
Small Form Factor PCs
by Duane Wessels; Matthew J. Weaver

Publisher: O'Reilly
Pub Date: April 22, 2008
Print ISBN-13: 978-0-596-52076-2
Pages: 304

Table of Contents
| Index

Overview

Shoebox sized and smaller, small form factor PCs can pack as much computing muscle as anything from a PDA
to a full-sized desktop computer. They consume less power, have few or no moving parts, and are very quiet.
Whether you plan to use one as a standalone PC or want to embed it in your next hacking project, a small form
factor PC may be the next thing you build. Small Form Factor PCs is the only book available that shows you how
to build small form factor PCs -- from kits and from scratch -- that are more interesting and more personalized
than what a full-sized PC can give you. Included in the book are projects for building personal video recorders,
versatile wireless access points, digital audio jukeboxes, portable firewalls, and much more. This book shows
you how to build eight different systems, from the shoebox-sized Shuttle system down to the stick-of-gum sized
gumstix. With thorough illustrations and step-by-step instructions, Small Form Factor PCs makes it easy for
anyone who wants to get started building these tiny systems. Small form factor computing is taking off, and this
guide is an absolute must for anyone who wants to get in on the launch.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Small Form Factor PCs
by Duane Wessels; Matthew J. Weaver

Publisher: O'Reilly
Pub Date: April 22, 2008
Print ISBN-13: 978-0-596-52076-2
Pages: 304

Table of Contents
| Index

Preface
Introduction

What Is Small Form Factor?
Why Small Form Factor?
Small Form Factor Systems
More Cool Hardware

Digital Audio Jukebox
Introducing the VIA EPIA-M
Additional Hardware
Step 1: Install and Configure Gentoo Linux
Step 2: X Windows and XMMS
Step 3: Infrared Remote Control
Case Modding
Extra Credit

Digital Video Recorder with MythTV
Introducing the Shuttle ST62K XPC
Operating System: Gentoo Linux
X Windows
MythTV
Adding a Remote Control
Starting MythTV Automatically
Using Your TV as the Display
Extra Credit

Home Network Gateway
Introducing the Soekris net4501
Additional Hardware
Installing OpenBSD
From Installation to Gateway
Packet Filter (pf)
Extra Credit

Network Monitor
Introducing the Soekris net4801
Additional Hardware
Installing FreeBSD
Arpwatch
Nagios
Snort
RRDTool
Extra Credit

Wi-Fi Extender
Introducing the Access Cube
Assembling the System
Exploring the Access Cube
Wi-Fi Configuration
Antenna Options
Using the Wi-Fi Extender
Building a Console Cable
Extra Credit

A Portable, USB-Powered, Bridging Firewall
Introducing the OpenBlockS
SSD Linux

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Turning the OpenBlockS into an Ethernet Bridge
Using the Firewall
Powering OpenBlockS via USB
Extra Credit

Cheap Wi-Fi SSH Client
Introducing the ZipIt Wireless Messenger
Updating the ZipIt Firmware
Playing with the BURN3 Firmware
Loading OpenZipIt
Playing with OpenZipIt
Extra Credit

Bluetooth LED Sign
Introducing the gumstix
Assembling the System
Exploring the gumstix
Building Software for the gumstix
Learning About Bluetooth
The Pro-Lite LED Sign
Putting It All Together
Sending Messages to the Sign
Extra Credit

Running an NFS Server
About NFS
The Exports File
Starting NFS Services
Mounting

Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Small Form Factor PCs

by Matthew Weaver & Duane Wessels

Copyright © 2008 O'Reilly Media, Inc. All rights reserved.

Printed in U.S.A.

Published by Make:Books, an imprint of Maker Media, a division of O'Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Print History: April 2008: First Edition

Publisher: Dale Dougherty

Associate Publisher: Dan Woods

Executive Editor: Brian Jepson

Creative Director: Daniel Carter

Designer: Gerry Arrington

Production Manager: Terry Bronson

Cover Photography: Duane Wessels

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. The MAKE: Projects series designations, Small
Form Factor PCs, and related trade dress are trademarks of O'Reilly Media, Inc. The trademarks of third parties
used in this work are the property of their respective owners.

Important Message to Our Readers: Your safety is your own responsibility, including proper use of equipment
and safety gear, and determining whether you have adequate skill and experience. Chemicals, electricity, and
other resources used for these projects are dangerous unless used properly and with adequate precautions,
including safety gear. Some illustrative photos do not depict safety precautions or equipment, in order to show
the project steps more clearly. These projects are not intended for use by children.

Use of the instructions and suggestions in Small Form Factor PCs is at your own risk. O'Reilly Media, Inc. and
the authors disclaim all responsibility for any resulting damage, injury, or expense. It is your responsibility to
make sure that your activities comply with applicable laws, including copyright.

ISBN-10: 0-596-52076-X

ISBN-13: 978-0-596-52076-2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface

Miniaturization has been one of the great success stories of computer engineering. Most of us know that the
world's first computers, such as ENIAC and the various Mark Is, were huge machines that occupied whole
rooms. By the early 1980s we had more powerful computers that sat on our desks. But personal computers
stopped shrinking for the next 20 years or so. Why is my Pentium 4 system from 2005 about the same size as
my Apple II from 1981?

One reason, of course, is that while the size of the computer remained the same, engineers were able to pack
more into that space. Both processors and memory have increased in density over the years, generally following
Moore's Law. Another reason is that equipment manufacturers now build more features into the hardware. My
Pentium 4 motherboard includes built-in Ethernet, video, sound, USB, and FireWire, in addition to the old-
fashioned serial and parallel ports. In the good ol' days, each of those would have required an expansion card of
some sort. Finally, certain physical characteristics of our computer systems have remained the same over the
years in the interest of compatibility. PCI cards are the same height as ISA expansion cards so that both fit in
past and future computer cases. The 200 MB hard drive from my IBM PS/2 fits in the same bay as my P4's new
250 GB hard drive.

In recent years we have seen a renewed interest in miniaturization of computer systems. Companies such as
VIA Technologies and Soekris Engineering were among the first to market small, low-power, general-p-urpose
computer systems to individual consumers. People began to realize that certain tasks and applications, such as
routing and firewalling, don't require super-fast systems. Who wants a big, hot, noisy computer in their home or
office when a small, silent, mini-computer works just as well?

The phrase small form factor (or SFF) usually refers to personal computers with a small footprint. That is, a SFF
PC has most of the same features as its standard-sized ancestor: fast processor, plenty of memory, hard drive,
video, sound, etc. SFF PCs usually have fewer expansion options due to their smaller size, however.

In this book we consider even smaller, and less powerful, systems as small-form-factor computers. It would be
a stretch to call them PCs, since many don't have hard drives, video, or sound. For some, it may be more
appropriate to think of them as embedded devices, although that is another vague term. Whatever you or we
call them, we think you'll enjoy learning about these small computers.

How to Use This Book

Our primary goal with this book is to expose you to a variety of small-form-factor computers and devices. We
want to show you how they work, how they look (inside and outside), and how you can use them. We've come
up with a number of projects that demonstrate their features and capabilities. We hope that you find the
projects both interesting and useful.

Even if you're not interested in putting SFF computers to the uses that we've documented, you'll still find useful
information in this book. For example, we'll show you how to load an operating system onto a Compact Flash
card using TFTP and NFS, and how to bootstrap the OS onto a laptop hard drive from another PC. If you have
other projects or applications in mind, the information in this book will help you select an appropriate platform.
Our project descriptions aim to help you understand the advantages, and disadvantages, of the computers that
we've used.

Another reason to read the book (and do the projects) is to see how easily you can get Linux and BSD operating
systems running on non-x86-based processors. The four largest systems in the book have Intel x86 or x86-
compatible processors. The smallest computers, on the other hand, use MIPS, PowerPC, ARM, and XScale
processors. For some of them we'll even show you how to cross-compile your own programs.

Who Should Read This Book

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We've written this book for people who like to tinker with both computer hardware and software. Along the
same lines, we expect that you have a "do it yourself" attitude, either because you simply want to understand
how something works, you want some extra features, or you don't trust product manufacturers to get it right.
We also assume that you already have a minor fascination with miniature computers. If you still need some
convincing, check out Chapter 1 for the list of things that we especially like about SFF computers.

Most of our projects involve some hardware assembly. For the most part, however, you won't need any fancy
tools. Screwdrivers and pliers will come in handy. The only time you'd need a soldering iron is to build a custom
cable or two.

We devote the most space in each chapter to providing detailed instructions on how to install and configure the
software components. Every project is based on an open source operating system, including Linux, OpenBSD,
and FreeBSD. Previous exposure to at least one of these operating systems will be helpful. However, we try to
not make too many assumptions about your experience. With a little patience and perseverance, even first-time
Unix users will be able to get up and running with our instructions.

Organization of This Book

This book includes eight individual small-form-factor projects, each in its own chapter. We've chosen to place
chapters roughly in order of decreasing computer size. We'll start with a couple of Mini-ITX based systems and
finish with a computer the size of a stick of gum. Here is a brief description of each computer:

Chapter 1, Introduction

The introduction to the book includes a brief discussion of what "small form factor" means and why you
might be interested in using SFF systems. We also introduce you to the hardware components used for
each project, including where to get them and about how much they cost.

Chapter 2, Digital Audio Jukebox

Here we turn a Mini-ITX motherboard, a little memory, a laptop hard drive, and an infrared receiver into
a digital jukebox. The IR receiver allows you to control the jukebox with a standard universal remote.
We'll show you how to install and configure Gentoo Linux, the XMMS audio player, and a few ancillary
programs. If you're so inclined, we also have a few hints for mounting the components into an antique
radio cabinet.

Chapter 3, Digital Video Recorder

In this project we show you how to build your own digital video recorder. We used the toaster-sized
ST62K "XPC" from Shuttle and a TV tuner card from Hauppauge. Of all the projects in the book, this one
requires the most CPU processing power and storage capacity. We use Gentoo Linux as the operating
system and MythTV for the actual DVR application.

Chapter 4, Home Network Gateway

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'll show you how to build your own home (or small office) network gateway from OpenBSD and a
Soekris net4501. This gateway protects the systems on your network with NAT and a state-of-the-art
firewall. It also provides a local DNS server and DHCP if you so desire. The Soekris box uses a Compact
Flash card for storage, which allows it to be silent and use very little power.

Chapter 5, Network Monitor

In this project we'll help you build a system that can monitor the health and status of a small home or
office network. We'll use Snort for passive detection of malicious traffic, Nagios for active monitoring of
hosts and links, and RRDTool to store and generate traffic graphs. Our operating system of choice is
FreeBSD. The hardware is Soekris' net4801, which has a faster CPU than the net4501 and accepts a
laptop hard drive.

Chapter 6, Wi-Fi Extender

We feature the Access Cube from 4G Systems in this chapter, which is a low-power, cube-shaped device
designed for wireless applications. It has one Ethernet port and room for two Mini PCI Wi-Fi cards. We'll
use it to build a wireless network router that you can use to extend the reach of existing wireless
networks. The Access Cube runs a version of Linux called OpenEmbedded.

Chapter 7, Portable Bridging Firewall

This project is based on a small computer from Japan called OpenBlockS, which has a PowerPC processor,
flash memory, serial port, and two Ethernet interfaces. For storage it uses either a Compact Flash card or
a laptop hard drive. The OpenBlockS runs on 5 Volts DC, which means you can power it from a USB port.
The operating system is SSD/Linux.

Chapter 8, Cheap Wi-Fi SSH Client

Here, we show you how to load new firmware on the ZipIt Wireless Messenger. The ZipIt is a cheap
handheld device with a thumb keyboard, LCD display, Wi-Fi interface, and very good battery life. We
think it makes a good little SSH client that you can take places where you'd rather not take your laptop
computer.

Chapter 9, Bluetooth LED Sign

Our final project features the smallest computer in the book. The gumstix is a modular device running a
customized Linux distribution. The particular model that we've chosen has a built-in Bluetooth interface.
We'll use it to add Bluetooth connectivity to a scrolling LED message sign.

Recommended Reading

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While reading this book, you may want to consult some of these other O'Reilly resources for more information.

Wireless Hacks, Second Edition and/or Linux Unwired

Linux in a Nutshell or Linux Cookbook

BSD Hacks

Unix Power Tools, Third Edition

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs
and documentation. You do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and
ISBN. For example: "MAKE Projects Small Form Factor PCs, by Duane Wessels and Matthew Weaver. Copyright
2008 O'Reilly Media, Inc., 059652076X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us
at permissions@oreilly.com.

Code samples and configuration files used in this book are available from http://sffbook.org/code.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Used to indicate new terms, filenames, file extensions, and directories. For example, a path in the
filesystem will appear as /Applications/Utilities.

Constant Width

Used to indicate commands, options, classes, keys, properties, utilities, and program names, and to show
the contents of files or the output from commands.

http://sffbook.org/code
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Constant Width Bold

Used in examples and tables to show commands or other text that should be typed literally by the user.

Constant Width Italic

Used in examples and tables to show text that should be replaced with user-supplied values.

Acknowledgments

Duane would like to thank the following people and companies:

Mini-box.com for donating power adapters, an IDE-to-CF adapter, and other toys. Plat'Home in Japan
(http://www.plathome.co.jp/) for donating the OpenBlockS/266. Shuttle (http://www.shuttle.com/) for donating
the Zen ST62k XPC. O'Reilly Media for the gumstix.

My sincere thanks to all the technical reviewers who took the time to read drafts of the book and provide
feedback: Craig Hughes, Dave Hylands, Joel Jaeggli, Ken Keelan, Fernando Maymi, Brendan White, and N. E.
Whiteford. I know myself that it takes a lot of time and effort to be a reviewer. You have earned my respect and
thanks for stepping up to the task.

As usual, it's been a pleasure to work with the folks at O'Reilly Media. Our editor, Brian Jepson, didn't give up on
us even after missing a few deadlines. And to all the other top-notch O'Reilly folks, thanks for turning a bunch of
XML mumbo-jumbo into a beautiful-looking book.

To my wife Anne: thank you for allowing me to take on and complete this book. You have no idea how much
your support means to me. To Colin, who is just now turning one year old: remind me someday to tell you how
much fun it was to work on the book during your naps, and after falling asleep with you each night. Sleep well
Mugs!

Matthew would like to thank the following people and companies:

Pascal Dornier (http://pcengines.ch/) for donating a WRAP board. Shuttle (http://www.shuttle.com/) for
donating an SN85G4 XPC, and AMD (http://www.amd.com/) for donating a suitable Athlon CPU. Mikrotik
(http://www.mikrotik.com/) for donating a RouterBOARD 230.

I owe my largest debt of gratitude to Duane. He's not only responsible for the best work in this book, he's also
given me a leg up more times than I deserve one.

Everyone at O'Reilly has been extremely patient and easy to work with. Brian Jepson has been invaluable in
countless ways.

Lastly, thanks to my friends and colleagues for all their help: Amy Silver, for her support and advice; Jared
Spiegel, for his guidance with the occasional technical jam; David Hardy, Tanya Bokat, and Greg Willson at
Nedernet for everything.

Safari® Enabled

When you see a Safari® enabled icon on the cover of your favorite technology book, that means it's available
online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books: it's a virtual library that lets you easily search thousands of
top tech books, cut and paste code samples, download chapters, and find quick answers when you need the

http://www.plathome.co.jp/
http://www.shuttle.com/
http://pcengines.ch/
http://www.shuttle.com/
http://www.amd.com/
http://www.mikrotik.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

most accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

You can contact the authors at wessels@packet-pushers.com and matt@ice-nine.org

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can
access this page at:

http://www.oreilly.com/catalog/smallffpfg

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web
site at:

http://www.oreilly.com

http://safari.oreilly.com
http://www.oreilly.com/catalog/smallffpfg
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

In this book we present eight projects based around small form factor computers. Before delving into those
projects, we'll spend a little time talking about what the term small form factor (SFF) means to us and why we
think SFF systems are interesting. We also introduce the hardware for each project in this chapter, and finish up
with a list of other SFF systems that we weren't able to include in this book.

What Is Small Form Factor?

For many computer enthusiasts, the phrase small form factor brings to mind cube-shaped systems about the
same size as a stack of books. If you visit a site such as www.sfftech.com, you'll see many such systems. These
days they generally have a Pentium 4 or Athlon processor; a couple of hard drive bays; one or two PCI
expansion slots; built-in audio, video, Ethernet, USB, FireWire; and more. They make great desktop
replacements and are often used as "media center" PCs.

This book takes the small-form-factor concept a few steps further to include the very wide range of small,
general-purpose computer systems now available to individual consumers. Until recently, small computers were
largely considered embedded systems that ran custom software applications. They were available only in large
quantities to commercial users and system integrators.

The largest system that we use in this book is a Shuttle XPC. Coming in a close second is a Mini-ITX
motherboard from Via Technologies. Those are the only systems in the book that require fans for cooling. Next
in size are two Soekris boxes, which are smaller than this book. Getting even smaller, we have a couple of
computers that are about the same size as an apple or an orange. Finally, we'll talk about two computers that
can fit in your pocket.

So what do these systems have in common? One answer is that they all appeal to us simply because of their
size. As geeks and gadget freaks, we are always fascinated with smaller and smaller phones, cameras, music
players, and computers. The trend is always toward smaller and smaller devices, or at least toward packing
more performance and functionality in the same space.

Another common characteristic is that they can all run open source software, such as Linux, BSD Unix, and a
myriad of additional applications. This means that these SFF systems have a certain hardware openness as well.
Even though the computers are extremely small, they are still "PC compatible." For the most part, you won't
have to worry about buying, finding, or writing a special driver to use any of the built-in serial, audio, Ethernet,
Wi-Fi, and other interfaces. Open source is not necessarily a requirement, however. You can certainly run
Microsoft Windows on the Shuttle- and Mini-ITX-sized systems. You can probably even run DOS on the smaller,
x86-based computers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

In this book we present eight projects based around small form factor computers. Before delving into those
projects, we'll spend a little time talking about what the term small form factor (SFF) means to us and why we
think SFF systems are interesting. We also introduce the hardware for each project in this chapter, and finish up
with a list of other SFF systems that we weren't able to include in this book.

What Is Small Form Factor?

For many computer enthusiasts, the phrase small form factor brings to mind cube-shaped systems about the
same size as a stack of books. If you visit a site such as www.sfftech.com, you'll see many such systems. These
days they generally have a Pentium 4 or Athlon processor; a couple of hard drive bays; one or two PCI
expansion slots; built-in audio, video, Ethernet, USB, FireWire; and more. They make great desktop
replacements and are often used as "media center" PCs.

This book takes the small-form-factor concept a few steps further to include the very wide range of small,
general-purpose computer systems now available to individual consumers. Until recently, small computers were
largely considered embedded systems that ran custom software applications. They were available only in large
quantities to commercial users and system integrators.

The largest system that we use in this book is a Shuttle XPC. Coming in a close second is a Mini-ITX
motherboard from Via Technologies. Those are the only systems in the book that require fans for cooling. Next
in size are two Soekris boxes, which are smaller than this book. Getting even smaller, we have a couple of
computers that are about the same size as an apple or an orange. Finally, we'll talk about two computers that
can fit in your pocket.

So what do these systems have in common? One answer is that they all appeal to us simply because of their
size. As geeks and gadget freaks, we are always fascinated with smaller and smaller phones, cameras, music
players, and computers. The trend is always toward smaller and smaller devices, or at least toward packing
more performance and functionality in the same space.

Another common characteristic is that they can all run open source software, such as Linux, BSD Unix, and a
myriad of additional applications. This means that these SFF systems have a certain hardware openness as well.
Even though the computers are extremely small, they are still "PC compatible." For the most part, you won't
have to worry about buying, finding, or writing a special driver to use any of the built-in serial, audio, Ethernet,
Wi-Fi, and other interfaces. Open source is not necessarily a requirement, however. You can certainly run
Microsoft Windows on the Shuttle- and Mini-ITX-sized systems. You can probably even run DOS on the smaller,
x86-based computers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Why Small Form Factor?

You may be wondering why you should choose a SFF platform for a particular task instead of simply using a full-
size PC. Most people choose smaller systems because they use less power, produce less noise, generate less
heat, and, of course, take up less space. Not surprisingly, these characteristics are all related as well. Let's look
at each characteristic in some depth:

Size

Size is an obvious characteristic of small computer systems. You might choose to use a Mini-ITX or XPC
computer on your desktop simply because it takes up less space, leaving more room for your piles of
papers. If you'd like to have a PC in your entertainment center, you probably want an enclosure that
looks good and blends in with your other devices (DVD player, audio amp). Small computers are often
popular with gamers who bring them to LAN parties or just over to a friend's house.

Data centers usually charge for both space and bandwidth. You can fit two Mini-ITX systems in a 19-inch-
wide, 1U rack-mountable enclosure.

Anyone who regularly travels with computers is strongly motivated to find the smallest one to do the job.
If the computer is small enough, you can carry it with you or fit it in your luggage. If your computers
must be boxed and shipped, you'll appreciate the lower shipping costs from smaller, lighter systems.
Maybe you'd like to put a computer in your car, on your sailboat, or even on your bicycle.

Smaller is also better for access points and surveillance systems, as you might want to stash a computer
in a closet, up in the ceiling, on a wall, or outside somewhere. Finally, the prospect of wearable
computers is becoming more and more realistic.

Power

The power demands of today's high-end desktops are, in our opinion, just a little outrageous. It is not
uncommon to see 500 watt power supplies these days. One company has begun selling a 1 kilowatt PSU.
If you have multiple computers in your home or office, you should really think about how much power
they consume, and whether you can get by with something that uses less. For example, you don't need a
power-hungry AMD Athlon or Intel Pentium 4 in your office for your firewall. A low-power (4 watts)
computer described in this book can do the job just as well.

Power is also important when you think about uninterruptible power supplies and battery backups. When
the power goes out, a 4 watt Soekris box will stay running about 10 times longer than a 40 watt Pentium
III system.

The requirements of some SFF systems are low enough that power over Ethernet (which delivers a
maximum of 12.95 watts) becomes a possibility. Another nifty idea is to supply power from a solar panel.

Heat

The heat generated by a computer is directly related to the power that it consumes. In simple terms,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

every watt that goes in comes out of the computer as waste heat. Data centers have huge air
conditioners that move the heat from inside to outside, consuming even more power in the process. Heat
may be an important factor for non-data-center environments, such as your home or office. During the
winter, you can sort of use a computer to help keep your house warm, but during the summer, you'll be
paying a little more to keep the house cool.

Not only do SFF systems generate less heat, many of them run without any fans at all, which brings us
to...

Noise

There is also a rough correlation between the noise that a computer generates and the power that it
consumes. The source of noise in most computers comes from things that spin: hard drives and fans. You
can certainly build quiet full-sized desktop systems by using large, low-speed fans and power supplies
with gigantic passive heat sinks. However, you'll have a hard time making them truly silent.

Many SFF systems, on the other hand, have no moving parts at all. Their processors are passively cooled,
and they use flash memory, instead of a hard drive, for persistent storage.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Small Form Factor Systems

We use eight different SFF systems for the projects in this book, plus various accessories, cables, and
connectors. Here's a description of each hardware platform, including where you can buy your own and how
much you should expect to pay.

VIA EPIA ME6000

VIA Technologies has been one of the pioneers in the SFF movement. Their small Mini-ITX motherboards (17 cm
x 17 cm) seem to be especially popular with case modders and people who build media PCs. VIA's Mini-ITX
motherboards are different than most because they have a built-in Cyrix CPU. Cyrix processors are, for most
purposes, compatible with the Intel x86 line. They are also known for running cooler than their Intel and AMD
counterparts. While Cyrix CPUs may be very energy efficient, they do not have the same levels of performance
as the Intel/AMD offerings.

In Chapter 2, we'll show you how to build a digital audio jukebox based on the VIA EPIA ME6000. The processor
runs at 600 MHz, which is more than enough for decoding and playing music. The ME6000 has built-in audio,
video, and Ethernet, as well as a number of other standard devices. To complete the project, we also use a
laptop hard drive, one stick of SDRAM, and an infrared remote-control receiver. ME6000 motherboards are
available from a number of online retailers for about $150.

We also use the PW-70A power adapter from Mini-box.com (a.k.a. Ituner Networks). The PW-70A takes the
place of a standard ATX power supply. It takes a 12 Volt DC input and provides various output voltages on an
ATX connector. Ituner Networks was generous enough to donate the PW-70A and other items for the book. Visit
their site at http://www.mini-box.com.

Shuttle Zen ST62K

Shuttle is another company that is largely responsible for the success and popularity of SFF systems. Their
"XPCs" are roughly cube-shaped boxes designed both for looks and features. Shuttle generously sent us an
ST62K for use in the book, and we felt that it would make a good digital video recorder (DVR). This project is
described in Chapter 3.

The ST62K is a bare-bones system, which means it comes with only the motherboard, case, and power supply.
The CPU, memory, and hard drive must be purchased separately. The ST62K takes an Intel Socket 478 (Celeron
or Pentium 4) CPU and DDR SDRAM. We use a 2.2 GHz processor, 512 MB of memory, and a 120 GB hard drive.
The motherboard has built-in video, Ethernet, and sound. The ATI Radeon 9100 IGP video processor also has a
built-in TV output. Unfortunately, we had some difficulty getting the TV output to work well with the X Window
System on Linux.

