
Beyond Java

By Bruce A. Tate

...

Publisher: O'Reilly

Pub Date: September 2005

ISBN: 0-596-10094-9

Pages: 200

Table of Contents | Index

Bruce Tate, author of the Jolt Award-winning Better, Faster, Lighter Java has an intriguing notion
about the future of Java, and it's causing some agitation among Java developers. Bruce believes
Java is abandoning its base, and conditions are ripe for an alternative to emerge.

In Beyond Java, Bruce chronicles the rise of the most successful language of all time, and then lays
out, in painstaking detail, the compromises the founders had to make to establish success. Then, he
describes the characteristics of likely successors to Java. He builds to a rapid and heady climax,
presenting alternative languages and frameworks with productivity and innovation unmatched in
Java. He closes with an evaluation of the most popular and important programming languages, and
their future role in a world beyond Java.

If you are agree with the book's premise--that Java's reign is coming to an end--then this book will
help you start to build your skills accordingly. You can download some of the frameworks discussed
and learn a few new languages. This book will teach you what a new language needs to succeed, so
when things do change, you'll be more prepared. And even if you think Java is here to stay, you can
use the best techniques from frameworks introduced in this book to improve what you're doing in
Java today.

Beyond Java

By Bruce A. Tate

...

Publisher: O'Reilly

Pub Date: September 2005

ISBN: 0-596-10094-9

Pages: 200

Table of Contents | Index

 Copyright

 Preface

 Who Should Read This Book?

 Conventions

 Using Code Examples

 Comments and Questions

 Safari® Enabled

 Acknowledgments

 Chapter 1. Owls and Ostriches

 Section 1.1. Ignorance as a Virtue

 Section 1.2. Boiling Frogs

 Section 1.3. New Horizons

 Section 1.4. The Premise

 Chapter 2. The Perfect Storm

 Section 2.1. Storm Warnings

 Section 2.2. The C++ Experience

 Section 2.3. Clouds Open

 Section 2.4. Fury Unleashed

 Section 2.5. Aftermath

 Section 2.6. Moving Ahead

 Chapter 3. Crown Jewels

 Section 3.1. Language and JVM Design

 Section 3.2. The Internet

 Section 3.3. Enterprise Integration

 Section 3.4. Community

 Section 3.5. Breaking the Myths

 Chapter 4. Glass Breaking

 Section 4.1. Java's New Job Description

 Section 4.2. Basic Java Limitations

 Section 4.3. Typing

 Section 4.4. Primitives

 Section 4.5. Parting Shots

 Section 4.6. Why Not Just Fix Java?

 Chapter 5. Rules of the Game

 Section 5.1. Java Raises the Bar

 Section 5.2. Enterprise Integration

 Section 5.3. Generating the Buzz

 Section 5.4. Language Features

 Section 5.5. A Few Potential Suitors

 Chapter 6. Ruby in the Rough

 Section 6.1. About Ruby

 Section 6.2. Applying Some Structure

 Section 6.3. Breaking It Down

 Chapter 7. Ruby on Rails

 Section 7.1. The Numbers Game

 Section 7.2. Rails by Example

 Section 7.3. Under the Hood

 Section 7.4. The Essence

 Chapter 8. Continuation Servers

 Section 8.1. The Problem

 Section 8.2. Continuations

 Section 8.3. Continuation Servers

 Section 8.4. Seaside

 Section 8.5. A Seaside Example

 Section 8.6. So What?

 Chapter 9. Contenders

 Section 9.1. The Primary Contenders

 Section 9.2. Minor Contenders

 Section 9.3. The Next Big Thing

 About the Author

 Colophon

 Index

Beyond Java™

by Bruce A. Tate

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Michael Loukides

Production Editor: Darren Kelly

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Beyond Java, the image of a bassaris, and related trade dress are trademarks of
O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10094-9

[M]

Preface
In March of 2005, I was shocked and honored to get the word that one of my books, Better, Faster,
Lighter Java (O'Reilly), won a Jolt award for technical excellence. I talked about how Java?
developers could buck standing conventions to build better applications, faster than before. That book
will always have a special place in my heart. Yet, throughout the process, something was in the way,
and I couldn't quite put my finger on it.

Around this time, one of my customers was building an application consisting of a complex database
schema with a web-based user interface. We'd been using Spring and Hibernate with Web Work, a
common stack for lightweight Java development, and we'd been generally pleased. Some things
bugged us, though: the amount of repetition, the proliferation of XML configuration, and the pace of
our changes. On a whim, we tried Ruby on Rails, a surprisingly productive and innovative framework
that's sweeping quickly through non-Java communities, and is making some noise among Java
architects, too. We were shocked with our productivity, and we moved the project to the new
foundation.

Something clicked into place for me. For this kind of application, Java itself was in the way. Remove it
from the equation, and I could reduce the amount of code by a factor of four, drive the XML down to
one-tenth of what it was, and achieve stunning productivity, with good performance. Better still, the
concepts in Better, Faster, Lighter Java still applied. For other projects, if I needed the community
and tools that Java offered, I could use it instead. If I didn't need Java, I could take the principles in
BFLJ to the extreme. A dam inside me broke, and this new book started pouring out. I had a
message.

Months later, I found an audience, thousands of miles and 19 hours from home. I fidgeted nervously
before the Java User's Group. I'd certainly addressed larger groups, but this trip was different. In this
case, the Norwegian Java User's Group had paid my travel expenses to Oslo, not to sing the praises
of Spring, or Hibernate, or agile development, but to call their baby ugly. It was hard for me. After
writing the bestsellers, getting the Jolt, and building a thriving consulting practice in a down
economy, I wanted the Java train to roll on, unstoppable, always building on an ever-strengthening
foundation. I wanted Java to send my productivity through the roof, and for the impressive
community and brain power to solve all the tough problems that Java faces today, but nothing lasts
forever.

In the talk, I didn't pick an eventual winner. I laid out the reasons for Java's success, and then talked
through its most serious problems. I showed some alternative languages and frameworks, as I saw
them. Throughout the talk, I pointed out that conditions are ripe for an alternative to emerge. As I
addressed the hospitable group, I answered questions and read faces. A few looked hostile, or hurt.
Most others showed understanding, and a little fear. They understood my central thrust. For many of
the most common problems that we solve with Java, some other frameworks in other languages can
already do a better job. In some cases, the productivity discrepancy is wide enough to merit a
serious look.

The talk, and the questions, went on way too long, but nobody left. They were surprisingly receptive.
After the presentation, we went out to see some of Oslo. One of the hostile attendees cornered me
for most of the night. The hard questions just wouldn't quit coming:

Why can't we improve Java to cover the shortcomings?

Do the other frameworks and languages that you presented have enough commercial backing?

What about distributed transactions, or web services, or XML support?

How can you find programmers, or train the ones you find?

These questions are real, and they show the tremendous barriers of entry against emerging
languages. My questioner was a gentleman, but he could not completely hide his agitation or his
deep-seated belief that the hurdles for the next successful language are incredibly high, and that we'll
still be coding in Java for the foreseeable future. He could well be right. But I've come to recognize
some real limitations in the Java language, and many of the frameworks that power it. For certain
problems, Java just isn't productive enough for me anymore. I've experienced success with some
alternatives. Though a language can last half a century to support legacy applications, I know no
language can keep its leadership and its luster forever. Java's reign will end. It's not a question of if,
but when.

Who Should Read This Book?

When C++ faded into relative obscurity, many of my best friends got burned, badly. They didn't
recognize that change was in the air, or how violently change could come. Though I have a whole lot
to lose, I'm writing this book because I don't want to see it happen again. If you don't want to be
caught by surprise, you need to read this book.

If you think I'm right, you can start to build your skills accordingly. You might download some of the
frameworks I discuss, and learn a few new languages. This book will teach you what a new language
needs to succeed. If I've gotten lucky and found one of the likely winners, you'll be just a little bit
more prepared when things do change.

If you think I am wrong, you can use the best techniques from the best frameworks written in any
language to improve what you're doing in Java today. New frameworks like PHP, C Omega for .NET,
and Ruby on Rails will come occasionally. You need to know about them, and understand how to
evaluate them.

Either way, you win. It's time to start paying attention again. It's time to look to the horizon, beyond
Java.

Conventions

The following typographical conventions are used in this book:

Italic

Used for filenames, directories, emphasis, and first use of a technical term.

Constant width

Used in code examples and for class names, method names, and objects.

Constant width italic

Indicates an item that should be replaced with an actual value in your program.

Constant width bold

Used for user input in text and in examples showing both input and output. Also used for
emphasis in code, and in order to indicate a block of text included in an annotated call-out.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact O'Reilly for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Beyond Java by Bruce A. Tate. Copyright 2005 O'Reilly Media,
Inc., 0-596-10094-9."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/beyondjava

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/
http://www.oreilly.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, it
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com

Acknowledgments

This book challenged me more than any other book I've written. I felt that I needed to bolster my
opinions with those of other respected programmers and consultants. I asked for many opinions, and
published some of the responses. Thanks to Mike Clark, Matt Raible, Andrew Hunt, Ramnivas Laddad,
Brett McLaughlin, and Eitan Suez for answering my questions. Thanks especially to Glenn
Vanderburg, Ted Neward, Erik Hatcher, Justin Gehtland, James Duncan Davidson, Jim Weirich, Jamis
Buck, David Heinemeier Hansson, Dion Almaer, Jason Hunter, Richard Monson-Haefel, Stuart
Halloway, and Dennis Sosnoski for agreeing to let me post your interviews in the book. Thanks again
to Justin Gehtland for use of your metrics, and being a partner through two writing projects.

Special thanks go to David Heinemeier Hansson for access to your framework and community from
the inside. When I needed reviewers, you used your influence to find them for me. When I had hard
questions, you answered them. You also provide the irresistible force that is Ruby on Rails. I'm
grateful. I hope this book marks only the beginning of a partnership, and a possible friendship.

Dave Thomas, you have given me the courage and faith to explore things beyond Java. You've been
a role model for me. Your consistent honor and class teach me; your skill with your keyboard and
your voice inspire me; your business sense instructs me. Avi Bryant, thanks for your tireless work
and promotion on the Seaside framework.

Special thanks also go out to Michael Loukides. Supporting me is your job, but I also feel a special
kinship. We've been through a lot together, and I aim for that relationship to continue. You've been
very good for me and my writing career. I hope you've benefited in some small way, too.

After letting my readers down by publishing Spring, A Developer's Notebook before it was ready, I
feel the need to offer some thanks for helping me through the negative press. O'Reilly, you were
great to stand behind me. I felt that I needed to have this book reviewed exhaustively, to prevent
the same mistake from happening twice. Many answered the call. Ted Neward, Venkat Subramaniam,
Michael Koziarski, Jeremy Kemper, Michael Loukides (who gave me advice and ideas far beyond the
usual editorial support), and many others too numerous to list here provided good reviews.

Invariably, some reviewers take on a book as a personal mission. Usually, a book is lucky to have
one such reviewer. This time, I had four. Steve Yegge, Jason Hunter, David Rupp, and Curt Hibbs all
went far beyond the call of duty. They provided help that was stylistic, philosophical, technical, and
even structural. This book is radically different from my initial vision. Thanks to all who contributed.

To Jay Zimmerman and all of those I've met at NoFluffJustStuff, this book is as much yours as it is
mine. You've helped me shape and sharpen these ideas, and you've given me a platform to present
them.

Most of all, I've got to recognize the contributions of one special lady in my life. She propped me up
when I was too low to write, she talked through many of the ideas, she sat through many boring
dinners as I talked through this stuff with anyone who would listen. Her smile fills my soul with the
passion that I need for writing, and gives me a reason to be. We share a common purpose in raising
our daughters, Kayla and Julia, a common foundation of faith in Jesus Christ, an unending hospitality
for weary colleagues on the road, and a sense of adventure in life. Without you, I'm nothing. With

you, I feel like I matter, and my ideas matter. You're a bigger part of this book than you'll ever know.
I love you always.

Chapter 1. Owls and Ostriches
Some kayakers that I know have a death wish. They bomb down Class V runs with reckless abandon.
It seems like a matter of time before they run that waterfall that has trapped deadwood underneath
it. Such an obstacle would trap the boat, and the force of the river would pin the boater underwater.
They're like ostriches, ignoring the danger with their head in the sand.

There's another kind of boater, though. When I first started kayaking, I scouted everything. I would
stop at the most casual Class II+ (beginner) ripple to look it over and set up safety ropes for 45
minutes before making the run. Often, I'd run out of time on a river, and be forced to bomb down a
bottom section to complete it before nightfall. Now, I rarely get out of my boat to scout most minor
rapids. In certain places, it's just not practical. Instead, I use chase boating techniques, invented in
the narrow, steep rivers of the Southeast, to improve my chances. I don't boat this way because I
like danger. In fact, I've honed my instincts to understand where danger is most likely to be. I boat
this way because it lets me focus my scouting time where I need it most. These boaters are the owls.

It comes down to this. I'll often ignore risks involving minor consequences or low frequencies because
dealing with the risk is not wise. Managing the risks properly may take too much effort, money, or
time, opening me up to additional risk, which brings me back to owls and ostriches . Normally, there's
a huge difference between the two, but occasionally, owls will get overconfident or make minor errors
in risk assessment, and convince themselves to run something dangerous without scouting. That's
happened to me. I've run the same creek hundreds of times, and something changes like higher river
levels or the creek bed after a flood. There's a fine line between owls and ostriches. Sometimes, it's
even tough to tell the difference between the two. As a kayaker, even if I've decided to ignore certain
kinds of risks on certain rivers and conditions, I've sometimes got to step back and reassess the risk.
That's the subject of this book.

1.1. Ignorance as a Virtue

In many ways, kayaking is like programming. I've learned an incredible trick. I can be surprisingly
productive by simply ignoring most problems. With a little luck, the problems often just go away.
Such an attitude can work for you or against you. Many post office clerks and minimum-wage fast
food employees have learned that the same technique actually works for their problems, also known
as customers. These are ostriches. If you look closely, you can find some selective, wise application
of ignorancethe owl's trademark. I actually find that most "problems" in programming are merely
potential problems. If you've read any of my books, you know that I preach against the dangers of
premature optimization, and echo the popular agile principle of YAGNI : "You ain't gonna need it." I
usually ignore bloated frameworks that promise to save me time, trusting my instincts to simpler
solutions.

More to the point, I've found that Java does everything that I need, so I haven't looked beyond these
borders for a very long time. Ignorance is bliss. I know some languages are more dynamic, and
possibly more productive in spurts, but in the end, it seems like Java will always win. It's got tens of
thousands of frameworks to do anything from running systems for nuclear reactors to programming
an embedded controller on a power toenail clipper. Many of the best frameworks are even free. I can
always find a Java developer to do what I need. I know that people have made it work to solve
massive problems. And I know that my customers will feel safe and secure. In short, the community
and breadth of Java have always trumped anything that the alternatives have to offer. So I quit
looking. And I'm glad that I did, because it allowed me to focus on building a consulting business and
satisfying my customers instead of doing exhausting research for every new problem.

When a dominant language or technology is in its prime, there's a blissful ignorance stage, when
ignoring alternatives works in your favor. Figure 1-1 shows what I mean. When a new language
arrives with the power and dominance of a Java or C++, you can afford to ignore alternatives for a
while. But if you don't accurately identify the end of the cycle, you can get steamrolled. Suddenly,
your competition has the jump on you, with much better productivity leading to better quality,
improved productivity, and more customers. When you enter the transition time, you'd better start
paying attention.

I admit unashamedly that I liked having my head in the sand. It was easy, and productive, and
politically safe. I bet that many of you Java developers act like me. You may have your own reasons.
Living in this shelter is certainly easierdoing nothing trumps extra work. You might feel saferno one
ever got fired for choosing IBM. (OK, so maybe Component Broker on

Figure 1-1. For a period of time, ignorance is productive, but the ending of
that period can be unpredictable

OS/2 was not such a good idea....) You may have an incredible investment in skills that you believe
will not commute, and if you've invested poorly in your skill set, you may be right. You may be bound
like a Siamese twin to Java by a long-term project or a group based on the language. Like my
reasons, many of these are sound.

1.1.1. Shaken to the Core

After living in blissful ignorance for five years or more, I had an experience that shook me to the
core. I led a new start-up down a path that required what I'd consider three of the most productive
lightweight frameworks out there for web development of persistence applications: Hibernate, Spring,
and Web Work. I knew there were slightly more productive environments for this kind of thing, but
they either would not scale (in terms of complexity or performance), or were not popular enough to
justify the risk.

My partner and I decided to implement a small part of the application in Ruby on Rails, a highly
productive web-based programming framework. We did this not to satisfy our customer, but to
satisfy a little intellectual curiosity. The results astounded us:

For the rewrite, we programmed faster. Much faster. It took Justin, my lead programmer, four
nights to build what it had taken four months to build in Java. We estimated that we were
between 5 and 10 times more productive.

We generated one-fourth the lines of code; one-fifth if you consider configuration files.

The productivity gains held up after we moved beyond the rewrite.

The Ruby on Rails version of the application performed faster. This is probably not true of all
possible use cases, but for our application, the RoR active record persistence strategy trumped
Hibernate's Object Relational Mapping (ORM) , at least with minimal tuning.

The customer cared much more about productivity than being on a safe Java foundation.

As you can well imagine, this shook my world view down to the foundation. I'm now frantically trying
to catch up. It seems that conditions on the river changed without my noticing. I've got to start
scouting again.

1.2. Boiling Frogs

Let's look at it still another way. You've doubtlessly heard that if you put a frog in hot water, it will
leap out, but if you slowly bring tepid water to a boil, the frog will die contentedly. And of course,
that's the debate that I hope to trigger in this book. Are the waters around us warming? Notice at the
end of my introduction, the owl and the ostrich are exactly the same when it comes to consequences.
They may not recognize it, but motivations don't matter one little bit. If the water starts to boil, if the
conditions on the river change, they'll both die.

This past year, I decided to wake up to my surroundings to test the water around me. I learned both
Ruby and aspect-oriented programming (AOP) . After checking the temperature, I think the water is
actually heating up. It's not boiling yet, and I don't know if it will ever boil. But I do know that I'm
going to keep a close eye on the temperature for a while, and I hope to convince you to do the same.
Let me tell you why.

1.2.1. Danger Signs

A large number of the applications that we write put a web-based frontend over a database,
sometimes with additional business rules and sometimes without. Yet, after more than five years of
solving this problem over and over, we still can't solve it very quickly in the Java space. Further,
most Java framework developers are making incremental changes that won't truly revolutionize web
development. Building a new team to solve this problem in the right way is a demanding job. Building
a team from, say, COBOL programmers, is nearly impossible. The language is too alien, the
frameworks too extensive, and the landscape too unstable. Even with seasoned developers, it takes a
surprising amount of code to get even simple applications off the ground.

Jason Hunter: The Next Big Thing

Author of Java Servlet Programming

Jason Hunter works as a lead applications engineer at Mark Logic. He's the author of

Java Servlet Programming (O'Reilly). As Apache's representative to the Java Community
Process Executive Committee, he established a landmark agreement allowing open
source Java. He is publisher of Servlets.com and XQuery.com, is an original contributor
to Apache Tomcat, is a member of the expert groups responsible for Servlet, JSP, JAXP,
and XQJ API development, and has participated in the W3C XQuery Working Group. He
also co-created the open source JDOM library to enable optimized Java and XML
integration.

Is Java in
danger of
losing its
leadership
position?

JH: Java's already ended its leadership run. It happened
maybe two years ago when the best brains in the industry
stopped focusing on Java as a technology and started splitting
off into other areas of interest. It's only gotten worse as of
late. The departure of Josh Bloch and Neal Gaftner to Google is
a high-profile sign of the changing tide. But they're not alone.
If you want to push the envelope these days, you don't do it by
innovating on Java. You may do it with Java, but not on Java.

It doesn't mean Java's dead. It just means Java isn't cutting
edge anymore. It's plenty understood, plenty stable, and
entirely ready for outsourcing.

What's next? JH: What's next? I don't think there's one thing. There's
definitely not one language. Java's still the ubiquitous
language. The innovation now is happening on top. Exciting
areas: web remoting (a.k.a. Ajax), search (a.k.a. Google and
XQuery), and folksonomies (a.k.a. flickr tags).

I have a very practical way of evaluating what is the hot
technology: [determining] what earns you the most money
being a trainer of that technology. Java definitely was the hot
technology for years. I earned twice what the C++ trainers
were receiving. It wasn't that Java was harder, just that there
was more demand than supply.

If you train on something commoditized (like C++ was and
Java is now), you get mass-market rates. If you train on
something too bleeding edge, you don't get enough customers.

I don't see any movement right now that's got the same huge
swell potential as Java had. What are the "alpha geeks " doing,
as Tim O'Reilly calls them? Well, James Davidson dug deeply
into the Mac. But there's not a huge amount of room for
experts in that market. There aren't enough business dollars to
be earned. I've gone into XQuery, which I've found a fun and
useful way to bring search ideas "in-house" and put you in
control of what you find and what you do with it. Mike Clark
became an expert on automation. My advice to people without
a target yet is to learn Subversion and help companies
transition from CVS to SVN.

But we're all going in separate ways. We've agreed on the Java
base, but are diverging on what we do with that now-
ubiquitous standard.

Your questions are very focused on Java and "alternatives to
Java." The Web wasn't an alternative to Windows. It was
different. The tech phase we're in now isn't about an
alternative to Java. It's different. We're going to take Java for
granted just like we take CPUs for granted: it's necessary. It
was once the place where all the money was; now it's more of
a commodity.

1.2.2.

1.2.2.1. Complexity

Java seems to be moving away from its base. You might solve the hardest problems more easily, but
it's much harder to create simple web apps than it ever has been before. James Duncan Davidson
calls this problem approachability . When Java was young, you didn't have to know much to build a
basic applet. Now, to build a simple web app using the most popular frameworks, you need to know
much more.

True, open source tools are changing the productivity of Java dramatically, in the best possible ways.
Tremendous tools like Hibernate and Spring can let you build enterprise-strength applications with
much less effort. But it can take a whole year to confidently learn how to wield these tools with skill.
AOP can also help, by letting you write plain old Java objects (POJOs) for your business rules, and
isolate services in prepackaged aspects like security and transactions. These abstractions, though,
make an ever-rising river for the novice to navigate. My question is this: how high is too high? I think
we're already getting too high for most novices. I no longer feel comfortable telling a client that they
can retrain the average COBOL programmer on Java. There's just too much to learn, and it takes too
much time.

In the past, complex problems drove higher abstraction. When computers got too big for people to
code with wires, experts programmed with machine code. When those programs got too big for
people to understand, they organized the machine codes and data with symbols in assembler
language. Rising complexity led to high-level languages, structured programming, and object-
oriented programming. My contention is that this higher river of complexity will flood, forcing us to
adopt a new abstraction, sooner rather than later.

1.2.2.2. Rapid revolution

There's been an incredible amount of innovation around Java in the past three years. You've
experienced a transition from the heavyweight containers like EJB to lightweight containers like
Spring. You've likely moved from EJB or JDBC persistence to iBATIS, JDO, or Hibernate. You're
possibly seeing the wisdom of moving beyond Struts to something like Tapestry. It's been my
experience that most innovation is driven by need. My theory is that revolution increases dramatically

when complexity hits a certain threshold. The only evidence that I have to support this theory is
circumstantial:

The overpowering new mountains of persistence frameworks

The proliferation of model-view-controller (MVC) frameworks

The growth of containers

The rapid introduction of XML-binding frameworks

I'm suggesting that inventions usually accompany a need. When we get something that's right or
merely close enough, like Ant or JUnit, we leave it alone until it doesn't fit our purposes anymore.

Experienced developers likely will not understand the excruciating process of learning enough to build
the simplest web application in Java. Many of them will complain that I am overstating this issue. If
you're in that group, I challenge you to find a smart, inexperienced Java developer who's learning the
whole stack of applications that you need to do enterprise web development, and interview him. The
problem is twofold. First, it's hard. Second, the consequences for failure are dire. If you pick the
wrong horse once, or get locked up for three years on a big project with dated technology, you'll be
just about starting over when you move on to the next project. The implications of the churn are
staggering. To me, they may mean that code needs to be happening at a higher level of abstraction,
and we've been incapable of finding it in Java.

1.2.2.3. Unnatural stretching

Increasingly, you're probably stretching Java beyond its intended directions. It's just a plain fact that
the object you code with plain Java is not enough anymore. I made the point in Better, Faster,
Lighter Java that trying to code all crosscutting services and all behaviors into business objects is
folly, and inheritance does not go far enough. You've got to use tricks, like compile-time byte code
enhancement or runtime code generation with proxies, to make the object transparent. You are now
stretching Java beyond its intended purpose, and that's good...to a point. You're also increasing the
barrier to entry. Ask any novice who's tried to troubleshoot a problem with Hibernate's lazy loading,
or Spring's proxies.

I've also noticed that other, more dynamic languages rarely use things like AOP or dependency
injection. Those features solve critical problems in Java, but more dynamic languages like Smalltalk,
Python, and Ruby don't have the same level of pain.

I'm not saying that these are bad technologies. They absolutely destroy the closest heavyweight
alternatives, in terms of simplicity and power. They're solving hard problems. It's just that your mind
can learn only so much, only so fast. Java's rapidly becoming an effective tool set for elite
developers. Hey, maybe that's where programming is going. I'm just saying that this unnatural
stretching is one more clue that it may be time to take the temperature of the water around you.

1.2.2.4. Language evolution

Java 5 is strongly touted as perhaps the most innovative major release of Java in half a decade. I do

agree that it's going to have a significant impact. I'm not at all convinced that all of the impact will be
positive. I regularly attend a conference called NoFluffJustStuff. The experts at the conference sit on
a panel and answer questions. One of my favorite questions deals with new features in the language.
The whole panel agrees that generics, as implemented, are a bad idea. That usually shocks the
audience.

If you think about it, the Java generics Java Specification Request (JSR) introduces a whole lot of
syntax to solve a marginal problem with no corresponding change to the Java virtual machine (JVM).
I'm guessing that the typical Java developer rarely gets a class cast exception. And there are plenty
of opportunities. Most of the objects in a typical Java application are usually in collections anyway.
Whenever you take them out of the collection, you've got to cast them from Object anyway. At that
point, type safety gives you about as much protection as a lap belt in a burning, plummeting 747. Yet,
the generics syntax is invasive, and the implementation is worse. In an age when more and more
experts assert that dynamic typing leads to simpler applications and productive programmers, Java
developers are learning how to build stronger enforcement for static types.

Add questionable use of legitimate features like annotations , which can completely change the
semantics of your program without conventional code, and you've got all kinds of possible trouble.
Does the increase in power offset the increase in complexity and obscurity? Annotations bring a
completely new tool, and in many ways a programming model, to the Java community. I don't know
enough to say whether we'll learn to use annotations well, but I do feel comfortable predicting a few
major disasters while we learn.

I don't want to tip my whole hand too early. I'll talk more about Java limitations in Chapters 3
through 5. Right now, just understand that Java is experiencing some real problems. They may be
growing pains of youth, or they might be arthritis in Java's October years. I just don't know, but the
temperature is rising fast enough to get my attention.

1.2.3. What's Good Is GOOD

I don't mean to say that Java's bugler is finishing the last few notes of "Taps" as you read this
paragraph. Instead of spewing doom and gloom, I'd rather tell owls and ostriches alike to pick up
your eyes, and watch and listen. Look at it like this: conditions are ripe for a credible alternative to
emerge. At the time of printing, Java's still the king of the hill. In fact, powerful and compelling
motivations still drive new investment in Java:

The Java community is vibrant. You can find talent to attack hard problems in Java. You can
also find supporting staff, like salespeople and project managers, who know Java.

Most major commercial vendors support Java, or a close derivative (C#). As a result, you can
buy applications, servers, components, tools, services, and even management consoles for
Java.

Open source is a thriving force in its own right, and it is driving incredible innovation daily.

Academic institutions teach Java development, and do research on many Java-related
problems. I recently worked with a start-up that's working on a tool, born in a university
research lab, that can predict Java performance, given a UML diagram.

The JVM is a powerful innovation in its own right, and allows unprecedented portability. Some
experts believe that the JVM may be more important than the Java language itself.

Now, you might believe, as I recently did, that all of this vibrant community trumps any language
advantage, in all but the most extreme problems. And even if you did find such a problem, what's the
compelling alternative? How will it ever find enough developers to reach a critical mass? You're
probably thinking: face it, Bruce, there's .NET and Java, and .NET is, by design, as close as legally
possible to Java. Adopting .NET would be like overhauling your diet by swearing off McDonalds, and
going to Burger King every day. After that, there's nothing.

This much is true. If there is no credible alternative, your best course is to keep looking inside the
Java community for answers. In that case, this is a dead book, and you can just let it be. But give me
a few more pages, lest you close it too soon.

1.3. New Horizons

Keep in mind that I'm a cynic at heart. When it comes to technologies, it takes a whole lot of effort to
get me excited. I still have never written a web service, at least with the massive IBM and Microsoft
stacks, and I didn't write my first EJB until 2003. I've never written an EJB entity bean unless it was to
build a case against them, and never will. I've instead preferred simpler architectures, like REST,
POJO programming, transparent persistence, and Spring. Even then, I was late to those parties.

It's even tougher to get me to play with a new language. Dave Thomas, a highly respected
programmer and a gifted teacher, is fond of saying that you should learn a new programming
language every couple of months. I've probably averaged one every five years, and I rarely do more
than dabble. But recently, in my dabbling, I've found a couple of startling innovations. These
frameworks had ideas that just about reached out and ripped me out of my chair this year.

I've taken a little more time than usual to survey the interesting innovations around new
programming languages. When it comes to building web pages and application servers, two ideas
have my undivided attention: metaprogramming (like Ruby on Rails) and continuation servers (like
Seaside on Smalltalk). Neither of these two innovations is happening with much impact in Java. You'll
get a deeper treatment in Chapters 7 and 8, but it's enough to say for now that they are both many
times more productive than their Java alternatives.

1.3.1. Dynamic Languages

Java is a language with many compromises . Many of the features of Java are appropriate for building
operating system extensions and middleware, but limit application development. Consider this Ruby
fragment:

 something = "Owls and Ostriches"
 4.times {puts something}

These simple little lines of code print Owls and Ostriches four times. Look at the power in this
language:

You don't have to worry about details like typing, if you don't want to. If it walks like a duck and
quacks like a duck, Ruby will type it as a duck. This saves more time than you think.

4 is an object. Everything is an object. You can send methods to a 4, or a string, just like any
other object in the system.

{puts something} is a code block. You can pass a code block as a parameter, and Ruby lets
methods deal with the code blocks. This construct dramatically simplifies things like iteration,

and lets you quickly customize the inside of a loop in a library.

Taken by themselves, these features can make you much more productive. But add the other
features of a dynamic language, and you can see incredible power and productivity very quickly.
Many of the so-called scripting languages make much more sense for application developers.

1.3.2. Metaprogramming

The Java community is now investing enormous energy into programming styles that are more
transparent, reflective, and dynamic. These approaches are called metaprogramming , because they
spend more time in the realm of the class than the object. It makes sense that you can get more
leverage that way. Transparent persistence frameworks like Hibernate teach generic classes and
collections to be persistent. AOP lets you extend a specified list of methods with custom code, without
requiring modifications of that method. These problems are metaprogramming problems.

When Java experts get excited about metaprogramming, they often wind up adopting other
languages. Want some examples? David Geary, one of Java's most successful authors and JSF expert
group member, is aggressively learning Ruby on Rails , and is writing a Rails book. James Duncan
Davidson, creator of Tomcat and Ant, left the Java community to code Objective C for the Mac
environment. And, as you have seen, Justin Gehtland and I are using Rails to implement a web-based
application for a start-up.

Think of metaprogramming as building a high-level builder. Ruby on Rails, for example, discovers the
columns and relationships in a database schema, and uses that data to build a model, view, and
controller for a web application. The characteristics of the environment are striking:

It's incredibly productive. It's easily five times as productive as the closest Java competitor, for
certain types of problems.

It is flexible. Some solutions build a default application and allow common extension points.
Rails builds a default application, which you can extend as if you'd written it yourself.

It reduces duplication, and leads to more consistency.

To me, for enterprise application development , the overriding characteristic of a language or
environment is productivity . I want each line of code to work harder, and I want that to translate
into productivity. I don't quit measuring productivity after deployment. If your tiny application is
impossible to maintain, you'll lose everything you've gained. For these reasons, I love Ruby on Rails,
and I'll talk more about it in Chapter 7.

1.3.3. Continuation Servers

Java web developers spend an incredible amount of time managing state, threads, and the Back
button. These problems get significantly more difficult as sites get more dynamic and complex.
There's been a recent resurgence in Smalltalk, and most of it centers around a framework called
Seaside. Since continuations maintain state, continuation-based servers don't have any problem
managing state. They also handle Back buttons and threading with relative ease. This framework
uses a language feature called continuations to maintain state within a web-based application.

1.4. The Premise

I don't mean to say that Smalltalk or Ruby will take over the world tomorrow. I don't even mean to
say that anything will ever achieve the success that Java has, again. But I don't believe that Java is
permanent. For five years, it's been a good strategy to ignore the borders beyond Java, but no
language will keep its leadership position forever. By now, the premise of this book should be taking
shape for you:

Java is moving away from its base. Hard-core enterprise problems may be easier to solve, but
the simplest problems are getting harder to solve. And...

Java is showing signs of wear, and interesting innovations are beginning to appear outside of
Java. So...

It's time to start paying attention again.

Pick up your eyes. Start by picking up this book. You'll be glad you did.

Chapter 2. The Perfect Storm
The power and the fury of the storm caught us off guard. El Niño, a weather pattern famous for
producing a continuous stream of storms in Texas, seemed to misfire over and over. The core of the
Austin kayaking community, dependent on storms to fuel our unfortunate addiction, sat frustrated
around an ancient TV with a snowy signal, watching storm after storm split up and float completely
around us. Around 11:00, everything changed. Like every day leading up to this day, a line of storms
lay spread out before us like kids at a Harry Potter movie on opening day. Only this time, they
punched Austin, hard.

El Niño, the split jet stream, filtered across the ocean and brought warm, moist air right across
Texas. It collided with the cooler air of a cold front. The pressure system in the South fed a rotation,
and locked the cool front in place. The warm air exploded into the cold and produced a perfect storm.
We opened the topological maps and found a stream that had never been run. It had the steepness
and geographical features that we were looking for. It simply had not had enough water. As we
planned the trip, the mighty storm hurled a string of consecutive lightning bolts right near a hilltop,
less than a mile away. Distracted, we stared into the night, alternately black and blinding.

2.1. Storm Warnings

To know where Java is going, you've got to know where it came from. You need to remember the
conditions that caused us to leave the existing dominant languages in droves. You must understand
the economic forces that drove the revolution. And you cannot forget the sentiment of the time that
pried so many of us away from C++, and other programming languages for the Internet.

In 1995, Java was working its way through the labs of Sun Microsystems, unborn. Sun garnered
attention as a champion of standards, and for bringing Unix out of the academic ghetto, but it was
not a major player in development environments or programming languages. Frustrations, driven by
economics but stemming from inadequacies in programming languages and programming models,
rippled through the community in another kind of gathering storm.

2.1.1. Economics of Client-Server Computing

Frustration with long development cycles and inadequate user interfaces drove many companies to
move off of mainframe computers. At first, the movement amounted to nothing more than a trickle.
As the cost-cutting financial offices measured the software and hardware costs of IBM versus
Microsoft on Intel, the trickle became a flood.

But the wave of migrating customers did not consider all the costs. The rapid movements from
mainframes to Intel servers drove the first tsunami of chaos because the client-server movement hid
significant costs:

Management costs skyrocketed. It was too difficult to deploy tiny changes to hundreds of fat
clients. Technologists could not figure out how to maintain the many desktop applications and
frameworks necessary to make the architecture go.

Many customers became increasingly wary of a gathering Microsoft monopoly.

The tools of the day made it easy to get started, but did not handle complexity well. Typical
customers simply could not make them scale.

Decision makers were caught between the pragmatic approach of a centrally managed solution and
the adaptability and lower costs of Intel-based servers. They waited for a better solution, and the
clouds darkened.

2.1.2. Microsoft

While developers struggled with C++, Microsoft planned to hammer the final nails in the coffin of
OS/2, a competing operating system that it once created, but abandoned to IBM. So Microsoft grew

in stature and influence, and it learned to cater to developers very well. Companies like IBM
dominated the infrastructure groups (called IT for information technology). Microsoft didn't care. It
went straight to the lines of business that used IT applications. Offering quick turnaround time with
Excel macros and Visual Basic applications, it stole a large part of development mindshare across the
world. Screw IT. The line of business could build the applications itself, and involve IT only after the
fact, to clean up the resulting mess.

Microsoft grew, and some of the same people that lauded the end of OS/2 began to grow wary.
Microsoft's dominance was a double-edged sword. You didn't have the problem of navigating through
a bewildering sea of products and solutions. You didn't have the oppressive integration problems of
making multiple vendors work together. You just pitched all the competition and looked to Redmond
for the answers. But you had to be willing to give up other choices, and you had to live with the
answers that you got. An evolving API stack moved quickly through OLE to COM to COM+. Operating
systems' APIs changed from Win to Win32. New flavors and options emerged with new operating
systems.

Microsoft captured a core of diligent developers more or less completely. Others bought some of the
message, but cast a wary eye northwest. A growing core of developers looked openly for
alternatives, like Novell's Netware or various Unix-based alternatives. Individual products, like
Netscape Navigator, emerged to compete with Microsoft. The gathering storm seemed imminent.

2.1.3. The Internet

Thunder began to rumble in the distance, in the form of a rapidly growing Internet. In 1995, most
people used the Internet to share static documents. Most dynamic sites were powered by command-
line scripts through an interface called Common Gateway Interface (CGI) , in languages like Perl .
That approach didn't seem to scale very well. While Perl was a very efficient language, applications
were hard to read and difficult to maintain. And CGI started a new shell for each request, which
proved prohibitively expensive. For enterprise computing, the Internet had the reputation of a limited
toy, outside of scientific and academic communities.

In the mainstream, Microsoft seemed to miss the significance of the Internet, but many of the
brightest minds in other places looked for ways to combine forces, to defang the dominant menace in
the northwest. Market leaders always strive to protect their base through proprietary products and
frameworks. Everyone else loves standards. IBM, which once built an empire on proprietary models
encompassing hardware, software, and services, suddenly did an about-face, embracing every
standard that it could find. It Internet-enabled its main products like its DB2 database through a
product like net.data and its mainframe-based transaction engine through web-enabled emulators.
Other companies also built better servers, and more efficient ways to share dynamic content.
Netscape rose to prominence with a popular web browser. It looked for a way to share applications
with documents, and found the answer in a fledgling language, recently renamed from Oak to Java.
It started to rain.

2.1.4. Object Orientation

Object-oriented systems support three ideas that you now take for granted: encapsulation,
inheritance, and polymorphism. For many years, the industry had been working toward object-
oriented programming (OOP) . They tried several times, but it never quite came together. The first

major attempt was with Smalltalk . It was a highly productive environment, but when less-
experienced developers tried to push it beyond its natural borders, they had problems. Initially, the
early hype around OOP was counterproductive. It positioned OO languages as tools to achieve reuse,
and suggested that inexperienced OOP teams could be many times more productive than their
procedural counterparts.

