, crabby and selfish</lib:qualification>
 </lib:character>
 </lib:book>
 </lib:library>

Note that, for a namespace-aware application, the three previous documents are considered
equivalent. The prefixes are only shortcuts to associate a namespace URI and a local name (the part
of the name after the colon). This combination disambiguates cases in which the same local name is
used in other namespaces.

Elements and attributes receive slightly different namespace handling. They are similar in that
attribute names can be given a prefix to show that they belong to a namespace. They get special
treatment in that the default namespace doesn't apply to them and any attributes that have no prefix
are considered to have no namespace URI. They sort of belong to the namespace of their parent
element but not exactly. The reason for this is that attributes are supposed to provide metadata
qualifying their parent element rather than to contain actual information. Being qualifiers, it's often
considered that by default they belong to the same vocabulary as their parent elements. This is why I
have kept the id and available attributes unprefixed in my three examples. Technically, however,

these attributes are in no namespace and have no namespace URI.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The last goal of XML namespaces (and the motivation for taking that much effort to allow several
namespaces in a single document) is to facilitate the development of independent (or semi-
independent) vocabularies that can be used as building blocks. One of the ideas is that if applications
are cleanly designed and just ignore elements and attributes that they don't understand, documents
can be extended to support new features without breaking existing applications.

For instance, in the sample library I haven't defined the publisher of the book. I can add a publisher

element to our existing namespace, but instead might want to use the definition given by the Dublin
Core Metadata Initiative (DCMI). They've already created an element for representing publishers in a
namespace they've defined. I can use their namespace to write:

<?xml version="1.0"?>
<library
 xmlns="http://eric.van-der-vlist.com/ns/library"
 xmlns:hr="http://eric.van-der-vlist.com/ns/person"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <book id="b0836217462" available="true">
 <isbn>0836217462</isbn>
 <title xml:lang="en">Being a Dog Is a Full-Time Job</title>
 <dc:publisher>Andrews Mc Meel Publishing</dc:publisher>
 </book>
</library>

There are two benefits to doing this. First, everyone can easily understand that the publisher

element corresponds to the definition given by the DCMI:

URI: http://purl.org/dc/elements/1.1/publisher Namespace:http://purl.org/
 dc/elements/1.1/
Name: publisher
Label: Publisher
Definition: An entity responsible for making the resource available
Comment: Examples of a Publisher include a person, an organisation,
 or a service.
 Typically, the name of a Publisher should be used to
 indicate the entity.
Type of term: http://dublincore.org/usage/documents/principles/#element
Status: http://dublincore.org/usage/documents/process/#recommended
Date issued: 1998-08-06
Date modified: 2002-10-04
Decision: http://dublincore.org/usage/decisions/#Decision-2002-03
This version: http://dublincore.org/usage/terms/dc/#publisher-004
Replaces: http://dublincore.org/usage/terms/dc/#publisher-003

The second benefit is that if my application has been implemented to skip elements and attributes
from unsupported namespaces, the addition of this dc:publisher element won't break anything.

Again, note that the mechanism to retrieve this definition isn't specified by the "Namespaces in XML"
recommendation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 The Two Challenges of Namespaces

Namespaces add a considerable amount of complexity to processing and pose two large challenges to
schema languages. The first challenge to address is to associate namespace URIs with patterns that
describe elements and attributes. The solution to this challenge will be described in the next section.
The second issue is to provide mechanisms for creating extensible schemas for documents that may
contain content in multiple namespaces. Of course, writing extensible schemas is an issue that goes
beyond multinamespace documents; you will see more use of that in the next chapter. In this
chapter, I will introduce name classes, the key to namespace-based extensibility with RELAX NG.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 Declaring Namespaces in Schemas

Namespace declarations in a RELAX NG schema follow the same principles as namespace declarations
in an instance document, with some small differences in the syntax. RELAX NG supports the use of
both the default namespace and prefixes.

11.3.1 Using the Default Namespace

The namespace on which a schema expects to operate in the instance document can be defined
through the ns attribute. Like the datatypeLibrary attribute seen earlier, ns is an inherited

attribute. Being inherited means that you can define it in the document element of the schema (and
never again) if it remains the same throughout the schema. For instance, to write a schema for the
first example in this chapter, in which the entire library is using the same namespace, I can write:

<?xml version="1.0" encoding="utf-8"?>
<element xmlns="http://relaxng.org/ns/structure/1.0" name="library"
 ns="http://eric.van-der-vlist.com/ns/library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 ...
 </element>
 </oneOrMore>
</element>

The compact syntax uses a slightly different declaration, default namespace , at the top of the

schema:

default namespace = "http://eric.van-der-vlist.com/ns/library"

element library
 {
 element book
 {
 attribute id { text },
 ...
 }*
 }+
}

The definition of the default namespace in a RELAX NG schema doesn't apply to
attributes. This works precisely as expected, because the default namespace
doesn't apply to attributes in instance documents and should cause a minimum
of surprises.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Just as default namespaces can be used and changed all over a multinamespace document, when
using the XML syntax, the ns attribute can be changed in a schema. To validate the documents with

the two namespaces shown in Section 11.1 , I can write:

 <?xml version="1.0" encoding="utf-8"?>
 <element xmlns="http://relaxng.org/ns/structure/1.0"
 name="library"
 ns="http://eric.van-der-vlist.com/ns/library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>
 <element name="author" ns="http://eric.van-der-vlist.com/ns/person">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="dead">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name" ns="http://eric.van-der-vlist.com/ns/person">
 <text/>
 </element>
 <element name="born" ns="http://eric.van-der-vlist.com/ns/person">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The compact syntax doesn't provide a way to redefine the default namespace.
Defining prefixes is the preferred way to define schemas with multiple
namespaces when using the compact syntax.

Because the three variations used to write the document with the two namespaces in Section 11.1
are considered equivalent to namespace-aware applications, the schema just written will validate all
of them. There is thus complete independence between the prefixes and default namespaces used to
write the instance document, and those used in the schema. Namespace matching tests only the
namespace URIs of each element and attribute, not the prefixes.

11.3.2 Using Prefixes

The definition of the default target namespace in RELAX NG is done through an ns attribute, and thus

doesn't rely on the declaration of the default namespace of the RELAX NG document itself. (In our
examples, the default namespace of the RELAX NG document is the RELAX NG namespace.) The
declaration of the prefixes used for target namespaces other than the default is done through
namespace declarations like those used in instance documents. In other words, to define an hr prefix,

which is used as a prefix for the namespaces in names or attributes of the instance, I use an
xmlns:hr declaration as if I wanted to use it as a prefix for an element or attribute of the RELAX NG

document.

You can mix both default and nondefault namespaces and write:

 <?xml version="1.0" encoding="utf-8"?>
 <element xmlns="http://relaxng.org/ns/structure/1.0"
 name="library"
 ns="http://eric.van-der-vlist.com/ns/library"
 xmlns:hr="http://eric.van-der-vlist.com/ns/person">
 <!-- The default target namespace is "http://eric.van-der-vlist.com/ns/library" -->
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>
 <element name="hr:author">
<!-- Here we are using a "hr" prefix to match "http://eric.van-der-vlist.com/ns/
person" -->
 <attribute name="id"/>
 <element name="hr:name">
 <text/>
 </element>
 <element name="hr:born">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <text/>
 </element>
 <optional>
 <element name="hr:dead">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="hr:name">
 <text/>
 </element>
 <element name="hr:born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

The compact syntax uses its own declaration to define namespace prefixes:

 default namespace = "http://eric.van-der-vlist.com/ns/library"
 namespace hr = "http://eric.van-der-vlist.com/ns/person"

 element library
 {
 element book
 {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title { attribute xml:lang { text }, text },
 element hr:author
 {
 attribute id { text },
 element hr:name { text },
 element hr:born { text },
 element hr:dead { text }?
 }*,
 element character
 {
 attribute id { text },
 element hr:name { text },
 element hr:born { text },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element qualification { text }
 }*
 }+
 }

Again, this schema validates the three variations seen in Section 11.1 . In fact, this schema validates
exactly the same set of documents as the schema using only default namespaces. A third equivalent
variation uses prefixes for both namespaces:

 <?xml version="1.0" encoding="utf-8"?>
 <element xmlns="http://relaxng.org/ns/structure/1.0"
 name="lib:library"
 xmlns:lib="http://eric.van-der-vlist.com/ns/library"
 xmlns:hr="http://eric.van-der-vlist.com/ns/person">
 <oneOrMore>
 <element name="lib:book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="lib:isbn">
 <text/>
 </element>
 <element name="lib:title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>
 <element name="hr:author">
 <attribute name="id"/>
 <element name="hr:name">
 <text/>
 </element>
 <element name="hr:born">
 <text/>
 </element>
 <optional>
 <element name="hr:dead">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="lib:character">
 <attribute name="id"/>
 <element name="hr:name">
 <text/>
 </element>
 <element name="hr:born">
 <text/>
 </element>
 <element name="lib:qualification">
 <text/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

or:

namespace lib = "http://eric.van-der-vlist.com/ns/library"
namespace hr = "http://eric.van-der-vlist.com/ns/person"

element lib:library
{
 element lib:book
 {
 attribute id { text },
 attribute available { text },
 element lib:isbn { text },
 element lib:title { attribute xml:lang { text }, text },
 element hr:author
 {
 attribute id { text },
 element hr:name { text },
 element hr:born { text },
 element hr:dead { text }?
 }*,
 element lib:character
 {
 attribute id { text },
 element hr:name { text },
 element hr:born { text },
 element lib:qualification { text }
 }*
 }+
 }

Again, this schema is equivalent to the previous ones because it validates all the variations of
namespaces declarations in the instance documents.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.4 Accepting Foreign Namespaces

The previous couple of schemas can validate instance documents independently of the prefixes being
used. They meet the first goal of namespaces: disambiguating elements in multinamespace
documents. However, they will fail to validate the instance document where we've added the
dc:publisher element. You can easily update the schema to explicitly add this element to the
content model of our book element, but that won't make it an open schema that accepts the addition

of elements from any other namespace.

Instead of some magic feature that could have been quite rigid, RELAX NG introduced a flexible and
clever feature that lets you define your own level of "openness." The idea is to let you define your
own wildcard, and, once you have it, you can include it wherever you want in your content model.

11.4.1 Constructing a Wildcard

Before we start, I'll define what we are trying to achieve! We want a named pattern allowing any
element or attribute that doesn't belong to our lib or hr namespaces. We probably want to exclude

attributes and elements with no namespaces; attributes, because our own attributes have no
namespace, and we might want to differentiate them; and elements, because allowing elements
without namespaces in a document using namespaces violates the general intent of disambiguating
content. The content model of the elements we'll accept can be anything.

Let's start by defining the inner content of the wildcard and define what we want our "anything" to
be. "Anything" in terms of patterns is any number of elements (themselves containing "anything"),
attributes, and text, in any order. This is a good candidate for a recursively named pattern:

 <define name="anything">
 <zeroOrMore>
 <choice>
 <element>
 <anyName/>
 <ref name="anything"/>
 </element>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 </choice>
 </zeroOrMore>
 </define>

or:

anything = (element * { anything } | attribute * { text } | text)*

The only things new here are the anyName element (in the XML syntax) and the * operator (in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compact syntax), which replace the name of an element or attribute. This is your first example of a
name class (a class of names). You'll see that there are many ways to restrict this name class. Now
that we have a named pattern to express what "anything" is, we can use it to define what "foreign"
elements mean:

 <define name="foreign-elements">
 <zeroOrMore>
 <element>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 <ref name="anything"/>
 </element>
 </zeroOrMore>
 </define>

or:

default namespace lib = "http://eric.van-der-vlist.com/ns/library"
namespace local = ""
namespace hr = "http://eric.van-der-vlist.com/ns/person"
...
foreign-elements = element * - (local:* | lib:* | hr:*) { anything }*

To achieve our purpose, we've introduced two new elements embedded in the anyName name class:

except (- in compact syntax) has the same meaning it does with enumerations.

nsName (xxx:* in compact syntax) means "any name from the specified namespace."

When using the XML syntax, nsName uses an ns attribute, while prefixes are employed when using

the compact syntax. This usage of prefixes in the compact syntax implies that declarations are added
to define prefixes not only for the lib (which is also the default namespace) and hr namespaces, but
also for "no namespace" (here I have used the prefix local).

Note that name classes aren't considered patterns; instead, they are a specific set of elements with a
specific purpose. A consequence of this statement is that name class definitions can't be placed within
named patterns to be reused. Also, we have to repeat the same name class for both elements and
attributes.

The same can be done to define foreign attributes:

 <define name="foreign-attributes">
 <zeroOrMore>
 <attribute>
 <anyName>
 <except>
 <nsName ns=""/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 </attribute>
 </zeroOrMore>
 </define>

or:

foreign-attributes = attribute * - (local:* | lib:* | hr:*) { text }*

For convenience, we can also define foreign nodes by combining foreign elements and attributes:

<define name="foreign-nodes">
 <zeroOrMore>
 <choice>
 <ref name="foreign-attributes"/>
 <ref name="foreign-elements"/>
 </choice>
 </zeroOrMore>
 </define>

or:

foreign-nodes = (foreign-attributes | foreign-elements)*

11.4.2 Using Wildcards

Now that we have defined what the foreign-nodes wildcard is, we can use the concept to give more
extensibility to our schema. To enable foreign-nodes to which we`ve added the dc:publisher
element-between the title and author elements-we can write (switching to a "flatter" style to

make it more readable):

<element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <ref name="foreign-nodes"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
</element>

or:

book-element =
 element book

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 attribute id { text },
 attribute available { text },
 isbn-element,
 title-element,
 foreign-nodes,
 author-element*,
 character-element*
 }

This does the trick for the instance document shown earlier, but it wouldn't validate a document
where foreign nodes were added in any other place-for instance, between the isbn and title
elements. We could insert a reference to the foreign-nodes pattern between all the elements, but
that method would be very verbose. If you think about it, what we really want to do is interleave
these foreign nodes between the content defined for the book element. This is a good opportunity to
use the interleave pattern:

<element name="book">
 <interleave>
 <group>
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </group>
 <ref name="foreign-nodes"/>
 </interleave>
</element>

or:

element book
 {
 (
 attribute id { text },
 attribute available { text },
 isbn-element,
 title-element,
 author-element*,
 character-element*
)
 & foreign-nodes
}

11.4.3 Where Should Foreign Nodes Be Allowed?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We may be tempted to allow foreign nodes everywhere in our document. However, while the
extensibility gained is often acceptable in elements such as book that already have child elements, it's

often considered a bad practice to do the same in elements that contain only text or data. An
example would be the isbn element, where this practice would transform a text-content model into a

mixed-content model. The reason this trick is considered bad practice comes from the weak support
for mixed content models, as mentioned in Chapter 6, where I discussed the limitations of the mixed
pattern. A consequence of allowing foreign elements in isbn elements would be that the content of
this element could no longer be considered data. Neither datatypes nor restrictions could be applied.

Beyond this limitation of RELAX NG, applications would have to concatenate text nodes spread over
the foreign elements. This concatenation can produce verbosity with tools such as XPath and XSLT.

One compromise on this issue is to allow only foreign attributes in text-content models. That's not an
problem here because our foreign-attributes is ready for this purpose:

<element name="isbn">
 <ref name="foreign-attributes"/>
 <text/>
</element>

or:

element isbn { foreign-attributes, text }

This way, the isbn element is extensible but only with attributes from foreign namespaces.

11.4.4 Traps to Avoid

Although most of the time wildcard use is straightforward, there are some situations in which
wildcards may lead to unexpected schema errors-especially with attributes, whose usage is subject
to restrictions.

The first of the traps is related to the limitation that the definition of attributes can't be duplicated in
a schema. The following definition is invalid:

element title { attribute xml:space, attribute xml:space, text } # this is invalid

This seems to be pretty sensible, since duplicate attributes are forbidden in the instance document.
Unfortunately, the attribute xml:space is allowed by our "foreign-attributes" named template. We

will get an error as well if we unthinkingly extend the definition of our title element and write:

element title { foreign-attributes, attribute xml:space, text } # also invalid

To fix this error, we need to remove either the xml:space attribute from the name class of our
foreign attributes or the implicit mention of xml:space in our definition and just write:

element title { foreign-attributes, text }

Of course, this doesn't remove the possibility of including an xml:space attribute in the title

element because this attribute is a foreign attribute as defined in our named pattern.

The second trap operates at a higher level but along the same lines. It's specific to the DTD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compatibility ID feature. In Chapter 8, when you saw this datatype, it was used to define the book

element:

<element name="book">
 <attribute name="id">
 <data datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"
 type="ID"/>
 </attribute>
 ...
</element>

or:

element book {
 attribute id {dtd:ID},
 ...
}

Once again, an error will be generated if we add our foreign nodes. Because this feature is emulating
the DTD in all its aspects, including the requirement that if an element book is defined with an id
attribute having a type of ID, all the other definitions of an attribute id hosted by an element book
must have the same type ID. The problem here is that, hidden in the definition of anything, there
can be a book having an attribute id of type text. This situation would result in an error.

There is a way to work around this problem. If we want to use the DTD type ID, we have to remove
the problematic possibility from the named pattern anything. A fast solution would be to exclude our
own namespaces from the class names in anything. A better solution will be introduced using

features shown in Section 12.3 of the next chapter.

11.4.5 Adding Foreign Nodes Through Combination

In adding our foreign nodes, we have transformed:

 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </element>

or:

element book
 {
 attribute id { text },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attribute available { text }
 isbn-element,
 title-element,
 author-element*,
 character-element*
}

into:

 <element name="book">
 <interleave>
 <group>
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </group>
 <ref name="foreign-nodes"/>
 </interleave>
 </element>

or:

 element book
 {
 (
 attribute id { text },
 attribute available { text },
 isbn-element,
 title-element,
 author-element*,
 character-element*
)
 & foreign-nodes
 }

This operation can instead be accomplished as a pattern combination using interleave if the content
of the element book is described as a named pattern:

<define name="book-content">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
</define>

or:

book-content =
 attribute id { text },
 attribute available { text },
 isbn-element,
 title-element,
 author-element*,
 character-element*

This pattern can then easily be extended as:

 <define name="book-content" combine="interleave">
 <ref name="foreign-nodes"/>
 </define>

or:

book-content &= foreign-nodes

and used to define the book element:

 <element name="book">
 <ref name="book-content"/>
 </element>

or:

element book { book-content }

This combination can be done in a single document, but the mechanism can also extend a vocabulary
by merging a grammar containing only these combinations. The exact same approach also works for
appending foreign attributes to the elements that have text-based content models.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.5 Namespaces, Building Blocks, and Chameleon
Design

RELAX not only lets you create building blocks for inclusion into schemas, it lets you create generic
building blocks that take on a namespace you specify when including those blocks into your own
schemas. These generic blocks, called chameleon schemas, are designed so that they can take on the
namespace of their surrounding environment.

11.5.1 Reexamining XHTML 2.0

Chapter 10 explored the schemas for XHTML 2.0. At the time, I told you not to worry about the
namespace declarations because they hadn't been introduced yet. It's time to take a closer look at
XHTML's namespace usage. XHTML's namespace declarations in the top level schema, the driver
schema, are present only in the grammar element:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar ns="http://www.w3.org/2002/06/xhtml2"
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:x="http://www.w3.org/1999/xhtml">

 <x:h1>RELAX NG schema for XHTML 2.0</x:h1>
 .../...
 <x:h3>Structure Module</x:h3>
 <include href="xhtml-struct-2.rng"/>
 .../...
 </grammar>

What does this snippet demonstrate?

xmlns="http://relaxng.org/ns/structure/1.0"

Means that the default namespace of the schema as a XML document is
http://relaxng.org/ns/structure/1.0. Translated, it means that elements without prefix in

the schema as a XML document are RELAX NG patterns.

ns="http://www.w3.org/2002/06/xhtml2"

Defines the default namespace for the schema itself: the schema describes elements from the
http://www.w3.org/2002/06/xhtml2 namespace unless some other namespace is explicitly

defined. Let's call it the "target namespace" to avoid any confusion with the default namespace

http://relaxng.org/ns/structure/1.0
http://www.w3.org/2002/06/xhtml2
http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the schema considered as a XML document.

xmlns:x="http://www.w3.org/1999/xhtml"

Means that the prefix x is assigned to http://www.w3.org/1999/xhtml. This declaration is

used here to include XHTML documentation in the schema. This approach will be explored in
more detail in Chapter 13.

In the compact syntax, this looks like:

 default namespace = "http://www.w3.org/2002/06/xhtml2"
 namespace x = "http://www.w3.org/1999/xhtml"
 .../...
 include "xhtml-struct-2.rnc"

Let's now have a look at the module describing the structure:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:x="http://www.w3.org/1999/xhtml">
 <x:h1>Structure Module</x:h1>
 .../...
 </grammar>

or:

 namespace x = "http://www.w3.org/1999/xhtml"
 x:h1 "Structure Module"
 start = html
 ...

The big difference from the top-level schema is that the target namespace isn't defined at all in the
schema defining the module.

How can that work? It's a feature common to the include and externalRef patterns. When no

target namespace is defined in the imported schema, the target namespace from the schema
performing the inclusion or containing the external reference is used. In our case, this means that the
target namespace from the driver (http://www.w3.org/2002/06/xhtml2) is used by any module

that doesn't specify a target namespace.

Schemas without a target namespace are often called chameleon schemas because they take on the
target namespace of any context in which they are included or referenced.

In the compact syntax, an inherit qualifier has been added to specify that a namespace must be

inherited at inclusion or external reference time:

 namespace xhtml2 = "http://www.w3.org/2002/06/xhtml2"
 namespace x = "http://www.w3.org/1999/xhtml"
 .../...
 include "xhtml-struct-2.rnc" inherit = xhtml2

This inherit qualifier plays the same role as an ns attribute in an include or externalRef of the

http://www.w3.org/1999/xhtml
http://www.w3.org/2002/06/xhtml2
http://lib.ommolketab.ir
http://lib.ommolketab.ir

XML syntax.

11.5.2 Putting a Chameleon in the Library

Moving from XHTML to the library, it may be a good idea to incorporate XHTML elements into the
description of our library. This could, for instance, allow the same content for the definition of titles
and qualification that's used in the XHTML p element, i.e., what's described in the "Inline text"
module as the Inline.model named pattern. The idea behind the module mechanism is that you can

select just you we need. Let's do that by including the common modules (xhtml-attribs-2.rng and
xhtml-datatypes-2.rng) and the "Inline Text" module (xhtml-inltext-2.rng):

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <ref name="library"/>
 </start>
 <include href="xhtml-attribs-2.rng"/>
 <include href="xhtml-inltext-2.rng"/>
 <include href="xhtml-datatypes-2.rng"/>
 <define name="library">
 <element name="library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <ref name="Inline.model"/>
 </element>
 <oneOrMore>
 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>
 </oneOrMore>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <element name="qualification">
 <ref name="Inline.model"/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </define>
 </grammar>

or:

 start = library
 include "xhtml-attribs-2.rnc"
 include "xhtml-inltext-2.rnc"
 include "xhtml-datatypes-2.rnc"
 library =
 element library {
 element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {
 attribute xml:lang { text },
 Inline.model
 },
 element author {
 attribute id { text },
 element name { text },
 element born { text }?,
 element died { text }?
 }+,
 element character {
 attribute id { text },
 element name { text },
 element born { text }?,
 element qualification { Inline.model }
 }*
 }+
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With this schema, I can include all the XHTML formatting described in the "Inline Text Module" in my
title and qualification elements, but they must be in the target namespace defined in this

schema (i.e., with no namespace because I haven't defined a target namespace here). The local
names of the elements are thus the same as those of XHTML 2.0, but these elements are in no
namespace. Here's an example of a valid document:

 <?xml version="1.0" encoding="utf-8"?>
 <library>
 <book id="b0836217462" available="true">
 <isbn>0836217462</isbn>
 <title xml:lang="en">Being a Dog Is a Full-Time Job</title>
 <author id="CMS">
 <name>Charles M Schulz</name>
 <born>1922-11-26</born>
 <died>2000-02-12</died>
 </author>
 <character id="PP">
 <name>Peppermint Patty</name>
 <born>1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>
 </character>"http://www.w3.org/2002/06/xhtml2"
 <character id="Snoopy">
 <name>Snoopy</name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
 </character>
 <character id="Schroeder">
 <name>Schroeder</name>
 <born>1951-05-30</born>
 <qualification>brought classical music to the Peanuts strip</qualification>
 </character>
 <character id="Lucy">
 <name>Lucy</name>
 <born>1952-03-03</born>
 <qualification>bossy, crabby and selfish</qualification>
 </character>
 </book>
 </library>

Because the XHTML 2.0 schemas for the modules are chameleon schemas, importing the definitions
from XHTML in the XHTML 2.0 namespace requires specifying the namespace in the include

patterns:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <ref name="library"/>
 </start>
 <include href="xhtml-attribs-2.rng" ns="http://www.w3.org/2002/06/xhtml2"/>
 <include href="xhtml-inltext-2.rng" ns="http://www.w3.org/2002/06/xhtml2"/>
 <include href="xhtml-datatypes-2.rng" ns="http://www.w3.org/2002/06/xhtml2"/>
 <define name="library">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <element name="library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>which
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <ref name="Inline.model"/>
 </element>
 <oneOrMore>
 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>
 </oneOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <optional>
 <element name="born">
 <text/>
 </element>
 </optional>
 <element name="qualification">
 <ref name="Inline.model"/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </define>
 </grammar>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:

 namespace x = "http://www.w3.org/2002/06/xhtml2"
 start = library
 include "xhtml-attribs-2.rnc" inherit = x
 include "xhtml-inltext-2.rnc" inherit = x
 include "xhtml-datatypes-2.rnc" inherit = x
 library =
 element library {
 element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {
 attribute xml:lang { text },
 Inline.model
 },
 element author {
 attribute id { text },
 element name { text },
 element born { text }?,
 element died { text }?
 }+,
 element character {
 attribute id { text },
 element name { text },
 element born { text }?,
 element qualification { Inline.model }
 }*
 }+
 }

The namespace that's inherited is now explicitly set to http://www.w3.org/2002/06/xhtml2. Valid

documents look like:

 <?xml version="1.0" encoding="utf-8"?>
 <library xmlns:x="http://www.w3.org/2002/06/xhtml2">
 <book id="b0836217462" available="true">
 <isbn>0836217462</isbn>
 <title xml:lang="en">Being a Dog Is a <x:em>Full-Time Job</x:em></title>
 <author id="CMS">
 <name>Charles M Schulz</name>
 <born>1922-11-26</born>
 <died>2000-02-12</died>
 </author>
 <character id="PP">
 <name>Peppermint Patty</name>
 <born>1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>
 </character>
 <character id="Snoopy">
 <name>Snoopy</name>

http://www.w3.org/2002/06/xhtml2
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <born>1950-10-04</born>
 <qualification>extroverted <x:strong>beagle</x:strong></qualification>
 </character>
 <character id="Schroeder">
 <name>Schroeder</name>
 <born>1951-05-30</born>
 <qualification>brought classical music to the Peanuts strip</qualification>
 </character>
 <character id="Lucy">
 <name>Lucy</name>
 <born>1952-03-03</born>
 <qualification>bossy, crabby and selfish</qualification>
 </character>
 </book>
 </library>

11.5.3 Good Chameleon or Evil Chameleon?

Chameleon schemas are very controversial. On the bright side, they can be very handy for some
kinds of vocabularies. The first variation of XHTML inclusion in our library is more concise than the
second, which required the declaration of the XHTML namespace in each document and a prefix on
XHTML elements. On the other hand, you can question the benefit of adding XHTML elements if they
can't be identified as XHTML by their namespace. Yes, you can add em or strong elements to title
and qualification elements, but how can an application recognize them as XHTML components if

they have no namespace, or belong to the namespace of your own application?

Chameleon schemas work contrary to most developers' namespace expectations, and in the process
remove most of the value of using namespaces. For this reason I would recommend you be very
cautious when using them!

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Writing Extensible Schemas
"Extensible" has become one of these buzzwords that has a very wide acceptance and yet is so worn
out that it has become almost meaningless. Some buzzwords, however, remain useful despite their
wear, so we should examine what an extensible schema might be.

There are two different forms of extensibility for a schema. First, the schema itself can be extensible:
it can make it easy to derive variations of its patterns using named pattern combinations or
redefinitions. Second, the schema could also describe extensible documents in which elements and
attributes can be added without having to redefine the schema. Just such a schema is often called an
open schema or open vocabulary.

These two forms of extensibility are largely independent of each other. A schema that is extensible as
far as using combinations and redefinitions is concerned can be utterly strict, forbidding the slightest
variation in instance documents. Similarly, a schema that describes perfectly open documents can be
difficult to extend without redefining most of its patterns.

I describe both types of extensibility in this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 Extensible Schemas

Sometimes, building an extensible schema is a matter of capturing existing practice in RELAX NG,
while other times, the schema development comes before practice, and the schema developer has
the opportunity to make a lot of choices. You often have to do your best to write an extensible
schema for an existing XML vocabulary and are constrained by the existing vocabulary. Other times
you can design whatever vocabulary seems appropriate to the information being described.

12.1.1 Working from a Fixed Result

In the case of a fixed result, the only way to manage extensibility relies on how named patterns are
defined, much the same way that programmers' decisions about how to define classes in object-
oriented environments have a lot of impact on its extensibility. In this section, I will examine the
major approaches to use when defining named patterns and start elements with extensibility in mind.

12.1.1.1 Providing a grammar and a start element

Let's look back at our first schema, the Russian doll schema:

 <?xml version="1.0" encoding="utf-8" ?>
 <element xmlns="http://relaxng.org/ns/structure/1.0" name="library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="died">
 <text/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>

or, in the compact syntax:

 element library {
 element book {
 attribute id {text},
 attribute available {text},
 element isbn {text},
 element title {attribute xml:lang {text}, text},
 element author {
 attribute id {text},
 element name {text},
 element born {text},
 element died {text}?}*,
 element character {
 attribute id {text},
 element name {text},
 element born {text},
 element qualification {text}}*
 } +
 }

What if you want to derive a schema that has a new id attribute on the library element? That's

simple: take our schema, copy it, and edit it as a new one. There is no option for extensibility at all
because you can't include a schema that doesn't have a grammar element as a root.

The first thing to consider when you want a RELAX NG schema to be extensible is that you always
want the root element to be a grammar element. In this case, the change, producing russian-doll.rng,

is minor:

 <?xml version="1.0" encoding="utf-8"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <element name="library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </start>
 </grammar>

In the compact syntax, grammar is implicit, but you still need a start pattern to be able to redefine

anything. The result of adding this pattern, russian-doll.rnc, looks like:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 start =
 element library
 {
 element book
 {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title { attribute xml:lang { text }, text },
 element author
 {
 attribute id { text },
 element name { text },
 element born { text },
 element died { text }?
 }*,
 element character
 {
 attribute id { text },
 element name { text },
 element born { text },
 element qualification { text }
 }*
 }+
 }

Once these minor changes have been made, the schema can at least be included into another
schema and modified there.

12.1.1.2 Maximize granularity

Although the previous schemas can be redefined, this redefinition is ineffective because the
granularity is very coarse, and you can't redefine just the library element. The best you can do is

the following, which isn't much of an improvement:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="russian-doll.rng">
 <start>
 <element name="library">
 <attribute name="id"/>
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <text/>
 </element>
 <element name="title">
 <attribute name="xml:lang"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <text/>
 </element>
 <zeroOrMore>
 <element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </oneOrMore>
 </element>
 </start>
 </include>
 </grammar>

or:

 include "russian-doll.rnc"
 {
 start =
 element library
 {
 attribute id { text },
 element book
 {
 attribute id { text },
 attribute available { text },
 element isbn { text },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element title { attribute xml:lang { text }, text },
 element author
 {
 attribute id { text },
 element name { text },
 element born { text },
 element died { text }?
 }*,
 element character
 {
 attribute id { text },
 element name { text },
 element born { text },
 element qualification { text }
 }*
 }+
 }
 }

In other words, we still need to redefine the whole schema. We've made no gains in modularity,
because any changes in the original schema aren't propagated into our resulting schema. To fix this,
we need to create finer-grained definitions. A first approach to finer granularity involves defining a
named pattern for each element (as with the schema style imposed by DTDs). That approach leads
to a schema similar to the flat schema seen in Chapter 5 called flat.rng:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <ref name="library-element"/>
 </start>
 <define name="library-element">
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </define>
 <define name="author-element">
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>
 <define name="book-element">
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </element>
 </define>
 <define name="born-element">
 <element name="born">
 <text/>
 </element>
 </define>
 <define name="character-element">
 <element name="character">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <ref name="qualification-element"/>
 </element>
 </define>
 <define name="died-element">
 <element name="died">
 <text/>
 </element>
 </define>
 <define name="isbn-element">
 <element name="isbn">
 <text/>
 </element>
 </define>
 <define name="name-element">
 <element name="name">
 <text/>
 </element>
 </define>
 <define name="qualification-element">
 <element name="qualification">
 <text/>
 </element>
 </define>
 <define name="title-element">
 <element name="title">
 <attribute name="xml:lang"/>
 <text/>
 </element>
 </define>
 </grammar>

or, in the compact syntax, flat.rnc:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 start = library-element

 library-element = element library { book-element+ }
 author-element =
 element author
 {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }

 book-element =
 element book
 {
 attribute id { text },
 attribute available { text },
 isbn-element,
 title-element,
 author-element*,
 character-element*
 }

 born-element = element born { text }

 character-element =
 element character
 {
 attribute id { text },
 name-element,
 born-element,
 qualification-element
 }

 died-element = element died { text }

 isbn-element = element isbn { text }

 name-element = element name { text }

 qualification-element = element qualification { text }

 title-element = element title { attribute xml:lang { text }, text }

These new schemas are more verbose, but they're also much more extensible. To add our id
attribute, we need only to redefine the library element:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="flat.rng">
 <define name="library-element">
 <element name="library">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <attribute name="id"/>
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </define>
 </include>
 </grammar>

or:

 include "flat.rnc"
 {
 library-element = element library { attribute id { text }, book-element+ }
 }

All changes made to the flat schemas-except to the library element-are now propagate through

to the derived schemas.

12.1.1.3 Defining named patterns for content rather than for elements

Although the previous result is much more extensible, we still have to redefine the complete content
of the library element to add our id attribute. We may have reduced the problem of redefinition

our Russian doll model had, but we haven't eliminated it. If we change our main vocabulary and add
a new attribute or element to the library element in flat.rng, the modification isn't automatically

taken into account in our schema. We'll need to edit it.

The modification isn't automatically transferred, because the extensibility of a named pattern doesn't
cross element boundaries. Because we have the boundary of the library element included within
our library-element named pattern, the content of this element isn't extensible, as shown in Figure

12-1.

Figure 12-1. A flat schema, which is difficult to extend

To avoid this difficulty, we could have split our named patterns according to the content of the
elements rather than by the element themselves. We would then have been able to add new content
within the library element, as shown in Figure 12-2.

Figure 12-2. A split schema, which is easier to extend

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Generalizing this approach for all the definitions of all the elements leads to a schema that looks like
flat-content.rng:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <element name="library">
 <ref name="library-content"/>
 </element>
 </start>
 <define name="library-content">
 <oneOrMore>
 <element name="book">
 <ref name="book-content"/>
 </element>
 </oneOrMore>
 </define>
 <define name="book-content">
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <ref name="isbn-content"/>
 </element>
 <element name="title">
 <ref name="title-content"/>
 </element>
 <zeroOrMore>
 <element name="author">
 <ref name="author-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <ref name="character-content"/>
 </element>
 </zeroOrMore>
 </define>
 <define name="author-content">
 <attribute name="id"/>
 <element name="name">
 <ref name="name-content"/>
 </element>
 <element name="born">
 <ref name="born-content"/>
 </element>
 <optional>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <element name="died">
 <ref name="died-content"/>
 </element>
 </optional>
 </define>
 <define name="born-content">
 <text/>
 </define>
 <define name="character-content">
 <attribute name="id"/>
 <element name="name">
 <ref name="name-content"/>
 </element>
 <element name="born">
 <ref name="born-content"/>
 </element>
 <element name="qualification">
 <ref name="qualification-content"/>
 </element>
 </define>
 <define name="died-content">
 <text/>
 </define>
 <define name="isbn-content">
 <text/>
 </define>
 <define name="name-content">
 <text/>
 </define>
 <define name="qualification-content">
 <text/>
 </define>
 <define name="title-content">
 <attribute name="xml:lang"/>
 <text/>
 </define>
 </grammar>

or, in the compact syntax, flat-content.rnc:

 start = element library { library-content }

 library-content = element book { book-content }+

 book-content =
 attribute id { text },
 attribute available { text },
 element isbn { isbn-content },
 element title { title-content },
 element author { author-content }*,
 element character { character-content }*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 author-content =
 attribute id { text },
 element name { name-content },
 element born { born-content },
 element died { died-content }?

 born-content = text

 character-content =
 attribute id { text },
 element name { name-content },
 element born { born-content },
 element qualification { qualification-content }

 died-content = text

 isbn-content = text

 name-content = text

 qualification-content = text

 title-content = attribute xml:lang { text }, text

We can now take full advantage of the named pattern and, instead of redefining it, we can combine it
neatly with the id attribute:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="flat-content.rng"/>
 <define name="library-content" combine="interleave">
 <attribute name="id"/>
 </define>
 </grammar>

or:

 include "flat-content.rnc"

 library-content &= attribute id { text }

Because of the nature of the content, the extension can be done using a combination by interleave.

This method of combination is frequently useful, when attributes or elements need to be added, but it
works only when the relative order isn't significant for the schema. Otherwise, you still need to
redefine the pattern or to combine it by choice.

12.1.2 Free Formats

When you are free to define the vocabulary, there are three principal guidelines for designing
extensible formats. The first one is independent of any schema language. The second is specific to
RELAX NG and maximizes the usage of combination through interleave. The third is a way to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

minimize the impact of interleave on schemas that need to be converted into W3C XML Schema or

DTD schemas.

12.1.2.1 Be cautious with attributes

Attributes are generally difficult to extend. When choosing from among elements and attributes,
people often base their choice on the relative ease of processing, styling, or transforming. Instead,
you should probably focus on their extensibility.

Independent of any XML schema language, when you have an attribute in an instance document, you
are pretty much stuck with it. Unless you replace it with an element, there is no way to extend it. You
can't add any child elements or attributes to it because it's designed to be a leaf node and to remain
a leaf node. Furthermore, you can't extend the parent element to include a second instance of an
attribute with the same name. (Attributes with duplicate names are forbidden by XML 1.0.) You are
thus making an impact not only on the extensibility of the attribute but also on the extensibility of the
parent element.

Because attributes can't be annotated with new attributes and because they can't be duplicated, they
can't be localized like elements through duplication with different values of xml:lang attributes.

Because attributes are more difficult to localize, you should avoid storing any text targeted at human
consumers within attributes. You never know whether your application will become international.
These attributes would make it more difficult to localize.

To understand the reasons behind these limitations, it's worth looking at the original use cases for
attributes. Attributes were originally designed to hold metadata, information about the contents of
the document. Elements themselves are a kind of metadata, labelling the content found in the
document, and attributes are a mechanism for refining that metadata. (Data about metadata is still
metadata.) Because of this, the editors of XML 1.0 decided that the lack of extensibility in XML
attributes was not an issue.

Although most XML tools provide equal access to elements and attribute contents and don't require
attributes to contain exclusively metadata, the syntactic restrictions created by considering attributes
to be metadata remain. Therefore, it's wise to use attributes for what they've been designed
for-metadata. My advice is to use attributes only when there is a good reason to do so: when the
information is clearly metadata, and you have good reason to believe that it will not have to be
extended.

In our example library, identifiers are good candidates for being attributes, but even available
probably should have been specified as an element. Although at first glance available might be
considered metadata (available doesn't directly affect the description of the content of a book),
other users looking at the book element may want this information item to be able to store more

details. They might even want to give it more structure, to extend it to indicate whether the book is
available as a new or as a used item, for example.

There are times when these rules about metadata and attributes must be relaxed. You saw in
Chapter 11 that it wasn't a good idea to add foreign elements into a text-only element. Doing so
transforms its content model from text to mixed content. It's always risky to extend a text-only
element by adding elements, while additional attributes usually pass unnoticed by existing
applications. In this case, the lack of further extensibility may be compensated for by the short-term
gain in backward compatibility between the vocabularies before and after the extension.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1.2.2 Use order sparingly

XML users often confuse the usage of elements and attributes. A common bad habit is the
assumption that schemas should always enforce a fixed order among child elements. In other words,
the relative order between subelements always matters.

Relative order is much less natural than you usually think, at least at the schema level. To draw a
parallel with another technology: it's considered poor practice to pay attention to the physical order
of columns and rows in the table of a relational database. Furthermore, UML-the dominant modeling
methodology-doesn't attach any order to the attributes of classes, nor does it attach any order to
relations between classes (unless specifically specified). UML attributes often represent not only XML
attributes but also elements.

The main reasons people expect order to be required derive from limitations in DTDs and, more
recently, in W3C XML Schema. Still, there are strong reasons to believe that when there is no special
reason, relative order between subelements is something that should be left to the choice of those
creating document instances, and you shouldn't bother users and applications with enforcing an
unnecessary constraint at the schema level.

In RELAX NG, defining content models in which the relative order of child elements isn't significant is
almost as simple as defining content models where it is significant. It's just a matter of adding
interleave elements. When the relative order isn't significant, the definition is more extensible

because these content models can easily be extended through pattern combinations using
interleave.

Using content models in which the relative order of child elements isn't significant makes it easier to
add new elements and attributes if necessary. I demonstrated this in the example about the addition
of the id attribute in the library element in the first section of this chapter.

Note that together with the "element or attribute" question, the issue of order significance is among
the most controversial for XML experts. Technical constraints may, in some cases, justify enforcing
element order in documents. These constraints come into play most notably during stream
processing of huge documents; requiring information to appear in a specific order might permit the
skipping of processing long content that otherwise needs to be buffered if this information came after
the content. Other arguments for requiring that the order of elements is important-which I find to
be far from obvious-include the assertion that there is "disorder" carried by documents in which
element order isn't enforced; that it's much easier to read documents when you know where to find
each element; and finally there is concern that if the order isn't enforced, human users will be
disoriented, confused, and find themselves in an insoluble quandary when it comes to choosing an
order.

While the interleave pattern works just fine most of the time, you need to keep in mind the
restriction about the interleave pattern mentioned in Chapter 6: there can be only one text
pattern in each interleave pattern. This restriction affects mixed-content models found mainly in

document-oriented applications and may sometimes require schemas to specify the order when
mixing textual content and elements.

12.1.2.3 Use containers

Generalizing content models in which the relative order of child elements isn't significant might lead

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you to difficulties when you need to work with other schema languages; notably, DTD and W3C XML
Schema, such as if you are using RELAX NG as your main schema language and want to maintain the
possibility of converting your RELAX NG schemas to DTDs or W3C XML schemas for the same
vocabulary.

A way to avoid these potential issues surrounding the relative order of elements is to add elements
that act as containers. These containers can make it easier to specify that elements include a text
node, several elements that aren't repeated, or repeated elements with the same name.

Among the elements of our library, the book element is the only one that would be problematic for
other schema languages if I decided to switch its content model to interleave. The book-content

pattern then becomes:

 <define name="book-content">
 <interleave>
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <ref name="isbn-content"/>
 </element>
 <element name="title">
 <ref name="title-content"/>
 </element>
 <zeroOrMore>
 <element name="author">
 <ref name="author-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <ref name="character-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

or, in the compact syntax:

 book-content =
 attribute id { text }
 & attribute available { text }
 & element isbn { isbn-content }
 & element title { title-content }
 & element author { author-content }*
 & element character { character-content }*

This change allows instance documents in which author and character elements are mixed up with

the other elements, such as that shown in Figure 12-3.