The ST62K is currently selling for about $250 from a number of online retailers. However, due to relatively short
product life cycles in the computer industry, it may not be available by the time you read this book (however,
you will be able to find comparable offerings from Shuttle).

Another key component of the DVR is a TV tuner card. We chose the relatively inexpensive WinTV-GO from
Hauppauge, whose cards are well supported in Linux. In retrospect, we recommend that you get a fancier
version, such as the WinTV-PVR250. The ST62K has one PCI slot, which is where the TV tuner card will go. We
also use an infrared receiver and universal remote control for this project.

Soekris net4501

Soekris Engineering makes a number of small, low-power computers that are designed to be used as
networking/communication devices. They are all about the size of a small textbook and run silently. They
feature varying numbers of Ethernet, PCcard, and Mini-PCI interfaces. All Soekris computers can boot and run
from Compact Flash memory.

http://www.mini-box.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'll use a Soekris net4501 (their first product) in Chapter 4 to build a gateway for your home or office
network. The gateway can be configured to provide Dynamic Host Configuration Protocol (DHCP), Domain Name
System (DNS), Network Address Translation (NAT), and firewall (packet filtering) services. The net4501 is a
good choice because it has three Ethernet ports. Its 486-class processor and 64 MB RAM can easily handle the
amount of traffic typically found on a home network. It takes up very little space, generates very little heat, and
requires very little maintenance.

The net4501 also has two PCI slots, which you can use to add a Wi-Fi interface. One of them is a Mini-PCI slot,
which is commonly found in laptops. The other is a standard-sized PCI slot that accepts 3.3 volt PCI cards.

You can buy the Soekris net4501 board and case directly from Soekris Engineering at http://www.soekris.com.
The current cost is about $170 in single quantities. You'll also need a power supply. We recommend the "mini
switch mode" model from Soekris, which costs $11.

The only other item we need to complete the project is a Compact Flash card. We recommend at least 128 MB,
but you really don't need more than 256 MB for this project.

Soekris net4801

Our next project (see Chapter 5) uses another Soekris computer. Compared to the net4501, the net4801 has a
faster processor (266 MHz, 586-class), and more memory (256 MB). It also has two features that no other
Soekris computers have: USB and a built-in 44-pin IDE interface. We won't use the USB interface, but we will
add a laptop hard drive instead of using the Compact Flash slot for storage.

Our project for the net4801 is a network-monitoring system. You can use it to actively and/or passively monitor
hosts and routers on your network. The entire system is built from open source software packages, including
Snort, Nagios, and RRDTool. Snort is an intrusion-detection system that passively monitors network traffic.
Nagios actively monitors hosts and services by periodically probing them. RRDTool is a very nice system for
storing and displaying various types of measurements. We'll use it to display bandwidth usage.

The net4801 is currently priced at $240 and is available from http://www.soekris.com. You'll also need to buy
the 2.5-inch hard drive mounting kit ($10), power supply ($11), a laptop hard drive, and a 40-to-44-pin IDE
adapter. The hard drive and adapter are not available from Soekris Engineering, but you can find them from
many online vendors. You'll use the IDE adapter to connect the laptop hard drive to a standard PC (with a CD-
ROM drive) so you can install the operating system. The project uses less than 2 GB of disk space, so any size
laptop hard drive will work. In fact, if you have an old laptop lying around, you can probably remove its hard
drive and use it in the net4801 (and you could use the laptop to install the operating system, eliminating the
need to use the 40-to-44 pin IDE adapter and a desktop computer). Note that older 12.5 mm laptop drives
don't fit in the net4801.

4G Access Cube

4G Systems, based in Hamburg, Germany, introduced the Meshcube in mid-2004. Since then, it has been
renamed to the Access Cube. The Access Cube is designed specifically for "mesh routing" and other wireless
applications. The mainboard consists of a MIPS processor, 32 MB flash memory, 64 MB RAM, built-in Ethernet,
and USB. An expansion card has two Mini-PCI slots, which are normally used for 802.11 Wi-Fi cards. The
orange-sized case has two Wi-Fi antenna connectors.

In Chapter 6, we'll show you how to turn the Access Cube into a "Wi-Fi extender." You can use the extender to
connect up with wireless networks that are too far away to provide good signal quality. If you travel often, you
might take the cube with you so that you can use nearby Wi-Fi networks from your hotel room. You can also use
the extender as a network address translator, providing service to multiple hosts through a network that
requires authentication and gives you only one IP address.

The Access Cube is available directly from 4G Systems in Germany. Prices are not currently posted, but the
cube should cost about 200 Euros. Visit their web sites, http://www.meshcube.org/ and http://www.4g-
systems.de/en/, or contact them at info@4g-systems.biz. You can also buy the Cube in the United States from
Closed Networks, Inc (http://www.closednetworks.com/).

http://www.soekris.com
http://www.soekris.com
http://www.meshcube.org/
http://www.4g-
http://www.closednetworks.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to the Access Cube itself, you'll also need two 802.11 Mini-PCI cards and Wi-Fi antennas with RP-
SMA connectors. Both of these should be available from 4G Systems or a number of other online retailers, such
as http://www.netgate.com/. Typical prices are $50 to $70. You can also sometimes salvage an 802.11 Mini-PCI
card from an old laptop that has built-in Wi-Fi.

Plat'Home OpenBlockS/266

OpenBlockS is a micro server from the Plat'Home company in Japan. It is similar in size to the Access Cube,
although more brick- than cube-shaped. Plat'Home generously donated an OpenBlockS/266 to us for the book.
It has one serial and two Ethernet ports, a 266 MHz PowerPC processor, 64 MB RAM, and 8 MB flash memory.
One of its most interesting features is that you can fit a laptop hard drive inside the case or use a Compact
Flash adapter.

Our project for the OpenBlockS, in Chapter 7, is to create a portable bridging firewall. By placing the two
Ethernet ports in bridging mode, you can use the firewall on any network without any configuration changes at
all. We envision this firewall to be particularly useful in situations where you need one only temporarily. For
example, you probably know that an unprotected and unpatched Windows PC can become infected in less time
than it takes to download and apply software updates. The next time you have to reinstall the operating system
on your Mom's computer, bring this little firewall with you.

Another nice feature of the OpenBlockS is that it requires only 5 volts DC input. This means that you can power
it from a USB port, which also provides 5 volts DC and a maximum of 500 mA. The OpenBlockS draws between
500 and 640 mA, so this only works if the host system provides more current than required by the USB
specification.

If you'd like to order an OpenBlockS from outside of Japan, visit the Fat Gadget web site:
http://www.fatgadget.jp/english/. The cost is about $500. Inside Japan you can probably order it directly from
Plat'Home. The kit should come with a power supply and serial port cable, but does not include a Compact Flash
card. For this project we recommend at least a 256 MB CF card. You'll also need a DC power plug and USB cable
if you want to build a USB power cable for the OpenBlockS.

ZipIt Wireless Messenger

The ZipIt Wireless Messenger is a small and inexpensive handheld device with a QWERTY keyboard, LCD
display, and built-in Wi-Fi. It runs an instant messenger (IM) application that connects to the AOL, Yahoo!, and
MSN instant messenger servers. The product is really marketed to families with kids, so the kids won't tie up the
family PC while chatting with their pals. Internally, the ZipIt has an ARM-based processor, 16 MB of RAM, and 2
MB of flash memory.

Although the handheld messenger gadget is a great idea, with a little software hacking, you can turn the ZipIt
into a portable SSH client. In Chapter 8, we'll show you how to load a new firmware image onto the ZipIt. You
can then use SSH to log into your home or office systems, read your email, and more.

The ZipIt Wireless Messenger sells for about $100 from online retailers and stores such as Target. It even
comes in different colors! The only other thing you'll need is an existing Windows or Linux computer to use as a
server when loading the new firmware.

gumstix waysmall

The tiniest device in the book is the gumstix "waysmall" computer by gumstix, inc. It is smaller than a cell
phone and a little larger than a pack of gum. gumstix systems are modular and come in a variety of
configurations and features. A platform board contains the processor, memory, and optional Bluetooth interface.
Expansion boards contain additional devices, such as Compact Flash or Multi Media Card (MMC) slots, serial
ports, USB, and Ethernet.

We're using a gumstix basix platform board and a waysmall STUART expansion board. The processor is a 200
MHz Intel XScale (ARM) PXA255. It has 64 MB RAM, 4 MB flash, an MMC slot, and the built-in Bluetooth module.
The expansion board has two serial ports, USB, and the power connector.

http://www.netgate.com/
http://www.fatgadget.jp/english/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Chapter 9, we connect the gumstix to a scrolling LED message sign. We configure the gumstix to receive
messages via Bluetooth and then send them to the sign to be displayed. You might use this project as a way for
people to entertain themselves at a party or meeting, or in a more serious setting such as an office,
manufacturing area, or Network Operations Center.

You can buy the gumstix components directly from the gumstix.com web site. The 200 MHz basix with Bluetooth
is about $145 and includes a Bluetooth antenna. You can get the waysmall-st kit, which includes the waysmall
STUART expansion board, power supply, and a little case, for $30 more. Since the gumstix uses round serial
port connectors, we recommend that you purchase a null modem cable ($12) or two from the gumstix site.

For the scrolling LED sign, we recommend the Pro-Lite "Tru-Color II" signs (a.k.a. model PL-M2014R), which
have a serial port interface and a known communications protocol. These are occasionally available on eBay, but
you can find them other places as well, including the manufacturer's web site at http://www.pro-
lite.com/indoor-singleline.htm. You may also be able to find the Pro-Lite signs at retailers such as Office Depot,
Office Max, and Staples. Prices vary quite a bit. We paid $150 for ours through eBay. The Office Depot web site
says the list price is $425. Office Max is currently selling the Tru-Color II for $200.

You'll also need to build a custom serial cable to connect the gumstix to the Pro-Lite sign. You'll need a serial
cable with Mini-DIN-8 connector, an RJ11 plug, and an RJ11 crimper.

http://www.pro-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

More Cool Hardware

The projects in this book represent only a subset of all the small computer systems out there. Here are some
more computers and other devices that we think are interesting:

Linksys WRT54G/GS/GX

Linksys' wireless routers are perhaps one of the most well-known hackable devices. The original WRT54G
has five Ethernet ports, one 802.11g Wi-Fi interface, 16 MB RAM, 4 MB flash, and a 125 MHz
Broadcom/MIPS CPU. Newer models may have more and faster components. Best of all, these devices
are quite inexpensive, often selling for $70 or less. http://seattlewireless.net/index.cgi/LinksysWrt54g
has quite a bit of info about hacking the firmware on Linksys WRT54G routers, and you can download
firmware images from http://openwrt.org/.

Nano-ITX

Hot on the heels of their Mini-ITX motherboards, VIA came out with the Nano-ITX form factor. Whereas
Mini-ITX is 17 x 17 cm, Nano-ITX is 12 x 12. It seems that Nano-ITX motherboards are a little hard to
find at the moment, and are much more expensive than the Minis. VIA's EPIA-N has almost all of the
standard devices, connectors, and interfaces you'd expect to find on a full-sized motherboard. Two
interesting differences, however, are the use of Mini-PCI instead of standard PCI, and the use of SODIMM,
rather than SDRAM or DDR memory. Both Mini-PCI and SODIMM are commonly used in laptops.

Apple iPod

If you have an early (i.e., 1 GB, 2 GB, or 3 GB) Apple iPod, you can load Linux firmware onto it. In fact,
you can "dual-boot" your iPod with either the Apple firmware or the iPodLinux firmware. One of the best
reasons for doing so is so you can play additional file formats, such as Ogg Vorbis, or so you can record
higher-quality sound with your iPod (the Apple firmware in older iPods supports only 16-bit, 8 KHz
mono). See http://ipodlinux.org for more information.

NorhTec

NorhTec (http://www.norhtec.com/) offers a number of small computer systems. Some use Mini-ITX
motherboards; others use custom hardware. Their smallest product, the MicroServer GP+, has VGA
video, mouse/keyboard, a parallel port, Ethernet, USB, audio, and TV video input and output connectors.
The case has room for a 2.5-inch hard drive as well.

PC Engines WRAP board

http://seattlewireless.net/index.cgi/LinksysWrt54g
http://openwrt.org/
http://ipodlinux.org
http://www.norhtec.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The PC Engines (http://www.pcengines.ch/) Wireless Router Application Platform boards are similar in
size and features to products from Soekris Engineering. They include 1–3 Ethernet ports, 1–2 Mini-PCI
slots, Compact Flash for storage, and a serial console port.

WildLab LAMB-RT-01

The LAMB-RT-01 is a very small computer designed to run Linux. It has a 66 MHz AMD processor, 16 MB
RAM, a Compact Flash slot, and two Ethernet ports. The whole package is about 3 x 3 x1 inches. If you
can read Japanese, visit http://www.wildlab.com/. They have an English brochure at
http://www.wildlab.com/LAMB/E/LEAFLET.pdf. Unfortunately, it seems that WildLab is no longer selling
the LAMB-RT-01, although they have released schematic diagrams for anyone interested in building his
own.

Sharp Zaurus SL-C3100

Sharp has produced a number of Zaurus PDAs that run Linux, although they have mostly been exclusively
available in Japan. The most recent model, the SL-C3100, has a 640x480 color display, a 4 GB hard
drive, Compact Flash, and Secure Digital memory slots. It uses an Intel XScale processor (similar to the
gumstix), 64 MB RAM, and up to 128 MB internal flash memory.

OQO Model 01+

The OQO model 01+ is another handheld computer that packs laptop-like features into a PDA-sized
package. It has a 30 GB hard drive, a Transmeta processor, 512 MB RAM, USB, FireWire, Wi-Fi,
Bluetooth, sound, and an 800x480 color display. The OQO comes with Windows XP, but a number of folks
are figuring out how to make it run Linux. Unfortunately, it's more expensive than many full-sized
laptops.

Mini-box M-100

The M-100 from Mini-box.com is, unfortunately, no longer available. We think it's a real shame since the
M-100 was one of the most interesting and good-looking Mini-ITX systems around. The case was 1U high
and only slightly larger than the motherboard. The front panel included a 2x20 character LCD display, 14-
key keypad, and a Compact Flash card slot. You could also mount a laptop hard drive inside the case. See
http://www.mini-itx.com/news/10339296/.

OpenBrick

The OpenBrick (http://www.openbrick.org/) is another dead product. We believe it was originally
manufactured by a Taiwanese company called Lucky Star, and sold as the NET-2100. It had a 300 MHz
Geode processor, 128 MB RAM, VGA, keyboard, mouse, PCMCIA, CF, USB, Ethernet, and a 2.5-inch hard
drive slot.

http://www.pcengines.ch/
http://www.wildlab.com/
http://www.wildlab.com/LAMB/E/LEAFLET.pdf
http://www.mini-itx.com/news/10339296/
http://www.openbrick.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Black Dog

Realm Systems Inc. makes The BlackDog Mobile Personal Linux Server. It looks like a large USB thumb
drive but is in fact a PowerPC-based computer system. It receives power from the USB port and uses
Ethernet-over-USB to communicate with the host computer. When you plug it into a Windows or Mac
system, you get a virtual X desktop that allows you to run Linux applications. The manufacturer's site is
http://www.projectblackdog.com.

Nokia 770

The Nokia 770 Internet tablet is a handheld, PDA-sized device with an ARM processor, 800x480 color
touch screen, 128 MB RAM, and built-in Wi-Fi and Bluetooth. In addition, the 770 is remarkable because
it is not a phone, and because Nokia is open about their use of (Debian) Linux. In fact, Nokia has open-
sourced the 770's development platform, named Maemo. See the product marketing info at
http://www.nokia.com/770.

http://www.projectblackdog.com
http://www.nokia.com/770
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Digital Audio Jukebox

If you're like us, you love playing music on your computer. Compressed audio file formats, such as Ogg Vorbis
and MP3, mean it's easy to store huge collections of music on your computer. If you've ever wanted to build a
dedicated digital audio jukebox, then this is the project for you! We'll show you how to build the system from
the ground up, including a remote control, an LCD, and maybe even a custom enclosure.

What You Need

Mini-ITX motherboard with built-in audio, video, and network interface

Memory for the Mini-ITX motherboard (at least 256 MB)

Adapter cable for motherboard's second serial port

Laptop (2.5-inch) hard drive

Laptop hard drive 44-to-40 pin adapter

Power supply or adapter, such as the PW-70A from Mini-box.com

Irman infrared receiver

Universal remote control

Mini-ITX case or other enclosure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Speakers

Fan speed controller (optional)

Small fan for a custom enclosure (optional)

LCD display (optional)

Spare CD-ROM drive for OS installation

Depending on how far you want to take this project, you'll spend anywhere from a few days to a few weeks on
it. If you choose to create your own enclosure, you'll probably find that is the hardest part.

Introducing the VIA EPIA-M

For this project, we chose the VIA EPIA-M motherboard. It is one of their many Mini-ITX form-factor boards. As
of this writing (early 2006) the EPIA-M comes with either a 1 GHz or 600 MHz CPU. We opted for the 600 MHz
version (model ME6000) because it is advertised as fanless. Note the two passive heat sinks on the ME6000,
shown in Figure 2-1. As we'll discuss later, that doesn't necessarily mean you can get by without any fans at all.

The "M" in EPIA-M might stand for multimedia. This motherboard is designed specifically for audio and video
applications. That means it has more built-in hardware features than some of VIA's other Mini-ITX
motherboards. For example, its CLE266 North Bridge provides both MPEG-2 acceleration and six-channel audio.
The EPIA-M also has a jack for TV output (NTSC, PAL, and S-Video).

Additional EPIA-M characteristics include:

One DDR266 184-pin memory slot, supporting up to 1 GB of RAM.

Two parallel ATA133 (PATA) connectors and one floppy disk connector.

Four USB2.0 ports with two jacks on the rear panel.

Two FireWire ports in the form of 9-pin headers on the motherboard.

Built-in fast Ethernet.

One PCI slot.

Two COM ports, one parallel port, mouse, and keyboard. Only one of the COM ports has a connector on
the rear panel. To utilize the second, you'll need to connect a cable to a 9-pin header on the motherboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, we won't need to use all of those for the jukebox, but some of them will come in handy during the
setup and installation phase.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Digital Audio Jukebox

If you're like us, you love playing music on your computer. Compressed audio file formats, such as Ogg Vorbis
and MP3, mean it's easy to store huge collections of music on your computer. If you've ever wanted to build a
dedicated digital audio jukebox, then this is the project for you! We'll show you how to build the system from
the ground up, including a remote control, an LCD, and maybe even a custom enclosure.

What You Need

Mini-ITX motherboard with built-in audio, video, and network interface

Memory for the Mini-ITX motherboard (at least 256 MB)

Adapter cable for motherboard's second serial port

Laptop (2.5-inch) hard drive

Laptop hard drive 44-to-40 pin adapter

Power supply or adapter, such as the PW-70A from Mini-box.com

Irman infrared receiver

Universal remote control

Mini-ITX case or other enclosure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Speakers

Fan speed controller (optional)

Small fan for a custom enclosure (optional)

LCD display (optional)

Spare CD-ROM drive for OS installation

Depending on how far you want to take this project, you'll spend anywhere from a few days to a few weeks on
it. If you choose to create your own enclosure, you'll probably find that is the hardest part.

Introducing the VIA EPIA-M

For this project, we chose the VIA EPIA-M motherboard. It is one of their many Mini-ITX form-factor boards. As
of this writing (early 2006) the EPIA-M comes with either a 1 GHz or 600 MHz CPU. We opted for the 600 MHz
version (model ME6000) because it is advertised as fanless. Note the two passive heat sinks on the ME6000,
shown in Figure 2-1. As we'll discuss later, that doesn't necessarily mean you can get by without any fans at all.

The "M" in EPIA-M might stand for multimedia. This motherboard is designed specifically for audio and video
applications. That means it has more built-in hardware features than some of VIA's other Mini-ITX
motherboards. For example, its CLE266 North Bridge provides both MPEG-2 acceleration and six-channel audio.
The EPIA-M also has a jack for TV output (NTSC, PAL, and S-Video).

Additional EPIA-M characteristics include:

One DDR266 184-pin memory slot, supporting up to 1 GB of RAM.

Two parallel ATA133 (PATA) connectors and one floppy disk connector.

Four USB2.0 ports with two jacks on the rear panel.

Two FireWire ports in the form of 9-pin headers on the motherboard.

Built-in fast Ethernet.

One PCI slot.

Two COM ports, one parallel port, mouse, and keyboard. Only one of the COM ports has a connector on
the rear panel. To utilize the second, you'll need to connect a cable to a 9-pin header on the motherboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Of course, we won't need to use all of those for the jukebox, but some of them will come in handy during the
setup and installation phase.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Additional Hardware

You'll need some additional hardware to build the jukebox. Some items, such as the power supply and memory,
are mandatory. Others, like the wireless network interface and LCD display, are optional.

Power converter

The EPIA-M has a standard ATX power-supply connector. However, you probably don't want to use an actual
ATX power supply because it's quite noisy and large. You can use an ATX power supply if you like, of course,
although it is overkill. The EPIA-M system (with laptop hard drive) normally consumes less than 40 watts of
power, while most ATX power supplies are rated for about 300 watts.

Instead, we like the power converters available from Mini-box.com (http://www.mini-box.com). They make a
few different models, depending on power requirements and motherboard shape. For the EPIA-M, we are using
the PW-70A, shown in Figure 2-2 and Figure 2-3 (notice the ATX connector on the component board), which
they were kind enough to donate for the book.

Rear view of the EPIA-M motherboard.

Mini-box's power converters snap directly onto the ATX connector without any cables, as shown in Figure 2-4.
This eliminates the 20 or so wires that standard ATX power supplies have between the box and the motherboard
connector. The PW-70A takes 12 volts DC input. In addition to the ATX connector, it also has one standard hard
drive molex output, one floppy/CD-ROM-type power connector, and a general-purpose 5 volt lead.

http://www.mini-box.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The PW-70A manual says that the most it can power is two 5400-RPM hard drives, a floppy or CD-ROM, and 1
GB of RAM. Since 7200 RPM hard drives consume more power, you should not connect more than one of them
at a time to this power converter. Our jukebox is well within these requirements, since we'll be using a single
laptop hard drive. In fact, when we measured the actual power consumption with a watt meter, the peak was 23
watts, and only 19 watts when playing an Ogg file. Compare this to a standard ATX power supply, which
consumed 40–47 watts during startup and shutdown, and 33 watts when playing music.

Be careful:

In our personal experience, the Mini-box power converters are not as robust as standard ATX
power supplies. We managed to ruin two of them by doing stupid things like plugging cables into
the wrong connectors and by using home-made cables that may have been wired up incorrectly.
Our best guess is that these adapters don't have any current overload protection that prevents
them from burning out. We've never had any problems during normal operation-only when
fiddling with something on the motherboard.

Memory

The EPIA-M takes standard 184-pin DDR SDRAM, although it has only one slot. It is rated for 266 MHz (PC2100)
memory, and we're using a 256 MB stick. Future motherboard models may accept faster memory, so be sure to
check the specs before you buy.

Inserting the memory is relatively simple. Notches on the bottom of the SDRAM board ensure that it fits only
one way. Rest the memory on top of the slot, then push down on the ends as shown in Figure 2-5. You should
hear a solid "snap" as you push down, and the little clips on the end will move to hold the board firmly in place.

The PW-70A power converter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Closeup of the PW-70A power converter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attaching the PW-70A to the EPIA-M.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Hard drive

We recommend using a laptop (2.5-inch) hard drive for this project because of its small size. (Figure 2-6 shows
a typical drive, in case you've never seen one before.) They also tend to be quieter and consume less power
than the standard 3.5-inch drives. The downside to using a laptop drive is that they are more expensive (per
GB) and come in smaller capacities. As of this writing, 80 GB Hitachi Travelstar (2.5-inch) drives are selling for
about $110, while you can get a 250 GB Deskstar (3.5-inch) for $100. In other words, the larger drive gives you
three times the space for about the same money.

The ME6000 Mini-ITX motherboard has a standard (40 pin) PATA connector. You'll need a 2.5-inch hard drive
adapter and a 40-pin PATA cable to connect the hard drive to the motherboard. Adapters come in different
shapes and sizes. The one in Figure 2-7 is flat and straight. It doesn't really matter what kind you get. One end
has a 44-pin female connector for the hard drive. The other end is a 40-pin male connector for the PATA cable.
The adapter also has a molex connector that supplies power to the drive.

Use caution when connecting the adapter to the 2.5-inch hard drive since the pins bend easily. Also take care to
align the connectors correctly. If you are not careful, you might connect it upside down, or off by one. Pin 1
should be labeled on most hard drives and adapters. If you look at the hard drive pins straight on, you'll see two
separate sets of pins. The 44-pin block is the PATA connector. Next to that is a small 4-pin jumper block. If you
look closely at Figure 2-7, you should be able to see that the adapter connects only to the PATA pins and should
not touch the jumper block. Pin 1 of the PATA connector is on the side closest to the jumpers. Your PATA cable
should have a red stripe down one side, which also indicates pin 1.