Object-oriented software has the potential to be much less complex than procedural programming,
but it takes some time to build the expertise to recognize patterns and to layer OO software in a way
that makes sense. It also took the industry time to deliver educated developers. Though it now looks
like OOP exploded overnight, that's not the case at all. After some early failures with languages like
Smalltalk, systems programmers went back to the drawing board to deliver a less-ambitious version
of an OOP language, and worked on delivering OOP concepts in a more limited way, as you see in
Figure 2-1:

Smalltalk, invented in 1971, was successful as a research project, but did not experience the
same success commercially.

1.

In the late 1970s and into the 1980s, APIs for things like presentation systems began to organize
the interfaces into logical actions, called events, around objects, like windows and controls.

2.

In 1980, the United States Department of Defense commissioned the Ada programming
language, which offered some of the features of OOP, like encapsulation and inheritance.

3.

Companies like IBM and Microsoft delivered toolkits to let their users express object-oriented
ideas in procedural languages. The most notable were IBM's System Object Model and
Microsoft's Component Object Model.

4.

C++ let C developers use C procedurally, and also develop object-oriented applications, side by
side.

5.

Java was invented, combining many of the inventions along the way.6.

Figure 2-1. This timeline shows the slow commercial acceptance of object-
oriented programming

Unfortunately, C++ came with its own sorts of problems.

2.2. The C++ Experience

As programmers wrestled with OOP, they also dealt with issues related to their chosen language .
Visual Basic developers began to understand that the language and environment may be simple, but
it is prone to poor performance and poor designs, leaving customers stranded with slow applications
that they could not extend or maintain.

In C++, server-side developers found performance, but discovered another challenge. They did
application development using a systems programming language. New terminology like memory-
stompers and DLL Hell gave testament to the frustration of the masses. Simple problems dogged
them.

2.2.1. Pointer Arithmetic

With C++, a pointer could point to any block of memory, regardless of whether it was the intention of
the programmer. For example, consider the simple program in Example 2-1. It moves a block of
memory from one location to another, and inverts it. Unfortunately, the example is off by 1. The code
touches memory one byte beyond the from block. You would probably not see the error right away.
You'd see it later, when you tried to manage the memory of this block, or another one. C and C++
compilers often manage memory with a linked list, and the pointers to the next block in the list sit
just outside the allocated blocks! These types of errors hurt systems developers, and absolutely
murdered applications developers, who didn't have the background to effectively troubleshoot these
types of problems. Reliability also suffered.

Example 2-1. Move and invert a block of memory

// move and invert from_block into to_block with size size

int i;
for(i=0; i<size; i++) {
 to_block[size-i] = from_block[i]; // off by one!
}

2.2.2. Nested Includes

One of my most vivid and frustrating memories from working with IBM came from porting a C++
application that had include files nested 37 layers deep. It can be a very difficult problem to manage,
especially for inexperienced developers.

The problem goes something like this. In C++, you specify interfaces to your methods, with other
supporting information, in a header file, or .h file. For example, in MySQL, you have a main include
file that has these includes (I've omitted most of the code for brevity):

 #ifndef _global_h /* If not standard header */
 #include <sys/types.h>
 ...
 #include <custom_conf.h>
 ...
 #ifdef _ _LCC_ _
 #include <winsock.h> /* For windows */
 #endif
 ...
 #include "mysql_com.h"
 #include "mysql_version.h"

That doesn't look so bad, until you consider that some of these includes are compiled conditionally,
so you really must know which compiler directives are set before you can decide definitively whether
something gets included. Also, one of your include files might include another include file, like this
line in mysql_version.h:

 #include <custom_conf.h>

In truth, this MySQL tree goes only three levels deep. It's an excellent example of how to code
enterprise software in C++. It's not usually this easy. Any dependency will have an include file, and
if that code also has dependencies, you'll have to make sure those include files and their associated
libraries get installed and put in the right place. Lather, rinse, repeat.

Java does not have this problem at all. You deal with only one type of source file, with one kind of
import, and no conditional compilation.

2.2.3. Strings

Many of the largest corporations used C++ for enterprise application development, even though it
had very limited support for managing strings . C programs simply used arrays of characters for
strings, like this:

 char str [] = "Hello";

This is going to allocate a fixed-length string to str. It's merely an array of characters. And it can
never hold a string longer than six characters. You could decide to use the C++ string library instead.

C++ did support the C-style string library for some string-like features. For example, to assign one
string to another when the memory has already been allocated, you need to copy the bytes instead,
like this:

 strcpy (string1, string2);

C-style strings were ugly, dangerous, and tedious. As with any other type of pointer manipulation,
you can walk off the end of a block and create an error that may not be discovered for hours or
months. C++ strings are far more tedious than alternatives in languages, including Java.

Beginning in 1997, the ANSI standard for C++ introduced a more formal string. You could have a
more natural representation that looked like this:

 String str = "Hello, I'm feeling a little better.";

And many C++ libraries had proprietary string libraries. But the damage was done. Many
programmers already knew C, and never used the C++-style strings.

2.2.4. DLL Hell

On Microsoft operating systems and OS/2, you compiled libraries that might depend on other
libraries. The operating system linked these together with a feature called Dynamic Linking Libraries
(DLLs) . But the OS did not do any kind of dependency checking. As many applications share versions
of the same programming libraries, it was possible, and even probable, that installing your application
might replace a library that another application needed with an incompatible version. Microsoft
operating systems still suffer from DLL Hell today.

2.2.5. CORBA

As the C++ community grew, they looked to distribute their code in ways beyond client-server.
Common Object Request Broker Architecture, or CORBA, emerged quickly. With CORBA, you could
build applications from objects with well-defined interfaces. You could take an object, and without
adding any remoting logic you could use it on the Internet. Companies like IBM tried to push a
CORBA model into every object, and companies like Iona focused only on distributed interfaces
around remote objects. The kindling around CORBA began to smolder, but never really caught fire.
The distribution that was so transparent and helpful was actually too easy. People built applications
that relied on fine-grained communication across the wire. Too many round-trip communications led
to poor performance and reputation problems for CORBA.

2.2.6. Inheritance Problems

C++ nudged the industry in tiny steps toward OOP, but the steps often proved awkward and
counterproductive. C++ had at least three major problems:

C++ actually did not force object orientation. You could have functions that did not belong in
classes. As a result, much of the code written in C++ was not really object-oriented at all. The
result was that the object-oriented C was often more like (C++).

C++ did not force one root object. That led to object trees with many different roots, which
proved awkward for object-oriented developers.

C++ supported multiple inheritance . Programmers had not accumulated the wisdom born from
experience to use multiple inheritance correctly. For this reason, many languages have a
cleaner implementation of multiple inheritance, called a mixin .

Multiple inheritance is a powerful tool in the right hands, but it can lead to significant problems for the
novice. Example 2-2 shows an example of multiple inheritance in action. A Werewolf is part Man and
part Wolf. Problems arise when both Man and Wolf inherit from a common class, called Mammal. If
Werewolf then inherits a method introduced in Mammal, it's ambiguous whether Werewolf would inherit
through Man or Wolf, as in Figure 2-2. This problem, known as the diamond inheritance problem ,
illustrates just one of the problems related to multiple inheritance.

Example 2-2. Multiple inheritance in C++

class Werewolf: public Man, public Wolf

Multiple inheritance is like any power tool. It gives you leverage and speed and can save you time,
but you've got to have enough knowledge and experience to use it safely and effectively to keep all
your fingers and toes. Most developers using C++ as an applications language had neither.

Figure 2-2. The diamond inheritance problem is just one of the
complexities that can arise with multiple inheritance

2.2.7. Consistency

Like Perl, C++ is most definitely an expressive language, but that flexibility comes at an incredible
cost. C++ is full of features that might make sense to a seasoned developer, but that have
catastrophic effects at runtime. For example, = often doubles as an assignment and a test. Most new
developers will get burned by this problem. It takes years and years of study and experience to
become proficient with C++. For systems development, that makes sense, because you ultimately
need the performance and control inherent in the ability to put every byte where you want to.
Applications developers simply don't want to deal with those low-level details.

2.2.8. Portability

Most developers expected C++ to be more portable, but it didn't turn out that way. We were buried
under mountains of incompatible libraries, and inconsistencies between libraries on different
platforms. C++ left so much in the hands of the vendors implementing the spec that C++ turned out
to be one of the least portable languages ever developed. In later years, problems got so bad that
you often couldn't link a library built by different versions of the same compiler, let alone different
operating systems.

Like mud accumulating on a boot, the language that once looked so cool on a resume began to weigh
down the brightest developers, and stymie lesser developers completely. Instead of moving to a
limited language like Visual Basic or Power Builder, they waited, and the storm clouds grew darker
still.

2.2.9. Compromises

You don't get a perfect storm without all the conditions. The primary success in the initial Java
explosion was based on the extraordinary migration of the C++ community. To do this, Java had to
walk a tightrope with excellent balance. C++ had some obvious warts, like an awkward syntax,

multiple inheritance, primitives rather than objects, typing models, poor strings, and awkward
libraries. In some cases, Sun decided to opt for a simpler, cleaner applications language. Java's
research roots as an embedded language drove a simplicity that served it well. In other cases, it
opted to cater conservatively to the C++ community.

It's easy to look at Java now and criticize the founders for decisions made, but it's clear to me that
they walked the tightrope very well. The rapid growth of the hype around Java and the community
allowed a success that none of us could have possibly predicted. All of this happened amid an all-out
war between Microsoft and IBM! If Java had stopped at this point, it would have been successful. But
it didn't stop here. Not by a long shot.

2.3. Clouds Open

The sound and fury of the Java storm caught many of us off-guard. And why not? It came from an
unlikely source, was delivered in an unconventional vehicle, and defied conventional wisdom
regarding performance of interpreted languages. Other than the language, nothing about Java was
conventional at all, including the size of the explosion. In retrospect, you can look back and see just
how well it filled a void. Figure 2-3 shows the many ingredients that come together to form the
perfect storm.

Figure 2-3. Many forces formed the combined ingredients that led to a
perfect storm

2.3.1. New Economics

The jet stream that powered this storm emerged from a series of standards: TCP/IP, HTTP, URI, and
HTML. The Internet gathered steam, and Sun took full advantage with Java. The Internet was
everywhere. Java was cool. The Java developers quickly built the API set that would allow developers
to code for the Internet, including TCP/IP APIs for communication, and applets for building user
interfaces that you could embed in a browser. JDBC allowed database access.

The perfect combination formed by the relationship between Netscape Navigator and Java drove each
company to new heights. Through Netscape, Sun was able to put Java in front of an incredible
number of developers, nearly instantaneously. Through Java, Netscape could showcase smart
applications that looked cool, and were simultaneously practical. The Navigator/Java combination
seemingly solved the most critical problems of client-server computing: management and
distribution. If you could install a browser, you could then automatically distribute any application
that you wanted through the browser. Java had the perfect economic conditions for success. Java
found an important ally in the bean counters that liked the manageability of the green screen, but the
productivity and usability of the fat client.

Customers wanted solutions, and Sun realized that Java would give them what they wanted. Sun
immediately saw the opportunity it faced. With the open standards around the Internet and the Java
language powering it, Solaris on Sun servers would be a compelling, and even hip, alternative. Above
all, Java made Sun safe. Because its virtual machine ran in a browser and on many different
operating systems, some hard decisions didn't seem so hard. You could try out a deployment
scenario. If you didn't like it, you could just move on.

The new jet stream was in position to feed power to the growing storm.

2.3.2. C++ on Prozac

When Lucene founder Doug Cutting called Java C++ on Prozac,[*] I immediately liked the
comparison. Because of its C++ syntax, Java found an impressive waiting community of developers
looking for a solution. They moved to add a hip Java, and Internet experience, to their resumes. They
stayed because they liked it. Java had most of the benefits of C++, without the problems. The
similarities of the languages made it easy to learn. And Java was liberating, for many reasons:

[*] TheServerSide.com, "Doug CuttingFounder of Lucene and Nutch," Tech Talk (March 10, 2005);

http://www.theserverside.com/talks/videos/DougCutting/interview.tss.

Java provided more structure in places that needed it, such as providing interfaces instead of
inheritance.

Java eliminated the burden of pointers, improving stability and readability.

Garbage collection got easier, because the JVM automatically took care of abandoned
references.

Java allowed a much better packaging mechanism, and simplified the use of libraries.

Java cleaned up problems like nested include files and macros.

2.3.3. Architecture

The benefits of Java went beyond economics and C++. I can still vaguely remember the first
sentence that I saw describing Java. Sun said it was a portable, safe, secure, object-oriented,
distributed programming language for the Internet. Those words were all buzzwords of the time. For
C++ developers, Java underpinnings made significant strides:

The JVM allowed unprecedented portability. Many experts believe that the JVM, and not the
language, is the most important feature of Java. Sun marketed this capability brilliantly with the
acronym WORA. Java developers the world over recognize those letters as standing for Write
Once, Run Anywhere.

Java published the byte code specification for the JVM. People who want to build their own JVM
or build a language on the existing JVM standard can do so, or even modify byte codes of

http://www.theserverside.com/talks/videos/DougCutting/interview.tss

existing applications. Frameworks like JDO do modify byte code with great success.

While C++ allowed unrestricted access to application memory, Java restricted access to one
area of the JVM called the sandbox. Even today, you see very few exploitations of Java security.

The Java metamodel, made up of the class objects that describe types in Java, allowed
sophisticated reflective programming. Though it's a little awkward, the capabilities of Java
extend far beyond the basic capabilities of C++. The Java metamodel enables frameworks that
increase transparency, like Hibernate (persistence) and Spring (services such as remoting and
transactions).

The fathers of Java saw the importance of security, and baked it into the language. Java
introduced a generation of programmers to the term sandbox , which limited the scope and
destructive power of applications.

Java had improved packaging and extensibility. You could effectively drop in extensions to Java
that transparently added to capabilities of a language. You could use different types of archives
to package and distribute code.

Both the low-level grunts and high-level architects had something to love. Businesspeople had a
motivation to move. At this point, if all else had failed, Java would have been a successful language.
But it didn't fail. The winds just kept picking up speed, and the storm started feeding on itself.

2.4. Fury Unleashed

Applets captured the imagination of programmers everywhere. They solved the deployment problem,
they were cool, and they were easy to build. We're only now finding a set of technologies, based on
the ugly and often objectionable JavaScript language, that can build rich content for the Web as well
as Java did. Still, applets started to wane.

Even today, I think that applets represent a powerful idea, but they fizzled out for many reasons. The
Netscape browser's JVM was buggy and unpredictable. Further, with such a rapidly evolving
language, applets presented many of the same problems that client-server computing did. You may
not have to maintain applications, but you still had to maintain the browser. After you'd deployed a
few Java applets, you had to worry about keeping the right version of the browser on the desktop. As
the size of the JVM grew, it became less and less likely that you could install a JVM remotely. Even if
you could, Java versions came out often enough, and were different enough, that new applications
frequently needed to materialize. But a few mad scientists at Sun were up to the challenge again.

James Duncan Davidson: Why Java Won

Author of The Rise of Java

James Duncan Davidson is a freelance computer programmer, photographer, author, and
speaker. He invented both Ant and Tomcat, two of the most successful Java open source
projects ever. His persistent efforts at Sun led to open sourcing both projects. He is now
one of the best-selling authors of Apple operating system books.

What do you like
best about Java?

JDD: At the time, it seemed like a really good idea. Mostly,
for what Java was designed for, they got it right. Of course,
it's a strongly typed language, which for some purposes is
great, and other purposes not.

Why do you think
it's so successful?

JDD: I think it comes down to the fact that server-side
programming in Perl and the like was inefficient, and
server-side programming in C and C++ was hard. Java,
and servlets in particular, busted open a door for Java

where it could really take root.

I may be biased because of my involvement with servlets,
but Java without the server side wasn't that interesting. It
still isn't. Sure, J2ME is on bazillions of mobile devices, but
there aren't that many apps thereand the APIs there are
limited unless you actually make the cell phone.

What don't you
like?

JDD: Strong typing. Reliance on APIs rather than
frameworks. That's a subtle but important distinction. The
increasing complexity of even basic APIs. For example, you
can't just write a servlet anymore, you have to write a
servlet, then edit an XML file. They're killing off the
approachability that helped servlets get off the ground.
With it, the rest of the server stack gets more and more
difficult to work with.

And reliance on tools to make it easy is a cop-out.

As well, I don't like the massive monolithic approach to
"Editions." Most people don't need J2EE. They need a web
container. End of story.

I also don't like the incredible jump to complexity that Java
seems to engender in people. No other platform has grown
as fast and as elephantine as Java. Other platforms are as
capable, but are 5% of the size. There's an architectural
reason for that. And, really, Java the language isn't at fault.
Java the class libraries are. They encourage massively
inefficient design. Ever see a stack trace come out of a
JSP/servlet/J2EE container? The 44 pages of stack call
should be a hint.

How does Java
hold you back?

JDD: It doesn't. I don't use Java much anymore. I use
other languages like Python, Ruby, and ObjC.

And I wish that more tools would just remember the
lessons of Unix: small pieces loosely joined. There is no one
übersolution, and at the end of the day, if you can take two
tools and pipe stuff between them, you have a more
powerful and flexible solution than any monolithic beast.
And one in which users can discover uses far more
powerful than you can imagine.

What emerging
alternatives
make sense to
you, if any?

JDD: Ruby on Rails has picked up an amazing amount of
traction for server-side stuff. If you need to slush around
mass amounts of content, there are content databases
(like MarkLogic) that are interesting that use XQuery to
work with the stuff inside. On the GUI front, well, Java
wasn't a contender, so everything is already an alternative.

What would
prompt (or did
prompt) you to
move away from
Java, or .NET?

JDD: I shifted focus into the GUI application space. Java
and GUIs don't mix. Friends don't let friends Swing.

2.4.1. Servlets

As applets were winding down on the client side, the server side was just getting going. Servlets gave
Java developers a way to write applications that would run in the browser. An application would get a
request over HTTP, and build a plain web page, with no Java, that would return to the client. Since
the web pages were built server side, they could take dynamic content, like the results of database
queries, back down to the client. So-called web-based applications finally delivered the goods: now,
you could run enterprise applications on a client. You'd only have to deploy them on a server.

It didn't take long to understand that the clients could be within the firewalls of a company, but they
didn't have to be. Since people everywhere had Internet access, it opened up the possibility of selling
a whole new kind of product: information. The new economy was born. At least in part, it was
powered by Java, and the companies that built the servers, databases, and software. Start-up
companies sprung up to take advantage of this opportunity. Enormous paper wealth was created.
Venture capitalists funded good ideas and bad. A drive for customers fed the fury of the storm. The
rules were simple: he who gets the most customers wins. Start-ups were often willing to spend far
more to acquire a customer than that customer could possibly generate.

Real wealth was created, too. Companies like eBay and Amazon fueled a new kind of economy
without buildings or walls. This new sophisticated commerce drove a new need for new tools. Sun,
Oracle, BEA, and IBM worked on new standards to enable enterprise on the Web. IBM coined the
term e-business to stand for a new, powerful way to serve customers.

2.4.2. J2EE

J2EE, or Java's enterprise edition, included many new ways to connect to the enterprise. Under great
expectations, the Enterprise JavaBeans? (EJB) spec emerged to add a rich set of tools that would let
you program distributed, transactional, secure, and persistent applications, without coding those
services yourself. Clustering features enabled good scalability and reliability. These features let major
companies move into the Java world without reservation.

Though EJB never quite fulfilled its promise, the specification is an extraordinary example of how an
idea can energize a community. The specifications behind EJB are tremendously important, and for
the most part, are factored very well. Java thrived on the server side and was off to the races again.

2.4.3. Industry Standards

It's tough to unite through common interests. Java never could have thrived to the extent that it has
with only Sun behind it. Some unifying force needed to hold them together. A common enemy in
Microsoft was the perfect catalyst.

Software is more prone to monopolies than most other industries because software moves fast and
obsolescence can devastate a company. For this reason, market share tends to favor the market
leader heavily. So it stands to reason that market leaders love to be proprietary. They can increase
market share through their leadership position, and lock their customers in to extend the monopoly.
Certainly, Microsoft is not the first company to use this strategy. IBM was incredibly proficient at this
game.

If being proprietary works for the market leader, the followers need open standards to level the
playing field. If you can't build dominant share, you can lend your customer safety by creating
partnerships and embracing a common standard. In this way, your customers are not nearly as
afraid of obsolescence.

The Unix operating system helped smaller proprietary server vendors survive for years in the face of
market dominance by Intel and Microsoft. After supporting proprietary systems aggressively for
decades, IBM is embracing open standards in many areas, including relational databases (where it
trails Oracle), operating systems (where it made mainframes a much safer solution with the open
source Linux environment), and now, with Java.

IBM is now the most prevalent Java developer. It claims to have more Java developers than any
other company, including Sun. I believe IBM. It has been working to catch BEA's Web Logic
application server for years, and has now passed BEA. I'd expect IBM to exercise its dominance to
build in proprietary features that interest its customers. I would also expect IBM to take a harder line
with the Java Community Process (JCP), to force through changes that it finds most interesting.
Failing that, it may leave the JCP and seek another avenue for establishing standards. If it does, this
strategy should not come as a surprise. It's the prerogative of the market leader, and the dance goes
on.

2.4.4. Open Source

Many open source communities look down on Java. That's ironic, because Java has more thriving
open source software than any of the alternatives. When you build something that's both hip and
popular, people want to play with it and share their creations. Add a massive community that's
stretching a language in unexpected ways, and you need only to stand back and watch interesting
things happen. And boy, did Java open source happen.

At first, Sun resisted the open source community . Sun developer, James Duncan Davidson, worked
to change that. He built two of the most important Java applications ever in Tomcat (that showcased
servlets) and Ant (that builds nearly all Java applications today). He then pushed them out to the
open source community.

The typical open source development cycle works as follows (and shown in Figure 2-4):

Build. Once Java geeks solve a problem often enough, they often build the solution with their
own resources. Sometimes, they're solving business problems. Other times, they're just having

1.

2.

fun.

1.

Use. Users then exercise the solution. Those that don't get used atrophy and die.2.

Refine. Users then refine the solution, to match their requirements.3.

Contribute. Users then contribute to the project, either with feedback or with code
enhancements. They are willing to do so, because they won't have to maintain enhancements.

4.

Figure 2-4. The open source feedback cycle is tremendously important to
Java

In this way, some fantastic frameworks evolved to form the foundation of Java web-based
development. Today, you'd be hard-pressed to find a major company that does not take advantage
of open source software. These solutions are pervasive in the Java community:

Developers use JUnit to build automated test cases, which run with every build.

IT shops run Apache Web Server as their preferred web server.

Customers deploy many lightweight applications with Tomcat as a servlet container.

Developers look to Hibernate for persistence.

Web-based developers use Struts to separate model, view, and controller layers of their
applications.

Programmers worldwide use Ant to build applications.

Other frameworks like Lucene (search), Spring (infrastructure), Tapestry (web-based
component design), JBoss (J2EE), and many others seem to be gaining popularity as well.

You might think that open source development would threaten software companies that build
software, but the converse is true. Open source has served Java very well. Innovation in the open
source community keeps tremendous pressure on software companies to keep up. That's healthy. If
you're providing real value, you'll thrive. If you try to live off of technology that's well understood and
popular, you'll die. Open source software raises the bar of what you've got to do to make money.
IBM has dealt with the pressure well. BEA is withering under the heat, with IBM above and JBoss
below. Either you will see BEA innovate, or an open source framework like JBoss, Geronimo, or
Spring will catch it on the low end. Either way, you'll win.

You could even argue that open source software is driving the most important innovation in the Java
space. Open source is driving adoption and implementation of integrated development environments,
aspect-oriented programming, lightweight containers, persistence, unit testing, and the best web
MVC frameworks. It's driving the actions of the largest and most powerful Java vendors. That's an
incredible testament to the might of the Java open source community.

2.5. Aftermath

I believe that Java is now the most successful programming language ever. It redefined the way we
package and deliver software. It changed the way we feel about interpreted languages, and the way
we build Internet applications. Java changed the very economics of application development by
bringing deployment and management into the overall equation. It built a new affinity for libraries,
with strong web-based support. Java ushered in a massive wave of important standards that now
form the very foundation of enterprise software development. Java has changed the rules of the
gameJava completely rewrote the rulebook defining what it takes to be a commercially successful
programming language.

In some ways, Java's new rulebook will serve us well. To achieve similar success, a new language will
need to be portable and encourage a vibrant open source community. It will need broad appeal,
across low-level programmers and architects. It will need to embrace compelling standards.

But technology is only part of the problem. For a new language to succeed, you'll also need a
compelling business reason to switch. In some ways, Java held us back by discouraging competition.
You may be tempted to use Java, even if it's the wrong tool for the job. You may work harder than
you have to, because you're not free to explore alternatives. And this situation may lure us into a
false sense of security, just as so many Java developers feel so comfortable wholly inside Java's
cocoon.

2.6. Moving Ahead

We may never again see a perfect storm like the one that ushered in Java. You shouldn't look for
one. Instead, you should learn from the success of Java, and start to understand the factors that led
to its success. Minimally, I believe the next commercially successful programming language will need
to satisfy four major criteria:

It will need to establish a significant community. You won't see broad adoption unless the
adopter can achieve relative safety.

It will need to be portable. Java's virtual machine has raised the bar for languages that follow.

Some economic incentive must justify the movement. Currently, productivity to me looks like
the logical economic force, but others may be lurking out there, like wireless computing or data
search.

It will need demonstrable technical advantages. This is actually the least important of the major
criteria.

I don't think most of us can possibly thoroughly understand the success of Java. It's easy to
overestimate the role of the language and to underestimate the importance of the JVM and the
community. In the next chapter, we'll continue to look at the crown jewels of Java in more detail, or
the foundation for the most successful programming language ever.

Chapter 3. Crown Jewels
After the sixth drop in 40 minutes, I looked back up the river, and reflected. I was colder than I'd ever
been. I hadn't eaten in six hours. My head and back hurt, and I was afraidin short, pure bliss. Despite
the painfully long hikes with a boat cutting into my shoulder, and the fear of facing a wall of water
barely covering rocks that have maimed or even killed before, and the ubiquitous smell of wet
neoprene every evening, I can't get enough. Kayaking delivers me to places that nothing else can
reach. The immediate feedback tells me exactly how I'm doing. Others can't do it for me, but others
can tell me how to do it for myself. And the feeling of conquering a tiny piece of river is incredible.

Java was once like that for me. I get enormous productivity jolts out of Java's incredible community,
and countless open source projects. The open standards and the JVM mean that my knowledge, and
my applications, can move from place to place. Java's been tremendously successful. You've seen my
views about why it was popular. If you're to understand what might possibly come after Java, you
need to ask questions about Java's continued success:

What makes Java hip, and draw such a wide variety of people?

How has the open source community thrived, in times, despite Sun and the power vendors?

What are the indispensable technical underpinnings that make Java successful?

What makes Java so adaptable that programmers can build everything from web sites to
databases?

Answers to these questions go well beyond one single brain. To provide a better answer, I
interviewed dozens of the top Java developers and asked them what made Java so successful. Table
3-1 shows some of the interesting answers.

Table 3-1. Reasons for Java's success according to top Java consultants

Consultant Why was Java so successful?

James Duncan
Davidson

I think it comes down to the fact that server-side programming in Perl and the like
was inefficient; server-side programming in C and C++ was hard. Java and servlets
in particular busted open a door for Java where it could really take root.

Jason Hunter It allowed you to do something that couldn't be done in any other way, and that was
applets. Applets in and of themselves didn't end up as an important technology, but
they provided Java with a protective beachhead where it could initially establish
itself without any serious competitors.

Dennis
Sosnoski

Java has a well-designed language and runtime environment. Prior to 1.5, it also had
the advantage of being relatively clean and easy to teach.

Consultant Why was Java so successful?

Stuart
Halloway

It was better than C++.

Richard
Monson-
Haefel

Java is a great static object-oriented programming language. It's portable and has
loads of APIs, products, and open source projects. It is a well-designed language
and virtual machine. Initially, it was a very progressive and well-timed language
design. Also, portability was big. Today, it's simply everywhere, which is why it
continues to grow in popularity.

Ramnivas
Laddad

Java allowed a widespread and mainstream acceptance of garbage collection and
reflection. Although these concepts existed forever, mainstream developers didn't
really use them until Java. Also, Java achieved platform independence to a
reasonable level.

Now, you can start to see a clearer picture. From the answers in Table 3-1, several threads emerge:

The technical bar for success was not too high. Since so many were developing business
applications in C++, which is a systems language, Java needed only to improve on that
experience to succeed.

The ability to develop enterprise applications was critical. James Duncan Davidson suggests that
the central enterprise problem of the time was enabling for the Internet.

The technical underpinnings of the language, especially the JVM, represented a significant step
forward.

The importance of community represents a significant achievement of Java.

Applets may have been the killer app that launched Java.

If you compare these comments in 2005 to similar comments made in 1997, you see a few notable
differences: Java's exception strategy and static typing may be a hindrance rather than a help;
Java's productivity may no longer be as good as it once was; Java has had a bigger impact on the
server than on the client; and Java is not as simple as it once was. Still, Java experts remain
remarkably consistent in terms of the importance of the JVM, community, Internet development, and
improvements over C++.

Stuart
Halloway

It was better than C++.

Richard
Monson-
Haefel

Java is a great static object-oriented programming language. It's portable and has
loads of APIs, products, and open source projects. It is a well-designed language
and virtual machine. Initially, it was a very progressive and well-timed language
design. Also, portability was big. Today, it's simply everywhere, which is why it
continues to grow in popularity.

Ramnivas
Laddad

Java allowed a widespread and mainstream acceptance of garbage collection and
reflection. Although these concepts existed forever, mainstream developers didn't
really use them until Java. Also, Java achieved platform independence to a
reasonable level.

Now, you can start to see a clearer picture. From the answers in Table 3-1, several threads emerge:

The technical bar for success was not too high. Since so many were developing business
applications in C++, which is a systems language, Java needed only to improve on that
experience to succeed.

The ability to develop enterprise applications was critical. James Duncan Davidson suggests that
the central enterprise problem of the time was enabling for the Internet.

The technical underpinnings of the language, especially the JVM, represented a significant step
forward.

The importance of community represents a significant achievement of Java.

Applets may have been the killer app that launched Java.

If you compare these comments in 2005 to similar comments made in 1997, you see a few notable
differences: Java's exception strategy and static typing may be a hindrance rather than a help;
Java's productivity may no longer be as good as it once was; Java has had a bigger impact on the
server than on the client; and Java is not as simple as it once was. Still, Java experts remain
remarkably consistent in terms of the importance of the JVM, community, Internet development, and
improvements over C++.

3.1. Language and JVM Design

In 1996, the JVM represented a significant departure from traditional thinking. Overwhelmingly,
organizations exclusively used high-performance compiled languages on the server side. Developers
patched on security instead of baking it in from the beginning. And vendors attempted to achieve
portability by building extensive libraries at a very high level. Instead of driving on this well-traveled
road, they reached for the steering wheel with both hands and threw all of their momentum to the
side, swerving aggressively into unpaved, uncharted territory.

3.1.1. Portability

In the early and mid-1990s, many in the industry were just starting to think about portability. In
particular, I vividly remember working on object-oriented technologies at IBM. The project, called
System Object Model (SOM) , emerged from a research project that formed the foundation for OS/2's
groundbreaking object-oriented desktop, and some experimental technologies that never made it out
of the lab. The goals of SOM were ambitious: we wanted to build a common object model underneath
as many object-oriented languages as possible. Then, we could develop a common suite of libraries
that developers could use across languages and operating systems. Over time, we discovered the
difficulties of porting a technology across many operating systems and programming languages. Of
course, the technical challenges were daunting, but the political challenges turned out to be
insurmountable. We immediately discarded the Smalltalk-like integrated development machine and
the virtual machine, concepts introduced by Smalltalk and Lisp, because a VM couldn't possibly be
fast enough. We weren't alone in our approach. Many C++-driven companies tried to build
programming libraries across many languages. Few succeeded.

The Java approach, shown in Figure 3-1, is fundamentally different. Java's virtual machine simply
redefines the machine, providing a lower-level, firmer foundation for portability. Java designers bet
that they could overcome performance concerns. It was not a new idea; nor was it a popular one.
Over time, they proved to be rightjust-in-time compilers improved performance so that the overhead
of the JVM became acceptable, and even rivaled compiled languages. The virtual machine, built into
Netscape Navigator, proved to be a fantastic launching pad for the Java platform. It's enabled Java to
extend into the realm of mobile devices, application servers, and countless software products. When
all is said and done, popularizing the idea of the VM may be the most important technical contribution
of Java.

Figure 3-1. The JVM took a different approach to performance, security,
and portability; most programming languages use compilers to bind
them to individual machines, but Java simply redefined the machine

Java offers a rich set of interfaces that often delve into operating system territory. Under the covers,
Java either implements this type of functionality from scratch, or just calls the native features
underneath. Either way, Java developers can count on a rich, consistent library wherever they are.
In almost 10 years of software development, though I've seen minor annoyances, I've rarely
encountered major problems in porting from one operating system to another. In the end, Sun didn't
invent the VM, but Sun did make the VM popular.

Java portability is not without its problems. Graphical user interfaces pose a particularly sticky
problem: is it important to maintain portability even at the expense of consistency with the operating
system underneath? For example, Swing components, not operating system components, implement
the menus in a Java GUI. This arrangement causes problems on the Apple platforms, where the
menu for an application traditionally is implemented as a single bar on top of the desktop, instead of
the separate menu per application that you commonly see on Unix and Windows. Other notable
differences, like security and threading, show up differently on different operating systems. Even
filenames can present problems, where having two classes called Account.txt and account.txt would
be legal on Unix but not on Windows. But for the most part, Java handles portability very well.

3.1.2. Security

In the age of the Internet, security takes on an entirely new level of importance. Any ubiquitous
technology must deal with it, and deal with it well. Sun's engineers recognized this and dealt with the
threat from the very beginning. They were fortunate to have the virtual machine to simplify the
problem. Unfortunately, other vendors were not so lucky.

3.1.2.1. Changing threats

Microsoft Windows has been besieged with security problems. The Internet and email make a perfect
medium for viruses to spread with frightening speed. Dominant market share, combined with huge
holes in Windows and its browsers, make them the target of most Internet viruses.

In fact, blatant security holes in Windows have led to a whole new type of security threat, called
adware . Five years ago, it didn't exist. Today, I found 6 million Google hits on the term! As you
probably know, adware seeks to exploit vulnerabilities in Internet Explorer to drive up traffic to

certain sites and learn about the activities of a user. Most analysts believe that adware has usurped
the virus as the top security threat, because these often malicious applications spread so broadly and
so quickly. They often lower security settings to enable other types of more serious attacks.

C and C++ also present enormous security concerns. C++ applications have full access to operating
system APIs and unrestricted access to every byte in their dedicated memory space. Many versions
of the Windows operating system cannot protect one application from another. Given the Internet as
the ultimate delivery vehicle through components like ActiveX you can quickly develop unacceptable
levels of risk. Given the sensitivity of the data that many of us keep on our machines, these threats
take on a more serious dimension.

3.1.2.2. Remedies in Java

The virtual machine gave Java designers a chance to have a secure foundation on an insecure
platform. The advantages deal primarily with the restricted sandbox:

Since Sun designed Java from the ground up, it did not need to worry about patching legacy
security problems, like those you might find in Unix and Windows. (These are operating
systems, but they also are application platforms.)

Java, the language and the JVM, grew up after the Internet, so the inventors had the benefit of
knowing what types of attacks might occur.

Java has a security manager built in at the lowest level, to enforce security policy and to control
access to low-level system priorities.

The JVM provides a limited sandbox for a group of Java applications, so a malicious or buggy
application can't do as much damage as, say, a C++ application might.

Because there's no pointer arithmetic, and because Java has strong runtime typing, the JVM
knows precisely where a reference is pointing. The JVM can better restrict an application's
access to its own memory. Most Java security attacks try to defeat type safety first.

The relative dearth of Java security breaches represents perhaps the biggest compliment to Java's
founders. It's just a tough environment for viruses, or adware, or security attacks. The base
operating system makes a much riper target.

3.1.3. Moving Forward

The idea of the virtual machine is here to stay. The intermediate virtual machine transforms the basic
problems of portability, security, and deployment from nearly unsolvable to routine. If the virtual
machine adapts to accept dynamic languages, the JVM will probably be the deployment platform of
choice for the foreseeable future. If not, a new virtual machine will need to emerge.

But the problem of portability has proven to be a difficult one. Jython , a dynamic language based on
Python but running in the JVM, never quite reached the expected level of prominence in the Python
community, particularly because it wasn't fast enough, and partly because the Python community
never embraced it. A project to implement Ruby on the JVM, called JRuby , has similar difficulties so
far. Still, many analysts predict that the JVM will live long beyond the time that the last Java

developer writes the last, lonely line of code.

I'm convinced that the next major programming language will be much more dynamic. It's pretty
clear that newer dynamic languages will also have the benefit of a virtual machine. If the lax sales of
security books and Windows alternatives are any indication, security just doesn't mean as much to us
as we think it does. Still, alternatives may have the benefit of Java's virtual machine. If not, cross
your fingers. The next major alternative may not be as secure as Java, because most language
designers don't start by building in security first. Until we fix fundamental holes in our processes, our
thinking, and our operating systems, security in the languages built on top won't matter much.

3.2. The Internet

C evolved from a systems language built to create operating systems. It's a systems programming
language. C, and the C++ follow-up language, didn't creep into the enterprise until later. Unlike C++,
a very early target for Java was mobile computing, and it evolved very quickly to encompass Internet
applications for the enterprise. You can easily see Sun's intentions in four primary places:

Java included convenience features to make applications programming easier. Java added
garbage collection and memory management, so application developers wouldn't have to deal
with these issues. Java included first-class strings, so the platform, rather than the
programmer, could deal with moving the individual bytes around. A systems language might
want more control.

Java's vision for enterprise computing was centered on the Internet. Java built in several
libraries that greatly simplified enterprise computing and the growing language always kept the
Internet as a central focus. Early APIs enabled everything from communications protocols like
TCP/IP sockets to the applet framework that allowed embedded applications in a browser.

Java's fathers keenly moved to improve simplicity, at the price of low-level flexibility. For
example, though C++ could touch any byte in the system, they knew that the C++ applications
community struggled with pointer arithmetic.

Very early, Java was targeted at mobile applications , but Sun saw an opportunity to topple
Microsoft. Sun took the opportunity, extending the primary focus of Java into the Internet.

Remember this: client/server computing made it very difficult to deploy applications. Thousands of
Windows clients, and a distributed network of hundreds of servers to power them, were cheaper than
mainframes to buy, but they were horrendously expensive to manage. In the late 1990s, corporate
visions changed from client/server computing to networks of applications built with Internet
standards, called intranets, existing entirely inside corporate boundaries. When Sun embedded Java
into the first version of Netscape Navigator, this vision looked quite possible.

3.2.1. A Consistent Evolving Vision

The ultimate goal for the Internet is this: give all users a single application platform (we call it a
browser), and give them the ability to run applications in it. Initially, those applications took the form
of applets. It was a simple ideaembed the JVM into a browser, and let the user just download Java
byte code that makes up an applet as one more message (MIME) type. The browser would just hand
the applet to the JVM. Initially, many companies deployed their first few applets with great success.
Later, applets fell out of favor. Over the course of my interviews for this book, I found broadly
different views of why they failed:

Deployment was hard. Applet developers discovered that they had traded one problemdeploying
operating system upgrades and client applicationsfor anotherdeploying the ever-changing
browsers, and synchronizing virtual machines.