Figure 12-3. An instance document with interleaved content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

W3C XML Schema can't support this mixing. In order to define a schema that can more easily be
translated into a W3C XML Schema, I can add containers to isolate the author and character
elements from the elements that can't be repeated. The content of the book-content pattern thus

becomes:

 <define name="book-content">
 <interleave>
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <ref name="isbn-content"/>
 </element>
 <element name="title">
 <ref name="title-content"/>
 </element>
 <element name="authors">
 <zeroOrMore>
 <element name="author">
 <ref name="author-content"/>
 </element>
 </zeroOrMore>
 </element>
 <element name="characters">
 <zeroOrMore>
 <element name="character">
 <ref name="character-content"/>
 </element>
 </zeroOrMore>
 </element>
 </interleave>
 </define>

or:

book-content =
 attribute id { text }
 & attribute available { text }
 & element isbn { isbn-content }
 & element title { title-content }
 & element authors { element author { author-content }* }
 & element characters { element character { character-content }* }

and validates elements such as those shown in Figure 12-4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-4. A document with interleaved container

The relative order between the isbn, title, authors, and characters elements is still not
significant, but the author and character elements are now grouped together under containers and

can't interleave between the other elements. That's enough to make this schema much friendlier to
schema languages with less expressive power than RELAX NG.

Note that even if these containers aren't necessary for RELAX NG, they are considered good practice
by many XML experts. The containers facilitate access to author and character elements. The

downside is that additional hierarchies are added, and XPath expressions that identify the contained
elements become more verbose: instead of writing /library/book/character to access to the
character elements, you have to write /library/book/characters/character. This style can get

tedious.

12.1.3 Restricting Existing Schemas

The previous sections focused on making schemas easy to extend through combination of named
patterns and limiting the use of redefinition, because it leads to schemas with redundant pieces that
are more difficult to maintain. However, extension is just one way to modify a schema to adapt it to
other applications. There are also times when it is necessary to restrict schemas, adding new
constraints or removing elements and attributes.

With RELAX NG, designing schemas that can be restricted without complete redefinition is more
difficult than designing schemas that are easy to extend. This is because the only restriction that can
be applied through combination is the combination of notAllowed patterns through interleave. As
shown in Chapter 10, if the definition of the died element has been included in the named pattern
element-died, you can use this feature to remove the element from the schema:

 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="library.rng"/>
 <define name="element-died" combine="interleave">
 <notAllowed/>
 </define>
 </grammar>

or:

 include "library.rnc"
 element-died &= notAllowed

The rule of thumb for writing schemas that are easy to restrict is thus to increase the granularity of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

named patterns, exactly as is done when writing extensible schemas.

Note that the distinction between defining named patterns for content, rather than for elements as
was important for writing extensible schemas, becomes meaningless for defining easily restricted
schemas. This is because interleaving a notAllowed pattern with an element or with its content leads

in both cases to a pattern that can't be matched in any instance structure.

The issue of restricting schemas is difficult enough that motivated people have propose specific
solutions. Looking beyond the scope RELAX NG's built-in features, Bob DuCharme has proposed a
generic mechanism that relies on annotations that are preprocessed to generate subsets of schemas:
see Chapter 13.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 The Case for Open Schemas

It's good to design extensible schemas, but they make an impact only on developers who can extend
our initial schema. A document valid per an extended flavor of our schema is likely to be invalid per
our original schema.

By contrast, an open schema lets instances be extensible and allows the addition of content while still
remaining valid against the original schema. Of course because the additions are unpredictable, the
validation of their structure will be very lax, but extended documents will still be considered valid.

Designing and using open schemas is quite challenging because it gives more power to the XML user,
and unexpected situations may result. The use of open schemas also conflicts with some best
practices of schema usage: a totally open schema validates any well-formed XML document and is
thus totally useless. On the other hand, closed schemas violate the fundamental principle of
extensibility of XML, the extensible markup language.

There are several levels of openess from a totally closed schema in which nothing unexpected can
happen, to the most extreme case, which allows any well-formed document. In RELAX NG, name
classes (introduced in Chapter 10) are the basic blocks that will let you build the wildcards needed to
open a schema We'll take a closer look at name classes before presenting the constructions most
often used in open schemas.

12.2.1 More Name Classes

Here I'll first recap the name classes seen in the previous chapter. You've seen how to use anyName

to match any name from any namespace in the context of an element or an attribute:

 <define name="anything">
 <zeroOrMore>
 <choice>
 <element>
 <anyName/>
 <ref name="anything"/>
 </element>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 </choice>
 </zeroOrMore>
 </define>

or:

 anything = (element * { anything } | attribute * { text } | text)*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then you saw how to remove specific namespaces from anyName using except and nsName:

 <define name="foreign-elements">
 <zeroOrMore>
 <element>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 <ref name="anything"/>
 </element>
 </zeroOrMore>
 </define>

or:

 default namespace lib = "http://eric.van-der-vlist.com/ns/library"
 namespace local = ""
 namespace hr = "http://eric.van-der-vlist.com/ns/person"

 .../...

 foreign-elements = element * - (local:* | lib:* | hr:*) { anything }*

The two name class elements except and nsName shown in this example can be used independently.
To define a name class for any name from the lib namespace, I can write:

 <element>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <ref name="anything"/>
 </element>

or:

 element lib:* { anything }

Elements and attributes have one and only one name. It's meaningless to associate them with
several name classes, unless you do it using choice. The choice element provides a method of
combining name classes. To define a name class for any name from the lib or hr namespaces, I can

write:

 <element>
 <choice>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </choice>
 <ref name="anything"/>
 </element>

or:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element lib:* | hr:* { anything }

Finally, there is also a name class that operates on specific element or attribute names. To define a
name class lib:name or hr:name, I can write:

 <element>
 <choice>
 <name>libname</name>
 <name>hrname</name>
 </choice>
 <ref name="anything"/>
 </element>

or:

element lib:name | hr:name { text }

Note that the name name class expects a qualified name. These name classes can be combined pretty
much as you like. You can also define a name class for any name from the hr namespace except the

known elements:

 <element>
 <nsName ns=ns="http://eric.van-der-vlist.com/ns/person"/>
 <except>
 <name>hr:author</name>
 <name>hr:name</name>
 <name>hr:born</name>
 <name>hr:dead</name>
 <except>
 </nsName>
 <ref name="anything"/>
 </element>

or:

element hr:* - (hr:author | hr:name | hr:born | hr:dead) { anything }

This definition allows for future extension of the hr namespace.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 Extensible and Open?

I wrote in the introduction to this chapter that the notions of "extensible" and "open" are largely
independent. After all you have seen, you might even think that opening a schema can be an
impediment to its extensibility. Let's say I have written an open model for the content of the book

element that allows foreign nodes:

 <define name="book-content">
 <interleave>
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <ref name="isbn-content"/>
 </element>
 <element name="title">
 <ref name="title-content"/>
 </element>
 <zeroOrMore>
 <element name="author">
 <ref name="author-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <ref name="character-content"/>
 </element>
 </zeroOrMore>
 <ref name="foreign-nodes"/>
 </interleave>
 </define>

or:

 book-content =
 attribute id { text }
 & attribute available { text }
 & element isbn { isbn-content }
 & element title { title-content }
 & element author { author-content }*
 & element character { character-content }*
 & foreign-nodes

I have independently applied the tips for building an extensible schema (using interleave and

containers) and also for defining an open schema (referencing a wildcard to allow foreign nodes).
Unfortunately, if my schema is open, it's no longer very extensible.

Imagine that I want to add a couple of XLink attributes to define a link to a web page. I can't

http://lib.ommolketab.ir
http://lib.ommolketab.ir

combine this new attribute with the existing schema using interleave. This new attribute would be
considered a duplicate of the implicit definition of xlink:href already contained in the foreign-
nodes wildcard.

The situation is similar for the addition of new elements. If I want to add an optional dc:copyright

element, for instance, I can, but the constraint applied to this element will be in conflict with the lax
definition of dc:copyright implicitly contained in the foreign-nodes wildcard. If the new constraint
isn't met, RELAX NG will still find a match for a bogus dc:copyright element in the wildcard.

Does that mean that open schemas can't be extensible? Yes and no. While wildcards make open
schemas less extensible, I can overcome that problem by extending schemas before opening them.
To come back to the example, I'd better write a closed schema first (closed-schema.rng):

 <define name="book-content">
 <interleave>
 <attribute name="id"/>
 <attribute name="available"/>
 <element name="isbn">
 <ref name="isbn-content"/>
 </element>
 <element name="title">
 <ref name="title-content"/>
 </element>
 <zeroOrMore>
 <element name="author">
 <ref name="author-content"/>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <ref name="character-content"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>

or, in the compact syntax, closed-schema.rnc:

 book-content =
 attribute id { text }
 & attribute available { text }
 & element isbn { isbn-content }
 & element title { title-content }
 & element author { author-content }*
 & element character { character-content }*

I can then carefully keep this closed schema in a first document and extend it by inclusion and
combination to become open:

 <include href="closed-schema.rng"/>
 <define name="book-content" combine="interleave">
 <ref name="foreign-nodes"/>
 </define>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:

 include "closed-schema.rnc"
 book-content &= foreign-nodes

Applications would then use the open schema (the one produced by inclusion and combination) and
derive the benefit as if the schema were natively open. The closed-schema would be available to
extend the content model, redefine the foreign-node wildcard, and open the schema again in

different ways.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Annotating Schemas
RELAX NG annotations are elements and attributes from other namespaces that are incorporated into
RELAX NG schemas. In Chapter 12, you learned how to use extensibility with schemas and instance
documents. Up to now, we've been relying on elements and attributes whose syntax and meaning
are precisely defined within the RELAX NG specification. Annotations provide a very different form of
extensibility; you're creating extensions to the RELAX NG vocabulary itself.

The scope of applications based on annotations can be as wide as your imagination. To give your
imagination a place to build, be aware that there are some common structures in the existing usage
of schema annotation. There are annotations for documentation purposes, and there are annotations
for applications. Within the category of annotations for applications, three more categories can be
distinguished:

Preprocessing annotations that generate a variety of schemas from a common one

Annotations that help to generate something (from documentation to a whole host of other
clever things you may never have considered) from a RELAX NG schema

Annotations that extend the features of RELAX NG

Armed with this glimpse of the possible, we need to explore the syntax for embedding annotations
within RELAX NG schemas.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 Common Principles for Annotating RELAX NG
Schemas

RELAX NG doesn't define specific elements and attributes reserved for annotations. Instead, RELAX
NG opened its language. RELAX NG permits foreign attributes-attributes from any namespace other
than the RELAX NG namespace-to appear on all its elements. RELAX NG also allows elements either
from no namespace or from any namespace other than the RELAX NG namespace in all its elements
with a content model that is empty or element only. (That excludes all RELAX NG elements except
value and param , which have a text-only content model.) RELAX NG is thus strictly following the

principles of an open schema presented in the previous chapter.

13.1.1 Annotation Using the XML Syntax

In the XML syntax, adding annotations is both easy and flexible. It's a very straightforward process to
add annotations using foreign elements. For instance, here I've added some Dublin Core (dc)
elements to our grammar to identify its title and author :

<?xml version="1.0" encoding="utf-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0" xmlns:dc=
 "http://purl.org/dc/elements/1.1/">
 <dc:title>RELAX NG flat schema for our library</dc:title>
 <dc:author>Eric van der Vlist</dc:author>
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 ...
</grammar>

or perhaps some XHTML documentation:

<?xml version="1.0" encoding="utf-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0" xmlns:xhtml=
 "http://www.w3.org/1999/xhtml">
 <xhtml:div>
 <xhtml:h1>RELAX NG flat schema for our library</xhtml:h1>
 <xhtml:p>This schema has been written by
 <xhtml:a href="http://dyomedea.com/vdv">Eric van der Vlist</xhtml:a>.</xhtml:p>
 </xhtml:div>
 ...
</grammar>

or perhaps I want to use XLink through attributes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <start>
 <element name="library"
 xlink:type="simple"
 xlink:role="http://www.w3.org/1999/xhtml"
 xlink:arcrole="http://www.rddl.org/purposes#reference"
 xlink:href="library.xhtml">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 ...
 </grammar>

RELAX NG itself won't know what to do with this extra information-that's up to processors built
specifically for handling the annotations-but it will quietly ignore all this extra information, letting you
bundle whatever information you like into the schema without disrupting it.

13.1.2 Annotations Using the Compact Syntax

Annotations are much more challenging to use correctly when using the compact syntax. Because it
isn't XML, the compact syntax has no built-in support for this kind of extensibility; an alternative
syntax based on square brackets ([]) has been developed to embed XML structures within the

compact syntax. Unfortunately, the square brackets and XML aren't a delightful mix with the other
punctuation used in the compact syntax. The syntax for including annotations within a schema is
slightly different according to their location in the schema.

Annotations using the compact syntax are deceptively simple. Although they
seem easy, they are a common source of errors. As a solution, consider
translating between the compact and XML syntax using tools such as James
Clark's Trang, available at http://www.thaiopensource.com/relaxng/trang.html .
You may feel safer, and your code might actually be in safer hands, if you
always convert to the XML syntax to edit your annotations. Examining Trang's
results is a good way to master the intricacies of the compact syntax
annotations as well.

13.1.2.1 Grammar annotations

The easiest annotations to write are for foreign elements in a grammar element. These annotations
are called grammar annotations, and they do the same work as the first two examples shown in with
the XML syntax. First, the Dublin Core annotations look like this in RELAX NG's XML syntax:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <dc:title>RELAX NG flat schema for our library</dc:title>
 <dc:author>Eric van der Vlist</dc:author>
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 ...
 </grammar>

For the compact syntax, use the namespace-qualified name of the annotation, followed by a left
square bracket, its contents, and a right square bracket. The annotated schema listed earlier is
written:

namespace dc = "http://purl.org/dc/elements/1.1/"

dc:title ["RELAX NG flat schema for our library"]

dc:author ["Eric van der Vlist"]

start = element library { book-element+ }

The use of the qualified name (dc:title or dc:author) is specific to grammar annotations, while the
syntax [element content] that represents its content is more generic.

These annotations can have structured content with child elements and attributes. Let's reexamine
our XHTML example:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <xhtml:div>
 <xhtml:h1>RELAX NG flat schema for our library</xhtml:h1>
 <xhtml:p>This schema has been written by
 <xhtml:a href="http://dyomedea.com/vdv">Eric van der Vlist</xhtml:a>.</xhtml:p>
 </xhtml:div>
 ...
 </grammar>

In the compact syntax, I used an approach similar to that used for the Dublin Core example, but with
more square brackets to represent nested element and attribute structures:

namespace xhtml = "http://www.w3.org/1999/xhtml"

xhtml:div
[
 xhtml:h1 ["RELAX NG flat schema for our library"]
 xhtml:p
 [
 "This schema has been written by "
 xhtml:a [href="http://dyomedea.com/vdv" "Eric van der Vlist"]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "."
]
]

start = element library { book-element+ }
...

The syntax used for the Dublin Core example has here been applied recursively and the href attribute
has been expressed as href = "http://dyomedea.com/vdv ".

These grammar annotations always represent foreign elements. Another mechanism (initial
annotations) expresses annotations representing foreign attributes.

13.1.2.2 Initial annotations

Initial annotations define annotations (through foreign elements or attributes) that are appended as
the first children of the next pattern. This is the option you must always use to define annotations as
foreign attributes, such as those used in the XLink example:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <start>
 <element name="library"
 xlink:type="simple"
 xlink:role="http://www.w3.org/1999/xhtml"
 xlink:arcrole="http://www.rddl.org/purposes#reference"
 xlink:href="library.xhtml">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 ...
 </grammar>

Initial annotations don't begin with a qualified name because they apply to the declaration that follows
them, not to an independent element. The XLink example is therefore written:

 namespace xlink = "http://www.w3.org/1999/xlink"

 start =
 [
 xlink:type = "simple"
 xlink:role = "http://www.w3.org/1999/xhtml"
 xlink:arcrole = "http://www.rddl.org/purposes#reference"
 xlink:href="library.xhtml"
]
 element library { book-element+ }

Note how the foreign elements have been wrapped within square brackets in the compact syntax and
also that the annotations aren't included in the element pattern that follows it. Using square brackets

http://dyomedea.com/vdv
http://lib.ommolketab.ir
http://lib.ommolketab.ir

to wrap annotations without a name to precede it is what makes it an initial annotation . Initial
annotations can be used with attributes or elements or both. If I combine the Dublin Core example
with the XLink example, I can use initial annotations. In RELAX NG XML syntax, it looks like:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <start>
 <element name="library"
 xlink:type="simple"
 xlink:role="http://www.w3.org/1999/xhtml"
 xlink:arcrole="http://www.rddl.org/purposes#reference"
 xlink:href="library.xhtml">
 <dc:title>The library element</dc:title>
 <dc:author>Eric van der Vlist</dc:author>
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>

or, in the compact syntax:

 namespace xlink = "http://www.w3.org/1999/xlink"
 namespace dc = "http://purl.org/dc/elements/1.1/"

 start =
 [
 xlink:type = "simple"
 xlink:role = "http://www.w3.org/1999/xhtml"
 xlink:arcrole = "http://www.rddl.org/purposes#reference"
 xlink:href="library.xhtml"
 dc:title ["The library element"]
 dc:author ["Eric van der Vlist"]
]
 element library { book-element+ }

Again, note how the annotation precedes the element pattern to indicate that they are the first child

elements in the XML syntax. This rule also applies to annotations for foreign attributes of the
grammar pattern, such as:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="simple"
 xlink:role="http://www.w3.org/1999/xhtml"
 xlink:arcrole="http://www.rddl.org/purposes#reference"
 xlink:href="grammar.xhtml">
 ...
 </grammar>

In this case, to define the annotations before the grammar pattern, I need to write the grammar

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pattern explicitly, something usually unnecessary with the compact syntax:

 namespace xlink = "http://www.w3.org/1999/xlink"

 [
 xlink:type = "simple"
 xlink:role = "http://www.w3.org/1999/xhtml"
 xlink:arcrole = "http://www.rddl.org/purposes#reference"
 xlink:href="grammar.xhtml"
]
 grammar {
 ...
}

13.1.2.3 Following annotations

Here's an example of how to define annotations that are neither initial nor grammar annotations.
Note that the XHTML element is in the middle of the declaration:

 <define name="author-element">
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <xhtml:p>After this point, everything is optional.</xhtml:p>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

You can define annotations that aren't initial or grammar using a third syntax reserved for following
annotations . Here's how to make the previous example work:

 author-element =
 element author {
 attribute id { text },
 name-element,
 born-element >> xhtml:p ["After this point, everything is optional."],
 died-element?
 }

Note the new syntax >> xhtml:p ["After this point , all is optional ."] '. The leading >> signals

a following annotation. A following annotation is inserted where it appears as a "following sibling" of
the parent element representing the pattern in the XML syntax.

13.1.2.4 Assembling the annotation syntax

In the following perverse schema snippet, annotations have been added in nearly every location
where there was room for them:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:ann="http://dyomedea.com/examples/ns/annotations"
 ann:attribute="Annotation as foreign attribute for 'grammar'">
 <ann:element>Initial annotation as foreign element for "grammar"</ann:element>
 <start ann:attribute="Annotation as a foreign attribute for 'start'">
 <ann:element>Initial annotation as foreign element for "start"</ann:element>
 <element name="library" ann:attribute="Annotation as a foreign attribute for
 'element'">
 <ann:element>Initial annotation as foreign element for "element"</ann:element>
 <oneOrMore ann:attribute="Annotation as a foreign attribute for 'oneOrMore'">
 <ann:element>Initial annotation as foreign element for "oneOrMore"</ann:
 element>
 <ref name="book-element" ann:attribute="Annotation as a foreign attribute
 for 'ref'">
 <ann:element>Initial annotation as foreign element for "ref"</ann:element>
 </ref>
 <ann:element>Following annotation as foreign element for "oneOrMore"</ann:
 element>
 </oneOrMore>
 <ann:element>Following annotation as foreign element for "element"</ann:
 element>
 </element>
 <ann:element>Following annotation as foreign element for "start"</ann:element>
 </start>
 <ann:element>Grammar annotation as foreign element for "grammar"</ann:element>
 .../
 </grammar>

or, in the compact syntax:

 namespace ann = "http://dyomedea.com/examples/ns/annotations"

 [
 ann:attribute = 'Annotation as foreign attribute for "grammar"'
 ann:element ['Initial annotation as foreign element for "grammar"']
]
 grammar {
 [
 ann:attribute = "Annotation as a foreign attribute for 'start'"
 ann:element ['Initial annotation as foreign element for "start"']
]
 start =
 [
 ann:attribute = "Annotation as a foreign attribute for 'element'"
 ann:element [
 'Initial annotation as foreign element for "element"'
]
]
 element library {
 [
 ann:attribute =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "Annotation as a foreign attribute for 'oneOrMore'"
 ann:element [
 'Initial annotation as foreign element for "oneOrMore"'
]
]
 ([
 ann:attribute = "Annotation as a foreign attribute for 'ref'"
 ann:element [
 'Initial annotation as foreign element for "ref"'
]
]
 book-element
 >> ann:element [
 'Following annotation as foreign element for "oneOrMore"'
]+)
 >> ann:element [
 'Following annotation as foreign element for "element"'
]
 }
 >> ann:element [
 'Following annotation as foreign element for "start"'
]
 ann:element ['Grammar annotation as foreign element for "grammar"']
 .../...
 }

Although the compact syntax is strictly equivalent to the XML syntax, it's difficult to read and tough to
specify where each of these annotations belongs. I hope that this example has been compelling
enough (and, for once, confusing enough) to convince you that even though application-specific
syntaxes that are more concise and easier to read than XML can be defined, when there is a need for
extensibility and interoperability, XML is a clear winner.

13.1.2.5 When initial annotations turn into following annotations

A riddle before we move on: what does this annotation mean?

element born {
 xsd:date {
 [
 xhtml:p [
 "Add new parameters here to define a range."
]
]
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }
}

It can't be a following annotation on the pattern parameter, because parameters have a text-only

content model and can't accept foreign elements. RELAX NG concludes that, in this case, the example
is a following annotation on the definition of the data content of the born element. This answer makes

the compact syntax riddle equivalent to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<element name="born">
 <data type="date">
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 <xhtml:p>Add new parameters here to define a range.</xhtml:p>
 </data>
</element>

Note that this same issue also arises with the value pattern. With both value and param , the normal

syntax using a following annotation can't be used in the compact syntax.

13.1.3 Annotating Groups of Definitions

You might want to annotate a group of patterns. When patterns are definitions of named patterns in a
grammar, and compositors such as group , interleave , or choice can't be used as containers for
the annotation, RELAX NG provides a div pattern in its own namespace for this purpose:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns:xhtml="http://www.w3.org/1999/xhtml"
 xmlns="http://relaxng.org/ns/structure/1.0">
 ...
 <div>
 <xhtml:p>The content of the book element has
 been split into two named patterns:</xhtml:p>
 <define name="book-start">
 <attribute name="id"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 </define>
 <define name="book-end">
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 <attribute name="available"/>
 </define>
 </div>
 ...
 </grammar>

or:

 [
 xhtml:p [
 "The content of the book element has been split into two named patterns:"
]
]
 div {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 book-start =
 attribute id { text },
 isbn-element,
 title-element,
 author-element*
 book-end =
 author-element*,
 character-element*,
 attribute available { text }
 }

The div pattern has no other effect than to group both definitions of the book element in a container.

Annotations can then be applied to a single container instead of being applied as multiple individual
definitions. Each embedded definition is still considered global to the grammar; they can still be
referenced as if they hadn't been wrapped into a div pattern.

13.1.4 Alternatives and Workarounds

Using the div element seems like a pretty good idea, but there are other challenges in annotation.

One takes advantage of more generic mechanisms defined for XML, while the second deals with the
impossibility of annotating value and param patterns with foreign elements.

13.1.4.1 Why reinvent XML 1.0 comments and PIs?

There is a tendency in recent XML applications to deprecate the usage of XML comments and
processing instructions (PIs) and to replace them with XML elements and attributes. There are
sometimes good reasons for doing so. Using elements is more flexible when structured content needs
to be added. Also, the lack of namespace support for PIs makes it difficult to rely on names that
might have different meanings in different applications. However, these reasons don't mean that
comments and PIs shouldn't be used in RELAX NG schemas.

Comments are fully supported by RELAX NG. XML comments even have their equivalent in the
compact syntax:

 <define name="author-element">
 <!-- Definition of the author element -->
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

which becomes, with the help of the # sign:

author-element =
 # Definition of the author element
 element author {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attribute id { text },
 name-element,
 born-element,
 died-element?
 }

As in Unix shells, comments are marked by a hash (#) in the compact syntax. I could discuss forever

whether this is better or worse than a counterpart based on foreign elements such as:

 <define name="author-element">
 <xhtml:p>Definition of the author element</xhtml:p>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

or:

 [xhtml:p ["Definition of the author element"]]
 author-element =
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }

I would argue that the syntax for comments is much more readable in the compact syntax. In the
XML syntax too, comments are more easily spotted when their syntax is different from the XML
elements. Readability is of course very subjective, but there is no reason to avoid comments if you
like them. After all, a simple XSLT transformation can transform comments into foreign elements and
vice versa. Getting good comments is more important than the syntax used to express them.

Reading comments in the compact syntax is so much easier than reading
annotations that I recommend always using comments unless there are no
other special requirements.

The same recommendation would hold for choosing between methods of adding processing
instructions if they had an equivalent in the compact syntax. Unfortunately, PIs don't translate into
the compact syntax and are discarded during the conversion. If you want to keep the option of using
both the XML and the compact syntax, you will need to avoid using PIs. So a decision has been made
for you.

Still, if you like PIs, you can use them in the XML syntax. As comments, PIs can be more readable
than foreign elements. For instance, compare:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <define name="author-element">
 <?sql query="select name, birthdate, deathdate from tbl_author"?>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

and:

 <define name="author-element" >
 <sql:select
 xmlns:sql="http://www.extensibility.com/saf/spec/safsample/sql-map.saf">
 select name, birthdate,deathdate from tbl_author
 </sql:select>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

There doesn't seem to be much reason to prefer the second syntax over the first one, beyond lack of
namespace support mentioned and a greater extensibility for foreign elements.

13.1.4.2 Annotation of value and param patterns

What if you need to annotate value and param patterns that don't accept foreign elements? There

isn't much you can do except use foreign attributes, XML comments, PIs (as seen in the previous
section), or move the annotations to another location.

Comments can be used freely in this context:

<element name="born">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">
 <!-- We don't want timezones in our dates. -->
 [0-9]{4}-[0-9]{2}-[0-9]{2}
 </param>
 </data>
 </element>

or, in the compact syntax:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element born {
 xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern =
 # We don't want timezones in our dates.
 "[0-9]{4}-[0-9]{2}-[0-9]{2}\x{a}"
 }
 }

You can also transform the foreign elements you want to create into attributes with the same names,
for instance:

<element name="born">
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern" xhtml:p="We don't want timezones in our dates.">
 [0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
</element>

or:

element born {
 xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 [xhtml:p = "We don't want timezones in our dates."]
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }
}

Of course, there is no such thing as an xhtml:p attribute, but the meaning seems straightforward

enough, at least to human readers. The downside of both workarounds is that you can't extend them
if you have structured content. You might want to do that if you need to add a link in your comment.
In this case, you need to locate the comment in a foreign element at a different location:

<element name="born">
 <data type="date">
 <xhtml:p>We don't want timezones in our dates
 (see <xhtml:a href="ref.xhtml#dates">dates ref</xhtml:a>
 for additional info.</xhtml:p>
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern">[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
</element>

or:

element born {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [
 xhtml:p [
 "We don't want timezones in our dates (see "
 xhtml:a [href="ref.xhtml#dates" "dates ref"]
 " for additional info."
]
]
 xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }
}

Note that this example has lost the relation between the annotation's link and the annotation's
location. One of the ways to get this information back is to add an identifier to the annotation and use
a mechanism such as XLink to define a link between the param element and the annotation:

<element name="born">
 <data type="date">
 <xhtml:p id="dates-notz">We don't want timezones in our dates
 (see <xhtml:a href="ref.xhtml#dates">dates ref</xhtml:a>
 for additional info.</xhtml:p>
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 <param name="pattern" xlink:type="simple"
 xlink:arcrole="http://www.rddl.org/purposes#reference"
 xlink:href="#dates-notz" >[0-9]{4}-[0-9]{2}-[0-9]{2}</param>
 </data>
</element>

or:

element born {
 [
 xhtml:p [
 id = "dates-notz"
 "We don't want timezones in our dates (see "
 xhtml:a [href="ref.xhtml#dates" "dates ref"]
 " for additional info."
]
]
xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 [
 xlink:type = "simple"
 xlink:arcrole = "http://www.rddl.org/purposes#reference"
 xlink:href="#dates-notz"
]
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

Another option is to change the rules of the game and state that the annotation doesn't apply to the
parent element, but to the preceding element. For instance, you will see in the next section that
RELAX NG's DTD compatibility specification uses the trick of shifting the annotation from the parent
element to the preceding element. Applied to our example:

element born {
 xsd:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 [
 xhtml:p [
 "We don't want timezones in our dates (see "
 xhtml:a [href="ref.xhtml#dates" "dates ref"]
 " for additional info."
]
]
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 Documentation

After this long introduction to annotation syntax, it is time to explore applications of annotations. The
first application of annotations is for documentation. The issue of generating documentation from
schemas, much like the problem of generating documentation from code, is a long-running problem
with three different schools of thought:

The documentation and the schema are stored separately. In this case, there is nothing specific
to documenting RELAX NG schemas, and this technique is beyond the scope of this book.

The schema can be embedded in the documentation: proponents of "Literate Programming" are
fans of this approach. It will be presented in Chapter 14 .

The documentation can be embedded within the schema: I'll cover this approach in this section.

You've seen the technical basis of how these annotations can be included in RELAX NG schemas.
Generating documentation from these annotations is mainly a matter of writing an XSLT
transformation to extract them and then formatting the annotations according to your needs. I won't
be going through the details of XSLT transformations, but the following examples are good candidates
for these kinds of transformation.

13.2.1 Comments

This example uses simple comments:

 <define name="author-element">
 <!-- Definition of the author element -->
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

which is equivalent to:

author-element =
 # Definition of the author element
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

These comments can be easily extracted, not only from the XML syntax using an XSLT
transformation, but also from the compact syntax using regular expressions.

Comments provide a lightweight way to document RELAX NG schemas. They are the least intrusive
mechanism to annotate schemas and can be used at any location in a schema, even within the text-
only patterns value and param .

The problems with comments are well known:

The XML recommendation states that parsers don't have to report them, so some tools just
ignore them. This was the case for early parsers and editors, but the situation has improved
since the early days of XML. Most, if not all, of the XML parsers and editors now report XML
comments.

Comments may contain only plain text and have no XML structures. In the context of a RELAX
NG schema, this state is often not a concern; however, when needed, conventions can easily be
added to define specific structures. This is done in JavaDoc, for example, where special "tags"
are prefixed by @ . Similarly, Wiki Wiki Webs express links as [link
title|http://...link.location] .

13.2.2 RELAX NG DTD Compatibility Comments

I have already mentioned the RELAX NG DTD Compatibility specification in Chapter 8 , in which we
studied DTD datatypes. RELAX NG includes more than datatypes in the compatibility specification. It
also includes a way to specify comments that would appear in a DTD equivalent to the RELAX NG
schema. It also specifies an annotation for defining default values, which are covered later in this
chapter.

DTD compatibility comments have a special status: the RELAX NG Technical Committee has defined a
namespace for them and provided a shortcut to a concise form in the compact syntax. As annotations
in the XML syntax and comment like in the compact syntax, they are thus a kind of middle ground
between XML comments and RELAX NG annotations.

When using the XML syntax, DTD Compatibility Comments are foreign elements in the namespace
http://relaxng.org/ns/compatibility/annotations/1.0 . Their content is text-only, and they may be
annotated using foreign namespace attributes. An example of schema using this feature is:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">
 <a:documentation>RELAX NG flat schema for our library</a:documentation>
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 <define name="author-element">

http://relaxng.org/ns/compatibility/annotations/1.0
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <a:documentation>Definition of the author element</a:documentation>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>
 ...
 </grammar>

Here's an equivalent schema using the compact syntax:

 ## RELAX NG flat schema for our library
 grammar{

 start = element library { book-element+ }

 ## Definition of the author element
 author-element =
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }
 ...
 }

Note that the syntax with the leading double hashes (##) is analogous to the /** comment used in

JavaDoc. Despite the fact that they look like comments, these are annotations that have the same
meaning and rules as initial annotations. They must precede the pattern to which they apply. This
form is equivalent to:

 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

 [a:documentation ["RELAX NG flat schema for our library"]]

 grammar {
 start = element library { book-element+ }

 [a:documentation ["Definition of the author element"]]
 author-element =
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

This shortcut has the same restrictions as initial annotations, in that they must precede all the initial
annotations. It is possible to mix them with other types of annotations and write the following, for
instance:

 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

 a:documentation ["RELAX NG flat schema for our library"]
 start = element library { book-element+ }

 ## Definition of the author element
 author-element =
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }
 ...

Up to now, you've seen examples of compatibility comments that were the first element in their
parent. These examples have hidden an important feature of these comments: they are using the
trick mentioned in the previous section about workarounds for annotating param and value patterns.

They apply their comments to the preceding sibling from the RELAX NG namespace when there is
one. To annotate the reference to the name-element definition, you can write either:

 <define name="author-element">
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element">
 <a:documentation>Definition of the author element</a:documentation>
 </ref>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

or:

 <define name="author-element">
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <a:documentation>Definition of the author element</a:documentation>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the first case, the DTD compatibility annotation is the first child element of its parent element (ref
) and applies to the ref pattern for this reason. In the second case, the annotation isn't the first child
element from the RELAX NG namespace and applies to its preceding sibling, which is the ref pattern

again.

The compact syntax has the same rules, so the following annotations are equivalent:

author-element =
 element author {
 attribute id { text },

 ## Definition of the author element
 name-element,
 born-element,
 died-element?
 }

and:

author-element =
 element author {
 attribute id { text },
 name-element
 >> a:documentation ["Definition of the author element"],
 born-element,
 died-element?
 }

Here again, a following annotation is considered as an annotation of the name-element reference.

Of course, if you are annotating a param or value pattern, you have no other choice than to locate

the annotation after the pattern, which is why this tricky mechanism has been introduced.

13.2.3 XHTML Annotations

XHTML seems like a natural choice for embedding documentation in RELAX NG schemas. You have
already seen several examples of such annotations. The main benefit of XHTML is that it is so similar
to HTML that it is known by pretty much anyone who has ever published a web page. A lot of
documentation and books on XHTML are available, and many editors can be used to edit XHTML
documents. Furthermore, if you keep to a reasonable subset of XHTML (such as, for instance, XHTML
Basic), you have a simple and generic language for writing documentation. The work needed to
publish the result of the extraction of XHTML annotations as HTML is minimal, since your annotations
are already XHTML.

You will find more information about XHTML at the W3C web site:
http://www.w3.org/MarkUp/ as well as in specialized books such as HTML &
XHTML: The Definitive Guide , by Chuck Musciano and Bill Kennedy (O'Reilly)
and XHTML: Moving Toward XML , by Simon St.Laurent and B.K. DeLong (M&T
Books).

http://www.w3.org/MarkUp/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You have also seen many examples of XHTML annotations, such as:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0" xmlns:xhtml="http://www.w3.org/
1999/xhtml">
 <xhtml:div>
 <xhtml:h1>RELAX NG flat schema for our library</xhtml:h1>
 <xhtml:p>This schema has been written by <xhtml:a href="http://dyomedea.com/
 vdv">Eric van der Vlist</xhtml:a>.</xhtml:p>
 </xhtml:div>
 ...
 </grammar>

or, using the compact syntax:

 namespace xhtml = "http://www.w3.org/1999/xhtml"

 xhtml:div
 [
 xhtml:h1 ["RELAX NG flat schema for our library"]
 xhtml:p
 [
 "This schema has been written by "
 xhtml:a [href="http://dyomedea.com/vdv" "Eric van der Vlist"]
 "."
]
]

 start = element library { book-element+ }
 ...

Beyond the syntax that has already been discussed in the first part of this chapter, note how I have
embedded a title (xhtml:h1) and a paragraph (xhtml:p) within a division (xhtml:div). This is

generally a good practice; it makes it easier to associate the title with the rest of the content and to
manipulate the annotation as a whole.

13.2.4 DocBook Annotations

First designed as an SGML application and very popular for writing technical documentation, DocBook
is now also an XML language. With more features than XHTML, DocBook offers many predefined bells
and whistles to facilitate indexes and cross references. DocBook makes it easy to indicate that some
bit of text is a snippet of source code and can identify acronyms, as well as do many other things.
These features can be emulated in XHTML using the class attribute, but in DocBook they are built in

from the beginning, and there is a common meaning.

You will find more information about DocBook on its web site:
http://www.oasis-open.org/committees/docbook/ and in the book DocBook:
The Definitive Guide , by Norm Walsh (O'Reilly).

http://www.oasis-open.org/committees/docbook/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

DocBook is defined as a DTD that doesn't use any namespaces; this isn't an issue because RELAX NG
allows annotations through elements without namespace. To give you an idea of what DocBook looks
like, as well as an example showing how to "undeclare" a namespace in XML, the following would
more or less match the XHTML in the previous example:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <sect1 xmlns="">
 <title>RELAX NG flat schema for our library</title>
 <para>This schema has been written by <xref linkend="vdv"/>.</para>
 </sect1>
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 ...
 </grammar>

or, with the compact syntax:

 sect1 [
 title ["RELAX NG flat schema for our library"]
 para [
 "This schema has been written by "
 xref [linkend = "vdv"]
 "."
]
]
 start = element library { book-element+ }
 ...

13.2.5 Dublin Core Annotations

While XHTML and DocBook are great for including content as documentation, Dublin Core fills a
different niche. It is widely used over the Web to include metadata about all type of resources. Dublin
Core includes a set of elements with a description of their semantics, which provides sharable
information including details relevant to a schema. Dublin Core can answer questions about the
schema's authors, their organization, the date, or the copyright associated with the schema. Dublin
Core is very complementary to DocBook, and XHTML and is often used in XHTML documents, where it
finds a natural fit in the meta element.

You can find more information about Dublin Core at: http://dublincore.org .

In a RELAX NG schema, Dublin Core elements may be included wherever it makes sense. Under the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

grammar pattern, they qualify the whole grammar, while under an element pattern, they qualify the

specific element.

A more complete example than those shown previously includes title, creator, subject, description,
date, language, and rights information for a schema:

<?xml version="1.0" encoding="UTF-8"?>
<grammar xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <dc:title>The library element</dc:title>
 <dc:creator>Eric van der Vlist</dc:creator>
 <dc:subject>library, book, RELAX NG</dc:subject>
 dc:description>This RELAX NG schema has been written as an example to show how
 Dublin Core elements may be used.</dc:description>
 <dc:date>2003-01-30</dc:date>
 <dc:language>en</dc:language>
 <dc:rights>Copyright Eric van der Vlist, Dyomedea.
 During development, I give permission for non-commercial copying for
 educational and review purposes. After publication, all text will be
 released under the Free Software Foundation GFDL.</dc:rights>
 ...
</grammar>

or:

namespace dc = "http://purl.org/dc/elements/1.1/"
 dc:title ["The library element"]
dc:creator ["Eric van der Vlist"]
dc:subject ["library, book, RELAX NG"]
dc:description [
 "This RELAX NG schema has been written as an example to show how Dublin Core
 elements may be used."
]
dc:date ["2003-01-30"]
dc:language ["en"]
dc:rights [
 "Copyright Eric van der Vlist, Dyomedea. \x{a}" ~
 "During development, I give permission for non-commercial copying for \x{a}" ~
 "educational and review purposes. \x{a}" ~
 "After publication, all text will be released under the \x{a}" ~
 "Free Software Foundation GFDL."
]
...

13.2.6 SVG Annotations

There is no reason to limit yourself to text and metadata; graphics can be included too, thanks to
Scalable Vector Graphics (SVG). SVG is an XML vocabulary published by the W3C, and can be
integrated as RELAX NG annotations like other XML vocabularies:

<?xml version="1.0" encoding="utf-8"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xmlns:svg="http://www.w3.org/2000/svg">
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 <define name="author-element">
 <element name="author">
 <svg:svg>
 <svg:title>A typical author</svg:title>
 <svg:ellipse style="stroke:#000000; fill:#e3e000; stroke-width:2pt;"
 id="head" cx="280" cy="250" rx="110" ry="130"/>
 <svg:ellipse style="stroke:none; fill:#7f7f7f; " id="leftEye" cx="240"
 cy="225" rx="18" ry="18"/>
 <svg:ellipse style="stroke:none; fill:#7f7f7f; " id="rightEye" cx="320"
 cy="225" rx="18" ry="18"/>
 <svg:path style="fill:none;stroke:#7F7F7F; stroke-width:5pt;" id="mouth"
 d="M 222 280 A 58 48 0 0 0 338 280"/>
 </svg:svg>
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>
 ...
</grammar>

or, using the compact syntax:

 namespace svg = "http://www.w3.org/2000/svg"

 start = element library { book-element+ }
 author-element =
 [
 svg:svg [
 svg:title ["A typical author"]
 svg:ellipse >[
 style = "stroke:#000000; fill:#e3e000; stroke-width:2pt;"
 id = "head"
 cx = "280"
 cy = "250"
 rx = "110"
 ry = "130"
]
 svg:ellipse [
 style = "stroke:none; fill:#7f7f7f; "
 id = "leftEye"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cx = "240"
 cy = "225"
 rx = "18"
 ry = "18"
]
 svg:ellipse [
 style = "stroke:none; fill:#7f7f7f; "
 id = "rightEye"
 cx = "320"
 cy = "225"
 rx = "18"
 ry = "18"
]
 svg:path [
 style = "fill:none;stroke:#7F7F7F; stroke-width:5pt;"
 id = "mouth"
 d = "M 222 280 A 58 48 0 0 0 338 280"
]
]
]
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }
 ...

I leave it to you as an additional exercise to visualize what a typical author looks like!

You can find more information about SVG on its web site:
http://www.w3.org/Graphics/SVG/ as well as in the SVG Essentials by J. David
Eisenberg (O'Reilly).

13.2.7 RDDL Annotations

The last type of annotation I'd like to mention provides a transition between annotations for
documentation purposes and annotation for applications. The Resource Directory Description
Language (RDDL) is designed as an XML vocabulary that can be used by humans as documentation
and by applications. Although RDDL was invented to document namespaces, it can fit very well in a
RELAX NG schema. The information provided by RDDL annotations can be extracted to constitute
RDDL documentation for the namespaces described in the schema. RDDL is based on XHTML and
XLink and also works well with XHTML documentation.

You can find more information about RDDL on its web site: http://rddl.org .

http://www.w3.org/Graphics/SVG/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The main benefit of RDDL is that it provides a way to associate resources with a document. As an
example, I'll use it to associate an XSLT template and a CSS style sheet with the definition of the
author element:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:rddl="http://www.rddl.org/"
 xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 <define name="author-element">
 <element name="author">
 <xhtml:div>
 <rddl:resource id="author-transform"
 xlink:arcrole="http://www.w3.org/1999/xhtml"
 xlink:role="http://www.w3.org/1999/XSL/Transform"
 xlink:title="Author XSLT template"
 xlink:href="library.xslt#author">
 <xhtml:div class="resource">
 <xhtml:h4>XSLT Transformation</xhtml:h4>
 <xhtml:p>This
 <xhtml:a href="library.xslt#author">XSLT template</xhtml:a>
 displays the description of an author as XHTML.</xhtml:p>
 </xhtml:div>
 </rddl:resource>
 <rddl:resource id="CSS" xlink:title="CSS Stylesheet"
 xlink:role="http://www.isi.edu/in-notes/iana/assignments/media-types/text/
 css" xlink:href="author.css">
 <xhtml:div class="resource">
 <xhtml:h4>CSS Stylesheet</xhtml:h4>
 <xhtml:p>A <xhtml:a href="author.css">CSS stylesheet</xhtml:a>
 defining some cool styles to display an author.</xhtml:p>
 </xhtml:div>
 </rddl:resource>
 </xhtml:div>
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>
 ...
 </grammar>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:

 namespace rddl = "http://www.rddl.org/"
 namespace xhtml = "http://www.w3.org/1999/xhtml"
 namespace xlink = "http://www.w3.org/1999/xlink"

 start = element library { book-element+ }
 author-element =
 [
 xhtml:div [
 rddl:resource [
 id = "author-transform"
 xlink:arcrole = "http://www.w3.org/1999/xhtml"
 xlink:role = "http://www.w3.org/1999/XSL/Transform"
 xlink:title = "Author XSLT template"
 xlink:href="library.xslt#author"
 xhtml:div [
 class = "resource"
 xhtml:h4 ["XSLT Transformation"]
 xhtml:p [
 "This "
 xhtml:a [href="library.xslt#author" "XSLT template"]
 " displays the description of an author as XHTML."
]
]
]
 rddl:resource [
 id = "CSS"
 xlink:title = "CSS Stylesheet"
 xlink:role =
 "http://www.isi.edu/in-notes/iana/assignments/media-types/text/css"
 xlink:href="author.css"
 xhtml:div [
 class = "resource"
 xhtml:h4 ["CSS Stylesheet"]
 xhtml:p [
 xhtml:a [href="author.css" "CSS stylesheet"]
 " defining some cool styles to display an author."
]
]
]
]
]
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }
 ...