Enclosure

You'll need to either buy or build an enclosure for your Mini-ITX system. Certainly, using a manufactured case
saves time and effort. Note, however, that Mini-ITX cases tend to be more expensive than standard ATX cases.
A number of nice, small cases are available from companies such as Travla, Morex, Cubid, Hoojum, and Scythe.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most of the cases should support a PCI card and CD drive, but some may not. Some of the very slim cases may
require special low-profile memory.

Inserting the SDRAM in the EPIA-M memory slot.

Closeup of the laptop hard drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The laptop hard drive with 44-to-40 pin adapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You should also think about cooling requirements when shopping for cases. This project is based around the
fanless EPIA-M motherboard. Most of the Mini-ITX cases have a case fan to provide cooling. Some of the very
small cases may have a tough time keeping the system cool enough. If noise is an important factor, you may
want to look at the fanless e-OTONASHI case by Scythe. It has a heat lane that mounts on top of the CPU and
dissipates heat through the bottom of the case.

If you're up to the task, building your own case can be quite fun. We think that nonfunctioning antique radios
make excellent jukebox cases. You can probably find one at a local antique store or on a site such as eBay. If
you find a large-enough cabinet, you'll have no problems mounting all of the necessary components
(motherboard, hard drive, power supply, and fan). Visit the www.mini-itx.com web site for inspiration on
building your own enclosure!

On/off switch

If you'll be using an off-the-shelf Mini-ITX case, you don't need to worry about the on/off switch. On the other
hand, if you plan to build your own enclosure, as we do, you'll need to fabricate a simple on/off switch.

We visited the local hardware store and purchased a push-button switch for a few dollars. The harder part is
finding a cable with an appropriate connector that you can solder to the switch. The pins on the motherboard
are a standard IDC header (0.10 inches apart). If you can't find an appropriate cable, search the Web for
"replacement ATX power switch."

CPU/system fan

The EPIA-M is advertised as fanless, which means you can get by with a passive heat sink as long as something
provides a little airflow to remove excess heat. We recommend that you put a fan in your enclosure and use
something like the Zalman Fanmate controller, shown in Figure 2-8, to reduce its speed. That way, you still get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some airflow while keeping the system relatively quiet. We used an old CPU fan because it is about the right
size and already has the necessary two-wire connector.

Remote control

With an infrared remote control, you can control the jukebox much like a normal stereo CD player. You can
change the volume, pause the music, fast forward/reverse, skip ahead, etc. We'll show you how to use the
Irman infrared receiver by Evation (http://www.evation.com/) for this project. As you can see in Figure 2-9, the
Irman is nothing more than a small box connected to a serial cable. The infrared sensor hides behind a small
red window inside the box.

You'll also need a remote control. If you don't have one already lying around, any cheap universal remote
control will do. We purchased a $10 universal remote from the local mega-discount store, shown in Figure 2-10.

Cable for second serial port

The VIA EPIA-M motherboard has just one serial port on the back panel. We recommend that you use it as a
remote console while building the system and in case the network is down. This means you can't put the
infrared receiver on that serial port.

A second serial port is available on the motherboard, but to use it you'll need to get a special cable, such as the
one in Figure 2-11. To find a place where you can buy a cable like this, search the Web for "IDC10 DB9 serial"
and "internal serial cable."

Note: You may have to update the VIA EPIA-M BIOS in order to get the second serial port to work. This is apparently a
common problem with these motherboards. BIOS files are available for download from http://www.viavpsd.com/.

The second serial port connector is near the rear of the motherboard, right next to the large, pinkish parallel
port connector. (Refer to Figure 2-12.) It looks like two rows of five pins sticking up, except that one of the
corner pins is missing. The adapter cable connector has one of the holes blocked out so that you can only attach
it in one way. The cable also probably has a pink stripe down one side, marking pin 1. That stripe should be on
the side closest to the rear of the motherboard.

The Irman infrared receiver.

http://www.evation.com/
http://www.viavpsd.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A basic, universal remote control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Wi-Fi (optional)

The jukebox needs a network connection so you can upload new songs and perform system administration
tasks. You can use the EPIA's built-in Ethernet port, although who really wants Ethernet cables running through
the house? The EPIA-M has one PCI expansion slot, which you can use for a wireless network card.
Unfortunately, we won't be able to give you all the details of setting up the wireless interface in this chapter.
See Chapter 6 for some good hints, or grab a copy of Linux Unwired (O'Reilly).

LCD display (optional)

Since the jukebox isn't connected to a monitor, you might want to use an LCD display. There, you can display
the artist name, song title, and other information. If you are building or modifying your own case (as we are)
you'll need to find some way to integrate the LCD. See the "Extra Credit" section at the end of this chapter to
learn about adding an LCD module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Step 1: Install and Configure Gentoo Linux

We chose Gentoo Linux for this particular project. If you already have a favorite Linux distribution, feel free to
use that one instead. However, the remainder of this section is Gentoo-specific.

If you've never installed Gentoo Linux before, start by having a look at their online handbook. Since our
platform is the VIA EPIA-M, we'll refer to the "x86" documentation at
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml. We cover the important points here, but you'll
probably want to follow along in their documentation as well.

If you are new to Linux altogether, you may want to have a good reference by your side, such as Linux
Cookbook (O'Reilly), Linux in a Nutshell (O'Reilly), and Linux Administration Handbook (Prentice Hall).

Adapter for the EPIA-M's second serial port.

Connecting the second serial port adapter cable.

http://www.gentoo.org/doc/en/handbook/handbook-x86.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Gentoo Live CD

The first chapter of the Gentoo handbook is an introduction to the philosophy and terminology of Gentoo. It
takes only a minute or two to read. The second chapter explains your options for downloading a Gentoo Live CD
and talks about the three types of installation stages. We recommend downloading the Minimal Live CD and
then performing a stage3 installation. However, if you'll be performing the installation somewhere with a slow
network, you may want to go ahead and download the Universal Live CD image instead.

If you don't plan on having a CD-ROM in your final jukebox, you'll need to connect one temporarily to perform
the installation. Note that the Mini-box PW-70A has two power connectors. The larger one should be connected
to the laptop HD adapter. The smaller connector fits floppy and slim CD-ROM drives. If you don't happen to
have a slim CD-ROM, you'll need an adapter or a "Y" splitter for the larger connector. Another option is to
temporarily use a standard ATX power supply during the installation.

If none of those suggestions work for you, take the laptop hard drive to another system that already has a CD-
ROM. If you take this route, be aware that you may need to account for hardware differences when moving the
drive back to the Mini-ITX system.

As the Gentoo CD boots, it pauses briefly and gives you a chance to load a special kernel or specify certain
options:

ISOLINUX 3.09 2005-06-17 Copyright (C) 1994-2005 H. Peter Anvin

Gentoo Linux Installation LiveCD

http://www.gentoo.org/

Enter to boot; F1 for kernels F2 for options.

boot:

http://www.gentoo.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most likely you can use the default and just press Enter. We found it necessary to use a nonstandard kernel
because our old VGA monitor does not support the higher resolution (probably 800x600) that the default kernel
uses. At the boot prompt, we typed gentoo-nofb and were happy to see a good, old-fashioned VGA text screen.

When Gentoo finishes booting, you'll see a root shell prompt. During the installation, you may find it useful to
switch to another (virtual) screen. While one screen is tied up with a procedure that takes a long time, you can
use another screen to plan ahead or monitor its progress. To access the virtual screens, type Alt-N on your

keyboard, where N is a number from 1 to 6.

Configuring the network interface

The first task after booting is to get the network working, although if you have the Universal Live CD, you may
not need to. We found that the EPIA's built-in NIC is not recognized or configured by default. This can be
confusing because ifconfig may show an eth0 interface, but it appears to be some sort of firewire-to-Ethernet
device. If you're using a VIA motherboard, load the via-rhine kernel module and then start the DHCP client:

modprobe via-rhine

ifconfig eth1

dhcpcd eth1

ifconfig eth1

Of course, if you don't have a DHCP server, you can manually assign the IP address, default gateway, and DNS
server. Note that the real interface comes up as eth1 because eth0 was already assigned. The situation may be
different for your particular hardware configuration.

Partitioning the hard disk

The second step is to partition your hard drive for Linux. The Gentoo Handbook covers this in some detail in
Chapter 4. We suggest that you follow their recommendations and create three partitions: a small boot
partition, a swap partition, and everything else on one large root filesystem. If your hard drive has been
previously partitioned, you'll need to delete your existing partitions as described in the handbook. Assuming the
drive is unpartitioned, here's how to create the first one:

fdisk /dev/hda

Disk /dev/hda: 30.0 GB, 30005821440 bytes

255 heads, 63 sectors/track, 3648 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

Command (m for help): n

Command action

 e extended

 p primary partition (1-4) p

Partition number (1-4): 1

First cylinder (1-3876, default 1): (Hit Enter)

Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-3876, default 3876): +32M

Also set the bootable flag for this partition:

Command (m for help): a

Partition number (1-4): 1

The procedure is similar for adding the other two partitions. For the swapspace we generally recommend that it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

match the amount of RAM you have, or the maximum you expect to upgrade to. We recommend using 512 MB
for swap, even if you have only 256 MB of memory:

Command (m for help): n

Command action

 e extended

 p primary partition (1-4) p

Partition number (1-4): 2

First cylinder (1-3876, default 6): (Hit Enter)

Using default value 6

Last cylinder or +size or +sizeM or +sizeK (1-3876, default 3876): +512M

After adding the swap partition, be sure to change its type to Linux Swap by using the t command:

Command (m for help): t

Partition number (1-4): 2

Hex code (type L to list codes): 82

When adding the third and final partition, select the default value for the last cylinder to use up the rest of the
disk:

Code View:
Command (m for help): n

Command action

 e extended

 p primary partition (1-4) p

Partition number (1-4): 3

First cylinder (1-3876, default 69): (Hit Enter)

Using default value 69

Last cylinder or +size or +sizeM or +sizeK (1-3876, default 3876): (Hit Enter)

When you're done, check the partition with the p command. The particular numbers for your hard drive are

likely to be different than these:

Disk /dev/hda: 30.0 GB, 30005821440 bytes

255 heads, 63 sectors/track, 3648 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System

/dev/hda1 * 1 5 40131 83 Linux

/dev/hda2 6 68 506047+ 82 Linux swap

/dev/hda3 69 3648 28756350 82 Linux

When finished, use w to save the new partition table and exit:

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Now you can put filesystems on two of them and prepare the other for swapping:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mke2fs /dev/hda1

mke2fs /dev/hda3

mkswap /dev/hda2

Next, turn on the swapspace and mount the new filesystems under /mnt/gentoo so you can start installing files
on them:

swapon /dev/hda2

mount /dev/hda3 /mnt/gentoo

mkdir /mnt/gentoo/boot

mount /dev/hda1 /mnt/gentoo/boot

mkdir /mnt/gentoo/proc

mount -t proc none /mnt/gentoo/proc

Downloading an installation tarball

Now it's time to download the stage3 tarball. Start by cd-ing to the recently mounted filesystem; then open
http://www.gentoo.org/main/en/mirrors.xml in a browser:

cd /mnt/gentoo

links http://www.gentoo.org/main/en/mirrors.xml

Select a site close to you and navigate through the subdirectories. First go to releases, then x86. Here you'll
find one or two release directories. Just choose the most recent. At the time of this writing, it was the 2005.1
directory. Under that, you select the directory named stages.

In the stages directory, you'll see a list of CPU types, such as athlon-xp, i686, pentium3, pentium4, and x86.
The CPU on VIA's EPIA-M motherboard is perhaps closest to the Pentium 3. However, as we learned the hard
way, some binaries built for Pentium 3 do not work on the VIA CPU. The i686 binaries don't work either. The
x86 architecture is the one that works for this system, so go into that directory.

Now you'll see large tarballs for stages 1, 2, and 3. Download the stage 3 file and save it in the /mnt/gentoo
directory. The letter d initiates a download in links.

When the download completes, exit links and extract the tarball into the root filesystem:

pwd

/mnt/gentoo

tar xjfp stage3-x86-2005.1.tar.bz2

Installing portage

Your next task is to install Gentoo's Portage system. This is a collection of scripts and patches similar to
FreeBSD's ports and NetBSD's packages. When you install software on Gentoo Linux, Portage downloads the
necessary source code, patches it if necessary, and then compiles and installs it.

The first step is to select one or more of the Gentoo mirror sites. Gentoo's mirrorselect program has a feature
whereby it tries to automatically find the best mirror site. We found that it doesn't work all that well, however,
and recommend that you select the mirror site manually. You can use this command:

mirrorselect -i -o >> /mnt/gentoo/etc/make.conf

http://www.gentoo.org/main/en/mirrors.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Look through the list and pick one or two mirror sites that you think are either topologically or geographically
nearby. Afterwards you may want to look at the /mnt/gentoo/etc/make.conf file and make sure it worked.

Until your new system is fully ready to boot from the hard drive, you'll use chroot to run commands from within
the new filesystem. But first you must copy over the DNS configuration:

cp -L /etc/resolv.conf /mnt/gentoo/etc/resolv.conf

Now, you can safely enter the chroot environment:

chroot /mnt/gentoo /bin/bash

Unfortunately, for us tcsh lovers, bash is the only shell available by default. Oh well, we'll have to live with it for
a while. After entering the chroot shell, the following commands update your environment variables:

env-update

source /etc/profile

Now you are ready to install the Portage files. It's as simple as running this command:

emerge sync

Since Portage consists of more than 100,000 files, the transfer is likely to take quite a while. Now would be a
good time to take a break or read ahead in this chapter. When it completes, you may see a message telling you
that "an update to portage is available." If so, install the update with this command:

emerge portage

You might also see a message suggesting that you run etc-update. This is a tool that helps keep your
configuration files up to date after installing an update to an existing package. You might as well run etc-update
if asked to, although you can probably wait and do it later if you prefer.

Before installing any additional software, you should probably take a moment to learn about Gentoo's USE flags.

These are a list of preferences for optional features in certain packages. USE flags are set by adding a line to the

/etc/make.conf file. Since your jukebox won't have a display, you should minimize the amount of X-windows-
related code that gets compiled. We recommend the following USE flags setting:

USE="-X -gtk -gtk2 -kde -gnome -qt"

Note: To edit files at this point, you'll need to use a text editor named nano. This is GNU's version of the pico editor
popularized by the PINE email user agent. If you've used PINE before, you should have no problems with nano. If you
prefer another editor, such as vi, install it now with emerge.

Have a look at the Gentoo handbook for additional information on USE flags. If you find the concept too

overwhelming at this point, don't worry about it. Everything should still work no matter what settings you have.

Configure your kernel

You are now ready to configure and compile a kernel for the system. The first step is to select a kernel source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package and install it. Gentoo has a web page, http://www.gentoo.org/doc/en/gentoo-kernel.xml, which
describes all of the kernel choices they provide. We suggest that you play it safe and just use the gentoo-
sources package. This is a recent Linux-2.6 kernel with a few patches for improved security and performance.
To install the sources, run this command:

emerge gentoo-sources

After installing the sources, you need to compile and install the kernel. If you are experienced with installing
Linux kernels, you may want to use the standard make menuconfig approach. However, for the sake of

simplicity, we'll show you how to use Gentoo's genkernel utility. First, you need to install it:

emerge genkernel

Then run it:

genkernel all

When genkernel finishes, you should have a few new files in the /boot directory, like these:

Code View:
ls -l /boot

total 3472

lrwxrwxrwx 1 root root 1 Sep 27 06:26 boot -> .

-rw-r--r-- 1 root root 772846 Sep 28 06:56

System.map-genkernel-x86-2.6.12-gentoo-r10

-rw-r--r-- 1 root root 1780245 Sep 28 08:42 initramfs-genkernel-x86-2.6.12-gentoo-r10

-rw-r--r-- 1 root root 1874116 Sep 28 06:56 kernel-genkernel-x86-2.6.12-gentoo-r10

The Gentoo Handbook recommends that you install the hotplug package. We found hotplug to be more
annoying than useful because it prints lots of errors or warnings at boot, prevents the Live CD from shutting
down properly, and doesn't detect any of our hardware that is not already detected by the kernel. Your
experience may be different, of course, especially if you are using a different motherboard. If you don't install
hotplug now and find that something doesn't work, you may want to install it later.

While we're thinking about the kernel, let's make sure that the via-rhine module is automatically loaded when
the system boots:

echo via-rhine >> /etc/modules.autoload.d/kernel-2.6

modules-update

With the Linux-2.6.12 installation that we used, the modules-update command generated warnings about
unresolved symbols in certain files related to SCSI and SATA. Don't worry if you see the same thing-they can
be ignored.

You also need a kernel module to get the audio working, which means installing another package. Let's just
worry about getting Linux up and running for now. Once you have a working system booting from the hard
drive, we'll show you how to configure the sound drivers.

Configure the system

At this point in the installation, you need to set up a few files in the /etc directory. Start with the fstab file first,
and then tackle the networking components.

http://www.gentoo.org/doc/en/gentoo-kernel.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Open the /etc/fstab file with the text editor:

nano /etc/fstab

Initially you should see something like this:

<fs> <mountpoint> <type> <opts>

NOTE: If your BOOT partition is ReiserFS, add the notail option to

opts.

/dev/BOOT /boot ext2 noauto,noatime

/dev/ROOT / reiserfs noatime

/dev/SWAP none swap sw

/dev/cdroms/cdrom0 /mnt/cdrom iso9660 noauto,ro

/dev/fd0 /mnt/floppy auto noauto

NOTE: The next line is critical for boot!

none /proc proc defaults

You'll need to change four things in this file:

Change /dev/BOOT to /dev/hda1.1.

Change /dev/ROOT to /dev/hda3.2.

Change /dev/SWAP to /dev/hda2.3.

Our earlier instructions were to use the ext2 filesystem for the root partition. If you followed those
instructions, change reiserfs to ext2 for the root partition type.

4.

You can also comment out the /dev/fd0 line if your jukebox doesn't have a floppy drive.

Now we can move on to networking. First, select a name for your system and store it in the
/etc/conf.d/hostname file:

HOSTNAME="jukebox"

Gentoo uses DHCP to configure interfaces by default, so you probably don't need to edit /etc/conf.d/net.
However, you do need to install a DHCP client with emerge:

emerge dhcpcd

If you need to manually configure the network, edit /etc/conf.d/net and add two lines based on this example,
changing the numbers to match your network configuration:

config_eth0=("192.168.0.2/24");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

routes_eth0=("default via 192.168.0.1");

Refer to /etc/conf.d/net.example to learn more about how you can configure the network. Also keep in mind
that if your system is like ours, the on-board Ethernet interface shows up as eth0 later, even though it is eth1
now. Again, it may be different for your particular hardware, so be sure to double-check after you reboot. If
your Ethernet device comes up as eth1 later, you'll need to revisit this section and change the /etc/conf.d/net
file.

To have the system automatically configure the eth0 interface at boot, run this command:

rc-update add net.eth0 default

The final network-configuration item to worry about is the /etc/hosts file. If you have a home network with a
DNS server, you should update your DNS configuration to reflect the addition of this new system. Otherwise,
you may want to simply add a few lines to the /etc/hosts file. For example:

127.0.0.1 localhost jukebox

192.168.0.1 router

Note: DHCP and /etc/hosts don't mix very well since /etc/hosts is a static database and DHCP is, by definition, dynamic.
If your network has only one or two machines on it, chances are that DHCP always assigns the same addresses to the
same hosts, so you may be able to use the /etc/hosts file to hardcode the IP addresses of computers on your network
anyway. In the preceding example, we played it safe and put in two hosts we know will never change: localhost and our
router.

Install a bootloader

The bootloader is a small program that is executed when the system boots from a hard disk. Gentoo offers two
bootloader choices: LILO and GRUB. The Gentoo Handbook recommends GRUB, and we concur. First, use
emerge to get the GRUB package:

emerge grub

Then, use the grub program to do the initial configuration. You can save some time by starting grub with the --

no-floppy option:

grub --no-floppy

Now you are in the grub shell and need to type the following three lines:

grub> root (hd0,0)

grub> setup (hd0)

grub> quit

Now GRUB is installed on the hard drive's Master Boot Record (MBR). You still need to create a GRUB
configuration file, however. That file lives at /boot/grub/grub.conf:

nano /boot/grub/grub.conf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We recommend that you use a symbolic link for the kernel filename. This allows you to upgrade (or downgrade)
the kernel later, without re-editing grub.conf. Place the following lines into this file:

default 0

timeout 30

title=Gentoo Linux

 root (hd0,0)

 kernel /kernel root=/dev/hda3

Then, create the symbolic link to your kernel file. Note that the kernel pathname is relative to the root partition.
For example, since (hd0,0) corresponds to the /boot partition, GRUB loads the file named /boot/kernel. Here

are the commands:

cd /boot

ln -s kernel-genkernel-x86-2.6.12-gentoo-r10 kernel

If you upgrade the kernel on this system at a later date, such that the kernel filename changes, just return to
the /boot directory and change the symbolic link. If you want to be able to boot from multiple kernels, simply
add more title, root, and kernel lines as necessary.

If you want to make the first serial port the system console, you simply need to add a few things to grub.conf.
First, add these two lines to the top of the file:

serial --unit=0 --speed=115200 --word=8 --parity=no --stop=1

terminal serial

Those lines instruct GRUB to print its menu on the serial port instead of the VGA screen. Then, modify the
kernel line by adding some options so that the kernel knows it also should use the serial port:

kernel /kernel root=/dev/hda3 console=tty0 console=ttyS0,115200n8

The console=tty0 argument tells the kernel to send console output to the first VGA virtual terminal (i.e., the

normal system console). The second one, console=ttyS0,115200n8, tells the kernel to also send console output

to the first serial port at 115,200 bps. The kernel uses the last console= argument for input.

Final tasks

For some reason Gentoo does not install default syslog or cron packages for you. You must choose which
particular ones you'd like to use and install them manually. We recommend using sysklogd and vixie-cron:

emerge sysklogd

rc-update add sysklogd default

emerge vixie-cron

rc-update add vixie-cron default

Have a look at Part 1, Chapter 10 of the Gentoo Handbook if you'd like to know more about the other choices.

Assign a password to the root account if you haven't done so already:

passwd

You should also create one or more user accounts at this point. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

useraddcolin -m -G users,wheel,audio,tty -s /bin/bash

passwdcolin

We assume that eventually you'll be using the jukebox without a screen and keyboard. That means you'll need a
way to log in remotely. The obvious choices are SSHD and the serial port. We recommend enabling both.

SSHD should already be installed on your system. You simply need to have the daemon start when the system
boots:

rc-update add sshd default

To log in through the serial port, you'll need a getty process running there. On Linux, the /etc/inittab file
contains the configuration lines for agetty processes. Edit /etc/inittab and find the section with all the agetty
lines. Then add a line like this:

s0:12345:respawn:/sbin/agetty 115200 tts/0 xterm

115200 is the port speed, tts/0 is the /dev entry for the first serial port, and xterm is the default terminal type.

After editing the file, run the following command to tell init to re-read its configuration:

init q

Verify that the new agetty process is running on the first serial port with ps:

ps -t tts/0

 PID TTY TIME CMD

 1206 tts/0 00:00:00 agetty

You may also need to modify /etc/securetty so that root can log in on the serial port. The file is just a list of TTY
names, without the /dev/ part, where root is allowed to log in from. Edit the file and make sure that tts/0
appears in it. If the line is commented out, remove the comment character.

Reboot!

It's now time to reboot the system and make sure you got everything right. First unmount the hard drive
filesystems:

umount /mnt/gentoo/proc

umount /mnt/gentoo/boot

umount /mnt/gentoo

Then execute the reboot command:

reboot

If the shutdown procedure seems to stall on something related to hotplug, try the reboot command again.

Be sure to remove the Gentoo Live CD before the system reboots. If you've configured the serial port as a
console, connect a null modem cable and open a terminal program (such as screen or minicom) on another PC
so you can watch the new system boot. Pay particular attention to the network configuration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configuring Gentoo for sound

Getting sound to work on Gentoo is not too difficult, thanks to their documentation at
http://www.gentoo.org/doc/en/alsa-guide.xml. The following instructions are taken from that document. Most
likely your VIA motherboard has a sound chipset starting with the number 82. You can run the following
command to verify the exact model number:

grep -i audio /proc/pci

Multimedia audio controller: VIA Technologies, Inc. VT8233/A/8235 AC97

 Audio Controller (rev 80).