Programming was hard. Applet developers had a hard time understanding an alien
programming model, and integrating the applets seamlessly with the web page. Applets done
well were often magnificent, but not many applets were done well.

The Netscape JVM was buggy. Some said that the buggy Netscape JVM killed applets single-
handedly. If Netscape had better supported the notion of a pluggable virtual machine, applets
might have had a better chance at success.

For whatever reason, applets faded into the background. But Java is a surprisingly nimble beast, at
times. In the halls of Netscape, server-side Java emerged. Servlets (a term originally coined by
O'Reilly) made server-driven Internet applications available to application developers. Sun capitalized
on this movement quickly with a standard, and an open source implementation of a servlet engine
called Tomcat . Servlets solved many of the problems of CGI-based applications, and enterprise
developers had a new way to deliver applications to a desktop. The vision of an application in a
browser remained, but the view logic had moved from client to server.

The server would build dynamic content and serve it to the client. Ironically, this "new" model was
little more than a glorified green screen that you might find on a mainframe terminal or emulator. It
did have some important subtle advantages:

While green screens were stodgy and old, the Internet was cool and new. Users knew how to
use them because they had the Internet at home. They liked to use the new systems as much
as developers liked to build them.

Browsers lacked the raw productivity of keyboard-driven interfaces, but it was much easier to
train users on them. The user interfaces provided several subtle enhancements, like navigating
through links instead of typing menu choices.

The server-side development environments were much more productive than their mainframe
counterparts. Development environments, often Windows clients, were much cheaper.

Java's client-side development stagnated. Swing has long been criticized for providing a poor user
experience, but the real limitations lie in the learning curves and ultimately the productivity of
developers that must grab it by the throat and shake to merely coax a minimal application out of it.

But Java's emphasis quickly moved wholly to the server side, where it remains today. Java Server
Pages (JSP) continued the evolution, making it easier for traditional designers to play a role in the
development of web applications. More modular designs, with JSP tag libraries, portal components
(called portlets), and MVC frameworks, continued the evolution. None of Java's user interface
technologies has succeeded on the same scale of web-based applications, driven from servlets.

3.2.2. Moving Forward

The vision of Internet applications is not yet complete. Google is now experimenting with Ajax , which
seeks to provide a better experience to users with generated JavaScript and XML that communicates
with the server. Applications like Google Maps show that it's possible to create richer applications with

JavaScript and active communication between the client and server, but we desperately need a new
user interface technology providing the advantages of easily deployed servlets and the richness of
applets. JavaScript is broadly available, but it's a haphazard, problem-prone scripting language that's
different on each different browser.

My intuition tells me that the ultimate answer won't look much like a browser, but will have many of
the same characteristics. You can well imagine that a better marriage between a browser and a
dynamic language would make it much easier to give the user a richer experience. One thing to me is
clear. The Java community has not had much success with richer clients. The mainstream rich client
technologies of Swing and the Standard Widget Toolkit (SWT) keep the programmer at a very low
level. Microsoft and Apple both have much better frameworks. While Java does do web-based
development very well, increasingly users will demand a richer experience as they have access to
more bandwidth and ultimately see the incredible power that a richer experience can unleash.

3.3. Enterprise Integration

As the emphasis in Java shifted from the client to the server (Figure 3-2), enterprise integration
became more important. Here, the partnership of IBM, Oracle, BEA, Borland, Sun, and others paid
huge dividends. They enabled Java connectivity to databases, transaction engines, messaging
systems, and any other enterprise system that required a Java connection. The combination of
vendor cooperation and support drove cooperation in standards and proliferation of useful connectors
that we've never seen before. Java proved to be a good integration platform. Because of the backing
of all the heavyweights, Java also became a very safe solution.

Figure 3-2. Java's focus shifted from the client to the server over time[*]

[*] Dates taken from "The Java Platform, Five Years in Review"; http://java.sun.com/features/2000/06/time-line.html. © 1994-2005

Sun Microsystems, Inc.

Java remains a good language for enterprise integration projects, because of the high number of
frameworks that solve so many of the critical problems, like distributed transaction processing. Static
typing is much more important for problems on a massive scale, since such problems are harder to
test, bugs become more expensive. Relative to C++, in this space, the speed of authoring is more
important than the speed of execution, because most execution time is spent inside of the various
enterprise transaction, database, and networking libraries.

3.3.1. Moving Forward

Today, Java can talk to just about any enterprise system that's important to you. Beyond integration,
Java now provides excellent facilities for mapping object-oriented models to relational databases. You
can do distributed coordination of transactions, and manage massive messaging systems with first-
class rules engines and workflow. You can reach beyond Java into C++ using a native wrapper called
the Java Native Interface (JNI), or using coarse-grained strategies like web services. You've got
dozens of remoting strategies available, from the 1990s standard CORBA to the Java-only RMI. Or,
you might decide to use many of the lightweight HTTP strategies for remoting and web services.

http://java.sun.com/features/2000/06/time-line.html

Different standards and free frameworks will help you manage the services for your business objects,
do text-based searches, write games, or even write mobile applications.

This is the massive front that a challenger must conquer. But Java has a critical weakness, too. The
easy Enterprise problems have been solved, so the key vendors spend most of their time working on
the hard problems. That presents a problem for the at-large programmer. As Java moves into
increasingly complex places, it has a tendency to leave the programmers of the more basic problems
behind. EJBs, the intense proliferation of XML, and the massive web services stacks are just three
examples of ever-increasing complexity.

In the end, Java is sacrificing its primary base, exchanging what was productive and hip for
something that is tedious and slow, but powerful. Many applications don't need any of the extra
enterprise stuff. I'd guess that as many as half of all commercial applications involve a web frontend
that baby-sits a plain old relational database. A challenger in that space need not try to make a
frontal assault. It need only provide a much more productive solution to a niche problem than Java.
Watch a framework called Ruby on Rails. Its sweet spot is the web-based UI on a database. Still
today, that's a tremendously important problem. It lets you capture and share information, which can
in turn be used in any way imaginable.

Erik Hatcher: Java's Success

Coauthor of Java Development with Ant

Erik coauthored Java Development with Ant and Lucene in Action
(http://lucenebook.com/). He commits on several open source projects, primarily at the
Apache Software Foundation where he also serves as a member. Erik once kayaked with
Bruce, barely living to tell the tale.

http://lucenebook.com/

What do you like
best about Java?

EH: It has lots of built-in capabilities and a cornucopia of
third-party (meaning open source for me) libraries.

What don't you
like?

EH: I sympathize with newcomers to the Java
"platform." We all know Java the language is pretty easy
to grasp, and that makes it seem like it won't be too
hard, but in reality, you cannot build even the most
trivial utility in Java without a pretty hefty learning curve.

CLASSPATH gets us all, for example; even the "experts."
To really do something useful you have to learn tons
moreAnt, servlet containers, JMS, JDBC, and a zillion
other things. It scares me just to think of this massive
beast I've somehow spent the last five years of my life
on.

How does Java
hold you back?

EH: I don't feel held back with it personally, but I often
feel that it takes more time than it should to accomplish
a particular task.

What would prompt
(or did prompt)
you to move away
from Java, or
.NET?

EH: If Ruby had a component-oriented web framework
with Ajax-capable components, and there was a port of
Lucene to Ruby, I'd be able to build my current projects
entirely there. I expect that to happen sometime this
year!

3.4. Community

The most critical crown jewel for Java is the community. Said another way, Java's market share
makes it the 500-lb. gorilla who can sleep anywhere he chooses. Java's community is as massive as
it is diverse:

Vendors across the industry support Java. Though Sun is the inventor, IBM is perhaps the most
important Java supporter.

Enterprise developers use Java to do almost everything. Java is at once a mobile computing
platform, a web-based applications language, a systems language for enterprise-plumbing code
called middleware , and everything in between.

Hobby programmers flock in droves toward open source projects. Once the black sheep of the
open source community, Java has now become the dominant player.

Standards also play a significant role in enterprise computing. From the beginning, the core Java
vendors have collaborated to establish standards. Servlets, EJB, and JSP were three of the most
influential standards of this decade. To fend off the image that Java was growing increasingly
proprietary, they established a community process.

Java has characteristics that many of us take for granted. You can find good Java developers
everywhere. No one ever gets fired for choosing Java. It's mature and ready for outsourcing. You can
get education. You can buy components. You can often choose between many implementations of a
standard. You can do many things for free. I could go on, but the point is clear. Java's community
makes enterprise development safe.

3.4.1. The Importance of Open Source

Everyone wants to build a monopoly for the inevitable benefits of market domination, but the power
behind Java's community goes well beyond riding the coattails of market leadership. And one piece of
the community, open source software, increasingly defines the Java experience.

In the beginning, open source software powered the servlet revolution through Tomcat. Then, we
learned to build with Ant , and test with JUnit , and continuously integrate with products like Cruise
Control. Later, Struts software changed the way that we organize web-based user interfaces, and
Hibernate led a resurgence in transparent persistence. You could easily argue that the most
compelling innovations are happening in open source projects, in many areas:

Lucene now provides industrial-strength text-based search.

Tapestry is possibly the most promising successor to Struts.

Spring rather than EJB defines the way that services are applied transparently. With Spring, you
can attach declarative services like security, transactions, and remoting to POJOs.

Hibernate is one of the leading providers of transparent persistence.

You can even see the impact of open source software on industry. The EJB 3.0 spec forced vendors to
provide a simpler POJO-based API, instead of standing pat and raking in the money from existing EJB
2.x servers. Ant and JUnit changed the evolution of development environments. JBoss created a full
open source application server, and is changing the model for software companies.

Now, several companies use the open source community to control certain important technologies.
For example, after years of getting hammered in the area of Integrated Development Environments
(IDEs), IBM open sourced Eclipse. Now, look at the difference:

Though IBM spends a fraction of the money on marketing compared to the past, it has an
overwhelming lead in market share.

IBM now has the mind share of the fickle open source community.

Open source developers contribute eagerly to the Eclipse project, and donate plug-ins for free.

IBM still maintains some control over the IDE, and more importantly, it keeps its competitors
from controlling any aspect of Java through an IDE.

I'm not suggesting that the open source community is easy to manipulate or control. It's a force of
its own. If you're starting a new software company or managing a mature one, you have to consider
the impact of open source.

3.4.2. Moving Forward

Community played perhaps the key role in the emergence of Java. Without enticing the C++
community, Java would have started much slower, and may never have attracted the support of the
core vendors. Without the open source community, many of the innovations that now define Java
might never have happened. The challenges for the next major language are daunting.

If there is to be an ultimate challenger for Java, the next successful language will need to achieve a
critical mass quickly. That suggests to me that there will need to be some sort of catalyst, like applets
in Netscape. The next successful language will probably also need to nurture a massive open source
programming community, if it is to enjoy the variety and longevity of Java. Finally, the next language
needs to be politically safe (think Ruby, not C#), so standards can emerge without the constant
bickering that can get in the way.

3.5. Breaking the Myths

As with all technologies that rise so quickly and become so prominent, it's tempting to worship Java.
In fact, many media Java proponents use Java's overwhelming success to defend everything from
EJBs to static typing. They make a leap of faith to suggest that Java had to be perfect for it to
achieve such widespread success. That's dangerous. In fact, many of the following myths may
eventually help lead to Java's demise.

3.5.1. Myth 1: Java's Leadership Is Unassailable

Java is indeed in a comfortable position of market dominance. But storms can come quickly. They can
destroy the existing landscape, leaving behind a new legacy. Disruptive technologies occur more
frequently than you might think:

Consider the recording industry. Records died, and it looks like CDs may die soon, too.
Walkmans rose quickly, and are falling just as fast. A combination of an iPod and a Bose Wave
Radio can easily replace a whole stereo in many households.

Some emerging Third World countries skipped traditional phone systems, in favor of wireless
technologies.

Digital photography has relegated film to a niche product.

You can't find a 51/4-inch floppy disk anymore, and it's getting harder to find a 31/2-inch disk.

Closer to home, Visual Basic may be nearing the end of its run. Movement to .NET has proven
to be disastrous for Microsoft, for the Visual Basic community.

In fact, Microsoft's .NET environment threatens Java now. Some emerging programming languages
draw the attention of some of Java's brightest independent consultants, and frustrating limitations
drive away others. All other programming languages have had a limited period of leadership. In the
end, this will be true of Java as well.

3.5.2. Myth 2: Java Is a Great Applications Language

Java didn't succeed because it was the best application programming language. It's not even a
particularly good application programming language. Smalltalk and Python are certainly more
productive. Visual Basic is simpler. Java succeeded because it was able to grab the existing C++
community, and enable them for the Internet. The community, not the language, represents the
most important aspect of Java. Some of the very forces that ushered in the Java revolution may well
help lead to its ultimate demise. The C++ legacy, necessary to attract the vast existing community,
also limits Java in many ways that we'll explore in Chapter 4.

Beyond the syntax of Java, its explosive success forces Sun to make conservative decisions at the
language level. It's doubtful, for example, that we'll see aspect-oriented programming baked into the
language, as many think it should be. These decisions, designed to maintain backward compatibility,
mean Java simply can't evolve as quickly as its competition. All of this means that Java's evolution is
limited, when you compare it to its competition.

3.5.3. Myth 3: Java Is the Most Productive Language

When you compare it to C++, Java is indeed quite productive. That's the cloudy window through
which we view Java. But Java's not an application language, any more than C++ was. Anyone who's
ever used Basic or Smalltalk can tell you about the importance of a rapid feedback loop. Java's
compilation requirements and static typing blow away any ability of real-time interpretation or a rapid
feedback loop. Static typing is good for preventing some runtime errors, but it's hard on productivity.
Java's string handling is limited. Java's syntax lacks features like closures and code blocks (which let
you pass a block of code as an argument). Again, Java won because it was more productive than the
language that most of us were using at the time. It was productive enough. It won't always be.

3.5.3.1. Corollary 3a: All languages are about the same

Java was able to displace C++ because it offered significant improvements, like garbage collection, a
virtual machine, and better OOP. You can often express more with Java in fewer lines of code than
you can in C++. The same holds true when you compare Java to some other languages. Languages
like Lisp and Haskell offer a higher level of abstraction and a radically different paradigm. Languages
like Ruby are far more dynamic, and offer much better access to the building blocks of the language
through metaprogramming. Features like code blocks and continuations impact the way you organize
and use your libraries, and Java doesn't support either one. In Java, you often have to work much
harder to achieve the same result.

3.5.4. Myth 4: Commercial Interests Drive Most Java Innovation

While industry is driving some significant innovation, you could well argue that the most important
innovations, like lightweight containers (Spring), web-based application models (Struts and
Tapestry), and transparent persistence (Hibernate), are all happening in the open source community
right now. These are the ideas that push Java beyond its intended boundaries. In fact, industry goals
often hamper rapid innovation:

It takes time to synchronize massive integrated suites of products. That's why you have to wait
so long between releases of WebSphere.

It takes time to build and test on the scale that's necessary to make big money, in the face of
open source competition.

It takes time to create standards, and more time to adopt them.

The JCP tries to use the knowledge of experts to invent standards, instead of standardizing
inventions born out of experience from successful implementations.

More and more, customers look to open source software to solve critical problems, because they
innovate so well. Just as you've witnessed the rise of open source frameworks as a major force, the
next popular programming language could well emerge from the open source community.

3.5.5. Myth 5: Big Things Usually Come from Likely Sources

The last few major programming languages have mostly come from unlikely places. The last two
didn't even come from major software companies. C came from Bell Labs, a communications
company. Java came from Sun, a hardware company. The next popular language will likely come
from an unlikely source as well. I don't count C#. It's effectively a Java clone. And the roots of
success of Visual Basic came from a small company, operating on a razor-thin budget out of a garage
in the Pacific Northwest, called Microsoft.

Java is a mere programming language. Like all languages, its moment in the sun, and its leadership,
will prove to be limited. The question is not if, but when.

3.5.6. Looking Ahead

So far, I've tried to paint an accurate picture of Java's success. I owe much of my career to the
fathers of Java, and the incredible run of success it's had. Still, I believe that Java is not the
unassailable juggernaut that many believe it to be. I think that Java is drifting away from the very
developers who made it successful, those who could download a relatively simple language and
environment to get an applet or servlet running quickly. Further, some of the very compromises that
made Java attractive to the C++ base, like primitives, static typing, and a C++-like syntax, are
beginning to work against it. Simply put, Java has reaped the benefits of effective compromises. In
the next chapter, we talk about the costs.

Chapter 4. Glass Breaking
I don't know for sure when I decided that the kayakers behind us were in trouble. Our minds were
occupied by the chaos around us, and the situation kind of snuck up on us. Barton Creek was in flood,
and it was pounding furiously. We'd left with 10 paddlers, but needed to keep a safe distance. We
divided into groups of three so that each group could keep an eye on the others. The day had already
started badly; a fireman in an unrelated party had died on this same stretch of creek. An expert
boater had been foolishly paddling alone. Now, we had problems of our own.

After we'd paddled for about an hour, we pulled over into a huge eddy to get the group together and
plan our assault on the next dangerous stretch of river. In truth, the banks were very dangerous,
with trees that could trap you like a kitchen strainer while the water piled up and poured over you,
but the main lines were pretty straightforward. I'd flipped once, but rolled back up easily. But we'd
passed a few places that could have given you trouble, had you been unlucky enough to blunder into
them, or too cocky to skirt the danger. The last party of three was missing, and we had no way of
getting back up the river. We waited for two hours, but the last group of three failed to join us. We
waited until there was little daylight left, and then we headed down the river. Eventually, we
discovered that one in the trailing party had tried to punch a hole that none of us was brave or stupid
enough to run, and had to be rescued by helicopter. I've never run Barton Creek again with water
that high.

I've developed a good instinct for trouble on the river, and at work. In this profession, I generally
know when a technology smells wrong, or dangerous, and I guide my customers away. I'm sensing
that danger around Java right now. It's getting too difficult to manage, and both evolutionary and
revolutionary steps to remedy the problem are failing us. In this chapter, I'll introduce some of the
basic problems.

4.1. Java's New Job Description

So far, I've tried to make the case that Java's always been a generalized programming language,
with the syntax and core community coming from the C++ systems language. Also, I've suggested
that most early Java applications focused on the user interface. You could download Java and get
something running very quickly.

Once Java moved to the server side, it became the core server-side development language. Java
carries an increasing load in enterprise development, from object-relational mapping with distributed
transactions to messaging with XML binding for service-oriented architectures. So the job that we use
Java to do is ever changing. The language is remarkably flexible, so it's lived up to the challenge so
far.

But all of the extra power comes with added complexity. Where does that leave people who need to
learn a language quickly, or the Java programmer who wants to solve a simple problem, or
companies like start-ups that value productivity over all else? As competitive pressures force us to
meet shorter and shorter schedules, a generalized Java is just not enough anymore. At some point,
Java will prove inadequate. Let's look in detail at what we're asking Java to do.

4.1.1. Typical Requirements

If Java dies, I think it will be replaced one niche at a time. Java's popular in several niches. It's
floundering in some and thriving in others:

Java's become indispensable for writing middleware , the systems software that fits between an
application and an operating system. Java's many libraries, performance, portability, and
ubiquity make it a good fit for middleware, and that's likely to continue.

For servlets and web programming in general, Java needs a faster feedback cycle, and needs to
get better at managing strings. PHP is far more productive for this environment. Java's not the
only reason: web programming is a mess for many reasons. But Java just isn't very good for
the simplest and most typical applications.

For XML processing, better alternatives exist. I'd argue that Java's over-reliance on XML is part
of the problem, but let me point out that Java is not a particularly good language at handling
XML either. XML requires excellent string parsing and manipulation, and Java is just too verbose
in this space. Already, the Ruby XML processing libraries, for example, are friendlier than the
Java versions, and nearly as fast, for most jobs. Some other languages have excellent XML
support. They will only get better over time.

For large enterprise projects requiring things like distributed transactions across multiple
resources, heavy legacy integration, and code that relies on niche libraries , Java's large
libraries and the availability of Java developers make it a natural fit. It will continue to find a

role here for quite some time. Be careful, though. Most projects in the enterprise are smaller
projects that could benefit from a more productive language.

Instead of looking at the entire Java landscape, let's narrow it down a bit and consider the
requirements for the most typical Java job. I'll go out on a limb and suggest that the most common
Java job is to take a big, fat relational database and baby-sit it with a web-based user interface. As a
consultant, I see variations of this job more often than any other.

I realize that I'm painting Java into a smaller niche than it's currently occupying. I do think there's
cause to do so. From the beginning, Java has been a converted systems language. The impressive
list of libraries expands that scope, and the broad and deep pool of programmers makes it compelling
for large enterprise applications. But Java never really has been a general-purpose applications
language, though that's the place that most of us use it today.

4.1.2. The Learning Curve

If you're concentrating on putting a web-based frontend on a relational database, Java framework
designers have solved this problem repeatedly for eight years. I've got to admit, Java hasn't gotten
much better at this job since the invention of JSP. Take a look at one of the earliest servlet APIs in
action:

 public class HiMom extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 response.getWriter().println("<HTML>\nHi, Mom\n</HTML>");
 }
 }

True, this programming style leads to ugly code with nearly impossible maintenance. It couples view
logic much too tightly to business logic. But it is very easy to understand. With the first release of
Tomcat, after a few minutes of setup and less than 10 lines of code, you could write a "Hello, World"
servlet.

Now the same application involves more effort. With the latest release of Tomcat, you can't just write
a servlet anymore. You also need to code up a deployment descriptor and package it all up in a
standard WAR file. That means you've got to learn more about Tomcat , more about the servlet
specification, and more about XML. As a consequence, the getting-started documentation for Tomcat
has grown from a couple of pages to dozens of pages.

You might not think that substantial increases in the learning curve for Tomcat matter much. You
might be willing to make such an investment in Tomcat, because it's such a core technology. The
problem is that it doesn't stop with the servlet API. You need much more to build a typical Java
application today than you needed five years ago:

You'll likely need to understand Ant , the typical tool that most of us use to build and deploy
web applications.

Then, you'll need to understand Tapestry , or Struts , or some other web MVC framework, to
help you organize your user interface code base.

Most of us try also to learn an object relational mapper, like Hibernate . While it does relieve
some of your persistence burdens, it also imposes a steep learning curve.

You'll probably want a framework like Spring to organize your application resources and make
this whole strategy testable.

You'll need some education on how to use these tools to integrate them and use them together
effectively.

My clients that move to Java from another language just shudder when they see my recommendation
of five weeks of education, which lets them cover only the fundamentals. Java is no longer an
approachable language for them.

4.1.2.1. Java for the typical application

True, Java has improved some aspects of this problem. If you've got a highly normalized relational
database that doesn't lend itself to an object model very well, you can map it better today than you
could then, because of the emergence of object relational mappers like Hibernate and JDO . You can
better separate the business logic from the view logic, with Struts and better emerging alternatives
like Tapestry. You can attach services like security and distributed transactions to any Java object
with frameworks like Spring.

But if you really come back to the core problem, a web-based user interface on a relational database,
you have to learn much more to do the job today than you had to learn five years ago. And you have
to work harder to achieve the same results. Most of the added value deals with corner cases, or
noncentral problems. When all is said and done, these advanced frameworks will drive the Java
language away from the base that made it so popular. When that happens, Java will be a niche
language for large-scale enterprise development.

4.1.3. Agile Processes

While the requirements for the typical Java application have remained relatively static, radical
changes are transforming the typical process that you might use to build it. While not many Java
programmers would say they use agile methods like SCRUM or Extreme Programming , more and
more of them are using the core techniques from agile processes :

Simplicity

Agile methods suggest that you should use the simplest thing that will work. Simpler
frameworks like Spring now displace complex frameworks like EJBs with increasing regularity.

Automated unit testing

We are in the midst of a testing renaissance, and the JUnit framework and agile processes light
the way. At conferences I attend, classes like test-first development garner ever-increasing
attendance, and polls to the audience indicate that testing is much more common than it has
been.

Shortened iterations

Shorter schedules and the need for better integration of customer feedback shorten product
development cycles, and also the smaller iterations within those cycles.

4.1.3.1. Development processes and Java

Java's community and tools provide excellent support for agile development, but there's a catch. Java
is not such a good language for agile development. Java is not the simplest of languages. Nor is it
friendly to very short iterations. If these two ideas are not clear to you now, they will be clear by the
time you finish this book. Other languages let you move from one change to the next without a
cumbersome compile/deploy cycle. Other languages have a more expressive syntax, and other
frameworks take you to a higher, more productive level of abstraction.

Even as we begin to understand that Java is not the most agile language, those using other dynamic
languages are using agile techniques like automated testing to shield them from the problems related
to programmer-friendly type and exception strategies. Java's founders believed that it's always better
to catch potential bugs at compile time. They did not consider that features like static typing and a
heavy emphasis on checked exceptions come at a cost.

If we were to choose a language based on the development methods that we value today, Java would
almost certainly not be our language of choice. As the principles promoted by agile developers
become prominent, the Java language will experience increasing pressure.

4.2. Basic Java Limitations

I've painted a picture of the average project. The average team builds or ports applications that will
deliver a web-based frontend on a relational database, potentially with other less meaningful
services. The team probably uses increasingly agile principles, and likely wants to do unit testing. The
team typically works under short schedules and great pressures. And given more dynamic
alternatives, Java is not at all the language that I'd usually choose for such a project, in such an
environment:

The many frameworks designed to simplify the Java development experience do make
experienced Java developers more productive, but make the learning curve too steep for those
new to Java.

Compile-time checking of exception and types adds safety, but comes at a cost of additional
time and syntax.

Java's inability to express structured data leads to an over-reliance on XML, with the
corresponding additional complexity and bloat.

Java's many compromises, like primitives, make Java harder to learn and more complex to
write.

Java is more dynamic than C++, but is nowhere near as dynamic as languages like Smalltalk
and Ruby. Java developers are finding metaprogramming, but they're not able to execute on
those ideas fast enough.

Java's long compile/deploy cycle is much longer than interpreted, dynamic alternatives.

Taken alone, none of these issues hurts enough to matter. Taken together, Java becomes much less
productive for most developers.

Steve Yegge: Java's Limitations

Language expert and creator of Wyvern

Steve Yegge, a graduate of the University of Washington, spent five years as an
Assembly-language programmer at Geoworks and more than six years as a software
development manager at Amazon.com. Steve somehow managed to find time to design,
implement, and maintain a massive multiplayer game called Wyvern
(http://www.cabochon.com/), with a half-million lines of Java and Python code.

What is your
experience
with Java?

SY: I was a card-carrying member of the Java community
from late 1996 through mid-2003. I used Java to build a cool,
multiplayer, user-extensible online game. Java got me really
far, and I loved it for seven years.

Why did you
start looking
at other
languages?

SY: I simply hit a productivity wall. As my code base grew, my
innovation slowed, until finally, tasks were taking me an order
of magnitude longer than I felt they should. I stopped
development for six months and did a deep-dive investigation
to figure out what the heck was going wrong. It wasn't what I
expected. The problem was Java. I was pretty unhappy about
this. I'd invested an awful lot in Java. AOP helped a little
(albeit at a high entry cost), but nowhere near enough.
Nothing else helped at all. What I needed was a new language.

How does
Java hold you
back?

SY: First, Java offers an impoverished set of abstractions. No
first-class functions, no reference parameters, no keyword or
default params, no destructuring bind or even parallel
assignment, no way to return multiple values efficiently, no
continuations, no user-defined operators, no generators, no
closures, no tuples...the list just goes on. Java's about 25
teeth shy of a full mouth.

Second, Java is entirely nonextensible. It can't grow. There's
no metaprogramming, no macros, no templates, nothing that
gives you syntactic abstraction. So, Java's incompressible.
Java code is always filled with stuff that looks like copy and
paste, but you can't factor it out. Java code and APIs always
wind up bloated (and yet oddly impressive looking).

Third, Java can express code, but not data. You're stuck using
property files, XML, and other means of defining data. But the
line between code and data is blurrythink about configuration,
for example. So, the Java folks are piling on framework after
framework, creating this huge pipeline of transformations that
can't be expressed in Java.

Fourth, Java's static type system sucks. Actually, all static
type systems suck, but Java's is worse than most. It gives you
only narrow avenues along which you're permitted to think.
Java programmers must painstakingly learn to pound star-
shaped pegs into square holes; this is what design patterns
are mostly about.

Fifth, Java has far too much nonessential complexity. For
instance, it now has four kinds of types: primitives, classes,

http://www.cabochon.com/

arrays, and enums. All the type types have their own syntax
and semantics, which you must learn and then handle in your
APIs. It's not just types, either. Java's entire syntax is large
and bureaucratic. Java's syntax is complex for no good
reason.

4.3. Typing

One of the most fiercely debated topics in programming languages is the benefit of strong, static
typing strategies. Java's strategy opts for as much compile-time checking as possible. Let's take a
quick overview of programming language design, in layman's terms. Then, you can put Java into
context. When building a language, a designer needs to answer two typing questions relatively early
in the design process.

4.3.1. Strong Versus Weak Typing

Strong versus weak typing decides how a type is enforced, or interpreted. In a weakly typed
language (like C), variables can be coerced easily, or interpreted as something else. A strongly typed
language strictly enforces compatible types across operations. It probably doesn't surprise you that
Java is a strongly typed language.

Ruby, Smalltalk, and Python also enforce strong typing, which might surprise you. Many developers
believe Smalltalk, Python, and Ruby are so productive because they are weakly typed. They are
misinformed. Consider this brief Ruby example:

 irb(main):003:0> i=1
 => 1
 irb(main):004:0> puts "Value of i:" + i
 TypeError: cannot convert Fixnum into String
 from (irb):4:in '+'
 from (irb):4

In the first line, the undeclared variable i takes on the value of 1. At this time, Ruby decides that i is
a Fixnum. When Ruby interprets the third line, it sees the + operator after the string, and tries to
concatenate i. Of course, Ruby doesn't know how to concatenate an integer to a string, so it throws
an error. That's clearly an example of strong typing. (Actually, I've oversimplified things a little. You
can dynamically change the definition of Ruby classes and objects at runtime, and this weakens the
typing somewhat. Still, on a continuum from strong to weak typing, Ruby would lean slightly to the
strong side.)

In a similar situation, a language with weaker typing may instead coerce types to a compatible form,
as in C. Consider this example:

 int a = 5;
 float b = a;

In the second line, C coerces the value of the integer to float. Other examples are even worse. In
C++, the () cast operator does not yield type safety, so you could say, for example:

 Cat *cat;
 Dog *dog = (Dog *)cat;

These are legal C++ statements. Instead of reporting an error, C++ will happily go on stomping
through memory. Languages with very weak typing simply do not capture typing errors, so the
behavior of certain operations is undefined. Weaker typing is sometimes convenient, and less
predictable. As you've seen, typing is not always black and white. It's also a highly contentious issue
among language experts. Strong versus weak typing is on a continuum. Some strongly typed
languages like Java allow loopholes by letting the user cast objects to another type. Languages with
the strongest possible typing allow no loopholes. Weaker typing allows, and may even require,
coercions. The weakest possible typing doesn't do type checking at all at compile time or runtime,
like Assembly language, for example.

4.3.2. Static Versus Dynamic Typing

The more interesting question by far is when typing is enforced. Static typing binds a type to an
object, and language constructs like variables and parameters. Dynamic typing binds a type to an
object at runtime. Dynamic typing doesn't say anything about a variable's container, or anything that
a variable passes through. The type is bound to the object. Therefore, the type of containers can
change. An imperfect rule of thumb is that static languages force you to declare variables, but
dynamic languages don't.

Ironically, most dynamic languages also tend to be strongly typed. Most weakly typed languages tend
to be static. Said another way, strong typing can be dynamic or weak, but weak typing is usually also
static. You don't find many weakly and dynamically typed languages, beyond Assembly language.
Figure 4-1 places programming languages on two axes. Java has strong, static typing. You know this,
because you get type mismatch errors when you make certain kinds of mistakes. Compiling this:

 class TypeTest {
 public static void main(String args[]) {

 i = 4; // Nope!!! Static typing

 int j;
 j = 4.2; // Nyet!!! Strong typing
 }
 }

...gives you this result:

 TypeTest.java:3: cannot resolve symbol
 symbol : variable i
 location: class TypeTest
 i = 4;

 TypeTest.java:5: possible loss of precision
 found : double
 required: int
 j = 4.2;

Figure 4-1. Java is a strongly and statically typed language

Sometimes, that's good. After all, a bug that gets caught at compile time takes much less time than
a bug that gets solved much later. In general, though, the dynamic programmers that I interviewed
said static typing simply mauls productivity.

4.3.3. Syntax

Initially, you immediately can see that Java's syntax forces you to do more work. You have to declare
and type all of your variables and parameters. You also need to cast objects that are compatible but
different, and convert objects that aren't. The extra syntax provides valuethe compiler has more
information to catch bugs earlier. There's a cost, too. Static typing makes you work harder to enter
equivalent code to dynamically typed languages, but you also have more lines of code to understand,
maintain, or enhance. It's very difficult to prove or disprove the notion that static typing makes you
more or less productive in terms of hours at the keyboard, but you can show that static typing leads
to more characters, and more code to read and maintain.

Raw code count is not definitive; if it were, Perl, with all of the two- or three-character shortcuts,
would be the most productive language of all time. Still, it's suggestive. Java's syntax wouldn't be
such a problem if you could limit the extra code to a few lines of code at the top or bottom of a

program, but you can't. You need to declare types for parameters. You need a cast every time you
take something out of a collection. This syntax only gets more invasive with generics.

4.3.4. Thought Process

Some of the costs related to typing are hidden costs . I believe that one such cost is related to high-
level, conceptual work versus finishing work. It's usually preferable to do conceptual work first and
finishing work later, because much of your code will be thrown away, especially at early stages. As
your program takes shape, you can do more and more detailed work. You make the expected case
work, and then you work through noncritical path issues.

Java forces you to work the opposite way: to make things compile, you must deal comprehensively
with typing, which involves dominantly finishing issues. Also, many of the compiler errors in Java
might not even be problems at all in a dynamically typed language.

4.3.5. Code/Compile Cycle

Dynamic typing comes into play especially when you need to experiment. Remember, you must
declare variables in statically typed languages. In Java, that means you need to start each application
with a class definition, and it snowballs. You can't just jump in and evaluate a single line of codethe
compiler just doesn't have enough information. Instead of just simply evaluating statements, you
need to blow out a class, type everything, compile, and execute. In Smalltalk, Lisp, Basic, and Ruby,
you can just start typing. For simple experimentation on an initial cut at a Fibonacci sequence, here's
the Java version:

 class Fib {
 public static void main (String args[]) {
 int x1 = 0;
 int x2 = 1;
 int total = 1;
 for (int i=0; i<10; i++) {
 System.out.println(total);
 total = x1+x2;
 x1 = x2;
 x2 = total;
 }
 }
 }

It's 13 lines; 41 words; 226 characters. Keep in mind that Java forces you to declare the class to
explore, and that's what we're measuring here. On the command line, you need to save, compile,
and run. The Ruby counterpart looks like this:

 x1 = 0
 x2 = 1

 100.times do
 puts x2
 x1, x2 = x2, x1+x2
 end

It's 6 lines; 16 words; 57 characters. Notice how the code just flows better. Read it in English. But the
biggest impact is on experimentation. You just type and go. You can cut and paste right on the
console screen. You'll use command retrieval to repeat the lines that you need. And these
advantages come into play in IDEs as well. Further, if you need 100 iterations, the Java version
breaks because an int is not big enough. Ruby still works fine.

This is a trivial example, and probably not completely fair. After all, the Java version packages up a
full class and the Ruby version doesn't need to. But you'll find that as we go on, the examples get
more and more compelling, especially for the dynamic, reflective style of programming that leading
Java developers seek today.

As you add the Web and other deployment steps, the case for dynamic languages gets more
compelling, because you can make changes and immediately see the results, instead of having to
compile and deploy, and maybe even bounce your servlet engine. Web-based programming gets very
easy. Just make a change, and hit Reload.

From my small forays into Basic (where I made my spending money in high school by writing games)
and Smalltalk (where I did marketing demos), I miss the rapid feedback cycle afforded by dynamic
typing and an interpreter the most.

4.3.6. Adaptability

If you've been coding in Java for most of your career, you probably don't know that you have to
jump through so many hoops just to support static typing, but you do. One of the greatest typing
costs comes into play when you refactor. Think of the impact of a simple type change for a member
variable. You've got to change the property, the getters and setters, every type cast, and every
parameter usage. Dynamically typed languages delay the binding of a type to a variable or a
parameter, so you often don't need to make any change at all to support a simple type change. For
Smalltalk, for example, you can change a type easily. If the new type supports all of the messages of
the old type, you will likely limit the changes to one place in your code.

4.3.7. Generics

The Java architects have traditionally gone to great lengths to ensure type safety, but there's been
one particular case that's troubled them. When you take an object from a collection, you need to cast
the object:

 ArrayList animals = new ArrayList();
 animals.add("elephant");

 String cat = (String)animals.get(0);

The compiler has just lost the ability to provide compile-time type safety. You could call the array
element anything you want. To fix this, Java introduces an ugly implementation of a feature called
generics . Here's what the usage looks like:

 ArrayList<String> animals = new ArrayList<String>();
 animals.add("elephant");
 String elephant=animals.get(0);

Comparing the preceding code with its nongeneric equivalent, you may think that you avoided
casting, but you really did not. Java introduced an ugly implementation of generics, called type
erasure. Under the hood, in the modified version, the ArrayList still maintains a collection of Objects
and not a collection of Strings. Of course, any library that you need to strongly type with user-
defined types must enable the code for generics. Enabling generics gets a little ugly. Here's the List
declaration from within the Java collections package:

 public interface List<E> { void add(E x);
 Iterator<E> iterator();
 }public interface Iterator<E> {
 E next();
 boolean hasNext();
 }

If you're not a fan of statically typed languages, you don't like the extra type checks that place yet an
additional burden on you. Even if you like the idea of generics, you probably don't like the
implementation. Generics offer only syntactic sugar and not real runtime protection, because the JVM
has no concept of generics. In an article series on agiledeveloper.com,[*] Venkat Subramaniam lays
out the problems in gory detail:

[*] Venkat Subramaniam. Generics in Java, parts 1-3 (June 2005);

http://www.agiledeveloper.com/articles/GenericsInJavaPartI.pdf, ...GenericsInJavaPartII.pdf, GenericsInJavaPartI.pdf.

You lose type safety when you mix nongenerics with generics. For example, List notGeneric =
genericList; type safety would not flow into notGeneric, even though it's bound to the same
list as genericList in memory.

You can't use primitive types as parametric type or static fields of generic type.

Instances of different parameterized types (like ArrayList<String> and ArrayList<Book>)
belong to the same type ArrayList.

Since the JVM has no notion of generics, other classes won't be able to take advantage of
generics via reflection.

http://www.agiledeveloper.com/articles/GenericsInJavaPartI.pdf

So, if you're protected at only a superficial level, and if new languages can't participate in the
solution, the syntax only serves to further burden users with details and inconsistencies, prompting
the question, are generics a solution begging for a problem? When I ask my students how many class
cast exceptions they get from collections, very few say this is a significant problem.

Ted Neward: Generics

Author of Effective Enterprise Java

Ted Neward is an independent consultant specializing in high-scale enterprise systems.
He is an author, teacher, and consultant, focusing on Java .NET interoperability. He has
written several widely recognized books in both the Java and .NET space, including the
recently released Effective Enterprise Java (Addison Wesley). He lives in the Seattle area
with his wife, two sons, two cats, and eight PCs.

What's wrong with
Java, in general?