Applications that understand RDDL can act on this information automatically, while humans can find it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

through the XHTML documentation included with it.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 Annotation for Applications

As mentioned in the introduction to this chapter, common uses of annotations by applications include
preprocessing instructions, helpers for generating other schemas out of a RELAX NG schema, and
extensions of RELAX NG itself.

13.3.1 Annotations for Preprocessing

Bob DuCharme has proposed an interesting application of annotation for preprocessing. He says that
annotation can derive specific schemas by the restriction of a generic schema. The benefits of this
approach are that it is extremely simple and that it provides a straightforward workaround to the lack
of derivation by restriction (a W3C XML Schema feature) in RELAX NG. It is language-neutral and can
be applied to other schema languages such as W3C XML Schema: it is much simpler than the
derivation by restriction feature built into the language.

You can find Bob DuCharme's proposal on the web at: http://www.snee.com/xml/schemaStages.html
and download the XSLT transformation implementing it from
http://www.snee.com/xml/schemaStages.zip.

The idea behind his proposal is to add annotations in elements that need to be removed in a variant
of the schema. You then use these annotations to generate the different variants using an XSLT
transformation. Each variant is called a stage. The list of the available stages is declared in an
sn:stages element. For each element that is conditional, the list of the stages in which it needs to be
kept is declared through an sn:stages attributes.

Because this technique uses annotations, the global schema can still be a valid schema that validates
a superset of the instance documents that are valid per each stage.

If you wanted to derive schemas requiring a book, author, library, or character element or both
book and author as a document element from a generic schema that allows any of these, you could

write:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:sn="http://www.snee.com/ns/stages">
 <sn:stages>
 <sn:stage name="library"/>
 <sn:stage name="book"/>
 <sn:stage name="author"/>
 <sn:stage name="character"/>
 <sn:stage name="author-or-book"/>
 </sn:stages>
 <start>
 <choice>
 <ref name="library-element" sn:stages="library"/>
 <ref name="book-element" sn:stages="book author-or-book"/>

http://www.snee.com/xml/schemaStages.html
http://www.snee.com/xml/schemaStages.zip
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ref name="author-element" sn:stages="author author-or-book"/>
 <ref name="character-element" sn:stages="character"/>
 </choice>
 </start>
 ...
 </grammar>

or:

 namespace sn = "http://www.snee.com/ns/stages"

 sn:stages [
 sn:stage [name = "library"]
 sn:stage [name = "book"]
 sn:stage [name = "author"]
 sn:stage [name = "character"]
 sn:stage [name = "author-or-book"]
]
 start =
 [sn:stages = "library"] library-element
 | [sn:stages = "book author-or-book"] book-element
 | [sn:stages = "author author-or-book"] author-element
 | [sn:stages = "character"] character-element
 ...

This schema is a valid RELAX NG schema that accepts any of these elements as a root. A
transformation of the XML syntax through the XSLT transformation getStage.xsl, provided in the ZIP
file mentioned previously and with a parameter stageName set to author-or-book removes all
elements with an sn:stage attribute that don't have author-or-book in their list of values:

 $ xsltproc --stringparam stageName author-or-book getStage.xsl doc-snee.rng
 <?xml version="1.0"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:sn="http://www.snee.com/ns/stages">

 <start>
 <choice>

 <ref name="book-element"/>
 <ref name="author-element"/>

 </choice>
 </start>
 ...
 </grammar>

This transformation has thus performed a restriction on the schema. You can generate as many
schemas this way, as there are stages that have been declared in the sn:stages element.

13.3.2 Annotations for Conversion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RELAX NG works well as a pivot format. A pivot format is a reference format in which schemas are
kept and transformed into other languages. One of the limits of the pivot approach is that features
that are part of the target languages but not part of RELAX NG seems to be out of reach. It would be
true, except for annotations. The two most common examples of such annotations are used to
generate DTDs and W3C XML Schema.

13.3.2.1 Annotations to generate DTDs

This is the third and final facet of the DTD Compatibility specification, and it deals with default values
for attributes. They can be declared using an a:defaultValue attribute:

 <?xml version="1.0" encoding="utf-8"?>
 <element xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 name="library">
 <oneOrMore>
 <element name="book">
 <attribute name="id"/>
 <optional>
 <attribute name="available" a:defaultValue="true">
 <choice>
 <value>true</value>
 <value>false</value>
 </choice>
 </attribute>
 </optional>
 ...
 </element>
 </oneOrMore>
 ...
 </element>

or:

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

element library {
 element book {
 attribute id { text },
 [a:defaultValue = "true"]
 attribute available { "true" | "false" }?,
 element isbn { text },
 element title {
 attribute xml:lang { text },
 text
 },
 ...
 }+
}

The attribute needs to be declared as optional to use this feature. Hence there is no impact on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

validation by a RELAX NG processor. However, converters such as Trang use this annotation to
generate a default value in a DTD:

 <!ATTLIST book
 id CDATA #REQUIRED
 available (true|false) 'true'>

13.3.2.2 Annotations to generate W3C XML Schema

There is no official specification about how to generate W3C XML Schema from RELAX NG, so what I
will say in this small section is derived from Trang's documentation.

If you want to know how to use Trang, check its web page at
http://www.thaiopensource.com/relaxng/trang-manual.html.

The first thing to note is that Trang supports the a:defaultValue attribute. The schema presented

earlier can be translated as:

 <xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="isbn"/>
 <xs:element ref="title"/>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="author"/>
 <xs:element minOccurs="0" maxOccurs="unbounded" ref="character"/>
 </xs:sequence>
 <xs:attribute name="id" use="required"/>
 <xs:attribute name="available" default="true">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="true"/>
 <xs:enumeration value="false"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

Note the default attribute in the declaration of the available attribute.

In addition to this annotation, James Clark has created a specific namespace,
http://www.thaiopensource.com/ns/relaxng/xsd, to manage the translation to W3C XML Schema.
This translation is far from obvious, and a RELAX NG schema can often be translated using different
features of W3C XML Schema. James Clark has made a lot of choices in his implementation based on
best practices, but there are still some context-dependent options; in those situations, the users can
be given a choice.

In the current version (as of June 19, 2003), there is only one annotation attribute available to
perform such choices: the tx:enableAbstractElements attribute, which can be included in grammar,

http://www.thaiopensource.com/relaxng/trang-manual.html
http://www.thaiopensource.com/ns/relaxng/xsd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

div, or include. This attribute can take the values true or false and controls whether abstract

elements can be used in substitution groups. Substitution groups are a fairly advanced feature of
W3C XML Schema, and I won't present the concept here, but you can find more information on this
feature in my XML.com tutorial at http://xml.com/pub/a/2000/11/29/schemas/part1.html or in my
book, XML Schema.

The Trang manual indicates that more annotations might be added in the future.

13.3.2.3 Schema Adjunct Framework

The Schema Adjunct Framework (SAF) is a generic framework that stores processing information in
relation to schemas and can work either standalone or as a schema adornment to annotations
embedded in schemas. Although it has been developed to work with W3C XML Schema, there is no
reason that it couldn't be used to adorn RELAX NG schemas.

You can find more information about SAF on the Web:
http://www.tibco.com/solutions/products/extensibility/resources/saf.jsp.

The momentum behind SAF seems to have decreased a lot since end of 2001, but it's definitely
something worth examining if you need to add processing information to a schema. A simple example
of a SAF adornment in RELAX NG looks like:

 <define name="author-element">
 <sql:select>select <sql:elem>name</sql:elem>,
 <sql:elem>birthdate</sql:elem>,<sql:elem>deathdate</sql:elem>
 from tbl_author</sql:select>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>

or:

 [
 sql:select [
 "select "
 sql:elem ["name"]
 ", "
 sql:elem ["birthdate"]
 ", "
 sql:elem ["deathdate"]
 " from tbl_author"
]

http://xml.com/pub/a/2000/11/29/schemas/part1.html
http://www.tibco.com/solutions/products/extensibility/resources/saf.jsp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

]
 author-element =
 element author {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }

These examples both add SQL-based processing information to the schema.

13.3.3 Annotations for Extension

Annotations can also be used as extensions to influence the behavior of the RELAX NG processors
that support them. This application is controversial but can also be very useful. The two applications
of which I am aware in this category are one for embedding Schematron rules, and my own XVIF
project, which allows a user to define validation and transformation pipes that act as RELAX NG
patterns.

13.3.3.1 Embedded Schematron rules

Schematron is a rather atypical XML schema language. Instead of being grammar-based like RELAX
NG and focusing on describing documents, Schematron is rule-based and consists of lists of rules to
check against documents. Giving the exhaustive list of all the rules needed to validate a document is
a very verbose and error-prone task, but on the other hand, the ability to write your own rules gives
a flexibility and a power that can't be matched by a grammar-based schema language. The two types
of languages appear to be more complementary than their competitors. Using both together allows
you to get the best from each of them.

You can find more information about Schematron on its web site:
http://www.ascc.net/xml/resource/schematron/schematron.html.

Schematron can get into places no other schema language can. For example, Schematron is a good
fit when checking whether the id attribute of a book element is composed of the ISBN number
prefixed by the letter b. In this case, you would write:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:s="http://www.ascc.net/xml/schematron">
 <define name="book-element">
 <element name="book">
 <s:rule context="book">
 <s:assert test="@id = concat('b', isbn)">
 The id needs to be the isbn number prefixed by "b" </s:assert>
 </s:rule>
 <attribute name="id"/>

http://www.ascc.net/xml/resource/schematron/schematron.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </element>
 </define>
 ...
 </grammar>

or:

 namespace s = "http://www.ascc.net/xml/schematron"

 book-element =
 [
 s:rule [
 context = "book"
 s:assert [
 test = "@id = concat('b', isbn)"
 ' The id needs to be the isbn number prefixed by "b" '
]
]
]
 element book {
 attribute id { text },
 attribute available { text },
 isbn-element,
 title-element,
 author-element*,
 character-element*
 }
 ...

The Schematron annotation comprises a rule element, which sets the context and embedded assert
elements defining assertions. Instead of assert, report elements can be used. They are the

opposite of assertions and report errors when they are true. These checks are applied to all the
elements meeting the XPath expression provided in the context attribute of the rule elements, and
the test attribute of the assert or report elements are also XPath expressions.

At this point, I must mention that there is an appreciable difference between implementations on the
scope in which the rules must be applied, which can lead to potential issues of interoperability
between implementations.

On one hand, the Schematron specification states that when Schematron rules are embedded in
another language, they must be collected and bundled into a Schematron schema independently of
where they have been found in the original schema. In other words, the rule that was defined earlier
should be applied to all the book elements in the instance documents. This is the approach taken by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Topologi multivalidator (see http://www.topologi.com/products/validator/index.html).

On the other hand, when a Schematron rule is embedded in a RELAX NG element pattern, as is the

case here, it is tempting to evaluate the rule in the context of the pattern. In that case, the rule
applies only to the book elements that are included in the context node. If the rule fails, the element

pattern fails, and other alternatives will be checked. This is the approach taken by Sun's Multi
Schema Validator (see http://wwws.sun.com/software/xml/developers/multischema/).

The difference can be seen in an example such as:

 <define name="book-element">
 <choice>
 <element name="book">
 <s:rule context="book">
 <s:assert test="@id = concat('b', isbn)">
 The id needs to be the isbn number prefixed by "b" </s:assert>
 </s:rule>
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </element>
 <element name="book">
 <attribute name="id">
 <value>ggjh0836217462</value>
 </attribute>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </element>
 </choice>
 </define>

In this case, the approach taken by the Schematron specification would consider an instance
document with a book ID equal to ggjh0836217462 to be invalid. The evaluation of the Schematron

rules is completely decoupled from the validation by the RELAX NG schema. The approach taken by
MSV considers the same document as valid, because it meets one of the alternative definitions for the
book element.

http://www.topologi.com/products/validator/index.html
http://wwws.sun.com/software/xml/developers/multischema/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

13.3.3.2 XVIF

The interoperability issue mentioned previously is a good illustration of the difficulty of mixing
elements from different languages that have been specified independently. The XML Validation
Interoperability Framework (XVIF) is a proposal for a framework which would take care of this kind of
issue.

You will find more information about XVIF at its home page:
http://downloads.xmlschemata.org/python/xvif/.

The principle of XVIF is to define micro pipes, much like Unix pipes, of transformations and
validations that can be embedded in different transformation and validation languages. When the
host language is RELAX NG, these micro pipes behave as RELAX NG patterns.

There are many use cases for such micro pipes; one of them is to include transformations to fit text
nodes into existing datatypes. For instance, we've been using dates that use the ISO 8601 format in
our documents, but we can also use French date formats. In this case, a set of regular expressions
can be defined to do the transformation between these dates and the ISO 8601 format. XVIF gives a
way to integrate these regular expressions in a RELAX NG schema:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:if="http://namespaces.xmlschemata.org/xvif/iframe"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <define name="born-element">
 <element name="born">
 <if:pipe>
 <if:validate type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="m/[0-9]+ .+ [0-9]+/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/^[\t\n]*([0-9] .*)$/0\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) janvier ([0-9]+)/\2-01-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) fevrier ([0-9]+)/\2-02-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) mars ([0-9]+)/\2-03-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) avril ([0-9]+)/\2-04-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) mai ([0-9]+)/\2-05-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) juin ([0-9]+)/\2-06-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) juillet ([0-9]+)/\2-07-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) aout ([0-9]+)/\2-08-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) septembre ([0-9]+)/\2-09-\1/"/>

http://downloads.xmlschemata.org/python/xvif/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) octobre ([0-9]+)/\2-10-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) novembre ([0-9]+)/\2-11-\1/"/>
 <if:transform type="http://namespaces.xmlschemata.org/xvif/regexp"
 apply="s/([0-9]+) decembre ([0-9]+)/\2-12-\1/"/>
 <if:validate type="http://relaxng.org/ns/structure/1.0">
 <if:apply>
 <data type="date">
 <param name="minInclusive">1900-01-01</param>
 <param name="maxInclusive">2099-12-31</param>
 </data>
 </if:apply>
 </if:validate>
 </if:pipe>
 <text if:ignore="1"/>
 </element>
 </define>
 ...
 </grammar>

or, in the compact syntax:

 namespace if = "http://namespaces.xmlschemata.org/xvif/iframe"
 namespace rng = "http://relaxng.org/ns/structure/1.0"

 datatypes d = "http://relaxng.org/ns/compatibility/datatypes/1.0"

 born-element =
 [
 if:pipe [
 if:validate [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "m/[0-9]+ .+ [0-9]+/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/^[\t\n]*([0-9] .*)$/0\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) janvier ([0-9]+)/\2-01-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) fevrier ([0-9]+)/\2-02-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) mars ([0-9]+)/\2-03-\1/"
]
 if:transform [

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) avril ([0-9]+)/\2-04-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) mai ([0-9]+)/\2-05-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) juin ([0-9]+)/\2-06-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) juillet ([0-9]+)/\2-07-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) aout ([0-9]+)/\2-08-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) septembre ([0-9]+)/\2-09-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) octobre ([0-9]+)/\2-10-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) novembre ([0-9]+)/\2-11-\1/"
]
 if:transform [
 type = "http://namespaces.xmlschemata.org/xvif/regexp"
 apply = "s/([0-9]+) decembre ([0-9]+)/\2-12-\1/"
]
 if:validate [
 type = "http://relaxng.org/ns/structure/1.0"
 if:apply [
 rng:data [
 type = "date"
 rng:param [name = "minInclusive" "1900-01-01"]
 rng:param [name = "maxInclusive" "2099-12-31"]
]
]
]
]
]
 element born { [if:ignore = "1"] text }

In this example, I define a pipe (if:pipe) of 15 transformations (if:transform) using regular
expressions. Each converts one of the twelve months; a final validation (if:validate) is itself using
RELAX NG to check that the result is a ISO 8601 date between 1900 and 2099. The text pattern has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

an if:ignore attribute, which shows XVIF-compliant processors that it is a fallback pattern for other

RELAX NG processors.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Generating RELAX NG
Schemas
In the previous chapter, you saw how information can be added to RELAX NG schemas to make them
more readable. The information can also help extract information from the schemas or transform
them into other useful documents such as documentation, diagrams, or applications. So far, the
underlying assumption in this book has been that schema designers work directly in RELAX NG. This
is certainly a reasonable point of view. However, a RELAX NG schema (and any XML schema in
general) is a fairly concrete model of a class of instance documents. You might also want to work
with information in more abstract or more concrete ways and generate RELAX NG schemas based on
results from these other approaches.

RELAX NG shines as an ideal choice for a target language because it almost completely lacks
restrictions. This lack of restrictions means that during the transformation of a model into a RELAX
NG schema, you won't have to remind yourself of things like: "I must declare all my attributes after
my elements," "I should disallow unordered models in such and such circumstances," "if I have
already declared this content here, I can't declare it again here." In other words, using RELAX NG as
your target language lets you concentrate on your document structures instead of worrying about the
constraints of the schema language.

What other levels might you want to work on? You can take either a more concrete or more abstract
approach than RELAX NG. It can have either a bottom-up or top-down approach. Proponents of a
bottom-up approach include those who enjoy working with instance documents rather than with
schemas. Examplotron has been designed for these people. Those adept at using a top-down
approach will want to work at a higher level of abstraction and use a methodology such as UML to
model their documents. These two approaches might lead to many other variants. You will also see
how developers using literate programming techniques can include RELAX NG patterns in their
documentation as well as how you can replace your RELAX NG schema with a simple spreadsheet.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 Examplotron: Instance Documents as Schemas

I created Examplotron from a very simple idea: when you want to describe the element foo , why

work in yet another language, writing:

<element name='foo'><empty/></element>

or:

element foo {empty}

It's so much simpler to just write the element in plain XML: <foo/> . Instead of describing instance

documents, why couldn't you just show them?

The first implementation, published with the original description of Examplotron, relied on two XSLT
transformations. The Examplotron "schema" was compiled by an XSLT transformation into another
XSLT transformation, which then performed the validation of the instance documents. The concept
received many positive comments when I announced it, but it was very limited. Adding new features
would have meant creating the full semantics of a new schema language. The implementation as an
XSLT transformation became very complex and the project was stalled until I realized the potential of
using RELAX NG as a target format instead.

Since the release of version 0.5, Examplotron has been implemented as an XSLT transformation that
creates a RELAX NG schema. Thanks to this approach, Examplotron made more progress in two
weeks than in two years under the previous architecture!

For more information on Examplotron, and to get the tools used for the
transformations in this section, visit http://examplotron.org .

14.1.1 Ten-Minute Guide to Examplotron

Here's a snippet of our example document:

 <?xml version="1.0" encoding="utf-8"?>
 <character id="Snoopy">
 <name>Snoopy</name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
 </character>

Without requiring any further work, this document is already an Examplotron schema. To get an idea
of what this schema means, we can translate it into a RELAX NG schema:

 <?xml version="1.0" encoding="UTF-8"?>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:ega="http://examplotron.org/annotations/"
 xmlns:sch="http://www.ascc.net/xml/schematron"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="character">
 <optional>
 <attribute name="id">
 <ega:example id="Snoopy"/>
 </attribute>
 </optional>
 <element name="name">
 <text>
 <ega:example>Snoopy</ega:example>
 </text>
 </element>
 <element name="born">
 <data type="date">
 <ega:example>1950-10-04</ega:example>
 </data>
 </element>
 <element name="qualification">
 <text>
 <ega:example>extroverted beagle</ega:example>
 </text>
 </element>
 </element>
 </start>
 </grammar>

or:

 namespace ega = "http://examplotron.org/annotations/"
 namespace sch = "http://www.ascc.net/xml/schematron"

 start =
 element character {
 [ega:example [id = "Snoopy"]] attribute id { text }?,
 element name { [ega:example ["Snoopy"]] text },
 element born { [ega:example ["1950-10-04"]] xsd:date },
 element qualification {
 [ega:example ["extroverted beagle"]] text
 }
 }

You can see that the Examplotron schema has the same modeling power as its RELAX NG
counterpart. The annotations that appear here need to be added to the RELAX NG schema if we don't
want to lose the "examples" provided in Examplotron. The examples are included because they are
useful for documentation purposes and to permit reverse transformations (from RELAX NG to
Examplotron).

Another thing to note in this example is that Examplotron is making inferences from what it found in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the schema. Here, Examplotron assumed that the order between name , born , and qualification is
significant; that these elements are mandatory; that the id attribute is optional; that the born
element has a type (xsd:date); and that all the other elements and attributes are just text. These

assumptions make a best effort to capture the likely intention of the designer of the document. Most
of the time, people won't have to do anything to tweak their Examplotron schema.

There are times, however, when Examplotron gets it wrong. However good Examplotron may be, it
can't be psychic: if you want to create schemas different than the default inferences of Examplotron,
you need to request those things explicitly. The way to request them is through annotating the
Examplotron schema. To make the qualification element optional, for example, add an eg:occurs
attribute with a value of ? . To give the id attribute a type dtd:ID , set its content to {dtd:id} :

 <?xml version="1.0" encoding="utf-8"?>
 <character id="{dtd:id}" xmlns:eg="http://examplotron.org/0/">
 <name>Snoopy</name>
 <born>1950-10-04</born>
 <qualification eg:occurs="?">extroverted beagle</qualification>
 </character>

Here's the example translated into RELAX NG:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:ega="http://examplotron.org/annotations/"
 xmlns:sch="http://www.ascc.net/xml/schematron"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="character">
 <optional>
 <attribute name="id">
 <data type="id"
 datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"/>
 </attribute>
 </optional>
 <element name="name">
 <text>
 <ega:example>Snoopy</ega:example>
 </text>
 </element>
 <element name="born">
 <data type="date">
 <ega:example>1950-10-04</ega:example>
 </data>
 </element>
 <optional>
 <element name="qualification">
 <text>
 <ega:example>extroverted beagle</ega:example>
 </text>
 </element>
 </optional>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </start>
 </grammar>

or:

 namespace ega = "http://examplotron.org/annotations/"
 namespace sch = "http://www.ascc.net/xml/schematron"

 datatypes d = "http://relaxng.org/ns/compatibility/datatypes/1.0"

 start =
 element character {
 attribute id { d:id }?,
 element name { [ega:example ["Snoopy"]] text },
 element born { [ega:example ["1950-10-04"]] xsd:date },
 element qualification {
 [ega:example ["extroverted beagle"]] text
 }?
 }

If you compare the compact syntax and the Examplotron schema, you will see that we have
something that is similarly concise. The compact syntax looks more formal, while Examplotron is
easier to explore at a glance. Nevertheless, according to the rules described in the documentation of
Examplotron, these two schemas are equivalent. This equivalence makes it possible to transform
Examplotron to RELAX NG and back.

We can go pretty far with these annotations, as shown in this more complete example, which uses
interleave , mandatory attributes, and complex elements defined as named patterns:

 <?xml version="1.0" encoding="utf-8"?>
 <library xmlns:eg="http://examplotron.org/0/"
 eg:content="eg:interleave" eg:define="library-content">
 <book available="true" eg:occurs="*" eg:define="book-content">
 <eg:attribute name="id" eg:content="dtd:id">b0836217462</eg:attribute>
 <isbn>0836217462</isbn>
 <title xml:lang="en">Being a Dog Is a Full-Time Job</title>
 <author eg:occurs="+" eg:define="author-content" eg:content="eg:interleave">
 <eg:attribute name="id" eg:content="dtd:id">CMS</eg:attribute>
 <name>Charles M Schulz</name>
 <born>1922-11-26</born>
 <died>2000-02-12</died>
 </author>
 <character eg:define="character-content" eg:content="eg:interleave">
 <eg:attribute name="id" eg:content="dtd:id">PP</eg:attribute>
 <name>Peppermint Patty</name>
 <born>1966-08-22</born>
 <qualification>bold, brash and tomboyish</qualification>
 </character>
 <character id="Snoopy">
 <name>Snoopy</name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </character>
 <character id="Schroeder">
 <name>Schroeder</name>
 <born>1951-05-30</born>
 <qualification>brought classical music to the Peanuts strip</qualification>
 </character>
 <character id="Lucy">
 <name>Lucy</name>
 <born>1952-03-03</born>
 <qualification>bossy, crabby and selfish</qualification>
 </character>
 </book>
 </library>

The RELAX NG schema generated from this Examplotron schema is:

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:ega="http://examplotron.org/annotations/"
 xmlns:sch="http://www.ascc.net/xml/schematron"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="library">
 <ref name="library-content" ega:def="true"/>
 </element>
 </start>
 <define name="library-content">
 <interleave>
 <zeroOrMore>
 <element name="book">
 <ref name="book-content" ega:def="true"/>
 </element>
 </zeroOrMore>
 </interleave>
 </define>
 <define name="book-content">
 <optional>
 <attribute name="available">
 <data type="boolean">
 <ega:example available="true"/>
 </data>
 </attribute>
 </optional>
 <attribute name="id">
 <ega:skipped>b0836217462</ega:skipped>
 <data type="id"
 datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"/>
 </attribute>
 <element name="isbn">
 <data type="integer">
 <ega:example>0836217462</ega:example>
 </data>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 <element name="title">
 <optional>
 <attribute name="lang" ns="http://www.w3.org/XML/1998/namespace">
 <ega:example xml:lang="en"/>
 </attribute>
 </optional>
 <text>
 <ega:example>Being a Dog Is a Full-Time Job</ega:example>
 </text>
 </element>
 <oneOrMore>
 <element name="author">
 <ref name="author-content" ega:def="true"/>
 </element>
 </oneOrMore>
 <oneOrMore>
 <element name="character">
 <ref name="character-content" ega:def="true"/>
 </element>
 </oneOrMore>
 <ega:skipped>
 <character xmlns="" xmlns:eg="http://examplotron.org/0/" id="Snoopy">
 <name>Snoopy</name>
 <born>1950-10-04</born>
 <qualification>extroverted beagle</qualification>
 </character>
 </ega:skipped>
 <ega:skipped>
 <character xmlns="" xmlns:eg="http://examplotron.org/0/" id="Schroeder">
 <name>Schroeder</name>
 <born>1951-05-30</born>
 <qualification>brought classical music to the Peanuts strip
 </qualification>
 </character>
 </ega:skipped>
 <ega:skipped>
 <character xmlns="" xmlns:eg="http://examplotron.org/0/" id="Lucy">
 <name>Lucy</name>
 <born>1952-03-03</born>
 <qualification>bossy, crabby and selfish</qualification>
 </character>
 </ega:skipped>
 </define>
 <define name="author-content">
 <interleave>
 <attribute name="id">
 <ega:skipped>CMS</ega:skipped>
 <data type="id"
 datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"/>
 </attribute>
 <element name="name">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <text>
 <ega:example>Charles M Schulz</ega:example>
 </text>
 </element>
 <element name="born">
 <data type="date">
 <ega:example>1922-11-26</ega:example>
 </data>
 </element>
 <element name="died">
 <data type="date">
 <ega:example>2000-02-12</ega:example>
 </data>
 </element>
 </interleave>
 </define>
 <define name="character-content">
 <interleave>
 <attribute name="id">
 <ega:skipped>PP</ega:skipped>
 <data type="id"
 datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"/>
 </attribute>
 <element name="name">
 <text>
 <ega:example>Peppermint Patty</ega:example>
 </text>
 </element>
 <element name="born">
 <data type="date">
 <ega:example>1966-08-22</ega:example>
 </data>
 </element>
 <element name="qualification">
 <text>
 <ega:example>bold, brash and tomboyish</ega:example>
 </text>
 </element>
 </interleave>
 </define>
 </grammar>

or, in the compact syntax, and skipping some annotations for readability:

 namespace eg = "http://examplotron.org/0/"
 namespace ega = "http://examplotron.org/annotations/"
 namespace sch = "http://www.ascc.net/xml/schematron"

 datatypes d = "http://relaxng.org/ns/compatibility/datatypes/1.0"

 start = element library { [ega:def = "true"] library-content }
 library-content = element book { [ega:def = "true"] book-content }*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 book-content =
 attribute available {
 [ega:example [available = "true"]] xsd:boolean
 }?,
 [ega:skipped ["b0836217462"]] attribute id { d:id },
 element isbn { [ega:example ["0836217462"]] xsd:integer },
 element title {
 [ega:example [xml:lang = "en"]] attribute lang { text }?,
 [ega:example ["Being a Dog Is a Full-Time Job"]] text
 },
 element author { [ega:def = "true"] author-content }+,
 (element character { [ega:def = "true"] character-content }+)
 author-content =
 [ega:skipped ["CMS"]] attribute id { d:id }
 & element name { [ega:example ["Charles M Schulz"]] text }
 & element born { [ega:example ["1922-11-26"]] xsd:date }
 & element died { [ega:example ["2000-02-12"]] xsd:date }
 character-content =
 [ega:skipped ["PP"]] attribute id { d:id }
 & element name { [ega:example ["Peppermint Patty"]] text }
 & element born { [ega:example ["1966-08-22"]] xsd:date }
 & element qualification {
 [ega:example ["bold, brash and tomboyish"]] text
 }

For those who would like even more flexibility, the next version of Examplotron will "import" all the
RELAX NG patterns in the Examplotron namespace, so that Examplotron schemas can use RELAX NG
compositors, patterns, and name classes where needed.

14.1.2 Use Cases

Why would anyone want to use Examplotron instead of RELAX NG? I could reverse the question and
ask why anyone would want to use RELAX NG instead of Examplotron. At the end of the day, it
doesn't really matter. What's important is that the semantics of the validation engine are rock solid
and have no limitations. Developers can use the most convenient syntax to express schemas, and
what's convenient varies among developers. If you like the visual quality of Examplotron, there is no
reason to use anything else. If you prefer RELAX NG's more formal style, that's fine too. With
Examplotron, you are just looking at a RELAX NG schema from a different angle.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Literate Programming

A common approach to software documentation is to extract documentation from the source
documents relying on the structure of the programs and their comments. (A good example is
JavaDoc, the documentation extraction tool shipped with Java and used almost universally on Java
projects.) Other projects separate code and documentation. For both approaches, documentation and
comments often evolve separately from the code, and the documentation eventually goes out of date.

Projects tend to focus on the code. Documentation is often considered a side project, less important
than the code. Donald Knuth, the inventor of the term "literate programming," has a contrary point of
view:

"I believe that the time is ripe for significantly better documentation of programs, and that we
can best achieve this by considering programs to be works of literature. Hence, my title:
"Literate Programming."[1]

[1] Donald Knuth. "Literate Programming (1984)" in Literate Programming , CSLI, 1992, page 99.

Knuth charges us with the task of changing our traditional attitude to the construction of programs.
Instead of giving priority to instructing a computer what to do, he suggests that programmers
concentrate on explaining to human beings what the computer is supposed to do.

"The practitioner of literate programming can be regarded as an essayist whose main concern is
with exposition and excellence of style. Such an author, with thesaurus in hand, chooses
variable names carefully and explains what each variable means. He or she strives for a
program that is comprehensible. The program's concepts have been introduced in an order that
is best for human understanding, using a mixture of formal and informal methods that reinforce
each other."

Norm Walsh has adapted the concept to XML. Tools for literate programming in XML are available
under the name " litprog" by the DocBook project on SourceForge
(http://sourceforge.net/projects/docbook/). The basic idea of literate programming (or litprog) is to
include a snippet of code (or a snippet of schemas in our case) within the documentation, which can
be written in any XML format, including XHTML or DocBook. From this single document embedding
code in documentation, a couple of XSLT transformations generate a formatted documentation and
the source code.

This makes two big changes. First, as expected, you're working upside-down compared to the
common usage of adding comments in the code. The other major practical difference is that you are
now defining the relations between the snippets of code or schema using the mechanisms of litprog
instead of the mechanisms specific to each programming language. The granularity of the
documentation becomes virtually independent of the granularity of your functions, methods, or, in our
case, named patterns. This independence lets you group several languages in a single literate
documentation. You can describe, for instance, a RELAX NG schema of a document using an XSLT
transformation to manipulate the document, and then have a DOM application read it.

14.2.1 Out of the Box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Literate programming works well with RELAX NG, as I will demonstrate next. A literate programming
document embeds src:fragment elements to combine the fragments of a schema into the program

documentation. The fragments are then assembled with a complete schema. The documentation can
use any format, such as DocBook, XHTML, or even RDDL. Using XHTML, the description of the name

element can be:

 <div>
 <h2>The <tt>name</tt> element</h2>
 <p>This is the name of the character.</p>
 <src:fragment id="name" xmlns="">
 <rng:element name="name">
 <rng:text/>
 </rng:element>
 </src:fragment>
 </div>

or, in the compact syntax:

 <div>
 <h2>The <tt>name</tt> element</h2>
 <p>This is the name of the character.</p>
 <src:fragment id="name" xmlns="">
 element name { text }
 </src:fragment>
 </div>

In the first snippet, the definition of the element is simple enough that it doesn't have to reference
any other patterns, but a definition can also make a reference to an src:fragment element by using
src:fragref , as in:

 <div>
 <h1>The <tt>character</tt> element</h1>
 <p>The <tt>character</tt> element is the container
 holding all the information about a character.</p>
 <src:fragment id="character" xmlns="">
 <rng:element name="character">
 <src:fragref linkend="id"/>
 <src:fragref linkend="name"/>
 <src:fragref linkend="born"/>
 <rng:optional>
 <src:fragref linkend="qualification"/>
 </rng:optional>
 </rng:element>
 </src:fragment>
 </div>

or, using the compact syntax:

 <div>
 <h1>The <tt>character</tt> element</h1>
 <p>The <tt>character</tt> element is the container
 holding all the information about a character.</p>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <src:fragment id="character" xmlns="">
 element character {
 <src:fragref linkend="id"/>,
 <src:fragref linkend="name"/>,
 <src:fragref linkend="born"/>,
 <src:fragref linkend="qualification"/> ?
 }
 </src:fragment>
 </div>

From this literate programming document, XSLT transformation can produce two different outputs.
The first one is the schema itself. Assuming that I've defined all the attributes and subelements of our
character element, the generated schema is:

 <?xml version="1.0" encoding="utf-8"?>
 <rng:grammar xmlns:rng="http://relaxng.org/ns/structure/1.0"
 xmlns:src="http://nwalsh.com/xmlns/litprog/fragment"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <rng:start>
 <rng:element name="character">
 <rng:attribute name="id">
 <rng:data type="id"
 datatypeLibrary="http://relaxng.org/ns/compatibility/datatypes/1.0"/>
 </rng:attribute>
 <rng:element name="name">
 <rng:text/>
 </rng:element>
 <rng:element name="born">
 <rng:data type="date"/>
 </rng:element>
 <rng:optional>
 <element name="qualification">
 <text/>
 </element>
 </rng:optional>
 </rng:element>
 </rng:start>
 </rng:grammar>

or, converted to the compact syntax:

 datatypes d = "http://relaxng.org/ns/compatibility/datatypes/1.0"
 start=
 element character {
 attribute id { d:id },
 element name { text },
 element born { xsd:date },
 element qualification { text } ?
 }

This is a pretty normal-looking schema. The thing to highlight is the way it has been modularized. Up
to now, we've been using named patterns, a mechanism provided by RELAX NG, to split a schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

into small, manageable pieces. I could have done the same thing in the last example, but this is
another way to split the schema. Now I can use the mechanisms provided by the literate
programming framework and define and combine fragments using src:fragment and src:fragref
instead of the define and ref elements from RELAX NG. By doing so, I can generate a monolithic

Russian-doll schema through a modular description of its elements and attributes.

The second output from this literate programming document is the XHTML documentation, shown in
Figure 14-1 . The compact syntax is shown in Figure 14-2 .

Figure 14-1. The XHTML documentation for the RELAX NG XML syntax

14.2.2 Adding Bells and Whistles for RDDL

RDDL can be read as plain XHTML by human beings in a standard web browser and by applications
that use the semantic attributes of XLink to discover resources such as schemas and stylesheets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-2. The XHTML documentation for the RELAX NG compact syntax

RDDL documents can be generated from annotated RELAX NG schemas. When documenting XML
vocabularies, RDDL can also generate schemas. It is very tempting to use the literate programming
framework to produce RDDL documents. RDDL is extremely similar to XHTML, which makes this
easier. I could use the DocBook litprog stylesheets right away, but I could also import them into
stylesheets to facilitate the authoring of RDDL documents.

The main burden when writing RDDL documents is that the information made available to the
application needs to be repeated for human readers (or vice versa). For instance, to publish a snippet
of schema describing the name element as an RDDL normative reference, I can write this (note the
mundane-result-prefixes attributes, which the RDDL tools need to control various namespaces

introduced for RDDL):

 <rddl:resource id="name-elt" xlink:type="simple"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xlink:arcrole="http://www.rddl.org/purposes#normative-reference"
 xlink:role="http://www.w3.org/1999/xhtml"
 xlink:title="The name element"
 xlink:href="#name-elt">
 <div class="resource">
 <h2>The <tt>name</tt> element</h2>
 <src:fragment id="name" xmlns=""
 mundane-result-prefixes="cr xlink">
 <rng:element name="name">
 <rng:text/>
 </rng:element>
 </src:fragment>
 </div>
 </rddl:resource>

This sample isn't complicated, but there is some repetition here. The content of the h2 element is
copied into xlink:title , and xlink:href reuses the value of the id attribute because the resource

is local. External resources have similar redundancies. When the RDDL document is generated by an
XSLT transformation, as is the case in literate programming, it's tempting to define shortcuts that
avoid these redundancies. I can then write:

 <cr:resource id="name-elt"
 role="http://www.w3.org/1999/xhtml"
 arcrole="http://www.rddl.org/purposes#normative-reference">
 <h2>The <tt>name</tt> element</h2>
 <p>This is the name of the character.</p>
 <src:fragment id="name" xmlns=""
 mundane-result-prefixes="cr xlink">
 <rng:element name="name">
 <rng:text/>
 </rng:element>
 </src:fragment>
 </cr:resource>

Other features can easily be added, such as numbering the divisions, generating a table of contents,
indexes of resources, and pretty printing code snippets. The resulting document is shown in Figure
14-3 .

Figure 14-3. A RDDL document produced using literate programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.3 UML

Unified Modeling Language (or UML) is an Object Management Group (OMG) standard and a
successor to many of the object-oriented methods developed in the 1980s and 1990s. The idea of
using UML to model XML documents isn't new. Much that is good has already been published on the
subject (see, for instance, the book Modeling XML Applications with UML by David Carlson (Addison
Wesley) and his articles on XML.com).

There are two different levels at which UML and XML can be mapped:

UML can be used to model the structure of XML documents directly. XML schemas can be
generated for the purpose of validating the documents, but they are provided as a convenience
for application developers. UML doesn't worry about schema details. Their style and modularity
aren't their most important features. The algorithm for producing these schemas is focused on
expressing validation rules that make the XML data match the UML diagram as closely as
possible.

UML can be used to model an XML schema. The UML diagram is a higher-level view of the
schema, and the schema by itself is the main delivery. The UML diagram needs to be able to
control exactly how each schema structure is described. Specific stereotypes and parameters
are often added to customize the level of control.

One of the points that appears clearly in all the work related to this topic is that it is quite easy to
map UML objects into XML or to use UML to describe classes of instance documents. The most
difficult issue when doing so is that UML operates on and graphs, XML is a tree structure. Some links
need to be either removed or serialized using techniques to make the mapping happen cleanly (you
can use XLink, but it isn't built into XML 1.0). Except for this issue, the relationship between UML and
XML is quite natural in both directions: UML provides a simple language to model XML documents and
XML provides a natural serialization syntax for UML objects.

Another point concerning XML and UML is that it's not simple to generate DTDs and W3C XML
Schemas from UML. When generating DTDs or W3C XML schemas from UML, you have to cope with
the restrictions of these languages, notably those related to unordered content models. Unordered
content models are a natural fit for UML, in which the attributes of a class are unordered. The
limitations of DTDs and W3C XML Schemas create problems when UML attributes are serialized as
XML elements.

The issue when modeling W3C XML schemas in UML is that the model needs to describe the XML
instances and the schema itself. This is where all the complexity of W3C XML schemas enters the
UML world. While there is a good overlap between UML and XML, the overlap isn't so good between
XML and W3C XML schemas. W3C XML schemas have in some ways enriched XML with their own
expectations, and their expectations don't match those of UML. Figure 14-4 shows how the overlaps
work and don't work.

Figure 14-4. Overlaps between XML, UML, and W3C XML schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With RELAX NG, on the contrary, the overlap between XML and the schema language is nearly
perfect: RELAX NG can describe almost any XML structure. As it has no notion of a Post Schema
Validation Infoset (PSVI), RELAX NG doesn't want to add anything to XML. As a result, the overlap
between UML, XML, and RELAX NG is almost as big as the overlap between UML and XML, as shown
in Figure 14-5.

Figure 14-5. Overlaps between UML and RELAX NG

Designed with a UML editor such as ArgoUML, our library can be pictured as the model shown in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-6.

Figure 14-6. A UML model for the library

This example uses conventions that may look natural but are far from being official. For instance, I
have prefixed attribute names with @, an idea borrowed from Will Provost's work on XML.com. Also,
to model the title element with its text node and attribute, I have used the name rng:data to

identify its text content as a UML attribute.

ArgoUML saves its documents using the XML Metadata Interchange (XMI) format defined by the
Object Management Group (OMG). (You can find more information about XMI at
http://www.omg.org/technology/xml/.) XMI is verbose; the XMI document generated by ArgoUML for
this diagram is more than 800 lines long. I won't include it here, but it's not difficult to generate a
schema from this document with unordered content models, such as:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="library">
 <interleave>
 <zeroOrMore>
 <element name="book">
 <interleave>
 <element name="isbn">
 <data type="token"/>
 </element>
 <attribute name="id">
 <data type="token"/>
 </attribute>
 <attribute name="available">
 <data type="boolean"/>

http://www.omg.org/technology/xml/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </attribute>
 <zeroOrMore>
 <element name="author">
 <interleave>
 <attribute name="id">
 <data type="token"/>
 </attribute>
 <element name="name">
 <data type="token"/>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <element name="died">
 <data type="date"/>
 </element>
 </interleave>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <interleave>
 <attribute name="id">
 <data type="token"/>
 </attribute>
 <element name="name">
 <data type="token"/>
 </element>
 <element name="born">
 <data type="date"/>
 </element>
 <element name="qualification">
 <data type="token"/>
 </element>
 </interleave>
 </element>
 </zeroOrMore>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language"/>
 </attribute>
 <data type="token"/>
 </element>
 </interleave>
 </element>
 </zeroOrMore>
 </interleave>
 </element>
 </start>
 </grammar>

or, after conversion into the compact syntax with Trang:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 start =
 element library {
 element book {
 element isbn { xsd:token }
 & attribute id { xsd:token }
 & attribute available { xsd:boolean }
 & element author {
 attribute id { xsd:token }
 & element name { xsd:token }
 & element born { xsd:date }
 & element died { xsd:date }
 }*
 & element character {
 attribute id { xsd:token }
 & element name { xsd:token }
 & element born { xsd:date }
 & element qualification { xsd:token }
 }*
 & element title {
 attribute xml:lang { xsd:language },
 xsd:token
 }
 }*
 }

The only trouble I've had with RELAX NG itself comes out of one of the few restrictions of RELAX NG,
which was mentioned in Chapter 7. Data patterns can't be interleaved. When generating this schema,
you must be careful to treat complex-type simple-content models (i.e., elements such as the title

element, which accepts attributes and text nodes but no children elements) as an exception. This
straight translation is of course impossible with W3C XML schemas, because of the cardinality of the
character and author subelements. Containers need to be added to fit the limitations of that
language.