Tell Gentoo to build a module for this particular sound chip by adding this line to /etc/make.conf:

ALSA_CARDS="via82xx"

Then run the following two commands to build the via82xx kernel module and support utilities:

emerge alsa-driver

emerge alsa-utils

Add the following line to the /etc/modules.d/alsa file:

alias snd-card-0 snd-via82xx

Every time you modify one of the files in the /etc/modules.d directory, you should run the following command:

modules-update

If modules-update prints warnings about unresolved symbols, you can probably ignore them. To make your
system automatically load the ALSA sound drivers when it boots, execute this command:

rc-update add alsasound boot

To load the sound drivers immediately, without rebooting, execute the startup script manually:

/etc/init.d/alsasound start

 * Loading ALSA drivers... * Using ALSA OSS emulation

 * Loading: snd-seq-oss

 * Loading: snd-pcm-oss

 * Running card-dependent scripts

 * Restoring Mixer Levels

 [ok]

Note that the audio outputs are muted and set to zero volume by default. Before you can hear anything, you'll
need to unmute them and increase the levels. If you installed the alsa-utils package, you can use the alsamixer
program. It has a colorful, full-screen interface for adjusting everything. Alternatively, you can use the amixer
program, like this:

amixer set Master 20 unmute

amixer set PCM 20 unmute

http://www.gentoo.org/doc/en/alsa-guide.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point, you should be able to play and hear some sounds. You might have a hard time finding a sample
sound file, at least until you install an Ogg/MP3 player and copy over some files to play. You may also want to
reboot, if you haven't already, and make sure that the sound drivers are loaded correctly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Step 2: X Windows and XMMS

XMMS is a very popular audio player for the X Window System (X Windows). It has all of the features we need
for our jukebox, including good infrared remote support and plug-ins for different audio formats, such as Ogg
Vorbis. The only drawback is that XMMS requires X Windows, and this project is designed to run "unattended"
and without any video display.

One solution to this problem is to use a command-line player instead of XMMS. One of these, called noXMMS, is
a version of XMMS with all the GUI parts stripped out. noXMMS has two drawbacks: it is not updated as often as
XMMS, and a few of XMMS's neat features don't work.

Another option is to run X Windows on the built-in display. We can configure it so that X starts automatically at
boot time. After everything is working, you can disconnect your monitor and keyboard and control the jukebox
entirely with the infrared remote. However, if a problem arises later, you may need to reconnect the monitor
and keyboard to log in and fix it.

Taking this idea one step further, we recommend that you actually install a virtual X server, also known as a
VNC server. This provides a couple of advantages. First, you don't need to connect a spare monitor keyboard to
the jukebox. Second, you can connect to the VNC server from one of your existing systems, including a
Microsoft Windows box or even a handheld computer such as a Palm, Zaurus, or Pocket PC. One of the best
features is that the X server stays running after you disconnect. When you reconnect later, the windows will still
be there. We recommend that you run the VNC server as a nonprivileged user, named colin in our examples. If
you didn't create one yet, go back to "Final Tasks."

tightvnc

Let's start by installing the VNC server. Gentoo's portage collection contains quite a few different VNC
applications. We recommend using tightvnc, since it will perform well even over slow links (opening up the
possibility that you could control your jukebox from a VNC client running on a cell phone!):

emerge tightvnc

Installation may take a while since emerge probably needs to download and install all of the standard X
Windows clients and libraries. When it's done, you can test it with these commands:

su - colin

colin$ /usr/bin/vncserver :1 -geometry 1000x700

You will require a password to access your desktops.

Password: sekrit

Verify: sekrit

Would you like to enter a view-only password (y/n)? n

xauth: (argv):1: bad display name "jukebox:1" in "add" command

New 'X' desktop is jukebox:1

Creating default startup script /home/colin/.vnc/xstartup

Starting applications specified in /home/colin/.vnc/xstartup

Log file is /home/colin/.vnc/jukebox:1.log

The :1 argument instructs the VNC server to start itself as display number one (whereas display numbering

normally starts at zero). You may want to adjust the -geometry parameters to suit your needs (if you connect

http://lib.ommolketab.ir
http://lib.ommolketab.ir

from a small-screen device, VNC should allow you to either scale down a large resolution display or pan around
it). vncserver will prompt you for a password the first time. Clients must enter this password when they
connect.

To test the virtual X server, go to another computer on the network and start up a VNC client. If you've installed
tightvnc on the other computer, the client is named vncviewer. For example, in our case the jukebox's IP
address is 172.16.1.241, so we type:

/usr/bin/vncviewer 172.16.1.241:1

Note that, here, :1 refers to the display number (as in the vncserver command), rather than a port number as

you might see in a URL. The VNC client should prompt you for a password and then display a window that looks
like the one shown in Figure 2-13.

The no-frills and somewhat ugly window manager that you see is called twm. You can use a different one if you
like. In fact, if you are really gung-ho, you can install KDE or Gnome. These desktop environments are overkill
for our purpose, especially since you'll be controlling the jukebox with a remote control. However, see the
section "X Windows" in Chapter 3 if you would like to install Gnome or KDE.

While we're on the subject of twm, there is one little thing we should fix. By default, twm makes you choose the
location for new windows with your mouse. The application doesn't start until the window is placed. This is
trouble since, in the unattended mode, we want XMMS to start automatically. To solve this, copy the system
twmrc to your home directory and add one line:

colin$ cp /etc/X11/twm/system.twmrc ~/.twmrc

colin$ chmod +w ~/.twmrc

colin$ nano ~/.twmrc

Somewhere near the top of that file, add the following line:

RandomPlacement

The initial virtual X display.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then, the next time you start the VNC server, windows should be placed automatically on the desktop.

One final detail to take care of is starting vncserver automatically when the jukebox boots up. On Gentoo,
/etc/conf.d/local.start is a good place to put startup commands. We suggest that you start vncserver as a
nonprivileged user. Here's the command you can place in local.start:

/bin/su - colin --login -c "/usr/bin/vncserver :1 -geometry 1000x700"

At this point, it's probably a good idea to test everything by rebooting the system. Watch the console output (if
you can) as it boots and make sure that vncserver starts correctly. Then, connect with a VNC client and open a
few xterms to make sure that the RandomPlacement option is working as well.

XMMS

Installing XMMS is easy with emerge:

emerge xmms

Shortly thereafter, you should be able to test it by giving an MP3 or Ogg file as a command-line argument:

xmms ~colin/music/Cabaret_Diosa/Voodoo_Pinanata/12-Mambo_Verde.ogg

If everything is working, you'll see the XMMS window appear and hear some music. If you've never used XMMS
before, you may want to take some time and become familiar with its operation and features.

You need to install another little package, the LIRC plug-in for XMMS, to control it with the infrared remote. In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Gentoo the package is named xmms-lirc:

emerge xmms-lirc

After installing the plug-in, restart XMMS. Place the mouse over the XMMS window and type Ctrl-V. Select the
General Plug-ins tab, and you should see a line that says "LIRC Plug-in." Highlight this line and then click the
"Enable plug-in" checkbox.

We'll show you how to finish off the necessary LIRC configuration in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Step 3: Infrared Remote Control

A remote control is key to making the jukebox a standalone system. When the project is finished, you'll be able
to perform almost every operation via the remote. You won't need to log in to the jukebox to start the player,
adjust the volume, etc.

We're using the Irman infrared receiver from a company named Evation. The receiver costs about $35. The
device is pretty small: 3 x 2.4 x 1 inches or 7.6 x 6.2 x 2.5 centimeters. It's a black box with an IR receiver on
one side and a serial cable coming out the other.

You can also get a remote control from Evation; unfortunately, their remote is not a good choice for this project.
Most importantly, it doesn't really have enough buttons. Notably missing is a numeric keypad for digits 0–9.
After being disappointed by the Evation remote, we visited the local mega discount shopping store and
purchased a Philips Magnavox remote with more features for less than $10. The examples in this chapter are
based on this remote.

Irman technical details

Here's a little bit of info about how the Irman works that may help you debug problems if necessary. The device
is powered by the serial port's RTS and/or DTR lines. Of course, serial ports were never really designed to
provide power, but the Irman's power needs are so small that it can use the current flowing through these
control lines.

When the Irman first receives power, it waits for a handshake from the computer before transmitting any data
to it. The computer must send the two-character sequence IR. Irman then responds with OK. Both the RTS and

DTR lines are normally low. When an application opens the serial port, these lines are set high, providing power
to the Irman. That's the way it works on Linux, anyway. While doing some testing on FreeBSD, we found that
the RTS line is always high. This confuses Irman applications. The initial handshake fails because the device is
already initialized.

The Irman interprets infrared signals and converts them into groups of characters. Data transmission is fixed at
9600 bps, 8N1.

libirman

libirman is the library that other programs use to talk to the Irman. Evation provides this software for Linux and
is downloadable at http://www.evation.com/libirman/libirman.html. For Gentoo, however, we can just use
emerge:

emerge libirman

After libirman is installed, you can perform a quick test. Connect the Irman receiver to the appropriate serial
port. Here, we'll assume you are using the second port, named /dev/tts/1. If you are using the first serial port,
make sure you don't have a getty process running there.

Use the test_io program that was installed as a part of libirman:

test_io /dev/tts/1

You should immediately see the following output:

IR

OK

http://www.evation.com/libirman/libirman.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you you see an error message instead, the application was unable to initialize the Irman receiver. This can
happen if you've connected it to the wrong serial port, or if the serial port is not working for some reason.
Remember, you may need to upgrade the BIOS to get the second serial port working on an EPIA-M
motherboard.

If you get the OK response, try pushing some buttons on your remote control. For each button press, you should

see some numeric codes, like these:

[77][c0][00][00][00][00]

[75][80][00][00][00][00]

[77][d0][00][00][00][00]

[77][d0][00][00][00][00]

[75][b0][00][00][00][00]

[75][b0][00][00][00][00]

LIRC

The Linux Infrared Remote Control (LIRC) package is a "glue" layer that sits between hardware devices (such as
the Irman receiver) and software applications. You'll use two of the LIRC programs, lircd and irexec, to remotely
control the jukebox.

Before using emerge to install LIRC, you need to set a special make option in /etc/make.conf. Add the following
line so that LIRC is compiled with support for the Irman driver:

LIRC_OPTS="--with-driver=irman"

Then install LIRC:

emerge lirc

rc-update add lircd default

You're not quite ready to start lircd just yet. Note, however, that the preceding rc-update command means lircd
will be started each time the system boots from now on.

lircd.conf

The next step is to create the /etc/lircd.conf file. This file contains a bunch of magic numbers specific to your
particular remote control. lircd uses the information in this file to map the numeric codes to button names. You
can either generate /etc/lircd.conf by running irrecord, or you can try to use a configuration file made by
someone else.

The LIRC web site contains a number of config files submitted by users for a wide range of remote controls. To
see if yours is included, visit http://lirc.sourceforge.net/remotes/. If you find it, copy the file to your computer
and save it as /etc/lircd.conf. Note that universal remotes are programmable for different brands and types of
devices. Reprogramming the remote changes the codes that it emits. This means that one person's
configuration file may not work for you, unless both remotes happen to be programmed for the same device.

To eliminate the uncertainty of using someone else's configuration file, we suggest that you use irrecord to
create your own:

irrecord --driver=irman --device=/dev/tts/1 /tmp/lircd.conf

http://lirc.sourceforge.net/remotes/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Follow the instructions that irrecord gives you. One of the first things it asks you to do is hold down any button.
You'll see a dot on the screen for each signal it receives. You might think that the program is not working
because it just keeps printing dots. Eventually, however, it stops and reports something called the gap length.
The output looks like this:

Code View:
Hold down an arbitrary button.

..

Found gap length: 209923

Then, you'll be prompted to press the buttons one at a time after typing the name for each one. For example:

Code View:
Please enter the name for the next button (press <ENTER> to finish recording)

POWER

Now hold down button "POWER".

Please enter the name for the next button (press <ENTER> to finish recording)

PLAY

Now hold down button "PLAY".

Please enter the name for the next button (press <ENTER> to finish recording)

STOP

Now hold down button "STOP".

Please enter the name for the next button (press <ENTER> to finish recording)

You can make up your own button names (shown in bold above). The names that you enter will appear in the
lircd.conf. You must use the same names later when you write the /etc/lircrc file. The button names are not
case-sensitive.

In addition to the buttons shown in the example above, you should repeat the process for "pause," "fast-
forward," "rewind," "volume-up," "volume-down," "channel-up," and "channel-down." When you are finished,
have a look at the /tmp/lircd.conf file. If it looks reasonable to you (i.e., it has codes for all the buttons you
want), copy or rename the file to /etc/lircd.conf. Here's what ours looks like:

Code View:
Please make this file available to others

by sending it to <lirc@bartelmus.de>

#

this config file was automatically generated

using lirc-0.7.0pre4(irman) on Sat Jul 10 22:31:15 2005

#

contributed by

#

brand:

model no. of remote control:

devices being controlled by this remote:

#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

begin remote

 name Philips_Magnavox_PM4B

 bits 16

 eps 30

 aeps 100

 one 0 0

 zero 0 0

 pre_data_bits 16

 pre_data 0xFFFF

 post_data_bits 32

 post_data 0x0

 gap 209915

 min_repeat 1

 toggle_bit 0

 begin codes

 POWER 0x0000000000005590

 PLAY 0x0000000000004200

 STOP 0x0000000000004230

 REV 0x0000000000004270

 FWD 0x0000000000004210

 PAUSE 0x00000000000043C0

 CH-UP 0x0000000000005750

 CH-DN 0x0000000000005740

 VOL-UP 0x0000000000005450

 VOL-DN 0x0000000000005440

 ZERO 0x0000000000005550

 ONE 0x0000000000005540

 TWO 0x0000000000005570

THREE 0x0000000000005560

 FOUR 0x0000000000005510

 FIVE 0x0000000000005500

 SIX 0x0000000000005530

 SEVEN 0x0000000000005520

 EIGHT 0x00000000000055D0

 NINE 0x00000000000055C0

 ENTER 0x00000000000055F0

 end codes

end remote

Note that the numeric codes in /etc/lircd.conf are a little bit different from the way they appear in test_io
output. For example, the POWER button looks like this in /etc/lircd.conf:

POWER 0x0000000000005590

But test_io prints it this way:

[55][90][00][00][00][00]

This is important to know if you need to add buttons to lircd.conf later on.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lircd

Now that you have an lircd configuration file, you can start it for the first time. But first, edit /etc/conf.d/lircd
and add a command-line option that specifies the serial port where Irman is connected. This example assumes
you are using the second serial port:

LIRC_OPTS="-d /dev/tts/1"

Then, use the system startup script to start lircd:

/etc/init.d/lircd start

 * Starting lircd... [ok]

You can also check the messages in /var/log/daemon.log to make sure lircd is running correctly:

Jul 7 20:47:17 gentoo-jukebox lircd 0.7.0pre4[8534]: lircd(irman)

ready

lircrc

LIRC clients, such as xmms (with the LIRC plug-in), use (yet another) configuration file that binds button names
to actions or commands. The lircrc file contains a number of definitions like this:

begin

 prog = program-name

 button = button-name

 config = string

 repeat = digit

end

Here's what they mean:

prog

Specifies the name of the client that should receive notification for this button press. In the following
examples, it is set to xmms.

button

A remote-control button name that is listed in the /etc/lircd.conf file.

config

A string that is passed to the client when the button press is detected. For xmms, config strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

correspond to operations such as Play and Stop.

repeat

Specifies how quickly lircd acts on buttons that are held down. For example, with a value of 3, the

application receives every third instance of the held-down button press.

The lircrc language also has flags and mode directives. Since these are kind of complicated, we won't talk about

them just yet.

Here's an initial configuration file for xmms, which you should save as /etc/lircrc:

Code View:
begin xmms

 begin

 prog = xmms

 button = PLAY

 config = PLAY

 end

 begin

 prog = xmms

 button = PAUSE

 config = PAUSE

 end

 begin

 prog = xmms

 button = STOP

 config = STOP

 end

 begin

 prog = xmms

 button = CH-DN

 config = NEXT

 end

 begin

 prog = xmms

 button = CH-UP

 config = PREV

 end

 begin

 prog = xmms

 button = FWD

 config = FWD 3

repeat = 2

 end

 begin

 prog = xmms

 button = REV

 config = BWD 3

 repeat = 2

 end

 begin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 prog = xmms

 button = VOL-UP

 config = VOL_UP 1

 repeat = 1

 end

 begin

 prog = xmms

 button = VOL-DN

 config = VOL_DOWN 1

 repeat = 1

 end

end

Note: This configuration uses the remote's "channel up" and "channel down" buttons to skip between songs.
Unfortunately, our remote doesn't have any other buttons that can be used to jump to the next (or previous) song. You
should be able to find a remote with the necessary buttons if that is important to you.You may have noticed that all of the
xmms button definitions are inside a begin xmms ... end block, or mode group. We'll refer to this as the xmms group

and explain its purpose later in the chapter.

Now you should be able to control xmms with the remote. Make sure that lircd is running; then start xmms,
make sure the LIRC plug-in is enabled, and try some of the buttons. If it doesn't work, try running test_io again
to make sure the Irman is receiving signals from the remote control.

Getting fancier

The remote-control setup is pretty cool. You can start and stop songs, skip through the playlist, scan forward
and backward during a song, and adjust the volume. Even so, there is still room for improvement. Here are
some ways to make the remote even more useful.

Operating without a console

Since your jukebox will eventually be running without a console, you need a way to start (and stop) xmms
without being logged in. One option is to simply start xmms automatically when X Windows starts and hope that
it never needs to be restarted. A better approach is to use the remote control. The LIRC package comes with a
client called irexec that can be used to execute any system command. Thus, you can tell irexec to execute
xmms when the "Power" button is pressed. To make it work, add this to the end of /etc/lircrc, outside of the
begin xmms ... end section:

begin

 prog = irexec

 button = POWER

 config = xmms /home/colin/music/list.m3u &

 mode = xmms

 flags = once

end

This definition is a little more complicated than the others, so let's make sure that you understand what each
line does. The prog line says that the irexec client will receive notification events for this button. The button line

binds this action to the POWER button, which is defined in the /etc/lircd.conf file. The config line is the string

passed to irexec. This is the command that irexec executes when you hit the button. The playlist file
/home/colin/music/list.m3u is passed as an argument to xmms. Also note the ampersand on that line, so that
the command runs in the background.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The mode line tells the LIRC system to enter the xmms mode after this button has been pressed. From then on,

only the buttons defined in the xmms group are active. This feature, along with the once flag, ensures that

xmms is started only once.

You can also use the Power button to stop xmms. The /etc/lircrc configuration looks like this:

begin

 prog = xmms

 button = POWER

 config = QUIT

 flags = quit mode

 end

This button definition goes inside the xmms group. The quit flag tells LIRC to stop looking through the

configuration for other instances of the POWER button. The mode flag tells LIRC to leave the current mode (i.e.,

the xmms section) and return to the previous mode. This makes the other POWER button active again, so that
xmms starts again when you press it.

You mustn't forget to actually start the irexec program. Otherwise, there will be no way to start xmms with the
remote. Since xmms is an X Windows application, it needs to have the appropriate environment variables (e.g.,
DISPLAY) to start up. In other words, irexec should be a child process of the X server, Xvnc. The easiest way to
accomplish this is by adding the following irexec command to the $HOME/.vnc/xstartup file:

/usr/bin/irexec --daemon /etc/lircrc

Knowing when the jukebox is ready

LIRC is now set up so that you can start xmms by pressing the Power button after the system boots. One little
annoyance, however, is that you can't tell when the system is finished booting. If you press the Power button
before all of the necessary applications are running, it has no effect. Since the system is designed to be very
quiet, you might think that it is not even running. A solution to this problem is to play a sound file near the end
of the boot sequence. You'll need to find an appropriate sound file that you'd like your jukebox to play when it
boots. Then add these lines to /etc/conf.d/local.start:

/usr/bin/amixer set Master 20 unmute

/usr/bin/amixer set PCM 20 unmute

/usr/bin/aplay /root/kill-all-humans.wav

Halting the system

Wouldn't it also be nice if you could shut down the system with the remote? Well, you can! You just need to
select an appropriate button and make it execute the poweroff command. Selecting the appropriate button is

the hardest part. The Power button is an obvious choice, but it already has a job: to start and stop xmms. Our
own remote doesn't have many other buttons that aren't already being used. But we found one that works: a
button labeled "Info/Select." First, you need to add the button and numeric code to /etc/lircd.conf:

INFOSEL 0x00000000000055A0

Now you have to think about where to put the button definition in /etc/lircrc. It would be annoying if you
accidentally hit the button, shutting down the system while playing music. To safeguard against such mistakes,
make sure the shutdown button is active only when xmms is not running. First, add this button definition inside
the xmms group:

begin

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 button = INFOSEL

 flags = quit

end

Remember, the code for your remote is probably different. Use the test_io command to find the
code for your particular remote.

Then, lower in the file, add this definition outside the xmms section:

begin

 prog = irexec

 button = INFOSEL

 config = /sbin/poweroff &

end

With these two definitions, the shutdown button (e.g., INFOSEL) is disabled when xmms is running. If you stop

xmms, the second definition becomes active, and you can halt the system with the remote control.

Since you're running vncserver as a nonprivileged user, the poweroff will fail unless you do something to make

it run as root. An easy solution to this problem is to enable the setuid bit for /sbin/halt:

chmod 4755 /sbin/halt

This change may be undone later, however, when you upgrade Gentoo. A more complicated solution is to install
sudo and configure it to allow the nonprivileged user to run poweroff without supplying a password.

Note: If the poweroff command halts your system but doesn't actually turn off the power, check the power-management

settings in the BIOS and make sure that APM and/or APCI are enabled in your kernel.

Managing playlists

Recall that irexec passes a playlist file to xmms. This is simply a list of audio files, which you can easily generate
with a command like this:

colin$ find music -type f > music/list.m3u

Most people find it boring to listen to their music collection in the same order each time. We have a few ideas
for adding some variety to the order of songs:

The simplest technique is to use xmms's built-in randomize feature. Simply click the RAND button on the

main window. xmms remembers your settings, and even where it left off in the playlist.

Another option is to randomize the order of the playlist file, perhaps each time the system boots. For
example, you might add these commands to /etc/conf.d/local.start:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

su - colin -c "find music -type f \

 | perl -e 'print sort {1-int(rand(3))} <>;' \

 > music/list.m3u"

Or, you could choose an unused button on your remote control. Use an irexec definition to execute the
preceding command. As with the system startup sequence, you may want to have it play a little tune
when this command has finished doing its thing.

The xmms-lirc plug-in has a neat feature that allows you to select songs in the playlist with the numeric
keypad. To make it work, you'll need to add definitions to /etc/lircrc for the numbers and the ENTER
button:

begin

 prog = xmms

 button = ONE

 config = ONE

end

begin

 prog = xmms

 button = TWO

 config = TWO

end

...

begin

 prog = xmms

 button = ENTER

 config = SETPOS

end

To use this feature, simply enter the song number on the remote and press "Enter."

The xmms-lirc plug-in has another advanced feature that allows you to search for song titles with a
technique similar to the way we enter text messages on our mobile phones. However, we feel that this
mode is too awkward to use reliably, especially since it brings up a pop-up window to help make the
selection. If you want to research this on your own, look for the word "SELECT" in the sample lircrc
included in the xmms-lirc distribution.

You may prefer to organize your music by genre (folk, jazz, rock, etc). If you take the time to organize
your music in this way, you can assign numeric buttons to different genres. To do it, you can use the
PLAYLIST_SET feature of lirc-xmms, like this:

begin

 prog = xmms

 button = ONE

 config = PLAYLIST_SET /home/colin/music/folk.m3u

end

begin

 prog = xmms

 button = TWO

 config = PLAYLIST_SET /home/colin/music/jazz.m3u

end

begin

 prog = xmms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 button = ONE

 config = PLAYLIST_SET /home/colin/music/rock.m3u

end

...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Case Modding

The Mini-ITX motherboard provides a perfect opportunity to attempt a "casemod." Rather than put the system
into a boring, or maybe even ugly, computer case, why not stuff it into something unique that you won't be
ashamed to have on display in your house? Case modding is quite popular, and you should have no trouble
finding numerous pages describing what others have done. Be sure to check out http://www.mini-itx.com/ if
you haven't already!

Since each casemod project is unique, we won't be able to give you specific instructions or advice for your
project. Instead, we'll describe how we turned a nonworking antique radio into an enclosure for our jukebox.

Preparing the cabinet

One of us purchased an old radio from an antique store some years ago with plans to repair and restore it-a
Silvertone-brand tube-type radio manufactured in 1954. Of course, it just sat in the bottom of the closet since
then with no progress whatsoever toward making it work again. This particular radio looks pretty good on the
outside and seems to have all of its original components on the inside. It has a nice dial; four knobs for volume,
tuning and such; and five preset station buttons (see Figure 2-14).

The first step in preparing the cabinet was simply to clean it out and decide what to keep and what to toss. This
radio had accumulated quite a bit of dust and dirt over the years. After removing the tuner/amplifier assembly,
we used a wet sponge and can of compressed air to clean out the inside. We found that the speaker no longer
works, so we removed that as well (which is a good idea in general, since you don't want an unshielded magnet
next to your hard drive!). The tuner/amplifier assembly no longer works, and takes up about half of the cabinet.
The tuner dial and all of the knobs are attached to this assembly. We decided to keep it for that reason-to
make the cabinet look authentic on the outside. The cabinet is pretty big overall (11 x 19 x 11 inches), so we
still had plenty of room for the Mini-ITX motherboard and other parts.