TN: Hordes of developers are writing code that doesn't
fit well with the tools and technologies they're using to
build applications, pronouncing the tools and
technologies "ugly and unusable" and going off to
reinvent the wheel.

What's wrong with
Java 1.5 ?

TN: Java 1.5 demonstrates a general attitude against
progress, and Sun adamantly refuses to advance the
JVM whatsoever, preferring instead to maintain the
fiction that the Java language and the JVM are one
tightly coupled entity.

Do you like the
implementation of
generics?

TN: No. The fact that they're implemented at a language
level, rather than at the JVM level, means that under the
hood, it's all still just Object references, so:

Other languages have no concept of generics.

We get no performance boost from generics.

We have to have some sneaky backward
compatibility that still permits use as Object
references (which you might argue would be
necessary anyway, and I'll suggest that the Object-

reference versions should be deprecated in 1.5 and
removed in 1.6).

4.3.8. Overloading

In some ways, Java's typing problems are exacerbated by another limitation described as a feature:
method overloading . Taken alone, overloading is not a huge problem, but Java developers use
overloading to enable an API that supports multiple types. You've got a surefire recipe for API bloat.

Need an example? Take the java.util.Array interface. Please. For convenience, you get more than
70 methods. Peel back the onion, and you see they cover only 10 or so pieces of actual, distinct
functionality. With a smarter method declaration, you'd be able to specify parameters with keywords,
and default unused parameters to an intelligent value, like 0 or null.

4.3.9. Other Costs

When you decide to type everything, it's a slippery slope. When you need to pull back from Java's
typing system, you can't always do so. You're starting to see many examples of Java libraries
working around the typing in unusual ways. Study the JMX interface for an excellent example. Does it
use strong typing? It appears that way, at first. Then you dig in a little and find what only can be
conceptually described as an embedded type systema mini-language, embedded in a String
parameter called ObjectID, with a complete language description in the JavaDoc and syntax
completely opaque to compilers and interface generators and processors. Java's type system failed
here. JMX architects bypassed the type system, building metadata into strings and other objects. If
you look around, you'll find other examples of this as well. Most often, Java hides weaker types, or
dynamic types, as strings.

4.3.10. The Benefits of Static Typing

After reading about all of the negatives, you're probably wondering why anyone would ever opt for
strong, static typing. There are at least two compelling reasons to do so. Static typing reduces certain
types of errors (like misspelled variable names), and provides more information for your IDE and
other tools. (Most security-related typing arguments refer to weak typing, not dynamic typing.)

Take the following application. Java will catch this error at compile time:

 int consumer;
 if (conusmer = = 0) return consumer; //spelling error

It's hard to imagine a dynamic language, with rigorous unit testing, letting an error like this through,

though. The IDE problem is a little bit more obscure. Many of the features that Java developers have
come to depend on, like method completion, rely on information in a variable's type. You can't always
get the same contextual information out of a Ruby or Smalltalk IDE.

4.3.11. A Safety Net with Holes

The Java founders most often cite the ability to catch type mismatch errors at compile time rather
than runtime. That's interesting to me, because of all the Smalltalk and Ruby developers I
interviewed, few have ever had significant problems with type mismatch errors. Of course, most of
them lean pretty heavily on automated unit testing, as we all should. You need to unit test code
regardless of whether you use dynamic typing. No compiler can guess your intent perfectly. Even if
you like the generics implementation, you've got to be concerned with an implementation that's little
more than syntactic sugar, with no JVM implementation behind it.

With the heavy use of test-driven development, the argument for reduced bugs is much less
compelling. In fact, Java's type safety is not as encompassing as the founders would lead you to
believe. At any given time, most of the objects in a typical Java application reside in collections. Any
time you remove one of these objects from its collection, you need to cast up from Object. You're
effectively retyping an object. If you cast it incorrectly, glass will break in the form of a class cast
exception, at runtime. At the same time, improved tools and emphasis on automated unit testing
make it much easier to catch type problems in dynamic languages long before they ever reach
production. My experience tells me that Java's type safety is not as important and comprehensive as
most programmers think it is, and the typing in more dynamic languages, with unit testing, is not as
limiting.

The IDE code completion problems presented by dynamic typing will probably get solved by a
combination of better browsers and smarter context. Unit testing will make type safety less useful
from a program correctness standpoint. In the end, for application programming, more dynamic
typing will prevail. The productivity gains due to dynamic typing are too compelling to ignore.

4.4. Primitives

From the very beginning, Java designers consciously made decisions to attract the C++ community,
and favor performance over other considerations. The biggest compromise was the inclusion of
primitive types. This addition means Java is not fully object-oriented, and presents several significant
challenges. Those who came from the C++ community don't always see a problem, but developers
from other programming languages often see primitives as an ugly kludge. Primitive types do not
descend from Object, so Java is more of a hybrid language than a true object-oriented language. But
that's all academic. There's a real cost associated with the theory.

4.4.1. Primitives Are Limited

Java primitives limit you because they don't descend from a common Java object. One of the nice
things about most object-oriented languages is polymorphism: you can deal with specific objects in a
general way. In Java, that's not quite true, because primitives do not descend from Object. You
can't, for example, say 6.clone(), or 6.getClass().

If you've ever built an XML emitter or an object relational mapper, you know about the headaches
related to primitive support. In Java, you can't treat all types the same, and you don't have the
benefit of natural methods on the primitive types. You have to build in explicit support for objects,
primitives, and arrays.

Since most of us don't build XML emitters or persistence frameworks, we shouldn't care about those
costs, right? It's not that easy. You still have to deal with complications in the language, such as
inconsistent APIs and added breadth of the frameworks that you do support. Reflection is probably
the worst. To get the value of a field, you first have to determine the type. You then get the value,
with one of get, getBoolean, getByte, getChar, getdouble, getFloat, getInt, getLong, or getShort. Of
course, if it's an array, all bets are off. Arrays can contain primitives or objects, so they can't even
treat their contents generically. You basically have to go through the whole process again.

Reflection in pure object-oriented languages is much simpler. To get a field's value, you use a single
API to query a field, and get an object back. You can then query the object to find the defining class.
If you want to deal with it as a top-level object, you don't even have to do that.

4.4.2. Primitives Are Unnaturally Verbose

Of course, you need to be able to do some things to a primitive that the primitive itself can't do. Java
solves this problem by providing type wrappers. Primitives are so awkward because sometimes you
use the primitive and sometimes you use the wrapper. It's very difficult to be consistent with usage.

When you add the additional wrappers and casts, you find that primitives don't help make Java
cleaner, and they make it only marginally faster. Since you have both types and wrappers, you often
need to convert between the two, forcing unnecessary syntax, and often unpredictable behaviors

(such as several strange behaviors in the autoboxing in Java 1.5).

4.4.3. The Big Trade-off

All in all, primitives were important in one sense: supporting them let Java aggressively attract C++
developers, because the idea and syntax were similar. In retrospect, though, it's created some
significant problems, in terms of language clarity, productivity, and readability.

In retrospect, we're paying for the early compromises that it took to draw away the C++ community.
That's a fair trade, in my book. Don't underestimate the cost, though. Primitives complicate the code
base, lead to inconsistencies, and bloat the language. The next popular programming language will
probably not be a hybrid language, with both objects and primitives. C++ started the transition to
object-oriented programming and Java finished it. We don't need a crutch anymore.

4.5. Parting Shots

Of course, you could write a whole book about the strengths and weaknesses of Java alone. I don't
think that's productive. I won't rehash the "EJBs stink" message that's been presented prominently in
my last three books. I also don't want to launch into a debate about the meaning of whitespace,
Java's commenting styles, or the relative benefits or evils of byte code enhancement. Still, there are
more things to cover. Exceptions and strings play a huge role in most Java applications.

4.5.1. Sun

Sun is not the company that it once was, placing Java's future in doubt. I'm not saying that Java will
disappear, but Sun might. It has lots of cash in the bank, but where is it going to make money? It's
being squeezed on the low end by companies like Intel, Dell, and AMD. IBM is squeezing Sun from
above. Sun's software and services businesses have never really taken off. I think Sun is a ripe
acquisition target.

If Sun does have major problems, what happens to Java? I fear that an IBM acquisition would put too
much emphasis on the hardest enterprise problems, moving Java further away from its base. Open
sourcing Java could effectively splinter the language. Other potential suitors, like Oracle and BEA,
could lead to a conflict of interest that could stymie new standards.

IBM may be getting nervous. It has begun to hedge its Java position in several ways:

IBM is aligning closely with BEA on standards like SDO, and it is increasingly at odds with the
JCP. IBM may well be positioning itself to challenge the JCP, or establish standards outside of
the JCP.

IBM looks like it may embrace PHP more closely, to take advantage of that swelling
marketplace. PHP would be an effective hedge for smaller and intermediate businesses.

IBM continues to invest in XML technologies with Microsoft.

In any event, Sun's ultimate health, or lack thereof, casts doubt on the shape of Java's future. If
you're trying to maintain market dominance, uncertainty is not the best place to start.

4.5.2. Exceptions

Like static typing, Java's emphasis on checked exceptions seems like it's on unshakable footing. The
argument goes something like this: if a typical developer doesn't have to deal with an exception
explicitly, he probably won't deal with it at all. For me, and for many of my customers, checked
exceptions tend to hurt more than they help, for many reasons:

The exception syntax is incredibly invasive. Exceptions easily dominate a typical method, even
at very low levels, when you can't do anything about them.

Most of the time, you can't deal with an exception, so you can only throw it up the chain
anyway. You shouldn't have to do a job explicitly that the compiler can do for you.

Having so much exception syntax deadens you to the few lines of exception code that actually
do something important. Said another way, it's hard to see the diamond through all the mud.

Recently, Java frameworks like Spring and AspectJ have begun to recognize the power of unchecked
exceptions. Hibernate founder Gavin King has often said that he would have built Hibernate on an
unchecked exception model if he had a chance to do it over again. Hibernate converted to unchecked
exceptions at Version 3.

4.5.3. Expressing Data

Programming and data go hand in hand. In most other languages, structured data becomes a natural
part of an application. Part of Java's over-reliance on XML comes from its limited ability to express
structured data. In Ruby, I can quickly declare a hash map of arrays, for example. Such structures
dramatically ease configuration and allow natural metaprogramming.

4.5.4. Strings

If you look at Perl , you can quickly understand what it's designed to do. It's a turbo-charged text
manipulation engine. Though it's very complicated in other ways, Perl has been so popular because it
does what it's designed to do.

By contrast, if you look at Java, you don't have the same convenient, high-powered text
manipulation. That's surprising, especially when you look at the core job that we ask Java to do.
Servlets, XML, JSP, HTML, and many other constructs are strings. In fact, I probably work with
strings in some form more often than I do anything else. It's amazing to me that Java's not any
better than it is when it comes to strings. Its pattern-matching support is second class, and the
major string APIs are at an extremely low level.

4.5.5. Simplicity

Java's already a good language for big, hard-core enterprise programming projects. It's getting
better at solving that problem. And Java's never been good at tiny applications that you might write
for a small business in Visual Basic . There's a huge middle ground between these two problems. Java
stepped into this gap with a vengeance and ripped the heart out of Microsoft's enterprise
programming community. But Figure 4-2 shows Java is leaving that community behind rapidly.

Figure 4-2. Java has controlled the gap between enterprise projects and

small ones, but is now leaving that community behind

In my past three books, I've made the case that Java has to get simpler to thrive. That's not
happening. Java's power structure is entrenched firmly in the enterprise space. In the past three
Java One conferences, Sun has paid lip service to the need to simplify the Java API, but we're seeing
only limited focus on richer user interfaces. The big vendors claim a drive to simplification, but the
ultimate answer is EJB 3.0 , generics , and Java Server Faces (JSF) .

In fact, Java is moving away from its base. Remember, huge numbers of us are waiting for better,
simpler ways to baby-sit a relational database with a web frontend. Instead, we're seeing more XML,
more configuration, more layers of abstraction, and a steady drift away from the user interface and
the end user. Java takes longer to learn and is no longer approachable.

4.5.5.1. Tools

One of the symptoms to this problem is Java's over-reliance on tools. We Java developers love our
IDEs. The truth is that we can't live without them. In the not-too-distant past, I did some research
for a major application server vendor. I found that the most productive developers liked the
command line better. You can always find a command line, and an editor. If you're comfortable with
these tools, you can go anywhere.

But in the past three years, we reached a tipping point of sorts. The smartest developers are moving
toward IDEs, because the language has become too complex to manage without them. You simply
need an IDE to do any real degree of refactoring. Other languages have IDEs, and also good
programmers who are very comfortable without them.

4.6. Why Not Just Fix Java?

You might argue that we need to fix Java, not scrap it. That would be easy if you could pinpoint the
problems. If you thought the problems were in the language itself, you could just do some major
surgery and offer a new version of Java. That's easier said than done. Sun has been very careful to
preserve backward compatibility at all costs. If you look at the lack of commercial acceptance for
Visual Basic .NET, it's easier to respect Sun's point of view. Microsoft made some radical changes to
the language and libraries , and they weren't well received. Regardless of whether it's a good idea,
Sun will continue to be conservative to protect customers.

Still, even if you look at relatively aggressive changes, most experts that I interviewed tend to think
Sun is even now moving in the wrong direction. Instead of making Java more nimble and dynamic at
the foundation, the changes, for the most part, amount to additional type safetysyntactic sugar hacks
built into the syntax rather than the JVM that often lead to inconsistent behavior.

4.6.1. Libraries and Community

It's clear that libraries are problems, too. Sun has launched several belated simplification
movements. So, if it's Java's libraries that are broken, and not the language itself, couldn't we just
scrap a few libraries and start over on a more simplified foundation? That's the approach we
suggested in Better, Faster, Lighter Java. For Java's most important and basic job, a web-based user
interface on a relational database, I don't think Java's frameworks are moving in a healthy direction
at all. Most frameworks are moving to add more compelling features rapidly, instead of simplifying
what's already out there.

One bad library might point to a few local mistakes. Java's problems are more global. They target
very complex problems at the expense of the easy problems that most Java developers need to
solve. The problem is clear. The Java leadership is abandoning its base willingly and rapidly. It's a
cultural problem, inherent in the Java community, vendors, programmers, and leadership. Java has
become strictly a language for hard-core enterprise development of large-scale problems.

4.6.2. Alternatives

Over the next five years or so, the question in play will be this: are the Java community and
expansive code library base worth sacrificing the productivity that other alternatives will bring to
bear? So far, the answer has been a resounding "Yes." But we're nearing a point of no return. Java
needs radical changes if it wants to continue to be all things to all people, but the community,
culture, and leadership behind Java have never produced the kind of structural, sweeping changes
that we need. Sun has always treated Java conservatively. The community process has always built
the kind of software you'd imagine a community process would build: bloated compromises that
please no one in the end. The Java community has always tolerated too much architecture, too much
XML, and too many layers.

In the second half of this book, I make the case that a clean, dynamic language could gain footing

easily in the gap between Visual Basic and enterprise Java. Once entrenched, it could take the same
path Java did, into the enterprise. After all, the lion's share of Java development, even in the
enterprise, is not full of distributed transaction and backbreaking loads. Five years ago, most
developers that I talked to on a regular basis wanted a good way to baby-sit a big, fat relational
database with a web-based user interface. Five years later, they want the same thing.

So far, I've shown you how Java is drifting away from its base. In the next chapter, you'll see the
rules of the game for the next major successful language. In the next half of the book, I'll explore
what alternative languages have to offer, and whether that will be enough to take you beyond Java.

Chapter 5. Rules of the Game
In 10 years of relatively heavy kayaking, a few scary rapids stand out. The Chatooga River had many
such rapids. Bull Sluice on the Chatooga had a waterfall pouring through a hole in the riverbed. It
was large enough on one end to admit a kayaker, but not big enough to let him back out. Cork Screw
had a violent approach and a keeper hydraulic. Woodall Shoals was a placid-looking drop that
masked a near perfect hydraulic that I considered unrunnable in my peak paddling years. On such
rapids, the margin of error was frighteningly small. You walked around, hit your intended line, or
risked getting hurt or dying. Those were the rules of the game.

Let's assume for a moment that you agree with the premise I laid out at the beginning of the book:
conditions are ripe for an alternative applications programming language to emerge, because Java is
abandoning its base. I'm not going to pretend to know what's next. Hopefully, I'll lay out some
interesting languages and frameworks that have promise. I'll also rule out some languages right off
the bat, based on the rules of the game.

If you think about it, you instinctively know that some programming languages will definitely not be
the next big one. Lisp is productive, but the average Joe can't understand it. Perl is rich and powerful,
but it's subtly inconsistent, and is prone to produce unmaintainable code. With a little vision and
experience, you can apply a similar kind of reasoning to understand the types of languages that
might follow Java. I suggest that we define success loosely: the language should be recognized
widely and adopted broadly among developers who now use Java. This chapter, then, suggests the
characteristics that the language should have to have broad commercial success.

5.1. Java Raises the Bar

Each new language is subject to the rules of its time. If you think about new inventions in the world
of music, you'll see the same principle in play. Early in the recording industry, a record label would
sign an artist to a specified contract, manufacture records, promote them on the radio, and distribute
them in stores. You find some of those features today, like many of the roles in the production cycle
and the importance of airtime (on radio, and now TV and the Internet). Changes in standards force
the industry to retool. Some are relatively minorchanges in record speeds simply forced
manufacturers to add capability to record players and recording equipment. Others will almost
certainly be more radical. These changes require a critical mass to take holdCDs achieved a critical
mass, but eight-tracks did not. Sometimes, disruptive changes completely redefine the organization
and very fiber of an industry. Our kids are redefining the way music is distributed through services
like Napster and iTunes. Some artists are distributing their music entirely over the Internet, and they
are cutting the publishing industry out of the equation altogether.

New programming languages work in much the same way. Every language leaves behind a legacy.
Sometimes, changing languages embrace the legacy. For example, you compiled your C programs
into a DLL or an executable. You could take advantage of your C code from C++ by buying a new
compiler. You could even use C++ to write procedural code or object-oriented code. C++ changed
the way we think, but it did not change much of the machinery. The C programming language was
also disruptive in many ways. Java, too, was disruptive, redefining the rules of the game.

Kids like to be able to download songs like "Macarena" instantly, so the old music stores aren't
cutting it anymore, and they are closing their doors. Don't even try to open one, unless you plan to
bankroll it with your own money. By the same token, we like the convenience of the JVM, the
massive open source community, and the focus on the Internet, leaving a higher standard for the
next major applications language.

5.1.1. Portability

Remember our technical crown jewels. Java commercially introduced the concept of a virtual machine
. It redefined the landscape. You compile Java into intermediate byte code that runs in a virtual
machine. We've now gotten a real taste of the advantages of the virtual machine. The next major
applications language will almost certainly support a virtual machine. You just can't ignore the
benefits:

Security

If you can secure the virtual machine, it's much easier to secure the language.

Portability

The virtual machine provides a common, clean foundation for the language.

Extensibility

If your language turns out to be inadequate, you can always change the byte code. Java
extensions like JDO (transparent persistence) and AspectJ use byte code enhancement to
extend the Java language effectively.

Interoperability

Lower-level byte code makes it possible for one language to use the same deployment
infrastructure, and even run side by side with other languages.

So, the virtual machine is important. I'll go one step stronger. The next commercially successful
language should have a version that runs in the JVM. That would help a language overcome many
obstacles, both political and technical.

Dion Almaer: Why Java Will Be Hard to Replace

Dion Almaer is the founder and CTO of Adigio, Inc. He is an architect, mentor,
pragmatic, and evangelist of technologies such as J2EE, JDO, AOP, and Groovy. He is
the former editor-in-chief of TheServerSide.com J2EE Community and is a member of
the Java Community Process, where he participates on various expert groups.

You've been a Ruby
on Rails proponent.
Do you see Ruby as a
potential replacement
for Java?

DA: As much as I like technologies such as Ruby, I
am skeptical as to how to get them used in the
mainstream. There is too much power behind the Big
Two VMs (JVM/CLR).

"You are saying I should bet my Fortune 500
enterprise on a Japanese Mormon named Matz?"

What are the big
obstacles?

DA: Inertia is a serious concern for large companies.
What is the roadmap for Ruby? Where are the
standards? What is the quality of the various
modules? How is Ruby on the mobile phone?....

How might it
overcome those
obstacles?

DA: Ruby is a top language with some amazing
frameworks on top of it, but to get to the next level
there probably needs to be more. I would love to see
JRuby and Ruby.NET really take off. The bulk of the
arguments are political, but they are still very valid.

There are many great things written on top of the
JVM. Ruby feels best for me as a language (for certain
tasks), but the platform is harder to sell. If I can get a
merger of the two, I am off to the races. This is why
Groovy had promise and Java guys were excited. The
language would be "Java" to their bosses, but they
could do scripting in Groovy on the side.

There is a lot of legacy code out there, so it can be
hard to migrate to a different platform right now,
unless there is a true migration plan.

Something like Ruby needs its "killer app." Many think
it is Rails, but is that enough? What type of projects
will be run on Rails? I guess we will see. Don't get me
wrong, most of my thinking has been because I want
the industry to move to languages that are more
dynamic. I think we need to...but I am skeptical.

5.1.2. Internet Focus

Java set a new bar for Internet integration , and Java's users took full advantage. Corporations use
the Internet internally to discriminate information and control the deployment costs of an application.
Businesses use the Internet externally to reach their customers and partners. Enabling applications
for the Internet has become the most important problem that a business solves, except maybe
database integration. Java enabled a whole new generation of Internet applications, with the servlet
programming model, JSP as a compiled template language, and a whole suite of enterprise libraries.
The next successful language will have to do the Internet, and do it better than Java.

The Internet has at least two dimensions: interfaces for computers, and interfaces for people. For
people, the next language should build more powerful interfaces faster than you can build them in
Java. I don't think it's enough to just build simple HTML. You need to be able to build a page that can
preserve a common layered look and feel throughout an enterprise, so the next language will need to
support some kind of component model. Also, users are just beginning to understand that HTML is
not enough. Applications like Google Maps and Google Mail stretch HTML and JavaScript to new
levels. That's going to be very important to the next successful language.

In fact, many of the consultants I interviewed for this book believe that HTML is broken in
fundamental ways. A broadly successful new language could conceivably present a higher abstraction
that makes it easier for the industry to retool, piecemeal. Ruby on Rails and Ajax technologies both
seem to be moving in this direction.

5.1.3. Interoperability

Bridging from Java to an emerging language will also be important. Of course, if the new language
embraces the JVM, interop at lower levels will not be a problem. Interop on the Internet will
undoubtedly play a critical role. I think that leads to three important capabilities: XML , web services,
and service-oriented architectures.

5.1.3.1. XML and structured data

Programming has always meant working with data, yet Java doesn't let you declare nested
structured data very well. In Java, you see a proliferation of XML, even where it offers little tangible
value. For example, metaprogramming and all kinds of configuration require you to express
structured data. The next language should let you declare and express structured data, cleanly and
natively.

Still, structured data and a language to describe it are important. If you're dealing with structured
data on the Internet, you're probably dealing with XML. The next successful language should let you
deal with XML productively, and with good performance. In Java, we've dealt with that problem using
parsing schemes, query languages, and binding frameworks. A parser cracks open XML and lets you
break it into its constituent parts. A binding framework lets you take an object model and convert it
directly to XML, or deal with XML as if it were a native object model. XML query languages like
XQuery can reach into a complex XML document to retrieve one named piece of data. It's reasonable
to expect an emerging language to support all three XML technologies, and most of them do, to
various degrees.

5.1.3.2. Service-oriented architecture (SOA)

A common structured data format is not enough to bridge two languages. You also need a
communications mechanism. One trend in languages like Java is to build loosely coupled services,
available on the network, and let them communicate with simple messages, with an XML payload. It's
a good strategy for interop, for many reasons:

SOA works best with coarse-grained architectures, or calling big chunks of code. Interop
between languages is a coarse-grained problem.

SOA is hot. Since it's politically popular, support and mindshare will likely remain high.

SOA uses Internet standards. That means you can leverage existing infrastructure, like security
and existing message protocols.

I'm not sure that web services, as defined by IBM or Microsoft, has staying power. I do believe that a
lighter form of web services, called REST, may last. REST stands for Representational State Transfer,
and it promotes using services the way Internet sites have used them for years. Like the Internet,
REST views the network as a collection of resources rather than a collection of methods (like CORBA
or traditional web services.)

A REST-based resource returns a representation of itself, usually in XML form. REST allows and even
encourages links. REST-based services are based on well-understood, mature APIs, so unlike the
fragile traditional web services stacks, they integrate well with other technologies. They can also rely
on existing infrastructure to cache content, build links, or secure communication. It's a powerful
paradigm shift.

So, Java provides the first set of rules, shown in Table 5-1. If you want to run this river, you'll need
to meet the improved standards set by Java. To do anything less means death.

Table 5-1. Java's legacy requirements

Rule Description

JVM and/or Microsoft Common
Language Runtime (CLR)

Run in the JVM, or at a bare minimum, run in its own virtual
machine.

Internet focus Enable Internet applications.

Internet user interfaces Allow richer Internet user interfaces.

Service layer Provide an SOA-style integration with Java.

Web services Allow some type of web service, whether it's the full web
services stack or REST-based web services.

XML Provide a rich, productive XML API.

5.2. Enterprise Integration

In some ways, C redefined enterprise integration, by allowing strong database connectivity across an
open API (ODBC for Microsoft applications) and providing transaction monitors like Tuxedo and
Encina. C was disruptiveit introduced enterprise programming beyond mainframes. Java continued
this legacy with frameworks for transactions, rich database integration, messaging, and many other
forms of plumbing code called middleware.

I don't think the next major applications language will initially have to have the full enterprise
capabilities of C or Java to succeed. Visual Basic certainly achieved tremendous success without these
capabilities by leveraging the services provided by other frameworks written in lower-level languages
like C. We've already determined that the next language should interoperate with other Java
programs, hopefully within the same virtual machine. It should also interoperate through a coarse-
grained service layer. That said, some enterprise capabilities will be very important.

5.2.1. Database Integration

Minimally, a new language should access relational databases in a natural, productive way. I don't
think any particular application style is importantyou can see wildly successful environments with
different strategies:

Microsoft builds a framework that leverages the power of SQL , row sets, and relational
databases. The center of the Microsoft universe, from a data perspective, is the relational
database. The strategy can scale very well and is surprisingly productive.

Java, instead, seems to be moving toward ORM. The center of Java's data universe is an object-
oriented, persistent model. Other Java applications leverage JDBC with helper frameworks quite
successfully.

Ruby on Rails takes an intermediate approach. Rails wraps a database table with objects that
discover the structure of the database dynamically.

All strategies have strengths and weaknesses, and each could serve as an effective foundation for a
new language. I do think that emerging languages, and the core frameworks they need, should try to
follow these rules:

Embrace the relational database

While a language may integrate with alternatives, the relational database should be a first-
class citizen. Too much focus on object-oriented databases proved to be a problem for adoption
for some Smalltalk frameworks. Object-oriented databases are an elegant solution that ignores

the current political realities.

Don't force structure on the relational database

At some level, a language must make it easy to use existing relational schemas, as they exist.
Forcing a surrogate unique identifier rather than a composite primary key also ignores existing
realities.

Perform, and scale

High database performance is the single most important indicator of good application
performance.

5.2.2. Transactions and Security

Enterprise developers need the ability to define a business transaction. It doesn't matter how fast you
can build incorrect applications. If Joe Bob loses $50 in an Internet transaction because Sally Sue
crashed the server by tripping on a power cord, the framework is not going to make it in the
enterprise.

Security is also important, though you could probably argue over how important it could possibly be
with the gaping holes in operating system security today. Java has set a bar that's going to be pretty
hard to clear in this area. The next big language will need the ability to integrate with existing
enterprise security frameworks, at least the Internet-based schemes and standardized ones like
LDAP. Table 5-2 summarizes the enterprise features a new language will need.

Table 5-2. Enterprise requirements for a new language

Rule Description

Database access API Provide a clean, productive API for database access.

Relational databases Focus on relational databases first.

Database
performance

Database interactions should be very fast.

Transactions Enable application transaction demarcation.

Language security Provide a clean foundation for language security.

Application security Let developers secure their applications.

Security integration
Let developers integrate enterprise security, especially for Internet
applications.

Like the Java features, having these basic enterprise features does not guarantee success. They just
let you play the game.

5.3. Generating the Buzz

Many languages have trumped Java technically, but they still failed. Betamax, too, was technically
better than VHS. The biggest factor of the equation is social. Without a credible community, there can
be no success. To a programmer, a language is an investment in a future, and even an identity. Call
it marketing, or buzz, or even hype. If it's hip, or at least interesting, a language stands a fighting
chance. If not, there's no chance at all. In some ways, Java helped pave the way for the next
language:

Communities like TheServerSide and Slashdot provide a forum for new ideas to spread quickly
through the Java and non-Java programming communities. It's much easier for smaller projects
to create a big buzz.

The increased emphasis on open source software, partially driven by Java, makes it easier to
wrestle control away from larger companies. Also, those same companies find open source
technologies easier and less threatening to adopt.

Many Java standards like Web Services (and lightweight HTTP alternatives) make it much easier
to interoperate between languages.

The JVM will run other languages. A new language on the JVM is a much easier sell than a new
language in a new environment.

Still, the challenges of establishing a community are daunting. Microsoft has spent millions of dollars
promoting the .NET environment, and the adoption on the server side is still nowhere near Java's
adoption, though many of the features and capabilities are similar or superior to Java. Sun, for all of
its success with the Java platform, has not been able to capitalize on it in the software realm.
Adoption of Sun application servers and management software has been spotty at best. IBM lost the
battle of the operating system because it couldn't market a technically superior OS/2.

Programmers are a schizophrenic lot. One moment, we're the ultimate skeptics, ditching the safety of
the Microsoft Windows environment for unpredictable Linux systems on our desktops. The next, we're
lemmings, adopting hideous architectures like EJB without the slightest bit of proof. You also have
many different niches within the programming community. Java's been successful for enterprise
developers, but hard-core hackers in the Perl and Python communities frown on Java. And Microsoft
developers form cultures all their own, with subcultures in it that favor C++ or Visual Basic.

That means the winning formula will also change. At one point, a dominant personality like Steve
Jobs may make the difference, and the next, like with the star-crossed NextStep platform, it's not
enough. This is all to say that generating buzz is more art than science, and maybe more luck than
art. Still, certain themes and trends ring true.

5.3.1. Open Source

Unless it's a disruptive technology, it's hard to imagine the next major programming language
coming from a larger commercial vendor. There's just too much fear and distrust among the major
players: Microsoft, IBM, and Sun. Instead, I think a credible alternative is much more likely to
emerge from the open source community. The open source model provides a stage for thousands of
projects, where they can succeed or fail based on their merits. Projects need to prove effective
technologies and marketing amid a cynical, critical audience to succeed. There are several interesting
test cases in the open source community now: Perl, PHP, Python, Ruby, and many others. You see
far fewer commercial languages with any degree of momentum. The biggest, C#, is effectively a Java
clone.

Open source software has something else going for it. Since open source projects usually have no
formal support, the community must support the language. This environment tests the community
dynamics for a language as well as the technology. Communities take on a personality, like snobbish,
edgy, nurturing, or bickering. Larger languages like Java may have subcommunities with
personalities all their own. When a language gets sudden attention, the personality of the community
will either attract or repel new users. Fine-tuning community dynamics is a difficult proposition,
because this personality may be hard to judge from the inside. A new language will need an
attractive community to succeed, and the open source community seems like a natural place for that
to form.

5.3.2. Economics

While open source frameworks usually lend a certain intellectual honesty to a project, commercial
forces will have the deciding vote. A new language needs a supporting ecosystem to thrive, and that
means someone has to write a check eventually. Simply put, you can't move away from Java without
economic justification. To me, the leading potential economic catalyst is clearan overwhelming
advantage in productivity.

When I stepped away from Java for the first time, I needed an economic mother bird to nudge me
out of the nest. Java's just too safe and too comfortable otherwise. Recall that as I write this book, I
am calling the shots for a start-up. We're writing a Java application to help engineers configure
equipment that measures safety systems in manufacturing plants. I recommended moving the
application from Java to Ruby midstream because I found the difference in productivity between the
environments too great to ignore. Further, when all was said and done, the new application was
easier to maintain with fewer lines of code, it was fast enough, easier to tune, and easier to extend
with security. I'd estimate that we're three to five times more productive in Ruby. Certainly, Ruby is
not the only language that's more productive than Java, but it's an interesting test case. You'll see
more in Chapter 7. Productivity will be the economic catalyst that begins to chip away from the Java
base. Productivity will drive the emergence of the next great language.

5.3.3. Approachability

When you look at early adoption for all major successful languages, one of the key issues is
approachability. New languages need to grab new users quickly. You should be able to get started
quickly, and solve a problem that's important to you immediately. C was approachable because it let
hard-core systems programmers solve low-level problems in a high-level language, with much better
performance and flexibility than other high-level languages. C++ was approachable because you

could write C without modifications, and upgrade to C++ features as you wanted to include them in
your programs. Java was approachable because it had a familiar syntax, a friendlier memory model,
and a clear, consistent path to Internet solutions. Smalltalk was not approachable, because vendors
charged too muchit was too expensive to play.

Though nothing simple has a C++-like syntax, I still think that many languages are approachable
because of their friendly, productive syntax with a familiar object model. Python versus Ruby is a
good example of differences in approachability. Ruby has one of the most highly productive web
environments, and a community and philosophy focused on getting programmers off of the ground
quickly and painlessly. You can install components easily, often with two or three words, using a
feature called Gems that does the work for you, provided you have an Internet connection. Python,
on the other hand, has a simple language and syntax, but the web libraries are nowhere near as
approachable. When you start to learn one of them, you don't find the ready tutorials or community
reaching out to help you. The Ruby on Rails people understand how to make Rails approachable.

5.3.4. The Killer App

Without some kind of catalyst, it's difficult to imagine how a successful community ever gets started.
Applets let Java spread to many desktops quickly. Developers could embed dynamic content into
their web pages in a matter of hours.

On the surface, it seems like a language must have a vibrant community to ever get rich enough to
succeed on any scale, but the community usually won't come until the language is rich enough. A
killer app to a developer is a solution that is so compelling that it transcends language. It alone can
rapidly drive community growth. It's not the only way a language can succeed, but it's certainly the
most likely way.

The killer app is a popular notion of a catalyst. A killer app solves an important problem in such a
forceful way that users are compelled migrate. Think California gold rush. People often point to the
Lotus 1-2-3 spreadsheet as the killer app that moved businesspeople to Microsoft Windows.
Meanwhile, the killer app for OS/2 never came. For Java, you could easily argue that Netscape made
it all possible by putting Java on the desktop of millions of potential developers. Applets, or the idea
of deploying applications in a browser, also played a significant role, and it's that concept that
morphed into servlets and server-side Java programming. The killer app is a seductive idea, because
it encapsulates so many important concepts:

The catalyst, with economic justification, often takes the form of a killer app .

Once a solution is technically viable, a killer app enables a rapid growth to critical mass. It often
solves a chicken and egg problem: you can't build a sufficiently robust language without
community, and you can't build a community without a successful language.

The killer app often initiates the hype that's required to escape a niche. With the newly found
hype, the language can explode from a small, focused niche to a more generally successful
language.

Remember, a language alone is rarely enough. Right now, several interesting technologies could
possibly grow into potential killer apps. Smalltalk's continuation servers, Ruby's metaprogramming
environments, and PHP's many applications like bulletin boards may serve as potential killer apps.

We'll look at some potential killer apps in Chapters 7 and 8.

Table 5-3 lists community-centric roles . Each of them will come into play when it's time to determine
the next major language.

Table 5-3. Community-centric roles

Rule Description

Open
source

Have a rich open source community.

Productivity Be much more productive than Java for the simplest commercial applications.

Catalyst
Have a tremendously popular application or framework that transcends programming
languages.

Familiarity Be easy for Java developers to learn.

Simplicity Make it easy to solve simple problems.

5.4. Language Features

It's strange to be more than halfway through the characteristics of the next great programming
language without even talking about the major features of that language. When you look at the
history of programming languages, it makes more sense. The features of a language are important
characteristics for success, but only rarely are they the most important characteristics. Said another
way, market share and mindshare matter more than how you interpret whitespace.

5.4.1. Dynamic Typing

Java purists defend strong, static typing with the fervor of English soccer fans. To be sure, static
typing does have its advantages:

Static typing enforces typing rules at compile time, when they are least expensive to fix.

Static interfaces make it easier to enforce a protocol across important boundaries. For example,
systems designers may want to force certain types for C interfaces, or certain remote procedure
calls.

Static typing catches some types of subtle errors at compile time, like the misspelling of a
variable name.

Still, as you learned in Chapter 4, there's a related cost, usually in productivity . Java developers
often make the comment that you can pay now or pay later. That's strange, because Smalltalk and
Ruby programmers rarely make lasting errors related to incorrect typing. Further, disciplined
automated unit tests easily catch most type mismatch problems. You've got to unit test your code
whether you want to or not, because no compiler can completely guess your intent.

Most Java developers who tout the benefits of strong, static typing fail also to count the cost. When
you're learning or playing with a language, the cost is excessive, because you have to declare
everything, including a wrapping class, and learn a whole new level of detail. Here's a "Hello, World"
example in Ruby:

 puts "Hello, world."

And here's the Java counterpart:

 class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!")

 }
 }

A Java program requires a rigidly typed class with a Main method. The barrier to exploring in Java is
simply much higher. Most of the experts that I interviewed for this book recognized that static typing
limits productivity for application development dramatically, though some said they were willing to
pay the cost for certain types of code, like systems code and middleware. I think it's fair to assume
that for applications development, productivity is important enough to warrant dynamic typing for
Java's ultimate successor.

5.4.2. Code Blocks and Continuations

The Java open source community now uses anonymous inner classes with greater and greater
regularity. When you need lightweight callback-style functionality, in Java the best way is the
anonymous inner class. Here's an example of JDBC-style access in Spring, with the anonymous inner
class:

 JdbcTemplate template = new JdbcTemplate(dataSource);
 final List names = new LinkedList();

 template.query("SELECT USER.NAME FROM USER", new RowCallbackHandler() {
 public void processRow(ResultSet rs) throws SQLException {
 names.add(rs.getString(1));
 }
 }
);

Here's a code block in Ruby:

 dbh.select_all("SELECT name, category FROM animal") do |row|
 names << row[0]
 end

This code example executes the code in bold for each row in the result set, which is passed into the
code block's row variable.

For application programming, code blocks show up frequently. Any time you need to iterate through a
collection, or a result set, or a file, code blocks come into play. Keeping them simple saves you a
tremendous amount of work.

Continuations will also be important. In Chapter 8, you will see how continuations dramatically
improve productivity in web-based programming.

5.4.3. Rapid Feedback Loop

Think of a feedback loop as the time between making a change and seeing the impact in running
code. New application development principles, like test-first development, work best with a fast
feedback loop. Small changes in the feedback loop can make huge differences in overall productivity,
because you do it so many times every day. With Java, you need to deal with at least a compile step,
and you often add steps for code generation (XDoclet), byte code enhancement (JDO), and
deployment (servlets and EJB). For Java, that means you must wait to see a source code change
realized in executed code. Developers tend to underestimate the benefits of a small feedback loop,
unless they're regularly using a dynamic language and need to go back to a static language.

Smalltalk, Lisp, Perl, Ruby, and Basic all have rapid feedback loops, and they're also incredibly
productive languages. C, C++, and Java don't. In fact, Java might not have succeeded if its users
had come from a dynamic language supporting a rapid feedback loop.