Note that I've generated a Russian-doll design; depending on the strategy used in the translation, I
can generate other designs as well.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.4 Spreadsheets

The final transformation I'll show here is much more widely used than you might think. Spreadsheets
are familiar, very convenient to store, can manipulate large lists of information items, and have been
used as a modeling tool for many years. The UBL OASIS Technical Committee (see http://www.oasis-
open.org/committees/ubl/), which is in charge of a set of core components to be used by B2B
applications and frameworks such as ebXML, has moved in this direction. Although this project uses a
UML methodology, the release note of their 0.70 version states: "The current spreadsheet matrix
used by UBL has proved the most versatile and manageable in developing a logical model of the UBL
Library."

Recent spreadsheet software can work with XML formats, so generating RELAX NG schemas from
such a tool is really easy.

There is no standard way to represent XML documents in a spreadsheet. Thus
the benefit of spreadsheets is their flexibility: you can define layouts specific to
each application.

Coming back to our library, we can formalize it in an OpenOffice spreadsheet as shown in Figure 14-
7.

Figure 14-7. The library document structure, described in a spreadsheet

Figure 14-7 is basically nothing more than a catalog of each information item with just enough
information to generate a schema. The benefit of using a spreadsheet is that it's easy to read and,
when the catalog gets bigger, features such as filters, sort, and search become increasingly useful to
help navigate over the catalog.

Generating RELAX NG schemas from the OpenOffice spreadsheet's XML format is really easy. The

http://www.oasis-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

code for doing this is too long to cover here, but will be available at
http://books.xmlschemata.org/relaxng/ and at this book's page on the O'Reilly web site
http://www.oreilly.com/catalog/relax/. With that tool, it doesn't take much work to turn this
spreadsheet into schemas such as:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <element name="library">
 <a:documentation>Root element. Describes the whole library.</a:documentation>
 <zeroOrMore>
 <element name="book">
 <a:documentation>Describes a book.</a:documentation>
 <attribute name="id">
 <a:documentation>Identifier</a:documentation>
 <data type="token"/>
 </attribute>
 <attribute name="available">
 <a:documentation>Is the book available?</a:documentation>
 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <a:documentation>ISBN number</a:documentation>
 <data type="token"/>
 </element>
 <element name="title">
 <a:documentation>Title of the book</a:documentation>
 <data type="token"/>
 <attribute name="xml:lang">
 <a:documentation>Language</a:documentation>
 <data type="language"/>
 </attribute>
 </element>
 <zeroOrMore>
 <element name="author">
 <a:documentation>Author of a book</a:documentation>
 <attribute name="id">
 <a:documentation>Identifier</a:documentation>
 <data type="token"/>
 </attribute>
 <element name="name">
 <a:documentation>Name</a:documentation>
 <data type="token"/>
 </element>
 <element name="born">
 <a:documentation>Date of birth</a:documentation>
 <data type="date"/>
 </element>
 <element name="died">
 <a:documentation>Date of death</a:documentation>

http://books.xmlschemata.org/relaxng/
http://www.oreilly.com/catalog/relax/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <data type="date"/>
 </element>
 </element>
 </zeroOrMore>
 <zeroOrMore>
 <element name="character">
 <a:documentation>Character of a book</a:documentation>
 <attribute name="id">
 <a:documentation>Identifier</a:documentation>
 <data type="token"/>
 </attribute>
 <element name="name">
 <a:documentation>Name</a:documentation>
 <data type="token"/>
 </element>
 <element name="born">
 <a:documentation>Date of birth</a:documentation>
 <data type="date"/>
 </element>
 <element name="qualification">
 <a:documentation>Qualification of a character</a:documentation>
 <data type="token"/>
 </element>
 </element>
 </zeroOrMore>
 </element>
 </zeroOrMore>
 </element>
 </start>
 </grammar>

or, after a translation into the compact syntax by Trang:

 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

 start =
 ## Root element. Describes the whole library.
 element library {
 ## Describes a book.
 element book {
 ## Identifier
 attribute id { xsd:token },
 ## Is the book available?
 attribute available { xsd:boolean },
 ## ISBN number
 element isbn { xsd:token },
 ## Title of the book
 element title {
 xsd:token,
 ## Language
 attribute xml:lang { xsd:language }
 },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ## Author of a book
 element author {
 ## Identifier
 attribute id { xsd:token },
 ## Name
 element name { xsd:token },
 ## Date of birth
 element born { xsd:date },
 ## Date of death
 element died { xsd:date }
 }*,
 ## Character of a book
 element character {
 ## Identifier
 attribute id { xsd:token },
 ## Name
 element name { xsd:token },
 ## Date of birth
 element born { xsd:date },
 ## Qualification of a character
 element qualification { xsd:token }
 }*
 }*
 }

Here again, you can generate any style of schema; you're not limited to Russian dolls. It just
depends on how you write the tool that converts from spreadsheet to schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Simplification and Restrictions
Simplification and restriction are two topics that I have generally avoided throughout this book.
They're deeply technical and don't have much direct impact when you're writing a RELAX NG schema.
Still, this book wouldn't be complete without describing simplifications and restrictions.

Why should you care at all about simplification if it's so technical and looks like an implementation
algorithm? To be honest, most of the time you don't have to care about this stuff at all. Simplification
can be seen as an intermediate step when a RELAX NG processor reads a schema. During this step,
all the syntactical sugar is removed, and the processor can then work with a perfectly normalized
schema. The few restrictions that exist when using RELAX NG are formalized relative to this
normalized version of the schema. Because of the flexibility of RELAX NG, formalizing restrictions on
schemas before simplification would be very complex and difficult to read. The downside of not
having to worry about such things most of the time is that when you do hit one of these restrictions,
you often need to understand the main principles of the simplification process to understand what's
happening. The good news is that it doesn't happen very often!

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 Simplification

Since its conception, RELAX NG has always tried to balance simplicity of use, simplicity of implementation,
and simplicity of its data model. What's simple to implement is often simple to use, however, there are
many features that are very effective for the users but add complexity for the implementers and clutter
the data model. This is the case, for instance, for all the features designed to create building blocks
(named patterns, includes, and embedded grammars). They are very helpful to users but your use of
named patterns or a Russian-doll style has zero impact on the validation itself. This is also the case for
shortcuts such as the mixed pattern, which is really just a more concise way of writing an interleave

pattern with an embedded text pattern.

The quest for simplicity has had a huge influence on the design of RELAX NG. Here is James Clark on the
subject:

Simplicity of specification often goes hand in hand with simplicity of use. But I find that these are
often in conflict with simplicity of implementation. An example would be ambiguity restrictions as in
W3C XML Schema: these make implementation simpler (well, at least for people who don't want to
learn a new algorithm) but make specification and use more complex. In general, RELAX NG aims
for implementation to be practical and safe (i.e., implementations shouldn't use huge amounts of
time/memory for particular schemas/instances), but apart from that favors simplicity of
specification/use over simplicity of implementation.

To keep the description of the restriction and validation algorithm simple while continuing to offer
valuable features to the users, RELAX NG describes validation as a two-step process:

The schema is read and simplified. The simplification removes all the additional complexity of the
syntactic sugar and reduces the schema to its simplest form.

1.

Instance documents are validated against the simplified schema. Because all the syntactic sugar has
been removed from the simplified schema, it doesn't need to be taken into account in the
description of the validation, permitting the use of much simpler algorithms.

2.

The simplification is described for each RELAX NG element in the RELAX NG specification, so I won't dive
into its details here-just the main points. Simplification removes all syntactic sugar, consolidates all
external schemas, uses a subset of all the available RELAX NG elements, and transforms the resulting
structure into a flat schema. Each element is embedded in a named pattern, and all the resulting named
patterns contain the definition of a single element.

The RELAX NG specification is very clear that this simplification is done by the RELAX NG processors to
the data model after reading the complete schema. The result of this simplification doesn't ever have to
be serialized as XML. However, showing intermediary results as XML helps to show what the simplification
process does.

Intermediary results are indented for readability. In reality, whitespace is removed
in one of the first steps of the simplification.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The XML syntax is more similar to the data model used to describe the simplification than is the compact
syntax. The details of the simplification are shown next in XML snippets. For each sequence of steps, I've
also given the compact syntax for the whole schema, to give a better overall view of the impact on the
structure of the schema, although some impacts of simplification are lost when using the compact syntax.

15.1.1 Annotation Removal, Whitespace and Attribute Normalization, and
Inheritance

The first step of simplification performs various normalizations without changing the structure of the
schema:

Annotations (i.e., attributes and elements from foreign namespaces) are removed.

Text nodes containing only whitespace are removed, except when found in value and param
elements. Whitespace is normalized in name , type , and combine attributes and in name elements.

The characters that aren't allowed in the datatypeLibrary attributes are escaped. The attributes
are transferred through inheritance to each data and value pattern.

If not specified, the type attributes of the value pattern are defaulted to the token datatype from

the built in datatype library.

After this set of steps, the structure of the schema is still unchanged, but all cosmetic features, which
have no impact on the meaning of the schema, have been removed. For instance, the following schema
snippet:

 <?xml version="1.0" encoding="utf-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:hr="http://eric.van-der-vlist.com/ns/person"
 ns="http://eric.van-der-vlist.com/ns/library"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:sn="http://www.snee.com/ns/stages"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <a:documentation>RELAX NG schema for our library</a:documentation>
 <sn:stages>
 <sn:stage name="library"/>
 <sn:stage name="book"/>
 <sn:stage name="author"/>
 <sn:stage name="character"/>
 <sn:stage name="author-or-book"/>
 </sn:stages>
 <start>
 <choice>
 <element name=" library " sn:stages="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ref name="book-element" sn:stages="book author-or-book"/>
 <ref name="author-element" sn:stages="author author-or-book"/>
 <ref name="character-element" sn:stages="character"/>
 </choice>
 </start>
 <define name=" author-element ">
 <element name="hr:author" datatypeLibrary="">
 <attribute name="id"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <data type="NMTOKEN">
 <param name="maxLength"> 16 </param>
 </data>
 </attribute>
 <ref name=" name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>
 <define name="available-content">
 <choice>
 <value>true</value>
 <value type="token"> false </value>
 <value> </value>
 </choice>
 </define>
 </grammar>

will be transformed during this sequence of steps into the following (note that I am still showing
whitespace for readability, even though it would have been removed):

 <?xml version="1.0"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:hr="http://eric.van-der-vlist.com/ns/person"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:sn="http://www.snee.com/ns/stages"
 ns="http://eric.van-der-vlist.com/ns/library">
 <start>
 <choice>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 <ref name="book-element"/>
 <ref name="author-element"/>
 <ref name="character-element"/>
 </choice>
 </start>
 <define name="author-element">
 <element name="hr:author">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <attribute name="id">
 <data
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 type="NMTOKEN">
 <param name="maxLength"> 16 </param>
 </data>
 </attribute>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </define>
 <define name="available-content">
 <choice>
 <value type="token" datatypeLibrary="">true</value>
 <value datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes" type="token">
false </value>
 <value type="token" datatypeLibrary=""> </value>
 </choice>
 </define>
 </grammar>

After the first series of steps, our schema looks like this:

 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
 namespace hr = "http://eric.van-der-vlist.com/ns/person"
 namespace local = ""
 default namespace ns1 = "http://eric.van-der-vlist.com/ns/library"
 namespace sn = "http://www.snee.com/ns/stages"

 start =
 element library { book-element+ }
 | book-element
 | author-element
 | character-element
 include "foreign.rnc" {
 foreign-elements = element * - (local:* | ns1:* | hr:*) { anything }*
 foreign-attributes = attribute * - (local:* | ns1:* | hr:*) { text }*
 }
 author-element =
 element hr:author {
 attribute id {
 xsd:NMTOKEN { maxLength = " 16 " }
 },
 name-element,
 born-element,
 died-element?
 }
 include "book-content.rnc"
 book-content &= foreign-nodes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 book-element = element book { book-content }
 born-element = element hr:born { xsd:date }
 character-element = external "character-element.rnc"
 died-element = element hr:died { xsd:date }
 isbn-element = element isbn { foreign-attributes, token }
 name-element = element hr:name { xsd:token }
 qualification-element = element qualification { text }
 title-element = element title { foreign-attributes, text }
 available-content = "true" | xsd:token " false " | " "

15.1.2 Retrieval of External Schemas

The second sequence of steps reads and processes externalRef and include patterns:

externalRef patterns are replaced by the content of the resource referenced by their href

attributes. All the simplification steps up to this one must be recursively applied during this
replacement to make sure all schemas are merged at the same level of simplification.

The schemas referenced by include patterns are read and all the simplification steps up to this

point are recursively applied to these schemas. Their definitions are overridden by those found in
the include pattern itself when overrides are used. The content of their grammar is added in a new
div pattern to the current schema. The div pattern is needed temporarily to carry namespace

information to the next sequence of steps.

After the second step, you get a standalone schema without any reference to external documents.

The following snippet:

<define name="character-element">
 <externalRef href="character-element.rng"
 ns="http://eric.van-der-vlist.com/ns/library"/>
</define>

is transformed into:

<define name="character-element">
 <grammar ns="http://eric.van-der-vlist.com/ns/library">
 <start>
 <element name="character">
 <attribute name="id"/>
 <parentRef name="name-element"/>
 <parentRef name="born-element"/>
 <parentRef name="qualification-element"/>
 </element>
 </start>
 </grammar>
</define>

And the snippet:

<include href="foreign.rng">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <define name="foreign-elements">
 <zeroOrMore>
 <element>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 <ref name="anything"/>
 </element>
 </zeroOrMore>
 </define>
 <define name="foreign-attributes">
 <zeroOrMore>
 <attribute>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 </attribute>
 </zeroOrMore>
 </define>
</include>

becomes:

<div>
 <define name="foreign-elements">
 <zeroOrMore>
 <element>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 <ref name="anything"/>
 </element>
 </zeroOrMore>
 </define>
 <define name="foreign-attributes">
 <zeroOrMore>
 <attribute>
 <anyName>
 <except>
 <nsName ns=""/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 </attribute>
 </zeroOrMore>
 </define>
 <define name="anything">
 <zeroOrMore>
 <choice>
 <element>
 <anyName/>
 <ref name="anything"/>
 </element>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 </choice>
 </zeroOrMore>
 </define>
 <define name="foreign-nodes">
 <zeroOrMore>
 <choice>
 <ref name="foreign-attributes"/>
 <ref name="foreign-elements"/>
 </choice>
 </zeroOrMore>
 </define>
</div>

In the compact syntax, the schema after the second sequence of steps looks like this:

 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
 namespace hr = "http://eric.van-der-vlist.com/ns/person"
 namespace local = ""
 default namespace ns1 = "http://eric.van-der-vlist.com/ns/library"
 namespace sn = "http://www.snee.com/ns/stages"

 start =
 element library { book-element+ }
 | book-element
 | author-element
 | character-element
 div {
 foreign-elements = element * - (local:* | ns1:* | hr:*) { anything }*
 foreign-attributes = attribute * - (local:* | ns1:* | hr:*) { text }*
 anything =
 (element * { anything }
 | attribute * { text }
 | text)*
 foreign-nodes = (foreign-attributes | foreign-elements)*

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 author-element =
 element hr:author {
 attribute id {
 xsd:NMTOKEN { maxLength = " 16 " }
 },
 name-element,
 born-element,
 died-element?
 }
 div {
 book-content =
 attribute id { text },
 attribute available { available-content },
 isbn-element,
 title-element,
 author-element*,
 character-element*
 }
 book-content &= foreign-nodes
 book-element = element book { book-content }
 born-element = element hr:born { xsd:date }
 character-element =
 grammar {
 start =
 element character {
 attribute id { text },
 parent name-element,
 parent born-element,
 parent qualification-element
 }
 }
 died-element = element hr:died { xsd:date }
 isbn-element = element isbn { foreign-attributes, token }
 name-element = element hr:name { xsd:token }
 qualification-element = element qualification { text }
 title-element = element title { foreign-attributes, text }
 available-content = "true" | xsd:token " false " | " "

15.1.3 Name Class Normalization

This third sequence of steps performs the normalization of name classes:

The name attribute of the element and attribute patterns is replaced by the name element, a name

class that matches only a single name.

ns attributes are transferred through inheritance to the elements that need them; name , nsName ,
and value patterns need this attribute to support QName datatypes reliably. (Note that the ns

attribute behaves like the default namespace in XML and isn't passed to attributes, which, by
default, have no namespace URI.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The QName (qualified name) used in name elements is replaced by their local part. The ns attribute

of these elements is replaced by the namespace URI defined for their prefix.

By this third sequence of steps, name classes are almost normalized (the except and choice name class

are normalized in the fourth sequence of steps).

During this sequence of steps, the snippet:

<element name="hr:author">
 <attribute name="id">
 <data
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 type="NMTOKEN">
 <param name="maxLength"> 16 </param>
 </data>
 </attribute>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
</element>

is transformed into:

<element>
 <name ns="http://eric.van-der-vlist.com/ns/person">author</name>
 <attribute>
 <name ns="">id</name>
 <data datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 type="NMTOKEN">
 <param name="maxLength"> 16 </param>
 </data>
 </attribute>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
</element>

Note that none of these modifications are visible in the compact syntax. The compact syntax already
requires that all namespace declarations be made in the declaration section of the schema and supports
no difference between name elements and attributes.

15.1.4 Pattern Normalization

In the fourth sequence of steps, patterns are normalized:

div elements are replaced by their children.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define , oneOrMore , zeroOrMore , optional , list , and mixed patterns are transformed to have

exactly one child pattern. If they have more than one pattern, these patterns are wrapped into a
group pattern.

element patterns follow a similar rule and are transformed to have exactly one name class and a

single child pattern.

except patterns and name classes are also transformed to have exactly one child pattern, but since
they have a different semantic, their child elements are wrapped in a choice element.

If an attribute pattern has no child pattern, a text pattern is added.

The group and interleave patterns and the choice pattern and name class are recursively

transformed to have exactly two subelements: if it has only one child, it's replaced by this child. If it
has more than two children, the first two child elements are combined into a new element until
there are exactly two child elements.

mixed patterns are transformed into interleave patterns between their unique child pattern and a
text pattern.

optional patterns are transformed into choice patterns between their unique child pattern and an
empty pattern.

zeroOrMore patterns are transformed into choice patterns between a oneOrMore pattern including
their unique child pattern and an empty pattern.

After the fourth set of steps, the number of different types of patterns has been reduced to a set of
"primitive" patterns. All the patterns that are left have a fixed number of child elements.

Here's our example snippet:

<define name="foreign-elements">
 <zeroOrMore>
 <element>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 <ref name="anything"/>
 </element>
 </zeroOrMore>
</define>

which is transformed into:

<define name="foreign-elements">
 <choice>
 <oneOrMore>
 <element>
 <anyName>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <except>
 <choice>
 <choice>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 </choice>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </choice>
 </except>
 </anyName>
 <ref name="anything"/>
 </element>
 </oneOrMore>
 <empty/>
 </choice>
</define>

During the fourth set of steps, our schema becomes:

 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
 namespace hr = "http://eric.van-der-vlist.com/ns/person"
 namespace local = ""
 default namespace ns1 = "http://eric.van-der-vlist.com/ns/library"
 namespace sn = "http://www.snee.com/ns/stages"

 start =
 ((element library { book-element+ }
 | book-element)
 | author-element)
 | character-element
 foreign-elements =
 element * - ((local:* | ns1:*) | hr:*) { anything }+
 | empty
 foreign-attributes =
 attribute * - ((local:* | ns1:*) | hr:*) { text }+
 | empty
 anything =
 ((element * { anything }
 | attribute * { text })
 | text)+
 | empty
 foreign-nodes = (foreign-attributes | foreign-elements)+ | empty
 author-element =
 element hr:author {
 ((attribute id {
 xsd:NMTOKEN { maxLength = " 16 " }
 },
 name-element),
 born-element),
 (died-element | empty)
 }
 book-content =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ((((attribute id { text },
 attribute available { available-content }),
 isbn-element),
 title-element),
 (author-element+ | empty)),
 (character-element+ | empty)
 book-content &= foreign-nodes
 book-element = element book { book-content }
 born-element = element hr:born { xsd:date }
 character-element =
 grammar {
 start =
 element character {
 ((attribute id { text },
 parent name-element),
 parent born-element),
 parent qualification-element
 }
 }
 died-element = element hr:died { xsd:date }
 isbn-element = element isbn { foreign-attributes, token }
 name-element = element hr:name { xsd:token }
 qualification-element = element qualification { text }
 title-element = element title { foreign-attributes, text }
 available-content = ("true" | xsd:token " false ") | " "

It is much more verbose but has a simpler structure.

15.1.5 First Set of Constraints

The first set of constraints is applied at this fourth processing step. They are mainly checks that our
document conforms to XML commonsense, but it's easier and safer to check now on the complete
schema:

It's not possible to define name classes-or except -that contain no name at all by including
anyName in an except name class or nsName in an except name class included in another nsName .

It's not possible to define attributes having the name xmlns or a namespace URI equal to the
namespace URI http://www.w3.org/2000/xmlns (corresponding to the "xmlns" prefix).

Datatype libraries are used correctly; each type exists in its datatype library and its param elements

are appropriate to that library.

15.1.6 Grammar Merge

define and start elements are combined in each grammar; all grammars are then merged into one top-

level grammar:

In each grammar, multiple start elements and multiple define elements with the same name are1.

2.

http://www.w3.org/2000/xmlns
http://lib.ommolketab.ir
http://lib.ommolketab.ir

combined as defined by their combine attribute.
1.

The names of the named patterns are then changed so as to be unique across the whole schema;
the references to these named patterns are changed accordingly.

2.

A top-level grammar and its start element are created, if not already present. All the named
patterns become children in this top-level grammar, parentRef elements are replaced by ref
elements, and all other grammar and start elements are replaced by their child elements.

3.

During this fifth sequence of steps, the simplified schema:

<define name="born-element">
 <element>
 <name ns="http://eric.van-der-vlist.com/ns/person">born</name>
 <data datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 type="date"/>
 </element>
 </define>
 <define name="character-element">
 <grammar>
 <start>
 <element>
 <name ns="http://eric.van-der-vlist.com/ns/library">character</name>
 <group>
 <group>
 <group>
 <attribute>
 <name ns="">id</name>
 <text/>
 </attribute>
 <parentRef name="name-element"/>
 </group>
 <parentRef name="born-element"/>
 </group>
 <parentRef name="qualification-element"/>
 </group>
 </element>
 </start>
 </grammar>
 </define>

becomes:

 <define name="born-element-id2613943">
 <element>
 <name ns="http://eric.van-der-vlist.com/ns/person">born</name>
 <data datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 type="date"/>
 </element>
 </define>
 <define name="character-element-id2613924">
 <element>
 <name ns="http://eric.van-der-vlist.com/ns/library">character</name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <group>
 <group>
 <group>
 <attribute>
 <name ns="">id</name>
 <text/>
 </attribute>
 <ref name="name-element-id2613832"/>
 </group>
 <ref name="born-element-id2613943"/>
 </group>
 <ref name="qualification-element-id2613840"/>
 </group>
 </element>
 </define>

No specific algorithm to create unique names for a named pattern is described in the specification, so
these names will vary between implementations.

To demonstrate the drastic change that occurs during simplification, I now present a schema that is a
consolidation of features seen throughout this book, to cover most of the elements affected by the
simplification. It is composed of four documents.

The first, library.rnc (or library.rng in the XML syntax), defines the library in general, but not authors or
characters:

 namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
 namespace hr = "http://eric.van-der-vlist.com/ns/person"
 namespace local = ""
 default namespace ns1 = "http://eric.van-der-vlist.com/ns/library"
 namespace sn = "http://www.snee.com/ns/stages"

 a:documentation ["RELAX NG schema for our library"]
 sn:stages [[
 sn:stage [name = "library"]
 sn:stage [name = "book"]
 sn:stage [name = "author"]
 sn:stage [name = "character"]
 sn:stage [name = "author-or-book"]
]
 start =
 [sn:stages = "library"] element library { book-element+ }
 | [sn:stages = "book author-or-book"] book-element
 | [sn:stages = "author author-or-book"] author-element
 | [sn:stages = "character"] character-element
 include "foreign.rnc" {
 foreign-elements = element * - (local:* | ns1:* | hr:*) { anything }*
 foreign-attributes = attribute * - (local:* | ns1:* | hr:*) { text }*
 }
 author-element =
 element hr:author {
 attribute id {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xsd:NMTOKEN { maxLength = " 16 " }
 },
 name-element,
 born-element,
 died-element?
 }
 include "book-content.rnc"
 book-content &= foreign-nodes
 book-element = element book { book-content }
 born-element = element hr:born { xsd:date }
 character-element = external "character-element.rnc"
 died-element = element hr:died { xsd:date }
 isbn-element = element isbn { foreign-attributes, token }
 name-element = element hr:name { xsd:token }
 qualification-element = element qualification { text }
 title-element = element title { foreign-attributes, text }
 available-content = "true" | xsd:token " false " | " "

The second, book-content.rnc (or bookcontent.rng in the XML syntax), contains a pattern defining the
contents of books:

 book-content =
 attribute id { text },
 attribute available { available-content },
 isbn-element,
 title-element,
 author-element*,
 character-element*

The third, character-element.rnc (or character-element.rng in the XML syntax), defines character

elements:

 start =
 element character {
 attribute id { text },
 parent name-element,
 parent born-element,
 parent qualification-element
 }

The last component, foreign.rnc (or foreign.rng), provides a model for openness in the schema:

 anything =
 (element * { anything }
 | attribute * { text }
 | text)*
 foreign-elements = element * { anything }*
 foreign-attributes = attribute * { text }*
 foreign-nodes = (foreign-attributes | foreign-elements)*

Here's the complete schema for the library after the grammar-merging steps are completed:

namespace local = ""

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 namespace ns1 = "http://eric.van-der-vlist.com/ns/person"
 default namespace ns2 = "http://eric.van-der-vlist.com/ns/library"

 start =
 ((element library { book-element-id2613963+ }
 | book-element-id2613963)
 | author-element-id2614058)
 | character-element-id2613924
 foreign-elements-id2614183 =
 element * - ((local:* | ns2:*) | ns1:*) { anything-id2614112 }+
 | empty
 foreign-attributes-id2614152 =
 attribute * - ((local:* | ns2:*) | ns1:*) { text }+
 | empty
 anything-id2614112 =
 ((element * { anything-id2614112 }
 | attribute * { text })
 | text)+
 | empty
 foreign-nodes-id2614043 =
 (foreign-attributes-id2614152 | foreign-elements-id2614183)+ | empty
 author-element-id2614058 =
 element ns1:author {
 ((attribute id {
 xsd:NMTOKEN { maxLength = " 16 " }
 },
 name-element-id2613832),
 born-element-id2613943),
 (died-element-id2613856 | empty)
 }
 book-content-id2614016 =
 (((((attribute id { text },
 attribute available { available-content-id2613805 }),
 isbn-element-id2613872),
 title-element-id2613819),
 (author-element-id2614058+ | empty)),
 (character-element-id2613924+ | empty))
 & foreign-nodes-id2614043
 book-element-id2613963 = element book { book-content-id2614016 }
 born-element-id2613943 = element ns1:born { xsd:date }
 character-element-id2613924 =
 element character {
 ((attribute id { text },
 name-element-id2613832),
 born-element-id2613943),
 qualification-element-id2613840
 }
 died-element-id2613856 = element ns1:died { xsd:date }
 isbn-element-id2613872 =
 element isbn { foreign-attributes-id2614152, token }
 name-element-id2613832 = element ns1:name { xsd:token }
 qualification-element-id2613840 = element qualification { text }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 title-element-id2613819 =
 element title { foreign-attributes-id2614152, text }
 available-content-id2613805 = ("true" | xsd:token " false ") | " "

15.1.7 Schema Flattening

The basic style of the schema (Russian-doll or named templates) has still been preserved by the previous
steps. The goal of the sixth step, schema flattening, is to normalize the use of named templates. The goal
is to make the schema similar in structure to a DTD. Each element will be cleanly embedded in its own
named pattern, and named patterns will contain no more than a single element:

For each element that isn't the unique child of a define element, a named pattern is created to

embed its definition.

For each named pattern that isn't embedded, a single element pattern is suppressed. References to
this named pattern are replaced by its definition.

During this step, the snippet:

 <start>
 <choice>
 <choice>
 <choice>
 <element>
 <name ns="http://eric.van-der-vlist.com/ns/library">library</name>
 <oneOrMore>
 <ref name="book-element-id2613963"/>
 </oneOrMore>
 </element>
 <ref name="book-element-id2613963"/>
 </choice>
 <ref name="author-element-id2614058"/>
 </choice>
 <ref name="character-element-id2613924"/>
 </choice>
 </start>

is replaced by:

 <start>
 <choice>
 <choice>
 <choice>
 <ref name="_ _library-elt-id2615152"/>
 <ref name="book-element-id2613963"/>
 </choice>
 <ref name="author-element-id2614058"/>
 </choice>
 <ref name="character-element-id2613924"/>
 </choice>
 </start>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <define name="_ _library-elt-id2615152">
 <element>
 <name ns="http://eric.van-der-vlist.com/ns/library">library</name>
 <oneOrMore>
 <ref name="book-element-id2613963"/>
 </oneOrMore>
 </element>
 </define>

If I take the results of merging the four-part schema from the previous section and apply this step, I get:

 namespace local = ""
 namespace ns1 = "http://eric.van-der-vlist.com/ns/person"
 default namespace ns2 = "http://eric.van-der-vlist.com/ns/library"

 start =
 ((_ _library-elt-id2615152 | book-element-id2613963)
 | author-element-id2614058)
 | character-element-id2613924
 author-element-id2614058 =
 element ns1:author {
 ((attribute id {
 xsd:NMTOKEN { maxLength = " 16 " }
 },
 name-element-id2613832),
 born-element-id2613943),
 (died-element-id2613856 | empty)
 }
 book-element-id2613963 =
 element book {
 (((((attribute id { text },
 attribute available { ("true" | xsd:token " false ") | " " }),
 isbn-element-id2613872),
 title-element-id2613819),
 (author-element-id2614058+ | empty)),
 (character-element-id2613924+ | empty))
 & (((attribute * - ((local:* | ns2:*) | ns1:*) { text }+
 | empty)
 | (_ _-elt-id2615098+ | empty))+
 | empty)
 }
 born-element-id2613943 = element ns1:born { xsd:date }
 character-element-id2613924 =
 element character {
 ((attribute id { text },
 name-element-id2613832),
 born-element-id2613943),
 qualification-element-id2613840
 }
 died-element-id2613856 = element ns1:died { xsd:date }
 isbn-element-id2613872 =
 element isbn {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (attribute * - ((local:* | ns2:*) | ns1:*) { text }+
 | empty),
 token
 }
 name-element-id2613832 = element ns1:name { xsd:token }
 qualification-element-id2613840 = element qualification { text }
 title-element-id2613819 =
 element title {
 (attribute * - ((local:* | ns2:*) | ns1:*) { text }+
 | empty),
 text
 }
 _ _-elt-id2615020 =
 element * {
 ((_ _-elt-id2615020
 | attribute * { text })
 | text)+
 | empty
 }
 _ _library-elt-id2615152 = element library { book-element-id2613963+ }
 _ _-elt-id2615098 =
 element * - ((local:* | ns2:*) | ns1:*) {
 ((_ _-elt-id2615020
 | attribute * { text })
 | text)+
 | empty
 }

15.1.8 Final Cleanup

The simplification process is almost done and just needs a bit of final cleanup:

Recursively escalate notAllowed patterns, when they are located where their effect is such that
their parent pattern itself is notAllowed . Remove choices that are notAllowed . (Note that this
simplification doesn't cross element boundaries, so element foo { notAllowed } isn't transformed
into notAllowed .)

Remove empty elements that have no effect.

Move useful empty elements so that they are the first child in choice elements.

After this cleanup, our schema becomes:

 namespace local = ""
 namespace ns1 = "http://eric.van-der-vlist.com/ns/person"
 default namespace ns2 = "http://eric.van-der-vlist.com/ns/library"

 start =
 ((_ _library-elt-id2615152 | book-element-id2613963)
 | author-element-id2614058)
 | character-element-id2613924

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 author-element-id2614058 =
 element ns1:author {
 ((attribute id {
 xsd:NMTOKEN { maxLength = " 16 " }
 },
 name-element-id2613832),
 born-element-id2613943),
 (empty | died-element-id2613856)
 }
 book-element-id2613963 =
 element book {
 (((((attribute id { text },
 attribute available { ("true" | xsd:token " false ") | " " }),
 isbn-element-id2613872),
 title-element-id2613819),
 (empty | author-element-id2614058+)),
 (empty | character-element-id2613924+))
 & (empty
 | ((empty
 | attribute * - ((local:* | ns2:*) | ns1:*) { text }+)
 | (empty | _ _-elt-id2615098+))+)
 }
 born-element-id2613943 = element ns1:born { xsd:date }
 character-element-id2613924 =
 element character {
 ((attribute id { text },
 name-element-id2613832),
 born-element-id2613943),
 qualification-element-id2613840
 }
 died-element-id2613856 = element ns1:died { xsd:date }
 isbn-element-id2613872 =
 element isbn {
 (empty
 | attribute * - ((local:* | ns2:*) | ns1:*) { text }+),
 token
 }
 name-element-id2613832 = element ns1:name { xsd:token }
 qualification-element-id2613840 = element qualification { text }
 title-element-id2613819 =
 element title {
 (empty
 | attribute * - ((local:* | ns2:*) | ns1:*) { text }+),
 text
 }
 _ _-elt-id2615020 =
 element * {
 empty
 | ((_ _-elt-id2615020
 | attribute * { text })
 | text)+
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 _ _library-elt-id2615152 = element library { book-element-id2613963+ }
 _ _-elt-id2615098 =
 element * - ((local:* | ns2:*) | ns1:*) {
 empty
 | ((_ _-elt-id2615020
 | attribute * { text })
 | text)+
 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.2 Restrictions

With the exception of constraints expressed by the RELAX NG schema for RELAX NG and those which
are part of the simplification itself, RELAX NG defines all the restrictions on schema structures as they
apply to the simplified version. Most of them are obvious and easy to understand.

15.2.1 Constraints on Attributes

RELAX NG's constraints match the constraints on attributes defined by the XML 1.0 recommendation:

Attributes can't contain other attributes; attribute patterns can't have another attribute

pattern in their descendants.

Attributes can't contain elements; attribute patterns can't have a ref pattern in their

descendants.

Attributes can't be duplicated; an attribute may not be found in a oneOrMore pattern with a
combination by group or interleave. Furthermore, if attribute patterns are combined in a
group or interleave pattern, their name classes must not overlap: they can't have any name

that belongs to both name classes.

Attributes that have an infinite name class (anyName or nsName) must be enclosed in a
oneOrMore pattern. In other words, you can't specify only one or a certain number of
occurrences of these attributes. They can have only text as their model (in other words, data

patterns are forbidden here).

Let's explore schemas that may look valid at a quick glance but are going to collide with these
restrictions.

15.2.1.1 Bad example: attribute content model

This schema states that any content model can be accepted in the bar attribute:

 anything =
 (element * { anything }
 | attribute * { text }
 | text)*
 start =
 element foo {
 attribute bar { anything },
 text
 }

Unfortunately, it's translated into:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 start = _ _foo-elt-id2602800
 _ _-elt-id2602788 =
 element * {
 empty
 | ((_ _-elt-id2602788
 | attribute * { text })
 | text)+
 }
 _ _foo-elt-id2602800 =
 element foo {
 attribute bar {
 empty
 | ((_ _-elt-id2602788
 | attribute * { text })
 | text)+
 },
 text
 }

This one allows a reference to a named pattern (which means an element in the simplified syntax)
and an attribute. Both of these things are forbidden.

You must ensure that the anything defined for the content of the attribute is compatible with the

content of attributes as defined by the XML specification. For instance:

 anything =
 (text)
 start =
 element foo {
 attribute bar { anything },
 text
 }

is simplified into:

 start = _ _foo-elt-id2602296
 _ _foo-elt-id2602296 =
 element foo {
 attribute bar { text },
 text
 }

This schema expresses the original intent and is valid.

15.2.1.2 Bad example: attribute duplication

Let's say I want to extend the definition of the title element so that it has the same attributes and
content model as the XHTML 2.0 span element. If I look into the RELAX NG module implementing the
span element, I can see that its definition is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 span = element span { span.attlist, Inline.model }

I want to include this in the definition of the title element, which already includes an xml:lang

attribute:

 namespace x = "http://www.w3.org/2002/06/xhtml2"

 start = book
 include "xhtml-attribs-2.rnc" inherit = x
 include "xhtml-inltext-2.rnc" inherit = x
 include "xhtml-datatypes-2.rnc" inherit = x
 book =
 element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {
 attribute xml:lang { xsd:language },
 span.attlist,
 Inline.model
 }
 }

Unfortunately, this snippet is invalid because the xml:lang attribute is already included somewhere
in the span.attlist pattern. It gets combined during the simplification, which causes the definition
of the title element to be:

 _ _title-elt-id2641936 =
 element title {
 (attribute xml:lang { xsd:language },
 (((((((((empty
 | attribute id { xsd:ID }),
 (empty
 | attribute class { xsd:NMTOKENS })),
 (empty
 | attribute title { text })),
 (empty
 | attribute xml:lang { xsd:language })),
 (empty
 | attribute dir {
 (("ltr" | "rtl") | "lro")
 | "rlo"
 })),
 ((empty
 | attribute edit {
 (("inserted" | "deleted") | "changed")
 | "moved"
 }),
 (empty default namespace
 lib = "http://eric.van-der-vlist.com/ns/library namespace local = ""

 start = book

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 book =
 element book {
 attribute id { text },
 attribute available { text },
 foreign-attributes,
 element isbn { text },
 element title {
 attribute xml:lang { xsd:language },
 text
 }
 }

 foreign-attributes = attribute * - (local:* | lib:*) { text }*
 | attribute datetime { xsd:dateTime }))),
 ((((((((empty
 | attribute href { xsd:anyURI }),
 (empty
 | attribute cite { xsd:anyURI })),
 (empty
 | attribute target { xsd:NMTOKEN })),
 (empty
 | attribute rel { xsd:NMTOKENS })),
 (empty
 | attribute rev { xsd:NMTOKENS })),
 (empty
 | attribute accesskey {
 xsd:string { length = "1" }
 })),
 (empty
 | attribute navindex {
 xsd:nonNegativeInteger {
 pattern = "0-9+"
 minInclusive = "0"
 maxInclusive = "32767"
 }
 })),
 (empty
 | attribute base { xsd:anyURI }))),
 ((empty
 | attribute src { xsd:anyURI }),
 (empty
 | attribute type { text }))),
 ((((empty
 | attribute usemap { xsd:anyURI }),
 (empty
 | attribute ismap { "ismap" })),
 (empty
 | attribute shape {
 (("rect" | "circle") | "poly")
 | "default"
 })),

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (empty
 | attribute coords { text })))),
 (empty
 | (empty
 | (text
 | (((((((((((((abbr-id2635861 | cite-id2635889)
 | code-id2635918)
 | dfn-id2635947)
 | em-id2635975)
 | kbd-id2636004)
 | l-id2636032)
 | quote-id2636061)
 | samp-id2636090)
 | span-id2636118)
 | strong-id2636147)
 | sub-id2636176)
 | sup-id2636204)
 | var-id2636233)))+)
 }

To fix this, I need to remove the xml:lang from the original definition, creating:

 namespace x = "http://www.w3.org/2002/06/xhtml2"

 start = book
 include "xhtml-attribs-2.rnc" inherit = x
 include "xhtml-inltext-2.rnc" inherit = x
 include "xhtml-datatypes-2.rnc" inherit = x
 book =
 element book {
 attribute id { text },
 attribute available { text },
 element isbn { text },
 element title {
 span.attlist,
 Inline.model
 }
 }

15.2.1.3 Bad example: name class overlap

Let's say that I have the following schema, called book.rnc:

 default namespace lib = "http://eric.van-der-vlist.com/ns/library"
 namespace local = ""

 start = book

 book =
 element book {
 attribute id { text },
 attribute available { text },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 foreign-attributes,
 element isbn { text },
 element title {
 attribute xml:lang { xsd:language },
 text
 }
 }

 foreign-attributes = attribute * - (local:* | lib:*) { text }*

Although I have accepted foreign attributes, I should be more precise about the definition of some
Dublin Core elements. I can extend the schema like this:

 namespace dc="http://purl.org/dc/elements/1.1/"

 include "book.rnc"

 book.content &= attribute dc:rights { text } ?

Unfortunately, this is invalid, because it gets simplified to:

 book-id2604347 =
 element book {
 ((((attribute id { text },
 attribute available { text }),
 (empty
 | attribute * - (lib:* | local:*) { text }+)),
 _ _isbn-elt-id2604556),
 _ _title-elt-id2604551)
 & attribute ns1:rights { text }
 }

The attribute dc:rights is included in the name class * - (lib:* | local:*). To fix this, I need to
redefine the named pattern foreign-attributes to remove the name dc:rights or perhaps even

all the namespaces for Dublin Core elements:

 default namespace lib = "http://eric.van-der-vlist.com/ns/library"
 namespace dc="http://purl.org/dc/elements/1.1/"
 namespace local = ""

 include "book.rnc" {
 foreign-attributes = attribute * - (local:* | lib:* | dc:*) { text }*
 }

 book.content &= attribute dc:rights { text } ?

15.2.2 Constraints on Lists

Lists work on text nodes by splitting them into tokens, which are then handled themselves as text
nodes. It's therefore not possible to find elements or attributes in a list. Mixing text nodes and
embedded lists is confusing and forbidden anyway. List patterns can't have any of these
descendants: list, ref (because after simplification, access to elements is done using references to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

named patterns), attribute, or text. The interleave pattern is also forbidden as a descendant of
list patterns because it complicates implementations.

15.2.2.1 Bad example: list and interleave

I'd like to define a price element as allowing a numeric followed by a token, such as:

 <price>1 Euro</price>

or a token followed by a numeric:

 <price>USD 1</price>

I might be tempted to write:

 element price {
 list { xsd:decimal & xsd:token }
 }

However, this is invalid because interleave is forbidden in a list. To work around this limitation, I

need to give all the possible combinations. It's easy with this small example, though it can rapidly
grow out of control as more types are added. In this case, it just requires a bit of duplication:

 element price {
 list { (xsd:decimal, xsd:token) | (xsd:token, xsd:decimal) }
 }

15.2.3 Constraints on Except Patterns

Except patterns (except elements used in a data pattern) apply to individual pieces of data. An
except element with a data parent can contain only data, value, and choice elements.

15.2.4 Constraints on Start Patterns

After simplification, the start pattern describes the list of possible root elements. You can thus find
only combinations of choices between ref elements.

15.2.5 Constraints on Content Models

RELAX NG defines three different content models for an element:

Empty, when the element has only attributes

Simple, when the element has only attributes and has been described using data, value or
list patterns

Complex, in all other cases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This set is identical to the definitions provided by W3C XML Schema and similar but somewhat
different from the definition of these terms in plain XML. Consider an element expressed as
<foo>bar</foo>. RELAX NG sees it as complex content if its content has been described using a
text pattern and as simple content if its content has been described using other patterns. It's not

enough for an element to contain only a text node for it to be called simple content. It is also
necessary for this element to have been described with a data orientation. When that isn't the case,
if the text pattern has been used, the element is considered document-oriented and a special case of

mixed content in which no elements are included.

The restriction on the content model is expressed by saying that empty content can be grouped with
any other content models but that simple and complex content models can't be grouped together
(through group or interleave patterns). Simple and complex content models can appear under the

definition of the same element only as alternatives. In other words, for each alternative, you need to
choose between being data- or text-oriented, and you can't mix both mindsets.

I mentioned the practical consequence of this restriction on mixed content model in Chapter 7. It's
not possible to use data patterns to specify constraints on the text nodes occurring in elements with

mixed content.

15.2.6 Limitations on interleave

The last two limitations apply to interleave. The goal of these limitations is to facilitate the
implementation of the interleave feature, which other schema languages lack largely because it is

seen as difficult to implement. These two limitations are intended to reduce the number of
combinations RELAX NG processors need to explore to support interleave:

Elements combined through interleave must not overlap between name classes. You have

already seen a similar restriction with attributes, which are always combined through
interleave.

There must be at most one text pattern in each set of patterns combined by interleave.

These limitations don't affect the expressive power of RELAX NG (the set of content models that can
be written with RELAX NG). Even if you run into a limitation from time to time, schemas can always
be rewritten to work around them. Sometimes, though, they can be a nuisance when combining
existing patterns with mixed content models.