With the cabinet cleaned out, we started to think about where all the new parts should go and how to attach
them. Our jukebox consists of a motherboard, laptop hard drive, Irman receiver, and a fan; Figure 2-15 shows
how we placed the components inside the cabinet.

The antique radio that we'll convert to a digital jukebox.

http://www.mini-itx.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Inside the radio cabinet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The motherboard

We decided to mount the motherboard to the bottom (inside) of the cabinet. It would also fit mounted to one of
the sides, but since we were drilling holes in the wood, we preferred to do that to the bottom where it is less
visible. We used the same sort of hex mounting screws that you'll find in most computer cases. Unfortunately
this is not an item you can find at the local hardware store. We found some at a specialty electronics store and
also by searching the Web for various combinations of the terms hex motherboard standoff screws.

The Mini-ITX form factor has four holes near each corner of the motherboard for mounting. Our radio cabinet
was too short to allow us to drill from the inside, so we drilled four holes from the bottom of the cabinet. This
was a relatively tricky procedure for two reasons. First, it was hard to translate an inside position to an outside
position because of the way the cabinet is built. Fortunately, we had plenty of wiggle room and made a good
approximation. The harder part was marking the holes for drilling on the bottom of the cabinet. We lay the
motherboard on the cabinet in the same orientation that it would be mounted. That meant the bottom of the
motherboard was more than an inch away from the wood because of the heat sinks and other components. We
eyeballed the drill holes by standing above the motherboard and looking down through the existing holes. After
marking, we verified their relative positions by measuring both the motherboard holes and the pencil marks.

We drilled the four holes with a 3/32-inch drill bit and then inserted the four hex standoffs. It turns out our
eyeballing was good for only three out of the four holes. One of them was off by about 5 millimeters. We drilled
a second hole for this one, but missed a little and overcompensated. Rather than put yet another drill hole in
such a small area, we decided to just leave it as is. We placed a small piece of insulating material between the
motherboard and the standoff to make sure that it didn't touch any exposed solder.

CPU/case fan

Even though our motherboard is "fanless," we thought it should have some airflow inside the cabinet to provide
at least a little cooling. The advantage of a fanless system, of course, is that it's much quieter. We didn't want

http://lib.ommolketab.ir
http://lib.ommolketab.ir

our fan to turn this into a noisy system, so we used two tricks to keep the fan noise to a minimum.

First, we used a fan speed controller, such as the Zalman Fan Mate-1. It has a small knob that controls fan
speed (by adjusting the voltage). Once installed, the knob is accessible only from the inside. We planned to
leave ours on the slowest and quietest setting, at which it still provides decent airflow and cools the heat sinks.

Our second trick was to suspend the fan above the heat sinks with thin wires. Vibrations are a common source
of noise in standard enclosures. When fans are firmly attached to the heat sink and motherboard, vibrations
travel throughout the case and may become amplified. Suspending the fan is a great way to eliminate vibration
noise. You may be able to use thread or string instead of wire.

We considered inserting small eye screws into the roof of the cabinet. However, it was hard to get them started
without being able to drill some pilot holes. Instead we used two square cable-tie attachments that were sticky
on one side. These applied to the cabinet quite easily and had a strong adhesive. Then we ran a loop of wire
through each one and shaped them into tall triangles, as shown in Figure 2-16.

For the fan we used a spare CPU fan that came with a boxed Pentium 4 CPU. It's about three inches in diameter
and its outer plastic has notches that allow it to easily rest on our wires. Although it may not be clear from
Figure 2-17, the fan hangs about an inch above the two heat sinks.

Hard drive

We used a 30 GB laptop hard drive and a 44-pin-to-40-pin PATA adapter. As with fans, hard drives are another
common source of computer noise for the same reason: the spinning platter.

We used the same suspension trick to reduce noise from the hard drive. Two more sticky cable-tie attachments
and a loop of wire kept the hard drive in mid-air, away from the sides of the cabinet. We fed the wire through
the holes in the hard drive where you might normally insert screws. See Figure 2-18.

Another way to reduce hard drive noise is to enable power-management features that allow the drive to spin
down after some period of inactivity. This is normally a setting in the motherboard's or hard drive's BIOS (if it's
in the hard drive, you'll need to get a utility from the hard drive manufacturer that will probably need to run
under some form of DOS). We've also noticed that newer hard drives are much quieter than older ones. This
might be because manufacturers are paying more attention to noise, but more likely it's simply because drives
become noisy after a few years of use.

We use sticky pads designed for cable ties to hang things from the top of the cabinet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A fan hangs just above the CPU to provide some cooling.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Irman receiver

The Irman receiver presented a small challenge. The receiver needed to be exposed so that it can receive the
infrared signals. However, we didn't want to cut any holes in the cabinet, and we didn't really want the Irman
sitting outside the case. Fortunately, we found that the receiver worked quiet well behind the speaker grille
cloth. We used sticky cable-tie attachments and wire to suspend it behind the cloth so that the small receiver
window is right up against the cloth. Problem solved! You can see the Irman located behind the cloth in Figure
2-18.

On/off switch

As we mentioned earlier, we haven't yet thought of a way to actually turn on the jukebox with the remote
control. This meant we needed a power-b-utton switch somewhere. Our preference was to avoid cutting new
holes in the cabinet if possible. That left only a couple of options.

We considered mounting our switch on the rear of the cabinet. For example, we might take a small square of
scrap wood and mount the switch into it, then attach the scrap wood to the cabinet with glue or screws. While
this technique keeps the switch out of view, it also makes it hard to reach.

Another idea was to use one of the existing knobs as an on/off switch. Unlike today's computers that use "soft"
switches, old radios use "hard" switches. A computer power button keeps the circuit closed only as long as you
hold it down. The radio's on/off switch stays closed (on) once you set it there. To make this work, we'd have
needed to replace one of the radio controls with a momentary switch that fits in the same place. We didn't try
that.

Instead, we noticed that the station preset buttons behave much like a momentary switch. They even have a
little piece of metal that protrudes from the back when a button is pressed. We considered trying to rig up some

http://lib.ommolketab.ir
http://lib.ommolketab.ir

metal contacts that would make a closed circuit but instead settled on placing the new push button behind the
protruding preset slider. Thus, when the preset button is pressed, the slider comes out and touches the modern
push-button switch. This was kind of an ugly hack, but since it was inside the case, we didn't really care.

Closeup of the hanging hard drive.

One thing missing from our custom case is an indicator of whether or not the system is running. Standard cases
have at least one LED that lights up when you turn on the computer. And even if you can't see the light, you can
usually tell when a computer is running because of the noise it makes. Since the jukebox is designed to be silent
(when not playing music!), we sometimes have a hard time telling if it is on or off. It's a strange feeling to press
the power button and not receive any feedback that you've actually turned it on. For now we have no plans to
add a power indicator to our jukebox, but you might consider using an LED to illuminate the radio dial.

Power supply

We used the Mini-box PW-70A and a spare laptop power supply. Figure 2-19 shows the adapter in place on the
motherboard. We considered mounting the AC/DC transformer inside the radio cabinet as well, but opted to
leave it out so that our power cord was three feet longer. The power jack has two holes for screws. We attached
the jack to the wooden cabinet with just one screw, shown in Figure 2-20.

Speakers

We considered a number of speaker alternatives for our jukebox. An obvious choice is to simply use a standard
set of computer speakers. They are trivial to connect and should sound very good if you get a nice set. We used
a couple of these while designing the jukebox and found they picked up a significant amount of AM radio
interference, most likely from the large antenna that was less than a mile away.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We also considered placing a speaker inside the antique radio cabinet. However, our cabinet only had an
opening for one speaker. We would rather enjoy the stereo aspects of the music played on the jukebox.

While visiting the local thrift store, we found a nice pair of used, wall-mounted speakers for $3. They look like
something you might find in a junior high school from the 1970s. We were pleasantly surprised to discover that
the EPIA-M can drive the speakers to a decent volume without any additional amplifiers. They're not loud
enough for a dance, but more than loud enough for use around the house or office.

Close-up of the ATX power adapter.

The power jack, semi-securely attached to the cabinet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

In this section, we'd like to give you some ideas and hints for making the jukebox even better.

A better sound card

The VIA EPIA-M has a built-in sound chip that seems to be pretty good. However, audio snobs may feel that it
lacks certain features. If VIA's sound chip doesn't meet your requirements, you can always use the PCI slot for a
fancier sound card.

A CD-RW drive

We haven't said much about putting a CD reader in the jukebox. Chances are that you already have a CD drive
on an existing system. That means you'll do the ripping on one box and copy the files over to the jukebox.
Instead, you might prefer to have a CD reader (and writer) on the jukebox itself. The 12-volt-to-ATX power
converter should have more than enough power for a CD drive. If you decide to build your own case, the CD
drive may present a bit of a challenge. You might also consider using an external CD drive with a USB interface.

Streaming

If you already have a computer that stores your entire music collection, you might want to use a streaming
setup. Instead of copying all the music files to the jukebox, transfer them over the network as they are played.
XMMS has good support for streaming, and a number of other streaming clients are also available.

If you take this approach, you can probably even build a Compact Flash-based jukebox and avoid the heat and
noise that comes from most hard drives. You can also use the PCI slot for a wireless network interface. Then
you won't have an Ethernet cable running across your floor.

LCD display

An LCD display is a very cool addition to the jukebox. Not only can it show you the name and artist of the
current song, but you can also use it for feedback when the system is starting up and shutting down.

The Seetron SGX-120L (left) and the Crystalfontz CFA634 (right).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LCDproc (http://lcdproc.omnipotent.net/) is the most popular LCD software for Linux and BSD systems. It uses
a client/server model to control an LCD display. The server (LCDd) communicates with an LCD display over a
serial, parallel, or USB port. It accepts connections and commands from clients. When multiple clients are
connected to the server, each client's screen is displayed in a round-robin fashion.

Make sure that the LCD display you purchase is supported by LCDproc. Fortunately, it supports quite a few so
you have many to choose from. Displays made by Crystal Fontz (http://www.crystalfontz.com) and Matrix
Orbital (http://www.matrixorbital.com) are very popular, and most should be supported. You can expect to
spend $50 to $100 on a decent display.

LCD displays come in a variety of sizes (and colors). Two popular sizes are 2 x 16 and 4 x 20 characters. We
recommend that you get a 4 x 20 display if you can, since that is the size assumed by one of the XMMS plug-ins
we'll talk about shortly. You'll want to consider the display's physical size if you plan to mount it into a drive bay
or custom enclosure. Both of the LCD displays shown in have 4 x 20 characters.

We chose the Crystal Fontz CFA634-TFB-KU, which has 4 x 20 characters and a USB connection. One of the
reasons we recommend USB is that the jukebox's two serial ports are already tied up: one for the system
console, the other for the Irman receiver. You'll need to load the following kernel modules to activate and use a
USB interface to the LCD:

modprobe uhci-hcd

modprobe usbserial

modprobe ftdi_sio

You should then see messages like this in /var/log/messages:

usbcore: registered new driver usbserial

http://lcdproc.omnipotent.net/
http://www.crystalfontz.com
http://www.matrixorbital.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

usbcore: registered new driver usbserial_generic

ftdi_sio 2-1:1.0: FTDI 8U232AM Compatible converter detected

usb 2-1: FTDI 8U232AM Compatible converter now attached to ttyUSB0

usbcore: registered new driver ftdi_sio

Next, install LCDproc on Gentoo with emerge:

emerge lcdproc

The current version, lcdproc-0.4.5, does not compile due to a bug in its Irman driver. If this happens to you, try
installing it manually by running configure without any driver options:

cd /tmp

tar xjvf /usr/portage/distfiles/lcdproc-0.4.5.tar.bz2

cd lcdproc-0.4.5

./configure --prefix=/usr

make && make install

Next, configure LCDd by editing /etc/LCDd.conf. Find the section that starts with [server]. Comment out the

none driver and uncomment the driver line for your particular LCD. For example, we have a Crystal Fontz CFA-

634, so we uncomment the CFontz driver:

[server]

DriverPath=/usr/local/lib/lcdproc/

#Driver=none

#Driver=curses

#Driver=HD44780

#Driver=lcdm001

#Driver=MtxOrb

Driver=CFontz

#Driver=CwLnx

#Driver=Wirz-sli

#Driver=SGX120

Then, search for the [CFontz] section later in the file. There, you can set various parameters such as the serial

port device, speed, and display size:

[CFontz]

CrystalFontz driver

Device=/dev/tts/USB0

Size=20x4

Contrast=140

Speed=19200

NewFirmware=yes

Reboot=no

USB=yes

After saving LCDd.conf, run LCDd with this command:

/usr/local/sbin/LCDd -s &

You should probably also add this command to /etc/conf.d/local.start.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can test out the display with this simple LCDproc client command:

lcdproc T

XMMS has a number of LCD-related plug-ins. The best one is called lcdraptor. You can download it from
http://www.retechnologies.org/. To install it, run these commands:

tar xzvf lcdraptor-0.3.tar.gz

cd lcdraptor-0.3/

make

make install

Then, start or restart xmms. Type Ctrl-V to see the list of available visualization plug-ins. You should see "LCD
Raptor vis-plugin v0.3" in the list. Highlight it and then click on the "Enable plugin" checkbox. You should
immediately see the song title, time remaining, and dancing bars on your LCD, as shown in Figure 2-22.

Close-up of the LCD display when playing a song

http://www.retechnologies.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Digital Video Recorder with MythTV

Digital Video Recorders (DVRs) have added a new dimension to watching television. Many people like being able
to pause live TV for a short amount of time. Another great feature is the ability to store hours and hours of
recorded programs. With a 160 GB hard drive, you can store between 50 and 100 hours of video, depending on
your encoder settings. That's an order of magnitude more than you can get on a VHS tape. Recording programs
is very easy with a DVR. Instead of going to your VCR and programming in a channel and a start and stop time,
you can simply select a menu option that says "record The Simpsons every time it is on."

What You Need

Shuttle Zen ST62K XPC (or similar)

Processor, memory, and hard drive for PC

Hauppauge TV tuner card

CD/DVD drive (optional)

Irman infrared receiver

Universal remote control

Spare screen and keyboard to use during setup

You can turn almost any PC into a DVR with a little extra hardware and software. The most important
component is a TV tuner card-a PCI device that converts your analog cable/satellite television signal into a
digital format. You'll also want a large hard drive to store recordings and other things. If you want to use the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DVR with your television, you should also get an infrared remote control. Finally, you might also want a DVD/CD
drive in your DVR.

For software we'll be using Linux, XOrg, MythTV, LIRC, and numerous other behind-the-scenes packages.
Installing and configuring the software may take quite a while, especially if you've never used these programs
before. You might spend a week or so if you work on this project during your free time.

If you're planning to purchase new hardware for this project, you'll probably spend between $750 and $1,000.
Combine this with the time requirement, and you might be wondering if you shouldn't just go out and get a TiVo
or ReplayTV. Certainly, those products will get you on the DVR bandwagon quickly and easily. They are also
cheaper up front, although they are subsidized by your monthly subscription fees. So why build your own?

Of course, the standard do-it-yourself reasons apply (see Preface). Building your own DVR gives you control
over its use and operation. Don't like the color scheme? Change it! Want the DVR to work with your existing
remote control? It can! Want to put the DVR on your wireless network? No problem!

Privacy concerns are another good reason for taking on this project. Maybe you don't want ReplayTV and their
affiliates to know that you can't get enough of the Powerpuff Girls and Saved by the Bell. Perhaps you are
insulted when TiVo automatically records episodes of The Golden Girls because it thinks you would really like to
watch them.

Another great reason to build a MythTV box is all of the extra features you get. For example, you can use
multiple tuner cards and separate systems for recording and playback. MythTV comes with a number of great
plug-ins too. With these, you can get the weather forecast, listen to music, give someone a slideshow of your
vacation pictures, catch the latest news, and even make a video and voice-over-IP phone call to a friend.

Whatever your reasons, we think that you'll really enjoy using MythTV to record and watch television programs.

Introducing the Shuttle ST62K XPC

Unlike some of our other projects in this book, a digital video recorder requires substantial processing power
and a large hard drive. We'd like to have a P4-class processor and a 100 GB or larger disk. A few companies
now make Pentium 4 Mini-ITX systems, so we could build our own. However, for this project, Shuttle was kind
enough to send us a very nice bare-bones system: the Zen ST62K XPC.

The ST62K looks a lot like most of Shuttle's XPC products. It is more or less cube-shaped (7.5 x 7 x 11 inches)
and made of brushed aluminum. The front has a 5.25-inch drive bay, a 3.5-inch drive bay, three audio jacks,
and two USB ports. It also has the standard power button, reset button, power indicator, and disk activity light.
See Figure 3-1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XOrg? MythTV? LIRC?

XOrg is one of two popular X Window System implementations for Unix. The other is XFree86,
which is now becoming less popular after adding an advertising clause to its license in early 2004.
See http://en.wikipedia.org/wiki/Xfree86 and http://www.x.org[] for more information.

MythTV refers to a number of programs that work together to turn your TV into a media center.
You can use MythTV to record and watch television programs, listen to music, get the weather
forecast, and more. Its homepage is http://www.mythtv.org/.

LIRC is the Linux Infrared Remote Control project. It allows a number of applications, such as
MythTV, to be controlled by a remote control. See http://www.lirc.org/.

Front view of the Shuttle ST62K.

[] Who did XOrg sleep w ith to get a single-letter domain name?

The rear panel has pretty much everything else you'd need on a computer: video, Ethernet, serial, parallel,
mouse, keyboard, FireWire, additional USB, S-Video output, and S/PDIF ports, as shown in Figure 3-2. The
ST62K has one PCI slot for expansion.

One thing that makes this box unique is its power supply. The ST62K uses a rather large external, brick-type,

http://en.wikipedia.org/wiki/Xfree86
http://www.x.org
http://www.mythtv.org/
http://www.lirc.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

180 watt power supply. Figure 3-3 shows the power supply sitting next to the computer. Like most external
power supplies, this one uses passive cooling, which probably explains why it is so large and heavy. Taking the
power supply out of the case leaves more room for other components and reduces fan noise.
SilentPCReview.com reports that this external supply is very efficient. Still, the ST62K draws about 40 watts
during normal operation.

Looking inside the ST62K, you'll find another 3.5-inch hard drive bay, and two SDRAM DIMM memory slots. The
designers paid particular attention to keeping the case free of cable clutter. The internal hard drive is mounted
just over the motherboard parallel ATA (PATA) connector. Shuttle provides a 2-inch-long PATA cable to connect
the two. You'll also find another PATA and power cable running along the frame to the rear of the CD/DVD drive
bay.

The ST62K's CPU fan is interesting as well. Unlike older systems, there is no fan on top of the CPU heat sink.
Instead you'll find heat pipes that transfer heat from the CPU to the rear of the case. You can see the heat sink,
pipes, and rear-facing fan in Figure 3-4. This is nice because the system has only one fan. It cools the CPU and
removes hot air from the case.

Assembling the system

Obviously, the first step in building your digital video recorder is to assemble the hardware components. In
addition to the bare-bones system (i.e., motherboard and case), you'll need a CPU, memory, hard drive, and TV
tuner card. You may also want to use a CD/DVD-ROM drive. We're using a 2.2 GHz Pentium 4, a 512 MB SDRAM
DIMM, a 120 GB hard drive, a Hauppauge WinTV-GO, and a Sony CD/DVD drive.

Rear view of the Shuttle ST62K.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ST62K and its power supply.

Top-down view of the CPU cooler assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can start by installing the CPU. Remove the four thumbscrews that secure the fan to the back of the case.
Find and disconnect the three-wire fan connector near the motherboard's PCI slot. Remove the heat-sink clip by
pressing down until it unlatches. At this point, you should be able to carefully remove the whole heat-pipe
assembly. Prepare the CPU socket by pulling the lever to a vertical position. Note that the CPU fits into the
socket in only one orientation. You can tell by looking at the pins on the CPU and the holes in the socket. One of
the corners has a pin/hole missing. These must line up, or else the CPU will not easily drop into the socket.
Once the CPU is in place, push the lever back down to the horizontal position and lock it in place.

Your bare-bones system should include a small heat-sink compound packet. This is some gooey white or gray
stuff that goes between the CPU and the heat sink to improve heat transfer between them. First, make sure the
surface of your CPU is clean and free of dust (polish it with a lint-free paper towel or soft cloth). Cut open the
packet and place a small bead in the middle of the CPU. Note that you need very little because it will be
squished and spread out over the whole surface. Use about as much as would fit on the head of a small screw.
Next, make sure the surface of the heat pipe that presses down on the CPU is clean and free of dust. Then, re-
insert the heat-pipe assembly. Press down on the heat sink to spread the compound around. Replace the clip
that secures the heat sink to the motherboard. Remember to plug the fan cable back into the motherboard.
Finally, secure the fan to the rear of the case with the thumbscrews. Double-check your work before turning on
the system, since a mistake here could cause the CPU to overheat, resulting in permanent damage.

To install the memory, select one of the two banks. Make sure that the two end latches are opened outward.
Also note that the DIMMs and slots have a notch so that you cannot install them backwards. When they are
lined up correctly, the DIMM should drop in easily. Then, press down firmly until it snaps into place. The two end
latches should automatically flip inward when the board is properly installed.

The ST62K has a nifty hard drive mounting system. You must first remove a screw to free the drive carrier. The
carrier slides out diagonally from underneath the 3.5-inch drive bay, as shown in Figure 3-5.

Insert the drive into the carrier such that the power and PATA connectors will be on the correct side of the case

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when you slide it back in. Secure the drive to the carrier with three small screws. Then, slide the drive into
position and secure it again with the thumbscrew. Attach the power cable to the drive and connect the short
PATA cable to both the drive and the motherboard. The power cable doesn't have much slack so it might be
difficult to attach. If so, loosen the carrier and pull it out a little, then attach the cable and slide it back in.

If you're adding a CD/DVD drive, remove the cover for the large drive bay. Slide the drive into the bay as shown
in Figure 3-6 and secure it with four screws, making sure that the front of the drive lines up nicely with the front
of the case. Attach the power and PATA cables to the drive.

Inserting the hard drive.

Inserting the DVD/CD drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, install the TV tuner card in the PCI slot, as shown in Figure 3-7. The ST62K has a small bracket on the
rear of the case, just above the PCI slot opening. Remove the screw and lift up this bracket as you insert the TV
tuner card. When the card is fully inserted, place the screw back into the bracket and tighten it. Our WinTV-GO
card came with a short audio cable designed to connect the TV tuner card audio output to the sound card input.
The shuttle ST62K has two audio inputs (line and microphone) on the front of the case-too far away for the
short cable to reach. We purchased a longer cable to connect the TV tuner audio output to the line input. You
don't need this audio cable if you get the PVR250/350 because the card encodes audio directly into the MPEG
stream.

Test the system after you have all the components installed, but before you put the cover back on. Connect a
keyboard, mouse, and the power supply. When you turn on the system, you should see some Power On Self
Test (POST) messages from the system BIOS. You may want to enter the BIOS menu and poke around. Make
sure that it sees your hard drive and CD/DVD drive if you have one. If the system doesn't start up correctly, try
removing components one at a time until you isolate the problem.

You'll need to make an important BIOS change if you plan to eventually use the system without a keyboard. On
the Standard CMOS Features BIOS page, you'll see an option labeled "Halt On" with three settings. We
recommend that you set it to either "None" or "All, But Keyboard." If you forget to set this and try to boot the
system without a keyboard connected, you'll get a paradoxical message that says No keyboard present: press
F1.

ST62K quirks

A number of ST62K users report that the system fan stops turning after some time. Since the box is normally
very quiet, they don't hear a change when the fan stops working. They may notice the problem when the CPU
overheats, however. In fact, that is how we noticed that our fan had stopped. The problem is not with the fan
itself but with the fan controller on the motherboard. Fortunately, the motherboard has two fan connectors
(FAN1 and FAN3). Most users are able to continue using their systems after moving the fan to the FAN3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connector.

Some users also report problems with using inexpensive memory in the system. If you experience random
crashes or other problems, you may want to reduce the memory speed in the system BIOS.

We also recommend updating the system BIOS if you can. Visit the support pages on Shuttle's web site and
download the current BIOS and installer. Our own ST62K was hanging every few days until we upgraded the
BIOS to version FT62S00Z.

The PCI TV tuner card.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Digital Video Recorder with MythTV

Digital Video Recorders (DVRs) have added a new dimension to watching television. Many people like being able
to pause live TV for a short amount of time. Another great feature is the ability to store hours and hours of
recorded programs. With a 160 GB hard drive, you can store between 50 and 100 hours of video, depending on
your encoder settings. That's an order of magnitude more than you can get on a VHS tape. Recording programs
is very easy with a DVR. Instead of going to your VCR and programming in a channel and a start and stop time,
you can simply select a menu option that says "record The Simpsons every time it is on."