5.4.4. User Interface Focus

More and more, I'm seeing experts that need to do significant user interface development move
away from Java. Given the strong server-side focus of the past six years, that news should not shock
any of us. Still, the number of Swing experts who vehemently defend it, without trying a meaningful
alternative, confuses me, like two Titanic passengers arguing over which deck is prettier as the ship
sinks around them. James Duncan Davidson said it best: "Friends don't let friends Swing." User
interface development demands more than Java has to give. For most application developers, the
framework should do much more for you.

5.4.5. Dynamic Class Model

The Java successor should be much more dynamic, and reflective. Java's reflection API is particularly
hostile because it must deal with primitives , arrays, and classes. Let's look at a Java example of
reflection. Here's a simple XML emitter provided by Stuart Dabbs Halloway, courtesy of
DevelopMentor:

 public static void doObject(Object obj) throws Exception {
 Class cls = obj.getClass();
 emitXMLHeader(cls);
 Field[] fields = cls.getDeclaredFields();
 for (int i=0; i < fields.length; i++) {
 Field field = fields[i];
 field.setAccessible(true);
 Object subObj = field.get(obj);

 if (!Modifier.isStatic(field.getModifiers())) {
 if ((field.getType().isPrimitive()) ||

 ((field.getType().getNamxe() = = "java.lang.String"))) {
 emitXML(field.getName(), subObj);
 } else {
 doObject(subObj);
 }
 }
 }
 emitXMLFooter(cls);
 }

I've omitted the code to actually emit the XML, but you get the picture. Look carefully at the lines in
bold. You had to deal with primitives a little differently, but I'm lucky, because for this particular
problem, I can treat all primitives the same. That's usually not the case. I'm really not done, because
I also need to deal with arrays, leading to a whole new level of complexity.

Let's take another example. Here's an example that prints method names in Java:

 public static void printMethods(Object obj) throws Exception {
 Class cls = obj.getClass();
 Method[] methods = cls.getDeclaredMethods();
 for (int i=0; i < methods.length; i++) {
 Method method = methods[i];
 System.out.println("Method name:" + method.getName());
 Class parmTypes[] = method.getParameterTypes();
 for (int j = 0; j < parmTypes.length; j++) {
 System.out.print(" Parameter " + (j+1) + " type:");
 System.out.println(parmTypes[j]);
 }
 }
 }

It's not as easy as simply grabbing the method names, because Java uses overloading, so you need
to know the method name and parameter types to accurately identify a method. I'm going to give a
Ruby example next, so if you want to compare apples to apples, just disregard the lines in bold.

Here's how easy reflection can be in Ruby. First, create an object. What class are we dealing with?

 irb(main):001:0> i=4
 => 4
 irb(main):002:0> i.class
 => Fixnum

Return a list of methods supported by a given object:

 irb(main):003:0> i.methods

Print a neat list of the methods that Fixnum supports:

 irb(main):003:0> i.methods.each {|m| puts m}

So, Ruby is very reflective. We've done the Java example (minus the lines in bold) in a single line of
code. You can similarly find the instance variables, super classes, and so on. That's only the
beginning of the power at your fingertips, though. You can also change classes, at runtime, on the
fly. You can change a method on an object and leave the class untouched. Also, interceptors are
child's play. You can use this metaprogramming to do some amazing things. The Ruby on Rails
framework, featured in Chapter 7, shows an excellent example of what you can do.

I should point out that the primitives problem goes far beyond reflection. Look at the API for
java.util.Array. You've got to treat arrays as their own kind of type. Java 1.5 makes matters worse
by introducing generics. You run across similar problems whenever you need to deal with things
generically, whether you're comparing, cloning, reflecting, or describing an object. It's a major
problem that's encountered equally by people who use and build frameworks that deal with all types
of user-defined objects. As we seek to find more ways to use objects transparently, the problem will
only get worse.

5.4.6. Sound Foundations

I'm working on pure intuition here, but I do think that Java's successor will probably be object-
oriented, and will be theoretically purer than Java. A purely object-oriented language makes things so
much easier, especially when you start to consider metaprogramming, simplicity, learning curves,
and increasing processing power. With Java's increasing emphasis on transparency, a cleaner
approach will simplify many types of frameworks:

Transparent persistence frameworks need only deal with objects and collections.

XML binding frameworks would have a cleaner API, and a much cleaner implementation.

Debugging frameworks like loggers could easily print values of any parameters.

Consistency is important, too. Languages with consistent naming and consistent behavior are far
easier to learn. In general, the next language should be much more consistent, and cleaner. The
characteristics in Table 5-4 would form a cleaner foundation for another 10 years of successful
growth.

Table 5-4. Important language features that will help propel Java's
successor

Rule Description

Dynamic typing Support dynamic typing for better productivity.

Rapid feedback
loop

Minimize the time between making a change and seeing it execute.

User interface
focus

Provide a productive, rich environment for building user interfaces.

Dynamic class
model

Improve the ability to discover and change the parts of a class and runtime.

True OOP
Provide a conceptually pure implementation of OOP with no primitives and a
single root for all objects.

Consistent and
neat

The language should encourage code that's clean and maintainable.

Continuations The language should enable important higher abstractions like continuations.

5.5. A Few Potential Suitors

Now that you've seen what the industry has to offer, let's take a quick review of some programming
languages and identify some possible candidates. You'll see a more comprehensive treatment of the
contenders in Chapter 9. If you buy what I've been selling so far, you understand that for certain
jobs, other languages may be better suited. I encourage you to try one of these languages every
month or so.

If you've not been exposed to languages outside of C++, Basic, and Java, I've got to warn you that
the experience can be unsettling. You'll be surprised at how much of your knowledge commutes, and
how quickly you can grasp the essence that makes a given language so productive. You'll also be
surprised at the fury that you can generate around the office just by peeking at alternativesyou may
want to leave the nice car in the driveway and take the old Family Truckster to work for a while.

5.5.1. Perl

Perl is a scripting language, with a quirky syntax and a turbulent past. Here's a quick example that
prints "Hi, Bruce":

 my $name = "Bruce";
 print "Hi, ", $x, "\n";

5.5.1.1. What I like

If raw productivity is your goal, perhaps Perl is a possible answer. It's dynamically typed, is highly
productive, and has a small community established. It also has a fanatical following.

5.5.1.2. What I don't like

Perl does have a big downside. To this point, Perl's got a reputation of a write-only language: with its
cryptic syntax, you can easily produce code that's very difficult to understand and maintain. Perl's
OOP syntax, as with C++, is bolted on and awkward. As something more than a scripting language,
Perl's reputation is probably a bit much to overcome.

5.5.2. Python

As dynamic programming languages go, Python has been one of the most successful. It's very close

to Ruby in syntax and power, and it supports the language features that you'd want. Here's a brief
snippet of Python code that counts to 10:

 for x in xrange(10):
 print x

5.5.2.1. What I like

It has many of the features you need in an application's language: dynamic typing, a quick feedback
loop, and a concise syntax. It's pretty fast, and it has a version that runs in the JVM (albeit slowly).

5.5.2.2. What I don't like

As much as I'd like it to be, I don't think Python is the ultimate answer. Ruby's inventor, Yukihiro
Matsumoto (Matz), didn't use it because it's not object-oriented enough.[*] Python depends too much
on whitespace, which most experts agree probably goes a bit too far. Others in the Python
community aren't happy with the web development tools.[] The web tools seem to be based on the
Java stack, so there's no radical invention or departure. The community doesn't feel right. At times,
it's too academic and too defensive.

[*] Dave Thomas, Programming Ruby (Dallas: Pragmatic Bookshelf, 2005).

[] http://blog.ianbicking.org/why-web-programming-matters-most.html.

The biggest hurdle for Python is its lack of compelling reasons to move away from Java. Python really
needs a killer app. In the end, we've already formed our opinions. Python will be a moderately
successful dynamic language, on the order of Smalltalk.

5.5.3. Ruby

Ruby is an object-oriented language created in the mid-1990s in Japan. The Ruby community grew
steadily, and the language is now emerging beyond Japan. It's gained popularity in the United States
only in the last couple of years.

5.5.3.1. What I like

Ruby has a beautiful syntax. It reads like English, and it miraculously stays out of your way. It's
highly dynamic, and the educated core of the Ruby community works hard to produce clean, simple
APIs. Ruby has strong web frameworks, and good support for XML and web services. Ruby has a
couple of popular emerging frameworks, like Ruby on Rails. The web and XML frameworks are
innovative and simple. The portable interpreter is fast, and it has the necessary plug-ins for the
Apache web server. The standalone web interpreter, called Webrick, has several high-profile
applications running on it. Most importantly, Ruby may have the killer app in Rails, which I'll discuss

http://blog.ianbicking.org/why-web-programming-matters-most.html

in detail in Chapter 7. This year will have four new Rails books and a strong publisher in the
Pragmatic Bookshelf. Ruby doesn't have any political baggage that would turn away a potential
commercial adopter. It's fairly mature.

5.5.3.2. What I don't like

In Japan, Ruby has good commercial financial backing and support. Outside of Japan, Ruby has an
embarrassing lack of commercial backing. Its relatively small community shows in the dearth of niche
frameworks. The JVM support is immature (although it is admittedly improving rapidly). Early
attempts to produce a version of Ruby running on the JVM had a few false starts. Still, the JRuby
framework has seen a resurgence of sorts in early 2005, so it may well produce a credible Java
alternative on the JVM. Ruby is on the radar; it just needs a tighter affinity with the JVM and the
continued success of Ruby on Rails.

5.5.4. PHP

PHP is a scripting language. With PHP, you effectively start with HTML, and mark it up with tags that
can tie your application to a database, or other back-end systems. The tags get interpreted on the
server, which returns pure HTML to the client. It's effectively a JSP. Here's a "Hello, World" app in
PHP:

 <html>
 <head>
 <title>Hello, world</title>
 </head>
 <body>
 <?php echo '<p>Hello world</p>'; ?>
 </body>
 </html>

5.5.4.1. What I like

PHP success seems to be ramping up sharply, mostly on the strength of converted Visual Basic
programmers. It's very well suited for its "sweet spot," controlling database access from a web page.
It's easy to understand and easy to learn. PHP, more than any other language, is taking advantage of
the frustration in the Visual Basic community due to changes in .NET.

5.5.4.2. What I don't like

PHP is theoretically awful. The model tightly couples the user interface and database together, and
that's usually a bad idea, because changes in one can ripple through to the other. Since PHP grew
rapidly and haphazardly with a heavy Perl influence, method names are often inconsistent, with some
opting for underscores between words (stream_get_line) and some opting for concatenation

(readline). PHP effectively has a reputation for productivity and rapid innovation at the expense of a
consistent language that promotes sound architecture. As a Java programmer, you've probably
already seen JSP pages that try to do too much. They're quick to write, but the solution bogs down in
a hurry.

5.5.5. C# and Visual Basic

C# is effectively a Java clone. It has many of the same benefits and drawbacks. Visual Basic on the
.NET environment seems to be losing momentum, because the older Visual Basic developers don't
seem to have the same fervor for VB.NET. Microsoft has other languages as well. In the end,
Microsoft will always have a core set of developers. That's effectively a closed ecosystem, though. It's
limited by the success of the Windows platform, which is adopted broadly on the client, but decidedly
less so on the server side. I'm not predicting success or failure; I just think that Microsoft languages
depend on the success or failure of Microsoft platforms as a whole, rather than on the strengths or
weaknesses of any given language in it.

5.5.6. Smalltalk

Invented in the early 1970s, Smalltalk is a well-established, hard-luck object-oriented language. Many
see Smalltalk as the first object-oriented language, but it never really caught on commercially,
despite some attempts as late as 1995 by IBM. It's hugely productive, slightly awkward, and quirky
to the extreme. There is a vibrant, but small, Smalltalk community. Most of it is centered on a highly
productive, continuation-based application development framework called Seaside, which we'll
discuss in Chapter 8.

5.5.6.1. What I like

Smalltalk has a clean object model, incredible expressive power, and an intelligent design and
community. It's got some solid free implementations, and a potential catalyst in Seaside. Glenn
Vanderburg is fond of saying that all things will probably return to Smalltalk, but they won't be called
Smalltalk anymore. When you see the influence of Smalltalk on languages like Ruby, that idea makes
sense.

5.5.6.2. What I don't like

Smalltalk is not seen as a credible alternative. It just wasn't ever approachable enough. Smalltalk
would have been a natural successor to C++ if Java hadn't come around first, but it was always too
expensive, or too alien, or too obscure.

5.5.7. No Silver Bullet

You may have noticed that no language has all the characteristics we're seeking. That's not

surprising. If one did, we'd be using it by now. Still, you can see that these languages do establish
real strength in important areas. In the chapters to come, I'll take a deeper look at Ruby. Since it's
not enough just to have a better language, we'll then investigate some potential killer apps.

Chapter 6. Ruby in the Rough
I stood on the bank of the Watauga River, looking at the 16-foot, Class V monster known as State
Line Falls. It had five boulders in the current with four chutes running through them. Three of the
slots were all but impassable, especially at this water level. The fourth was violent and intense. And
yet, the approach was pretty easy, and I thought I could hit the line. Run this monster, or walk it. I
had to choose.

Over the years, I've experienced a few moments like that one. Sometimes, I'd put my kayak on my
shoulder and walk around. Other times, I decided that the line was good and my skills were up to the
challenge, so I made the run. But this time, I simply stood, indecisive, with the wind and the spray
from the falls washing over me.

I'm looking at a similar situation now. I do think that Java's leadership run, at least for applications,
might be drawing to an end. But the stakes are unbelievably high should I decide to move. How can I
know if the timing is right? Can I pick the right language? What do I risk?

I don't want this book to be an exhaustive review of programming languages. I'd like to point out one
language and two frameworks (one in Ruby and one in Smalltalk) that have something special to
offer. In this chapter, I introduce one possible alternative language, Ruby. I want to show you that
some languages can improve on Java, but that doesn't mean that Ruby will succeed, or that it's the
best possible alternative. The best that I can do, for now, is to show you one possible alternative, so
you can see if the case makes sense.

6.1. About Ruby

Ruby is a dynamic, fully object-oriented language that's usually grouped with scripting languages.
The scripting term, for languages like Ruby, Smalltalk, and Python, is a little too limited, so I'll use
the term applications language . If you've used nothing but compiled languages like Java and C, get
ready to have some fun. Ruby will turn you loose. I suggest that you install it (just go to http://ruby-
lang.org), and type along. It comes with a primitive IDE, but the command line works well. Fire up a
Ruby shell by typing irb. You'll get a shell prompt:

 irb(main):001:0>

6.1.1. Ruby Is Fully OO

From here, you can evaluate Ruby statements. You'll frequently use irb to answer those tiny
questions that come up often in programming. In Ruby, everything is an object, and if you type one
alone, Ruby will return that object. Type 4 and press Enter:

 irb(main):001:0> 4
 => 4

Unlike Java, numbers are objects , not primitives. For example, you can do this:

 irb(main):008:0> 4.4765.round
 => 4

Even nil is a class, standing for nothing:

 irb(main):009:0> nil.class
 => NilClass

You don't have to worry about primitives or wrappers at all. More importantly, you don't have to deal
with those cases in an API. Ruby's reflection, persistence engines, and XML frameworks are all much
simpler, because you don't have to deal with all the edge cases related to primitives and arrays of
primitives.

http://ruby-

6.1.2. Typing

Try to do an assignment without a declaration:

 irb(main):011:0> n=1
 => 1
 irb(main):012:0> n.class
 => Fixnum

So n has an object of type Fixnum. You didn't declare n at all. That's a strong hint that Ruby is
dynamically typed. Now, assign something else to n:

 irb(main):013:0> n="fish"
 => "fish"
 irb(main):014:0> n.class
 => String

Now, n has a string. We changed the type of the variable i. More accurately, the type in Ruby is
bound to the object, but not the thing that contains it. So Ruby is dynamically typed. Let's try to do
something strange:

 irb(main):015:0> n+4
 TypeError: cannot convert Fixnum into String
 from (irb):15:in '+'
 from (irb):15

Ruby won't break its typing rules by coercing a string to a Fixnum. That means Ruby is strongly
typed.[*] You can get its length by invoking the size method on n:

[*] Actually, strongly typed is an oversimplification. Since you can change Ruby types indiscriminately, some might consider Ruby

to have weaker typing. I'll stick with the oversimplified definition for this chapter.

 irb(main):016:0> n.size
 => 4

How do you know what methods a string supports? Just ask one:

 irb(main):017:0> n.methods
 => ["send", "%", "rindex", "between?", "reject", "[]=", "split", "<<",
 "object_id", "strip", "size", "singleton_methods", "downcase", "gsub!",
 ...and so on...

So, String supports a whole bunch of methods. Try to count them with the size method. If you've
always used statically typed languages, you will probably underestimate the benefits. You've read
that dynamic typing lets you focus on the right part of the problem at the right time. It eases your
refactoring burden, and reduces the amount of code that you have to write and maintain.

6.1.3. Conditionals

Ruby's conditionals will remind you more of C than Java. In Ruby, nil and false evaluate to false,
and everything else (including TRue) means true. Read that sentence again. Unlike C, 0 is true. You
should also notice that false and "false" are different. One is the Boolean constant for false, and
one is a string. For example, puts "It's false." unless "false" returns nil, but puts "It's
false." unless false will print It's false.

Ruby also has a few more conventions that you should know about. ? and ! are both valid in method
names. By convention, methods ending in ? are tests. For example, nil? would test to see if a value
is Nil. Methods ending in ! are potentially dangerous, because they have side effects. For example, a
method called replace(in_string, sub_string, replacement) might return a string with the
substring replaced, while replace!(in_string, sub_string, replacement) would modify the input
string.

Like Java, Ruby has an if statement. Ruby also supports an unless statement that works the same
way. You can use if or unless in block form, as you do in Java. You can also tack them onto the end
of a line, to conditionally execute a single line of code. So, you can do something like this:

 irb(main):099:0> def silence?(b)
 irb(main):100:1> puts "SCREAM!" unless b
 irb(main):101:1> end
 => nil
 irb(main):106:0> silence? "False"
 => nil
 irb(main):107:0> silence? "false"
 => nil
 irb(main):108:0> silence? 0
 => nil
 irb(main):109:0> silence? "quit kicking the cat"
 => nil
 irb(main):110:0> silence? false
 SCREAM!
 => nil
 irb(main):111:0> silence? nil
 SCREAM!
 => nil

Take a look at the silence? method. Ruby returns the value of the last statement, unless a method
explicitly returns something. In this case, the statement puts "SCREAM!" unless b always returns
nil. More importantly, the method prints SCREAM unless you pass it a true value.

6.1.4. Looping

Ruby has two conditional loops. You'll notice that many of Ruby's libraries help you by returning nil
when they're done. If you're reading from standard input, you might do this:

 irb(main):010:0> puts line while line=gets
 one
 one
 two
 two
 ^Z
 => nil

The loop continued until I entered the end-of-file character. Of course, you can also direct the input
stream to a file. Plus you can use while at the beginning of a line, as long as you terminate it with an
end:

 irb(main):013:0> while line=gets
 irb(main):014:1> puts line
 irb(main):015:1> end

You've already seen Until, the other looping construct. It works in exactly the same way, but it will
fire the loop while the expression is false. You'll also see a for loop later, but that's just syntactic
sugar.

6.1.5. Ranges

Java programmers typically will specify a range using an arithmetic expression, like this:

 class Range {
 public static void main (String args[]) {
 int i = 4;
 if (2 < i && i < 8) System.out.println("true");
 }
 }

You can do something similar in Ruby, but you've got another alternative. Ruby supports first-class
range support. x..y represents values from x to y, inclusive. For example, 1..3 represents 1, 2, 3.
You can include the 3 with a third period. As you can imagine, ranges in Ruby are objects:

 irb(main):004:0> range=1..3
 => 1..3
 irb(main):005:0> range.class
 => Range

You can also check to see if something is in a range, using the = = = operator:

 irb(main):010:0> ('a'..'z') = = = 'h'
 => true
 irb(main):011:0> ('a'..'z') = = = 'H'
 => false
 irb(main):012:0> (1..10) = = = 5
 => true

You get more convenient syntactic sugar. Now, a for loop turns into this:

 irb(main):021:0> for c in 'g'..'k'
 irb(main):022:1> puts c
 irb(main):023:1> end
 g
 h
 i
 j
 k

for/in loops also work with Arrays and Hashes. Ranges introduce = = =, another type of comparison.
Next, you'll see a third type of comparison, called match, which you'll use with regular expressions .

6.1.6. Regular Expressions

Java has an API that supports regular expressions. Ruby builds regular expressions into the syntax.
Some like regular expressions and others do not. To me, they're a critical part of dealing with strings.
Just like any other type of programming, you can take them too far. If you've got 16 consecutive
backslashes, it's probably time to refactor. Still, they can be much more useful than similar code,

handwritten to recognize certain patterns.

In Ruby, you'll define a regular expression between slashes. You'll match regular expressions like
this:

 irb(main):027:0> regex = /better/
 => /better/
 irb(main):028:0> regex.class
 => Regexp
 irb(main):029:0> "Mine is bigger" =~ regex
 => nil
 irb(main):030:0> "Mine is better" =~ regex
 => 8

Ruby returns the index of the character at the match. Ruby regular expressions are much more
powerful than I can show you here. I'll just say that Java developers spend at least half of their time
dealing with strings. When you think about it, servlets, XML strings, configuration files, deployment
descriptors, and application data can all be strings. To parse them effectively, you need first-class
pattern matching, such as regular expressions and ranges. Java 1.5 closes the gap some, but not
completely.

6.1.7. Containers

Ruby containers are like Java's collections. You just saw an array. Like Java, arrays are objects:
[1,2,3].class returns Array. Unlike Java, everything in an array is also an object. Ruby also has a
Hash. Like Java's HashMaps, a Ruby Hash is an object. Unlike Java's HashMap, a Ruby Hash also has
some syntactic sugar. You use braces instead of brackets, and you use key=>value to define one key-
value pair, like this:

 irb(main):011:0> numbers={0=>"zero", 1=>"one", 2=>"two", 3=>"three"}
 => {0=>"zero", 1=>"one", 2=>"two", 3=>"three"}
 irb(main):012:0> 4.times {|i| puts numbers[i]}
 zero
 one
 two
 three

Like Java collections, Ruby containers hold objects, and they need not be homogeneous. In version
1.5, Java's generics let you build type-safe collections. You could modify Ruby's Array or Hash to
make them type safe. (Remember, you can modify any of Ruby's classes directly. It's a dynamic
language.) While Ruby doesn't have dozens of types of containers like Java does, you will notice
some benefits immediately:

Since there's no distinction between primitives and other objects, you can put literally anything
into any given container, and you can nest them easily.

Since everything inherits from object, everything has a hash code.

The language gives you the same syntactic sugar for hashes as for arrays.

Code blocks make iteration tighter and easier.

If you're a big Java collections user who's used a dynamic language before, you probably noticed that
Java collections often feel wrong. You have to circumvent static type checking, because you're adding
something to a collection as an object, and you're forced to cast it to something else when you
retrieve it. Iteration is painful and awkward. A collection doesn't feel like a standard array, which can
possibly contain primitives.

Ruby containers will feel altogether different. You won't have to deal with the maddening type casts
or generic syntax. Code blocks simplify iteration. You don't see too many types of collections, but
don't let that fool you. Using the rich methods, you can use Array as a list, queue, stack, or any other
type of ordered collection. For instance, let's use Array as a stack:

 irb(main):001:0> stack=[1,2,3]
 => [1, 2, 3]
 irb(main):002:0> stack.push "cat"
 => [1, 2, 3, "cat"]
 irb(main):003:0> stack.pop
 => "cat"
 irb(main):004:0> stack
 => [1, 2, 3]

Similarly, you can use Hash whenever you need a set, dictionary, or any type of unordered collection.
You'll find yourself doing more with collections, and less customized iteration.

6.1.8. Files

Iterating through a file works much like iterating through a collection. You'll create a new file and
pass it a code block. For example, here's a simple GREP:

 File.open(ARGV[0]) do |file|
 rx = Regexp.new(ARGV[1])
 while line=file.gets
 puts line if line =~ rx
 end
 end

To use it, type it into a file called grep.rb. Then, you can call it (outside of irb) like this:

 ruby grep.rb filename regex

Notice what you don't see. You don't have to close the file or manage exceptions. This
implementation makes sure the file will be closed if an exception occurs. You're effectively using a
library that specifies everything on the outside of a control loop that iterates through a file. Ruby
does the repetitive dirty work for you, and you customize the inside of the control loop with a code
block.

6.1.9. Why Should You Care?

By now, you should be getting a feel for the power and simplicity of Ruby. You can probably see how
the lines of code go down and the abstraction goes up. You might think it doesn't make any
difference. You could lean ever harder on your development environments and on code generation
tools like XDoclet , and shield yourself from some of the problem, but let me tell you: lines of code
matter!

You still have to understand anything that your tools generate. I work with dozens of people
every year that don't understand the SQL that Hibernate cranks out, and others who have to
maintain generated code, after they tailor it for their needs.

The more code you have, the more bugs it can hide. Unit testing can take you only so far. You'll
still need to inspect code to enhance it or maintain it.

Writing code is not the only cost. You also need to consider the cost of training, maintaining,
and extending your code.

Each code generation technique that you use limits your flexibility. Most Java developers now
depend on tools to do more and more. Each tool that you adopt carries a cost. I'm an IDEA
man, but some of my customers use Eclipse. I'm nowhere nearly as effective on it, so my
customer loses something when I am forced to use it. XDoclet increases the feedback cycle.

Java developers rely increasingly on XML for configuration. Remember, configuration is still
code. Developers from other languages often find Java's over-reliance on XML configuration
annoying. We use so much configuration outside of the language because configuration in Java
is painful and tedious. We do configuration in XML rather than properties because...well,
because overuse of XML in Java is a fad. Meanwhile, configuration in Ruby is usually clean and
comfortable.

You may be willing to pay the costs related to lines of code, but you should also consider higher
abstractions. With Java, you must use unsightly iterators. With Ruby, you wind up building the
iteration strategies into your containers and reusing that logic.

Said another way, Java customization usually happens with an outside-in strategy. You build big
chunks of reusable code that fill out the inside of your applications. But that's only one kind of
customization. For many jobs, you'd like to keep a generic implementation of a job, and customize a

few lines of code on the inside of a method. Iterating through a JDBC loop, processing a file, and
iterating through a collection are only a few examples of this strategy. Some Java developers call this
strategy inversion of control .

Ruby lets you program with both styles, as shown in Figure 6-1. Code written with that strategy is a
joy to maintain, and it hides repetition from you. To be fair, some Java frameworks, like Spring, do
some of this for you as well, but it's not as easy in Java, and this style of programming is not nearly
as common, since you have to use the heavyweight anonymous inner class to do so. In dynamic
languages like Ruby and Smalltalk, this programming strategy gives you tremendous intellectual
freedom, both in the frameworks that you use and in the frameworks that you build.

6.2. Applying Some Structure

Both Ruby and Java are object-oriented languages. Both support object models with single
inheritance. Still, you're going to see some differences between Ruby and Java:

Figure 6-1. Java programmers refactor the inside of a loop; code blocks let
Ruby developers refactor the outside of a loop, too

In Java, the smallest application is a class. In Ruby, everything is an object, so you can
evaluate primitives, expressions, code blocks, and scripts. They all are objects, and all are valid
Ruby.

In Java, class definitions are static. In Ruby, you can modify your classes on the fly. When you
see a class definition, if the class already exists, the new definition will modify the class that's
already there.

Ruby supports mixins and Java does not. Think of a mixin as an interface, plus an
implementation, that you can attach to a class.

In Ruby, everything returns some value, and that value is typed dynamically, so you won't see
a return in the method definition.

In Ruby, method parameters and instance variables are not typed; but the instances
themselves are typed.

For the most part, you can still use your OO design skills in Ruby as you did in Java. You'll also see
some common design patterns, like model-view-controller.

David Heinemeier Hansson: Ruby

Creator of Ruby on Rails

David Heinemeier Hansson is the programmer of Basecamp, Backpack, and Ta-da List
under the commercial banner of 37signals, but he's also an avid open source contributor
through the Rails web development framework and Instikione of the most popular Ruby
applications. He's intensely focused on doing something about the sorry state of
programmer productivity, be it through software, like Rails, or through practices, like
Less Software.

Why is Rails so
much more
productive than
similar Java
stacks?

DHH: Ruby allows Rails to implement convention over
configuration at runtime, which not only removes needless
repetition but also relieves the programming cycle from
being bogged down by compilation, code generation, and
deployment. It brings the immediacy of change-and-reload
from languages like PHP together with modern software
techniques like domain-driven, test-driven development,
and patterns. It's quick without being dirty; it's scalable
without being heavy.

What are the
three most
important
features in Ruby
that you use in
Rails?

DHH: First, metaprogramming. You can manipulate a
class while it's being defined. You can create domain-
specific languages, because you've got hooks everywhere
into the life cycle of classes and objects. It's a framework
builder's dream.

Second, open classes. Active Record consists of around 10
layers that are all applied to the base class. It keeps the
API simple. You don't use 10 different classes, and Rails
still satisfies the requirement of a maintainable code base.

It's also been helpful to be able to extend the base classes
and fix bugs in the standard library between releases.

Third, everything is an object, with exceptions. You can
work procedurally on top of the object orientation, but
that's the order of business. It makes for an incredibly
consistent experience that really makes "The Principle of
Least Surprise" come true. You can guess the names and
behavior of Ruby classes more often than not.

What makes Java
limiting to you?

DHH: On an "every language can do anything" level,
there's nothing that inherently limits what Java can do,
but there's certainly different comfort zones for different
languages and people. I can't stand repeating myself. I
can't stand a long feedback cycle. I can't stand computing
in my head or writing by hand what the compiler should be
able to figure out from my intentions.

Java doesn't make me a happy programmer; Ruby fills me
with joy. I don't want to work with tools that don't make
me happy. So, if that were the only choice, I would pick a
different career where I could work with tools that made
me happy.

Are Ruby and
Rails ready for
production web
applications?

DHH: Not only ready, but already running. Basecamp, the
application that birthed Rails, has been running for more
than a year and is widely successful. Upstarts working on
the Web 2.0 frontier are picking Ruby on Rails in droves.
43things.com and Odeo.com are just two examples of
that.

6.2.1. Classes

Ruby is object-oriented. I've shown you how to use Ruby objects , but not yet how to create one.
Let's make a class called Calculator. Create a file called calculator.rb that looks like this:

 class Calculator

 def initialize
 @total=0
 end

 def add(x)
 @total += x
 end

 def subtract(x)
 @total -= x

 end

 end

You've declared three methods. Ruby will call initialize when it creates a new object, such as this
calculator. Notice that initialize defines an instance variable called @total. In Ruby, instance
variables start with @, class variables start with @@, and global variable start with $. Now, in irb, you
can load the file and use the calculator.

 irb(main):005:0> require 'Calculator'
 => true
 irb(main):006:0> c=Calculator.new
 => #<Calculator:0x28b4a98 @total=0>
 irb(main):007:0> c.add 100

 => 100
 irb(main):008:0> c.subtract 40
 => 60

And it works, just like you'd expect. Ruby developers take advantage of open classes . I'm going to
change the definition of Calculator, but keep in mind that we still have c, an instance of Calculator.
I actually open up the definition of the class again like this:

 irb(main):009:0> class Calculator
 irb(main):010:1> def reset
 irb(main):011:2> @total = 0
 irb(main):012:2> end
 irb(main):013:1> end

I just added a method called reset. I also could have changed an existing method.

 irb(main):014:0> c.reset
 => 0

That's amazing. I changed the class definition of an existing class. That's a useful capability for
debugging, iterative programming, and metaprogramming. Ruby also lets you subclass. To subclass,
you use the < operator:

 irb(main):015:0> class IrsCalculator < Calculator
 irb(main):016:1> def add(x)

 irb(main):017:2> x = x / 2 if x>0
 irb(main):018:2> super
 irb(main):019:2> end
 irb(main):020:1> end
 => nil

You can use it, and IrsCalculator will take a little off the top for you:

 irb(main):027:0> c=IrsCalculator.new
 => #<IrsCalculator:0x28b6b80 @total=0>
 irb(main):028:0> c.add 100
 => 50

These concepts should look familiar to you. Classes package instance data and methods together. An
instance of a class is an object. All classes have single parents, and eventually inherit from Object,
with the exception of Object:

 irb(main):031:0> Class.superclass
 => Module
 irb(main):032:0> Module.superclass
 => Object
 irb(main):033:0> Object.superclass
 => nil

6.2.2. Using Mixins

To implement a mixin, Ruby uses a concept called a module. A module lets you group together
methods and classes. You can't instantiate a module, and a module doesn't stand alone. A module
isn't a class, but it does have its own namespace. Modules form the foundation of classes and mixins
.

Mixins are not new. Smalltalk supported them back in 1971. Recall that a mixin is an interface with an
implementation. That means you can group together a set of methods that many classes may need
to use.

Look at this contrived little example. To build the friendliest possible application, you may want to
build a mixin to greet any object by name. You'd code it like this:

 irb(main):021:0> module Greetable
 irb(main):022:1> def greet
 irb(main):023:2> puts "Hello, " + self.name

 irb(main):024:2> end
 irb(main):025:1> end
 => nil

Then, you can include this code in a class called Person:

 irb(main):011:0> class Person
 irb(main):012:1> include Greetable
 irb(main):013:1> def initialize(name, age)
 irb(main):014:2> @name=name
 irb(main):015:2> @age=age
 irb(main):016:2> end
 irb(main):017:1> attr_reader :name
 irb(main):018:1> end
 => nil

You can use this code in Person:

 irb(main):039:0> person=Person.new("Bruce",40)
 => #<Person:0x2a970a0 @age=40, @name="Bruce">
 irb(main):040:0> person.greet
 Hello, Bruce
 => nil

While mixins seem interesting, this code probably smells wrong to you. Unless you could better
integrate the Person methods in the mixin, it's just a recipe to make bad design decisions: you can
include stuff that doesn't really have anything to do with Person into Person. But it's more powerful
than that. You can separate an aspect, or a capability, into a mixin. What makes mixins so powerful
is this: you can also access Person's class methods in your module. In fact, we used Person.name, in
the module, before we had even defined Person. If it sounds confusing, just look at the following
module. inspect is a class method that puts the contents of an object in string form:

 irb(main):147:0> module Reversible
 irb(main):148:1> def inspect
 irb(main):149:2> super.reverse
 irb(main):150:2> end
 irb(main):151:1> end
 => nil

Note that you haven't defined a class yet, but you're still using the inspect class method. That may
seem strange until you include the module in the Calculator class that we made before:

 irb(main):152:0> class Person
 irb(main):153:1> include Reversible
 irb(main):154:1> end
 => Person

Now you've included the module, and it has a class. It's now a mixin. You can call any new instance
methods that it defines. It will assume the class that you add it to. Look at what happens when you
instantiate it:

 irb(main):155:0> p=Person.new("Bruce", 40)
 => >"ecurB"=eman@ ,04=ega@ 0711c82x0:nosreP<#

irb actually calls inspect when you instantiate an object. Did you see the garbled line at the bottom?
It's actually "Person:0x28c1170 @age=40, @name=\"Bruce\" in reverse. That's impressive. Now, you can
add a mixin that can inspect the class, and integrate the most intimate details of the class into the
mixin. And you can do all of this integration before a class even exists. I can use mixins for things like
security or persistence. Java developers often resort to AOP to get the capability of mixins.

6.2.3. Interceptors

I've said that Java framework developers these days place an ever-increasing value on techniques
that change the behavior of an existing class, without changing its code. One such technique is
method interception . JBoss and Spring use method interception to attach arbitrary services to a
POJO. With Ruby, interception is easy. You simply take a method, rename it, and put another method
in its place (see Figure 6-2).

For example, let's say that my friend, Dave Thomas, asks me to watch his laptop for a few minutes
before his big Ruby presentation. I could go to his Ruby shell and enter this little gem based on an
example from his book,

Figure 6-2. In Ruby, to do method interception, you simply rename and
replace a method, with the new implementation calling the old

Programming Ruby (Pragmatic Bookshelf). This version intercepts new, as you can see in Figure 6-2. I
simply rename the original and call it from the replacement new. The interceptor will print out a
message whenever Ruby creates a new object. Here's how easy it is:

 class Class
 alias_method :original_new, :new
 def new(*args)
 result = original_new(*args)
 print "Unattended laptop error. "
 return result
 end
 end

And when Dave gets back to teach his class, he'll get a nice surprise when he does anything that
creates an object (which is pretty much anything in Ruby):

 irb(main):009:0> i=[1,2,3]
 Unattended laptop error. Unattended laptop error. Unattended laptop error.
 Unattended laptop error. Unattended laptop error. Unattended laptop error.
 Unattended laptop error. Unattended laptop error. Unattended laptop error.
 Unattended laptop error. Irb(main):010:0>

That's an interceptor in eight lines of code. You get extra credit if you know which 10 objects get
created. You don't have any Java proxies, code generation, or aspect-oriented programming. Of
course, you'll not want to try this with the real Dave. That would be like throwing a firecracker under
Albert Einstein's car. Like Albert and the atom, you don't want to unleash this kind of power without
knowing where all the energy is going to go.

6.2.4. AOP

Java developers depend on AOP with increasing frequency. AOP lets you add services to your POJO
without modifying any code. AOP helps you control the flow of your application, such as adding
custom methods at interesting pointsfor instance, before or after a method executes. In particular,
you'll often see AOP for:

Debugging or logging

AOP lets you add debugging or logging code everywhere that you need it, with very little
syntax.

Declarative services

EJB used a container to provide services. You would specify the service with configuration
rather than code. Lightweight containers do the same thing with AOP. You'll often see
interceptors manage transactions, security, and remoting.

Mixins

Java doesn't provide mixins, but you can simulate them with AOP.

David Heinemeier Hansson and Jim Weirich, Two Ruby Experts:

AOP in Ruby

Jim Weirich is a software consultant for Compuware. He has worked with real-time data
systems for testing jet engines, networking software for information systems, and image
processing software for the financial industry. Jim is active in the Ruby community,
contributing to several Ruby projects including Rake and RubyGems.

Why
hasn't
AOP
taken
off for
Ruby?

DHH: A standardized AOP framework has never really taken off in
Ruby because the language itself already supports most of the
desirable functionality of AOP.

The following is an example from Action Pack, the controller/view part
of Rails. And here follows the code block that injects the layout
functionality into the original render method:

 base.class_eval do
 alias_method :render_without_layout, :render
 alias_method :render, :render_with_layout
 end

So, we rename the original render method to render_without_layout,
which we can then call from the enhanced render_with_layout
method. And finally, we make the improved render_with_layout

method take the place of render. So, we're hot-swapping out behavior
of a base class with improved functionality without changing the
public interface and without cluttering the base class with the
enhancements directly. The next version of Ruby will take this a step
further by including AOP-like constructs right in the language with
pre, post, and wrap conditions.

JW: The metaprogramming capabilities of Ruby lie so close to the
surface and are quite accessible to the average Ruby programmer. I
suspect that most of the problems addressed by AOP are addressed
by metaprogramming in Ruby.

Here's one example from the standard library. Date objects are
immutable, so once you calculate the day of the week for any given
date object, you could store that result and return it in later
invocations without redoing the entire calculation. The code to check
for a previously calculated value is simple enough to write, but it is
tedious to implement it in each of the 13 or so methods in Date that
could take advantage of it.