The limitations are needed to support the different algorithms currently used to implement RELAX
NG. James Clark thinks that they can be removed in future versions of RELAX NG: "Better algorithms
may be developed that will allow this restriction to be removed in future versions."

15.2.6.1 Bad example: more than one text pattern in interleave

You may have the following schema, book.rnc, to describe your books:

 start = book
 book = element book { book.content }
 book.content =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attribute id { text },
 attribute available { text },
 element isbn { text },
 title
 title = element title { title.attributes, title.content }
 title.attributes = attribute xml:lang { xsd:language }
 title.content = text

To add the XHTML Inline.model to title.content, you might be tempted to write:

 include "book.rnc"
 include "xhtml-attribs-2.rnc"
 include "xhtml-inltext-2.rnc"
 include "xhtml-datatypes-2.rnc"

 title.content &= Inline.model

Unfortunately, Inline.model already contains a text pattern and gets simplified to:

 title-id2635741 =
 element title {
 attribute lang { xsd:language },
 (text
 & (empty
 | (empty
 | (text
 | (((((((((((((abbr-id2636549 | cite-id2636578)
 | code-id2636607)
 | dfn-id2636636)
 | em-id2636664)
 | kbd-id2636693)
 | l-id2636721)
 | quote-id2636750)
 | samp-id2636778)
 | span-id2636807)
 | strong-id2636836)
 | sub-id2636865)
 | sup-id2636893)
 | var-id2636922)))+))
 }

Here there are text patterns within interleave. To fix this problem, I need to replace the
combination with a redefinition of title.content:

 include "book.rnc" {
 title.content = Inline.model
 }
 include "xhtml-attribs-2.rnc"
 include "xhtml-inltext-2.rnc"
 include "xhtml-datatypes-2.rnc"
 include "book.rnc" {
 title.content = Inline.model
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 include "xhtml-attribs-2.rnc"
 include "xhtml-inltext-2.rnc"
 include "xhtml-datatypes-2.rnc"

There is no loss in expressive power (I am able to describe what I wanted to describe), but there is a
loss in modularity. Changes made to title.content in book.rnc would now have to be manually

added to the derived schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 16. Determinism and Datatype
Assignment
One of the strengths of RELAX NG is that it's flexible enough to support a difficult but sometimes
convenient concept called:

"Ambiguous content models" in the SGML world

"Nondeterministic content models" in XML DTDs

The "Unique Particle Attribution rule" and the "Consistent Declaration rule" in the W3C XML
Schema

Before you read any further into this chapter, realize that as far as simple validation is concerned,
RELAX NG processes ambiguous schemas happily. That said, when type assignment or data binding is
involved, schema ambiguity may have consequences that create problems. You will see in this
chapter how to use RELAX NG in ways that avoid these problems, making RELAX NG "type
assignment-friendly."

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.1 What Is Ambiguity?

First, I will clarify the concepts of ambiguity and determinism. They're blurred in many papers and
discussions, yet aren't as obscure as people often think.

16.1.1 Ambiguity Versus Determinism

The first distinction is the difference between ambiguity and determinism. These two terms have
been given precise definitions by regular expressions and hedge grammar theoreticians, and in this
chapter I will follow the usage of these terms as defined by Murata Makoto. Part of the confusion
about these notions comes from their frequent misuse.

A schema is said to be ambiguous when a document may be valid when its contents match multiple
different pattern alternatives. A trivial example is:

 element foo{empty} | element foo{empty}

When an empty element named foo is found in an instance document, there is no way to say
whether it is valid per the left definition or the right definition of element foo{empty} in the schema.

There are, of course, more complex cases of ambiguity, and you'll see some of them in the next
sections. Still, this is the general idea behind ambiguity.

Ambiguity is independent of any implementation or algorithm. It's a property of the schema itself; a
schema is either ambiguous or not ambiguous.

Determinism has been introduced to facilitate the implementation of schema processors. The basic
idea behind determinism is that at each point, when matching an instance document against a
schema, the schema processor has at most one possible choice. This makes life easier for
implementers, who can safely rely on well-known algorithms such as automatons (also called Finite
State Machines or FSMs). Thus, they can be sure that their computation times will not grow
exponentially. Because of the need to avoid exponential growth in processing times, schema
languages often impose determinism on schema authors.

An ambiguous schema is never deterministic, but the opposite is far from being true. Consider, for
instance:

 element foo{empty} | (element foo{empty}, element bar{empty})

This example isn't ambiguous. A schema processor can say whether the right or left alternative is
used (or neither, if the document is invalid) after having read the element that follows the empty
element named foo. This is, however, also nondeterministic, since when a schema processor
matches an empty element named foo, it has two different choices. It can't make the choice

between them without looking ahead to the next element.

Ambiguous schemas aren't a problem as far as validation is concerned. The schema's validation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reports are consistent, and we don't care why a document is valid or not as long as the answer (valid
or invalid) is reliable. The only downside to ambiguous schemas is for applications performing
datatype assignment-or, more generally, instance document annotation-using validation. You will
see more about these issues in the next sections of this chapter.

The main problem with schema languages that require deterministic schemas is that some content
models are fundamentally nondeterministic and can't be rewritten in a deterministic form. Such
deterministic schema languages not only create restrictions to the forms used to write a schema, but
limit their expressive power. They can't describe all the content models allowed in well-formed XML.
You will see examples of content models that are impossible to describe in a deterministic form in the
section about compatibility with W3C XML Schema.

16.1.2 Different Kinds of Ambiguity

In a RELAX NG schema, you can distinguish four different types of ambiguity: regular expression
ambiguities, hedge grammar ambiguities, name class ambiguities, and datatype ambiguities. I'll
briefly introduce each of them, as they have slightly different behaviors.

16.1.2.1 Regular expression ambiguities

After a schema has been simplified, we can make a clear distinction between the definition of each
element (embedded in its own named pattern) and the grammar that combines these definitions.
What's called a regular expression ambiguity is an ambiguity that resides within the definition of an
element.

Note that in this chapter I use the term "regular expression" as used in the
math behind RELAX NG. The term "regular expression" that you'll find in this
chapter should thus not be confused with the regular expressions as seen in the
W3C XML Schema pattern facet.

Theoreticians have demonstrated that ambiguous regular expressions may be rewritten in an
unambiguous way. The ambiguities may be considered merely as unlucky variations over
unambiguous schemas.

A basic example of such a choice between a pattern and itself is:

 <choice>

 <ref name="pattern"/>

 <ref name="pattern"/>
 </choice>

or:

 pattern|pattern

The unambiguous form is somewhat difficult to find when the ambiguous pattern gets more complex.
For instance, the following pattern:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <choice>
 <group>
 <optional>
 <ref name="first"/>
 </optional>
 <ref name="second"/>
 </group>
 <group>
 <ref name="second"/>
 <optional>
 <ref name="third"/>
 </optional>
 </group>
 </choice>

or:

 (first?,second)|(second,third?)

is ambiguous because an instance nodeset that matches only the named pattern second without
first or third is valid per the two alternatives. It can be rewritten by removing the option of
matching only the second pattern from one of the alternatives:

 <group>
 <optional>
 <ref name="first"/>
 </optional>
 <ref name="second"/>
 </group>
 <group>
 <ref name="second"/>
 <ref name="third"/>
 </group>
 </choice>

or:

 (first?,second)|(second,third)

Algorithms can rewrite ambiguous regular expressions to turn them into their
unambiguous forms. It would be really useful if XML development tools could
implement these algorithms to propose unambiguous alternatives for
ambiguous patterns. Until this happens, though, the best thing to do when
confronted with an ambiguous pattern you need to make unambiguous is to
take a step back, then calmly write out the different combinations expressed by
the schema to combine them differently until the combination isn't ambiguous
any more.

Note that explicit choices aren't the only pattern that can lead to ambiguous schemas. Consider this
simple pattern:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <group>
 <optional>

 <ref name="pattern"/>
 </optional>
 <optional>

 <ref name="pattern"/>
 </optional>
 <group>

or:

 pattern?, pattern?

If you have a content model that matches only one pattern, you can't know if it will match it for the
first or the second occurrence of the pattern. Therefore, this schema can be considered ambiguous.
Here's how to rewrite it as an unambiguous schema:

 <optional>

 <ref name="pattern"/>
 <optional>

 <ref name="pattern"/>
 </optional>
 </optional>

or:

 (pattern, pattern?)?

Although the rewriting approach isn't easy, the math behind RELAX NG can help, as high school
algebra helps factorize mathematical expressions. As an exercise, let's decompose the chain of
factorizations and simplifications to rewrite pattern?, pattern? as (pattern, pattern?)?.

The first step relies on the fact that pattern? is equivalent to empty|pattern:

 pattern?, pattern?

which is equivalent to:

 (empty|pattern), (empty|pattern)

which can be factorized as:

 (empty,empty)|(empty,pattern)|(pattern,empty)|(pattern,pattern)

which can be simplified to:

 empty|pattern|(pattern,pattern)

which is equivalent to:

 empty|(pattern,(empty|pattern))

which is equivalent to:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (pattern, pattern?)?

I could argue that the unambiguous forms are clearer, more logical, and easier to read than the
ambiguous, but I think that this conclusion is a subjective one. These different methods for creating
unambiguous schemas are highly dependent on the perspective used to analyze the content of
instance documents. There isn't a good or a bad practice for this: working with a schema language
such as RELAX NG that supports all of these forms saves a lot of time. The language doesn't force
you to use its perspective on how to solve this problem.

Disambiguating regular expressions doesn't significantly change the structure
or the style of your schema. The changes are limited to the regular expression
itself. This statement will not be true when using ambiguous regular hedge
grammars, covered in the next section.

16.1.2.2 Ambiguous regular hedge grammars

In a RELAX NG context, I defined regular expression ambiguity as an ambiguity that resides within
the definition of an element. Ambiguous regular hedge grammars, on the other hand, are ambiguities
distributed over element definitions that play the mathematical role of "hedges" in a RELAX NG
schema. A example of an ambiguous regular hedge grammar is:

 <choice>

 <ref name="pattern1"/>

 <ref name="pattern2"/>
 </choice>
 ...

 <define name="pattern1">
 <element name="foo">
 <empty/>
 </element>
 </define>

 <define name="pattern2">
 <element name="foo">
 <empty/>
 </element>
 </define>

or, in the compact syntax:

 pattern1|pattern2
 ...

 pattern1=element foo{empty}

 pattern2=element foo{empty}

This example is ambiguous. When an empty element, foo, is found, you can't tell whether it's been
validated through pattern1 or pattern2. It's an ambiguous hedge grammar (not an ambiguous

regular expression) because the ambiguity is spread over two hedges; i.e., two definitions of the
element foo.

Just as in ambiguous regular expressions, ambiguous regular hedge grammars can be rewritten in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

unambiguous forms. The disambiguation must be done at the level of the grammar itself and may
require extensive changes to the structure of the schema.

The exercise of disambiguating regular hedge grammars can get significantly more complicated when
compositions of named patterns and grammars are involved. Maintaining nonambiguous patterns
while combining definitions by choice means that you need to exclude all the instance nodesets valid
per the original definition from the pattern given as a choice. This isn't always possible without
modifying the included schema. Consider, for instance, this pattern:

 <define name="namedPattern">
 <ref name="first"/>
 </define>

or this:

 namedPattern=first

To add an optional second pattern, it may seem natural to combine it by choice as:

 <define name="namedPattern" combine="choice">
 <ref name="first"/>
 <optional>
 <ref name="second"/>
 </optional>
 </define>

or:

 namedPattern|=first,second?

The result of the combination is equivalent to:

 <define name="namedPattern">
 <choice>
 <ref name="first"/>
 <group>
 <ref name="first"/>
 <optional>
 <ref name="second"/>
 </optional>
 </group>
 </choice>
 </define>

or:

 namedPattern=first|(first,second?)

which gives an ambiguous pattern. Of course, outside the context of a pattern combination, this
example would be trivial to rewrite as:

 <define name="namedPattern">
 <ref name="first"/>
 <optional>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ref name="second"/>
 </optional>
 </define>

or:

 namedPattern=first,second?

but in this case, you won't get to disambiguation directly by pattern combination. You need to look at
the problem from a different angle. Consider that you must leave out all features used in the
alternative unless those features are already allowed in the original. In other words, you need to
remove the case in which the first pattern isn't followed by the second one from the target of "the
first pattern followed by an optional second pattern." The alternative will thus be between the first
pattern alone and the first pattern followed by a second one:

 <define name="namedPattern" combine="choice">
 <choice>
 <ref name="first"/>
 <group>
 <ref name="first"/>
 <ref name="second"/>
 </group>
 </choice>
 </define>

or:

 namedPattern=first|(first,second)

With this target in mind, you can rewrite the combination as:

 <define name="namedPattern" combine="choice">
 <ref name="first"/>
 <ref name="second"/>
 </define>

or:

 namedPattern|=first,second

To avoid ambiguous hedge grammars, be careful when combining named patterns by choice. Without
knowing how pattern1 and pattern2 are defined, it's impossible to say whether the following are

ambiguous:

 <choice>

 <ref name="pattern1"/>

 <ref name="pattern2"/>
 </choice>

and:

 pattern1|pattern2

This difficulty requires that if you wish to create unambiguous schemas, you must study the contents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of schemas you want to include very carefully.

16.1.2.3 Name class ambiguity

Another source of ambiguity occurs when name classes overlap when used as different alternatives of
a choice. An example of such overlap is:

<choice>
 <element name="foo">
 <empty/>
 </element>
 <element>
 <anyName/>
 <empty/>
 </element>
</choice>

or:

 element foo{empty} | element * {empty}

This example is ambiguous because the name class anyName includes the name class matching the
name foo. An element foo is valid in both branches of the choice pattern.

The except name class can prevent name class ambiguity, because it lets you remove the overlap

from one of the alternatives. This pattern can easily be rewritten as an ambiguous choice pattern:

<choice>
 <element name="foo">
 <empty/>
 </element>
 <element>
 <anyName>
 <except>
 <name>foo</name>
 </except>
 </anyName>
 <empty/>
 </element>
</choice>

or:

 element foo{empty} | element * - foo {empty}

or, more simply:

<element>
 <anyName>
 <except>
 <name>foo</name>
 </except>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </anyName>
 <empty/>
 </element>

or:

 element * {empty}

Note that name class overlap isn't enough by itself to make an ambiguous pattern. For instance:

<choice>
 <element name="foo">
 <attribute name="bar">
 <empty/>
 </attribute>
 </element>
 <element>
 <anyName/>
 <empty/>
 </element>
</choice>

or:

element foo{attribute bar{empty}} | element * {empty}}

This example isn't ambiguous because the content model of the elements with the two name classes
don't overlap. This makes the bar attribute optional:

<choice>
 <element name="foo">
 <optional>
 <attribute name="bar">
 <empty/>
 </attribute>
 </optional>
 </element>
 <element>
 <anyName/>
 <empty/>
 </element>
</choice>

or:

element foo{attribute bar{empty}?} | element * {empty}}

This code is enough to make our pattern ambiguous. However, this pattern is strictly equivalent to
the preceding example, which means that you know how to rewrite it in an unambiguous way.

Finally, note that name class ambiguity may be considered as an extension of regular hedge
grammar ambiguity. If, after simplification, to create a regular hedge grammar ambiguity, you have:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element foo{empty} | element foo{empty}

the ambiguity comes from the fact that the name classes for both alternatives are the single value
foo and thus, overlap.

16.1.2.4 Ambiguous datatypes

Datatype ambiguity is the most difficult ambiguity to handle with RELAX NG. The difficulty doesn't
come from RELAX NG itself, but rather from the fact that datatype libraries aren't built-in and are
more opaque and less flexible than other patterns or name classes.

A basic example of ambiguous datatypes is:

<element name="foo">
 <choice>
 <data type="boolean"/>
 <data type="integer"/>
 </choice>
</element>

or:

 element foo{xsd:boolean|xsd:integer}

Because the lexical space of the two possible datatypes do overlap (0 and 1 are valid as both W3C
XML Schema booleans and integers), there is no way to determine what the datatype is for a foo
element with a value of 0 or 1. Fortunately, the except operator makes it possible to remove the

lexical space of one datatype from the lexical space of another datatype:

<element name="foo">
 <choice>
 <data type="boolean">
 <except>
 <data type="integer"/>
 </except>
 </data>
 <data type="integer"/>
 </choice>
</element>

or:

element foo{
 (xsd:boolean - xsd:integer)
 |xsd:integer
}

As has been the case for name classes, the except pattern is a powerful tool for disambiguating

datatype ambiguities. It's a pity that this pattern can't also be used to disambiguate regular
expression or hedge grammar ambiguities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.2 The Downsides of Ambiguous and Nondeterministic
Content Models

Again, if you're interested in using a RELAX NG schema only for validation-which, after all, is the
primary goal of RELAX NG-it is perfectly fine to design and use nondeterministic and even
ambiguous schemas. The downsides of ambiguous schemas appear when using RELAX NG schemas
for adding validation information to instance documents or using a RELAX NG schema for guided
editing. The downsides of nondeterministic schemas appear only when translating schemas into a
W3C XML Schema.

16.2.1 Instance Annotations

For the purposes of RELAX NG, instance annotation is the ability to attach information gathered
during validation to facilitate instance document processing. Instance annotation is one of the more
promising paths to automating XML document processing. Its applications cover domains from
datatype assignment (the basis of XQuery 1.0, XPath 2.0, and XSLT 2.0), to data binding
(automating the creation of objects from XML documents and the creation of XML documents from
objects), to XML guided editing.

Some tools may have more stringent requirements, depending on their algorithms (for instance, a
SAX-based streaming tool might require deterministic schemas), but in theory (and in general), it is
sufficient for the applications of instance annotations to ensure that the annotations are consistent.
Consistency can be achieved if the schema is unambiguous.

Note that even this freedom from ambiguity isn't always required. These requirements are
application-dependent. Consider a data binding application that needs to know the content model of
each element. This application might have trouble determining which content model to use if it finds a
pattern such as this and an element foo with a content pattern matching the second pattern:

 element foo {first?,second}
 |element foo {second,third?}

 first=element first{xsd:integer}
 second=element second{xsd:token}
 third=element third{xsd:boolean}

Should it bind the contents of foo to an object allowing an optional first or to an object allowing an
optional third? Such ambiguity is likely to be a problem for this application. On the other hand, if all

you need to do is perform simple type assignment, this schema is perfectly fine. Even though it is
ambiguous, there is no ambiguity as far as datatype assignment is concerned.

Being aware of ambiguity in your RELAX NG schemas is good practice. If you want to support
instance annotation applications, you must also check the tools you will be using because they can
have either more stringent or more relaxed requirements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16.2.2 Compatibility with W3C XML Schema

I promised to give an example of an unambiguous pattern that isn't deterministic and can't be
rewritten in a deterministic form. Here it is! Consider a pattern describing a book as a sequence of
odd and even pages:

 <zeroOrMore>
 <ref name="odd"/>
 <ref name="even"/>
 </zeroOrMore>
 <optional>
 <ref name="odd"/>
 </optional>

or:

 (odd, even)*, odd?

This pattern isn't ambiguous. Given any valid combinations of odd and even pages, it is possible to
know which pattern has matched each page. It can't be deterministic, however, because for each odd
page, you need to look ahead to the next one to see if it is the last before knowing if an even page is
required in next position.

The W3C XML Schema requires deterministic content models under the name of "Unique Particle
Attribution" and "Consistent Declaration" rules. These rules forbid this simple and useful content
model!

Another example of nondeterministic pattern is:

 <choice>
 <element name="foo">
 <attribute name="bar"/>
 </element>
 <element name="foo">
 <element name="bar">
 <text/>
 </element>
 </element>
 </choice>

or:

 element foo {attribute bar} | element foo {element bar {text}}

This one seems easier to translate. At least, it can be factorized and rewritten as a deterministic
pattern in RELAX NG as:

 <element name="foo">
 <choice>
 <attribute name="bar"/>
 <element name="bar">
 <text/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>
 </choice>
 </element>

or:

 element foo {attribute bar| element bar {text}}

Unfortunately, this doesn't help to translate our schema into a W3C XML Schema because W3C XML
Schema doesn't know how to handle the mixing of constraints on subelements and attributes except
by using difficult hacks with key definitions, which don't work in all cases.

Making sure your schemas are deterministic is thus a good practice when you plan to translate your
schemas into W3C XML Schemas. Unfortunately there's no guarantee that they will translate
gracefully. The only rule I can give if you want to make sure that your schemas will be easy to
translate is to check the result of translation frequently as you write your schema. Also hope that
James Clark will continue to improve the Trang conversion algorithm!

Nevertheless, W3C XML Schema deals nicely with datatype ambiguities. You can re-examine our
example of datatype ambiguity:

 element foo{xsd:boolean|xsd:integer}

and you may be surprised to know that it translates gracefully into:

 <xs:element name="foo">
 <xs:simpleType>
 <xs:union memberTypes="xs:boolean xs:integer"/>
 </xs:simpleType>
 </xs:element>

This isn't considered ambiguous because the W3C XML Schema has added a rule. When several
datatypes are grouped "by union," which is effectively what our choice between datatype does, a
processor should stop after the first type that matches and not evaluate the next alternatives.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.3 Some Ideas to Make Disambiguation Easier

To close this chapter, I'll present some ideas that should ease the challenge of disambiguating
schemas.

16.3.1 Generalizing the Except Pattern

In the different forms of ambiguity, name classes have been the easiest ones to disambiguate. Why
is this? Name classes aren't inherently simpler than regular expressions or datatypes. All these tools
are about defining sets of things that can happen in XML documents and in many ways, they are
deeply similar. The reason that name classes and datatypes have been easier to disambiguate is
because they have a first class except operator. If you had the same level of support for patterns

and datatypes, you could more easily disambiguate them.

It is possible to apply the except pattern to datatypes and write:

element foo{ (xsd:boolean - xsd:integer) |xsd:integer}

A value that is only integer will obviously match only the right alternative. A value that is exclusively
boolean (true or false) matches the left alternative. A value that is both a boolean and an integer
(0 or 1) matches the first condition of the left alternative (xsd:boolean) but doesn't match the

exception clause.

Unfortunately, this rule can't be generalized beyond the scope of data patterns. (Note that the
examples given next with the except (-) operator aren't valid RELAX NG.)

If this rule could be generalized, and applied to an ambiguous regular expression such as:

 two|(one?,two+,three*)

you could write:

 two|((one?,two+,three*)-two)

Of course, this same set of results can be created with the existing RELAX NG patterns, but a
generalized except would make that flexibility much more accessible.

16.3.2 Making Disambiguation Rules Explicit

My second proposal is far less disruptive. The idea is just the realization that these ambiguities are
ambiguous because you haven't done anything to rule them out. There are plenty of examples in
other computer languages of ambiguities that have been partially or fully ruled out: XSLT templates,
order of evaluation of statements in programming languages, or, as we've seen in the section about
W3C XML Schema, union of datatypes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is nothing preventing the creation of a specification defining a priority for the alternatives to be
used by applications interested in instance annotation at large when they encounter ambiguities.

This specification wouldn't need to apply to RELAX NG processors interested only in validation and
would not compromise their optimizations. It could apply only to RELAX NG processors performing
instance annotation. It would also guarantee a consistent and interoperable type of annotation for
schemas that are currently considered to be ambiguous.

The rule could be as simple as "use the first alternative in document order" or could also take into
account additional factors, such as giving a lesser precedence to included grammars, as XSLT does
with stylesheet imports.

16.3.3 Accepting Ambiguity

Jeni Tennison proposed a third approach on the xml-dev mailing list: instead of trying to fight against

ambiguity, why not accept it? Why couldn't we acknowledge that something can have several
datatypes (or models) and at the same time have a datatype "A" and "B"? Why couldn't a value be
an integer and a boolean simultaneously?

This idea would have a serious impact on specifications, such as XPath 2.0-that assign a single
datatype to each simple type element and attribute, but this approach would be much more
compatible with the principle that markup is only the projection of a structure over a document. It
often happens that a piece of text can have several meanings. By extension, acknowledging that
elements and attributes may belong to multiple datatypes at the same time seems like something
obvious, yet clever, to do.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part II: Reference

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 17. Element Reference
This short reference to RELAX NG elements presents each element of the XML syntax for RELAX NG
in alphabetical order. Note that the synopsis given for each element is generated from the RELAX NG
schema and doesn't capture the restrictions applied after simplification.

The simplification process and restrictions are detailed in Chapter 15. The main
restrictions for each element are also mentioned in this chapter in the
"Restrictions" section.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.1 Elements

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

anyName Name class accepting any name

element anyName
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary {xsd:anyURI}?,
 attribute * - (rng:* | local:*) { text }*
),
 ((element * - rng:* { ... }*) & element except { ... }?)
}

Class

name-class

May be included in

attribute, choice, element, except

Compact syntax equivalent

*-nameClass

Description

The anyName name class matches any name from any namespace. This wide spectrum may be
restricted by embedding except name classes.

Restrictions

Within the scope of an element, the name classes of attributes can't overlap. The same restrictions
apply to name classes of elements when these elements are combined by interleave.

Example

<element>
 <anyName/>
 <ref name="anything"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</element>

<element>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 <ref name="anything"/>
</element>

<attribute>
 <anyName/>
</attribute>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited. Note that although
datatypeLibrary is allowed in anyName to maintain coherence with other RELAX NG elements,
it has no direct effect on anyName itself and none on name class definitions in which it might be

embedded.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.
The value is inherited. Although ns is allowed in anyName, it has no direct consequence on
anyName itself. ns always allows any name from any namespace and can have a consequence

only on name class definitions embedded in this one.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

attribute Pattern matching an attribute

element attribute
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 attribute name { xsd:QName }
 | (
 (element * - rng:* { ... }*)
 & (
 element name { ... }
 | element anyName { ... }
 | element nsName { ... }
 | element choice { ... }
)
)
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)?
)
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

attribute

Description

The attribute pattern matches an attribute. The name of the attribute may be defined by using
either a name attribute or a name class.

Restrictions

After simplification, attribute patterns can contain only patterns relevant for text nodes.

Attributes can't be duplicated, either directly or by overlapping name classes.

Attributes that have an infinite name class (anyName or nsName) must be enclosed in a
oneOrMore or zeroOrMore pattern.

Example

<attribute name="id"/>

<attribute name="xml:lang">
 <data type="language"/>
 </attribute>
<attribute>
 <anyName/>
</attribute>

Attributes

datatypeLibrary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute defines the default datatype library. The value is inherited.

name

When name is specified, the attribute pattern matches attributes with this name only. This
can be a shortcut to define a single name as a name class for the attribute pattern).

name and the definition of a name class can't both be specified (they are exclusive options).

ns

This attribute defines the namespace of the attribute. Note that in the context of the
attribute pattern, the ns attribute isn't inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

choice (in the context of a
name-class)

Choice between name
classes

element choice
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element name { ... }
 | element anyName { ... }
 | element nsName { ... }
 | element choice { ... }
)+
)
}

Class

name-class

May be included in

attribute, choice, element, except

Compact syntax equivalent

nameClass|nameClass

Description

The choice name class makes a choice between several name classes: a name matches choice if,

and only if, it matches at least one of the subname classes.

Example

<element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <choice>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </choice>
 <ref name="anything"/>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited. Note that although
datatypeLibrary is allowed in choice, just as it is in other RELAX NG elements, it has no
direct effect on choice itself or on the name class definitions that might be embedded.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

choice (in the context of a pattern) choice pattern

element choice
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

pattern|pattern

Description

The choice pattern defines a choice between different patterns; it matches a node if, and only if, at

least one of its subpatterns matches this node.

Example

<element name="name">
 <choice>
 <text/>
 <group>
 <element name="first"><text/></element>
 <optional>
 <element name="middle"><text/></element>
 </optional>
 <element name="last"><text/></element>
 </group>
 </choice>
</element>
<attribute name="available">
 <choice>
 <value>true</value>
 <value>false</value>
 <value>who knows?</value>
 </choice>
 </attribute>
 <start>
 <ref name="libraryElement"/>
 <ref name="bookElement"/>
 </start>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

data data pattern

element data
{
 attribute type { xsd:NCName },
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (element param { ... }*, element except { ... }?)
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

datatypeName param exceptPattern

Description

The data pattern matches a single text node (i.e., token, or attribute value) and gives the possibility
of restricting its values. It is different from the text pattern, which matches zero or more text nodes

and doesn't give any option for restricting the values of these text nodes. The restrictions are applied
through the type attribute, which defines the datatype and the param and except child patterns.

Restrictions

The data pattern is meant for data-oriented applications and can't be used in mixed content models.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

<attribute name="see-also">
 <list>
 <data type="token"/>
 </list>
</attribute>

<attribute name="id">
 <data type="NMTOKEN">
 <param name="maxLength">16</param>
 </data>
</attribute>
<element name="isbn">
 <data type="token">
 <except>
 <value>0836217462</value>
 </except>
 </data>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.
The value is inherited.

type

This attribute specifies the datatype used to evaluate the data pattern. Any text node whose
value isn't valid according to this datatype fails to match the data pattern.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

define Named pattern definition

element define
{
 attribute name { xsd:NCName },
 (attribute combine { "choice" | "interleave" }?),
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

define-element

May be included in

div, grammar, include

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

identifier assignMethod pattern

Description

When define is embedded in a grammar, it defines a named pattern or combines a new definition
with an existing one. Named patterns are global to a grammar and can be referenced by ref in the
scope of their grammar and by parentRef in the scope of the grammars directly embedded in their
grammar.

When define is embedded in include, the new definition is a redefinition. It replaces the definitions
from the included grammar, unless a combine attribute is specified, in which case, the definitions are

combined.

Restrictions

Named patterns are always global and apply only to patterns. It isn't possible to define and make
reference to nonpatterns such as class names or datatype parameters.

Example

<define name="born-element">
 <element name="born">
 <text/>
 </element>
</define>
<define name="book-content" combine="interleave">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
</define>

<define name="isbn-element" combine="choice">
 <notAllowed/>
</define>

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

combine

This attribute specifies how multiple definitions of a named pattern should be combined. The
possible values are choice and interleave.

When the combine attribute is specified and set to choice, multiple definitions of a named
pattern are combined in a choice pattern. When the combine attribute is specified and set to
interleave, multiple definitions of a named pattern are combined in an interleave pattern.

Note that it's forbidden to specify more than one define with the same name and no combine
attribute or multiple defines with different values of the combine attribute.

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

name

This attribute specifies the name of the named pattern.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

div (in the context of a
grammar-content)

Division (in the context of
a grammar)

element div
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 (element start { ... })
 | (element define { ... })
 | element div { ... }
 | element include { ... }
)*
)
}

Class

grammar-content

May be included in

div, grammar

Compact syntax equivalent

div

Description

The div element is provided to define logical divisions in RELAX NG schemas. It has no effect on
validation. Its purpose is to define a group of definitions within a grammar that may be annotated as a

whole.

In the context of a grammar, the content of a div element is the same as the content of a grammar.
(div elements may be embedded in other div elements.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

<grammar xmlns:xhtml="http://www.w3.org/1999/xhtml" xmlns="http://relaxng.org/ns/
structure/1.0">
 ...
 <div>
 <xhtml:p>The content of the book element has been split in two named patterns:
 </xhtml:p>
 <define name="book-start">
 <attribute name="id"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 </define>
 <define name="book-end">
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 <attribute name="available"/>
 </define>
 </div>
 ...
 </grammar>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

div (in the context of a
include-content)

Division (in the context of
an include)

element div
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 (element start { ... })
 | (element define { ... })
 | element div { ... }
)*
)
}

Class

include-content

May be included in

div, include

Compact syntax equivalent

div

Description

The div element is provided to define logical divisions in RELAX NG schemas. It has no effect on the
validation. It defines a group of definitions within an include that may be annotated as a whole.

In the context of an include, the content of a div element is the same as the content of an
include. (div elements may be embedded in other div elements.)

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<include href="common.rng">
 ...
 <div>
 <xhtml:p>The content of the book element has been split in two named patterns:
 </xhtml:p>
 <define name="book-start">
 <attribute name="id"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 </define>
 <define name="book-end">
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 <attribute name="available"/>
 </define>
 </div>
 ...
 </include>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

element Pattern matching an element

element element
{
 (
 attribute name { xsd:QName }
 | (
 (element * - rng:* { ... }*)
 & (
 element name { ... }
 | element anyName { ... }
 | element nsName { ... }
 | element choice { ... }
)
)
),
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

element

Description

The element pattern matches an element. The name of the element may be defined either through a
name attribute or through a name class.

Example

<element name="born">
 <text/>
</element>
<element name="character">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
</element>
<element>
 <anyName/>
 <ref name="anything"/>
</element>

Attributes

datatypeLibrary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute defines the default datatype library. The value is inherited.

name

When name is specified, the element pattern matches only elements with this name. name is a
shortcut to define a single name as a name class for the element pattern.

name and the definition of a name class can't be specified together (they are exclusive options).

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

empty Empty content

element empty
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (element * - rng:* { ... }*)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

empty

Description

empty patterns define nodes that are empty-for example, elements that have no child elements,

text, or attributes. Note that it is mandatory to use this pattern explicitly in such cases; the simpler-
looking form <element name="foo"/> is forbidden. There is no such thing as an empty attribute. An
attribute such as foo="" is considered to have a value that is the empty string rather than considered
empty-i.e., having no value. Therefore, empty applies only to elements.

Example

<element name="pageBreak">
 <empty/>
</element>

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

except (in the context of a
except-name-class)

Remove a name class
from another

element except
{
 (
 (element * - rng:* { ... }*)
 & (
 element name { ... }
 | element anyName { ... }
 | element nsName { ... }
 | element choice { ... }
)+
)
}

Class

except-name-class

May be included in

anyName, nsName

Compact syntax equivalent

-nameClass

Description

The except name class can remove a name class from another. Note that this name class has no

attributes.

Restrictions

It's impossible to use except to produce empty name classes by including anyName in an except
name class or nsName in an except name class included in another nsName.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<element>
 <anyName>
 <except>
 <nsName ns=""/>
 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </except>
 </anyName>
 <ref name="anything"/>
</element>
<element>
 <nsName ns=ns="http://eric.van-der-vlist.com/ns/person"/>
 <except>
 <name>lib:name</name>
 <name>hr:name</name>
 <except>
 </nsName>
 <ref name="anything"/>
</element>

Attributes

None

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

except (in the context of a
pattern)

Remove a set of values
from a data

element except
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

-pattern

Description

The except pattern is used to remove a set of values from a data pattern.

Restrictions

The except pattern can be used only in the context of data and can contain only data, value, and
choice elements.

Example

<element name="isbn">
 <data type="token">
<except>
 <value>0836217462</value>
</except>
</data>
</element>
<attribute name="available">
<data type="token">
<except>
 <choice>
 <value type="string">true</value>
 <value type="string">false</value>
 </choice>
</except>
</data>
</attribute>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

externalRef Reference to an external schema

element externalRef
{
 attribute href { xsd:anyURI },
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (element * - rng:* { ... }*)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

external

Description

The externalRef pattern is a reference to an external schema. It has the same effect as replacing
the externalRef pattern with the external schema, which is treated as a pattern.

Example

<element name="book">
 <externalRef href="book.rng"/>
</element>

<element xmlns="http://relaxng.org/ns/structure/1.0" name="university">
 <element name="name">
 <text/>
 </element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <externalRef href="flat.rng"/>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

href

This attribute defines the location of the external schema.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

grammar Grammar pattern

element grammar
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 (element start { ... })
 | (element define { ... })
 | element div { ... }
 | element include { ... }
)*
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

grammar

Description

The grammar pattern encapsulates the definitions of start and named patterns. The most common
use of grammar is to validate XML documents. In these cases, the start pattern specifies which
elements can be used as the document root element. The grammar pattern may also be used to write
modular schemas. In this case, the start pattern specifies which nodes must be matched by the
grammar wherever it appears in the schema.

In every case, the named patterns defined in a grammar are considered local to this grammar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 <define name="author-element">
 ...
 </define>
</grammar>
 <define name="author-element">
 <grammar>
 <start>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <parentRef name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </start>
 <define name="name-element">
 <element name="name">
 <text/>
 </element>
 </define>
 <define name="died-element">
 <element name="died">
 <text/>
 </element>
 </define>
 </grammar>
 </define>
 <element xmlns="http://relaxng.org/ns/structure/1.0" name="university">
 <element name="name">
 <text/>
 </element>
 <grammar>
 <include href="flat.rng"/>
 </grammar>
</element>

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

group group pattern

element group
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

pattern,pattern

Description

The group pattern defines an ordered group of subpatterns. Note that when attribute patterns are
included in such a group, their order isn't enforced. group patterns are implicit with element and
define patterns.

Example

<element name="name">
 <choice>
 <text/>
 <group>
 <element name="first"><text/></element>
 <optional>
 <element name="middle"><text/></element>
 </optional>
 <element name="last"><text/></element>
 </group>
 </choice>
 </element>
<element name="foo">
 <interleave>
 <element name="out"><empty/></element>
 <group>
 <element name="in1"><empty/></element>
 <element name="in2"><empty/></element>
 </group>
 </interleave>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

include Grammar merge

element include
{
 attribute href { xsd:anyURI },
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 (element start { ... })
 | (element define { ... })
 | element div { ... }
)*
)
}

Class

grammar-content

May be included in

div, grammar

Compact syntax equivalent

include

Description

The include pattern includes a grammar and merges its definitions with the definitions of the current

grammar. The definitions of the included grammar may be redefined and overridden by the
definitions embedded in the include pattern. Note that a schema must contain an explicit grammar

definition in order to be included.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
 </start>
 <include href="included.rng"/>
 ...
</grammar>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <include href="flat.rng">
 <define name="book-element">
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <ref name="description-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 </element>
 </define>
 </include>
 <define name="description-element">
 <element name="description">
 <text/>
 </element>
 </define>
 </grammar>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

href

This attribute defines the location of the schema and specifies the grammar to be included.

ns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

interleave interleave pattern

element interleave
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

pattern&pattern

Description

The interleave pattern "interleaves" subpatterns; it allows their leaves to be mixed in any order.

interleave does more than define unordered groups, as you can see in the following example.
Consider element a and the ordered group of element b1 and b2. An unordered group of these two
patterns allows only element a followed by elements b1 and b2 or elements b1 and b2 followed by
element a. An interleave of these two patterns allows these two combinations, but also element b1
followed by a followed by b2. It allows any combination in which the element a has been interleaved
between elements b1 and b2.

The interleave behavior is applied to attribute patterns even when they are embedded in
(ordered) group patterns (the reason for this is that XML 1.0 specifies the relative order of attributes

isn't significant).

Another case in which interleave patterns are often needed is to describe mixed content models in
which text is interleaved between elements. A shortcut (the mixed pattern) has been defined for this

case.

Restrictions

The interleave pattern can't be used within a list.

Elements within a interleave pattern can't have overlapping name classes.

There can be at most one text pattern in each set of patterns combined by interleave.

Example

<element name="character">
 <interleave>
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <element name="qualification">
 <text/>
 </element>
 </interleave>
</element>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<element name="title">
 <interleave>
 <attribute name="xml:lang"/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>
 <text/>
 </interleave>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

list Text node split

element list
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

list

Description

The list pattern splits a text node into tokens separated by whitespace. The splitting allows the

validation of these tokens separately. This practice is most useful for validating lists of values.

Restrictions

interleave can't be used within list.

The content of a list is only about data: it's forbidden to define element, attribute, or text

there.

It's forbidden to embed list into list.

Example

<attribute name="see-also">
 <list>
 <zeroOrMore>
 <data type="token"/>
 </zeroOrMore>
 </list>
</attribute>
<attribute name="dimensions">
 <list>
 <data type="xs:decimal"/>
 <data type="xs:decimal"/>
 <data type="xs:decimal"/>
 <choice>
 <value>inches</value>
 <value>cm</value>
 <value>mm</value>
 </choice>
 </list>
</attribute>

Attributes

datatypeLibrary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

mixed Pattern for mixed content models

element mixed
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

mixed

Description

The mixed pattern is a shortcut for interleave with an embedded text pattern. It describes

unordered content models in which a text node may be included before and after each element. Note
that RELAX NG doesn't allow the addition of constraints on these text nodes.

Restrictions

The limitations of interleave apply here:

The mixed pattern can't be used within a list.

Elements within a mixed pattern can't have overlapping name classes.

There must no other text pattern in each set of patterns combined by mixed.

Example

<element name="title">
 <mixed>
 <attribute name="xml:lang"/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>
 </mixed>
</element>

This is equivalent to:

<element name="title">
 <interleave>
 <text/>
 <group>
 <attribute name="xml:lang"/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </group>
 </interleave>
</element>

which itself is equivalent to:

<element name="title">
 <interleave>
 <text/>
 <attribute name="xml:lang"/>
 <zeroOrMore>
 <element name="a">
 <attribute name="href"/>
 <text/>
 </element>
 </zeroOrMore>
 </interleave>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

name Name class for a single name

element name
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 xsd:QName
}

Class

name-class

May be included in

attribute, choice, element, except

Compact syntax equivalent

name

Description

The name name class defines a class with a single name.

Example

<element>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 <except>
 <name>name</name>
 <except>
 </nsName>
 <ref name="anything"/>
</element>
<element>
 <choice>
 <name>lib:name</name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <name>hr:name</name>
 </choice>
 <ref name="name-content"/>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

notAllowed Not allowed

element notAllowed
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (element * - rng:* { ... }*)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

notAllowed

Description

The notAllowed pattern always fails. It can provide abstract definitions that must be overridden

before they can be used in a schema.

Example

<define name="isbn-element" combine="choice">
 <notAllowed/>
</define>

Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

nsName Name class for any name in a namespace

element nsName
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 ((element * - rng:* { ... }*) & element except { ... }?)
}

Class

name-class

May be included in

attribute, choice, element, except

Compact syntax equivalent

nsName exceptNameClass

Description

The nsName name class allows any name in a specific namespace.

Restrictions

Within the scope of an element, the name classes of attributes can't overlap. The same restriction
applies to name classes of elements when these elements are combined by interleave. It is
impossible to use nsName to produce empty name classes by including nsName in an except name
class included in another nsName.

Example

<element>
 <choice>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <nsName ns="http://eric.van-der-vlist.com/ns/library"/>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 </choice>
 <ref name="anything"/>
</element>
<element>
 <nsName ns="http://eric.van-der-vlist.com/ns/person"/>
 <except>
 <name>name</name>
 <except>
 </nsName>
 <ref name="anything"/>
</element>

Attributes

datatypeLibrary

The datatypeLibrary attribute defines the default datatype library. The value of
datatypeLibrary is inherited.

ns

The ns attribute defines the default namespace for the elements defined in a portion of a
schema. The value of ns is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

oneOrMore oneOrMore pattern

element oneOrMore
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

pattern+

Description

The oneOrMore pattern specifies that its subpatterns considered as an ordered group must be

matched one or more times.

Restrictions

The oneOrMore pattern can't contain attribute definitions.

Example

<element name="library">
 <oneOrMore>
 <element name="book">
 ...
 </element>
 </oneOrMore>
</element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

optional optional pattern

element optional
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

pattern?

Description

The optional pattern specifies that its subpatterns considered as an ordered group is optional, i.e.,

be matched zero or one times.

Example

<element name="author">
 <attribute name="id"/>
 <element name="name">
 <text/>
 </element>
 <element name="born">
 <text/>
 </element>
 <optional>
 <element name="died">
 <text/>
 </element>
 </optional>
 </element>

<element name="name">
 <choice>
 <text/>
 <group>
 <element name="first"><text/></element>
 <optional>
 <element name="middle"><text/></element>
 </optional>
 <element name="last"><text/></element>
 </group>
 </choice>
 </element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

param Datatype parameter

element param
{
 attribute name { xsd:NCName },
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 text
}

Class

parameter

May be included in

data

Compact syntax equivalent

param

Description

The param element specifies parameters passed to the datatype library to determine whether a value

is valid per a datatype. When the datatype library is the W3C XML Schema datatype, these
parameters are the facets of the datatype and define additional restrictions to be applied. The name
of the parameter is defined by the name attribute, and its value is the content of the param element.