What You Need

Shuttle Zen ST62K XPC (or similar)

Processor, memory, and hard drive for PC

Hauppauge TV tuner card

CD/DVD drive (optional)

Irman infrared receiver

Universal remote control

Spare screen and keyboard to use during setup

You can turn almost any PC into a DVR with a little extra hardware and software. The most important
component is a TV tuner card-a PCI device that converts your analog cable/satellite television signal into a
digital format. You'll also want a large hard drive to store recordings and other things. If you want to use the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DVR with your television, you should also get an infrared remote control. Finally, you might also want a DVD/CD
drive in your DVR.

For software we'll be using Linux, XOrg, MythTV, LIRC, and numerous other behind-the-scenes packages.
Installing and configuring the software may take quite a while, especially if you've never used these programs
before. You might spend a week or so if you work on this project during your free time.

If you're planning to purchase new hardware for this project, you'll probably spend between $750 and $1,000.
Combine this with the time requirement, and you might be wondering if you shouldn't just go out and get a TiVo
or ReplayTV. Certainly, those products will get you on the DVR bandwagon quickly and easily. They are also
cheaper up front, although they are subsidized by your monthly subscription fees. So why build your own?

Of course, the standard do-it-yourself reasons apply (see Preface). Building your own DVR gives you control
over its use and operation. Don't like the color scheme? Change it! Want the DVR to work with your existing
remote control? It can! Want to put the DVR on your wireless network? No problem!

Privacy concerns are another good reason for taking on this project. Maybe you don't want ReplayTV and their
affiliates to know that you can't get enough of the Powerpuff Girls and Saved by the Bell. Perhaps you are
insulted when TiVo automatically records episodes of The Golden Girls because it thinks you would really like to
watch them.

Another great reason to build a MythTV box is all of the extra features you get. For example, you can use
multiple tuner cards and separate systems for recording and playback. MythTV comes with a number of great
plug-ins too. With these, you can get the weather forecast, listen to music, give someone a slideshow of your
vacation pictures, catch the latest news, and even make a video and voice-over-IP phone call to a friend.

Whatever your reasons, we think that you'll really enjoy using MythTV to record and watch television programs.

Introducing the Shuttle ST62K XPC

Unlike some of our other projects in this book, a digital video recorder requires substantial processing power
and a large hard drive. We'd like to have a P4-class processor and a 100 GB or larger disk. A few companies
now make Pentium 4 Mini-ITX systems, so we could build our own. However, for this project, Shuttle was kind
enough to send us a very nice bare-bones system: the Zen ST62K XPC.

The ST62K looks a lot like most of Shuttle's XPC products. It is more or less cube-shaped (7.5 x 7 x 11 inches)
and made of brushed aluminum. The front has a 5.25-inch drive bay, a 3.5-inch drive bay, three audio jacks,
and two USB ports. It also has the standard power button, reset button, power indicator, and disk activity light.
See Figure 3-1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XOrg? MythTV? LIRC?

XOrg is one of two popular X Window System implementations for Unix. The other is XFree86,
which is now becoming less popular after adding an advertising clause to its license in early 2004.
See http://en.wikipedia.org/wiki/Xfree86 and http://www.x.org[] for more information.

MythTV refers to a number of programs that work together to turn your TV into a media center.
You can use MythTV to record and watch television programs, listen to music, get the weather
forecast, and more. Its homepage is http://www.mythtv.org/.

LIRC is the Linux Infrared Remote Control project. It allows a number of applications, such as
MythTV, to be controlled by a remote control. See http://www.lirc.org/.

Front view of the Shuttle ST62K.

[] Who did XOrg sleep w ith to get a single-letter domain name?

The rear panel has pretty much everything else you'd need on a computer: video, Ethernet, serial, parallel,
mouse, keyboard, FireWire, additional USB, S-Video output, and S/PDIF ports, as shown in Figure 3-2. The
ST62K has one PCI slot for expansion.

One thing that makes this box unique is its power supply. The ST62K uses a rather large external, brick-type,

http://en.wikipedia.org/wiki/Xfree86
http://www.x.org
http://www.mythtv.org/
http://www.lirc.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

180 watt power supply. Figure 3-3 shows the power supply sitting next to the computer. Like most external
power supplies, this one uses passive cooling, which probably explains why it is so large and heavy. Taking the
power supply out of the case leaves more room for other components and reduces fan noise.
SilentPCReview.com reports that this external supply is very efficient. Still, the ST62K draws about 40 watts
during normal operation.

Looking inside the ST62K, you'll find another 3.5-inch hard drive bay, and two SDRAM DIMM memory slots. The
designers paid particular attention to keeping the case free of cable clutter. The internal hard drive is mounted
just over the motherboard parallel ATA (PATA) connector. Shuttle provides a 2-inch-long PATA cable to connect
the two. You'll also find another PATA and power cable running along the frame to the rear of the CD/DVD drive
bay.

The ST62K's CPU fan is interesting as well. Unlike older systems, there is no fan on top of the CPU heat sink.
Instead you'll find heat pipes that transfer heat from the CPU to the rear of the case. You can see the heat sink,
pipes, and rear-facing fan in Figure 3-4. This is nice because the system has only one fan. It cools the CPU and
removes hot air from the case.

Assembling the system

Obviously, the first step in building your digital video recorder is to assemble the hardware components. In
addition to the bare-bones system (i.e., motherboard and case), you'll need a CPU, memory, hard drive, and TV
tuner card. You may also want to use a CD/DVD-ROM drive. We're using a 2.2 GHz Pentium 4, a 512 MB SDRAM
DIMM, a 120 GB hard drive, a Hauppauge WinTV-GO, and a Sony CD/DVD drive.

Rear view of the Shuttle ST62K.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ST62K and its power supply.

Top-down view of the CPU cooler assembly.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can start by installing the CPU. Remove the four thumbscrews that secure the fan to the back of the case.
Find and disconnect the three-wire fan connector near the motherboard's PCI slot. Remove the heat-sink clip by
pressing down until it unlatches. At this point, you should be able to carefully remove the whole heat-pipe
assembly. Prepare the CPU socket by pulling the lever to a vertical position. Note that the CPU fits into the
socket in only one orientation. You can tell by looking at the pins on the CPU and the holes in the socket. One of
the corners has a pin/hole missing. These must line up, or else the CPU will not easily drop into the socket.
Once the CPU is in place, push the lever back down to the horizontal position and lock it in place.

Your bare-bones system should include a small heat-sink compound packet. This is some gooey white or gray
stuff that goes between the CPU and the heat sink to improve heat transfer between them. First, make sure the
surface of your CPU is clean and free of dust (polish it with a lint-free paper towel or soft cloth). Cut open the
packet and place a small bead in the middle of the CPU. Note that you need very little because it will be
squished and spread out over the whole surface. Use about as much as would fit on the head of a small screw.
Next, make sure the surface of the heat pipe that presses down on the CPU is clean and free of dust. Then, re-
insert the heat-pipe assembly. Press down on the heat sink to spread the compound around. Replace the clip
that secures the heat sink to the motherboard. Remember to plug the fan cable back into the motherboard.
Finally, secure the fan to the rear of the case with the thumbscrews. Double-check your work before turning on
the system, since a mistake here could cause the CPU to overheat, resulting in permanent damage.

To install the memory, select one of the two banks. Make sure that the two end latches are opened outward.
Also note that the DIMMs and slots have a notch so that you cannot install them backwards. When they are
lined up correctly, the DIMM should drop in easily. Then, press down firmly until it snaps into place. The two end
latches should automatically flip inward when the board is properly installed.

The ST62K has a nifty hard drive mounting system. You must first remove a screw to free the drive carrier. The
carrier slides out diagonally from underneath the 3.5-inch drive bay, as shown in Figure 3-5.

Insert the drive into the carrier such that the power and PATA connectors will be on the correct side of the case

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when you slide it back in. Secure the drive to the carrier with three small screws. Then, slide the drive into
position and secure it again with the thumbscrew. Attach the power cable to the drive and connect the short
PATA cable to both the drive and the motherboard. The power cable doesn't have much slack so it might be
difficult to attach. If so, loosen the carrier and pull it out a little, then attach the cable and slide it back in.

If you're adding a CD/DVD drive, remove the cover for the large drive bay. Slide the drive into the bay as shown
in Figure 3-6 and secure it with four screws, making sure that the front of the drive lines up nicely with the front
of the case. Attach the power and PATA cables to the drive.

Inserting the hard drive.

Inserting the DVD/CD drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, install the TV tuner card in the PCI slot, as shown in Figure 3-7. The ST62K has a small bracket on the
rear of the case, just above the PCI slot opening. Remove the screw and lift up this bracket as you insert the TV
tuner card. When the card is fully inserted, place the screw back into the bracket and tighten it. Our WinTV-GO
card came with a short audio cable designed to connect the TV tuner card audio output to the sound card input.
The shuttle ST62K has two audio inputs (line and microphone) on the front of the case-too far away for the
short cable to reach. We purchased a longer cable to connect the TV tuner audio output to the line input. You
don't need this audio cable if you get the PVR250/350 because the card encodes audio directly into the MPEG
stream.

Test the system after you have all the components installed, but before you put the cover back on. Connect a
keyboard, mouse, and the power supply. When you turn on the system, you should see some Power On Self
Test (POST) messages from the system BIOS. You may want to enter the BIOS menu and poke around. Make
sure that it sees your hard drive and CD/DVD drive if you have one. If the system doesn't start up correctly, try
removing components one at a time until you isolate the problem.

You'll need to make an important BIOS change if you plan to eventually use the system without a keyboard. On
the Standard CMOS Features BIOS page, you'll see an option labeled "Halt On" with three settings. We
recommend that you set it to either "None" or "All, But Keyboard." If you forget to set this and try to boot the
system without a keyboard connected, you'll get a paradoxical message that says No keyboard present: press
F1.

ST62K quirks

A number of ST62K users report that the system fan stops turning after some time. Since the box is normally
very quiet, they don't hear a change when the fan stops working. They may notice the problem when the CPU
overheats, however. In fact, that is how we noticed that our fan had stopped. The problem is not with the fan
itself but with the fan controller on the motherboard. Fortunately, the motherboard has two fan connectors
(FAN1 and FAN3). Most users are able to continue using their systems after moving the fan to the FAN3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connector.

Some users also report problems with using inexpensive memory in the system. If you experience random
crashes or other problems, you may want to reduce the memory speed in the system BIOS.

We also recommend updating the system BIOS if you can. Visit the support pages on Shuttle's web site and
download the current BIOS and installer. Our own ST62K was hanging every few days until we upgraded the
BIOS to version FT62S00Z.

The PCI TV tuner card.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operating System: Gentoo Linux

As with the audio jukebox project in Chapter 2, we recommend that you use Gentoo Linux for the DVR system
as well. The installation procedure is almost the same, so we will be somewhat brief in this chapter. One
important difference here is that the DVR uses X Windows, which means there is more software to install.

One of the first steps in installing Gentoo is to configure the network interface so that you can download
software packages from the Internet. Our Shuttle ST62K uses a RealTek RTL8139 Ethernet controller. The
kernel doesn't see the interface until you load the 8139too module:

modprobe 8139too

dhcpdc eth1

You're probably using a much larger hard drive for this project than for the jukebox, since the ST62K holds a
standard 3.5-inch disk. We recommend that you create a separate filesystem partition to store recorded
programs and other media. For example, you may want to have four partitions: 32 MB for /boot, 512 MB for
swap, 5120 MB for /, and the remainder for /media. When you are finished adding all the partitions with fdisk,
they should look something like this:

Disk /dev/hda: 123.5 GB, 123522416640 bytes

16 heads, 63 sectors/track, 239340 cylinders

Units = cylinders of 1008 * 512 = 516096 bytes

 Device Boot Start End Blocks Id System

/dev/hda1 * 1 63 31720+ 83 Linux

/dev/hda2 64 1056 500472 82 Linux swap

/dev/hda3 1057 10978 5000688 82 Linux

/dev/hda4 10979 239340 115094448 82 Linux

Continue with the installation by running mke2fs on the new partitions; then mount the new filesystems. Visit
the Gentoo mirrors.xml page (see Chapter 2) and download the stage3 tarball for your processor. The Shuttle
ST62K has a Pentium 4, so you should download stage3-pentium4-2005.1.tar.bz2 (or a later version). Extract
the tarball when the download is complete.

The next step in the installation process is to chroot to the new filesystem root and install a bunch of things with
emerge:

chroot /mnt/gentoo /bin/bash

env-update

source /etc/profile

emerge sync

emerge portage

emerge gentoo-sources

emerge genkernel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notes on Noise

The ST62K is a relatively quiet system-much better than most XPCs. The external power supply is
a big help. The system's only fan starts off loud when you turn the system on but quickly reduces
in speed and quiets down. For us, the noisiest part is the hard drive, which may be because the
hard drive had been used previously. Newer hard drives tend to be quieter. If you are purchasing a
new drive for your MythTV system, you may want to seek out drives designed to be quieter than
most, such as the Seagate Barracuda 7200 series.

You may hear some vibrational noise that sounds like buzzing if the case is not on tight, or if
something is not quite right. You may be able to eliminate that noise by adjusting the
thumbscrews. If that doesn't make the buzzing go away, try placing something heavy, like a
textbook, on top of the computer. An even better idea is to hang the hard drive from the mounting
bracket using wire, string, or shock cord as shown at http://www.silentpcreview.com/article109-
page1.html.

Were money not an issue, we would like to try out a very quiet hard drive in a system from Hush
Technologies or Tranquil.

Now it is time to configure the kernel. Unlike in Chapter 2, you'll need to enable two nondefault options in the
new kernel. One adds support for the ATI IXP chip in the Shuttle ST62K. The IXP chip does many things,
including interfacing with PATA hard drives. We had poor disk performance on the ST62K before enabling ATI
IXP support in the kernel. The other configuration change adds support for the TV tuner card. Bring up the
kernel configuration menu with this command:

genkernel --menuconfig all

The ATI IXP option is under the following menu options:

Device Drivers --->

 ATA/ATAPI/MFM/RLL support --->

 <Y> ATI IXP chipset IDE support

Your TV tuner card (such as our Hauppauge WinTV-Go) most likely uses the popular Brooktree 848 (or
compatible) chip. That chip corresponds to the bttv driver/module in the kernel. Menuconfig doesn't show the
bttv driver as an option until you enable "I2C bit banging interfaces":

Device Drivers --->

 I2C support --->

 <M> I2C support

 I2C Algorithms --->

 --- I2C bit-banging interfaces

Then go back up the configuration menu and find the bttv driver under the following menus:

Device Drivers --->

 Multimedia devices --->

 <M> Video For Linux

 Video For Linux --->

 <M> BT848 Video For Linux

Exit the kernel configuration menu and let genkernel work its magic. While genkernel is running, you can switch

http://www.silentpcreview.com/article109-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

to another screen (Alt-F2) and take care of the following tasks:

Fix up /etc/fstab. For example:

/dev/hda1 /boot ext2 noauto,noatime 1 1

/dev/hda3 / ext3 noatime 0 0

/dev/hda2 none swap sw 0 0

/dev/hda4 /media ext3 noatime 1 2

none /dev/shm tmpfs defaults 0 0

none /tmp tmpfs defaults 0 0

Install a boot loader, such as GRUB.

emerge dhcpcd

emerge sysklogd.

emerge vixie-cron.

Set the root password.

Hauppauge PVR Products

Although we used the WinTV-GO, in retrospect we would recommend that you get a WinTV-
PVR250 or WinTV-PVR350 instead. Both of these models include a hardware MPEG encoder, which
takes a significant burden off the CPU. The PVR350 also has its own frame buffer with built-in
MPEG decoder and television output. Both packages also include an infrared remote control and
receiver.

Retail, OEM, and Warranties

When buying a processor, you have two choices: retail or OEM. Retail packages come with a heat
sink/fan unit and have a warranty. OEM packages do not include a heat sink and often have no
warranty at all. Not surprisingly, OEM packages are usually (but not always!) cheaper than retail.

Another thing to consider is that the retail package warranty is only good as long as you use the
fan that comes with the processor. A standard Pentium 4 heat sink won't really fit in the ST62K, so
you're forced to use the Shuttle heat sink, which, technically, violates the warranty anyway.

Note that you compiled the bttv driver as a kernel module. When genkernel is finished, add the following line to
/etc/modules.autoload.d/kernel-2.6:

bttv

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As always, run modules-update after modifying one of the module configuration files:

modules-update

We recommend rebooting the system at this point, mostly so you can take advantage of the ATI IXP driver. If
you're not using the Shuttle ST62K (or some other system with the ATI IXP chip), you may prefer to just
continue configuring Gentoo as described in the following subsections.

When you reboot, make sure that your TV tuner card is recognized. Check the /var/log/messages file for lines
containing bttv:

Code View:
bttv: driver version 0.7.108 loaded

bttv: using 4 buffers with 2080k (8320k total) for capture

bttv: Bt8xx card found (0).

bttv0: Bt878 (rev 17) at 02:07.0, irq: 5, latency: 64, mmio: 0xec200000

bttv0: detected: Hauppauge WinTV [card=10], PCI subsystem ID is

0070:13eb

bttv0: using: Hauppauge (bt878) [card=10,autodetected]

bttv0: Hauppauge/Voodoo msp34xx: reset line init [5]

bttv0: Hauppauge eeprom: model=44801, tuner=Temic 4036FY5 (8), radio=no

bttv0: using tuner=8

bttv0: i2c: checking for MSP34xx @ 0x80... not found

bttv0: i2c: checking for TDA9875 @ 0xb0... not found

bttv0: i2c: checking for TDA7432 @ 0x8a... not found

tvaudio: TV audio decoder + audio/video mux driver

tvaudio: known chips: tda9840,tda9873h,tda9874h/a,tda9850,tda9855,tea6

300, tea6420,tda8425,pic16c54 (PV951),ta8874z

tuner: chip found @ 0xc2

tuner: type set to 8 (Temic NTSC (4036 FY5))

bttv0: PLL: 28636363 => 35468950 .. ok

bttv0: registered device video0

bttv0: registered device vbi0

bttv0: PLL can sleep, using XTAL (28636363).

If you are happy with the system so far, proceed with the remaining setup tasks.

Misc setup

You should configure your system to use NTP so that its clock is synchronized to an accurate source. This is
especially important if you want to record television broadcasts:

emerge ntp

ntpdate us.pool.ntp.org

echo driftfile /var/lib/ntp/ntp.drift > /etc/ntp.conf

echo server us.pool.ntp.org >> /etc/ntp.conf

/etc/init.d/ntpd start

rc-update add ntpd default

If you have a local NTP server, use it instead of us.pool.ntp.org. Also, if you are located outside the United

States, you should probably replace us with your own country code. See http://www.pool.ntp.org/ for more

information.

http://www.pool.ntp.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using DHCP, you'll probably want to place this line in /etc/conf.d/net so that dhcpcd doesn't clobber
your /etc/ntp.conf file:

dhcpcd_eth0="-N"

You should also set the local time zone. Replace America/Denver with your own time zone filename:

cd /etc

rm localtime

ln -s /usr/share/zoneinfo/America/Denver localtime

Now, when you type date, you should see the correct local time:

date

Mon Sep 6 14:41:18 MDT 2005

Gentoo installs the nano editor by default. If you are more comfortable with vi you can install it now:

emerge nvi

If you plan to use the DVR without its own keyboard and display, you should enable the SSH daemon for remote
access. Run the following command so that sshd starts automatically when your system boots:

rc-update add sshd default

Finally, set the hostname to something meaningful in /etc/conf.d/hostname:

HOSTNAME="dvr"

You may also want to add the hostname to the localhost line in /etc/hosts:

127.0.0.1 localhost dvr

Don't forget to configure the startup scripts to automatically bring up the interface each time the system boots:

vi /etc/conf.d/net

rc-update add net.eth0 default

Finally, you may want to set the following USE flags in /etc/make.conf:

USE="X kde qt mysql jpeg dvd"

Audio configuration

We explained how to configure the sound system for Gentoo in Chapter 2. The procedure here is essentially the
same, although the driver name is different. Our jukebox motherboard had a VIA sound chip, but the ST62K
uses the ATI IXP for sound. To begin, add this line to /etc/make.conf:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ALSA_CARDS="atiixp"

Then run:

emerge alsa-driver

emerge alsa-utils

Next, add the kernel module to /etc/modules.d/alsa:

alias snd-card-0 snd-atiixp

Then run:

modules-update

rc-update add alsasound boot

/etc/init.d/alsasound start

amixer set Master 20 unmute

amixer set PCM 20 unmute

You can look at /proc/asound/cards to make sure that the kernel recognizes your sound card or chip:

cat /proc/asound/cards

0 [IXP]: ATIIXP - ATI IXP

 ATI IXP rev 0 at 0xec305000, irq 11

http://lib.ommolketab.ir
http://lib.ommolketab.ir

X Windows

Now it's time to install X Windows and associated applications. It takes only a few emerge commands, but quite
a long time, to install everything. You may want to chain all of these commands together and go on a day hike
while your system downloads, compiles, and installs all the necessary software. First, install the main X
Windows package:

emerge xorg-x11

Since xorg-x11 doesn't include xterm, which we recommend over the KDE/Gnome versions, you'll have to install
it separately:

emerge xterm

At this point, you should have enough X Windows components installed to give it a test. Before launching
anything, however, you must either reboot or manually update your environment variables so they pick up the
newly installed bin directories:

env-update

source /etc/profile

Historically, one of the most difficult parts of installing X Windows was writing the X server configuration file.
Fortunately, XOrg provides two utilities that make it pretty easy. The first one you should try is:

Xorg -configure

It leaves a file called xorg.conf.new in your current directory. You can quickly test the configuration file with this
command:

startx -- -config xorg.conf.new

If it works, you should see a few windows (xterms) with bland colors. Test that your mouse and keyboard work
by moving the cursor and typing a few things. You can exit this session by typing exit in all the xterms or by

pressing the Ctrl, Alt, and Backspace keys simultaneously. If you are happy with this configuration file, move it
to the default location:

mv xorg.conf.new /etc/X11/xorg.conf

If that configuration file doesn't work on your system, you can edit the file and tweak some of the settings. See
http://www.gentoo.org/doc/en/xorg-config.xml for some suggestions. Alternatively, you can try using
xorgconfig to generate the xorg.conf file. With this approach, you need to know a little about your hardware. In
particular, you should know the name and model number of your video card/chip, how much memory it has,
and the vertical and horizontal sync frequencies for your monitor. In many cases, you can make conservative
guesses and come out with a working system.

Now that you have a working X server, you might want to install one of the popular integrated desktop
environments: KDE or Gnome. Both provide a window manager, a web browser, and many other applications.
Later, when we get to running MythTV on your television, we'll recommend not using any window manager or
desktop environment at all. However, KDE or Gnome may prove useful while you are getting all this stuff up and
running. The downside is that these are large collections of software. You may have to wait a long time while

http://www.gentoo.org/doc/en/xorg-config.xml
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Gentoo compiles everything. If you are impatient, you can get by with a nice, but not-too-big, standalone
window manager such as FVWM.

The following sections explain how to install FVWM (a lightweight window manager that's much quicker to install
than KDE or Gnome), KDE, or Gnome.

FVWM

To install FVWM, simply type:

emerge fvwm

To use FVWM, place these lines into your ~/.xinitrc file:

#!/bin/sh

xterm &

fvwm &

wait

Then, start X Windows from the command line:

startx

Since FVWM is a window manager only, you'll probably want to install a web browser such as Opera and/or
Mozilla:

emerge opera

emerge mozilla-firefox

KDE

The entire KDE collection takes a long time to install. You may want to let it run overnight, or while you go
watch a couple of movies. To start the installation, run:

emerge kde

When it finishes, you'll have a new directory named something like /usr/kde/3.4. To update your environment
variables, run env-update and then source /etc/profile. To try out KDE, place these lines into your

~/.xinitrc file:

#!/bin/sh

xterm &

startkde

Then, start X Windows:

startx

Gnome

Installing Gnome is very similar to installing KDE. To install:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

emerge gnome

Gnome installs binaries and libraries into /usr so you don't need to worry about the env-update command. Here

is a minimalist ~/.xinitrc file:

#!/bin/sh

xterm &

gnome-session

Then, start X Windows:

startx

xdm

Some people prefer to use an X Display Manager with X Windows. The display manager starts the X server and
then presents the user with a place to enter a username and password. The display manager is usually started
when the system boots, and it eliminates the need to run startx. If you want to go this route, add these lines

to /etc/rc.conf:

DISPLAYMANAGER="kdm"

XSESSION="kde-3.4"

Or, for Gnome fans:

DISPLAYMANAGER="gdm"

XSESSION="Gnome"

Then, configure the display manager to start each time your system boots and start it manually now:

rc-update add xdm default

/etc/init.d/xdm start

Note that later we'll suggest that you use startx to automatically start X Windows, so you'll need to delete xdm

from the default startup sequence.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MythTV

By now you have the operating system, X Windows, and maybe even a desktop environment. Finally it's time to
install MythTV! During this part, you may also want to refer to http://gentoo-wiki.com/HOWTO_Setup_MythTV
as we go along.

Installation

Installing MythTV on Gentoo is simple. The only tricky part is that we are now dealing with masked packages.