The author of the Date class took this approach. He wrote each
method as if it would recalculate the value every time it was called
(i.e., no special checking for previous values). Then he wrote a class
method called once that takes a list of method names. The once
method did the following: created an alias for the named method;
made that alias private; and created a new method with the original
name that checked for a previously calculated value before calling the
original code (via the alias). In other words, the once method rewrote
existing methods to calculate its return value once and store the
result.

Looking for further evidence that AOP-like solutions are easy in Ruby
metaprogramming? The AspectR library adds some simple AOP
operations to Ruby. Although not as complete as its sister library,
AspectJ, from the Java world, the library itself is orders of magnitude
smaller...clocking in at around 210 lines of code.

I'm not an AOP expert by any stretch of the imagination. But I've
seen the relatively narrow set of problems addressed by AOP, and the
wide range of metaprogramming solutions that keep cropping up in
the Ruby world. Perhaps it is not Ruby that needs AOP, but Java that
needs metaprogramming!

Of course, AOP is a much broader tool, and if it is successful, the typical use cases obviously will grow
in scope and power. Right now, though, Java developers most frequently use the power of AOP
through frameworks like Spring.

You can look at interceptors as a more primitive tool to accomplish the same sorts of things. The
JBoss framework and containers like HiveMind use interceptors to provide a wide range of services,
like transactions. For Ruby developers, AOP is not quite as urgent, because you've already got robust

tools to deal with these kinds of concerns:

You can use interceptors. These let you add services to any object at any time. It's as easy as
renaming one method and introducing another.

You can use mixins, even attaching them at runtime. You could easily make all of the methods
on a domain model secure, for example.

You can use hooks . Ruby provides hooks so that you can inject custom code at certain well-
defined locations. The next version of Ruby will support hooks called _ _before, _ _after, and _
_wrap.

In short, Ruby can already solve many AOP-like problems without AOP, and will add AOP-like features
in the very near future. Some Ruby programmers are concerned that AOP code may be more difficult
to maintain. The core value of AOP that's not yet supported in Ruby is the ability to specify a point
cut quickly and efficiently, which lets you use regular expressions to define interceptors wherever you
need them. Ruby already has the core features that should make point cuts easy to implement:

You can quickly query for the methods that an object supports.

You can match regular expressions.

You can invoke a method with a string.

You'll soon (Ruby 2.0) be able to hook Ruby methods with before, after, and wrap.

Ruby is very friendly to configure. You can specify the point cuts in Ruby, without requiring XML
or a whole new syntax, like AspectJ.

Given these capabilities, AOP becomes a very lightweight feature. Right now, Ruby developers prefer
to implement AOP-like features, piecemeal, in a style that best fits the architecture.

6.2.5. Dependency Injection

The difference dependency injection in Java and Ruby is a little tougher to understand for Java
developers. In Java, dependency injection is rapidly changing the way that we build applications. It's
a relatively simple concept:

 class Speaker {
 void speak(String words) {
 System.out.println(words);
 }
 }
 class Consumer {
 Speaker mySpeaker;
 void saySomething() {
 mySpeaker.speak("something");
 }

 }

Notice Consumer. It doesn't instantiate Speaker. That job goes to a third party. We'll call it Container:

 class Container {
 public static void main(String[] args) {
 Speaker speaker=new Speaker();
 Consumer consumer=new Consumer();
 consumer.mySpeaker = speaker;
 consumer.saySomething();
 }
 }

You can make some simple improvements. You can encapsulate mySpeaker with a getter and setter.
You can then extract an interface called Speaker, and provide implementations for FrenchSpeaker,
EnglishSpeaker, and SpanishSpeaker. You can also make a configuration file, in Java or XML,
describing all the objects that you want to treat this way.

You'd then have most of what you'd need for a basic dependency injection container: configuration,
third-party life cycle control, and the ability to loosen the coupling between Speaker and Consumer.
With a dependency injection container, you could change implementations of Speaker without
changing any code in any of the consumers. You could also inject a test implementation of Speaker
without impacting the base code, a critical technique in Java for test-first development. You'd also
have a consistent strategy for configuration.

A few things come up right off the bat when you look at dependency injection in Ruby. First, Java's
not very good at configuration, but Ruby lets you represent structured data quite well, often with far
less invasive syntax than XML. You also can solve many of the coupling problems by changing the
definition of a class on the fly. It's easier, for example, to inject those mock objects into hard-to-
reach places.

Some developers in Ruby seem to think dependency injection is important and that the idea will have
a place in the Ruby mainstream, given time. It should come as no surprise to you that Ruby has an
outstanding dependency injection framework called Needles.

Others tend to think that dependency injection should happen in spots, instead of with a single,
general-purpose framework. Since it's easy to change a class definition on the fly, you can easily
inject the behavior that you need without adding another layer of complexity, across the application.
Most of the Ruby programming community seems to be converging on the idea that Ruby's overall
dynamic design makes dependency injection unnecessary for all but the most complex applications
(see the sidebar, "Jim Weirich, Jamis Buck, and David Heinemeier Hansson, Three Ruby Experts:
Does Ruby Need Dependency Injection?").

Jim Weirich, Jamis Buck, and David Heinemeier Hansson, Three

Ruby Experts: Does Ruby Need Dependency Injection?

Jamis Buck has been writing Ruby code since late 2001, and has written (among various
other things) two Ruby dependency injection containers, Ruby bindings for SQLite and
SQLite3, and an SSH client library for Ruby. During the day (and some evenings), he
works for 37signals, programming in Ruby and Rails. Jamis lives in Provo, Utah, with his
wife and two children.

Does Ruby
need
dependency
injection?

JW: The question should not be if Ruby needs dependency
injection, but whether a particular application or framework
needs dependency injection. DI is a tool to help you build
decoupled programs, but it comes with some conceptual
baggage. You start using DI when the pain of coupling outweighs
the cost of the additional complexity. In some languages, this
pain comes fairly quickly. But in Ruby, the pain is mitigated by
the natural tendency for looser coupling in a dynamically typed
language, so the benefits of dependency injection occur much
later in the cost curve. In addition, there are some very simple
techniques to lower the cost of coupling without using a formal
dependency injection framework.

And finally, when your application/framework does grow to the
point that dependency injection becomes interesting, you will find
that a simple (i.e., less than 30 lines of code) dependency
injection library will fill most of your needs.

JB: I wrote two very different DI containers for Ruby, about a
year or two ago. I pushed them both pretty hard, and I worked
hard to educate the Ruby community about DI, but the fact is
that I really came to understand this: the dynamic nature of
Ruby really does obviate the need for most of what DI does in
Java land.

DHH: We actually looked into basing the configuration of
services in Rails off Needle, but all the problems I was trying to
solve with DI could be solved much more simply. For example,
dependency injection makes it easier to inject mocks into hard-
to-get places. Consider a payment class that initializes a
payment gateway to authorize and charge a credit card. Without
DI, it might look like this:

 class Payment < ActiveRecord::Base
 belongs_to :credit_card
 def capture
 PaymentGateway.capture(amount, credit_card)
 end
 end

Now in a language like Java, the direct use of PaymentGateway
would be a rather nasty dependency on a concrete class that
would make it hard to mock and hence test. Not so in Ruby. And
especially not in Rails, since it has specific support for mocks of
this type. We can stub out exactly the methods that need to be
stubbed out, but nothing else. So, for the payment gateway,
we'd just do this:

 require "original/payment_gateway"

 class PaymentGateway
 cattr_accessor :desired_result

 def self.capture(amount, credit_card)
 Response.new(desired_result)
 end
 end

We're now able to specify PaymentGateway.desired_result =
:success and the partially mocked out PaymentGateway will
comply, using all the rest of the real infrastructure; just not
calling the actual remote system over the wire.

6.3. Breaking It Down

That's a 30-minute tour through Ruby. I'm not saying that Ruby is the next great language, but
rather, that Ruby makes some of the hard things in Java easy. More and more of the top
independent consultants are looking for ways to make more money working in Ruby, or other
languages that are more dynamic. The Java community is spending an amazing amount of money
and brainpower on making Java more dynamic. Dependency injection and aspect-oriented
programming are groundbreaking ideas for Java, and they are only now getting serious commercial
traction. For Java developers, these ideas represent better transparency and simpler application
development.

6.3.1. Collapsing Under the Weight of Abstraction?

My playtime in Ruby makes another, more powerful idea, clearer. As we stretch Java in increasingly
unnatural directions, there's a cost. AOP and dependency injection are near-trivial exercises in Ruby,
but they force Java developers to learn new programming models, deal with XML, and introduce
increasingly complex syntax. With each new metaprogramming concept that we bake into Java, it's
looking more and more like all of that complexity is trying to drive us somewhere. The net effect is to
push Java further and further into the enterprise niche, and make it less and less accessible to the
average Joe. Contrast that situation with Ruby, where dependency injection and AOP don't consume
your focus; you're free to apply those ideas in spots right where you need them.

I do think that Ruby, with Rails, is a near-ideal solution for that sweet spot that we've pushed: a
web-based frontend for a relational database. I've already said that I'm using Ruby in a commercial
application. My customer demanded productivity and a price point that I couldn't achieve in any other
way. I also still recommend Java to many of my clients. They need complex frameworks that Ruby
does not yet support, or they depend on a core set of developers that have already been trained, or
they have so much legacy code in Java that change would be impractical.

In the next chapter, I'll make these arguments real. I'll show you how to build a web-based
application, from scratch, to access a relational database with a web application. Then, I'll show you
what another killer app might be, for another language.

Chapter 7. Ruby on Rails
As I screamed uphill toward the 3-foot ledge, the voice inside my head said "Don't fight it. Go for it."
Knowledgeable mountain bikers called the move the lunge, but I had neither named nor internalized
it yet. My brain rebelled against the completely unintuitive idea that a moving biker could thrust his
bike forward near the top of such a ledge and accomplish anything other than a spectacular crash,
but I'd seen it work. I hit the ledge with speed and thrust the bike forward by simply pushing on the
handlebars, and the bike was over the ledge. On some level, I didn't understand that success was a
possibility. Though I was safely on top, I stepped off my pedals anywayI'd been sure that I would fail.
The idea seemed too much like flying by pulling hard enough on your shoestrings. Learning this
mysterious lunge would take a while.

Like the lunge, metaprogramming also seems a little unnatural to me. Then again, I've been coding
in Java and C for most of my professional career. If you want to experience the power of a
framework that uses metaprogramming extensively, Rails is the gold standard.

7.1. The Numbers Game

As a fairly content Java programmer, I really didn't go searching for an alternative. In some ways,
Rails found me. Dave Thomas and I speak at the same conference. I taught several sessions on the
Spring framework with Hibernate, and I was very happy with my productivity. Of course, compared
with EJB, I was very productive. Dave pointed out that even in Hibernate with Spring, you tend to
repeat yourself on a fairly regular basis.

I reflected on David's comments. To make a persistent domain model, you need to specify a
database table with its fields and indexes, specify an object domain model with a class (repeating
yourself) and a field as an attribute (repeating yourself), and add accessors for that field (repeating
again and again). Then, you need to build a mapping with the database table (repeating again) and
the class name (and yet again). Finally, your mapping must specify each database column and the
corresponding database field (repeating each column twice more). Of course, most sane Java
developers do not do all of that repeating. They let the tools do most of it for them, but now your
programming model dictates your tool set, your development experience, and generates more lines
of code to maintain. I came to the conclusion that ORM makes sense when the domain model and
object model are sufficiently different, and I decided I'd take the slight productivity hit and be
compensated with better performance and the possibilities of better mapping.

7.1.1. A Blinding Flash of Insight

As I've said, I worked with a company that builds safety software for a manufacturing plant. We
effectively build a web user interface to manage a complex domain model. We decided to build this
application with a lightweight Java stack of Spring, Hibernate, and Web Work. We moved pretty
quickly, and were pleased with our progress. We were proud of our accomplishments, because we'd
rewritten a one-year Microsoft application in four months with Java. Naturally, as we accumulated a
bigger code base, coding began to take longer.

Over time, Dave's arguments nagged at my subconscious. Dave and my business partner had the
same conversations. As luck would have it, over the same week, we tried building a part of the
application in Rails. I banged out the model and scaffolding in a couple of days. With his stronger
HTML experience, Justin got further than I did. He actually implemented the whole application in Rails
in four nights. The Rails version shocked us in another wayit was actually faster!

Justin Gehtland: A Ruby on Rails Case Study

Coauthor of Better, Faster, Lighter Java

Justin Gehtland is the co-founder of Relevance, a consulting/training organization based
in Durham, North Carolina. He's the coauthor of the Jolt-winning book, Better, Faster,
Lighter Java, and has been developing applications of all sizes since the early 1990s.
Over the last six years, he has delivered products using Java, .NET, LAMP, and now,
Ruby on Rails.

You've recently
moved a Java
project to Ruby
on Rails. What
Java
frameworks did
the application
use?

JG: The original stack was the usual suspects in the
lightweight movement: Spring and Hibernate, plus a little
JSTL on the frontend (so that the end customers could more
easily customize the interface). I was using the ACEGI
security framework for authentication and authorization, but
only to authenticate against a local database of accounts.

What surprised
you the most
about the
experience?

JG: After porting the app and talking about the experience, I
was really surprised by the heated discussion it generated.
There's that old saw about disruptive technologies; if the
temperature gauge on the discussion is any indication, Rails
is clearly in the disruptive category.

From a technology perspective, I was surprised at the level
of performance I was able to achieve. The Rails version of
the app was fast, and faster even than the original Java
version. That's partially due to a better understanding of the
domain (rewrites always take lessons learned into account),
partially due to a lack of performance tuning on the original
stack, but mostly due to the fact that the performance gains
with Rails are easy to achieve. The page and action caching
strategies are right at the surface, and it's easy to manage
their life cycle. I was able to max out the web server's ability
to serve pages. I literally couldn't get it to go any faster.

Is Rails ready to
usurp Java?

JG: Ruby isn't going to outstrip Java on a straight road. The
JVM is tuned, and tuned, and tuned again to optimize byte
code execution. But Ruby on Rails shines on the turns. Its
integrated stack, dynamic language, and lack of a
write/compile/test/deploy cycle means it handles better. For
this application, it was like racing a Miata against a funny
car on a mountain road. The funny car has more
horsepower, but it just ends up driving straight all the time.

What are the
top three things

JG: I'd have to say that the dedication to smart defaults is
the primary benefit to Ruby on Rails. Ben Galbraith has said

that made Ruby
so much more
productive?

it several times, and I concur. Since Rails always lets you
override any of its defaults, you are never in danger of
getting stuck in a corner, but for the most part, you can
create an application and ignore 90% of what would be
surfaced in configuration files in another framework.

Second, I really was surprised at how much of a difference
the lack of the configure/compile/deploy/test cycle really
makes. Saving a change and launching the tests while
reloading the browser just seemed so instantaneous
comparatively. I don't know that it made me more
productive, but it made me feel more productive.

Lastly, the dynamic nature of Ruby really shined for me. I
did need some common pieces of functionality in the app
that really belonged back at the framework level. Instead of
having to delve into the source to add them, I just extended
the classes I needed to at runtime. That kind of extensibility
is anathema (and usually impossible) in a more statically
typed language.

7.1.2. Making the Commitment

Of course, playing with a prototype and getting a customer to switch from tried and proven Java to a
relatively unknown framework on an unknown language was an altogether different proposition. I
had a conversation with the start-up's owner, and the results surprised me. He jumped at the chance
to move. I guess I shouldn't be surprised. We simply couldn't ignore the differences in raw
productivity between the frameworks.

In a start-up environment, productivity rules all other concerns. Since you don't often have the
resources of your competition, you need to iterate fast. You can get some leverage by working longer
hours and cutting bureaucracy. If you can generate an edge with technology, you've got to take that
opportunity. In an increasingly competitive global landscape, we'll all need to act more like start-ups.
If a framework makes you a mere 120% faster, you might be tempted to stay with a safer language
like Java. But if you can be 400% faster or more, I don't think you can ignore the difference.

Remember, my premise is that Java is drifting away from its base. Most of us need to build web
applications on relational databases. Language issues are important, but Java's drivers are so
focused on hard-core enterprise problems that they're not making any progress on this simple core
problem. If Rails doesn't step into this gap, something else will.

7.1.3. Some Numbers

I'm going to give you some performance and productivity numbers based on experience. I recognize
the numbers are imperfect, for a whole lot of reasons. In some ways, the deck was stacked against
Rails:

The Ruby application implemented more customer requirements. By the time Justin realized
that his experience was important, he'd implemented some features that never made it into the
Java version.

Justin was a recognized expert in Java, but had never used Ruby in a project, and had never
used Rails. He wrote a Spring book, and he taught two weekend sessions 16 times per year for
Hibernate.

The Rails framework has some design philosophies that are unfamiliar to Java developers.

More importantly, some of the factors worked against Java in the implementation:

The Java code was in no way fully tuned. The Java apps were much harder to tune, so we didn't
get as far. We'd only started to look into performance. (The Ruby code was not fully tuned
either, but its default implementation performs quite well with only some minor tweaks.)

We had already implemented the problem once, so the Ruby implementation had the benefit of
some experience. The dramatic difference in application structure tempers this somewhat, but
the user interface was nearly identical.

Justin did not have a chance to implement all possible tuning scenarios in all possible
environments. The Java version used Tomcat on an Apple iBook instead of Resin or something
faster. Justin just made a few simple tests.

The caching models are fundamentally different, and are far easier to tune on Rails.

Still, with Ruby, we develop faster; we're probably four or five times as productive. Table 7-1 shows
the raw productivity metrics. We write less code. There's less code to maintain. With this type of
increase in our cycle time, the customer is much happier, and we can better react to last-minute
changes. Our test code is every bit as rich, and probably more so.

Table 7-1. Productivity metrics

Metric Java Ruby

 Spring/Hibernate Rails

Time to market 4 months, approximately 20 hours/week 4 nights (5 hours/night)

Lines of code 3,293 1,164

Lines of configuration 1,161 113

Number of classes/methods 62/549 55/126

Table 7-2 shows the performance numbers. They're probably a little more controversial. I'm not
trying to show that a Ruby application will always be faster than a Java application. I'm just showing
that in this case, Ruby is fast enough, and it took almost no time or experience to get to this point.

Table 7-2. Difference in performance between untuned versions of a Java
application after we moved it to Ruby on Rails

Metric

(requests per second)

Java

Spring/Hibernate

Ruby

Rails

User scenario 1 (100 runs)

(no preexisting cache)

71.89 75.59

User scenario 1 (100 runs)

(with preexisting cache)

80.86 174.39

User scenario 2 (100 runs)

(no preexisting cache)

80.86 62.50

User scenario 2 (100 runs)

(with preexisting cache)

88.97 1,785.15

To be clear, in no way is Justin claiming that we've done everything possible to tune the Java
application. The point here is that tuning Rails to this level was nearly effortless, and tuning the Java
examples requires much more skill, time, and effort. The Ruby version is fast enough to meet
requirements, with very little additional effort.

7.1.4. The Community Response

When Justin published this experience, followed by supporting data across two blogs,[*] the Java
community lashed out with surprising vigor. It's ironic, because Justin was completely honest with his
numbers, and he presented performance numbers only after he was challenged by the community.
You probably know that backlash will be particularly strong around disruptive technologies. In this
case, the backlash may well be justified, because Rails is a credible threat to Java in some important
niches, and it's likely to get stronger quickly. If Rails does happen, a whole lot of knowledge can get
marginalized in a hurry.

[*] Justin Gehtland, Weblogs for Relevance, LLC (April 2005); http://www.relevancellc.com/blogs. I *heart* rails; Some Numbers at

Last.

Look, I'm not saying that this data is scientific, thorough, or even broadly applicable to other
applications. It just reflects our experience, and as such, it is compelling. It tells me that Rails is
productive, is fast enough to get the job done, generates less code, and is much easier to tune. The
data does not prove but strongly suggests a few other hints as well. Rails could well be much more
productive than Java for a pretty wide class of applications. Rails can handle sophisticated domains
with inheritance and relationships. And Rails is often enough to get the job done.

Keep an open mind. Judge for yourself.

http://www.relevancellc.com/blogs

7.2. Rails by Example

The best way to understand Rails is to see it in action. Go to http://rubyforge.org and download Ruby
and RubyGems . (If you use the Windows one-click installer, you'll get RubyGems with that
distribution.) If you don't already have one, download a relational database manager, too. I used
MySQL. You'll begin to get the Rails experience at install time. RubyGems lets you install Ruby
applications and their dependencies. At the command line, type:

 gem install rails -v 0.12.1

Ruby will start the installation process. It goes up to RubyForge (rubyforge.org) and pulls down an
index including the appropriate version of Rails and its dependencies. If you were to omit the version
number, Ruby would get you the latest stable version. RubyGems will then prompt you for each
dependency. Answer "Y," or answer "a" once for all dependencies:

 Attempting remote installation of 'rails'
 Updating Gem source index for: http://gems.rubyforge.org
 Install required dependency rake? [Yn] Y
 Install required dependency activesupport? [Yn] Y
 Install required dependency activerecord? [Yn] Y
 Install required dependency actionpack? [Yn] Y
 Install required dependency actionmailer? [Yn] Y
 Install required dependency actionwebservice? [Yn] Y
 Successfully installed rails, version 0.12.1

You'll notice that RubyGems will then attempt to build the documentation for each of the
subcomponents and Rails. And that's it. Rails is installed. You're already getting hints about the
approachability of Rails.

7.2.1. Generating a Basic Application

You can now generate a Rails project. Go to your working directory and ask Rails to generate a
project called trails:

 rails trails

http://rubyforge.org

Ruby creates a full directory structure that will contain your application. There's no guesswork, and
all Rails projects will have a consistent format. I'll point out a few important directories:

app

This directory has your application code. You'll see a directory for each component of MVC and
a couple of others.

config

This directory will be very light. You'll put in anything that needs special configuration, like the
connection parameters for your database. Since Ruby makes excellent use of defaults, your
config directory will stay sparse.

script

Your trails app comes with scripts that will help you generate code, and start your application
server.

You'll notice a few other goodies as well, but for now, let's use one of the scripts to start Ruby's
application server. Change to the trails directory, and type:

 ruby script/server

If things are working, you'll see a server started on port 3000. You can go to http://127.0.0.1:3000/
to make sure things are running. You'll get a Rails welcome message. You just started a development
Ruby web server, configured for Rails. If you need to change some properties of the server, you'll
just change the script/server script. Notice that Ruby programmers typically do configuration, like
this server script, in Ruby scripts. You've already learned that Ruby handles structured data well,
without XML. For example, this is the part of the server script that has the configuration options:

 OPTIONS = {
 :port => 3000,
 :ip => "0.0.0.0",
 :environment => "development",
 :server_root => File.expand_path(File.dirname(_ _FILE_ _) + "/../public/"),
 :server_type => WEBrick::SimpleServer
 }

This code simply defines a hash map called OPTIONS. The => operator maps keys on the lefthand side
to values on the right. Nothing has really happened yet, but you should be paying attention. You've

http://127.0.0.1:3000/

set up a whole lot of infrastructure in a very short time.

Our trails project will collect descriptions of mountain bike trails. We'll start simple, collecting an ID to
go with a trail name, description, and difficulty. You'll type the field names once. The Rails
metaprogramming features will read the columns from the database and dynamically add properties
to your model objects. If you're using MySQL, you can fire up the mysql command processor. Create
a database called trails and switch to it. Now, create a table called TRails:

 mysql> CREATE TABLE trails (
 -> id int(6) NOT NULL auto_increment,
 -> name varchar(20),
 -> description text,
 -> difficulty varchar(20),
 -> primary key (id));
 Query OK, 0 rows affected (0.36 sec)

Notice the names. They are important. By convention, if you're working with more than one row (as
in a table or a list), the name should be a plural. A column or class that refers to a singular object
should be singular. Rails is smart enough to translate English plurals, so it knows to create a model
called Person for a table called people. Watch the capitalization in these examples, too. It's important.
If you follow Rails conventions with your names, you can just stay with Rails defaults, and your code
will be much more concise.

You'll need to tell Rails where to find your database. Edit config/database.yml to look like this:

 development:
 adapter: mysql
 database: trails
 host: localhost
 username: root
 password: password

Stop and restart the server. (You only have to do so when you change your database configuration.)
Let's generate a simple model. In the trails directory, simply type:

 ruby script/generate model trail

Rails generates the model, some helper files, tests, and fixtures. For example, you can take a look at
the model. Edit the file at app/models/trail.rb:

 class Trail < ActiveRecord::Base
 end

That certainly looks anticlimactic. It looks like you'll simply type custom code here, in hopes that Rails
will generate the rest of the code somewhere else. But that's not what happens at all. At runtime,
Rails will load the ActiveRecord base class. Rails will look at the name of the class and load the
definition of a table called trails. Then, it will dynamically add attributes, getters, setters, and
database access methods to the trail base class! So, there's a lot more than meets the eye.

One of the scripts that Rails generates lets you manipulate your model from an irb session. Type:

 ruby script/console

You can now easily manipulate your model. For example, you can say:

 Trail.new do |trail|
 trail.name="Walnut Creek"
 trail.description="Meandering trail in Austin park"
 trail.difficulty="hard"
 trail.save
 end

Now, you'll need a controller. You can generate that, too:

 ruby script/generate controller trails
 ruby script/generate model trails

You just created the model and a default controller in app/controllers/trails_controller.rb for a
collective page of trails. When you edit it, the controller is empty. Make it look like this:

 class TrailsController < ApplicationController
 def index
 render_text "This will be a trail someday..."
 end
 end

Point your browser to the URL http://localhost:3000/trail. You'll see your message printed. Of course,
you didn't learn Rails to print strings, so change your controller to this:

 class TrailsController < ApplicationController

http://localhost:3000/trail

 scaffold :trails
 end

scaffold is a method. The first parameter is :trails, a literal pointing to the TRails class. Save it,
and load the same URL. Now, that's more interesting. You see a listing of trails. Click on the new trail
link on the bottom. That's beyond interesting! You'll get a form like the one shown in Figure 7-1. You
can see that the metaprogramming framework is working overtime. The scaffold method inferred
the properties of the database and propagated them through the model and up to the user interface.
You'll see exactly what goes into a scaffold controller later, but trust the magic for now.

7.2.2. Managing Relationships and Updating Views

A list of trails will not get you very far by itself. It's the interactions between objects that gets
difficult. Say you want to access trails by their city. The first job is to generate the model for
locations. First you'll need a database table:

 mysql> CREATE TABLE locations (
 -> id int(6) NOT NULL auto_increment,
 -> city varchar(20),
 -> state varchar(20),
 -> primary key (id));
 Query OK, 0 rows affected (0.35 sec)

Instead of dynamically generating the scaffolding, you can simultaneously generate the source code
for the controller, and view, complete with scaffolding with ruby script/generate scaffold
locations. Build the model for a single location with ruby script/generate model location. While
you're at it, just to get a better look at what's going on behind the curtains, do the same for trail
with ruby script/generate scaffold trails. Look at what you've done by pointing your browser to
http://localhost:3000/locations. Make sure it works, and add a few locations. I'm adding Austin,
Texas, and Durango, Colorado.

It's time to write some code ourselves, instead of letting Rails do all the work. You're going to need to
update your trails table to point to the right row in the new locations table. You'll do so by adding
a new database column that points to location_id, like this:

 alter table trails add location_id int(6);

You also need to tell Rails about the relationship. Modify the trails model and the Location model to
reflect the new relationships, like this:

 class Trails < ActiveRecord::Base

http://localhost:3000/locations

 belongs_to :location
 end

 class Locations < ActiveRecord::Base
 has_many :trails
 end

Figure 7-1. This application has less than 10 lines of code and
configuration, because Rails inferred the structure from the database

A little description here is interesting. You've created a subclass of the ActiveRecord class in the Base
module. You've then fired a method called belongs_to and passed it a symbol for the Locations class.
This method will fire more metaprogramming code that actually adds the properties and methods to
your code that will manage the relationships for you.

Next, you're going to have to edit the trails view and controller to edit a location. The scaffolding
created the new controllers and views under trails and locations, respectively.

It's time to modify some of the view code. The view code consists of HTML, with Ruby scripting mixed
in, between the <% and %> tags. First, you'll need to make sure the view has all the information it
needs. You'll do this in the edit method, in the controller. Change the edit method in
trails_controller.rb to create a property called @locations that has all the locations:

 class TrailsController < ApplicationController
 ...
 def edit
 @trail = Trail.find(@params[:id])
 @locations = Location.find_all
 end
 ...
 end

It's also time to take over the full view that lets you edit a trail. You'll want the user to pick a location
from a pick list with all possible locations. Change app/views/trails/edit.rhtml to look like this:

 <html>
 <head><title>Edit a Trail</title></head>
 <body>
 <h1>Edit Trail</h1>

 <form action="../update" method="POST">
 <input id="trial_id" name="trail[id]" size="20"
 type="hidden" value="<%= @recipe.id %>" />
 <p>Name

 <input id="trail_name" name="trail[name]" size="20"
 type="text" value="<%= @trail.name %>" />
 </p>
 <p>Location:

 <%= collection_select("trail", "location_id", @locations, "id","city") %>

 <p>Description

 <textarea cols="40" id="trail_description"
 name="trail[description]"
 rows="20" wrap="virtual">
 <%= @trail.description %>
 </textarea> </p>
 <input type="submit" value="Update" />
 </form>

 <a href="/trail/show/<%= @trail.id %>">
 Show
 |

 Back

 </body>
 </html>

As with most applications, your scaffolding won't hold up infinitely. Often you'll want to replace most
of the view code. Rails lets you build toward the goal, instead of creating all of a model, view, and
controller right off the bat.

Notice the code in bold. It adds an option value for all the locations (which you specified in the edit
method of the controller), and selects the one that matches the one that reflects the model, shown in
the variable trails.location.city.

Finally, you'll need to show the new data in the trail list, and in the show method. The idea is exactly
the same. Add a line to the show.rhtml view right above the links on the bottom of the page:

 <p>
 Location: <%=h @trail.location.city %>
 </p>

That's pretty simple. You're just getting the location from the model passed in by the controller. The
list view uses the same technique. You can edit the table from the app/views/trails/list view:

 <table>
 <tr>
 <th>Name</th>
 <th>Location</th>
 </tr>

 <% for trail in @trails %>
 <tr>
 <td><%= trail.name %></td>
 <td><%= trail.location.city %></td>
 <td><%= link_to 'Show', :action => 'show', :id => trail %></td>
 <td><%= link_to 'Edit', :action => 'edit', :id => trail %></td>
 <td><%= link_to 'Destroy', {:action => 'destroy', :id => trail}, :
 confirm => "Are you sure?" %></td>
 </tr>
 <% end %>
 </table>

Figure 7-2 shows you the result, with the location of each trail in the main list. Keep in mind that all
trails have to have locations. If one of yours doesn't, you will get an error here.

This tutorial has already gone on long enough, but I hope you can appreciate the power and flow of
Rails development. You can quickly get your application rolling, because Rails discovers your
application structure from

Figure 7-2. This list comes from an application that allows you to view and
update a database, with trails in one table and locations in another

the database design. You then turn changes around quickly, because the feedback cycle requires you
only to code/reload. You're building quality beyond what PHP can give you, because you're building
with a proven model/view/controller design pattern, with built-in features for logging, caching, and
automated testing. Now that you've seen what Rails can do, take a look under the hood to see some
of this magician's secrets.

7.3. Under the Hood

As you've seen, the Rails framework is also made up of several existing frameworks, including Active
Record, Action Pack, and a few others. Active Record handles relational database access. Action Pack
processes requests, and manages the model/view/controller separation. Rails provides the
integration and the rest.

7.3.1. Active Record

Active Record implements the Active Record design pattern by Martin Fowler in Patterns of Enterprise
Application Architecture (Addison Wesley). It's effectively a wrapper around a database table, with
domain logic built into the wrapper. The Rails implementation adds two important innovations: you
can do inheritance and manage relationships. These are some of the major features.

7.3.1.1. Automatic properties

Active Record automatically adds properties, with accessors, to model objects. It also adds methods
for simple CRUD database methods automatically. For example, in the view you just wrote, the view
accesses the name property in trail, though the root model was empty:

 class Trail < ActiveRecord::Base
 end

7.3.1.2. Association management

Rails uses methods to add methods that manage associations, automatically. You saw this example
where a location has many trails:

 class Location < ActiveRecord::Base
 has_many :trails
 end

As you have seen, has_many is a method, and :trails is a symbol, in this case, for the Ruby class
trails.

7.3.1.3. Composition

You can use Active Record to compose objects from multiple tables, like this:

 class Location < ActiveRecord::Base
 composed_of :street, :class_name => "Street",
 :mapping => %w(street name)
 end

7.3.1.4. Inheritance

Inheritance works, putting all subclasses in a single table with the parents:

 class Product < ActiveRecord::Base
 end

 class Bike < Product
 end

7.3.1.5. Other features

Of course, a full Active Record discussion is beyond the scope of this book, but these are some of the
other features you can use. You can build recursive relationships, like trees. You can use Active
Record to validate certain types of rules (for instance, there must be an existing location for a new
trail). Active Record can notify an email address when some significant event happens.

Active Record also has good plumbing. It supports transactions and error logging. You can look at the
metadata for the columns for a table, and support multiple database types. It also provides support
that makes it easy for you to build test fixtures. Active Record is a powerful framework and a credible
competitor to Java's ORM frameworks.

7.3.2. Action Pack

Action Pack deals with requests in two parts: the controller and the view. Requests come into Action
Pack through a dispatcher. The dispatcher routes the request to a controller, which invokes any
model logic and sends the request to a template-driven view system. The template engine fires the
Ruby template, which may execute Ruby code, and returns the resulting HTML to the browser. The
flow, shown in Figure 7-3, is reminiscent of Struts. There are a few differences. For example, the
controller has a group of actions, instead of encapsulating each action in a different class. If you
wanted to refactor, you'd let actions share methods.

Figure 7-3. Ruby on Rails is actually made up of several existing
frameworks, most notably Active Record and Action Pack

The Action Pack splits the request into a controller part and a view part. With Rails, a whole lot
happens automatically. In some ways, that's bad. You can't see all the methods or the attributes on
your class, and you don't even know what they are unless you look at the database. In other ways,
it's a highly productive way to work. You can change your model, schema, and view in many cases
just by adding columns to the schema. Let's take a fuller look at the capabilities of Action Pack.

7.3.2.1. Capabilities

Action Pack goes beyond simple request processing. It contains many capabilities that make it easier
to develop web applications. I'll touch on some of the major capabilities here.

As you've seen, Action Pack uses Ruby as the scripting language. Java developers frown on
embedding Java into a JSP, but I'd suggest that code will be in the view regardless of whether it's in
Ruby. Early on, some vocal zealots overreacted to the early proliferation of Java scriptlets and
decreed that MVC means "no code on the page." Many Ruby developers believe that code that is
concerned with the view (and only the view) does belong on the page. Burying Java code in a custom
tag only complicates and confuses the issue.

Ruby provides a far friendlier scripting language than JSTL tags, for example. Like servlets, Action
Pack lets you attach filters for things like authentication. Action Pack also handles some convenience
design elements, like automatically paginating your result sets and providing navigation links.

Action Pack also has some features that make it easier to build components, like helper classes (to
render a date, for example), a layout sharing feature (similar to Tiles, if you're familiar with Struts),
intracomponent communication, and pretty good Ajax integration. Like Struts and Spring, Action
Pack provides good support for building and validating forms.

You'll need to manage your solution, and Action Pack builds in some features to help. It enables
logging, caching at three levels (page, action, and fragment), and benchmarking support. Developers
can use integrated support for unit testing and debugging. It's not as powerful as Struts in some
ways, but it's much simpler, and highly customizable.

7.4. The Essence

So, Rails is not a toy, and it's not a gimmick. In my opinion, Rails represents a significant advance in
the state of the art. You've probably seen frameworks like this one solve the database-with-UI
problem in several different ways:

Object-oriented development frameworks are flexible and robust. They're usually at a lower
abstraction level, so they may not be as productive. You can use them to create flexible, robust,
and powerful applications, but you're going to pay for it with productivity.

Quick compromise frameworks trade conventional wisdom and sound design for implementation
speed. PHP and Visual Basic, for example, compromise by trading design wisdom (frameworks
should encourage separation of model and view logic) for development speed.

Code generation frameworks generate most of the code for such an application at compile time.
They trade the feedback cycle, easy maintenance, and often, customization, for speed.

Customization point frameworks take a few parameters, like database tables or models, and
build default implementations with a few well-defined anticipated customization points. These
frameworks break down when the inventor's imagination doesn't anticipate important hook
points.

Rails is none of these. It uses macros to help you quickly generate code based on the structure of the
database and a few well-placed macros. Since you effectively get generated code at runtime without
tangled source code, you don't have to maintain the added code. Rails avoids the trap of
customization points through Ruby's extensive hook points. You start with a clean design. You can
then extend it through subclassing, changing class definitions, or any of the other metaprogramming
techniques we discussed. You can even replace major Rails components like Active Record.

Rails accelerates your development through meaningful conventions and defaults. By guiding your
naming strategies in the database, Rails can save you lots of typing, and infer your intent by the
consistent names that you provide.

Rails keeps development convenient by providing the scripts and debugging tools that you need to do
the job right. You can run the server from a script, manage your active record classes and the
database tables behind them from a console, use generated test fixtures, or run performance tests
from generated scripts.

In Hackers and Painters (O'Reilly), Paul Graham suggested that great tools for good programmers
are built by programmers to solve their own problems. I think he's on to something. Maybe Rails is so
good because the authors built it to solve their own real-world problems first. As you've seen, Rails
was created to help build the popular Base Camp and Back Pack projects.

7.4.1. Is Rails the Killer App?

Is Rails the catalyst that will take us beyond Java? I'm not sure. Ruby does not have strong
commercial backing. There's no JVM implementation that will yet run Rails, and the existing project
has had some false starts. Ruby doesn't have the rich frameworks or name recognition of Python and
Java. But it is an important advancement in productivity, in an important niche. And unlike Python,
Groovy, and Lisp, Rails has generated an incredible buzz in the Java community right now.
Something like Rails may be what eventually replaces Java in this web development niche.

7.4.2. Or Is Metaprogramming the Killer Technique?

On another level, Rails may use a killer technique. Rails is one of the first commercially successful
demonstrations of metaprogramming in Ruby, in combination with meaningful defaults. Let's dive a
little deeper into metaprogramming.

In some ways, this programming technique reminds me of another buzzword, the domain specific
language (DSL) . A DSL solves a domain problem with a language whose syntax and keywords match
ideas in the domain. Look over Active Record again. That framework lets you express ideas about the
relationship between a database and a model, with keywords for ideas like inheritance, relationships,
and name mappings.

Rails may be the application that breaks the dam. Some of my mentors, like Stuart Halloway and
Glenn Vanderburg, speak often about the importance of these techniques. By showing what's possible
in Ruby, Rails may release a massive wave of metaprogramming frameworks custom built for a given
domain. If we do see such a wave, it likely won't be in Java, because reflection is just too painful, and
the wild mix of primitives and objects simply makes it too cumbersome.

7.4.3. Final Thoughts on Ruby and Rails

To me, Ruby smells and feels like a good language, and Rails feels special. That alone is not enough
to make it succeed. In this industry, individuals often make the difference, and the Davids (Thomas
and Hansson) may be special enough to take this language and framework into the mainstream.
Dave Thomas is a tireless promoter of all things pragmatic, and he seems to be focusing his
publishing business on Ruby. He's already locked down many of the top Ruby authors by treating
them well and providing a publishing experience that larger publishers cannot duplicate. Printed
books provide credibility and exposure that languages need to succeed. David Heinemeier Hansson
has a unique combination of a technical vision, a flair for understanding the end user, and a zest for
marketing that you rarely find in one person. Rails is at once theoretically sound enough to attract
hard-core web developers, and approachable enough to attract the masses.