Example

<element name="book">
 <attribute name="id">
 <data type="NMTOKEN">
 <param name="maxLength">16</param>
 </data>
 </attribute>
 <attribute name="available">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <data type="boolean"/>
 </attribute>
 <element name="isbn">
 <data type="NMTOKEN">
 <param name="pattern">[0-9]{9}[0-9x]</param>
 </data>
 </element>
 <element name="title">
 <attribute name="xml:lang">
 <data type="language">
 <param name="length">2</param>
 </data>
 </attribute>
 <data type="token">
 <param name="maxLength">255</param>
 </data>
 </element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

name

This attribute specifies the name of the parameter.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

parentRef
Reference to a named pattern from the parent

grammar

element parentRef
{
 attribute name { xsd:NCName },
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (element * - rng:* { ... }*)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

parent

Description

The parentRef pattern is a reference to a named pattern belonging to the parent grammar-in other
words, the grammar in which the current grammar is included. The scope of a named pattern is usually
limited to the grammar in which they are defined. The parentRef pattern provides a way to extend
this scope and refer to a named pattern defined in the parent grammar.

Example

<define name="born-element">
 <element name="born">
 <text/>
 </element>
</define>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<define name="author-element">
 <grammar>
 <start>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <parentRef name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </start>
 <define name="name-element">
 <element name="name">
 <text/>
 </element>
 </define>
 <define name="died-element">
 <element name="died">
 <text/>
 </element>
 </define>
 </grammar>
</define>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

name

This attribute specifies the name of the named pattern that is referenced.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

ref Reference to a named pattern

element ref
{
 attribute name { xsd:NCName },
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (element * - rng:* { ... }*)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

Name without a colon

Description

The ref pattern defines a reference to a named pattern defined in the current grammar.

Example

<element name="book">
 <ref name="book-start"/>
 <ref name="book-end"/>
</element>

 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

name

This attribute specifies the name of the named pattern that is referenced.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

start Start of a grammar

element start
{
 (attribute combine { "choice" | "interleave" }?),
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)
)
}

Class

start-element

May be included in

div, grammar, include

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

start

Description

The start pattern defines the "start" of a grammar. When this grammar is used to validate a
complete document, the start pattern specifies which elements can be used as the document (root)
element. When this grammar is embedded in another grammar, the start pattern specifies which
pattern should be applied at the location where the grammar is embedded. Like named pattern
definitions, start patterns may be combined by choice or interleave and redefined when they are
included in include patterns.

Example

<start>
 <element name="library">
 <oneOrMore>
 <ref name="book-element"/>
 </oneOrMore>
 </element>
</start>
<start combine="choice">
 <ref name="book-element"/>
</start>
<define name="author-element">
 <grammar>
 <start>
 <element name="author">
 <attribute name="id"/>
 <ref name="name-element"/>
 <ref name="born-element"/>
 <optional>
 <ref name="died-element"/>
 </optional>
 </element>
 </start>
 <define name="name-element">
 <element name="name">
 <text/>
 </element>
 </define>
 <define name="born-element">
 <element name="born">
 <text/>
 </element>
 </define>
 <define name="died-element">
 <element name="died">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <text/>
 </element>
 </define>
 </grammar>
</define>

Attributes

combine

This attribute specifies how multiple definitions of start pattern should be combined. The
possible values are choice and interleave.

When the combine attribute is specified and set to choice, multiple definitions of a start
pattern are combined in a choice pattern. When the combine attribute is specified and set to
interleave, multiple definitions of a start pattern are combined in an interleave pattern.

Note that it is forbidden to specify more than one start with the same name and no combine
attribute or multiple start with different values of combine attribute.

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

text Pattern-matching text nodes

element text
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (element * - rng:* { ... }*)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

text

Description

The text pattern matches zero or more text nodes. A match of more than one text node has no

effect when it is used in ordered content models (the data model used by RELAX NG for XML
documents is similar to the data model of XPath 1.0, and two text nodes can't be adjacent) but
makes a difference when a text pattern is used in interleave. Adding a single text pattern in an
interleave pattern has the effect of allowing any number of text nodes, which can interleave before
and after each element (note that the mixed pattern is provided as a shortcut to define these content

models).

Restrictions

No more than one text pattern can be included in an interleave pattern.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<element name="first"><text/></element>
 <element name="name">
 <choice>
 <text/>
 <group>
 <element name="first"><text/></element>
 <optional>
 <element name="middle"><text/></element>
 </optional>
 <element name="last"><text/></element>
 </group>
 </choice>
 </element>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

value Match a text node and a value

element value
{
 attribute type { xsd:NCName }?,
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 text
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

Compact syntax equivalent

datatypeName literal

Description

The value pattern matches a text node against a value using the semantic of a specified datatype to

perform the comparison.

Restrictions

The value pattern is meant for data-oriented applications and can't be used in mixed-content

models.

Example

<attribute name="see-also">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <list>
 <oneOrMore>
 <choice>
 <value>0836217462</value>
 <value>0345442695</value>
 <value>0449220230</value>
 <value>0449214044</value>
 <value>0061075647</value>
 </choice>
 </oneOrMore>
 </list>
</attribute>
<attribute name="available">
 <data type="boolean">
 <except>
 <value>0</value>
 <value>1</value>
 </except>
 </data>
</attribute>
<attribute name="available">
 <data type="boolean">
 <except>
 <value type="boolean">false</value>
 </except>
 </data>
</attribute>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of a schema.
The value is inherited.

type

This attribute specifies which datatype to use to perform the comparison. Note that this isn't an
inherited attribute. When it isn't specified, the comparison is done using the default datatype,
the token datatype of RELAX NG's built-in type library. Because of this, a string comparison is

done on the values after space normalization.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

zeroOrMore zeroOrMore pattern

element zeroOrMore
{
 (
 attribute ns { text }?,
 attribute datatypeLibrary { xsd:anyURI }?,
 attribute * - (rng:* | local:*) { text }*
),
 (
 (element * - rng:* { ... }*)
 & (
 element element { ... }
 | element attribute { ... }
 | element group { ... }
 | element interleave { ... }
 | element choice { ... }
 | element optional { ... }
 | element zeroOrMore { ... }
 | element oneOrMore { ... }
 | element list { ... }
 | element mixed { ... }
 | element ref { ... }
 | element parentRef { ... }
 | element empty { ... }
 | element text { ... }
 | element value { ... }
 | element data { ... }
 | element notAllowed { ... }
 | element externalRef { ... }
 | element grammar { ... }
)+
)
}

Class

pattern

May be included in

attribute, choice, define, element, except, group, interleave, list, mixed, oneOrMore,
optional, start, zeroOrMore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compact syntax equivalent

pattern*

Description

The zeroOrMore pattern specifies that its subpatterns are considered an ordered group that must be

matched zero or more times.

Restrictions

The zeroOrMore pattern can't contain attribute definitions.

Example

<define name="book-element">
 <element name="book">
 <attribute name="id"/>
 <attribute name="available"/>
 <ref name="isbn-element"/>
 <ref name="title-element"/>
 <zeroOrMore>
 <ref name="author-element"/>
 </zeroOrMore>
 <zeroOrMore>
 <ref name="character-element"/>
 </zeroOrMore>
 </element>
</define>

Attributes

datatypeLibrary

This attribute defines the default datatype library. The value is inherited.

ns

This attribute defines the default namespace for the elements defined in a portion of schema.
The value is inherited.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 18. Compact Syntax Reference
This reference follows the formal description of the compact syntax described as an EBNF (Extended
Backus-Naur Form, a syntax that doesn't include annotation syntax) grammar. Each definition of the
EBNF grammar is documented. When a definition includes a long list of alternatives (as is the case for
pattern, nameClass, and literalSegment), each alternative is documented separately. The

grammar from the specification has been slightly simplified to suppress definitions that were used
only once; nevertheless, the meaning has been kept unchanged.

Here is the full EBNF grammar that's used as the basis for this reference:

topLevel ::=

decl* (

pattern|

grammarContent*)
decl ::= "namespace"

identifierOrKeyword "="

namespaceURILiteral
 |"default" "namespace" [

identifierOrKeyword] "="

namespaceURILiteral
 |"datatypes"

identifierOrKeyword "="

literal
pattern ::= "element"

nameClass "{"

pattern "}"
 |"attribute"

nameClass "{"

pattern "}"
 |

pattern (","

pattern)+
 |

pattern ("&"

pattern)+
 |

pattern ("|"

pattern)+
 |

pattern "?"
 |

pattern "*"
 |

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pattern "+"
 |"list" "{"

pattern "}"
 |"mixed" "{"

pattern "}"
 |

identifier
 |"parent"

identifier
 |"empty"
 |"text"
 |[

datatypeName]

literal
 |

datatypeName ["{"

param* "}"] [

exceptPattern]
 |"notAllowed"
 |"external"

literal [

inherit]
 |"grammar" "{"

grammarContent* "}"
 |"("

pattern ")"
param ::=

identifierOrKeyword "="

literal
exceptPattern ::= "-"

pattern
grammarContent ::=

start
 |

define
 |"div" "{"

grammarContent* "}"
 |"include"

literal [

inherit] ["{"

includeContent* "}"]
includeContent ::=

define
 |

start
 |"div" "{"

includeContent* "}"
start ::= "start"

assignMethod

pattern

http://lib.ommolketab.ir
http://lib.ommolketab.ir

define ::=

identifier

assignMethod

pattern
assignMethod ::= "="
 |"|="
 |"&="
nameClass ::=

name
 |

NCName ":*" [

exceptNameClass]
 |"*" [

exceptNameClass]
 |

nameClass "|"

nameClass
 |"("

nameClass ")"
name ::=

identifierOrKeyword
 |

CName
exceptNameClass ::= "-"

nameClass
datatypeName ::=

CName
 |"string"
 |"token"
namespaceURILiteral ::=

literal
 |"inherit"
inherit ::= "inherit" "="

identifierOrKeyword
identifierOrKeyword ::=

identifier
 |

keyword
identifier ::= (

NCName -

keyword)
 |

quotedIdentifier
quotedIdentifier ::= "\"

NCName
CName ::=

NCName ":"

NCName
literal ::=

literalSegment ("~"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

literalSegment)+
literalSegment ::= """ (

Char - ("""

newline))* """
 |"'" (

Char - ("'"

newline))* "'"
 |""""" (["""] ["""] (

Char - """))* """""
 |"'''" (["'"] ["'"] (

Char - "'"))* "'''"
keyword ::= "attribute"
 |"default"
 |"datatypes"
 |"div"
 |"element"
 |"empty"
 |"external"
 |"grammar"
 |"include"
 |"inherit"
 |"list"
 |"mixed"
 |"namespace"
 |"notAllowed"
 |"parent"
 |"start"
 |"string"
 |"text"
 |"token"

Note that EBNF doesn't capture the restrictions applied after simplification. The simplification process
and restrictions are described in detail in Chapter 15. The main restrictions are also mentioned for
each element in the "Restrictions" section.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

18.1 EBNF Production Reference

This reference lists the EBNF productions alphabetically and describes them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

"""...""" Literal segment enclosed in three double quotes

""""" (["""] ["""] (

Char - """))* """""

Restrictions

literalSegment

May be included in

datatypeName literal, datatypes, external, include

XML syntax equivalent

None

Description

The """...""" production describes literal segments enclosed in three double quotes. These segments

can include any characters except a sequence of three double quotes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

"..." Literal segment enclosed in double quotes

""" (Char - ("""

newline))* """

Class

literalSegment

May be included in

datatypeName literal, datatypes, external, include

XML syntax equivalent

None

Description

The "..." production describes literal segments enclosed in double quotes. These segments can

include any character except newlines and double quotes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

'''...''' Literal segment enclosed in three single quotes

"'''" (["'"] ["'"] (

Char - "'"))* "'''"

Restrictions

literalSegment

May be included in

datatypeName literal, datatypes, external, include

XML syntax equivalent

None

Description

The '''...''' production describes literal segments enclosed in three single quotes. These segments

can include any character except sequences of three single quotes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

'...' Literal segment enclosed in single quotes

"'" (Char - ("'"

newline))* "'"

Restrictions

literalSegment

May be included in

datatypeName literal, datatypes, external, include

XML syntax equivalent

None

Description

The '...' production describes literal segments enclosed in single quotes. These segments can include

any character except newlines and single quotes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

(nameClass) Container

"(" nameClass ")"

Restrictions

nameClass

May be included in

(nameClass), *-nameClass, attribute, element, nameClass|nameClass, nsName exceptNameClass

XML syntax equivalent

None

Description

The (nameClass) container is useful for grouping together name classes that have been combined
using | (choice). This container is a name class and may be combined with other name classes.

Even when such a container isn't required, it is often used to improve the readability of a schema.

Example

element hr:* - (hr:author | hr:name | hr:born | hr:died) { anything }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

(pattern) Container

"(" pattern ")"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

None

Description

The (pattern) container is useful when grouping together patterns combined using , (ordered
group), | (choice), or & (interleave). This container is treated itself as a pattern and may be

combined with other patterns or quantified using qualifiers.

The operator (, | &) used within the (pattern) container defines how the subpatterns are combined,

and different operators can't be mixed at the same level.

Even when such a container isn't required, it is often used to improve the readability of a schema.

Example

 element name {
 text|(
 element first{text},
 element middle{text}?,
 element last{text}
)}

element foo {
 element out {empty} &
 (
 element in1 {empty},

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element in2 {empty}
)
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

*-nameClass Name class accepting any name

"*" [exceptNameClass]

Restrictions

nameClass

May be included in

(nameClass), *-nameClass, attribute, element, nameClass|nameClass, nsName exceptNameClass

XML syntax equivalent

anyName

Description

The anyName name class matches any name from any namespace. This wide spectrum may be
restricted by embedding except name classes.

The set of these names can be restricted using the optional exceptNameClass production.

Restrictions

Within the scope of an element, the name classes of attributes can't overlap. The same restriction
applies to name classes of elements when these elements are combined by interleave.

Example

foreign-elements = element * - (local:* | lib:* | hr:*) { anything }*

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

-nameClass Remove a name class from another

exceptNameClass ::= "-"

nameClass

May be included in

*-nameClass, nsName exceptNameClass

XML syntax equivalent

except

Description

The except name class is used to remove one name class from another.

Restrictions

It's impossible to use -nameClass to produce empty name classes by including anyName in an except
name class, or nsName in an except name class included in another nsName.

Example

element hr:* - (hr:author | hr:name | hr:born | hr:died) { anything }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

-pattern Remove a set of values from a data pattern

exceptPattern ::= "-"

pattern

May be included in

datatypeName param exceptPattern

XML syntax equivalent

except

Description

The except pattern removes a set of values from a datatypeName param exceptPattern pattern.

Restrictions

The -pattern pattern can be used only in the context of data and can contain only data, value, and
choice elements.

Example

attribute available {xs:boolean - (xs:boolean "false")}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

CName Colonized names

CName ::=

NCName ":"

NCName

May be included in

(nameClass), attribute, datatypeName literal, datatypeName param exceptPattern, element,
nameClass|nameClass

XML syntax equivalent

None

Description

The CName production describes colonized names (names containing a colon) as two noncolonized

names separated by a colon.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

QuotedIdentifier Quoted identifier

quotedIdentifier ::= "\"

NCName

May be included in

(pattern), attribute, datatypes, default namespace, element, list, mixed, namespace,
parent, pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

None

Description

The QuotedIdentifier production describes quoted identifiers, which are noncolonized names

preceded by a backslash. This is needed to allow names that are the same as the keywords of the
compact syntax.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Top level Top level

topLevel ::=

decl* (

pattern|

grammarContent*)

XML syntax equivalent

None

Description

Start symbol for the RELAX NG compact syntax EBNF. The topLevel production describes the top-

level structure of a RELAX NG compact syntax document composed of an optional declaration section
and of the actual schema composed of either a single pattern or a more complete grammarContent.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

assignMethod
Defines how to assign content to start and

named patterns

assignMethod ::= "="
 |"|="
 |"&="

May be included in

div, grammar, include

XML syntax equivalent

None

Description

The assignMethod describes how the content of start and named patterns are affected by a new
definition. assignMethod may take the values: = (definition), &= (combination by interleave), or |=

(combination by choice).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

attribute Pattern matching an attribute

"attribute"

nameClass "{"

pattern "}"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

attribute

Description

The attribute pattern matches an attribute. The name of the attribute is defined using a
nameClass, which may be either a single name or a name class. Note that, unlike the XML syntax,
the content of an attribute doesn't default to text and must always be explicitly defined.

Restrictions

After simplification, attribute patterns can contain only patterns relevant for text nodes.

Attributes can't be duplicated, either directly or by overlapping name classes.

Attributes that have an infinite name class (anyName or nsName) must be enclosed in a
oneOrMore pattern (or zeroOrMore before simplification).

Example

attribute available { text }
attribute xml:lang { xsd:language }
attribute * - (local:* | lib:* | hr:*) { text }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

datatypeName Datatype name

datatypeName ::=

CName
 |"string"
 |"token"

May be included in

datatypeName literal, datatypeName param exceptPattern

XML syntax equivalent

None

Description

The datatypeName production defines a valid datatype name. CName (for colonized names) must be

used for any datatype library except for the built-in type library, which has only two datatypes
(string and token).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

datatypeName literal Matches a text node and a value

[datatypeName]

literal

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

value

Description

The datatypeName literal pattern matches a text node against a value using the semantic of a

specified datatype to perform the comparison.

When datatypeName is omitted, the default datatype (which is the token datatype from the RELAX
NG built in library) is used.

Restrictions

The datatypeName literal pattern is meant for data-oriented applications and can't be used in

mixed-content models.

Example

"0"

xs:integer "0"
xs:boolean "false"
attribute available {xs:boolean "true"}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

datatypeName param exceptPattern data pattern

datatypeName ["{"

param* "}"] [

exceptPattern]

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

data

Description

The datatypeName param exceptPattern pattern matches a single text node and allows the
possibility of restricting its values. It is different from the text pattern, which matches zero or more

text nodes and doesn't allow the possibility of restricting the values of these text nodes.

In this construction, the restrictions are applied using datatypeName. It defines the datatype, the
optional param that defines additional parameters passed to the datatype library (when the datatype

library is W3C XML Schema datatypes, these parameters are the W3C XML Schema facets), and the
optional exceptPattern. exceptPattern defines exceptions, a set of excluded values.

Restrictions

The datatypeName param exceptPattern pattern is meant for data-oriented applications and can't

be used in mixed-content models.

Example

attribute available {xs:boolean - (xs:boolean "false")}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element born {xs:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

datatypes
Namespace declaration (to identify datatype

libraries)

"datatypes"

identifierOrKeyword "="

literal

Restrictions

decl

XML syntax equivalent

xmlns:name

Description

The datatypes declaration assigns a prefix to a datatype library for the compact syntax, like
xmlns:xxx attributes in XML. Note that unlike XML namespace declarations, declarations for the
RELAX NG compact syntax in general (and datatypes declarations in particular) are global to a
schema and can't be redefined. The prefix xsd is predefined and bound to

http://www.w3.org/2001/XMLSchema-datatypes.

Example

datatypes xs = "http://www.w3.org/2001/XMLSchema-datatypes"

[Team LiB]

http://www.w3.org/2001/XMLSchema-datatypes
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

decl Declarations

decl ::= "namespace"

identifierOrKeyword "="

namespaceURILiteral
 |"default" "namespace" [

identifierOrKeyword] "="

namespaceURILiteral
 |"datatypes"

identifierOrKeyword "="

literal

XML syntax equivalent

None

Description

decl contains the declarations section of a RELAX NG compact syntax schema. These declarations

are global and common to the whole schema and include the namespace and datatype libraries
declarations.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

default namespace Default namespace declaration

"default" "namespace" [

identifierOrKeyword] "="

namespaceURILiteral

Restrictions

decl

XML syntax equivalent

xmlns

Description

The default namespace declaration defines the default namespace for the compact syntax-like
xmlns attributes in XML. An optional prefix may be assigned to the default namespace and can then

be explicitly referenced. Unlike XML default namespace declarations, declarations for the RELAX NG
compact syntax in general (and default namespace declarations in particular) are global to a

schema and can't be redefined. A prefix can be assigned to no namespace at all using the value "".

Example

default namespace = "http://eric.van-der-vlist.com/ns/library"
default namespace local = ""

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

div Division (in the context of a grammar)

"div" "{"

grammarContent* "}"

Restrictions

grammarContent

May be included in

div, grammar

XML syntax equivalent

div

Description

The div element is provided to define logical divisions in RELAX NG schemas. It has no effect on the
validation. Its purpose is to define a group of definitions within a grammar that may be annotated as a

whole.

In the context of a grammar, the content of a div element is the same as the content of a grammar
(div elements may be embedded in other div elements).

Example

[
 xhtml:p [
 "The content of the book element has been split into two named patterns:"
]
]
div {
 book-start =
 attribute id { text },
 isbn-element,
 title-element,
 author-element*
 book-end =
 author-element*,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 character-element*,
 attribute available { text }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

element Pattern matching an element

"element" nameClass "{"

pattern "}"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

element

Description

The element pattern matches an element. The name of the element is defined by a nameClass,

which may be either a single name or name class.

Example

element isbn { text }
element hr:born { text }
element title { attribute xml:lang { text }, text }
element * - (local:* | lib:* | hr:*) { anything }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

empty Empty content

"empty"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

empty

Description

The empty pattern is used to define empty pattern nodesets-for example elements without child
elements, text, or attributes. Note that it is mandatory to use this pattern in such cases (element
foo{ } isn't forbidden) and that there is no such thing as an empty attribute (an attribute such as
foo="" is considered to have a value of the empty string rather than being empty-having no value).

Example

element foo {
 element out {empty} &
 (
 element in1 {empty},
 element in2 {empty}
)
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

external Reference to an external schema

"external"

literal [

inherit]

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

externalRef

Description

The external pattern is a reference to an external schema. This has the same effect as replacing the
external pattern by the external schema considered as a pattern.

Example

element university { element name { text }, external "flat.rnc" }
element book { external "book.rnc" }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

grammar Grammar pattern

"grammar" "{"

grammarContent* "}"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

grammar

Description

The grammar pattern encapsulates the definitions of start and named patterns.

The most common use of grammar is to validate XML documents. In this case, the start pattern
specifies which elements can be used as the document root element. The grammar pattern may also
be used to write modular schemas. Here, the start pattern specifies which nodes must be matched
by the grammar at the location in which it appears in the schema.

In every case, the named patterns defined in a grammar are considered to be local to this grammar.

Note that the top-level grammar is implicit for the compact syntax.

Example

grammar {
 author-element= element author {
 attribute id {text},
 name-element,
 born-element,
 died-element?
 }
 book-element = element book {
 attribute id {text},

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 attribute available {text},
 isbn-element,
 title-element,
 author-element *,
 character-element*
 }
 born-element = element born {text}
 character-element = element character {
 attribute id {text},
 name-element,
 born-element,
 qualification-element
 }
 died-element = element died {text}
 isbn-element = element isbn {text}
 name-element = element name {text}
 qualification-element = element qualification {text}
 title-element = element title {attribute xml:lang {text}, text}
 start = element library {
 book-element +
 }
}

author-element =
 grammar
 {
 start =
 element author
 {
 attribute id { text },
 name-element,
 born-element,
 died-element?
 }
 name-element = element name { text }
 born-element = element born { text }
 died-element = element died { text }
 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

grammarContent Content of a grammar

grammarContent ::=

start
 |

define
 |"div" "{"

grammarContent* "}"
 |"include"

literal [

inherit] ["{"

includeContent* "}"]

Class

pattern

May be included in

div, grammar

XML syntax equivalent

None

Description

The grammarContent production defines the content of a grammar.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

identifier Identifier

identifier ::= (

NCName -

keyword)
 |

quotedIdentifier

May be included in

(pattern), attribute, datatypeName param exceptPattern, datatypes, default namespace,
div, element, external, grammar, include, list, mixed, namespace, parent, pattern&pattern,
pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

None

Description

The identifier production describes valid identifiers for the compact syntax, either quoted

identifiers or noncolonized names that aren't keywords.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

identifier assignMethod pattern Named pattern definition

define ::=

identifier

assignMethod

pattern

Restrictions

pattern

May be included in

div, grammar, include

XML syntax equivalent

define

Description

When identifier assignMethod pattern is embedded in a grammar, it defines a named pattern or
combines a new definition with an existing one. Named patterns are global to a grammar and can be
referenced by ref in the scope of their grammar and by parentRef in the scope of the grammars
directly embedded in their grammar.

When identifier assignMethod pattern is embedded in include, the new definition is a
redefinition. It replaces the definitions from the included grammar unless a combine attribute is

specified. If one is, the definitions are combined.

The combination is defined using the assignMethod, which may take the values: = (definition), &=
(combination by interleave), or |= (combination by choice).

Restrictions

Named patterns are always global and apply only to patterns. It isn't possible to define or make
reference to nonpatterns such as class names or datatype parameters.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

date-element = element born { xsd:data }

date-element |= element died { xsd:date }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

identifierOrKeyword Identifier or keyword

identifierOrKeyword ::=

identifier
 |

keyword

May be included in

(nameClass), attribute, datatypeName param exceptPattern, datatypes, default namespace,
element, external, include, nameClass|nameClass, namespace

XML syntax equivalent

None

Description

The identifierOrKeyword production is either a valid identifier or a keyword.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

include Grammar merge

"include" literal [

inherit] ["{"

includeContent* "}"]

Restrictions

grammarContent

May be included in

div, grammar

XML syntax equivalent

include

Description

The include pattern includes a grammar and merges its definitions with the definitions of the current

grammar. The definitions of the included grammar may be redefined and overridden by the
definitions embedded in the include pattern. Note that a schema must contain an explicit grammar

definition in order to be included.

The optional inherit production specifies which namespaces are inherited from the included schema.
includeContent allows you to redefine definitions from the included schema.

Example

include "included.rnc"
include "flat.rnc" { start = book-element }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

includeContent Content of an include pattern

includeContent ::=

define
 |

start
 |"div" "{"

includeContent* "}"

May be included in

include

XML syntax equivalent

None

Description

The includeContent production defines the content of an include. The only difference with
grammarContent is that includeContent doesn't allow an embedded include.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

inherit Namespace inheritance

inherit ::= "inherit" "="

identifierOrKeyword

May be included in

external, include

XML syntax equivalent

None

Description

The inherit production is used in external and include statements. It specifies the prefixes of the

namespaces that are inherited by the included file.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

keyword Keywords

keyword ::= "attribute"
 |"default"
 |"datatypes"
 |"div"
 |"element"
 |"empty"
 |"external"
 |"grammar"
 |"include"
 |"inherit"
 |"list"
 |"mixed"
 |"namespace"
 |"notAllowed"
 |"parent"
 |"start"
 |"string"
 |"text"
 |"token"

May be included in

(pattern), attribute, datatypeName param exceptPattern, datatypes, default namespace,
element, external, include, list, mixed, namespace, parent, pattern&pattern, pattern*,
pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

None

Description

The keyword production gives the list of keywords for the RELAX NG compact syntax. Note that these

keywords are reserved only when there is a risk of confusion. They can be used, for instance, as
element or attribute names without being quoted. When they are reserved, they can still be used as
identifiers, but they need to be quoted.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

list Text node split

"list" "{"

pattern "}"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

list

Description

The list pattern splits a text node into tokens separated by whitespace to allow the validation of

these tokens separately. This item is most useful for validating lists of values.

Restrictions

interleave can't be used within list.

The content of a list is only about data: it's forbidden to define element, attribute or, text

there.

It's forbidden to embed list into list.

Example

attribute see-also {list {token*}}

attribute dimensions {list {xsd:decimal, xsd:decimal, xsd:decimal,
 ("inches"|"cm"|"mm")}}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

literal Literal

literal ::=

literalSegment ("~"

literalSegment)+

May be included in

datatypeName literal, datatypeName param exceptPattern, datatypes, default namespace,
external, include, namespace

XML syntax equivalent

None

Description

The literal production describes literals as several segments of literals contained by the tilde (~)

symbol.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

literalSegment Literal segment

literalSegment ::= """ (

Char - ("""

newline))* """
 |"'" (

Char - ("'"

newline))* "'"
 |""""" (["""] ["""] (

Char - """))* """""
 |"'''" (["'"] ["'"] (

Char - "'"))* "'''"

May be included in

datatypeName literal, datatypeName param exceptPattern, datatypes, default namespace,
external, include, namespace

XML syntax equivalent

None

Description

The literalSegment production describes literal segments as strings enclosed either in single or

double quotes or enclosed in three single or three double quotes using a Python-like syntax.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

mixed Pattern for mixed content models

"mixed" "{"

pattern "}"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

mixed

Description

The mixed pattern is a shortcut for interleave with an embedded text pattern. It describes

unordered content models in which a text node may be included before and after each element. Note
that RELAX NG doesn't allow adding constraints to these text nodes.

Restrictions

The limitations of interleave apply here:

The mixed pattern can't be used within a list.

Elements within a mixed pattern can't have overlapping name classes.

There must no other text pattern in each set of patterns combined by mixed.

Example

element title {
 mixed {
 attribute xml:lang {text}&

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element a {attribute href {text}, text} *
 }
}
is equivalent to:
element title {
 (text & (
 attribute xml:lang {text}&
 element a {attribute href {text}, text} *
)
}
which itself is equivalent to:
element title {
 text &
 attribute xml:lang {text}&
 element a {attribute href {text}, text} *
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

name
Define a set of names that must be matched by an

element or attribute

name ::=

identifierOrKeyword
 |

CName

May be included in

(nameClass), *-nameClass, attribute, element, nameClass|nameClass, nsName exceptNameClass

XML syntax equivalent

None

Description

The name name class defines sets of names that are singletons: they match only one name. There is

no restriction other than those of XML 1.0 and namespaces in XML 1.0 on such names. They can be
either CName or identifierOrKeyword (in particular, even keywords can be used as names).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

nameClass
Define a set of names that must be matched by

an element or attribute

nameClass ::=

name
 |

NCName ":*" [

exceptNameClass]
 |"*" [

exceptNameClass]
 |

nameClass "|"

nameClass
 |"("

nameClass ")"

May be included in

(nameClass), *-nameClass, attribute, element, nameClass|nameClass, nsName exceptNameClass

XML syntax equivalent

None

Description

The nameClass production defines sets of names that must be matched by elements and attributes.
Its simplest expression is to define a single name, but specific wildcards can also be expressed as
nameClass.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

nameClass|nameClass Choice between name classes

nameClass "|"

nameClass

Restrictions

nameClass

May be included in

(nameClass), *-nameClass, attribute, element, nameClass|nameClass, nsName exceptNameClass

XML syntax equivalent

choice

Description

The nameClass|nameClass production performs a choice between two name classes. A name
matches nameClass|nameClass if, and only if, it matches at least one of the two alternatives.

Example

element lib:* | hr:* { anything }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

namespace Namespace declaration

"namespace"

identifierOrKeyword "="

namespaceURILiteral

Restrictions

decl

May be included in

XML syntax equivalent

xmlns

Description

The namespace declaration defines namespace prefixes for the compact syntax, like xmlns:xxx

attributes in XML. Note that unlike XML namespace declarations, declarations for the RELAX NG
compact syntax in general (and namespace declarations in particular) are global to a schema and
can't be redefined. A prefix can be assigned to the lack of namespace using the value "". The xml

prefix is predefined.

Example

namespace hr = "http://eric.van-der-vlist.com/ns/person"
namespace local = ""

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

namespaceURILiteral Namespace URI Literal

namespaceURILiteral ::=

literal
 |"inherit"

May be included in

default namespace, namespace

XML syntax equivalent

None

Description

The namespaceURILiteral production specifies a namespace URI. It can be either a literal or the
value inherit to specify that the namespace URI is inherited from the including file.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

notAllowed Not allowed

"notAllowed"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

notAllowed

Description

The notAllowed pattern always fails. It can provide abstract definitions that must be overridden

before they can be used in a schema.

Example

 isbn-element |= notAllowed

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

nsName
exceptNameClass

Name class for any name in a
namespace

NCName ":*" [

exceptNameClass]

Restrictions

nameClass

May be included in

(nameClass), *-nameClass, attribute, element, nameClass|nameClass, nsName exceptNameClass

XML syntax equivalent

nsName

Description

The nsName exceptNameClass name class allows any name in a specific namespace.

The namespace is defined by the nsName production, and the set of these names can be restricted
using the exceptNameClass production.

Restrictions

Within the scope of an element, the name classes of attributes can't overlap. The same restriction
applies to name classes of elements when these elements are combined by interleave. It's
impossible to use nsName exceptNameClass to produce empty name classes by including nsName
exceptNameClass in an except name class that's included in another nsName.

Example

element lib:* { anything }

element hr:* - (hr:author | hr:name | hr:born | hr:died) { anything }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

param Datatype parameter

param ::=

identifierOrKeyword "="

literal

Restrictions

parameter

May be included in

datatypeName param exceptPattern.

XML syntax equivalent

param

Description

The param production defines parameters passed to the datatype library to determine whether a

value is valid per a datatype. When the datatype library is the W3C XML Schema datatype set, these
parameters are the facets of the datatype, and they define additional restrictions to be applied. The
name of the parameter is defined by identifierOrKeyword and its value is defined by literal
param.

Example

 element born {xs:date {
 minInclusive = "1900-01-01"
 maxInclusive = "2099-12-31"
 pattern = "[0-9]{4}-[0-9]{2}-[0-9]{2}"
 }}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

parent
Reference to a named pattern from the parent

grammar

"parent" identifier

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

parentRef

Description

The parent pattern is a reference to a named pattern belonging to the parent grammar, the grammar
in which the current grammar is included. The scope of named patterns is usually limited to the
grammar in which they are defined. The parent pattern provides a way to extend this scope and refer
to named patterns defined in the parent grammar.

Example

born-element = parent born-element

start =
 attribute id { parent id-content },
 attribute available { parent available-content },
 element isbn { parent isbn-content },
 element title { parent title-content },
 element author { parent author-content }*,
 element character { parent character-content }*

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

pattern Pattern

pattern ::= "element"

nameClass "{"

pattern "}"
 |"attribute"

nameClass "{"

pattern "}"
 |

pattern (","

pattern)+
 |

pattern ("&"

pattern)+
 |

pattern ("|"

pattern)+
 |

pattern "?"
 |

pattern "*"
 |

pattern "+"
 |"list" "{"

pattern "}"
 |"mixed" "{"

pattern "}"
 |

identifier
 |"parent"

identifier
 |"empty"
 |"text"
 |[

datatypeName]

literal
 |

datatypeName ["{"

param* "}"] [

exceptPattern]
 |"notAllowed"
 |"external"

literal [

inherit]
 |"grammar" "{"

grammarContent* "}"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 |"("

pattern ")"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, div, element, grammar, include,
list, mixed, pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?,
pattern|pattern

XML syntax equivalent

None

Description

A pattern is an atom of RELAX NG schema. It is matched against nodes from the instance document
(elements, attributes, text nodes, or tokens resulting from a split through list).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

pattern&pattern interleave pattern

pattern ("&"

pattern)+

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

interleave

Description

The interleave pattern "interleaves" subpatterns; it allows their leaves to be mixed in any relative

order.

interleave is about more than defining unordered groups, as can be seen in the following example.
Consider element a and the ordered group of element b1 and b2. An unordered group of these two
patterns allows only element a followed by elements b1 and b2 or elements b1 and b2 followed by
element a. An interleave of these two patterns does allow these two combinations but also element
b1 followed by a followed by b2: a combination in which element a has been interleaved between
elements b1 and b2.

The interleave behavior is the behavior applied to attribute patterns even when they are
embedded in (ordered) group patterns. The reason for this is that XML 1.0 specifies that the relative

order of attributes isn't significant.

Another case where interleave patterns are often needed is to describe mixed-content models:
content models where text is interleaved between elements. A shortcut (the mixed pattern) has

been defined for this case.

Any number of patterns may be combined using the & operator when using this construct; however,
different operators (,| &) can't be mixed at the same level.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Restrictions

The pattern&pattern pattern can't be used within a list.

Elements within a pattern&pattern pattern can't have overlapping name classes.

There must be at most one text pattern in each set of patterns combined by the
pattern&pattern.

Example

element character {
 attribute id {text}&
 element name {text}&
 element born {text}&
 element qualification {text}}

 element foo {
 element out {empty} &
 (
 element in1 {empty},
 element in2 {empty}
)
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

pattern* zeroOrMore pattern

pattern "*"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

zeroOrMore

Description

A pattern qualified as zeroOrMore must be matched zero or more times (i.e., any number of times).

Restrictions

The pattern* pattern can't contain attribute definitions.

Example

element author {
 attribute id {text},
 element name {text},
 element born {text},
 element died {text}?}*

book-element = element book {
 attribute id {text},
 attribute available {text},
 isbn-element,
 title-element,
 uthor-element *,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 character-element*
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

pattern+ oneOrMore pattern

pattern "+"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

oneOrMore

Description

A pattern qualified as oneOrMore must be matched one or more times.

Restrictions

The pattern+ pattern can't contain attribute definitions.

Example

start = element library {
 book-element +
}

 attribute see-also {list
 {("0836217462"|"0345442695"|"0449220230"|"0449214044"|"0061075647")+}}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

pattern,pattern pattern,pattern pattern

pattern (","

pattern)+

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

group

Description

The group pattern defines an ordered group of subpatterns (note that when attribute patterns are

included in such a group, their order can't be guaranteed). Any number of patterns may be combined
through the , operator using this construct; however different operators (,| &) can't be mixed at the

same level.

Example

element author {
 attribute id {text},
 element name {text},
 element born {text},
 element died {text}?}*

element lib:title { attribute xml:lang { text }, text }

attribute dimensions {list {token, token, token, ("inches"|"cm"|"mm")}}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

pattern? optional pattern

pattern "?"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

optional

Description

A pattern qualified as optional is optional. It must be matched zero or one times.

Example

 element died {text}?

 attribute see-also {list {token, token?, token?, token?}}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

pattern|pattern choice pattern

pattern ("|"

pattern)+

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

choice

Description

The choice pattern defines a choice between different patterns; it matches a node if, and only if, at

least one of its subpatterns matches this node.

Any number of patterns may be combined using the | operator when using this construct; however,
different operators (,| &) can't be mixed at the same level.

Example

element name {
 text|(
 element first{text},
 element middle{text}?,
 element last{text}
)}

 attribute available {"true"|"false"|"who knows?"}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

start Start of a grammar

start ::= "start"

assignMethod

pattern

May be included in

div, grammar, include

XML syntax equivalent

start

Description

The start pattern defines the "start" of a grammar. When this grammar validates a complete
document, the start pattern specifies which elements may be used as the document (root) element.
When this grammar is embedded within another grammar, the start pattern specifies which pattern
should be applied at the location where the grammar is embedded. Like named pattern definitions,
start patterns may be combined by choice or interleave and redefined when they are included in
include patterns.

The combination is defined by the assignMethod, which may take the values: = (definition), &=
(combination by interleave), or |= (combination by choice).

Example

start = element library {
 book-element +
}

start |= book-element

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

text Pattern matching text nodes

"text"

Restrictions

pattern

May be included in

(pattern), attribute, datatypeName param exceptPattern, element, list, mixed,
pattern&pattern, pattern*, pattern+, pattern,pattern, pattern?, pattern|pattern

XML syntax equivalent

text

Description

The text pattern matches zero or more text nodes. The fact that a text pattern matches more than

one text node has no effect when it is used in ordered-content models (the data model used by
RELAX NG for XML documents is similar to the data model of XPath 1.0, and two text nodes can't be
adjacent), but makes a difference when a text pattern is used in interleave. Adding a single text
pattern in an interleave pattern allows any number of text nodes that can interleave before and
after each element. Note that the mixed pattern is provided as a shortcut to define these content

models.

Restrictions

No more than one text pattern can be included in an interleave pattern.

Example

element author {
 attribute id {text},

 element name {text},

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 element born {text},
 element died {text}?}?

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 19. Datatype Reference
This chapter provides a quick reference to all the datatypes the W3C XML Schema defines. Each
datatype is listed along with its RELAX NG datatype parameters. The list corresponds to the W3C XML
Schema facets available for the datatype, with the exception of the whiteSpace facet (which isn't

supported by RELAX NG). It also provides information about what the facets represent and how they
do it. For the secondary datatypes (the W3C XML Schema builtin types that are derived from
another builtin type), the synopsis shows the formal definition of the type using W3C XML Schema

syntax. Examples are given for all these datatypes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:anyURI URI (Uniform Resource Identifier)

<xsd:simpleType name="anyURI" id="anyURI">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction></xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:anyURI

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

This datatype corresponds normatively to the XLink href attribute. Its value space includes the URIs

defined by RFCs 2396 and 2732, but its lexical space doesn't require the character escapes needed to
include non-ASCII characters in a URIs.

Restrictions

Relative URIs aren't absolutized by the W3C XML Schema. A pattern defined as:

<data type="xsd:anyURI">
 <choice">
 <value type="xsd:anyURI">http://www.w3.org/TR/xmlschema-0/</value>
 <value type="xsd:anyURI">http://www.w3.org/TR/xmlschema-1/</value>
 <value type="xsd:anyURI">http://www.w3.org/TR/xmlschema-2/</value>
 </choice>
</data>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shouldn't match the href attribute in this instance element:

<a xml:base="http://www.w3.org/TR/" href="xmlschema-1/">
 XML Schema Part 2: Datatypes

The Recommendation states that "it is impractical for processors to check that a value is a context-
appropriate URI reference," thus freeing schema processors from having to validate the correctness
of the URI.

Example

<define name="httpURI">
 <data type="xsd:anyURI">
 <param name="pattern">http://.*<param>
 </data>
</define>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:base64Binary Binary content coded as "base64"

<xsd:simpleType name="base64Binary" id="base64Binary">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:base64Binary

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern.

Description

The value space of xsd:base64Binary is the set of arbitrary binary contents. Its lexical space is the

same set after base64 coding. This coding is described in Section 6.8 of RFC 2045.

Restrictions

RFC 2045 describes the transfer of binary contents over text-based mail systems. It imposes a line
break at least every 76 characters to avoid the inclusion of arbitrary line breaks by the mail systems.
Sending base64 content without line breaks is nevertheless a common usage for applications such as
SOAP and the W3C XML Schema Working Group. After a request from other W3C Working Groups,
the W3C XML Schema Working Group decided to remove the obligation to include these line breaks
from the constraints on the lexical space. (This decision was made after the publication of the W3C
XML Schema Recommendation. It is now noted in the errata.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

<define name="picture">
 <attribute name="type">
 <ref name="graphicalFormat"/>
 </attribute>
 <data type="xsd:base64Binary">
</define>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:boolean Boolean (true or false)

<xsd:simpleType name="boolean" id="boolean">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:boolean

Known subtypes

None

Data parameters (facets)

pattern

Description

The value space of xsd:boolean is true and false. Its lexical space accepts true, false, and also 1
(for true) and 0 (for false).

Restrictions

This datatype can't be localized-for instance, it can't accept the French vrai and faux instead of the
English true and false.

Example

<book id="b0836217462" available="true"/>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:byte Signed value of 8 bits

<xsd:simpleType name="byte" id="byte">
 <xsd:restriction base="xsd:short">
 <xsd:minInclusive value="-128"/>
 <xsd:maxInclusive value="127"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:short

Primary

xsd:decimal

Known subtypes

None

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:byte includes the integers between -128 and 127-the signed values that

can fit in a word of 8 bits. Its lexical space allows an optional sign and leading zeros before the
significant digits.

Restrictions

The lexical space doesn't allow values expressed in other numeration bases (such as hexadecimal,
octal, or binary).

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Valid values for byte include 27, -34, +105, and 0.

Invalid values include 0A, 1524, and INF.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:date Gregorian calendar date

<xsd:simpleType name="date" id="date">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:date

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

This datatype is modeled after the calendar dates defined in Chapter 5.2.1 of ISO (International
Organization for Standardization) 8601. Its value space is the set of Gregorian calendar dates as
defined by this standard; i.e., a one-day-long period of time. Its lexical space is the ISO 8601
extended format:

[-]CCYY-MM-DD[Z|(+|-)hh:mm]

with an optional time zone. Time zones that aren't specified are considered undetermined.

Restrictions

The basic format of ISO 8601 calendar dates, CCYYMMDD, isn't supported.

The other forms of dates available in ISO 8601 aren't supported: ordinal dates defined by the year,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the number of the day in the year, dates identified by calendar week, and day numbers.

As the value space is defined by reference to ISO 8601, there is no support for any calendar system
other than Gregorian. Because the lexical space is also defined using a reference to ISO 8601, there
is no support for any localization such as different orders for date parts or named months.