In Gentoo-speak, a package is masked when the developers feel it is unstable or suspect there might be bugs or
problems on a particular system architecture. Note that Gentoo portage often knows about different versions of
a given package. An older version may be unmasked (stable), while a newer version is masked (possibly
unstable). This is the case with many of the MythTV packages. We recommend that you create the file named
/etc/portage/package.keywords:

mkdir /etc/portage

vi /etc/portage/package.keywords

This file contains package names, one per line. By adding a package name to this file, you are telling Gentoo to
give you the most recent version of a package, even if it is unstable. For MythTV, add these lines to the file:

dev-perl/Tk-TableMatrix

media-tv/mythfrontend

media-tv/mythtv

x11-themes/mythtv-themes

Then, install MythTV and associated packages:

emerge mythtv mythfrontend mythtv-themes

Setting up: mythbackend

mythbackend is the heart of MythTV. It controls the TV tuner hardware, encodes audio and video streams, and
records them on disk. It knows the names and numbers of your TV channels and has access to the program
listings. mythbackend is responsible for recording your favorite shows while you are away. It can even manage
multiple TV tuner cards connected to multiple television inputs.

MythTV stores various things in a MySQL database. MySQL was automatically installed when you ran emerge

mythtv. The MySQL daemon (mysqld) must be configured and running before you can run MythTV. Run the

following commands to initialize the database now, and to make it start each time your system boots:

/usr/bin/mysql_install_db

/etc/init.d/mysql start

rc-update add mysql default

Then create the MySQL mythtv user with this command:

mysql < /usr/share/mythtv/database/mc.sql

http://gentoo-wiki.com/HOWTO_Setup_MythTV
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next task is to populate the database with the appropriate channel listings. The procedure for doing so
varies from country to country. For those of us located in North America, it's pretty simple. You can get the
listings from zap2it.com, through their DataDirect service. The catch is that you must register and answer their
long-ish survey to get a password.

Start the registration procedure by visiting http://labs.zap2it.com. You'll need to enter a valid "certificate code"
during the process. These are, apparently, assigned to various projects such as MythTV and others so that
zap2it.com can track their popularity. These codes are not too hard to find (e.g., Google for "zap2it certificate
code"). The MythTV documentation instructs people to use the code ZIYN-DQZO-SBUT.

Note: DataDirect subscriptions are currently valid for only three months. To maintain the subscription, you'll need to go
through another short survey each time it expires.

Masked what?

If this masking stuff seems confusing, have a look at http://gentoo-wiki.com/Masked.

To begin the MythTV configuration process, start mythsetup:

mythsetup

You should see a screen similar to the one in Figure 3-8. Note that MythTV hides the mouse cursor in its
windows. Navigating the menus with the keyboard is relatively simple. Use the arrow keys to highlight the menu
option that you are interested in. Press the spacebar to select that option. On pages that look like forms, always
use the up/down arrow keys to move between items and use the left/right arrow keys to select among choices
associated with an item. The Escape key takes you back to the previous menu.

Select the General option from the main page. It has five sub-pages, but you only need to make changes on two
of them. The first page (Host Address Backend Setup) shouldn't require any changes. On the second page, titled
Host-specific Backend Setup, you'll probably need to change the two directories at the top. As you can see in
Figure 3-9, we suggest storing your recordings in /media/mythtv.

On the next page, titled Global Backend Setup, you may need to change a couple of things, such as the "TV
format" and "Channel frequency table" settings. See Figure 3-10 for an example from our configuration. The
defaults on the fourth (Shutdown/Wakeup Options) and fifth pages (WakeOnLan settings) should be fine.

When you find yourself back at the main menu, select "Capture cards" next. Then, select "(New capture card),"
and you should see the screen shown in Figure 3-11. You probably won't need to change any of the settings.
Make sure, however, that the video and audio device names are set. If the fields are blank, you need to exit and
make sure the kernel modules are loaded properly.

Return to the main mythsetup screen and choose "Video sources." Then select "(New video source)," and you
should see the screen shown in Figure 3-12. Supply a name for this video source and select the appropriate TV
listings grabber for your region. If you are using DataDirect, enter your username and password.

The main mythsetup menu.

http://labs.zap2it.com
http://gentoo-wiki.com/Masked
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Host-specific Backend Setup screen allows you to change the directory where MythTV stores
recorded programs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Global Backend Setup screen has settings for your video format and channel frequencies.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

So far, you've told MythTV about your tuner card and about your television service provider. Now it's time to
connect them to each other. Return again to the main mythsetup screen and then go to the "Input connections"
page. You should see a screen like Figure 3-13. The "Input connections" screen is where you tell MythTV which
of the TV tuner card's inputs is connected to the television signal. Select the appropriate input connector, such
as Television. Then, on the "Connect source to input" screen, select the corresponding video source for the
input, as shown in Figure 3-14.

You probably don't need to worry about the final mythsetup screen, the Channel editor. Simply exit mythsetup
by pressing Escape.

We suggest that you run mythbackend as a nonprivileged user. You can create a new user with this command:

useradd -m -G audio,video,cdrom mythtv

Note that it is important to place the mythtv user into the audio, video, and cdrom groups so that it can access
those devices. After creating the user, edit /etc/conf.d/mythbackend and set the MYTH_USER variable:

MYTH_USER=mythtv

You won't be able to watch or record TV until you populate the database (i.e., channel listings) by running
mythfilldatabase. You can run it as mythtv with this command:

su - mythtv -c mythfilldatabase

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This utility downloads channel listings for the next week or so. You should run mythfilldatabase daily from a cron
job. Use crontab -e mythtv to edit mythtv's crontab and add this line:

07 11 * * * /usr/bin/mythfilldatabase

Now you can start the backend processes. To start it manually now, and each time the system boots, run these
commands:

/etc/init.d/mythbackend start

rc-update add mythbackend default

Check /var/log/mythtv/backend.log for error messages and make sure the backend daemon actually starts. If it
doesn't start, fix the problem and then run:

/etc/init.d/mythbackend zap

/etc/init.d/mythbackend start

We highly recommend that you keep tail -f /var/log/mythtv/backend.log running in an xterm window as

you explore how MythTV works.

Running: mythfrontend

By now you've probably put many hours into this project. Finally you should be able to actually use MythTV to
watch television! Start by running mythfrontend:

mythfrontend

Check the device settings on the "Capture Card Setup" screen.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The "Video Source Setup" screen is where you configure the TV listings grabber.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The mythsetup Input connections screen.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then simply select Watch TV. If everything works, you should see something resembling a television broadcast
on your screen. You can change channels with the Up and Down arrow keys, or by typing the channel number
followed by Enter. Don't worry if you are disappointed by the quality of the audio or video. You can probably
improve them by configuring the audio and video encoders, which we'll go through shortly.

If your experience is similar to ours, you'll spend some time tinkering with the audio before it works very well.
The first time we heard any sound, it was very choppy, out of sync with the video, and it stopped entirely after
10–15 seconds. Here are some things you can try to improve the sound quality:

KDE's audio daemon, artsd, sometimes interferes with other programs that access the sound device. You
may want to permanently disable it by selecting the following sequence of menu items:

KDE "start" menu1.

Settings2.

Control Center3.

Sound & Multimedia4.

5.

6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Sound System5.

Uncheck "enable the sound system"6.

Make sure the TV tuner card's audio output is connected to the sound card's line input if using the WinTV-
GO or similar.

Fiddle with the mixer settings. We recommend that you mute all the unused inputs and outputs. The
Master and PCM outputs should be unmuted and have nonzero volume. The Line input should be selected
for capture, but it should also be muted. The Capture input should be selected and unmuted. These
settings are summarized in Table 3-1 and correspond to the following amixer commands:

amixer set Master,0 81%,81% unmute

amixer set PCM,0 71%,71% unmute

amixer set Line,0 0%,0% mute captur

amixer set Capture,0 87%,87% captur

The "Connect source to input" screen.

Table Sound Card Settings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Control Muted? Level

Master Unmute 81%

PCM Unmute 71%

Line Mute 0%

Capture N/A 87%

You might find it easier to use a GUI interface, such as kmix. The settings that work for us are shown in

Figures 3-15 and 3-16.

Visit the General Playback settings page. Start at the main mythfrontend menu, then select Utilities/Setup

Setup TV Settings Playback. The first page is titled General Playback and looks like the one in
Figure 3-17. Check the box next to "Extra audio buffering."

Once you have the sound settings just right, save them with this command:

/usr/sbin/alsactl -f /etc/asound.state.mythtv \

 store

Note: Note that we're suggesting you save the sound card settings to a nonstandard file. This is because Gentoo calls
alsactl when it shuts down, and that would overwrite the settings you saved. Shortly, we'll show you how to restore the
settings from asound.state.mythtv each time the system boots.

If you take a look at /var/log/mythtv/mythbackend.log while watching TV, you may see this message:

Unknown video codec

Please go into the TV Settings, Recording Profiles and setup the four

'Software Encoders' profiles.

Assuming RTjpeg for now.

Unknown audio codec

To fix this little problem, you need to go to the main MythTV menu. From there, select Utilities/Setup Setup

TV Settings Recording Profiles, and then the line that says "Software Encoders (v4l based)." You should
now have a screen that looks like the one in Figure 3-18. It shows four profiles: Default, Live TV, High Quality,
and Low Quality. These profiles determine the encoding parameters that MythTV uses when recording
broadcasts. You should update at least the Default and Live TV profiles.

For each profile, you need to go through a sequence of four screens. You probably don't need to change
anything on the first ("Profile") or second ("Image Size") screens. The third screen, shown in Figure 3-19, has
the settings for the video encoder. You can choose between RTjpeg and MPEG-4. We think that RTjpeg looks
better, but it requires more CPU power. For example, compiling some software while watching TV caused jitter
with the RTjpeg encoder, while MPEG-4 was unaffected. If you go with the MPEG-4 encoder, we recommend
enabling the "Enable interlaced DCT encoding" and "Enable interlaced motion" options.

On the final screen, shown in Figure 3-20, you can set the audio encoding options. We recommend

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Uncompressed over MP3. You can also change the sampling rate to 32,000, 44,100, or 48,000 bits per second.
In our subjective tests, changing the sampling rate did not make any noticeable difference.

Try btaudio

Some TV tuner cards also have a built-in audio device. You may be able to use the btaudio driver
to get sound directly from the TV tuner card.

Audio mixer output settings that work for us.

Audio mixer input settings that work for us.

You may want to enable extra audio buffering on the "General Playback" screen.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Adding a Remote Control

The best way to use MythTV is with a remote control. You really shouldn't have to use a mouse and keyboard
while lying on the couch watching TV. If you built the Digital Audio Jukebox (Chapter 2), then you already know
how to do this. If not, here is a quick recap. You'll need a remote control and an Irman infrared-to-serial
adapter.

If you plan to buy a remote control for this project, we highly recommend that you get one with up, down, left,
and right buttons that are separate from the volume and channel controls, such as the one shown in Figure 3-
21. This is primarily because you'll want to use the direction keys for traversing the MythTV menus.
Alternatively you can use two different modes of the remote (e.g., TV and VCR) to separate the volume controls
at least.

Install the Irman interface library (libirman) with this command:

emerge libirman

Next, install the LIRC software. Before running emerge, tell LIRC that you'll be using the Irman driver:

echo 'LIRC_OPTS="--with-driver=irman"' >> \

/etc/make.conf

emerge lirc

After the software is installed, you can connect the Irman to a serial port, as shown in Figure 3-22 and test
everything with the test_io command. You should see numeric codes when you press buttons on your remote
control:

test_io /dev/tts/0

IR

OK

[77][c0][00][00][00][00]

[75][80][00][00][00][00]

You'll need an /etc/lircd.conf file that corresponds to your particular remote control. You might be able to find
one at http://lirc.sourceforge.net/remotes/. Alternatively, it's almost just as easy to make one yourself with
irrecord:

irrecord -d /dev/tts/0 /etc/lircd.conf

The "Software Encoders (v4l based)" screen.

http://lirc.sourceforge.net/remotes/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Choose between MPEG-4 and RTjpeg on the Video Compression screen.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We recommend uncompressed audio at any available bitrate.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We decided to use the VCR mode of our multi-function remote to control MythTV. Here's the /etc/lircd.conf file
we got after running irrecord:

begin remote

 name foo

 bits 64

Code View:
eps 30

 aeps 100

 one 0 0

 zero 0 0

 gap 209963

 toggle_bit 0

 begin codes

 POWER 0xFFFF419000000000

 CH+ 0xFFFF435000000000

 CH- 0xFFFF434000000000

 VOL- 0xFFFFC0F800000000

 VOL+ 0xFFFFC07800000000

 MUTE 0xFFFFC03800000000

 1 0xFFFF414000000000

 2 0xFFFF417000000000

 3 0xFFFF416000000000

 4 0xFFFF411000000000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 0xFFFF410000000000

 6 0xFFFF413000000000

 7 0xFFFF412000000000

 8 0xFFFF41D000000000

 9 0xFFFF41C000000000

 0 0xFFFF415000000000

 ENT 0xFFFF43D000000000

 MENU 0xFFFF43E000000000

 CHAP- 0xFFFF434000000000

 CHAP+ 0xFFFF435000000000

 QUIT 0xFFFF432000000000

 SCAN- 0xFFFF427000000000

 PLAY 0xFFFF420000000000

 SCAN+ 0xFFFF421000000000

 REC 0xFFFF422002000000

 STOP 0xFFFF423000000000

 PAUSE 0xFFFF43C000000000

 RETURN 0xFFFF408000000000

 UP 0xFFFF439000000000

 DOWN 0xFFFF41B000000000

 RIGHT 0xFFFF41A000000000

 LEFT 0xFFFF418000000000

 end codes

Before starting lircd, you need to edit /etc/conf.d/lircd and tell it to use the Irman driver by adding this line:

LIRCD_OPTS="-d /dev/tts/0"

Now you can start lircd immediately, and each time the system boots:

/etc/init.d/lircd start

rc-update add lircd default

At this point, we have the LIRC daemon configured and running. The next step is to write a LIRC client
configuration file. You'll use two LIRC clients: irexec and irxevent. Most of the functionality is handled by
irxevent. Note that they share a single configuration file.

A remote control for the DVR with a separate navigation keypad.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connecting the Irman receiver.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The irxevent program sends fake events (keypresses and button clicks) to an X Window. You'll use it to send the
keystrokes that control MythTV. The MythTV documentation has a full list at
http://www.mythtv.org/docs/mythtv-HOWTO-11.html. You'll implement only a subset of those commands with
the remote control. The following /etc/lircrc file maps remote control buttons to irexec and irxevent
instructions:

Code View:
begin

 prog = irxevent

 button = QUIT

 repeat = 1

 config = Key Escape CurrentWindow

end

begin

 prog = irxevent

 button = CH+

 repeat = 1

 config = Key Up CurrentWindow

end

begin

 prog = irxevent

 button = CH-

 repeat = 1

 config = Key Down CurrentWindow

end

begin

 prog = irxevent

 button = ENT

http://www.mythtv.org/docs/mythtv-HOWTO-11.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 repeat = 1

 config = Key Return CurrentWindow

end

begin

 prog = irxevent

 button = SCAN+

 repeat = 1

 config = Key Right CurrentWindow

end

begin

 prog = irxevent

 button = SCAN-

 repeat = 1

 config = Key Left CurrentWindow

end

begin

 prog = irxevent

 button = PLAY

 repeat = 1

 config = Key P CurrentWindow

end

begin

 prog = irxevent

 button = PAUSE

 repeat = 1

 config = Key P CurrentWindow

end

Code View:
begin

 prog = irxevent

 button = MENU

 repeat = 1

 config = Key M CurrentWindow

end

begin

 prog = irxevent

 button = 0

 config = Key 0 CurrentWindow

end

begin

 prog = irxevent

 button = 1

 config = Key 1 CurrentWindow

end

begin

 prog = irxevent

 button = 2

 config = Key 2 CurrentWindow

end

begin

 prog = irxevent

 button = 3

 config = Key 3 CurrentWindow

end

begin

 prog = irxevent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 button = 4

 config = Key 4 CurrentWindow

end

begin

 prog = irxevent

 button = 5

 config = Key 5 CurrentWindow

end

begin

 prog = irxevent

 button = 6

 config = Key 6 CurrentWindow

end

begin

 prog = irxevent

 button = 7

 config = Key 7 CurrentWindow

end

begin

 prog = irxevent

 button = 8

 config = Key 8 CurrentWindow

end

begin

 prog = irxevent

 button = 9

 config = Key 9 CurrentWindow

end

begin

 prog = irxevent

Code View:
button = UP

 repeat = 1

 config = Key Up CurrentWindow

end

begin

 prog = irxevent

 button = DOWN

 repeat = 1

 config = Key Down CurrentWindow

end

begin

 prog = irxevent

 button = LEFT

 repeat = 1

 config = Key Left CurrentWindow

end

begin

 prog = irxevent

 button = RIGHT

 repeat = 1

 config = Key Right CurrentWindow

end

begin

 prog = irexec

 button = POWER

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 config = /usr/local/bin/start-myth.sh

end

#begin

prog = irexec

button = VOL-

repeat = 1

config = amixer -q set Master 1-

#end

#begin

prog = irexec

button = VOL+

repeat = 1

config = amixer -q set Master 1+

#end

#begin

prog = irexec

button = M

config = amixer -q set PCM mute

#end

Note that you're telling irexec to run a shell script when the POWER button gets pressed. This provides a way to

restart both mythbackend and mythfrontend in case either one crashes or if you unintentionally exit the
application. The script reads the process ID file for mythbackend. If the PID file is not found, or if the process is
not running, the script starts it up again. For the frontend, it just kills the entire X session and starts it up again.
Here's the start-myth.sh script:

#!/bin/shstart_backend() {

 # zap the state back to stop in case mythbackend

Code View:
crashed

 /etc/init.d/mythbackend zap

 /etc/init.d/mythbackend start

}

if test -f /var/run/mythtv/mythbackend.pid ; then

 PID=`cat /var/run/mythtv/mythbackend.pid`

 if kill -0 $PID ; then

 echo "mythbackend is already running"

 else

 start_backend

 fi

else

 start_backend

fi

just kill the X server, wait for X clients to die, then start it again

killall X

sleep 3

count=0

while test $count -lt 10 ; do

 $HOME/startx.sh

 sleep 1

 count=`expr $count + 1`

done

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The start-myth.sh script calls startx.sh. We decided to separate out the commands for starting X Windows so
that you can also call that script when the system boots. Here is the startx.sh script:

#!/bin/sh

exec > $HOME/xsession.log

exec 2>&1

exec startx

Note that the last few lines of the /etc/lircrc file are commented out. We commented out the button definitions
for VOL-, VOL+, and Mute because of an interesting feature of our universal remote. When the remote is in the

VCR mode, which we use for MythTV, the volume buttons work the same as they do when the remote is in the
TV mode. That is, the volume buttons automatically change the TV volume. Of course, this only works if you've
also programmed the universal remote for your particular TV. If your remote control does not work this way,
you may want to uncomment the volume-related buttons in /etc/lircrc so you can control the volume with
amixer.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Starting MythTV Automatically

In our quest to build a keyboard-less, remote-controlled digital video recorder, we now need to talk about
automatically starting MythTV when the system boots. We initially planned on suggesting that you use KDE's
auto-login and auto-start features. However, we feel that KDE (or Gnome) is an unnecessary complication for
the task. They spawn too many extra processes that we don't need, and they also like to fiddle with the sound
settings. So instead, we suggest a very simple startup scheme with no window manager at all.

Start by editing /etc/conf.d/local.start and adding these two lines:

/bin/su - mythtv --login -c /usr/bin/irexec /etc/lircrc &

/bin/su - mythtv --login -c /home/mythtv/startx.sh &

The first runs irexec, which acts on some of your remote control buttons. The second line runs the startx.sh
script (listed in the previous section), which starts X Windows.

startx.sh, of course, just runs startx after redirecting stdout and stderr. The rest of the programs are started
after X is running. If you've already written a ~/.xinitrc file, replace its contents with these few lines (as
promised, we're restoring the sound settings from the file we created earlier):

#!/bin/sh

irxevent /etc/lircrc &

alsactl -f /etc/asound.state.mythtv restore

mythfrontend

Note that since mythfrontend is the last command in the .xinitrc file, X Windows shuts down if/when
mythfrontend exits. If that happens to you, simply press the remote's Power button to restart X Windows and
mythfrontend.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Your TV as the Display

Many Mini-ITX-sized motherboards, such as the Shuttle ST62K, come with built-in TV outputs. We were really
looking forward to using that feature on this project. Unfortunately, it didn't "just work."

The first few times we tried to run X Windows on the TV, the display was scrambled, as though either the
horizontal or vertical sync settings were wrong. Even though the text-display mode worked just fine, the
graphics mode did not. We tried numerous horizontal and vertical sync settings, different screen resolutions, but
nothing worked.

The Shuttle ST62K uses an ATI Radeon 9100 IGP chip for its display. ATI releases proprietary drivers for Linux
and XFree86, but getting them to work is a little bit tricky. For Gentoo, you may want to refer to http://gentoo-
wiki.com/HOWTO_ATI_Drivers as you go along. Begin by installing the ATI drivers:

emerge ati-drivers

Then, execute this command:

opengl-update ati

The Gentoo documentation instructs you to run fglrxconfig next. But this program will ask you a bunch of
technical questions that you (and we) probably don't know the answer to. Instead, we suggest that you try the
following xorg.conf file:

Code View:
Section "dri"

 Mode 0666

EndSection

Section "Module"

 Load "dbe"

 SubSection "extmod"

 Option "omit xfree86-dga"

 EndSubSection

 Load "type1"

 Load "freetype"

 Load "glx"

 Load "dri"

EndSection

Section "Files"

 RgbPath "/usr/X11R6/lib/X11/rgb"

 FontPath "/usr/X11R6/lib/X11/fonts/misc/"

 FontPath "/usr/X11R6/lib/X11/fonts/75dpi/:unscaled"

 FontPath "/usr/X11R6/lib/X11/fonts/100dpi/:unscaled"

 FontPath "/usr/X11R6/lib/X11/fonts/Type1/"

 FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"

 FontPath "/usr/X11R6/lib/X11/fonts/100dpi/"

EndSection

Code View:
Section "InputDevice"

http://gentoo-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Identifier "Keyboard0"

 Driver "kbd"

EndSection

Section "InputDevice"

 Identifier "Mouse0"

 Driver "mouse"

 Option "Protocol" "auto"

 Option "Device" "/dev/input/mouse0"

EndSection

Section "Monitor"

 Identifier "TV"

 VendorName "SomeVendor"

 ModelName "SomeModel"

 DisplaySize 160 120

EndSection

Section "Device"

 Identifier "ATI Graphics Adapter"

 Driver "fglrx"

 Option "no_accel" "no"

 Option "no_dri" "no"

 Option "mtrr" "off"

 Option "DesktopSetup" 0x00000000"

 Option "MonitorLayout" "CTV,NONE"

 Option "IgnoreEDID" "off"

 Option "HSync2" unspecified"

 Option "VRefresh2" "unspecified"

 Option "ScreenOverlap" "0"

 Option "NoTV" "no"

 Option "TVStandard" "NTSC-M"

 Option "TVHSizeAdj" "0"

 Option "TVVSizeAdj" "0"

 Option "TVHPosAdj" "0"

 Option "TVVPosAdj" "0"

 Option "TVHStartAdj" "0"

 Option "TVColorAdj" "0"

 Option "GammaCorrectionI" "0x00000000"

 Option "GammaCorrectionII" "0x00000000"

 Option "Capabilities" "0x00000800"

 Option "VideoOverlay" "on"

 Option "OpenGLOverlay" "off"

 Option "CenterMode" "off"

 Option "PseudoColorVisuals" "off"

 Option "Stereo" "off"

 Option "StereoSyncEnable" "1"

 Option "FSAAEnable" "no"

 Option "FSAAScale" "1"

 Option "FSAADisableGamma" "no"

 Option "FSAACustomizeMSPos" "no"

 Option "FSAAMSPosX0" "0.000000"

 Option "FSAAMSPosY0" "0.000000"

 Option "FSAAMSPosX1" "0.000000"

 Option "FSAAMSPosY1" "0.000000"

 Option "FSAAMSPosX2" "0.000000"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code View:
Option "FSAAMSPosY2" "0.000000"

 Option "FSAAMSPosX3" "0.000000"

 Option "FSAAMSPosY3" "0.000000"

 Option "FSAAMSPosX4" "0.000000"

 Option "FSAAMSPosY4" "0.000000"

 Option "FSAAMSPosX5" "0.000000"

 Option "FSAAMSPosY5" "0.000000"

 Option "UseFastTLS" "0"

 Option "BlockSignalsOnLock" "on"

 Option "UseInternalAGPGART" "yes"

 Option "ForceGenericCPU" "no"

 Screen 0

EndSection

Section "Screen"

 Identifier "Screen0"

 Device "ATI Graphics Adapter"

 Monitor "TV"

 DefaultDepth 24

 SubSection "Display"

 Depth 24

 #Modes "640x480"

 Modes "800x600"

 EndSubSection

EndSection

The DisplaySize line in the monitor definition is not strictly necessary. However, it affects the size of MythTV's

fonts. We found that the fonts were too small by default, so we added the DisplaySize line. The ratio of these

two numbers should match your TV's aspect ratio. For example, 160/120 equals 4/3. If you have a wide-screen
TV then you should use numbers that correspond to 16/9.