This kind of leadership often makes the difference between a successful technology, and a good
technology that failed or never hit the mainstream. You don't often find technical passion and
marketing vision wrapped up in a single mind, but when you do, great things can happen. Bill Gates
built Microsoft from a BASIC shop operating out of a garage to the biggest software company in the
world. Steve Jobs made Apple cool, left, and came back to overhaul its image and bring it back. Java,
too, is full of technical visionaries. James Duncan Davidson fought the bureaucracy in Sun to break
servlets into the mainstream by open sourcing Tomcat, and then did it again with Ant.

Java seems to be losing the visionaries and technologists that I respect the most. Glenn Vanderburg
may pay some of his bills with Java, but his public persona now spends more time in the Smalltalk

(Seaside) and Ruby communities, because of his interest in metaprogramming. James Duncan
Davidson left the Java community years ago to focus on the Apple operating system, primarily on
Objective C. Many of those who remain seem to be here because Java pays the bills.

Ruby and Rails seem to be going in the other direction. Increasingly, Rails finds itself in the middle of
controversy. You've probably heard all the arguments:

Can it possibly scale?

Is it ready for the enterprise?

What will you do without all of those Java programmers and libraries?

Isn't Rails a toy?

Do you really want to run your business on a scripting language?

In the first half of 2005, I saw more than two dozen blogs attacking Rails. Some of the arguments are
valid. Java can do some things that Ruby can't, yet. Other arguments are born out of ignorance or
misconceptions. I'm intrigued, because more and more in the Java community are paying attention.
The Davids certainly get the Rails message out there. We're about to see whether that spotlight will
provide energy for growth, or a sweltering, destructive, withering heat.

Chapter 8. Continuation Servers
I rarely run rapids on blind faith. If there's any danger, I like to know exactly what the water and
rocks could do to me, and I need a plan to deal with any potential trouble. On this day, though the
consequences for failure were high, the move was easy. I still don't know exactly how it worked, but
I watched boater after boater thrust, brace, and arrive in the turbulent boil below The Elbow, a
slotted 20-foot drop that guidebooks describe as a deadly entrapment motel. Sure, I could tell you
that the move was called a slot move, and I'd need to apply my brace with perfect timing and angle
to avoid hitting the wall on the way down. I knew the timing, because I'd been told. It's just the
"why" of it that was a mystery. The experts tried to tell me why it worked. Most really didn't know.
No one could really tell me with any kind of certainty how the rocks were configured at the bottom.
They just knew that at this river level, the move worked. And so it did.

At different points in my programming life, a few tricks held the same kind of mystery for me:
recursion as a college student, my first glimpse at reflection shortly thereafter, and now, continuation
servers . In this chapter, you'll see continuations, and how they're used in a new class of application
servers.

8.1. The Problem

Web development, for all its usefulness, often happens with a curious inelegance. It's kind of like
making sausage. I like the result, but I don't want to see how it's made. Web programming in Java
was better than web programming in alternative languages. It gave you more structure with easier
maintenance and, often, better scalability than Visual Basic or Perl-based approaches, and an easier
programming model than C++. But for all the benefits, certain problems make it seem clunky and
awkward.

8.1.1. What You Want

Current web application servers might be powerful, but they're not convenient or natural. So, what is
convenient and natural? It shouldn't take too much effort to figure that out. What if your controllers
looked like this:

 if (logon.show() = = true) {
 mainPage.show();
 }

or this:

 if (shoppingCart.verify()) checkout.show();

That's better. What you really want to do is encapsulate the presentation of one or more web screens
in a method. Then, more sophisticated page flows would not be a problem. You could simply roll up
more and more pages into higher-level components. For example, you could take this code:

 checkoutAddress.showForm();
 if(checkoutAddress.getSeparateBilling) checkoutBilling.showForm();
 creditCardNumber.showForm();

and roll it up onto a method:

 public static void showCheckoutWizard() {
 checkoutAddress.showForm();

 if(checkoutAddress.getSeparateBilling) checkoutBilling.showForm();
 creditCardNumber.showForm();
 }

so the usage becomes:

 cart.showCheckoutWizard();

in its cleaner, refactored form. But you can't code that way, because your web server won't let you.
Creators of most web application servers will sell their soul to keep things stateless and scalable.

8.1.2. Statelessness

Think of living without any short-term memory. Normal conversations in day-to-day life would be
nearly impossible. Think of the logistics:

You'd have to write down every important phrase of every conversation as it occurred.

Then, when someone asked you a question, you'd have to look up the history of your
conversation with that person before you could answer.

To optimize things, you'd have to decide how much information you should keep close bysay, in
your briefcaseversus at home, in your filing cabinets.

When information got too old, you'd need to throw it out.

You'd have to maintain this whole system and revisit it when it didn't meet your needs.

That's the status quo for web developers. Your briefcase is the HTTP session, and your file cabinet at
home is the relational database. It's an insane proposition, but we deal with the tedium because the
Web is so important, and stateless solutions scale better. So, you willingly take a pretty large stride
away from the ideal solution. Still, each time you struggle with the awkward little edge cases, you ask
yourself if there's a better way, some kind of abstraction that fits the problem more neatly.

8.1.3. The Back Button

Saving state within simple conversations does not cover the whole problem. On the Web,
conversations are not linear. Users can and do change their minds, pressing the Back button. Some
assumptions that you've made as you continue to accumulate data may no longer apply.

Sometimes, you'll want to keep the user from going back, such as when she's made a purchase, or
done something to force a committed change in a relational database. In these cases, you can simply

punt and disable the Back button. Most often, you need to build special support for the Back button.
You may even have to remove data from a database that a user would not have seen yet. Worse,
many web designers simply don't solve the problem, and tell the user to expect unintuitive behavior.
You've taken one more step back, away from the ideal. Once again, this awkward Back button forces
you to deal with things on a case-by-case basis, and it just doesn't feel right.

8.1.4. Navigation

Web development in Java focuses an incredible amount of brain power around navigation and flow .
You'd think controlling flow from the server side would be natural, but servers can't update
clientsthey can only respond to requests. This simple little truism forces servers to handle hundreds
of little requests rather than a couple dozen application flows. It's also hard to synchronize the user
interface with the model. You'd like to use a simple method call that controls the user interface and
model, but you can't. The web server just doesn't work that way. And you're stepping back again,
and you've got that sinking suspicion that there's a cliff behind you somewhere.

8.1.5. Continuation Servers to the Rescue

A new class of web servers called continuation servers is starting to make some real noise. A
continuation server uses a programming construct called the continuation to keep enough
information about a request to be able to completely reconstruct the context. In technical terms, a
continuation saves the execution environment, including the call stack. In practical terms, using
continuations in a web server lets the server maintain context for you, freeing you to program in a
more natural way.

8.2. Continuations

You've probably played video games. Think of a continuation as a save game feature. As you're
playing your game, you save your current game. You can feel free to take your chances with the
monster control center. If you die, you simply restore the game. Said another way, a continuation is
a snapshot of a point in time. Continuations let you save the system's state (in the form of an
execution stack) in one place, and then return to that state on command.

Since I've already introduced Ruby's syntax, I'll first show you continuations in Ruby, where
continuation syntax is clean and precise. Then, I'll show you Seaside, the most popular continuation-
based server, in Smalltalk.

In Ruby, a code block defines the universe for the continuation. You'll use a continuation object to
hold the execution state, consisting of the execution stack. You'll later invoke a call method on the
continuation object to restore the system state, replacing the current execution state, including the
call stack, with the one in the continuation object. The call returns execution to the point immediately
after the code block. From Ruby's perspective, you're conceptually letting your execution state jump
back in time.

8.2.1. The Syntax

In Ruby, you get a continuation by calling the callcc method on Kernel and passing it a code block.
This block does nothing with the continuation but print its object identifier:

 irb(main):001:0> callcc {|continuation| puts continuation}
 #<Continuation:0x28c2dd8>

This passive little program does more than you think it does. The argument called continuation is a
powerful little gem that has the whole execution context, with variable values and the entire call
stack, at the time that you called callcc. Look at it as a saved game, or a frozen moment in time.
You can return to that moment in time. Specifically, Ruby will return to execute the statement
immediately after the continuation block by calling the continuation. Here's a trickier continuation
example:

 callcc do |continuation|
 for i in 1..10 do
 continuation.call if (i = = 7)
 puts i
 end
 puts 'This never happens.'

 end
 puts 'Good bye.'

And the output:

 >ruby forloop.rb
 1
 2
 3
 4
 5
 6
 Good bye.
 >

Once again, the whole callcc statement is a point in time. When i is 7, Ruby executes
continuation.call. That takes control to the point right after the continuation code block, so the last
two numbers don't get printed, and the puts 'This never happens.' in fact doesn't happen. The
callcc method loads the application stack in the continuation, abruptly sending execution to the line
of code immediately after the continuation code block, or puts 'Good bye.'. It moves execution
around a little bit like a goto.

Of course, you'd not usually use continuations to break out of a for loop. Continuations take on a
little more power when you pass them out of the code block, such as with a method call.

8.2.2. A More Powerful Example

Keep in mind that the continuation will return the call stack and local variables in the block to the way
they were when you made the continuation call. So, this program:

 1 def loop
 2 for i in 1..5 do
 3 puts i
 4 callcc {|continuation| return continuation} if i= =2
 5 end # cont.call returns here
 6 return nil
 7 end
 8
 9 puts "Before loop call"
 10 cont=loop()
 11 puts "After loop call"
 12 cont.call if cont
 13 puts "After continuation call"

gives you this result:

 >ruby continuation.rb
 Before loop call
 1
 2
 After loop call
 3
 4
 5
 After loop call
 After continuation call

So, we were able to exit the loop when something happened and return to the loop on command.
Since continuations are so alien, let's look at this example in a little more detail. It's not too bad to
read, once you know what's happening. Line 4 saves the game, putting it into a container. Line 12
restores the game. Let's break it down a little further, thinking like a Ruby interpreter:

Start on line 9, after the method declaration.

Execute line 9, printing the string Before loop call.

Execute line 10, calling the method called loop. Put line 10 on the call stack, so you'll remember
where to return after the method call.

Enter the method loop, specified in line 1.

Do the first pass through the for loop in lines 25. i has a value of 1. You'll print 1.

Start the second pass through the for loop. i now has a value of 2. You'll print 2.

At line 4, i is 2, so make the callcc call in three steps. First, make a copy of the call stack.
Second, make a copy of the instance variables (i is 2). Third, push the line after the continuation
block (line 5) onto the copy of the call stack, so now the continuation's copy of the stack has
(line 5, line 10). The call stack simply has (line 10).

At line 4, execute the return statement. You'll return the value of continuation to the line on
the top of the call stack. The call stack has line 10, so you'll return the value of continuation to
line 10. Set cont to the returned continuation. Recall the continuation has the current execution
contextthe call stack has (line 5, line 10), and variable i has a value of 2.

Execute line 11, printing the screen After call loop.

Execute line 12. Calling the continuation restores the execution state. Set the value of i to 2. Go
to the line number on the top of the call stack so that you'll remove it from the call stack. Now
the call stack has only line 10.

Execute the rest of the for loop, for i=3, 4, and 5.

You'll return nil. The call stack has 10 on it, so you'll return to line 10, and assign cont to nil.

Execute lines 13 and 15. Skip line 14 because cont is nil.

This continuation example shows you a few nice capabilities. You can take a snapshot of execution
state at some point in time, like we did within the for loop. You can save that execution state in an
object, as we did in the cont object. You can then return to the execution state stored in a
continuation object at any point.

8.2.3. Why Would You Use Them?

You might first think that continuations are the most useful when you want to break logical control
structures, as in implementing a break for our for loop, or processing exceptions. For the most part,
though, you want to think "suspend and resume." Continuations are marvelous in these kinds of
scenarios. Cooperative multitasking lets one program voluntarily relinquish control to another
application, and resume at a later date. This problem is remarkably easy to solve using continuations.
A subtler use involves communication. When you've got an application that spans multiple computers
with synchronous request/response communication, you often want to suspend control until the
remote system responds. When you need to scale this solution, suspending control while you wait
frees the system to handle other requests. The system can conveniently resume your application
without disruption when the remote system responds, simply by calling a continuation.

8.3. Continuation Servers

You can probably begin to see why continuations might be interesting for web servers. If you want to
look at a web application as one continuous application with suspend/resume breaks in between to
communicate with the user, it makes more sense. While waiting for user input in the form of an HTTP
request, the web server could simply store a state, stash the continuation object away in the HTTP
session, and instantly return to that frozen point in time when it's time to process another request.
Notice in Figure 8-1 that I've conveniently inverted the control. Instead of thinking of a web app as a
series of request/response pairs initiated by the user, I can think of a web app as a series of
response/request pairs controlled by the server. My server code gets much simpler.

Figure 8-1. Continuation servers invert control from client to server,
simplifying the world view, and the code, of the server

Your web application server is no longer composed of many different independent requests. The
server can conveniently look at the world as a bunch of simple end-to-end applications. It processes
individual requests by loading the state of each user when it's time to process another request, and
suspending the user's application when it's time to communicate with the user again. Voilá! Your
application can maintain state, and use it to seamlessly control application flow.

At a lower level, the continuation server becomes a collection of web applications with states frozen
at a point in time, in the form of continuations. Each user has a session. The continuation server
assigns an ID to each session, and organizes the continuations per session. After each request, the
continuation server takes a snapshot of the execution state with a continuation object, and associates
that continuation with the session. So, a server has multiple sessions, and each session has one or
more continuations representing frozen points in time, as shown in Figure 8-2. You can no longer see

individual HTTP requests, because they're buried in the application flow. As they should be!

Glenn Vanderburg: Continuation Servers

Author of Maximum Java 1.1

Glenn Vanderburg, a consultant from Dallas, has been writing Java programs since
before it was called Java, and was the author of one of the first advanced Java books.
Glenn has 19 years of software development experience, encompassing a wide variety
of languages, platforms, industries, and domains.

What's wrong
with current
web
development
models, like the
Servlet model?

GV: There are two big problems. I'll start with the most
obvious. When I did mainframe programming, I would build
a screen of information mixed with form fields, and push it
out to a 3270 terminal. The program wouldn't hear from the
terminal again until the user hit Enter. Sound familiar?

In the mainframe days, the program got to pause and wait
on the user's submission. Web programming is actually
worse, because in the interest of scaling to thousands of
users (as opposed to hundreds), the program is asked to
forget as much as possible between each interaction so that
each submission can stand alone. The stateless nature of
the web programming model forces programmers to
manually manipulate, store, and retrieve the program state
at every stage. Web frameworks help some, but
programmers still have to consider carefully how to deal
with each piece of state. One mistake and we get web
applications that are (at best) very confusing to use.

The other big deficiency of the web development model is
that our programs are held together with strings. The
navigational structure is defined by URLs we stick in links,
and those URLs have to also go in configuration files to tie
them to pieces of code that get invoked. User input comes
to us in form fields that are named with strings. State that
we store in the session is usually referenced by a key that is
a string. We have all of these strongly typed programming
languages and IDEs to go with them to make sure we don't
make silly errors like misspelling variable names, but that all

goes out the window with web apps, because the tools don't
help us to validate all of our uses of URL fragments, form
fields, etc. Also, those strings provide ways for crackers to
attack our applications. Here again, some frameworks help
us manage the tangled ball of strings, but most of them just
reduce the problem, they don't solve it.

But those
fundamental
problems come
straight from
HTTP and HTML,
not Java, right?

GV: True, but we shouldn't discount how much they hurt
our productivity. Those two things together make web
applications significantly more complex than more
traditional counterparts. And complexity costs usin time and
in quality. Managing the complexity of our systems is the
fundamental problem of software development.

What is a
continuation
server?

GV: First, I really don't like the term continuation server,
for two reasons. First, it obscures what these servers and
frameworks are all about. They serve web applications.
Frameworks like Seaside and Iowa employ continuations as
a way of hiding the stateless, back-and-forth nature of web
applications from the programmer. Continuations are used
deep inside the framework; developers don't deal with them
directly. The second reason I don't really like the term is
that continuations are just one of the techniques that
frameworks like Seaside use to provide a better web
development experience.

What these servers do is to use continuations (as well as
closures stored as callbacks, plus automatic tracking of
session state and caching of backtracking information) to
build high-level abstractions for web development,
transparently handling many of the messy details that web
developers are constantly wrestling with. Continuations,
closures, and the common features of dynamic languages
provide much more powerful tools for abstraction than Java
does.

What do they
bring to the
table?

GV: They simplify web development. And it's a radical
simplification: many of the most difficult issues of web
development, things that nearly all applications punt on
because they're too difficult, are handled automatically and
transparently so that they're built into your applications by
default. Seaside, for example, makes it easy to develop web
applications that work the way users expect: proper
handling of the Back button, proper session forking if the
user opens multiple windows or tabs, and no "accidental
double purchase" when backing up to a form result page.

In Seaside, web application code looks like the code you'd
write for a desktop application. Need to ask the user a
question? Call a dialog, wait for it to return, and act on the
result. Of course, within the scope of that dialog call, a lot of
things happen: a continuation is saved, a dialog page is sent
to the browser, the user considers the question (possibly for

a long time) and answers, and when Seaside receives the
response it looks up the saved continuation, calls itand the
dialog call returns, just as if the thread had been waiting on
the response the whole time. And, in a very lightweight
sense, it actually was.

Figure 8-2. A continuation server stores snapshots that have the state of
web applications in progress

8.3.1. Advantages and Disadvantages

You've seen the primary benefit: you can look at a web application as one big piece, instead of
coordinating lots of little requests. That's incredibly powerful. Continuation servers have some other
capabilities as well. The Back button problem becomes much easier to solve, because if the Back
button is not disabled, you can just revert the application state to the last continuation, or any
previous continuation. To disable the Back button, you simply tell the browser and delete past
continuations. Threading also becomes trivial, because each thread can work on a private
continuation, each with an application's own resources. You don't have to worry about serializing
access to a shared session.

Continuation servers work best for applications that have complex state management issues and
sophisticated control flows between pages. The continuation server simplifies navigation dramatically
by letting you maintain application state between pages.

Continuation servers do have a few problems:

The servers typically attach identifiers to URLs, and some don't like ugly URLs (though web sites
like Amazon.com use them).

You must guarantee session affinity , meaning that after an initial request in a user's session,
the same machine must serve the user for every subsequent request. You could overcome this
problem with a distributed continuation cache, but just as distributed HTTP sessions are a
problem, distributing a continuation cache may not be completely practical.

Continuations are more expensive than other session management techniques. I've seen little
practical evidence that this has been a problem in production deployments. Still, some believe
this approach will not scale as well as traditional web apps. Research on partial continuations
will probably solve this problem eventually.

To me, the powerful advantages dwarf the potential disadvantages. It's possible, even likely, that a
continuation server in some language will garner enough popularity to serve as a catalyst. Respected
programmers Dave Thomas, Glenn Vanderburg, and David Heinemeier Hansson have all pointed to
the continuation server as an important technology to watch. Hackers and Painters author, Paul
Graham, used continuations in web applications with devastating effect at Viaweb, on an application
that eventually became Yahoo! Store. He's also a proponent of continuation servers. Let's see an
example of the most popular web framework supporting continuations.

8.4. Seaside

Seaside is a highly productive web development framework written in Smalltalk. Avi Bryant initially
developed Seaside in Ruby, in a framework called Iowa. Early Ruby continuations had a few
problems, so the original author of Seaside moved to Smalltalk. Since then, he's been improving the
framework and using it to deliver commercial applications. Seaside has a few defining characteristics:

Seaside renders HTML programmatically. Most Java frameworks render HTML with templates. I
don't know enough to advocate one method over another, but it's certainly different, and it
works well in Seaside's model.

Seaside has a model for components. A Seaside component manages user interface state and
renders itself in HTML. Seaside components are highly reusable, and they let you think in
increments smaller than a page.

Seaside makes it easy to manage a link. You can specify a link with a code block, so links don't
get out of sync. The framework manages them for you.

Seaside is modal. This is the author's word for a continuation server approach. Seaside lets you
express one web page, or multipage web flows, in a single method.

Seaside's debugging is the best I've ever seen. From within the browser, you can open a web-
based Smalltalk browser, complete with code. You can also inspect the values of all the objects
in the application.

Of course, you also get the advantages of using a highly dynamic language. You get a rapid feedback
loop, interactive interpretation as needed, and full access to Smalltalk's excellent environments. I
used the Squeak IDE for examples in this chapter. Squeak is a dialect of Smalltalk popularized by
Disney.

8.4.1. A Little Smalltalk Syntax

Before we get too far, you should know a little Smalltalk syntax. Don't worry. I'm not saying that
Smalltalk is the next great language; I just want you to see the power of the best continuations-
based server. If you want to follow along, download the Squeak IDE from
http://www.squeak.org/download/index.html. Start Squeak, click on Tools, and drag a workspace
and transcript window onto your desktop. Use your workspace window for input, and look to the
transcript window for output.

Smalltalk syntax is quite simple. Type an object name first, the method second, and any parameters
third. Let's evaluate a few statements. In your workspace, type:

http://www.squeak.org/download/index.html

 Transcript show: 'Hello'

Highlight it, right-click, and then select do it from the menu. (You can also use Alt-D before you
press Enter, to evaluate the line.) You should see the word Hello in your Transcript window.
transcript is the object, show: is the method (Smalltalk calls methods messages), and 'Hello' is a
parameter.

Like Ruby, Smalltalk supports code blocks, though the syntax is a little different. Evaluate this:

 1 to: 5 do: [:i | Transcript show: i]

First, you see that [and] mark the beginning and end of the code block. i is a parameter for the
code block. In the declaration, you'll precede it with a colon.

Let's try multiple statements. Smalltalk terminates statements with a period. Logic uses messages
and code blocks :

 age := 4.
 (age > 16)
 ifFalse: [Transcript show: 'Youngster.']
 ifTrue: [Transcript show: 'Old timer.']

This bit of code sets age to 4 with the := message. Then, it sends the ifFalse: method to the (age >
16) expression. The first code block is a parameter for ifFalse, and gets called if the expression
evaluates to false.

You can see the influence of the elegance of Smalltalk in Java, and other languages, too. Java's
garbage collection, design patterns, and collections all share Smalltalk's influence. Consider
Hibernate's use of message chaining . If a method doesn't have a return value, it simply returns
itself, enabling tighter code like this:

 cfg.add("pet.hbm")
 .add("vet.hbm")
 .add("pet.hbm");

Many ideas from Eclipse have roots in IBM's VisualAge for Java , which first shared IDE code and a
virtual machine with a Smalltalk product. Smalltalk syntax is wonderfully consistent.

8.4.2. A Seaside Overview

Seaside is a Smalltalk framework and a server. Remember, a continuation server is different from
other web servers, so Seaside must run in its own environment. In Squeak, you'll left-click on the
desktop to give you a menu (called the world menu). Then, you'll select Open... SqueakMap
Package Loader. Use it to install four packages: DynamicBindings, KomServices, KomHttpServer, and
Seaside, in that order. Now, your Smalltalk image has Seaside. To see it, fire up the server. In
Squeak, you'll open a workspace and evaluate:

 WAKom startOn: 9090

WAKom is the name of the server. starton: is a method that tells the server to start on a supplied port,
9090 in this case. In some ways, WAKom is like Tomcat, or any other web application server. You can
configure it by pointing your browser to:

 http://localhost:9090/seaside/config

You'll see Seaside's configuration screen. Some of the items should look familiar to you. You'll see a
list of registered applications, and some configuration options. Later, it will become clear that Seaside
is more than Tomcat in Java.

8.5. A Seaside Example

Under the /seaside heading, notice the list of apps. One of the examples that you see in the
configuration screen is store. Click on it. You'll see SushiNet , one of the more bizarre examples for
web frameworks. In the search window, type the word Tuna. Click on two different tunas to add them
to your cart. Now click the Back button and notice that you go back to a previous page, just the way
it was. Add another tuna to your cart, and you'll notice that the old tuna item is still in your cart. So,
you can override the Back button behavior, as needed.

8.5.1. Components

Notice the three boxes across the top of the screen, in Figure 8-3. Seaside is a component-based
architecture . Each component has independent rendering, and each has a model behind it.

Figure 8-3. This Seaside application has three major components, each
with independent rendering and business logic

This component-oriented approach often makes it much easier to design and refactor complex web
screens. For example, here's the rendering for the shopping cart:

 html divNamed: 'cart' with: [
 html small: [html bold: 'Your cart:'].
 html table: [
 cart countsAndItems do:
 [:assoc | self renderRowForCount:
 assoc key of: assoc value on: html].
 html spacerRow.
 html
 tableRowWith: ''

 with: ''
 with: [html bold: cart totalPrice printStringAsCents] .
]

Notice that Seaside components have code that generates HTML. Java people don't tend to like this
approach either, but it's very productive in Seaside. The code in bold generates the table. First, you
see the table message passed to the html object. This will generate table tags around the code
block. Next, you'll see a loop that processes the items in the cart, a spacer row, and a row with the
totals.

8.5.2. Complex Control Flows

For this application, the most complex series of windows is the checkout. Think of how a traditional
stateful application would manage the flow of control. Try out the checkout in the application and see
how it works. Add a few pieces of sushi to your cart and click on Checkout. This piece of SushiNet will
walk you through a few major steps:

You'll verify the contents of your cart. If you like your order, you can click "Proceed with
checkout." Otherwise, you'll click "Modify my order." So the user makes a decision, and flow
changes based on the user's input.

You'll specify a shipping address. You can then choose whether to use this address for your
billing address. Again, this decision impacts the flow of the application. If you don't want to use
the same address for shipping and billing, SushiNet will reuse the component that renders the
shipping address for the billing addresses. Nice.

You'll enter your credit card information. If it doesn't verify, you'll go back to the same screen.
If it does verify, you'll get a success screen.

Users can click the Back button at any time. If the user hits the Back button after his order is
submitted, he'll get a message that the page has expired.

So, the flow looks something like Figure 8-4. It's not that complicated. You've got four decisions, and
based on the decisions, you route the user to the appropriate place.

If you implemented this flow with Java servlets, you'd need to process four or more independent
requests, as in Figure 8-5. Each one would have to first load the current state at the beginning of a
request, and store the current state at the end of the request. The web flow would be based on the
user's

Figure 8-4. This flow has three different user decisions, and would
complicate traditional web apps

decisions, so you'd have several forwards. Changes in flow would lead to potentially major
refactoring.

Figure 8-5. Java servlets view the checkout problem as four or more
independent requests

With a continuations approach, the logic becomes almost trivial, as you see in Figure 8-6. You can
simply look at the flow as one simple component, called Checkout. That component can handle flows
involving more than one component, or more than one page! The code looks seductively simple.

Figure 8-6. With Seaside and other continuation servers, the flow becomes
a single, integrated method

8.5.2.1. Debugging and browsing

Since you have a frozen continuation, it's easy for Seaside to provide a complete snapshot of the
execution state. Seaside goes a step further and gives you access to a web-enabled browser. At the
bottom of the screen, you should see a few links. Seaside creates them by default for all the
applications. Notice that you can do profiling or check memory usage, but I've got something else in
mind. Click on the link called Toggle Halos.

You should see a frame with three icons appear around each component. These icons give you a full
code browser, an inspector, and a cascading style sheet editor. Click on the browser icon (the first
one). Notice that you can see exactly where the execution state is frozen. Next, click on (from left to
right) Seaside-Examples-Store, WAStoreTask, and Go. You see the code for the store task.

You'll see the code that implements the cart in Figure 8-4:

 go
 | shipping billing creditCard |
 cart _ WAStoreCart new.
 self isolate:
 [[self fillCart.
 self confirmContentsOfCart]
 whileFalse].

 self isolate:
 [shipping <- self getShippingAddress.
 billing <- (self useAsBillingAddress: shipping)
 ifFalse: [self getBillingAddress]
 ifTrue: [shipping].
 creditCard <- self getPaymentInfo.
 self shipTo: shipping billTo: billing payWith: creditCard] .

 self displayConfirmation.

8.5.2.2. Tasks

In Seaside, tasks handle business logic. Let's zero in on the code in bold. It handles everything after
the cart verification. The self isolate method takes a code block and makes sure everything in the
block is an atomic operation, or a transaction. The next line of code is interesting:

 [shipping <- self getShippingAddress.

This statement actually presents the getShippingAddress web page to the user, and puts the
resulting address into the shipping address. You can see how the framework inverts control. Now,
instead of the browser being in control, Seaside lets you direct traffic from the server. The next three
lines show a decision:

 billing <- (self useAsBillingAddress: shipping)
 ifFalse: [self getBillingAddress]
 ifTrue: [shipping].

The useAsBillingAddress method presents the decision screen. The expression (self
useAsBillingAddress: shipping) returns a Boolean, and will trigger either the ifFalse: or ifTrue:
methods. ifFalse: will actually trigger the code block [self getBillingAddress], which sends yet
another web page to the user.

Though the Smalltalk syntax may seem awkward, if you're a Struts or Servlet developer, you're
probably smiling right now. This approach frees you to work at higher abstractions. You can roll up
several components, or pages, into a single task, and the continuation server keeps the management
simple. State and navigation issues just melt away.

8.6. So What?

I'm pretty sure that continuation servers will prove to be important. I'm equally sure that Seaside is
not a killer app that will suddenly spring Smalltalk into the mainstream. Smalltalk has 30 years of
reputation to overcome. In this time, Smalltalk has rarely been more than an academic language with
small forays into commercial development. The Smalltalk community is smart and has technical
vision, but I've not yet seen the marketing leadership that will break Smalltalk into the mainstream.
After 30 years, that's not likely to change.

Continuation servers do have some minor hurdles to overcome:

So far, the servers require ugly, temporary URLs, because each continuation must have a
unique identifier. Users don't like uglier URLs. Like Amazon, Seaside works around this limitation
by providing a meaningful piece of the URL, followed by the continuation ID.

Continuation servers will not scale as well, because saving continuations is stateful and
expensive, though if you think about it, the problem is not quite as bad as it could be. Most of
the continuations in a server will have common code for the framework. Only the last part of
the call stack should be different from one continuation to the next. Partial continuations should
provide a good performance boost.

So far, the best servers are on academic languages. Lisp, Smalltalk, and Ruby may be holding
them back. And of course, continuation servers may help break one of those languages closer to
the mainstream.

Still, in the end, continuation servers will play a role, because they're a much more natural and
powerful abstraction, and they represent a much more natural way to program. Systems continually
get more processing power, and both short-term and long-term storage get cheaper. Productivity
eventually trumps all else. In the end, continuation servers are fast enough. Higher abstractions
make us more productive. If you held a gun to my head and forced me to make a prediction, I'd
guess that continuation servers will evolve and break into the mainstream, but not on Java, or a
derivative like C#. Such a language would have to simulate continuations. The concept is cleanest
and purest when it is implemented on a more dynamic, higher-level language. I'd guess that
continuation servers, in a language like Python or Ruby, may well prove to provide the foundation for
all web application servers, in some not-too-distant future.

Chapter 9. Contenders
It was my first Class IV river, and I approached the infamous Five Falls. In the typically tame
Ouachita mountain range, the CassatotIndian for Skull Crusherwas serious. In all honesty, I wasn't
ready for the river. Unseen gremlins sent massive jets and waves of water shooting through the
waterfalls and toyed with me, smashing my boat against rocks, turning me around, and flipping me
over at will. Yet, my guide seemed in complete harmony with every molecule of the river. He
harnessed all the power the rapids threw at him, and danced his boat across the many chutes,
waves, and even face of the waterfall known as the Washing Machine.

Throughout the run, every inch of my body hurt as I learned to push off my foot braces to integrate
the rarely used leg muscles into every stroke, because on this particular river, I needed all the
leverage I could get. At the takeout, exhausted, I slithered out of my boat. My guide hobbled out of
his boat, and I couldn't speak. Both of his legs were amputated above his knees. I was stunned. He
was able to do everything on the river without the added balance and power that two legs would
have given him. Those few seconds completely changed my perception about what was possible in a
kayak. More than any other, that moment shaped my paddling. Since I know how far I can come,
I've always been looking for ways to use the boat, paddle, body, and river to do more work with less
effort.

If nothing else, this book is about changing perceptions. Sure, the Java libraries have legslibraries
and community. But the community can be dysfunctional at times, and the culture is leading to
increasingly complex libraries. The JCP seems to be getting in the way, valuing politics and
committees more than good libraries hardened in the crucible of experience. There's something to be
said for a fresh start on a stronger foundation.

So, don't let Java's built-in advantages always lead you to sell the alternatives short. They've come a
long way. In this chapter, I'll touch on the major contenders and some also-rans.

9.1. The Primary Contenders

So far, I've taken an in-depth look at one language and two application development models. I just
don't have the time or will to do a comprehensive treatment of languages, but this book wouldn't be
complete without at least mentioning some of the major alternatives. I'll take a longer look at what I
see as the major alternatives. Then, I'll mention a few alternatives that I see as less likely.

I've got a few things working against me. I like short books, so there's not enough time to do a
remotely comprehensive treatment. Even if I were inclined to do so, my practical experience is
limited to some Ruby , a little Smalltalk, and a few lines of Lisp in college. I'm just one Java
developer, who's prejudging the overall landscape based on my limited experience. In my favor are
my broad and diverse network, an excellent set of reviewers, good access to corporate opinions at
major vendors and customers, and a strong track record of predicting successful technologies.

Instead of picking a winner, I'd just like to lay out the factors in favor of a language, and those
against. In such a short treatment of this problem, I'm not going to be able to do any remotely
complete treatments of any given language, but based on Java's history and this community, I
should be able to give you a good sense of what's important.

Steve Yegge: Python, Ruby, and Groovy

Language expert and creator of Wyvern

Steve Yegge, a graduate of the University of Washington, spent five years as an
Assembly-language programmer at Geoworks and more than six years as a software
development manager at Amazon.com. Steve somehow managed to find time to design,
implement, and maintain a massive multiplayer game called Wyvern
(http://www.cabochon.com/), with a half-million lines of Java and Python code.

http://www.cabochon.com/

What do you
think of Ruby
and Python?

SY: They're both amazingly expressive, easy to learn, and easy
to read. They're good languages, and they have a lot in
common. Many people have pointed out that they appear to be
converging, feature-wise.

They also have similar problems. Performance is a big oneboth
of them are too slow, and need compilers and/or VMs. They
both also have legacy design decisions they're trying to fix.
Ruby 's trying to back out of some of its Perl-isms, and
Python's still fixing its warts.

What holds
you back in
Python and
Ruby?

SY: Python is wonderfully expressive, but it's also quite
prescriptive. Developers hate being told how to do things. For
example, there's no reasonable way to do an if/then/else on a
single line. Each one of those little things is a rock in your shoe.

For both languages, my biggest concern is concurrency support
. After you see what Erlang and Gambit Scheme can do, you
quickly conclude that the next big language has to have
something like it. But the world's not going to wait around for a
perfect solution. We're at a tipping point, and sometime in the
next year or two, I think one language will rally enough support
to be a phenomenon as big as C++, Perl, and Java were,
perfect or not. My money's on Ruby at the moment.

Will Groovy
be the next
great
language?

SY: I don't think so. I was hoping it'd be cool, since among the
10 or 15 halfway-decent JVM languages out there, Groovy
seems to have the most hype, and that's important.
Technically, it's lacking.

At first glance, Groovy appears to be doing a lot of cool things
and making good design decisions. Sadly, it doesn't survive the
second glance. The language is a sort of kitchen sink for
features, with no coherent vision emerging. The design is more
focused on shortcuts than on general expressiveness. There
are some good features, but not enough of them.

Except for the marketing, Groovy's execution has been
particularly bad. It's still among the slowest JVM languages,
and every beta has had obvious showstopper bugs. There's no
real documentation, and the language only just got a parser
generator after two years. It feels amateurish.

9.1.1. Ruby

Of all the languages generating a buzz in the Java space, Ruby comes up the most frequently. The
Java community invests passion in equal parts venom and bliss into the raging Java versus Ruby on
Rails debate. This fervor interests me because Ruby, and Rails, get plenty of exposure within the Java
community where more mature object-oriented languages like Python and Smalltalk do not.

Exposure can translate to more exposure and more users. Developed in 1995, Ruby is relatively
mature in calendar years, but it gained popularity first in Japan, and the worldwide community is just
now starting to grow. Among the most promising contenders, Ruby has the interesting combination
of being relatively mature and simultaneously undiscovered by the Java masses.

9.1.1.1. In favor

While Ruby doesn't have the support of something like Java, it does have pretty good commercial
backing in Japan. It's got a healthy community, and awareness in the Java community. It's also got a
good virtual machine. But the beauty of Ruby is primarily in the language. Ruby also tends to solve a
few important problems very well:

Ruby makes metaprogramming feel natural. Reflection is easy, and you can move and change
methods quickly. Ruby's modules let you mix in important capabilities without changing any
source code.

Rails, the flagship Ruby framework, makes it easy to build web sites based on relational
databases. In the past decade, no other application has been more important.

Web-based development with other innovative approaches is easy. Ruby has at least three
exploratory projects related to continuation servers.

Ruby is extremely dynamic and extensible. You can literally hook into Ruby everywhere. You can
replace the methods of a whole class or a single instance at runtime. Ruby developers often introduce
methods that themselves introduce other methods and behavior. The net effect is a single hook that
lets you add significant capabilities to a class or instance with very little syntax.

In my opinion, metaprogramming in some form will increasingly define modern programming. That's
already happening in Java, with persistence engines like Hibernate, programming hooks like
interceptors, programming models like aspect-oriented programming, and language extensions like
annotations. To do metaprogramming effectively, you need to be able to extend a language to fit
seamlessly within a domain. Languages that make this easy will move faster than languages that
don't. Java limits the ways that you can extend a class, it makes you work hard to do reflection, and
it makes you use unnatural techniques like byte code enhancement, code generation, and dynamic
proxies. On the other hand, Ruby handles metaprogramming with ease. For example, the Rails
framework, Active Record, defines belongs_to and has_many methods describing database
relationships. Each method adds additional Ruby behavior and attributes to the decorated class. At
the most basic level, the Ruby language itself uses metaprogramming to describe attributes.
attr_accessor :name is shorthand for this:

 def name=(value)
 @name=value
 end

 def name
 @name
 end

You get a syntax with less repetition, and the language developers did not have to work very hard to
give it to you. Of course, Java also does metaprogramming. It just doesn't do it very well.

Ruby interests me for several other reasons, too. Ruby is a chameleon with enough theoretical
headroom to grow beyond Rails with ease, and a simple enough syntax to excite beginners and
educators. Ruby will let you do functional programming, or play with continuations. You can write full
web-based applications, or slip into scripting for rudimentary text processing. Ruby gives you a
language that's theoretically pure, and practical.

Ruby might not have the extensive libraries of Java, but it's closing the gap rapidly. It's also worth
mentioning that Ruby is doing so with a fraction of the developers, because Ruby is just so
productive. As Java moves more and more toward metaprogramming, this productivity gap will
increase.