The order relation between dates with and without time zone is partial: they can be compared
beyond a +/- 14 hour interval.

There is a difference between ISO 8601, which defines a day as a 24-hour period of time, and the
W3C XML Schema, which indicates that a date is a "one-day-long, non-periodic instance ...
independent of how many hours this day has." Even though technically correct, some days don't last
exactly 24 hours because of leap seconds; this definition doesn't concur with the definition of
xsd:duration that states that a day is always exactly 24 hours long.

Example

Valid values include: 2001-10-26, 2001-10-26+02:00, 2001-10-26Z, 2001-10-26+00:00, -2001-10-
26, or -20000-04-01.

The following values would be invalid: 2001-10 (all the parts must be specified), 2001-10-32 (the
days part-32-is out of range), 2001-13-26+02:00 (the month part-13-is out of range), or 01-10-
26 (the century part is missing).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:dateTime Instant of time (Gregorian calendar)

<xsd:simpleType name="dateTime" id="dateTime">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:dateTime

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern.

Description

This datatype describes instances identified by the combination of a date and a time. Its value space
is described as a combination of date and time of day in Chapter 5.4 of ISO 8601. Its lexical space is
the extended format:

 [-]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]

The time zone may be specified as Z (UTC) or (+|-)hh:mm. Time zones that aren't specified are

considered undetermined.

Restrictions

The basic format of ISO 8601 calendar datetimes, CCYYMMDDThhmmss, isn't supported.

The other forms of date-times available in ISO 8601-ordinal dates defined by the year, the number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the day in the year, dates identified by calendar week, and day numbers-aren't supported.

As the value space is defined by reference to ISO 8601, there is no support for any calendar system
other than Gregorian. As the lexical space is also defined in reference to ISO 8601, there is no
support for any localization such as different orders for date parts or named months.

The order relation between date-times with and without time zone is partial: they can be compared
only outside of a +/- 14 hours interval.

Example

Valid values for xsd:dateTime include: 2001-10-26T21:32:52, 2001-10-26T21:32:52+02:00, 2001-
10-26T19:32:52Z, 2001-10-26T19:32:52+00:00, -2001-10-26T21:32:52, or 2001-10-
26T21:32:52.12679.

The following values are invalid: 2001-10-26 (all the parts must be specified), 2001-10-26T21:32 (all
the parts must be specified), 2001-10-26T25:32:52+02:00 (the hours part-25-is out of range), or
01-10-26T21:32 (all the parts must be specified).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:decimal Decimal numbers

<xsd:simpleType name="decimal" id="decimal">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:decimal

Known subtypes

xsd:integer

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits.

Description

xsd:decimal is the datatype that represents the set of all decimal numbers with arbitrary lengths.

Its lexical space allows any number of insignificant leading and trailing zeros (after the decimal
point).

Restrictions

The decimal separator is always a point (.), and no separation at the thousand mark may be added.
There is no support for scientific notation.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Valid values include: 123.456, +1234.456, -1234.456, -.456, or -456.

The following values are invalid: 1 234.456 (spaces are forbidden), 1234.456E+2 (scientific
notation-E+2-is forbidden), + 1234.456 (spaces are forbidden), or +1,234.456 (delimiters between

thousands are forbidden).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:double IEEE 64-bit floating-point

<xsd:simpleType name="double" id="double">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:double

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The value space of xsd:double is double (64 bits) floating-point numbers as defined by the IEEE

(Institute of Electrical and Electronic Engineers). The lexical space uses a decimal format with
optional scientific notation. The match between lexical (powers of 10) and value (powers of 2) spaces
is approximate and done on the closest value.

This datatype differentiates positive (0) and negative (-0) zeros, and includes the special values -INF
(negative infinity), INF (positive infinity) and NaN (Not a Number).

Note that the lexical spaces of xsd:float and xsd:double are exactly the same; the only difference

is the precision used to convert the values in the value space.

Restrictions

The decimal separator is always a point (.), and no thousands separator may be used.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Valid values include: 123.456, +1234.456, -1.2344e56, -.45E-6, INF, -INF, or NaN.

The following values are invalid: 1234.4E 56 (spaces are forbidden), 1E+2.5 (the power of 10 must
be an integer), +INF (positive infinity doesn't expect a sign), or NAN (capitalization matters in special

values).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:duration Time durations

<xsd:simpleType name="duration" id="duration">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:duration

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

Duration may be expressed using all the parts of a date-time (from year to fractions of second) and
are, therefore, defined as a six-dimensional space. Because the relation between some of date parts
isn't fixed (such as the number of days in a month), the order relationship between durations is only
partial, and the result of a comparison between two durations may be undetermined.

The lexical space of xsd:duration is the format defined by ISO 8601 under the form:

PnYnMnDTnHnMnS

The capital letters are delimiters and can be omitted when the corresponding member isn't used.

Some durations are undetermined, until a starting point is determined for the duration. The W3C XML
Schema relies on this feature to define the algorithm to compare two durations. Four date-times have
been chosen that produce the greatest deviations when durations are added. A duration is considered
bigger than another when the result of its addition to these four dates is consistently bigger than the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

result of the addition of the other duration to these same four date-times. These date-times are:
1696-09-01T00:00:00Z, 1697-02-01T00:00:00Z, 1903-03-01T00:00:00Z, and 1903-07-
01T00:00:00Z.

Restrictions

The lexical space can't be customized.

Example

Valid values include PT1004199059S, PT130S, PT2M10S, P1DT2S, -P1Y, or P1Y2M3DT5H20M30.123S.

The following values are invalid: 1Y (leading P is missing), P1S (T separator is missing), P-1Y (all
parts must be positive), P1M2Y (parts order is significant and Y must precede M), or P1Y-1M (all parts

must be positive).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:ENTITIES
Whitespace-separated list of unparsed entity

references

<xsd:simpleType name="ENTITIES" id="ENTITIES">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:ENTITY"/>
 </xsd:simpleType>
 </xsd:list>
 </xsd:simpleType>
 <xsd:minLength value="1"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:ENTITY

Primary

None

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength

Description

xsd:ENTITIES is derived by a list from xsd:ENTITY. It represents lists of unparsed entity references.
Each part of this entity reference is a nonqualified name (xsd:NCName) and must be declared as an

unparsed entity in an internal or external DTD.

Restrictions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Unparsed entities have been defined in XML 1.0 as a way to include non-XML content in an XML
document. Still, most of the applications prefer to define links (such as those defined in (X)HTML to
include images or other multimedia objects).

The W3C XML Schema doesn't provide alternative ways to declare unparsed entities; a DTD is needed
to do so.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:ENTITY Reference to an unparsed entity

<xsd:simpleType name="ENTITY" id="ENTITY">
 <xsd:restriction base="xsd:NCName"/>
</xsd:simpleType>

Derived from

xsd:NCName

Primary

xsd:string

Known subtypes

xsd:ENTITIES

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

xsd:ENTITY is an entity reference. It is a nonqualified name (xsd:NCName) that has been declared as

an unparsed entity in an internal or external DTD.

Restrictions

Unparsed entities are defined in XML 1.0 as a way to include non-XML content in an XML document,
but most of the applications prefer to define links (such as those defined in (X)HTML to include
images or other multimedia objects).

The W3C XML Schema doesn't provide alternative ways to declare unparsed entities; a DTD is needed
to do so.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:float IEEE 32-bit floating-point

<xsd:simpleType name="float" id="float">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:float

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The value space of xsd:float is "float," 32-bit floating-point numbers as defined by the IEEE. The

lexical space uses a decimal format with optional scientific notation. The match between lexical
(powers of 10) and value (powers of 2) spaces is approximate and maps to the closest value.

This datatype differentiates positive (0) and negative (-0) zeros, and includes the special values -INF
(negative infinity), INF (positive infinity), and NaN (Not a Number).

Note that the lexical spaces of xsd:float and xsd:double are exactly the same; the only difference

is the precision used to convert the values in the value space.

Restrictions

The decimal separator is always a point (.), and no thousands separator may be added.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Valid values include: 123.456, +1234.456, -1.2344e56, -.45E-6, INF, -INF, and NaN.

The following values are invalid: 1234.4E 56 (spaces are forbidden), 1E+2.5 (the power of 10 must
be an integer), +INF (positive infinity doesn't expect a sign), or NAN (capitalization matters in special

values).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:gDay Recurring period of time: monthly day

<xsd:simpleType name="gDay" id="gDay">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:gDay

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The value space of xsd:gDay is the period of one calendar day recurring each calendar month (such
as the third day of the month); its lexical space follows the ISO 8601 syntax for such periods (i.e., --
-DD) with an optional time zone.

When needed, days are reduced to fit in the length of the months, so ---31 would occur on the 28th

of February of nonleap years.

Restrictions

The period (one month) and the duration (one day) are fixed, and no calendars other than Gregorian
are supported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Valid values include ---01, ---01Z, ---01+02:00, ---01-04:00, ---15, and ---31.

The following values are invalid: --30- (the format must be ---DD), ---35 (the day is out of range),
---5 (all the digits must be supplied), or 15 (missing leading ---).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:gMonth Recurring period of time: yearly month

<xsd:simpleType name="gMonth" id="gMonth">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:gMonth

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The value space of xsd:gMonth is the period of one calendar month recurring each calendar year

(such as the month of April). Its lexical space should follow the ISO 8601 syntax for such periods
(i.e., -- MM) with an optional time zone.

There's a typo in the W3C XML Schema Recommendation, in which the format
is defined as -- MM -- --. Even though an erratum should be published to

bring the W3C XML Schema inline with ISO 8601, most current schema
processors expect the (bogus) -- MM -- -- format.

In the example, I follow the correct ISO 8601 format.

Restrictions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The period (one year) and the duration (one month) are fixed, and no calendars other than
Gregorian are supported.

Because of the typo in the W3C XML Schema Specification, you must choose between a bogus
format, which works on the current version of the tools, or a correct format, which conforms to ISO
8601.

Example

Valid values include --05, --11Z, --11+02:00, --11-04:00, and --02.

The following values are invalid: -01- (the format must be --MM), --13 (the month is out of range), -
-1 (both digits must be provided), or 01 (leading -- are missing).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:gMonthDay Recurring period of time: yearly day

<xsd:simpleType name="gMonthDay" id="gMonthDay">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:gMonthDay

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The value space of xsd:gMonthDay is the period of one calendar day recurring each calendar year
(such as the third of April); its lexical space follows the ISO 8601 syntax for such periods (i.e., --
MM-DD) with an optional time zone.

When needed, days are reduced to fit in the length of the months, so --02-29 would occur on the

28th of February of nonleap years.

Restrictions

The period (one year) and the duration (one day) are fixed, and no calendars other than Gregorian
are supported.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Valid values are --05-01, --11-01Z, --11-01+02:00, --11-01-04:00, --11-15, and --02-29.

The following values are invalid: -01-30- (the format must be --MM-DD), --01-35 (the day part is
out of range), --1-5 (the leading zeros are missing), or 01-15 (the leading -- are missing).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:gYear Period of one year

<xsd:simpleType name="gYear" id="gYear">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:gYear

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The value space of xsd:gYear is the period of one calendar year (such as the year 2003); its lexical
space follows the ISO 8601 syntax for such periods (YYYY) with an optional time zone.

Restrictions

The duration (one year) is fixed, and no calendars other than Gregorian are supported.

Example

Valid values include 2001, 2001+02:00, 2001Z, 2001+00:00, -2001, and -20000.

The following values are invalid: 01 (the century part is missing) or 2001-12 (month parts are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

forbidden).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:gYearMonth Period of one month

<xsd:simpleType name="gYearMonth" id="gYearMonth">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:gYearMonth

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The value space of xsd:gYearMonth is the period of one calendar month in a specific year (such as

the month of February 2002); its lexical space follows the ISO 8601 syntax for such periods (i.e.,
YYYY-MM) with an optional time zone.

Restrictions

The duration (one month) is fixed, and no calendars other than Gregorian are supported.

Example

Valid values are 2001-10, 2001-10+02:00, 2001-10Z, 2001-10+00:00, -2001-10, and -20000-04.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following values are invalid: 2001 (the month part is missing), 2001-13 (the month part is out of
range), 2001-13-26+02:00 (the month part is out of range), or 01-10 (the century part is missing).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:hexBinary Binary contents coded in hexadecimal

<xsd:simpleType name="hexBinary" id="hexBinary">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:hexBinary

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The value space of xsd:hexBinary is the set of all binary contents; its lexical space is a simple

coding of each octet as its hexadecimal value.

Restrictions

This datatype shouldn't be confused with another encoding called BinHex, which isn't supported by
the W3C XML Schema. Other popular binary text encodings (such as Quote Printable, uuXXcode,
BinHex, aencode, or base85, to name a few) aren't supported by the W3C XML Schema.

The expansion factor is high because each binary octet is coded as two characters (i.e., four octets if
the document is encoded with UTF-16).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

A UTF-8 XML header such as:

"<?xml version="1.0" encoding="UTF-8"?>"

encoded is:

"3f3c6d78206c657673726f693d6e3122302e20226e656f636964676e223d54552d4622383e3f"

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:ID Definition of unique identifiers

<xsd:simpleType name="ID" id="ID">
 <xsd:restriction base="xsd:NCName"/>
</xsd:simpleType>

Derived from

xsd:NCName

Primary

xsd:string

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The purpose of the xsd:ID datatype is to define unique identifiers that are global to a document and

emulate the ID attribute type available in the XML DTDs.

Unlike their DTD counterparts, W3C XML Schema ID datatypes can be applied to not only attributes
but also simple element content.

For both attributes and simple element content, the lexical domain of these datatypes is the lexical
domain of XML nonqualified names (xsd:NCName).

Identifiers defined using this datatype are global to a document and provide a way to uniquely
identify their containing element, whatever its type and name is.

The constraint added by this datatype, beyond the xsd:NCName datatype from which it is derived, is

that the values of all the attributes and elements that have an ID datatype in a document must be
unique.

Note that the behavior of this datatype depends on whether the RELAX NG implementation supports

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RELAX NG DTD compatibility datatype library, in which case, the uniqueness of the identifiers will be
checked. This datatype can be used both for elements and for defining multiple type assignment to
attributes defined as ID, depending on their location in the schema.

Restrictions

Applications that need to maintain a level of compatibility with DTDs shouldn't use this datatype for
elements but should reserve it for attributes.

The lexical domain (xsd:NCName) of this datatype doesn't allow the definition of numerical identifiers

or identifiers containing whitespace.

Example

<element name="book">
 <element name="isbn">
 <data type="xsd:int"/>
 </element>
 <element name="title">
 <data type="xsd:string"/>
 </element>
 <element name="author-ref">
 <attribute name="ref">
 <data type="xsd:IDREF"/>
 </attribute>
 </element>
 <element name="character-refs">
 <data type="xsd:IDREFS"/>
 </element>
 <attribute name="identifier">
 <data type="xsd:ID"/>
 </attribute>
</element>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:IDREF Definition of references to unique identifiers

<xsd:simpleType name="IDREF" id="IDREF">
 <xsd:restriction base="xsd:NCName"/>
</xsd:simpleType>

Derived from

xsd:NCName

Primary

xsd:string

Known subtypes

xsd:IDREFS

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The xsd:IDREF datatype defines references to the identifiers defined by the ID datatype. It emulates

the IDREF attribute type of XML DTDs, even though it can be used for simple content elements as
well as for attributes.

The lexical space of xsd:IDREF is, like the lexical space of xsd:ID, nonqualified XML names

(NCName).

RELAX NG implementations supporting the DTD compatibility feature add a constraint for this
datatype beyond the xsd:NCName datatype from which it is derived; the values of all the attributes
and elements that have a xsd:IDREF datatype must match an ID defined within the same document.

Restrictions

Applications that need to maintain compatibility with DTDs shouldn't use this datatype for elements,
but should instead reserve it for attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The lexical domain (NCName) of this datatype doesn't allow definition of numerical key references or
references containing whitespace.

Example

<element name="book">
 <element name="isbn">
 <data type="xsd:int"/>
 </element>
 <element name="title">
 <data type="xsd:string"/>
 </element>
 <element name="author-ref">
 <attribute name="ref">
 <data type="xsd:IDREF"/>
 </attribute>
 </element>
 <element name="character-refs">
 <data type="xsd:IDREFS"/>
 </element>
 <attribute name="identifier">
 <data type="xsd:ID"/>
 </attribute>
</element>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:IDREFS
Definition of lists of references to unique

identifiers

<xsd:simpleType name="IDREFS" id="IDREFS">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:IDREF"/>
 </xsd:simpleType>
 </xsd:list>
 </xsd:simpleType>
 <xsd:minLength value="1"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:IDREF

Primary

None

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength

Description

xsd:IDREFS is derived as a list from xsd:IDREF. It represents whitespace-separated lists of

references to identifiers that are defined using the ID datatype.

The lexical space of xsd:IDREFS is the lexical space of a list of xsd:NCName values with a minimum
length of one element (xsd:IDREFS can't be empty lists).

For RELAX NG implementations that support the DTD compatibility library, xsd:IDREFS emulates the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IDREFS attribute type of the XML DTDs, even though it can define simple content elements as well as

attributes.

Restrictions

Applications that need to maintain compatibility with DTDs shouldn't use this datatype for elements,
but instead should reserve it for attributes.

The lexical domain (lists of xsd:NCName) of this datatype doesn't allow the definition of lists of

numerical key references or references containing whitespace.

Example

<element name="book">
 <element name="isbn">
 <data type="xsd:int"/>
 </element>
 <element name="title">
 <data type="xsd:string"/>
 </element>
 <element name="author-ref">
 <attribute name="ref">
 <data type="xsd:IDREF"/>
 </attribute>
 </element>
 <element name="character-refs">
 <data type="xsd:IDREFS"/>
 </element>
 <attribute name="identifier">
 <data type="xsd:ID"/>
 </attribute>
</element>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:int 32-bit signed integers

<xsd:simpleType name="int" id="int">
 <xsd:restriction base="xsd:long">
 <xsd:minInclusive value="-2147483648"/>
 <xsd:maxInclusive value="2147483647"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:long

Primary

xsd:decimal

Known subtypes

xsd:short

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:int is the set of common single-size integers (32 bits), the integers between

-2147483648 and 2147483647. Its lexical space allows any number of insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

-0 and +0 are considered equal, which is different from the behavior of xsd:float and xsd:double.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Valid values include -2147483648, 0, -0000000000000000000005, or 2147483647.

Invalid values include -2147483649 and 1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:integer Signed integers of arbitrary length

<xsd:simpleType name="integer" id="integer">
 <xsd:restriction base="xsd:decimal">
 <xsd:fractionDigits value="0" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:decimal

Primary

xsd:decimal

Known subtypes

xsd:nonPositiveInteger, xsd:long, xsd:nonNegativeInteger

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:integer includes the set of all the signed integers, with no restriction on

range. Its lexical space allows any number of insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

-0 and +0 are considered equal, which is different from the behavior of xsd:float and xsd:double.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Valid values for xsd:integer include -123456789012345678901234567890, 2147483647, 0, or -
0000000000000000000005.

Invalid values include 1., 2.6, and A.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:language RFC 1766 language codes

<xsd:simpleType name="language" id="language">
 <xsd:restriction base="xsd:token">
 <xsd:pattern
 value="([a-zA-Z]{2}|[iI]-[a-zA-Z]+|[xX]-[a-zA-Z]{1,8})(-[a-zA-Z]{1,8})*"
 />
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:token

Primary

xsd:string

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical and value spaces of xsd:language are the set of language codes defined by RFC 1766.

Restrictions

Although the schema for schema defines a test to perform expressed as patterns (see the definition),
the lexical space is the set of existing language codes.

Example

Some valid values for this datatype are: en, en-US, fr, or fr-FR.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:long 64-bit signed integers

<xsd:simpleType name="long" id="long">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="-9223372036854775808"/>
 <xsd:maxInclusive value="9223372036854775807"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:integer

Primary

xsd:decimal

Known subtypes

xsd:int

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:long is the set of common double-size integers (64 bits)-the integers

between -9223372036854775808 and 9223372036854775807. Its lexical space allows any number
of insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Valid values for xsd:long include -9223372036854775808, 0, -0000000000000000000005, and
9223372036854775807.

Invalid values include 9223372036854775808 and 1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:Name XML 1.O name

<xsd:simpleType name="Name" id="Name">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="\i\c*"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:token

Primary

xsd:string

Known subtypes

xsd:NCName

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical and value spaces of xsd:Name are the tokens (NMTOKEN) that conform to the definition of a

name in XML 1.0.

Restrictions

Following XML 1.0, those names may contain colons, but no special meaning is attached to them.
Another datatype (xsd:QName) should be used for qualified names when they use namespace

prefixes.

Example

Valid values include Snoopy, CMS, and _1950-10-04_10:00.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include 0836217462 (a xsd:Name can't start with a number) and bold,brash (commas

are forbidden).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:NCName Unqualified names

<xsd:simpleType name="NCName" id="NCName">
 <xsd:restriction base="xsd:Name">
 <xsd:pattern value="[\i-[:]][\c-[:]]*"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:Name

Primary

xsd:string

Known subtypes

xsd:ID, xsd:IDREF, xsd:ENTITY

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical and value spaces of xsd:NCName are the names (Name) that conform to the definition of a
NCName in the Recommendation "Namespaces in XML 1.0." These are all the XML 1.0 names that

don't contain colons.

Restrictions

This datatype allows characters such as hyphens and may need additional constraints to match the
notion of name in your favorite programming language or database system.

Example

Valid values include Snoopy, CMS, _1950-10-04_10-00, and bold_brash.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include _1950-10-04:10-00 and bold:brash (colons are forbidden).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:negativeInteger
Strictly negative integers of arbitrary

length

<xsd:simpleType name="negativeInteger" id="negativeInteger">
 <xsd:restriction base="xsd:nonPositiveInteger">
 <xsd:maxInclusive value="-1"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:nonPositiveInteger

Primary

xsd:decimal

Known subtypes

None

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:negativeInteger includes the set of all the strictly negative integers

(excluding zero), with no restriction of range. Its lexical space allows any number of insignificant
leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Valid values for xsd:negativeInteger include -123456789012345678901234567890, -1, and -
0000000000000000000005.

Invalid values include 0 or -1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:NMTOKEN XML 1.0 name token (NMTOKEN)

<xsd:simpleType name="NMTOKEN" id="NMTOKEN">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="\c+"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:token

Primary

xsd:string

Known subtypes

xsd:NMTOKENS

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical and value spaces of xsd:NMTOKEN are the set of XML 1.0 name tokens, tokens composed

of characters, digits, period, colons, hyphens, and the characters defined by Unicode, such as
"combining" or "extender."

Restrictions

This type is usually called a token.

Example

Valid values include Snoopy, CMS, 1950-10-04, and 0836217462.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include brought classical music to the Peanuts strip (spaces are forbidden) and
bold,brash (commas are forbidden).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:NMTOKENS List of XML 1.0 name tokens (NMTOKEN)

<xsd:simpleType name="NMTOKENS" id="NMTOKENS">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN"/>
 </xsd:simpleType>
 </xsd:list>
 </xsd:simpleType>
 <xsd:minLength value="1"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:NMTOKEN

Primary

None

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength

Description

xsd:NMTOKENS is derived by list from xsd:NMTOKEN and represents whitespace-separated lists of XML

1.0 name tokens.

Restrictions

None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Valid values include Snoopy, CMS, 1950-10-04, 0836217462 0836217463, and brought classical
music to the Peanuts strip (note that, in this case, the sentence is considered to be list of words).

Invalid values include "brought classical music to the Peanuts" "strip" (quotes are forbidden)
and bold,brash (commas are forbidden).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:nonNegativeInteger
Integers of arbitrary length

positive or equal to zero

<xsd:simpleType name="nonNegativeInteger" id="nonNegativeInteger">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:integer

Primary

xsd:decimal

Known subtypes

xsd:unsignedLong, xsd:positiveInteger

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:nonNegativeInteger includes the set of all the integers greater than or

equal to zero, with no restriction of range. Its lexical space allows any number of insignificant leading
zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Valid values include +123456789012345678901234567890, 0, 0000000000000000000005, and
2147483647.

Invalid values include 1. and -1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:nonPositiveInteger
Integers of arbitrary length

negative or equal to zero

<xsd:simpleType name="nonPositiveInteger" id="nonPositiveInteger">
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="0"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:integer

Primary

xsd:decimal

Known subtypes

xsd:negativeInteger

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:nonPositiveInteger includes the set of all the integers less than or equal to

zero, with no restriction of range. Its lexical space allows any number of insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include -123456789012345678901234567890, 0, -0000000000000000000005, and -

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2147483647.

Invalid values include -1. and 1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:normalizedString Whitespace-replaced strings

<xsd:simpleType name="normalizedString" id="normalizedString">
 <xsd:restriction base="xsd:string">
 <xsd:whiteSpace value="replace"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:string

Primary

xsd:string

Known subtypes

xsd:token

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical space of xsd:normalizedString is unconstrained (any valid XML character may be used).
Its value space is the set of strings after whitespace replacement-i.e., after any occurrence of #x9
(tab), #xA (linefeed), and #xD (carriage return) have been replaced by an occurrence of #x20 (space)

without any whitespace collapsing.

Restrictions

This is the only datatype that performs whitespace replacement without collapsing. When whitespace
isn't significant, xsd:token is preferred.

This datatype corresponds neither to the XPath function normalize-space() (which performs

whitespace trimming and collapsing) nor to the DOM normalize method (which is a merge of adjacent
text objects).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The value of the element:

<title lang="en">
 Being a Dog Is
 a Full-Time Job
</title>"

is the string: " Being a Dog Is a Full-Time Job ", in which all whitespace has been replaced by
spaces, if the title element is a type xsd:normalizedString.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:NOTATION Emulation of the XML 1.0 feature

<xsd:simpleType name="NOTATION" id="NOTATION">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:NOTATION

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

For the W3C XML Schema, the value and lexical spaces of xsd:NOTATION are references to notations
declared though the xsd:notation element. This element doesn't exist in RELAX NG; there, this
datatype can be seen as a synonym for xsd:QName with backward compatibility for the W3C XML

Schema.

Restrictions

Notations are seldom used in real-world applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:positiveInteger
Strictly positive integers of arbitrary

length

<xsd:simpleType name="positiveInteger" id="positiveInteger">
 <xsd:restriction base="xsd:nonNegativeInteger">
 <xsd:minInclusive value="1"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:nonNegativeInteger

Primary

xsd:decimal

Known subtypes

None

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:positiveInteger includes the set of the strictly positive integers (excluding

zero), with no restriction of range. Its lexical space allows any number of insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include 123456789012345678901234567890, 1, and 0000000000000000000005.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include 0 and 1.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:QName Namespaces in XML-qualified names

<xsd:simpleType name="QName" id="QName">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:QName

Known subtypes

None

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical space of xsd:QName is a qualified name according to Namespaces in XML. It is a local
name (which is an xsd:NCName) with an optional prefix (itself an xsd:NCName), separated by a colon.

The prefix is declared a namespace prefix in the scope of the element carrying the value. Its value
space comprises the pairs (namespace URI, local name) in which the namespace URI is the URI
associated to the prefix in the namespace declaration.

Restrictions

It is impossible to apply a pattern on the namespace URI.

The usage of QNames in elements and attributes is controversial because it creates a dependency

between the content of the document and its markup. However, the official position of the W3C
doesn't discourage this practice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

W3C XML Schema itself has already provided some examples of QNames. When I wrote
"<xsd:attribute name="lang" type="xsd:language"/>", the type attribute was a xsd:QName, and
its value was the tuple {"http://www.w3.org/2001/XMLSchema", "language"}, because the URI
"http://www.w3.org/2001/XMLSchema" had been assigned to the prefix "xsd:". If there is no

namespace declaration for this prefix, the type attribute is considered invalid.

[Team LiB]

http://www.w3.org/2001/XMLSchema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:short 32-bit signed integers

<xsd:simpleType name="short" id="short">
 <xsd:restriction base="xsd:int">
 <xsd:minInclusive value="-32768"/>
 <xsd:maxInclusive value="32767"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:int

Primary

xsd:decimal

Known subtypes

xsd:byte

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:short is the set of common short integers (16 bits)-the integers between -

32768 and 32767. Its lexical space allows any number of insignificant leading zeros.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include -32768, 0, -0000000000000000000005, and 32767.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include 32768 and 1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:string Any string

<xsd:simpleType name="string" id="string">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:string

Known subtypes

xsd:normalizedString

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical and value spaces of xsd:string are the set of all possible strings composed of any

character allowed in a XML 1.0 document without any treatment done on whitespace.

Restrictions

This is the only datatype that leaves all the whitespace. When whitespace isn't significant, xsd:token

is preferred.

Example

The value of the following element:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<title lang="en">
 Being a Dog Is
 a Full-Time Job
</title>

is the full string Being a Dog Is a Full-Time Job, with all its tabulations, and CR/LF if the title
element is a xsd:string type.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:time Point in time recurring each day

<xsd:simpleType name="time" id="time">
 <xsd:restriction base="xsd:anySimpleType">
 <xsd:whiteSpace value="collapse" fixed="true"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:anySimpleType

Primary

xsd:time

Known subtypes

None

Data parameters (facets)

enumeration, maxExclusive, maxInclusive, minExclusive, minInclusive, pattern

Description

The lexical space of xsd:time is identical to the time part of xsd:dateTime (hh:mm:ss[Z|(+|-
)hh:mm]), and its value space is the set of points in time recurring daily.

Restrictions

The period (one day) is fixed, and no calendars other than Gregorian are supported.

Example

Valid values include 21:32:52, 21:32:52+02:00, 19:32:52Z, 19:32:52+00:00, and
21:32:52.12679.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include 21:32 (all the parts must be specified), 25:25:10 (the hour part is out of
range), -10:00:00 (the hour part is out of range), and 1:20:10 (all the digits must be supplied).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:token Whitespace-replaced and collapsed strings

<xsd:simpleType name="token" id="token">
 <xsd:restriction base="xsd:normalizedString">
 <xsd:whiteSpace value="collapse"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:normalizedString

Primary

xsd:string

Known subtypes

xsd:language, xsd:NMTOKEN, xsd:Name

Data parameters (facets)

enumeration, length, maxLength, minLength, pattern

Description

The lexical and value spaces of xsd:token are the sets of all strings after whitespace replacement;
i.e., after any occurrence of #x9 (tab), #xA (linefeed), or #xD (carriage return).These are replaced by
an occurrence of #x20 (space) and collapsing. Collapsing is when contiguous occurrences of spaces

are replaced by a single space, and leading and trailing spaces are removed.

More simply, xsd:token is the most appropriate datatype to use for strings that don't care about

whitespace.

Restrictions

The name xsd:token is misleading, as whitespace is allowed within xsd:token. xsd:NMTOKEN is the

type corresponding to what are usually called tokens.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

The element:

<title lang="en">
 Being a Dog Is
 a Full-Time Job
</title>

is a valid xsd:token, and its value is the string Being a Dog Is a Full-Time Job, in which all the

extra whitespace has been replaced by single spaces. Leading and trailing spaces have been
removed, and contiguous sequences of spaces have been replaced by single spaces.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:unsignedByte Unsigned value of 8 bits

<xsd:simpleType name="unsignedByte" id="unsignedBtype">
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="255"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:unsignedShort

Primary

xsd:decimal

Known subtypes

None

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:unsignedByte is the range of integers between 0 and 255-the unsigned

values that can fit in a word of 8 bits. Its lexical space allows an optional + sign and leading zeros
before the significant digits.

Restrictions

The lexical space doesn't allow values expressed in other numeration bases (such as hexadecimal,
octal, or binary).

The decimal point (even when followed only by insignificant zeros) is forbidden.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example

Valid values include 255, 0, +0000000000000000000005, and 1.

Invalid values include -1 and 1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:unsignedInt Unsigned integer of 32 bits

<xsd:simpleType name="unsignedInt" id="unsignedInt">
 <xsd:restriction base="xsd:unsignedLong">
 <xsd:maxInclusive value="4294967295"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:unsignedLong

Primary

xsd:decimal

Known subtypes

xsd:unsignedShort

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:unsignedInt is the range of integers between 0 and 4294967295-the

unsigned values that can fit in a word of 32 bits. Its lexical space allows an optional + sign and
leading zeros before the significant digits.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include 4294967295, 0, +0000000000000000000005, and 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include -1 and 1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:unsignedLong Unsigned integer of 64 bits

<xsd:simpleType name="unsignedLong" id="unsignedLong">
 <xsd:restriction base="xsd:nonNegativeInteger">
 <xsd:maxInclusive value="18446744073709551615"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:nonNegativeInteger

Primary

xsd:decimal

Known subtypes

xsd:unsignedInt

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:unsignedLong is the range of integers between 0 and

18446744073709551615-the unsigned values that can fit in a word of 64 bits. Its lexical space
allows an optional + sign and leading zeros before the significant digits.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include 18446744073709551615, 0, +0000000000000000000005, and 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include -1 and 1.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

xsd:unsignedShort Unsigned integer of 16 bits

<xsd:simpleType name="unsignedShort" id="unsignedShort">
 <xsd:restriction base="xsd:unsignedInt">
 <xsd:maxInclusive value="65535"/>
 </xsd:restriction>
</xsd:simpleType>

Derived from

xsd:unsignedInt

Primary

xsd:decimal

Known subtypes

xsd:unsignedByte

Data parameters (facets)

enumeration, fractionDigits, maxExclusive, maxInclusive, minExclusive, minInclusive,
pattern, totalDigits

Description

The value space of xsd:unsignedShort is the range of integers between 0 and 65535-the unsigned

values that can fit in a word of 16 bits. Its lexical space allows an optional + sign and leading zeros
before the significant digits.

Restrictions

The decimal point (even when followed only by insignificant zeros) is forbidden.

Example

Valid values include 65535, 0, +0000000000000000000005, and 1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Invalid values include -1 and 1..

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Part III: Appendixes

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix A. DSDL
Although RELAX NG started as a standalone project under the auspices of the Organization for the
Advancement of Structured Information Standards (OASIS), RELAX NG is now being standardized at
ISO (ISO/IEC JTC1 SC34 WG1, to be precise) as a part of a multipart standard named DSDL (see
http://dsdl.org).

DSDL (Document Schema Definition Languages) recognizes that the validation of XML documents is a
subject too wide and complex to be covered by a single language. It also acknowledges that the
industry needs a set of simple and dedicated languages to perform different validation tasks-as well
as a framework in which these languages may be used together.

Validating (or schematizing) XML documents may involve:

Validating the structure of the document: i.e., checking the containment of elements and
attributes (this is the domain in which RELAX NG is very good).

Validating the content of each text node and attribute independently of each other (this is where
datatype libraries are needed).

Validating integrity constraints between different elements and attributes.

Validating any other rules (often called business rules).

Throughout this book, you've seen that RELAX NG is simple and efficient because it stays focused on
solving one-and only one-problem. There are huge gaps that can't be covered by RELAX NG. For
instance, if an XML vocabulary includes mixed-content models, you can't restrict the content of your
documents to ASCII; neither can you define that the content of your modeling element must be spell-
checked. The goal of DSDL is to provide a means to fill out these gaps and to cover the whole domain
of document validation.

DSDL can be seen as a framework and set of languages that checks the quality of XML documents, a
crucial issue for any XML based application. Recent works such as the presentation given by Simon
Riggs at XML Europe 2003 or the work of Isabelle Boydens (Informatique, normes et temps,
Bruxelles, Éditions E. Bruylant, 1999.) about the quality of large databases have shown that about
10% of XML documents (or data records) contain at least one error. This level of quality is
unacceptable for many applications; and so DSDL can be an absolutely indispensable technology for
many XML applications.

[Team LiB]

http://dsdl.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.1 A Multipart Standard

DSDL is still a work in progress. It is a multipart specification, with each of the parts presenting a
different schema language (except Part 1 , which is an introduction, and Part 10 , which is the
description of the framework itself).

A.1.1 Part 1: Overview

This part is a roadmap describing DSDL and introducing each of the parts.

A.1.2 Part 2: Regular Grammar-Based Validation

This part covers RELAX NG; it rewrites the RELAX NG OASIS Technical Committee specification to
meet the requirements of ISO publications. Its wording is more formal than the OASIS specification,
but the features of the language are the same. Any RELAX NG implementation that conforms to either
of these two documents is also conformant to the other.

DSDL Part 2 is now a Final Draft International Standard (FDIS); i.e., an official ISO standard.

A.1.3 Part 3: Rule-Based Validation

This part of DSDL describes the next release of the rule-based schema language known as
Schematron. The current version of Schematron has been defined by Rick Jelliffe and other
contributors as a language that expresses sets of rules as XPath expressions (or more accurately, as
XSLT expressions because XSLT functions such as document() are also supported in XPath

expressions). Its home page is http://www.ascc.net/xml/schematron/ .

Without going into the details of the language, a Schematron schema is composed of sets of rules
named patterns (these patterns shouldn't be confused with RELAX NG patterns). Each pattern
includes one or more rules. Each rule sets the context nodes under which tests are performed, and
each test is performed either as an assert or as a report . An assert is a test that raises an error if
it is not verified, while a report is a test that raises an error if it is specified.

A fragment of a Schematron schema for our library could be:

 <sch:schema xmlns:sch="http://www.ascc.net/xml/schematron">
 <sch:title>Schematron Schema for library</sch:title>
 <sch:pattern>
 <sch:rule context="/">
 <sch:assert test="library">The document element should be "library".</sch:assert>
 </sch:rule>
 <sch:rule context="/library">
 <sch:assert test="book">There should be at least a book!</sch:assert>
 <sch:assert test="not(@*)">No attribute for library, please!</sch:assert>
 </sch:rule>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <sch:rule context="/library/book">
 <sch:report test="following-sibling::book/@id=@id">
 Duplicated ID for this book.</sch:report>
 <sch:assert test="@id=concat('_', isbn)">
 The id should be derived from the ISBN.</sch:assert>
 </sch:rule>
 <sch:rule context="/library/*">
 <sch:assert test="self::book or self::author or self::character">
 This element shouldn't be here...</sch:assert>
 </sch:rule>
 </sch:pattern>
 </sch:schema>

You can see from this simple example that it would be verbose to write a full schema with
Schematron because it means writing a rule for each element. In this rule writing, all the individual
tests that check the content model, and eventually the relative order between child elements, must
be specified. You can also see that it does very well expressing what are often called business rules,
such as:

 <sch:assert test="@id=concat('_', isbn)">The id should be derived
from the ISBN.</sch:assert>

This example checks that the id attribute of a book is derived from its ISBN element by adding a

leading underscore.

DSDL Part 3 , the next version of Schematron, will keep this structure and add still more power by
allowing it to use not only XPath 1.0 expressions, but also expressions taken from other languages
such as EXSLT (a standard extension library for XSLT), XPath 2.0, XSLT 2.0, and even XQuery 1.0.

A.1.4 Part 4: Selection of Validation Candidates

Although RELAX NG provides a way to write and combine modular schemas, it is often the case that
you need to validate a composite document against existing schemas that might be written using
different languages; you might want, for instance, to validate XHTML documents with embedded RDF
statements. In this case, you need to split your documents into pieces and validate each piece against
its own schema.

The first contribution to Part 4 was an ISO specification known as RELAX Namespace by Murata
Makoto. This contribution was followed by Modular Namespaces (MNS) by James Clark, and
Namespace Switchboard by Rick Jelliffe. The latest contribution, Namespace Routing Language (NRL),
was made by James Clark in June 2003 and builds on previous proposals. Although it is too early to
say whether NRL will become DSDL Part 4 , it will most likely influence it heavily. NRL is implemented
in the latest versions of Jing.

The first example given in the specification (http://www.thaiopensource.com/relaxng/nrl.html) shows
how NRL can validate a SOAP message containing one or more XHTML documents:

 <rules xmlns="http://www.thaiopensource.com/validate/nrl">
 <namespace ns="http://schemas.xmlsoap.org/soap/envelope/">
 <validate schema="soap-envelope.xsd"/>
 </namespace>
 <namespace ns="http://www.w3.org/1999/xhtml">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <validate schema="xhtml.rng"/>
 </namespace>
 </rules>

This example splits the SOAP messages into two parts. The SOAP envelope is validated against the
W3C XML Schema soap-envelope.xsd . The one or more XHTML documents found in the body of the
SOAP message are validated against the RELAX NG schema xhtml.rng .

More advanced features are available including namespace wildcards, validation modes, open
schemas, transparent namespaces, and NRL. These features seem to be able to handle the most
complex cases until the basic assumption that instance documents may be split according to the
namespaces of its elements and attributes is met.

A.1.5 Part 5: Datatypes

The goal of this part is to define a set of primitive datatypes with their constraining facets and the
mechanisms to derive new datatypes from this set. It is fair to say that it's probably the least
developed, yet most complex part of DSDL. While people agree on what shouldn't be done, it is
difficult to get beyond the criticism of existing systems such as W3C XML Schema datatypes to
propose something better.

Some interesting ideas were raised during the last DSDL meeting in May 2003 that tend to converge
with threads on the XML-DEV mailing list in June. This may lead to something more constructive in
future DSDL meetings.

A.1.6 Part 6: Path-Based Integrity Constraints

The goal of this part is basically to define a feature covering W3C XML Schema's xs:unique , xs:key
and xs:keyref . Part 6 hasn't had any contributions yet.

A.1.7 Part 7: Character Repertoire Validation

Part 7 allows you to specify which characters can be used in specific elements and attributes or within
entire XML documents. The W3C note "A Notation for Character Collections for the WWW"
(http://www.w3.org/TR/charcol/), is used as an input for Part 7 . The first contribution is " Character
Repertoire Validation for XML" (CRVX) (http://dret.net/netdret/docs/wilde-crvx-www2003.html).

A simple example of CRVX is:

 <crvx xmlns="http://dret.net/xmlns/crvx10">
 <restrict structure="ename aname pitarget" charrep="\p{IsBasicLatin}"/>
 <restrict structure="ename aname" charrep="[^0-9]"/>
 </crvx>

In this proposal, the structure attribute contains identifiers for element names (ename), attribute
names (aname), Processing Instruction targets (pitarget), and other XML constructions including

element and attribute contents. This example thus requires that element and attribute names and
Processing Instruction targets must use characters from the BasicLatin block and that element and
attribute names must not use digits.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is some overlap between Part 7 and other schema languages such as Part 2 (RELAX NG). You
need to take care that your names match the rules defined in both places, and you can use the data

pattern to check the content of attributes and simple content elements. However, Part 7 gives you a
more focused way to express these rules independently of other schemas. It fills some gaps in such
constraints: RELAX NG can't express such constraints on name classes nor on mixed content
elements.

A.1.8 Part 8: Declarative Document Architectures

This section is still in development. The idea here is to allow you to add information (such as default
values) to documents depending on the structure of the document. The only input considered for Part
8 so far is known as Architectural Forms, an old technology with strong adherents but limited use.

A.1.9 Part 9: Namespace- and Datatype-Aware DTDs

There were plenty of good things in DTDs, especially in SGML DTDs. Many people are still using them
and question the need to put them in the trash and then define new schema languages to support
namespaces and datatypes. DSDL Part 9 is for these people who would like to rely on years DTD
experience without losing all the goodies of newer schema languages. Despite a burst of discussion in
April 2002, this part hasn't advanced yet.

A.1.10 Part 10: Validation Management

Last but not least, Part 10 (formerly known as Part 1: Interoperability Framework) is the cement
that lets you use the different parts from DSDL together with external tools such as XSLT, W3C XML
Schema, or your favorite spell checker, to reuse an example given in the introduction to this chapter.

Here again, different contributions have been made, including my own "XML Validation
Interoperability Framework" XVIF and Rick Jelliffe's Schemachine. The latest contribution is known
(and implemented) as xvif/outie (see
http://downloads.xmlschemata.org/python/xvif/outie/about.xhtml).

A simple example of a xvif/outie document is:

<?xml version="1.0" encoding="utf-8"?>Declarative Document Architectures

 <framework>
 <rule>
 <instance>
 <transform transformation="normalize.xslt"/>
 </instance>
 <assert>
 <isValid schema="schema.rng"/>
 <isValid schema="schema.sch"/>
 </assert>
 </rule>
 </framework>

This document defines a rule that checks on the result of the XSLT transformation normalize.xslt that
is applied to the instance document. This rule states that the result of the transformation must be

http://downloads.xmlschemata.org/python/xvif/outie/about.xhtml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

valid for both schema.rng and schema.sch .