9.1.1.2. Against

The biggest strike against Ruby right now is the lack of a strong project that lets Ruby run on the JVM.
The JRuby project's vision is greater than a simple port to the JVM. So far, the project has had
several stops and starts. It's not far enough along to, for example, run Ruby on Rails. Most in the
Ruby community don't see the political importance of a language that runs on the JVM, but interest
and participation in the project may be picking up. JRuby seeks to let you use Java classes using Ruby
idioms. For example, you'll be able to use Ruby code blocks with Java collections. If Microsoft is able
to woo the Ruby founders over to .NET's CLR, or if the JRuby project starts picking up momentum,
you'll see one of the biggest strikes against Ruby go away. Still, the lack of a credible version that
runs on a widely deployed virtual machine, be it Microsoft or Java, is a major strike against Ruby. To
be fair, the JRuby project in the months just before publication has made incredible strides. It now
passes over 90% of the test cases for the basic Ruby platform. When it reaches Version 1.0 and can
run Ruby on Rails suitably, Ruby will become a much stronger contender. Any language that
embraces and extends Java will be in a much stronger political position.

Also, Ruby does not have the excellent commercial backing of some of the other alternatives. For
example, Google uses Python extensively. Though Ruby is gaining traction in Japan, and also at
places like Amazon.com, it's still a relative unknown. You can't yet hire Ruby programmers in
numbers, and your training options are limited. If the Rails project hits a critical mass, that will
change in a hurry.

A Word About Lisp

Lisp addicts might wonder why their beloved language is not higher on my list. In fact,
Lisp has many of the characteristic of Ruby, with superior metaprogramming, a more
extensive language, a good functional model, readable macros, and a clean and
consistent interface. Lisp has never had the all-important marketing visionary, a catalyst,
or the approachability of Ruby. It's also got history and a reputation to overcome. Ruby
also has some other telling advantages: better regular expressions, parallel assignments
(x, y = y+1, x+1), effective modules, better encapsulation (like private or protected
methods), and standardized threads. True, many of these things have been done in Lisp,
but Ruby provides a clean, standard solution in the language.

9.1.1.3. Overall

Major factors, including a comparative lack of libraries and the absence of a credible JVM
implementation, argue against Ruby, but it's still a primary contender because of a possible catalyst
in Rails, economic justification in productivity, and the database and web libraries that make it
practical for a good set of problems in the enterprise. The language is theoretically pure and strong
enough to last. You can integrate Java applications through web services and communication
protocols, or C applications through a native interface. It has a virtual machine, and dialects for all
major operating systems. If something challenges Java soon, I think Ruby is the most likely
candidate.

9.1.2. Python

If ever you are looking for a test case for the requirement of a catalyst, look no further than Python.
It has just about everything we're looking fora good metamodel, a clean and readable syntax,
dynamic typing, flexibility, and power. Python is also pretty natural for Java programmers. Here's a
Python example from python.org:

 def invert(table):
 index = { } # empty dictionary
 for key in table.keys():
 value = table[key]
 if not index.has_key(value):
 index[value] = [] # empty list
 index[value].append(key)
 return index

You'll notice a couple of striking things about Python right off the bat. First, unlike Java, you don't
have to have a full class definition. Python is equally at home as a procedural language or an object-

oriented one. Second, you don't see any syntax to end a block of code because whitespace matters.
Indentation determines code grouping. Like many great programming languages, Python holds
appeal for both beginners and advanced programmers. There's much to like.

9.1.2.1. In favor

Python has many of the same advantages as Ruby. It's dynamically typed, object-oriented, concise,
and friendlier to applications than Java. It's easy to read, very consistent, and free. You can find
interesting free libraries to do everything from web development to ORM. Python has the advantages
of a productive applications language, and relatively numerous libraries. You can run it on Java's
virtual machine in an environment called Jython.

Python has an extensive vibrant community. You can find support, hire developers, and get
consulting. The open source libraries are numerous, but nowhere near the extent of Java's. Though
overall growth has been sporadic, Python has gained limited traction in spots, in flagship accounts
like Google.

9.1.2.2. Against

While Python has a few good web development frameworks, it doesn't yet have a Java-killer like
Rails. I'm already seeing a few Rails clones emerge, like Subway (http://subway.python-
hosting.com/), but none of them has the marketing punch behind Ruby on Rails. In fact, the primary
strike against Python is the lack of a catalyst of any kind. The Python community is full of technical
vision, but the marketing vision has so far been lacking.

Several influential Python bloggers have recognized the Ruby buzz in the Java community, and they
make the point that Python doesn't yet have that compelling framework that might convert a Java
developer. Java consultant Stuart Halloway moved to Python for better productivity, but he believes
the Python community does not actively court the Java community. Many of them believe that Java is
irrelevant.

A few minor technical details hold back Python. Some don't like the idea that whitespace is
significant. That turns off some Java developers who like to condense repetitive Java constructs, such
as default constructors or accessors, like this:

 public String getName() {return name;}
 public void setName(String name) {this.name=name;}

Overzealous enforcement of anything leads to problems with programmers, and whitespace is no
different. When you dogmatically enforce whitespace, you also limit your expressiveness. For
example, you might type:

 if (character = = eol) { line=file.next(); count ++; }

http://subway.python-

because it expresses a single coherent thought as a sentence. Whitespace alone isn't the problem;
it's the dogmatic enforcement of endless subjects like this one that rub some developers the wrong
way. The overriding Python philosophy says there should be one obvious way to do something, and
the language designers often go to great lengths to maintain those conventions, sometimes
sacrificing flexibility to do so. The hope is that consistency will override any disadvantages. In the
past, these kinds of attitudes have limited the flexibility of a language. Unless the language designers
have perfect imagination, it's often best to let a language evolve in several different ways at once.
The Python leadership does have a reputation as being somewhat frosty and dogmatic on these types
of issues.

You can do metaprogramming in Python, with method or function pointers and using reflection, as
well as other techniques. Those that have experience in both Python and Ruby seem to think that
metaprogramming is more natural in Ruby. You can work with objects or not, which is a double-
edged sword. Some (like the founder of Ruby) say Python might not be object-oriented enough.

9.1.2.3. Overall

Python has most of the tangible benefits you'd expect in a dynamic language, but it lacks the
intangibles. New languages either pop when they're discovered, or they don't pop at all. Python never
popped at all. Python is a nonentity in the Java community. That's a shame, because Jython makes it
a viable political option when languages like Ruby aren't even considered. Python proponents looking
to displace Java can argue that using Python amounts to a different syntax and some different
libraries, and the rest of the infrastructure remains unchanged, but the often negative Java sentiment
within the Python community works against Jython. Most Python developers don't understand that
Java, too, is a powerful language, based on its extensive community, which leads to more libraries
and massive commercial support.

With the emergence of some kind of killer app, Python could well emerge as a Java killer. Without it,
Java developers think they already know what they need to know about Python, so there's no real
reason to give it a second look.

9.1.3. Groovy

Groovy is a new dynamic scripting language. It's built to run in the JVM. It's backed with the JCP with
a JSR. It's still young, and it seems to be having problems getting to a solid, stable release.

Groovy is particularly interesting because it has none of the fundamental problems with marketing
and acceptance in the Java community that the other languages have. Groovy's problem has been
the execution: the speed and the implementation. So far, Groovy has lacked the sound, technical
underpinnings of the other languages in this chapter, as well as a visionary to both innovate and see
inventions through to a sound, stable conclusion.

9.1.3.1. In favor

I want to like Groovy. I really do. It has the marketing support, hype, and attention in the Java

community. It runs in the virtual machine, ties in well to the Java language, and has political backing
from Sun. James Strachan, a hero of sorts within the Java community, is the primary father, bringing
an instant fanfare and credibility to the project. With a formal JSR, it's usually easier to introduce
Groovy into a company as a scripting language than some other dynamic language. The syntax,
though inconsistent, is terse, and the Groovy JSR supports many of the important features that
dynamic languages should, at least in letter.

9.1.3.2. Against

The problem is that Groovy is just so hard to like. To this point, Groovy has been quirky,
unpredictable, and full of bugs. Many features, introduced in very early versions of Groovy, remain
uncompleted, and early shortcuts led to an unsound grammar. Early versions of Groovy used a hand-
generated parser rather than a parser generator, such as ANTLR. After the syntax was belatedly
retrofitted to ANTLR, the syntax was set in many ways, and the grammar was unwieldy.

Today, the fledgling language continues to struggle. People leading the project seem to be more
interested with introducing new ideas than finishing old ones. Blogger Mike Spille was a Groovy
insider who worked on the language, and later abandoned it due to significant problems with the
language, technical vision, and stability. He pointed out major holes in the language and syntax
around closures (a kind of code block) here:
http://www.pyrasun.com/mike/mt/archives/2005/01/13/21.56.41/index.html. You can also see a
later heated debate between two of the early Groovy contributors on TheServerSide.com here:
http://www.theserverside.com/news/thread.tss?thread_id=33157.

It seems like each major beta release breaks existing Groovy applications. Worse, the first major
Groovy specification request broke existing applications. That's not good. Many of the core Groovy
developers also seem to be leaving the original JSR team.

9.1.3.3. Overall

With a formal JSR backing it, Groovy is politically in a good place to succeed. After all, you could
argue that EJB succeeded based on the reputations of the supporters, despite significant technical
limitations. Groovy has some energy and hype, but a few false starts seem to be stalling the
momentum. I'll undoubtedly get flamed for saying so, but right now, Groovy is much too young and
too unstable to deserve serious consideration for any production application, let alone
standardization.

That Groovy is buggy and unstable as a beta doesn't trouble me so much, though you'd expect core
language features and syntax to be set very early, but basic features like closures don't work. I'm
most concerned with the overall process. The community process standardized the Groovy language
before it was mature, or even stabilized. To move forward in a productive way, Groovy must first
solidify the major feature set, then recover some lost momentum, and then prove itself in some
commercial niche before it will be considered as a significant candidate to replace Java anywhere.
Until then, it's merely an experiment. I hope it succeeds, but I don't think it will. It simply has too far
to go.

9.1.4. .NET

http://www.pyrasun.com/mike/mt/archives/2005/01/13/21.56.41/index.html
http://www.theserverside.com/news/thread.tss?thread_id=33157

.NET is the only nonprogramming language that I've mentioned as a credible successor to Java. .NET
is Microsoft's latest development platform, deserving special mention because it has a massive
library, and a language-agnostic engine called the Common Language Runtime (CLR) that sits on top.
If Microsoft makes .NET successful, and truly language-neutral, it could serve as a launching pad of
sorts for many languages. Right now, like the JVM, the CLR has some technical issues to overcome
before it can fully support dynamic languages like Ruby, but Microsoft is committed to doing so.

9.1.4.1. Language options

At some level, the programming libraries underneath .NET are far more important than the language.
Their usage models frequently dictate application structure, often more than the choice of
programming language. Still, Microsoft offers several programming languages, targeted at vastly
different communities.

9.1.4.2. Visual Basic for .NET

Microsoft has a real problem on its hands with Visual Basic programmers. It seems many of those
hundreds of thousands of active developers just don't like .NET, and they're looking for alternatives.
The .NET framework changed the programming model for Visual Basic. So far, most of them either
are actively deciding to pursue alternatives, or are passively waiting to upgrade. Either way, Microsoft
loses. As a result, it looks like Visual Basic is in trouble.

In public, Java and .NET developers don't mix, but each community often reluctantly admits the
strengths of the other. While married to a platform, Java developers have often stolen secretive
longing looks at Visual Basic's productivity and user interface development framework. Visual Basic
users secretly returned the flirtations, admiring Java's structure, if not productivity. I'm making an
educated guess that Microsoft thought it could sneak in some more structure, believing that the
BASIC syntax would trump the unfamiliar frameworks underneath. They were wrong.

Microsoft is making some moves toward satisfying the Visual Basic community. Some plans seem to
favor a Visual Basic classic edition, which looks and acts more like the Visual Basic of old. To me, that
move smacks of new Coke and Coca-Cola Classic, a public relations disaster.

9.1.4.3. C#

C# (pronounced see sharp) is a programming language that fills the role of Java for the .NET
platform. There's not much to say about C# in a book called Beyond Java, because it's built to be
similar to Java. You'll see a few minor exceptions, like reliance on unchecked exceptions rather than
checked exceptions, and some syntactic sugar. Many of the recent changes in Java, like annotations
and autoboxing, were introduced to keep up with .NET. For the most part, though, those looking to
trade in Java and simultaneously lose their problems will find a whole new stack of problems, with a
similar size and shape. C# is merely Java's evil twin.

Still, Microsoft seems willing to separate old versions of C# to a new language, under development,
called C Omega . This language would potentially make some significant strides forward, and possibly

even break compatibility with C#. Such a language could potentially offer the features of much more
dynamic languages, with the commercial backing of Microsoft, and the CLR as a portable virtual
machine. It bears watching. Still, it's proprietary, and many won't give it a serious try for that reason
alone.

9.1.4.4. Other languages on the CLR

What's intriguing about .NET is not the Microsoft languages. It's the promise of open source
languages on the CLR. Right now, since most of Microsoft's energy is undoubtedly focused on Visual
Basic, C++, and C#, you're not going to see a library that's built to take advantage of important
concepts like code blocks and continuations. Still, Microsoft actively courts insiders in the Ruby and
Python communities, so you could see credible implementations of those languages soon.

9.1.4.5. A weakness and a strength

.NET and the CLR have one major problem: Microsoft. Sometimes its weight and muscle work in your
favor, and sometimes they don't. It's not likely that the CLR will ever run as well on other platforms
as it does on, say, Linux. With Microsoft's heavily proprietary stance and a complete lack of
portability, it's tough to see the Java community embracing .NET. You may be surprised that I don't
think Microsoft's posture will remain so pervasively proprietary, especially on the server side.

I've said before that market leaders want to be proprietary. All others need open standards to
compete. Microsoft is simultaneously the market leader for client-side operating systems, and lumped
in with everyone else (or with Internet and Enterprise development). Proprietary frameworks make
sense on the client, where Microsoft has had a near-monopoly for a long time now. They make a little
less sense on the server side, where they've been unable to crack the market for medium and large
systems. In time, I believe that Microsoft will recognize this reality and jump on the open source
software bandwagon. I'm not the only one who thinks so. I sit on the expert panel of
NoFluffJustStuff, one of the most successful and influential Java conferences outside of JavaOne.
Stuart Halloway, one of the most respected Java consultants in areas such as metaprogramming and
reflection, feels strongly that Microsoft will be the biggest open source vendor in the world, and Dave
Thomas seems to agree.

If Microsoft does happen to move toward open source software in a credible way, and the Java
community recognizes this, Microsoft will open the door to Java on the CLR, and more importantly, to
the languages beyond.

9.2. Minor Contenders

Now, it's time to put on an asbestos suit and my +4 plate mail. I debated whether to include any
sections on Perl, Lisp, PHP, or Smalltalk. They're fantastic languages in their own right. I just don't
think they're next.

If you're deeply religious about any of these languages, you can just read these one-sentence
summaries, and skip to the next section: Perl's too loose and too messy, PHP is too close to the
HTML, Lisp is not accessible, and Smalltalk wasn't Java.

If you already feel slighted and you must read onif you're a language cultist and I've mentioned your
pet language in also-rans, or worse, didn't mention your pet language at allgo ahead and fire up your
Gmail client and your thesaurus, and drop me a nasty note. Ted Neward reviewed this book, so I can
take a few more euphemisms for the word sucks. Just keep this in mind: I'm not saying that your
language isn't good, or popular. I'm just saying 10 years from now, we probably won't look back at
any of these languages as the Java killer.

Steve Yegge: Perl, Lisp, PHP, and Smalltalk

Why won't
Perl
replace
Java?

SY: Well, I'd say Perl was pretty darn successful, and it's still one
of the most popular languages around. Perl had world-class
marketing: Larry Wall understands programmers, and he's funny
and articulate. Perl filled a desperate niche in the Unix-scripting
world, and another with CGI. Perl was successful because it was
executed superbly, just as Java was.

I do think it's on the wane, though. Perl used to be more
productive than the alternatives, so you could argue it was ugly
all you wanted, but people got their jobs done faster. But newer
languages, Ruby in particular, are changing the game.

Perl is the all-time king of pointless abstractions, like references
and typeglobs, one-off shortcuts, and plain old gross hacks, with
extra syntax sprayed on to cover the smell. It was productive,
but programmers will take the path of least resistance, and Ruby
offers orders of magnitude less friction.

What
about Lisp
?

SY: That's a tough one. Lisp has world-class survival skills.
People keep reinventing or rediscovering it, but Lisp is also a
family of families of mutually incompatible designs and
implementations, and none of the existing ones looks like a sure
winner. For example, Common Lisp needs an overhaul, but
redesign by committee is exactly the wrong thing for CL at this

point. Lisp needs a benevolent dictator with good instincts, great
execution, and great marketing.

And PHP? SY: PHP's very popular, and getting more so, because it makes
web programming easier than most of the alternatives, but Ruby
on Rails is going to change all that. There will be a simplification
pass to web programming at some point. PHP's not driving a
simplification pass of the Web. It just tries to help you cope with
the existing complexity. The language is heavily weighed down by
its Perl legacy, with lots of confusing and regrettable design
decisions. And it's not in the same league as more powerful
languages like Ruby, Python, and Lisp.

Is
Smalltalk
next?

SY: I doubt it. In the end, languages have to have buzz and
momentum, and I just don't see any marketing for Smalltalk. The
community got the wind knocked out of it by Java, and it doesn't
seem to have ever recovered.

9.2.1. PHP

PHP is an open source scripting language that's been gathering momentum since the early 2000s. It's
a markup language that's designed to be embedded into HTML. It's very easy to quickly develop
simple web applications in PHP, but those applications typically have little back-end structure. For
these reasons, it's not really targeting the same niche as Java applications, though it's sometimes
been pressed into service in much the same way. Here is "Hello, World" in PHP:

 <html>
 <head>
 <title>Hello, World</title>
 </head>
 <body>
 <?php echo '<p>Hello World</p>'; ?>
 </body>
 </html>

Web programmers recognize this as an HTML scripting language. The code is processed on the server
side, so pure HTML can be sent down to the client. It actually handles this kind of scripting pretty
well, but it's purely a tag language. PHP's problem is the structure behind the view. It's possible to
use PHP for layers behind the view, but it's awkward and cumbersome in that role.

PHP is going to make some serious noise as a pure web-based scripting language, though. In one of
the strangest moves in 2005, IBM announced support for PHP. This move undoubtedly targeted the
small and medium-size businesses that tend to embrace PHP. IBM can now theoretically sell them
software and services to round out their implementations. PHP seems to be a natural language for
those Visual Basic users who don't want to make the move to .NET. Like Visual Basic, it will be

pressed into service in places where it doesn't fit as developers search for simplicity in the wrong
places.

With the most basic Google skills, you can find dozens of papers that attempt to compare Java and
PHP. You'll tend to find two types of comments. The PHP camp says that Java isn't productive
enough, and the Java camp says that PHP isn't structured enough. I tend to agree with both of them.
The primary danger with PHP for small applications is that they can grow into big PHP applications,
and you're left without the structure that will let you easily maintain and extend your web
applications.

9.2.2. Perl

Perl is a very popular language for programmers who look for raw first-cut efficiency. Perl was quite
popular for shell scripts, before simpler alternatives were available. In terms of productivity, Perl has
many of the characteristics of other highly productive languages. It's very expressive, terse, and
dynamically typed. It gives you freedom to do what you want to do, and has a rapid feedback loop.
Paul Graham calls it a great language for "hacking," or rapid experimental programming. Much of the
Internet is powered by CGI Perl scripts.

Perl does have a downside. When you look at overall productivity of a language, you've also got to
take things like maintenance and readability into account. Perl tends to rate very poorly among
experts on a readability scale. As with Java, much of Perl's problem is cultural. Some Perl
programmers would rather chop off their little finger than type four extra characters, whether the
characters improve readability or not. After all, programs that were hard to write should be hard to
read. Other Perl problems relate to the language itself. Perl's object orientation is obviously bolted
on, and Perl has a secret handshake of sorts, in the form of many cryptic syntactic shortcuts that
only the mother of Perl could love. A whole lot of us at one time or another have had some sort of
love/hate relationship with Perl. It's interesting to talk about, but it's pretty much the antithesis of
Java, and it's likely not going to make a dent.

9.2.3. Smalltalk

Smalltalk is a beautiful language invented way before its time. Smalltalk and Lisp are probably the two
languages that share the most with Ruby. Smart developers used Smalltalk to build successful object-
oriented applications long before Java was even a twinkle in Gossling's eye. And not-so-smart
developers used Smalltalk to build some of the ugliest object-oriented code ever written. In truth, for
the most part, in the mid- and late 1970s, we just didn't have the wisdom or the processing power for
OOP yet, and we didn't have features like just-in-time compilers.

In Chapter 8, you saw the elegance of the Smalltalk language. It's object-oriented through and
through, and the syntax is remarkably consistent. Smalltalk's syntax probably seemed strange to the
masses of programmers who grew up coding COBOL, BASIC, Pascal, C, or C++. Most of the
businesses I know of that actually tried Smalltalk were able to get their applications out in time, they
just never were able to integrate those applications with the rest of the world.

Smalltalk never was able to lure C and C++ developers away, because it was too alien and had the
perception of being too slow. As the small Smalltalk community waited for objects to emerge, Java's
founders aggressively grabbed the C++ community by the throat, forced it to come along with C++

syntax and usage models, and offered solutions to solve the most pressing problems the C
developers encountered. As we showed, Java was effectively a compromise between perfect OO and
the C++ community. Later, IBM made a move to buy OTI, a maker of Smalltalk virtual machines. In
one last push for Smalltalk, IBM built a common virtual machine into an IDE called Visual Age with
the hopes that the common JVM could lend credibility to Smalltalk. It was too little, too late. We were
too content in our newfound freedom, safely and freshly away from all things C++, in the arms of
Java.

It's hard to imagine Smalltalk rising up from 30 years of obscurity to dominate. It's probably not going
to happen. Still, you can find a small but active community of Smalltalk developers. Disney built
Squeak, a Smalltalk dialect and implementation focusing on multimedia. A handful of other dialects
are also still around.

In the end, Smalltalk may yet make an impact on development, but as the proving ground for ideas
like continuation servers. You'll find evidence of Smalltalk's object model and syntax everywhere.
Most notably, Ruby liberally borrows code blocks and idioms like returning self. I think continuation
servers will ultimately play a role in web development. They just make too much sense, are too
natural, and are too compelling. Smalltalk is where all the continuation research is happening.

9.2.4. Lisp

Lisp is an extremely powerful language that excels in its strange but pure syntax, abstract modeling,
and raw efficiency. In Lisp, everything is a list, including Lisp programs. Metaprogramming in Lisp
feels natural, and is quite popular. Important ideas like aspect-oriented programming and
continuation servers started in Lisp. Several dialects like Dylan and Scheme appear periodically, but
none has achieved much success in the commercial mainstream, beyond a macro language for the
Emacs. Still, start-ups often use Lisp because once you learn it, you can be incredibly productive.
Some very successful programmers like Paul Graham (author of Hackers & Painters) believe Lisp is
the most expressive programming language, and they could be right.

Lisp's community has always been made up of intelligent developers, and it's still popular among
academics. In fact, some of the best programming universities, like MIT, emphasize Lisp early, to get
students to quickly think in the abstract, and to expose them to functional techniques.

Maybe all languages will once again return to Lisp, but I don't think that Lisp itself is the ultimate
answer. It's just too alien, and it takes too much time and effort to learn.

9.2.5. Functional Languages

It's probably a bit too early to be talking about functional languages , because we seem to be moving
toward object-oriented languages instead. Still, functional programming provides a higher abstraction
and very good productivity. It's possible that some functional language could explode, with the right
killer app.

Haskell and Erlang are two of a family of programming languages called functional languages.
Functions are the focus of functional languages. I use the word function in the pure mathematical
sense:

Functions have no side effects. This oddity takes some getting used to for most procedural
programmers, but also has significant benefits.

Functions return values.

You can use the return value of a function anywhere you can use the returned type.

You can do functional programming in languages like Ruby and Lisp, but for research or purity, often
it's better to use a purer language. Here's a Haskell example, which computes the factorial of a
number:

 fact 0 = 1
 fact n = n * fact (n - 1)

Then, as expected, you can compute the value like this:

 fact 10

Here's a Fibonacci sequence (where each number is the sum of the previous two):

 fib 0 = 0
 fib 1 = 1
 fib n = fib (n-1) + fib (n-2)

Functional languages let you work at a higher level of abstraction. Haskell has good traction in
research and academic communities, and seems to be gaining a small, vibrant commercial
community. It's easy to teach, and as such, it could provide a doorway into functional programming,
much like Pascal provided a doorway to procedural languages.

You can see the power of functional programming in the Erlang language. Developed at Ericsson,
Erlang's main focus is concurrency. Erlang lets you easily create and use threads, and communicate
between them. Erlang also improves distributed computing, because the location of threads is
transparenta thread might be in the same process as another, or on a different machine. It's
productive, dynamically typed, garbage collected, and very small. There's been a recent spike of
interest in Erlang for applications that need excellent support for concurrency and distribution. It's
used in production at some high-profile sites. At this point, Erlang is still in its infancy as a general-
purpose language. Users tend to use it in conjunction with C (for better performance), and it doesn't
have any real user interface library. Still, Erlang is powerful in its niche, and it could make an impact
in the intermediate future, directly or as a derivative.

9.3. The Next Big Thing

Of course, the whole premise of this book is arrogant beyond belief. I'm making an incredible number
of assumptions and drawing some aggressive conclusions based on little more than a couple of dozen
interviews, a keen sense of intuition, and a few massive piles of circumstantial evidence.

Java may need nothing more than a little overhaul. Maybe the problem is in the massively complex
libraries, and a few rewrites with some tweaks of the language would extend Java's leadership for 10
more years. Maybe the community's culture doesn't help define our libraries. The driving vendors
may do an about-face and focus more on simplifying the 80% path instead of building yet another
XML-obsessed framework. The JCP could suddenly start supporting the best existing frameworks
based on experience instead of standardizing a good idea that was born in a committee.

Maybe Dion Almaer is right, and the big companies that drive this industry are not remotely
interested in moving away from Java, and we'll all be saddled with Java for the foreseeable future.

Maybe Jason Hunter is right, and the next big thing won't be a programming language at all. Maybe
Java's all we'll ever need, and we'll use that foundation to move up the abstraction ladder. Maybe
Glenn and David are both right and there won't be one next big thing, but lots of next little things,
and both metaprogramming and continuations will play a significant role.

I don't know the ultimate answers, so I've leaned on my mentors and peers. The interviews in this
book are the opinions of some of the people I respect the most. It's been an honor to share these few
pages with them. I'm not ready to say that Java's dead, or that Ruby is next, or that continuation
servers will reign supreme. I just know:

I'm hurting right now, and my customers are, too. It's getting harder and harder to teach my
customers to satisfy themselves with Java.

Certain things, like baby-sitting a relational database with a web-based UI, should be easier in
Java, after nearly 10 years of effort, but they're still cumbersome.

The same people that dozed in conversations about other languages two years ago seem to be
paying attention now. My "Beyond Java" talks, at Java conferences, are continually packed.

As for me, my eyes are wide open. I've seen what the alternatives can do. In particular, Ruby on
Rails lets me build reliable code fast, and put it in front of my customer with more confidence and
frequency. I didn't actively seek an alternativeon the contrary, with four Java books out and a
reputation in the Java space, I've got every reason to maintain the status quo. I did find that some of
the alternatives are compelling, and make for a smooth transition.

9.3.1. A Charge to You

If you're a Java developer and this message is troubling you, that's natural. You've got good reasons

to feel threatened with this challenge of your world view. You may feel even more unsettled when
someone challenges the foundation of your livelihood. I'd encourage you to put this book down and
do some research of your own.

Look around. When James Duncan Davidson did, he found a language that responded to his needs for
low-level user interface development. Stuart Halloway found a language that let his start-up move at
the speed of his ideas. Dave Thomas found the foundation for an increasingly important publishing
series. Glenn Vanderburg found languages friendlier to his beloved metaprogramming techniques.

If you decide to expand your horizons beyond Java, you may find that I'm right, and some of the
alternatives I've explored here, or even some I didn't, unleash you. You'll be surfing the next wave
that propels us forward.

If I'm wrong, Java will still be there for you; heck, even COBOL is still there for you. But to you, it
won't be the same Java. Other languages will expand your horizons to other approaches, just as a
wave of Java developers will bring our unique view of the world with us. If you spend some time in
Smalltalk, you'll probably use Java's reflection more, you'll look for more opportunities to invert
control by simulating code blocks, and you may well tone down your use of XML. (OK, I may have
pushed things too far with that one.) If you explore continuation servers, you may look for a way to
simulate that programming style in Java. If you explore Rails, you'll likely learn to pay more attention
to defaults and convention. Hibernate, Spring, Struts, servlets, collections, and the JDO could all use
these techniques.

Pick up your eyes by learning a language. Expand your mind to something a little more powerful, and
a lot more dynamic. Warp your perspective to functional programming or continuations. Annoy your
friends with a contrarian's view. Tell them that you don't think the world's flat. There's a whole
universe out there, beyond Java.

About the Author
Bruce A. Tate is a kayaker, mountain biker, father, author, and Java programmer in Austin, Texas.
His five books include the Jolt award-winning Better, Faster, Lighter Java (O'Reilly) and the
bestselling Bitter Java (Manning). His 17 years of experience include stints at IBM, two failed startups,
and his own independent consulting practice, called J2Life, LLC.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Beyond Java is a bassaris. The bassaris (Bassaris astuta) is a North
American carnivore found in Mexico, Texas, and California. About the size of a typical domestic cat,
the bassaris is closely related to the raccoon and fox.

This brown- or tan-furred animal has a black-and-white-ringed tail that grows as long as the length of
its body. The size of the tail provides balance for negotiating narrow ledges and limbs, and even
allowsthe animal to reverse direction by performing a cartwheel. It can rotate its hind feet 180
degrees, giving it the ability to rapidly descend cliffs or trees, as well as cacti.

The bassaris is a nocturnal, non-aggressive creature. It lives in caves, crevices, and hollow trees, and
has been found in abandoned buildings and even attics of occupied dwellings. It has been known to
visit campsites and rummage through gear, sometimes taking itemsespecially shiny ones. An agile
climber, it negotiates trees and sheer rock faces with ease.

Foraging mainly at night on small birds, rodents, lizards, snakes, invertebrates, and fruit, the
bassaris will also regularly consume carrion. Fruit is a main component of its diet, and this may
reduce its need for water.

Trapped for fur in some locations, the bassaris is also frequently tamed as a pet, especially in parts of
Mexico. It is called by several different names, including the mountain cat, civit cat, and cat squirrel.
The Mexican name for this creature is cacomixl. Its scientific name (bassaris) stems from the Greek
word for fox, and in some Greek mythological tales, Dionysus wears a bassaris, which symbolizes
new life.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

.NET

 Java versus

 pros and cons

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Action Pack framework

Active Record framework

adware

agile processes

Ajax 2nd

Almaer, Dion

 (interview)

alpha geeks

annotations

anonymous inner class

Ant 2nd

ANTLR parser generator

applets

 failings of

 killer app

applications language

approachability

 of new language

arrays

aspect-oriented programming (AOP) 2nd

AspectJ

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

back button

boiling frogs

browser as single application platform

Buck, Jamis (interview)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

C Omega

C programming language

C#

 potential replacement for Java

 pros and cons

C++

 approachability of

 language

 security and

client/server computing

 economics of

code blocks 2nd

Common Gateway Interface (CGI)

Common Language Runtime (CLR)

Common Object Request Broker Architecture (CORBA)

community and Java development

community-centric roles

concurrency support

consistency

 requirement for new language

continuation servers 2nd

 pros and cons 2nd

 session affinity

continuations 2nd

 defined

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

database

 integration

 performance

Davidson, James Duncan 2nd 3rd

dependency injection

development processes

diamond inheritance problem

distributed transactions

DLL Hell 2nd

domain specific language (DSL)

dynamic class model

dynamic languages 2nd

Dynamic Linking Libraries (DLLs)

dynamic typing

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

economic justification for replacing Java

EJB 3.0

 specification

enterprise application development

enterprise computing

 standards within

enterprise computing versus the Internet

enterprise integration 2nd

Enterprise JavaBeans (EJB)

enterprise requirements

Erlang, functional language

exceptions

expressing data

extensibility

Extreme Programming

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

feedback loop, rapid

functional languages

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Geary, Stuart

Gehtland, Justin

 (interview)

generics 2nd

Google Maps

Graham, Paul 2nd

Groovy

 pros and cons

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Halloway, Stuart

Hansson, David Heinemeier

 (interview) 2nd 3rd

Haskell, functional language

Hatcher, Erik (interview)

Hibernate 2nd

 message chaining

HTML

Hunter, Jason 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

IBM

 future of Java and

 Java and

industry standards

integrated development environments (IDEs)

Internet

 applications

 influence on proprietary products and frameworks

 integration

interoperability 2nd

inversion of control

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

J2EE

Java

 advantages

 architecture

 C++ on Prozac

 community as valuable resource

 compromises

 contenders

 debunking myths

 elements of success

 fixing

 history of

 IBM and

 liabilities

 limited evolution

 Netscape Navigator and

 productivity and

 recent innovations

 Ruby versus 2nd

 shortcomings as an application programming language

 unnatural stretching

 vendor support

Java 1.5

Java 5

Java Server Faces (JSF)

Java Server Pages (JSP)

Java Specification Request (JSR)

Java Virtual machine (JVM)

Java Virtual Machine (JVM)

Java Virtual machine (JVM)

Java Virtual Machine (JVM)

 portability and

JavaScript 2nd 3rd

JBoss 2nd

JDBC

JDO

JMX

JRuby 2nd

JUnit 2nd

Jython

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

kayaking, as a metaphor for programming

killer app

 catalyst for new language

 PHP applications

 Ruby metaprogramming environments

 Smalltalk continuation servers

King, Gavin

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

languages that could supplant Java

languages, functional

learning curve

legacy requirements

libraries 2nd

limitations

 of Java

Lisp 2nd 3rd

 pros and cons

Lotus 1-2-3 spreadsheet, as killer app

Lucene

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

marketing the new language

Matsumoto, Yukihiro (Matz)

memory-stompers

metaprogramming 2nd 3rd 4th

 and the killer app question

method interception

Microsoft

 influences on application development

 Windows, security and

middleware 2nd

mixin

mixins

mobile applications

model-view-controller (MVC) frameworks 2nd

modules

multiple inheritance

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

navigation and flow

nested includes

Netscape Navigator

Neward, Ted (interview)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

object orientation requirement

Object Relational Mapping (ORM) 2nd 3rd

object-oriented programming (OOP)

open source community

open source software 2nd

 future of Java and

 IBM and

 importance of

open source tools and Java

overloading

owls and ostriches

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

perceptions, changing

performance

Perl 2nd 3rd 4th 5th

 potential replacement for Java

 pros and cons

persistence frameworks

PHP 2nd 3rd 4th

 potential replacement for Java

 pros and cons

plain old Java objects (POJOs)

pointer arithmetic

portability 2nd 3rd

portlets (portal components)

primitives 2nd

productivity 2nd 3rd 4th

 as motivator for replacing Java

programming language, features

Python 2nd 3rd

 potential replacement for Java

 pros and cons

 strong typing and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

reflection

relational database integration

Representational State Transfer (REST)

requirements

risks, managing

Ruby 2nd 3rd 4th 5th

 AOP

 arrays

 code blocks 2nd

 conditionals

 containers

 continuations in

 dependency injection

 files

 hooks

 Java versus

 looping

 method interception

 mixins

 modules

 objects 2nd

 open classes

 potential replacement for Java

 primitives

 pros and cons

 ranges

 reducing amount of code, and why

 reflection and

 regular expressions

 ruby-lang.org

 strong typing and

 typing

Ruby on Rails 2nd 3rd 4th 5th 6th 7th

 Action Pack framework

 Active Record framework

 advantages

 approachability of

 Base Camp and Back Pack

 case study

 framework

 generating a basic application

 installing

 Java community response to

 Java versus

 killer app question

 performance

 productivity

 rubyforge.org

 RubyGems

Ruby.NET

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

sandbox

 security and

SCRUM

Seaside

 component-based architecture

 control flows

 overview

 tasks

security 2nd 3rd

service-oriented architecture (SOA)

servlets 2nd 3rd

session affinity

simplicity

Slashdot

Smalltalk

 code blocks

 potential replacement for Java

 productivity

 pros and cons

 Seaside and

 Squeak IDE

 strong typing and

Spille, Mike

Spring 2nd

 EJB versus

 method interception and

SQL

Squeak IDE

Standard Widget Toolkit (SWT)

statelessness

states, saving

static typing

 benefits

Strachan, James

strings 2nd

structured data

Struts

Subramaniam, Venkat

Subway, Rails clone

Sun, future of Java and

SushiNet

Swing

 user interface development and

syntax

System Object Model (SOM)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Tapestry 2nd

TheServerSide

Thomas, Dave 2nd

Tomcat 2nd

transactions

type erasure

typing

 adaptability

 code/compile cycle

 dynamic

 generics

 hidden costs

 overloading

 static

 static versus dynamic

 static, benefits

 strong versus weak

 syntax

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

user interface focus

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Venderburg, Glenn 2nd

 (interview)

verbosity 2nd

virtual machine

Visual Basic 2nd

VisualAge for Java

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

Web Services

Weirich, Jim (interview) 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

XDoclet

XML 2nd

 configuration and

 XML-binding frameworks

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y]

YAGNI

Yegge, Steve (interview) 2nd 3rd

	Beyond Java
	Table of Contents
	Copyright
	Preface
	Who Should Read This Book?
	Conventions
	Using Code Examples
	Comments and Questions
	Safari® Enabled
	Acknowledgments

	Chapter 1. Owls and Ostriches
	Section 1.1. Ignorance as a Virtue
	Section 1.2. Boiling Frogs
	Section 1.3. New Horizons
	Section 1.4. The Premise

	Chapter 2. The Perfect Storm
	Section 2.1. Storm Warnings
	Section 2.2. The C++ Experience
	Section 2.3. Clouds Open
	Section 2.4. Fury Unleashed
	Section 2.5. Aftermath
	Section 2.6. Moving Ahead

	Chapter 3. Crown Jewels
	Section 3.1. Language and JVM Design
	Section 3.2. The Internet
	Section 3.3. Enterprise Integration
	Section 3.4. Community
	Section 3.5. Breaking the Myths

	Chapter 4. Glass Breaking
	Section 4.1. Java's New Job Description
	Section 4.2. Basic Java Limitations
	Section 4.3. Typing
	Section 4.4. Primitives
	Section 4.5. Parting Shots
	Section 4.6. Why Not Just Fix Java?

	Chapter 5. Rules of the Game
	Section 5.1. Java Raises the Bar
	Section 5.2. Enterprise Integration
	Section 5.3. Generating the Buzz
	Section 5.4. Language Features
	Section 5.5. A Few Potential Suitors

	Chapter 6. Ruby in the Rough
	Section 6.1. About Ruby
	Section 6.2. Applying Some Structure
	Section 6.3. Breaking It Down

	Chapter 7. Ruby on Rails
	Section 7.1. The Numbers Game
	Section 7.2. Rails by Example
	Section 7.3. Under the Hood
	Section 7.4. The Essence

	Chapter 8. Continuation Servers
	Section 8.1. The Problem
	Section 8.2. Continuations
	Section 8.3. Continuation Servers
	Section 8.4. Seaside
	Section 8.5. A Seaside Example
	Section 8.6. So What?

	Chapter 9. Contenders
	Section 9.1. The Primary Contenders
	Section 9.2. Minor Contenders
	Section 9.3. The Next Big Thing

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