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A.2 What DSDL Should Bring You

As a RELAX NG user, DSDL should bring you all that RELAX NG ignored in its relentless focus on the
validation of the structure of XML documents, and even more:

You are already using Part 2 (RELAX NG).

Part 3 (Schematron) gives you the ability to add highly flexible business rules to your schemas.

Part 4 (Selection of Validation Candidates) lets you write and reuse schemas written in any
language and combine them to validate composite documents.

Part 5 (Datatypes) should provide a better alternative to W3C XML Schema datatypes.

Part 6 (Path-Based Integrity Constraints) lets you specify integrity constraints between
elements and attributes.

Part 7 (Character Repertoire Validation) will let you specify which characters may be used in
your documents.

Part 8 (Declarative Document Architectures) lets you make explicit information that was
previously only implicit to your documents before validation.

Part 9 (Namespace- and Datatype-Aware DTDs) lets you upgrade and reuse your DTDs in the
context of newer applications.

Part 10 (Validation Management) lets you combine these parts and plug in other transformation
and validation tools.

If you like RELAX NG, I am sure that you'll enjoy the other members of the DSDL family. They share
the same principles of focusing on solving very specific issues. This focus keeps them powerful and
easy to use.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix B. The GNU Free Documentation
License
Published editions of this book are being released under the GNU Free Documentation License, a copy
of which is provided in this appendix. The online version of this document is maintained at
http://dubinko.info/writing/xforms/. In addition, updates, examples, and other things that didn't
make it into the printed version of the book can be found there.

[Team LiB]

http://dubinko.info/writing/xforms/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

0. Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any
Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent"
is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has
access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties-for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements."

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation's users beyond
what the individual works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts."
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Glossary

A

C

D

E

F

G

I

L

M

N

P

Q

R

S

T

U

V

W

X
[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

A

ambiguous

A pattern is ambiguous when a fragment of an instance document can be valid against using
several alternatives in its choice patterns. RELAX NG allows ambiguous patterns, but they can

be a problem for annotation and datatype assignment.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

C

chameleon design

Specifying a namespace in include, externalRef, or parentRef to give a namespace to

grammars or patterns defined without a namespace is known as chameleon design, because
the imported grammar or pattern takes on the new namespace like a chameleon takes on the
color of the environment in which it is placed.

character class

In a regular expression, a character class is an atom that matches a set of characters.
Character classes may be classical Perl character classes, Unicode character classes, or user-
defined character classes.

classical Perl character class

A set of character classes designated by a single letter, for which upper- and lowercases of the
same letter are complementary (for instance, \d is all the decimal digits, and \D is all the

characters that aren't decimal digits).

compositor

A compositor is a pattern that can be used to combine other patterns. RELAX NG has three
basic compositors: group, choice, and interleave. A fourth compositor, mixed, is a shortcut
for interleave with an embedded text pattern.

content model

A description of the structure of child elements and text nodes (independent of attributes). The
content model is simple when there is a text node but no elements, complex when there are
element nodes but no text, mixed when there are text and element nodes, and empty when
there are neither text nor element nodes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D

datatype

A term used by RELAX NG to qualify the content of a simple content element or attribute.
Datatypes shouldn't be confused with XML 1.0 element types; those are called element names
by RELAX NG.

deterministic

A pattern is deterministic if a schema processor can always determine which path through the
schema to follow by looking only at the current element under validation. Unlike W3C XML
Schema, RELAX NG doesn't require deterministic patterns.

DOM

Document Object Model. An object oriented model of XML documents, including the definition
of the API allowing its manipulation. The third version of DOM (DOM Level 3) includes an API
called Abstract Schemas, which facilitate schema-guided editions of XML documents; also see
http://www.w3.org/TR/DOM-Level-3-Core).

DSDL

Document Schema Definition Languages (DSDL) is a project undertaken by ISO (ISO/IEC JTC
1/SC 34/WG 1, to be precise) whose objective is "to create a framework within which multiple
validation tasks of different types can be applied to an XML document to achieve more
complete validation results than just the application of a single technology"; see
http://dsdl.org.

DTD

Document Type Definition. XML 1.0 DTDs are inherited from SGML, in which rules were
included that allow the customization of the markup itself and played a very central role.
Because of the syntactical rules included in their DTDs, SGML applications need a DTD to read
an SGML document. One of the simplifications of XML is to state that a XML parser should be
able to read a document without needing a DTD. DTDs have therefore been simplified from
their SGML ancestors and remain the first incarnation of what is today called an XML Schema
Language.

http://www.w3.org/TR/DOM-Level-3-Core
http://dsdl.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

E

element

One of the basic type of nodes in the tree represented by an XML document. An element is
delimited by start and end tags. In the corresponding tree, an element is a nonterminal node,

which may have subnodes of type element, character (text), namespace, and attribute, as well
as comment and processing instruction nodes.

element type

Term used in the XML 1.0 Recommendation, which is equivalent to the notion of element
names in W3C XML Schema and shouldn't be confused with the simple or complex datatype of
an element.

empty content

An element that has neither child elements nor text nodes (with or without attributes).

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

F

facet

A constraint added to the lexical or value space of a simple datatype of the W3C XML Schema
datatype system. The list of facets that can be used depends on the simple datatype. W3C XML
Schema's facets can be used as parameters in RELAX NG data patterns.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

G

Grammar

A grammar is a pattern that acts a container for a start pattern and any number of named
patterns.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

I

Infoset

XML Information Set. A formal description of the information that may be found in a well-
formed XML document.

instance document

A XML document that is a candidate for being validated by a schema. Any well-formed XML 1.0
document that conforms to the Namespaces in XML 1.0 Recommendation can be considered a
valid or invalid instance document.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

L

lexical space

The set of all representations (after parsing and whitespace processing) allowed for a simple
datatype.

local name

The name of a component within its namespace. It's the part of the qualified name that comes
after the namespace prefix and colon.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

M

mixed content

The content of an element that contains both child element and text nodes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

N

Named pattern

Named patterns are globally defined in a grammar. These patterns may be referenced from
anywhere in this grammar or in the child grammars.

namespace

A unique identifier that can be associated with a set of XML elements and attributes. This
identifier is a URI that isn't required to point to an actual resource but must "belong" to the
author of these elements and attributes. Because the full URI can't be included in the name of
each element and attribute, a namespace prefix is assigned to the namespace URI using a
namespace declaration. This prefix is added to the local name of the elements and attributes to
form a qualified name. Namespaces are optional, and elements and attributes may have no
namespaces attached.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

P

pattern

Any part of a RELAX NG schema that can be matched against a set of attributes and a
sequence of elements and strings is a pattern. With the exception of name classes, all parts
(including the whole schema) of a RELAX NG schema are patterns.

piece

Regular expressions (or patterns) are composed of pieces. Each piece is itself composed of an
atom describing a condition on a substring and an optional quantifier defining the expected
number of occurrences of the atom.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Q

qualified name

The complete name of a component, including the prefix associated with its target namespace
if one is defined.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

R

Recursive content models

Recursive content models are content models in which elements can be included directly or
indirectly within themselves (such as XHTML div or span elements).

recursive patterns

Recursive patterns are named patterns that include direct or indirect references to themselves.
RELAX NG allows only recursive patterns that describe recursive content models-those for
which the definition of the named pattern is isolated from its reference by an element pattern.

regular expression

A syntax that expresses conditions on strings. The syntax used by the W3C XML Schema for its
patterns is very close to the syntax introduced by the Perl programming language. A regular
expression is composed of elementary pieces.

RELAX

A grammar-based XML Schema language developed by Murata Makoto and published in March
2000 as a Japanese ISO Standard; see http://www.xml.gr.jp/relax.

RELAX NG

A grammar-based XML Schema language resulting from a merger between RELAX and TREX;
see http://relaxng.org.

Russian doll design

A schema in which the definitions of elements and attributes are embedded one inside the
other without using named patterns.

[Team LiB]

http://www.xml.gr.jp/relax
http://relaxng.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

S

SAX

Simple API for XML. A streaming, event-based API used between parsers and applications. Its
streaming nature means that pipelines of XML processing may be created using SAX; see
http://www.saxproject.org.

Schematron

A rule-based XML Schema language, developed by Rick Jelliffe, using XPath expressions to
describe validation rule; see http://www.ascc.net/xml/resource/schematron/schematron.html.

SGML

Standard Generalized Markup Language, the ancestor of XML. XML was designed as a simplified
subset of SGML to be used on the Web.

simple content

An element has a simple-content model when it has a child text node only (and no
subelements). A simple content element has a simple type if it has no attributes; it has a
complex type if it has any attributes.

simplification

The process of simplifying and normalizing a RELAX NG schema to remove the syntactical
variations and use only a few basic patterns and name classes.

special character

A character that may be used as an atom after a slash (\) to accept a specific character,

either for convenience or because this character is interpreted differently in the context of a
regular expression.

start pattern

http://www.saxproject.org
http://www.ascc.net/xml/resource/schematron/schematron.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

When a grammar validates an instance document, its start pattern is matched against the

root element of the instance document. When a grammar is embedded in another grammar,
the embedded grammar is replaced by its start pattern during the implementation of the
schema.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

T

Trang

A tool for converting among RELAX NG syntax, RELAX NG Compact Syntax, DTDs, W3C XML
Schema, and simple instance documents. Available at
http://thaiopensource.com/relaxng/trang.html.

TREX

A grammar-based XML Schema language developed by James Clark; see
http://www.thaiopensource.com/trex.

[Team LiB]

http://thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/trex
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

U

unambiguous

A pattern is unambiguous when any fragment of an instance document that is valid per this
pattern is valid for precisely one of the choices in the schema. RELAX NG doesn't require the
use of unambiguous patterns, but they can be considered good practice for annotation and
datatype assignment, especially when conversion from RELAX NG to another schema language
is necessary.

Unicode block

A set of characters classified by their localization (Latin, Arabic, Hebrew, Tibetan, and even
Gothic or musical symbols).

Unicode category

A set of characters classified by their usage (letters, uppercase, digit, punctuation, etc.).

Unicode character class

A set of character classes based on the Unicode blocks and categories.

URI

Uniform Resource Identifier. Defined by RFCs 2396 and 2732. URIs were created to extend the
notion of URLs (Uniform Resource Locators) to include abstract identifiers that don't necessarily
need to locate a resource.

URL

Uniform Resource Locator, a common identifier used on the Web. URLs are absolute when the
full path to the resource is indicated, and relative when a partial path is given that needs to be
evaluated in relation with a base URL.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

V

valid

An XML document that is well-formed and conforms to a schema (RELAX NG, DTD, W3C XML
Schema, etc.) of some kind.

value space

The set of all the possible values for a simple datatype, independent of their actual
representation in the instance documents.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

W

W3C

World Wide Web Consortium. Originally created to settle HTML and HTTP as de facto standards.
The main specification body for the core specifications of the World Wide Web and the keeper
of the core XML specifications; see http://www.w3.org.

well-formed

An XML document that meets the conditions defined in the XML 1.0 Recommendation: it must
be readable without ambiguity. Syntax errors are detected by an XML parser even without
schema of any type.

whitespace

Characters #x9 (tab), #xA (linefeed), #xD (carriage return), and #x20 (space). These are often

used to indent the XML documents to make them more readable, and are filtered by an
operation called whitespace processing.

[Team LiB]

http://www.w3.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

X

XInclude

A W3C specification defining a general purpose inclusion mechanism for XML documents; see
http://www.w3.org/TR/xinclude.

XML

Extensible Markup Language. A subset of SGML created to be used on the Web. Its core
specification (XML 1.0) was published by the W3C in February 1998. New XML specifications
have been added since this date, and the W3C considers that, with the addition of W3C XML
Schema, the core specifications are now complete.

XPath

A query language that identifies a set of nodes within an XML document. Originally defined to
be used with XSLT, it's also used by other specifications such as Schematron, XPointer, W3C
XML Schema or XForms; see http://www.w3.org/TR/xpath.

XSLT

Extensible Stylesheet Language Transformations. A programming language specialized for the
transformation of XML documents; for more information, see http://www.w3.org/TR/xslt.

[Team LiB]

http://www.w3.org/TR/xinclude
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of RELAX NG is a blood pheasant (Ithaginis cruentus). Unlike other
pheasants, the blood pheasant resembles a partridge in size and shape. Its crest is grey, and the
male's forehead, face, and throat are red. A female's upper features are more rust-colored. Both
males and females have grey to light brown bodies.

The blood pheasant lives in the coniferous forests of the Himalayas, from Nepal through Tibet into
northern Burma to northwest China. It lives in flocks of 4-20 in nonbreeding season, up to 40 in
winter. Between late April and early May, the female fills a shallow saucer nest of dry twigs lined with
leaves with up to 14 eggs. Chicks are born in mid-June and able to follow mother to feed at two days
old.

The blood pheasant picks up food with its bill and seldom digs with its claws, although it sometimes
jumps up to shrubs to feed. It's considered a good runner but a poor flier. When threatened, it
rushes down hills and hides under stones. Because it lives in such remote regions, however, the blood
pheasant population remains stable and unthreatened by man.

Mary Anne Weeks Mayo was the production editor, and Nancy Wolfe Kotary was the copyeditor for
RELAX NG. Reg Aubry and Colleen Gorman provided quality control. Julie Hawks wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from Cuvier's Animals. Emma produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was
converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and
warning icons were drawn by Christopher Bing. This colophon was compiled by Mary Anne Weeks
Mayo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

hash

>> syntax (following annotation)

(nameClass) container

(pattern) container

* operator

*-nameClass

-nameClass

-pattern

\ \ character

\(character

\) character

* character

\+ character

\- character

\. character

\? character

\[character

\\] character

\^ character 2nd

\{ character

\| character

\} character

\c Perl character class

\C Perl character class

\d Perl character class

\D Perl character class

\i Perl character class

\I Perl character class

\n character

\r character

\s Perl character class

\S Perl character class

\t character

\w Perl character class

\W Perl character class

|= operator

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ambiguity

 accepting

 datatype

 different types

 name class

 regular expression

 regular hedge grammars

 RELAX NG

 versus determinism

ambiguous patterns, glossary definition

ambiguous schemas, downsides to

annotations

 applications [See application annotations]

 conversion

 DTDs

 Dublin Core

 following

 for applications

 for documentation purposes [See documentation annotations]

 for extension

 grammar

 initial

 losing the relation between link and location

 preprocessing

 simplification and

 that extend features of RELAX NG

 that help generate something

 value and param patterns

 W3C XML Schema

anyName element 2nd 3rd

application annotations

 conversion

 extension

 preprocessing

assert

assignMethod

atomic patterns

atoms

 character classes

 special characters

 wildcards

attribute element

attribute pattern 2nd

 compact syntax and

 pattern normalization

attributes

 adding to element

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 confusing usage with elements

 constraints on

 default namespace and

 definitions

 duplication

 duplication

 extending

 having different datatypes in an enumeration

 identifiers, good candidates for being

 in instance documents

 limitations

 whitespace normalization

 with duplicate names

author.rnc file

author.rng file

available identifier

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

base64 datatype

binary content

bizarre patterns

blocks

book-content.rnc file

bookcontent.rng file

boolean datatype

Boydens, Isabelle

building blocks

 independent vocabularies

 needing a feature missing in RELAX NG

 text tools

 XML tools

built-in type library

byte datatype

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C pre-processor (CPP)

canonical formats

caret (^) 2nd

carriage return

categories

chameleon design, glossary definition

chameleon schemas

 pros and cons

 putting in library

character classes

 glossary definition

 intersections of

 user-defined

Character Repertoire Validation (DSDL Part 7)

Character Repertoire Validation for XML (CRVX)

character-element.rnc file

character-element.rng file

character.rnc file

character.rng file

child elements and fixed order

choice element

 combining name classes

 name-class

 pattern

choice pattern 2nd

 combining by

 combining with group pattern

 combining with value pattern

 double parentheses

 pattern normalization

Clark, James 2nd

 foreword

 simplicity

classical Perl character class, glossary definition

closed schemas

closed-schema.rnc file

closed-schema.rng file

CName production

co-occurrence constraint

 conversion

colonized names

combinations and parentheses

combine attribute (XML syntax)

comments

comments and documentation annotations

common principles for annotating RELAX NG

 alternatives and workarounds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 annotating groups of definitions

 using compact syntax

 using XML syntax

common-content named pattern

compact syntax

 annotating RELAX NG using

 escaping named pattern identifiers in

 first

 initial annotations and

 losing information in translation

 newlines within quotes

 overview

 position-sensitivity

 reference

 translating between XML syntax using Trang

 versus simple form

 versus XML syntax

components

 making optional

 WXS

compositors

 glossary definition

 group

 interleave [See interleave compositors]

 simple patterns, differentiations between

containers, elements that act as

content models

 bad example

 constraints

 glossary definition

 mixed [See mixed content models]

 patterns used as building blocks in libraries of [See building blocks]

content-oriented schema style, example

conversion annotations

Cowan, John

CRVX (Character Repertoire Validation for XML)

Cunningham, Ward

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

data element

data pattern versus text pattern

datatypeLibrary, declaration of

datatypeName literal

datatypeName param exceptPattern

datatypeName production

datatypes

 ambiguity

 assignment and RELAX NG

 boolean

 byte

 decimal 2nd

 declaration

 double

 DTD compatibility

 examples

 float

 glossary definition

 int

 integer

 libraries

 long

 native and whitespace

 negativeInteger

 nonNegativeInteger

 nonPositiveInteger

 positiveInteger

 reference

 short

 unsignedByte

 unsignedInt

 unsignedLong

 unsignedShort

 W3C XML Schema

 language

 Name

 NCName

 NMTOKEN

 NMTOKENS

 normalizedString

 string

 token

Datatypes (DSDL Part 5)

date datatype

date formats

 patterns and

dateTime datatype

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dc\:copyright element

DCMI (Dublin Core Metadata Initiative)

decimal datatype 2nd

decimal separator

decl

Declarative Document Architectures (DSDL Part 8)

default namespace 2nd 3rd

 attributes and

 declaration

 using prefixes

define element

 grammar merge

 XML syntax

define pattern, pattern normalization

definitions

 annotating groups of

 fine-grained

 not defined by group

derivative algorithm

derived types (W3C XML Schema)

determinism versus ambiguity

deterministic patterns, glossary definition

difference between sets

disambiguating schemas made easier

disambiguation rules, making explicit

div element

 embedded within other div elements

 grammar-content

 include-content

 pattern normalization

div pattern, annotating groups of definitions

DocBook annotations

DocBook project

DOCTYPE declaration

Document Object Model [See DOM]

Document Schema Definition Languages [See DSDL]

Document Type Definition [See DTD]

documentation

documentation annotations

 comments

 DocBook annotations

 Dublin Core annotations

 RDDL annotations

 RELAX NG DTD compatibility comments

 SVG annotations

 XHTML annotations

documents

 infosets and

 instance [See instance documents]

 keeping independent of applications

 schema [See schemas]

DOM (Document Object Model)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 glossary definition

dot character (.)

double datatype

double parentheses and choice

DSDL (Document Schema Definition Languages)

 glossary definition

 offerings

 parts

DTD (Document Type Definition) 2nd

 annotations to generate

 compatibility datatypes

 RELAX NG compatibility comments

 type ID

 versus W3C XML Schema

DTD Schema

 relative order of child elements

DTD-like RELAX NG schema

 example

 updating

Dublin Core

 (dc) elements, adding to grammar

 annotations 2nd

 example with initial annotations

Dublin Core Metadata Initiative (DCMI)

DuCharme, Bob

duration lexical space

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

EBNF (Extended Backus-Naur Form)

 grammar 2nd

 production reference

ebXML

element element

element pattern 2nd

 compact syntax and

 pattern normalization

element type, glossary definition

elements

 anyName

 applying namespaces to

 attribute

 choice

 name-class

 pattern

 confusing usage with attributes

 data

 define

 div

 grammar-content

 include-content

 empty [See empty elements]

 except

 except-name-class

 pattern

 externalRef

 glossary definition

 grammar

 group

 include

 interleave

 list

 mixed

 name

 notAllowed

 nsName

 oneOrMore

 optional

 param

 parentRef

 ref

 reference

 start

 text

 that act as containers

 value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 zeroOrMore

embedded grammars

 validation and

empty content, glossary definition

empty elements 2nd

 simplification

empty patterns

 text patterns and

ENTITIES lexical space (W3C XML Schema)

ENTITY lexical space (W3C XML Schema)

entity references and compact syntax

enumeration facet

enumerations

escape format

escaping newline character

Examplotron

Examplotron schema

 RELAX NG schema generated from

except elements

 except-name-class

 pattern

 used in data pattern

except name class

except patterns

 exclusions and

 generalizing

 pattern normalization

exclusions and except pattern

extensibility [See also annotating schemas]

 annotations for extension

 of named patterns

Extensible Markup Language [See XML]

extensible schemas [See also granularity]2nd

 defining named patterns for content rather than elements

 elements that act as containers

 fixed results

 open and

 root elements as grammar elements

 wildcards and [See also open schemas]2nd

Extensible Stylesheet Language Transformations [See XSLT]

external pattern

external pluggable libraries, RELAX NGs reliance on

external references

 embedding grammars

 referencing patterns in parent patterns

 using

 with flat schemas

 with Russian doll schemas

externalRef element

externalRef patterns

 direct inclusion

 feature common to include pattern and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 simplification and

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

facets

 applying to improve library schema

 defined by W3C XML Schema

 enumeration

 fractionDigits

 length

 maxExclusive

 maxInclusive

 maxLength

 minExclusive

 minInclusive

 minLength

 pattern

 totalDigits

 whiteSpace

 glossary definition

fine-grained definitions

first schema

 complete

 flattening

fixed results and extensible schemas

fixed values

flat schemas, using external references with

flat-content.rnc file

flat-content.rng file

flat.rnc file

flat.rng file

float datatype

float types

following annotations

 initial annotations turning into

foreign attributes, defining

foreign namespaces

 wildcards

 constructing

 using

foreign nodes

 adding through combination

 defining

 interleave pattern and

 where to allow

foreign-nodes wildcard

foreign.rnc file

foreign.rng file

formal public identifier (FPI)

fractionDigits facet

free formats

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

gDay lexical space

gMonth lexical space

gMonthDay lexical space

GNU Free Documentation License

grammar element

 root elements

 start element and

grammar pattern

grammarContent production

grammars

 adding Dublin Core (dc) elements

 annotations

 embedding

 glossary definition

 merging

 combining definitions

 combining definitions by choice

 combining definitions by interleave

 complete schema example

 main drawback

 replacing definitions

 simplification and

 without redefinition

granularity

 defining a named pattern for each element

 maximizing

group compositor

group element

group pattern

 combining with choice pattern

 pattern normalization

grouping

gYear datatype

gYearMonth datatype

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

hash (#)

hexBinary datatype

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ID datatype

 DTD compatibility

ID lexical space (W3C XML Schema)

identifier assignMethod pattern

identifier production

identifierOrKeyword production

identifiers, good candidates for being attributes

IDREF datatype

 DTD compatibility

IDREF lexical space (W3C XML Schema)

IDREFS datatype

 DTD compatibility

IDREFS lexical space (W3C XML Schema)

include element

include pattern

 feature common to externalRef pattern and

 simplification and

includeContent production

infosets

 augmenting

 glossary definition

 serialization of XML

inherit production

inheritance and simplification

initial annotations

 truning into following annotations

instance annotation

instance documents

 as schemas

 attributes in

 glossary definition

 sample

 validating independently of prefixes being used

int datatype

integer datatype

interleave compositors 2nd

 validation and

interleave elements

 relative order of child elements and

interleave patterns

 combination for extensible schemas

 combining

 downside

 foreign nodes and

 limitations of

 limitations on

 list and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 more than one text pattern in

 order variation and

 pattern normalization 2nd

 restrictions 2nd

 text pattern in

 why itÕs called

intersections of character classes

isbn and facets

ISO 8601 2nd

ISO DSDL activity

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JavaDoc

Jelliffe, Rick

Jing RELAX NG processor

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kawaguchi, Kohsuke

keyword production

Knuth, Donald

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

language datatype (W3C XML Schema)

leading zeros, getting rid of

length facet

lexical processing

lexical space

 duration

 ENTITIES

 ENTITY

 gDay

 glossary definition

 gMonth

 gMonthDay

 ID

 IDREF

 IDREFS

 time

 W3C XML Schema

library, which should be used

library.rnc file

library.rng file

line breaks

list element

list pattern

 pattern normalization

 without defining cardinality

lists

 constraints on

 text nodes as

literal production

literal segment

 enclosed in double quotes

 enclosed in single quotes

 enclosed in three double quotes

 enclosed in three single quotes

literalSegment production

literate programming

litprog

local name

 glossary definition

 XML

localization

long datatype

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

matruschka dolls

maxExclusive facet

maxInclusive facet

maxLength facet

meta element (XHTML)

minExclusive facet

minInclusive facet

minLength facet

mixed compositor

mixed content models 2nd

 with order

mixed content, glossary definition

mixed element

mixed pattern 2nd

 pattern normalization

Modular Namespaces (MNS)

Multi-Schema Validator (MSV) 2nd

Murata, Makoto 2nd

 foreword

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

name classes

 abiguity

 combining using choice element

 defining for any name from "lib" namespace

 first example of

 normalization and simplification

 operating on specific element or attribute names

 overlap

 pattern normalization

 patterns and

Name datatype (W3C XML Schema)

name element

name name class

nameClass production

nameClass|nameClass production

named patterns

 combining

 defining 2nd

 defining for content rather than elements

 escaping identifiers in compact syntax

 extensibility of

 glossary definition

 referencing

 referencing in compact syntax

 strict scoping

Namespace Routing Language (NRL)

 validating SOAP message containing one or more XHTML documents

Namespace Switchboard

Namespace- and Datatype-Aware DTDs (DSDL Part 9)

namespaces

 applying to elements

 assigning prefixes to

 attributes

 challenges of

 declaed using xmlns attribute

 declarations

 declaring in schemas

 default 2nd [See default namespace]

 elements

 foreign [See foreign namespaces]

 glossary definition

 goals of 2nd

 independent vocabularies

 introduction

 mixing default and nondefault

 removing from anyName using except and nsName

 to manage translation to W3C XML Schema

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespaceURILiteral production

native datatypes and whitespace

native types versus W3C XML Schema datatypes

NCName datatype (W3C XML Schema)

negativeInteger datatype

newline

newline character, escaping

NMTOKEN datatype (W3C XML Schema)

NMTOKENS datatype (W3C XML Schema)

nodes

 occurrence constraints on

non-deterministic schemas

noncolonized name

nonNegativeInteger datatype

nonPositiveInteger datatype

normalization

 simplification and

 suppressing

 whitespace

normalize-space() function (XPath)

normalizedString datatype (W3C XML Schema)

notAllowed element

notAllowed patterns

 simplification

NOTATION (W3C XML Schema)

ns

nsName element

nsName exceptNameClass name class

numeric datatypes

numeric types

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

occurrence constraints on nodes

oneOrMore element

oneOrMore pattern

 compact syntax and

 pattern normalization

open schemas

 case for

 extensibility and

open vocabulary

OpenOffice spreadsheet's XML format

operators, mixing

optional element

optional pattern

 compact syntax and

 pattern normalization

or-ing

order between subelements

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

param element

param pattern, annotating

param production

parent pattern

parent referencing

parentheses and combinations

parentRef element

parentRef pattern

 special notes

Path-Based Integrity Constraints (DSDL Part 6)

pattern

pattern compositions

pattern facets

 common

 fixed format

 float types

 interpreting values

 new

 numeric types

 peculiarities

 regular expressions in

 time zones

 Unicode blocks

 versus Perl regular expressions

 word counting

pattern normalization

 attribute pattern

 choice patterns

 define pattern

 div elements

 element pattern

 except patterns

 group pattern

 interleave pattern

 interleave patterns

 list pattern

 mixed pattern

 mixed patterns

 name classes

 oneOrMore pattern

 optional pattern

 optional patterns

 simplification and

 text pattern

 zeroOrMore pattern

 zeroOrMore patterns

pattern qualified as optional

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pattern&pattern pattern

pattern* pattern

pattern+ pattern

pattern,pattern

pattern?

pattern|pattern

patterns

 bizarre

 difference between other approaches and

 example

 glossary definition

 introduction

 name classes and

 referencing in parent patterns

 reuse

 combining definitions

 combining definitions by choice

 combining definitions by interleave

 replacing definitions

 without redefinition

 that match a single text node

 used as building blocks in libraries of content models [See building blocks]

 uses

Perl character classes

Perl regular expression

PhpWiki

pieces, glossary definition

pivot format

positiveInteger datatype

Post-Schema Validation Infoset (PSVI)

prefixes, applying to namespaces

preprocessing annotations 2nd

primitive types (W3C XML Schema)

processing instructions (PIs)

 compact syntax

 lack of namespace support

PSVI (Post-Schema Validation Infoset)

PUBLIC identifier (XML)

Python type library

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

QName datatypes 2nd

qualification element

qualified name

 glossary definition

qualified names

 versus syntax

quantifiers

 using to limit the number of leading zeros

QuotedIdentifier production

quotes

 double

 single

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

RDDL documents

 generating from annotated RELAX NG schemas

recursive content models, glossary definition

recursive models 2nd

recursive patterns, glossary definition

redundancy and maintenance of schema

ref element

regular expressions

 ambiguity

 glossary definition

 in pattern facets

Regular Grammar-Based Validation (DSDL Part 2)

regular hedge grammars, ambiguous

relative order between subelements

relative order of child elements

 other schema languages and

RELAX Namespace

RELAX NG

 datatype assignment and

 downside to

 DTD compatibility comments

 glossary definition

 key area related to more functionality

 main rival

 mathematical backgound

 overview 2nd

 patterns [See patterns]

 schemas [See schemas]

 specification

 simplification

 XML Processing Instructions and

 XSLT and

RELAX, glossary definition

report

Resource Directory Description Language

Resource Directory Description Language (RDDL)

 annotations

restricting schemas

restrictions

 removal of

RFC 2045 2nd

Riggs, Simon

root elements

 as grammar elements

 definition of in Russian doll-style

Rule-Based Validation (DSDL Part 3)

rules

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Russian doll design, glossary definition

Russian doll schemas

 definition of root element

 modeling documents with

 structure of

 using external references with

russian-doll.rnc file

russian-doll.rng file

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

SAX (Simple API for XML)

 glossary definition

Scalable Vector Graphics (SVG) annotations

Schema Adjunct Framework (SAF)

schemas

 adding SQL-based processing information to

 ambiguous [See ambiguity]

 annotating [See annotations]

 chameleon [See chameleon schemas]

 complete, creating

 defining restricted without complete redefinition

 documents

 extensible [See extensible schemas]

 first [See first schema]

 flattening

 generating

 generating documentation from [See documentation annotations]

 instance documents as

 languages

 different types

 main goal

 open

 redundancy and maintenance of

 Russian doll [See Russian doll schemas]

 that don't have grammar element as root

 validating incoming documents from a variety of patterns

 without target namespace

schematizing XML documents [See validating XML documents]

Schematron

 glossary definition

 rules

 schema

see-also attribute

Selection of Validation Candidates (DSDL Part 4)

sequences, unordered

serialization

 automated

 of RELAX NG schemas

 of XML infoset

SGML (Standard Generalized Markup Language)

 glossary definition

short datatype

Simple API for XML (SAX)

simple content, glossary definition

simple form versus compact syntax

simple patterns, differentiations between compositors and

simple validation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simplification

 algorithm

 annotations and

 constraints

 empty elements

 externalRef patterns

 final cleanup

 glossary definition

 grammar merge

 include patterns

 inheritance

 name class normalization

 normalization

 notAllowed patterns

 pattern normalization

 RELAX NG specification

 whitespace

SourceForge

special characters

 glossary definition

spreadsheets

SQL-based processing information to schema, adding

square brackets

Standard Generalized Markup Language [See SGML]

start element

 grammar element and

 grammar merge

start patterns

 combining by interleave

 constraints

 glossary definition

 strict scoping

string datatypes

 difference between W3C XML string datatype and

 in attribute values

 lack of whitespace normalization

 W3C XML Schema 2nd

 when to use

syntax versus qualified names

SYSTEM identifier (XML)

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

T separator

tabulation

target namespace, schemas without

Tennison, Jeni

text element

text nodes

 as lists

 restricting

 transforming into canonical formats

text patterns 2nd

 compact syntax and

 empty patterns and

 having to be optional

 in interleave pattern

 pattern normalization

 used with group or choice pattern

 versus data pattern

text replacement with CPP

text values, constraining

time formats

time lexical space

time zones

 pattern facets

token datatype

 confusion with W3C XML schema

 difference between W3C XML token datatype and

 W3C XML Schema

tokens, listing

topLevel production

Topologi multivalidator

totalDigits facet

Trang tool

 glossary definition

 translating between compact and XML syntax using

TREX, glossary definition

tx\:enableAbstractElements attribute

type library, built-in

types, deriving

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UBL (Universal Business Language) OASIS Technical Committee

UML (Unified Modeling Language)

 XML mapping

unambiguous patterns

 glossary definition

 which can't be rewritten in deterministic form

unambiguous schemas

Unicode

 blocks 2nd

 glossary definition

 category, glossary definition

 character class

 glossary definition

Unified Modeling Language (UML)

Uniform Resource Identifiers [See URIs]

Uniform Resource Locator, glossary definition

unordered group

unordered sequences

unsignedByte datatype

unsignedInt datatype

unsignedLong datatype

unsignedShort datatype

URIs (Uniform Resource Identifiers)

 glossary definition

 W3C XML Schema

URL (Uniform Resource Locator), glossary definition

user-define character classes

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

valid, glossary definition

validating XML documents

validation

 aspects of

 best way

 embedded grammars and

 interleave compositor and

 simple

Validation Management (DSDL Part 10)

value element

value pattern

 annotating

 co-occurrence constraints

 combining with choice pattern

 fixed values

value space (W3C XML Schema)

 glossary definition

verbosity, reducing

vocabularies

 defining extensible formats

 differences between RELAX NG and W3C XML Schema

 document

 independent

 open

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

W3C (World Wide Web Consortium), glossary definition

W3C XML Schema (WXS) 2nd

 annotations to generate

 compatibility

 datatypes that can be used in RELAX NG schema

 datatypes versus native types

 facets [See facets, defined by W3C XML Schema]

 mixing elements

 predefined datatypes

 relative order of child elements

 time-zone support

 type library

 versus DTD

Walsh, Norm

well-formed, glossary definition

whitespace

 compact syntax and

 glossary definition

 native datatypes and

 normalization

 string datatype

 processing

 simplification and

whiteSpace facet 2nd

whitespace normalization

WikiWikiWeb

wildcards

 atoms

 constructing

 extensibility and

 traps to avoid

 using

World Wide Web Consortium [See W3C]

WXS [See W3C XML Schema]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XHTML

 2.0

 Metainformation Module

 reexamining

 Scripting Module

 Structure Module

 annotations

 constraints

 documentation

 Working Group

XInclude

 glossary definition

XLink

 example with initial annotations

 using through through attributes

XML (Extensible Markup Language)

 comments

 DOCTYPE declaration

 DOCTYPE declarations

 document models

 glossary definition

 Information Set [See infosets]

 local name

 namespaces [See namespaces]

 parsed entities

 Processing Instructions and RELAX NG

 PUBLIC identifier

 schema languages

 syntax

 annotating RELAX NG using

 translating between compact syntax using Trang

 versus compact syntax

 SYSTEM identifier

 UML mapping

XML Validation Interoperability Framework (XVIF)

xml\:lang

xmlns 2nd

xmlns attribute

 namespace declared using

XPath

 glossary definition

 node sets

 normalize-space() function

xsd\:anyURI datatype 2nd

xsd\:base64Binary datatype

xsd\:boolean datatype

xsd\:byte datatype 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xsd\:date datatype

xsd\:dateTime datatype

xsd\:decimal datatype

xsd\:double datatype

xsd\:duration datatype

xsd\:ENTITIES datatype

xsd\:ENTITY datatype

xsd\:float datatype

xsd\:fractionDigits

xsd\:gDay datatype

xsd\:gMonth datatype

xsd\:gMonthDay datatype

xsd\:gYear datatype

xsd\:gYearMonth datatype

xsd\:hexBinary datatype

xsd\:ID datatype

xsd\:IDREF datatype

xsd\:IDREFS datatype

xsd\:int datatype

xsd\:integer datatype 2nd

xsd\:language datatype

xsd\:long datatype

xsd\:Name datatype

xsd\:NCName datatype

xsd\:negativeInteger datatype

xsd\:NMTOKEN datatype

xsd\:NMTOKENS datatype

xsd\:nonNegativeInteger datatype

xsd\:nonPositiveInteger datatype

xsd\:normalizedString datatype

xsd\:NOTATION datatype

xsd\:positiveInteger datatype

xsd\:QName datatype

xsd\:short datatype

xsd\:string datatype

xsd\:time datatype

xsd\:token datatype 2nd

xsd\:totalDigits datatype

xsd\:unsignedByte datatype

xsd\:unsignedInt datatype

xsd\:unsignedLong datatype

xsd\:unsignedShort datatype

XSLT (Extensible Stylesheet Language Transformations)

 glossary definition

 RELAX NG and

 transformations

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

zeroOrMore element

zeroOrMore patterns

 compact syntax and

 pattern normalization 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Copyright
	Foreword by James Clark
	Foreword by Murata Makoto
	Preface
	Who Should Read This Book?
	Who Shouldn't Read This Book?
	Organization of This Book
	Conventions Used in This Book
	Comments and Questions
	Powered by WikiML
	Acknowledgments

	Part I: Tutorial
	Chapter 1. What RELAX NG Offers
	1.1 Diversity
	1.2 Keeping Documents Independent of Applications
	1.3 Validation Has Many Aspects
	1.4 The Best Way to Validate XML Document Structures
	1.5 RELAX NG's Diverse Applications
	1.6 RELAX NG as a Pivot Format
	1.7 Why Use Other Schema Languages?

	Chapter 2. Simple Foundations Are Beautiful
	2.1 Documents and Infosets
	2.2 Different Types of Schema Languages
	2.3 A Simple Example
	2.4 A Strong Mathematical Background
	2.5 Patterns, and Only Patterns

	Chapter 3. First Schema
	3.1 Getting Started
	3.2 First Patterns
	3.3 Complete Schema

	Chapter 4. Introducing the Compact Syntax
	4.1 First Compact Patterns
	4.2 Full Schema
	4.3 XML or Compact?

	Chapter 5. Flattening the First Schema
	5.1 Defining Named Patterns
	5.2 Referencing Named Patterns
	5.3 The grammar and start Elements
	5.4 Assembling the Parts
	5.5 Problems That Never Arise
	5.6 Recursive Models
	5.7 Escaping Named Pattern Identifiers in the Compact Syntax

	Chapter 6. More Complex Patterns
	6.1 The group Pattern
	6.2 The interleave Pattern
	6.3 The choice Pattern
	6.4 Pattern Compositions
	6.5 Order Variation as a Source of Information
	6.6 Text and Empty Patterns, Whitespace, and Mixed Content
	6.7 Why Is It Called interleave?
	6.8 Mixed Content Models with Order
	6.9 A Restriction Related to interleave
	6.10 A Missing Pattern: Unordered Group

	Chapter 7. Constraining Text Values
	7.1 Fixed Values
	7.2 Co-Occurrence Constraints
	7.3 Enumerations
	7.4 Whitespace and RELAX NG Native Datatypes
	7.5 Using String Datatypes in Attribute Values
	7.6 When to Use String Datatypes
	7.7 Using Different Types in Each Value
	7.8 Exclusions
	7.9 Lists
	7.10 Data Versus Text

	Chapter 8. Datatype Libraries
	8.1 W3C XML Schema Type Library
	8.2 DTD Compatibility Datatypes
	8.3 Which Library Should Be Used?

	Chapter 9. Using Regular Expressions to Specify Simple Datatypes
	9.1 A Swiss Army Knife
	9.2 The Simplest Possible Pattern Facets
	9.3 Quantifying
	9.4 More Atoms
	9.5 Common Patterns

	Chapter 10. Creating Building Blocks
	10.1 Using External References
	10.2 Merging Grammars
	10.3 A Real-World Example: XHTML 2.0
	10.4 Other Options

	Chapter 11. Namespaces
	11.1 A Ten-Minute Guide to XML Namespaces
	11.2 The Two Challenges of Namespaces
	11.3 Declaring Namespaces in Schemas
	11.4 Accepting Foreign Namespaces
	11.5 Namespaces, Building Blocks, and Chameleon Design

	Chapter 12. Writing Extensible Schemas
	12.1 Extensible Schemas
	12.2 The Case for Open Schemas
	12.3 Extensible and Open?

	Chapter 13. Annotating Schemas
	13.1 Common Principles for Annotating RELAX NG Schemas
	13.2 Documentation
	13.3 Annotation for Applications

	Chapter 14. Generating RELAX NG Schemas
	14.1 Examplotron: Instance Documents as Schemas
	14.2 Literate Programming
	14.3 UML
	14.4 Spreadsheets

	Chapter 15. Simplification and Restrictions
	15.1 Simplification
	15.2 Restrictions

	Chapter 16. Determinism and Datatype Assignment
	16.1 What Is Ambiguity?
	16.2 The Downsides of Ambiguous and Nondeterministic Content Models
	16.3 Some Ideas to Make Disambiguation Easier

	Part II: Reference
	Chapter 17. Element Reference
	17.1 Elements
	anyName
	attribute
	choice (in the context of a name-class)
	choice (in the context of a pattern)
	data
	define
	div (in the context of a grammar-content)
	div (in the context of a include-content)
	element
	empty
	except (in the context of a except-name-class)
	except (in the context of a pattern)
	externalRef
	grammar
	group
	include
	interleave
	list
	mixed
	name
	notAllowed
	nsName
	oneOrMore
	optional
	param
	parentRef
	ref
	start
	text
	value
	zeroOrMore

	Chapter 18. Compact Syntax Reference
	18.1 EBNF Production Reference
	"""..."""
	"..."
	'''...'''
	'...'
	(nameClass)
	(pattern)
	*-nameClass
	-nameClass
	-pattern
	CName
	QuotedIdentifier
	Top level
	assignMethod
	attribute
	datatypeName
	datatypeName literal
	datatypeName param exceptPattern
	datatypes
	decl
	default namespace
	div
	element
	empty
	external
	grammar
	grammarContent
	identifier
	identifier assignMethod pattern
	identifierOrKeyword
	include
	includeContent
	inherit
	keyword
	list
	literal
	literalSegment
	mixed
	name
	nameClass
	nameClass|nameClass
	namespace
	namespaceURILiteral
	notAllowed
	nsName exceptNameClass
	param
	parent
	pattern
	pattern&pattern
	pattern*
	pattern+
	pattern,pattern
	pattern?
	pattern|pattern
	start
	text

	Chapter 19. Datatype Reference
	xsd:anyURI
	xsd:base64Binary
	xsd:boolean
	xsd:byte
	xsd:date
	xsd:dateTime
	xsd:decimal
	xsd:double
	xsd:duration
	xsd:ENTITIES
	xsd:ENTITY
	xsd:float
	xsd:gDay
	xsd:gMonth
	xsd:gMonthDay
	xsd:gYear
	xsd:gYearMonth
	xsd:hexBinary
	xsd:ID
	xsd:IDREF
	xsd:IDREFS
	xsd:int
	xsd:integer
	xsd:language
	xsd:long
	xsd:Name
	xsd:NCName
	xsd:negativeInteger
	xsd:NMTOKEN
	xsd:NMTOKENS
	xsd:nonNegativeInteger
	xsd:nonPositiveInteger
	xsd:normalizedString
	xsd:NOTATION
	xsd:positiveInteger
	xsd:QName
	xsd:short
	xsd:string
	xsd:time
	xsd:token
	xsd:unsignedByte
	xsd:unsignedInt
	xsd:unsignedLong
	xsd:unsignedShort

	Part III: Appendixes
	Appendix A. DSDL
	A.1 A Multipart Standard
	A.2 What DSDL Should Bring You

	Appendix B. The GNU Free Documentation License
	GNU Free Documentation License
	0. Preamble
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	Addendum: How to use this License for your documents

	Glossary
	A
	C
	D
	E
	F
	G
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X
	Index Z