Using the VESA driver

If you can't get the ATI (fglrx) drivers working, you can always fall back on the VESA driver. The ST62K's TV
output works well with the VESA driver, and the configuration is much simpler. First, make sure you change the
OpenGL settings back to the default:

opengl-update xorg-x11

Then, try using these xorg.conf section definitions:

Section "Module"

 Load "extmod"

 Load "dbe"

 Load "record"

 Load "xtrap"

 Load "type1"

 Load "freetype"

EndSection

Section "Monitor"

 Identifier "TV"

 VendorName "SomeVendor"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ModelName "SomeModel"

 DisplaySize 160 120

EndSection

Section "Device"

 Identifier "VESA Device"

 Driver "vesa"

 VendorName "All"

 BoardName "All"

EndSection

Section "Screen"

 Identifier "Screen0"

 Device "VESA Device"

 Monitor "TV"

 DefaultColorDepth 24

 SubSection "Display"

 Depth 24

 Modes "640x480"

 #Modes "800x600"

 EndSubSection

EndSection

Note that the VESA driver does not support the X-video extension, also known as XVideo. That extension takes
advantage of the video hardware to perform certain operations such as scaling and contrast/brightness
adjustments. Without XVideo support, these operations are performed in software, placing considerable load on
the CPU.

The problem is especially noticeable when watching live TV because the system is encoding and decoding the
video stream at the same time. When the CPU is working too hard, the decoder skips some frames. The
previous version of MythTV would occasionally lose audio/video synchronization and even stop playing audio
altogether. This is why we've commented out the 800x600 mode line and are using 640x480 instead. It looks
the same on our TV screen, while using a little less of the CPU.

Working without a mouse

Even though MythTV is an X Windows application, it doesn't use a mouse. You navigate the menus with a
remote control or standard keyboard. One little problem is that X doesn't normally start if it fails to detect a
mouse. Fortunately, that's easy to fix with a special xorg.conf option:

Section "ServerFlags"

 Option "AllowMouseOpenFail" "true"

EndSection

Putting it all together

Figure 3-23 shows what the back of the ST62K looks like with all of the cables (except the Irman) connected
(note that the audio output from the TV tuner card connects to the Line input on the front of the case). The left-
most cable on the bottom goes to the external power supply. Next to that is the video output, which connects to
your television. On the bottom right is the audio output, which also connects to your television, or perhaps to a
separate home theater audio system. On the far right, you can see two white cables connecting to the TV tuner
card. One is the coaxial cable carrying the TV signal. Below that is the tuner card's audio output, which connects
to the PC's sound input on the front of the system. Figure 3-24 shows how the ST62K looks sitting next to a 27-
inch television.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connecting cables to the rear panel.

Our digital video recorder in place.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

Here are a few ideas for improvements that you can explore on your own.

Additional Myth components

MythTV can do much more than record and play TV programs. It has quite a few additional components, or
plug-ins, that we haven't covered. When installing a MythTV plug-in on Gentoo, don't forget to add the package
name to /etc/portage/package.keywords, as we did for mythtv and mythfrontend.

Our favorite plug-in is MythWeather. From the Setup menu you enter your Zip Code. MythWeather retrieves
weather data from msnbc.com and weather.com. It rotates through four different screens that display current
weather conditions, the forecast, and an animated doppler radar image. Very cool!

MythDVD is the component that plays movies from the DVD drive. It uses mplayer to play DVDs by default,
which works well. If you plan to really use MythDVD, you'll need to add more lines to /etc/lircrc so you can
control mplayer with the remote. Search the Web for "mplayer lircrc" to get started.

MythMusic is the plug-in for playing music. You can rip CDs or import previously encoded music files. MythMusic
supports playlists, ratings for individual songs, cool visualizations, and more. After you install MythMusic, be
sure to visit the Music Settings menus and set the directory where music files are stored. If MythTV runs as a
non-root user, make sure that user has write permission to the music directory.

MythNews is an RSS news feed client. You can select from numerous sources and then browse the news items.
We think it would be nice if MythNews automatically displayed the news items like a "ticker," rather than forcing
us to browse.

MythGallery is a very nice, no-frills plug-in for displaying images. It recognizes JPEG, PNG, TIFF, BMP, GIF, and
PPM image file formats. You can browse image directories, rotate, zoom in/out, and display images as a
slideshow. You can also use MythGallery to import new images from CD-ROM, over the network, or directly from
your camera.

MythGame is a frontend for the X Windows version of the Multiple Arcade Machine Emulator (MAME). Xmame is
a program that emulates the hardware of many older, arcade-style, coin-operated games, such as Pac Man and
Donkey Kong. While Xmame is Free Software, most of the game ROMs are not. Game ROMs are difficult to find
because they are copyrighted and you can't distribute them without permission. However, pdroms.de offers a

few public domain and freeware ROMs that work with MAME. If you plan to use MythGame, you'll probably want
to have a joystick connected to your computer.

MythBrowser is a KDE-based web browser for MythTV. It looks like the konqueror browser, but without the top
menu bar. We feel that it is a little too difficult to use with a TV and without a keyboard/mouse.

MythPhone is a plug-in that allows you to make video phone calls using a simple webcam and microphone. Calls
are established with the Session Initiation Protocol (SIP), which is used by most voice-over-IP applications and
devices. It currently interoperates with Windows Messenger 4.7 and, of course, other MythPhone users.

Add a wireless keyboard

Some MythTV components and features are really difficult to use with a remote control. For example, the Setup
screens often require you to type pathnames and other options. Using the arrow keys to search for names in the
program guide can take a long time as well. You might enjoy MythTV a little more with a wireless keyboard.
Either an infrared (IR) or radio frequency (RF) model should just work without any Linux configuration changes.

Alternatively, if you find yourself frequently sitting in front of the TV with a notebook computer, you could use
an application such as x2x (http://x2x.dottedmag.net/) or Synergy (http://synergy2.sourceforge.net/) to

http://x2x.dottedmag.net/
http://synergy2.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

control your MythTV system using your notebook's keyboard and mouse.

Multiple tuners

MythTV supports multiple tuner cards, which allow you to record more than one show at a time or to record one
show while watching another. You might also need more than one tuner if you have more than one video feed
entering your house. To add additional tuners, run mythsetup, select "Capture cards," and then configure the
corresponding Video source. However, since the Shuttle ST62K has only one PCI slot, you'd need to use a
case/motherboard combo or a bare-bones system with more slots.

Client/server

Another neat thing about MythTV is that you can run the frontend and backend on different machines. This
means, for example, that you can have a single backend server (perhaps hidden in your closet) with multiple
frontend boxes scattered around the house. If you take this approach, it also makes sense to have multiple
tuners, although it's not required.

Using the Hauppauge PVR350

If you have the WinTV-PVR350, you need to install some additional drivers and make some adjustments to the
system configuration. The best reason to use the PVR350 or PVR250 is the hardware MPEG encoder.

Note that the PVR350 is a little bit difficult to install in the ST62K because the PCI card is relatively large. The
back of the card has two threaded coax connectors. It is difficult to get the top connector into the opening in the
back of the case. It takes a little patience and maneuvering, but the card does fit.

The PVR350 uses a driver called ivtv rather than bttv. You can install it with emerge:

emerge media-tv/ivtv

Then add it to /etc/modules.autoload.d/kernel-2.6:

echo ivtv >> /etc/modules.autoload.d/kernel-2.6

modules-update

Also create a file named /etc/modules.d/ivtv with these contents:

alias char-major-81 videodev

alias char-major-81-0 ivtv

alias char-major-81-1 ivtv

As you go through mythsetup, certain configuration options will be different. For example, on the Capture Card
Setup screen, select "MPEG-2 Encoder card (PVR-250, PVR-350)" and set the default input to Tuner 0. On the

Input Connections screen, connect your video source to Tuner 0 as well.

If you have trouble, play around with ivtvctl and ivtv-tune. You can also install and use tvtime and xawtv to
make sure the tuner is working c-orrectly.

External tuners

The examples in this chapter assume that the television source is a standard analog cable signal. If you have
digital cable or a satellite-based service such as DISH network or DirecTV, you'll need to do a little extra work to
use MythTV. At issue is whether or not MythTV can control the tuner for your particular television service.

You should probably start by reading the (short) section titled "Adding support for an external tuner" in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MythTV HOWTO document (currently at http://www.mythtv.org/docs/mythtv-HOWTO-11.html#ss11.5).

Unfortunately, that section tells you only that you need a changechannel program, which does not come with
MythTV. You'll probably need to spend a bit of time searching the Web for phrases that include "mythtv" and
your particular television tuner.

If you have a DirecTV tuner, you can use a serial cable and the directv.pl script to make MythTV change the
channel. You can buy a premade cable from http://www.dtvcontrol.com/. You can currently find the directv.pl
script at http://www.pdp8.net/directv/directv.shtml.

If you have DISH network service, you probably can't use a serial cable to control the tuner. Instead you'll need
to build or buy an infrared transmitter, affectionately called the IR Blaster, which connects to your serial port.
The IR Blaster uses LIRC to transmit the same codes as your tuner's remote control. See the IR Blaster HOWTO
at http://www.mythtv.org/wiki/index.php/Using_an_IR_Blaster_with_MythTV. You can purchase an IR Blaster
from http://www.irblaster.info/.

Note that the DataDirect (zap2it.com) listing service also contains channel lineups for DirecTV, DISH network,
and other noncable services.

Conserving power

Leaving the MythTV box on all day is equivalent to leaving a 40–60 watt light bulb on. Certainly a MythTV box
uses much more power than a VCR or DVD player. If you're like us, you already have one or two computers in
your house that stay on most of the time. We feel strongly that everyone should use energy responsibly and
conserve it whenever possible. MythTV has some interesting power-saving features, although we did not have
time to try them out.

The MythTV box can shut itself down when it is idle and knows there are no upcoming shows to record. But how
can it be automatically started again? One way is to use the Wake-On-LAN feature of some network cards. While
the computer sleeps, the network card looks for a packet that contains a certain sequence of bytes. If found, the
network card instructs the computer to wake up. In order to use this approach, you need another computer on
your network that can send the Wake-On-LAN packet.

The other technique takes advantage of BIOS wake-up features found on certain motherboards. This works only
if your motherboard has that BIOS feature and is supported by one of the Linux applications that try to set the
wake-up time.

For more information on these techniques, see http://www.mythtv.org/docs/mythtv-HOWTO-11.html and
http://gsd.di.uminho.pt/jpo/software/wakeonlan/mini-howto/.

http://www.mythtv.org/docs/mythtv-HOWTO-11.html#ss11.5
http://www.dtvcontrol.com/
http://www.pdp8.net/directv/directv.shtml
http://www.mythtv.org/wiki/index.php/Using_an_IR_Blaster_with_MythTV
http://www.irblaster.info/
http://www.mythtv.org/docs/mythtv-HOWTO-11.html
http://gsd.di.uminho.pt/jpo/software/wakeonlan/mini-howto/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Home Network Gateway

In this chapter, we'll show you how to build a nifty little OpenBSD-powered gateway for a home or small office
network. This gateway provides four important services: network address translation (NAT), DHCP, DNS, and a
stateful packet filtering firewall. NAT is the technology that allows multiple computers to share a single IP
address. DHCP is a service that automatically assigns IP addresses to systems on your network. The gateway
also provides a local DNS server for your network, which reduces lookup latencies and also frees you from
having to manage hosts files across multiple machines. The most important component, the firewall, protects
your systems from malicious network attacks and scans. Figure 4-1 shows how the gateway fits into your home
or office network.

What You Need

Soekris net4501 with case and power supply

Compact Flash Card, 128–256 MB

PC to be temporarily configured as DHCP and TFTP server

DB9-to-DB9 null modem serial cable

Ethernet crossover cable

The gateway's place in your home network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The stateful firewall is one of OpenBSD's best features. It works by remembering the addresses and port
numbers for packets at the beginning of a connection. Then, subsequent packets with the same addresses are
recognized and allowed as a part of an existing conversation. The stateful firewall is particularly useful with UDP
and other so-called stateless protocols. For example, your gateway may receive an unsolicited, and potentially
malicious, DNS reply from a random host on the Internet. A traditional, stateless firewall, would allow this
packet through because it doesn't know the reply is unsolicited. A stateful packet filter, on the other hand,
remembers the addresses of outgoing DNS queries. The DNS reply is allowed to pass only if a state entry was
created by a previous outgoing query.

For most people this is a one-day project. If you are new to Unix, it may take a little longer as you learn about
the intricacies of DHCP and TFTP. You should also be somewhat familiar with FTP, SSH, the Unix shell, and the vi
text editor.

Note: Your DSL/cable modem must have an Ethernet port to connect to this home network gateway. Some of the devices
sold today use a USB interface with drivers available only for Microsoft Windows. The net4501 does not have any USB
interfaces, and the operating system (OpenBSD) we're using does not support USB DSL/cable modems, anyway.

You may be wondering, "Why should I build one of these when I can just go buy a router from Linksys or
NetGear for under $100?" Certainly, if price is the most important factor, this project may not suit your needs.
However, many of us hackers are not willing to leave the security of our networks in the hands of the equipment
manufacturer. Recent security advisories (see sidebar), show that companies like Linksys and NetGear have
bugs or design flaws that leave your network very vulnerable to attacks. At the time of this writing, OpenBSD
had only experienced one remotely exploitable security hole in its default configuration in eight years. Another
reason to build your own security gateway is simply to have more features and more control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Linksys and NetGear Vulnerabilities

According to http://www.securityfocus.com/bid/10441, certain versions of the Linksys W T54G
router firmware allowed anyone, anywhere, access to the device's web-based administration
interface. Less than a week later, someone reported a backdoor administrative account in certain
versions of the Netgear WG602 access point firmware (http://www.securityfocus.com/bid/10459).

Introducing the Soekris net4501

The net4501 was the first system introduced by Soekris Engineering (http://www.soekris.com/). Small and
lightweight, this box takes up less space than most consumer-grade routers.

On the outside, the net4501 is a pleasant light-green box measuring roughly 8.5 x 6 x 1 in (21.5 x 15 x 2.5
cm). The front of the case (Figure 4-2) has three LEDs, labeled Power, Activity, and Error. The activity light
blinks each time the box sends or receives a network packet. The error LED can be controlled from software
after the operating system boots.

On the back (Figure 4-3) you can see three Fast Ethernet (100Base-TX) ports, a DB-9 serial connector, and a
small power plug that accepts between 6 and 20 volts DC. The net4501 consumes no more than 7 watts by
itself. Power requirements may go up to 10 watts if you add expansion (PCI) devices.

Taking the cover off, you can see the small mainboard (Figure 4-4). A full-size PCI connector dominates one
side of the board. With such a thin case, the PCI card must be mounted parallel to the mainboard. The
net4501's PCI slot is for 3.3V cards only. The PCI slots on larger motherboards accept either 3.3V or 5V cards.
This means that many of the available PCI cards cannot work in the net4501. Be sure to check the card's
specifications before making a purchase.

On the other side of the board, you'll see a white Mini-PCI connector and a black Compact Flash (CF) slot. Next
to the Mini-PCI connector is a number of general purpose I/O (GPIO) pins and the header for a second serial
port. Hardware hackers use the GPIO pins to communicate with a wide range of devices, including digital
thermometers and GPS receivers, and to control circuit components like relays.

Designed for network and communications applications, the net4501 is based on AMD's "Elan" platform. It has a
486-class embedded processor that uses very little power. This version of the net4501 runs at 133 MHz and has
64 MB of RAM soldered onto the mainboard.

The net4501 case.

http://www.securityfocus.com/bid/10441
http://www.securityfocus.com/bid/10459
http://www.soekris.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rear of the net4501 with the top off.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4501 mainboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4501 comes with a small 12 volt universal power supply ("wall wart"). Any power supply that outputs
between 6 and 16 volts and is capable of 10 watts will do the trick. The power connector is wired such that
positive is on the center pin. It is protected against reverse polarity so that you won't fry the board if you try
connecting something with reversed polarity. Instead, it just won't power up.

The net4501 doesn't generate enough waste heat to require active cooling. It does not have any fans and
operates in total silence. Our measurements show that it consumes between 4 and 7 watts during normal
operation. The board uses so little power that it hardly even warms up.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Home Network Gateway

In this chapter, we'll show you how to build a nifty little OpenBSD-powered gateway for a home or small office
network. This gateway provides four important services: network address translation (NAT), DHCP, DNS, and a
stateful packet filtering firewall. NAT is the technology that allows multiple computers to share a single IP
address. DHCP is a service that automatically assigns IP addresses to systems on your network. The gateway
also provides a local DNS server for your network, which reduces lookup latencies and also frees you from
having to manage hosts files across multiple machines. The most important component, the firewall, protects
your systems from malicious network attacks and scans. Figure 4-1 shows how the gateway fits into your home
or office network.

What You Need

Soekris net4501 with case and power supply

Compact Flash Card, 128–256 MB

PC to be temporarily configured as DHCP and TFTP server

DB9-to-DB9 null modem serial cable

Ethernet crossover cable

The gateway's place in your home network.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The stateful firewall is one of OpenBSD's best features. It works by remembering the addresses and port
numbers for packets at the beginning of a connection. Then, subsequent packets with the same addresses are
recognized and allowed as a part of an existing conversation. The stateful firewall is particularly useful with UDP
and other so-called stateless protocols. For example, your gateway may receive an unsolicited, and potentially
malicious, DNS reply from a random host on the Internet. A traditional, stateless firewall, would allow this
packet through because it doesn't know the reply is unsolicited. A stateful packet filter, on the other hand,
remembers the addresses of outgoing DNS queries. The DNS reply is allowed to pass only if a state entry was
created by a previous outgoing query.

For most people this is a one-day project. If you are new to Unix, it may take a little longer as you learn about
the intricacies of DHCP and TFTP. You should also be somewhat familiar with FTP, SSH, the Unix shell, and the vi
text editor.

Note: Your DSL/cable modem must have an Ethernet port to connect to this home network gateway. Some of the devices
sold today use a USB interface with drivers available only for Microsoft Windows. The net4501 does not have any USB
interfaces, and the operating system (OpenBSD) we're using does not support USB DSL/cable modems, anyway.

You may be wondering, "Why should I build one of these when I can just go buy a router from Linksys or
NetGear for under $100?" Certainly, if price is the most important factor, this project may not suit your needs.
However, many of us hackers are not willing to leave the security of our networks in the hands of the equipment
manufacturer. Recent security advisories (see sidebar), show that companies like Linksys and NetGear have
bugs or design flaws that leave your network very vulnerable to attacks. At the time of this writing, OpenBSD
had only experienced one remotely exploitable security hole in its default configuration in eight years. Another
reason to build your own security gateway is simply to have more features and more control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Linksys and NetGear Vulnerabilities

According to http://www.securityfocus.com/bid/10441, certain versions of the Linksys W T54G
router firmware allowed anyone, anywhere, access to the device's web-based administration
interface. Less than a week later, someone reported a backdoor administrative account in certain
versions of the Netgear WG602 access point firmware (http://www.securityfocus.com/bid/10459).

Introducing the Soekris net4501

The net4501 was the first system introduced by Soekris Engineering (http://www.soekris.com/). Small and
lightweight, this box takes up less space than most consumer-grade routers.

On the outside, the net4501 is a pleasant light-green box measuring roughly 8.5 x 6 x 1 in (21.5 x 15 x 2.5
cm). The front of the case (Figure 4-2) has three LEDs, labeled Power, Activity, and Error. The activity light
blinks each time the box sends or receives a network packet. The error LED can be controlled from software
after the operating system boots.

On the back (Figure 4-3) you can see three Fast Ethernet (100Base-TX) ports, a DB-9 serial connector, and a
small power plug that accepts between 6 and 20 volts DC. The net4501 consumes no more than 7 watts by
itself. Power requirements may go up to 10 watts if you add expansion (PCI) devices.

Taking the cover off, you can see the small mainboard (Figure 4-4). A full-size PCI connector dominates one
side of the board. With such a thin case, the PCI card must be mounted parallel to the mainboard. The
net4501's PCI slot is for 3.3V cards only. The PCI slots on larger motherboards accept either 3.3V or 5V cards.
This means that many of the available PCI cards cannot work in the net4501. Be sure to check the card's
specifications before making a purchase.

On the other side of the board, you'll see a white Mini-PCI connector and a black Compact Flash (CF) slot. Next
to the Mini-PCI connector is a number of general purpose I/O (GPIO) pins and the header for a second serial
port. Hardware hackers use the GPIO pins to communicate with a wide range of devices, including digital
thermometers and GPS receivers, and to control circuit components like relays.

Designed for network and communications applications, the net4501 is based on AMD's "Elan" platform. It has a
486-class embedded processor that uses very little power. This version of the net4501 runs at 133 MHz and has
64 MB of RAM soldered onto the mainboard.

The net4501 case.

http://www.securityfocus.com/bid/10441
http://www.securityfocus.com/bid/10459
http://www.soekris.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The rear of the net4501 with the top off.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4501 mainboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4501 comes with a small 12 volt universal power supply ("wall wart"). Any power supply that outputs
between 6 and 16 volts and is capable of 10 watts will do the trick. The power connector is wired such that
positive is on the center pin. It is protected against reverse polarity so that you won't fry the board if you try
connecting something with reversed polarity. Instead, it just won't power up.

The net4501 doesn't generate enough waste heat to require active cooling. It does not have any fans and
operates in total silence. Our measurements show that it consumes between 4 and 7 watts during normal
operation. The board uses so little power that it hardly even warms up.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Additional Hardware

The net4501's only storage option is the CF slot. To the operating system, the CF looks just like an ATA/IDE
hard drive. Note, however, that not all CF cards are created equal. Some perform badly (or not at all) when
asked to emulate an ATA disk. We have always had good luck with the SanDisk brand of CF cards.

These days, CF cards are pretty cheap, so you shouldn't buy the smallest possible card for this application. An
absolute minimum for the project is a 128 MB card. A 256 MB card allows for luxuries like manual pages. If you
are using a previously used CF card, you should make sure to make a copy of anything you want to keep and
erase the card completely before inserting it into the case.

As shown in Figure 4-5, installing the CF card is straightforward. Remove the outer case from the 4501 if you
haven't already. To do so, unscrew the four small black Phillips screws on the bottom of the case.

Inside you'll see a tall Phillips screw with a plastic sheath standing up from the case next to the board itself. This
screw holds the CF card in the slot, as indicated in Figure 4-6. Remove it, slide the CF card in (label up), and
replace the screw to secure the CF card.

Inserting a CF card..

Close-up of the net4501 CF card stopper.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Installing OpenBSD

This project is based on OpenBSD (http://www.openbsd.org/), which many people consider to be the most
secure operating system money can't buy. OpenBSD's security and networking focus make it well suited for a
firewall, gateway, and router. However, installing OpenBSD is a bit grungier than Linux or Windows.

Netboot, the OpenBSD installer

The easiest way to install OpenBSD on the net4501 is to do so over the network using the Pre-eXecution
Environment (PXE) network boot protocol. The net4501 first makes a DHCP request to get an IP address. Then
it downloads a boot image via TFTP (Trivial FTP) and executes it. To make all this work you'll need another PC
where you can run DHCP and TFTP servers. We'll describe how to set up DHCP and TFTP for Linux and BSD. Mac
users can follow the BSD instructions. If you'd like to use Windows, you can grab a free TFTP server, such
Tftpd32 from http://tftpd32.jounin.net/ or PumpKIN from http://kin.klever.net/pumpkin/.

Use an Ethernet crossover cable to connect the net4501 directly to the other PC. Plug the cable into the first
Ethernet port on the net4501-the one closest to the serial console. When the net4501 is turned on, the lights
on your network interface cards should light up, indicating that the two systems are connected. If not, you are
probably using a standard Ethernet cable, rather than a crossover.

You'll need to create a little IP network for the two systems. We recommend that you use a network from the
RFC1918 "private address space." We'll use the 192.168.23.0/24 network in the following examples. Begin by
assigning the PC's interface an address from this network. For example, you can use this command on Linux:

ifconfig eth0 inet 192.168.23.1 netmask 255.255.255.0

You can use almost the same command on a BSD system. The only difference is that the interface will be named
something like fxp0 or em0, rather than eth0.

The next step is to get a DHCP server up and running on the PC. In Unix-land, ISC's DHCP server seems to be
the most popular. You should be able to find it in all of the BSD ports collections, and various packages are
available for Linux. You can also get the source code from http://www.isc.org/sw/dhcp/ and install it that way.
The configuration file is usually /etc/dhcpd.conf. Here's how ours looks:

The IP address of the PC

server-identifier 192.168.23.1;

subnet declaration

subnet 192.168.23.0 netmask 255.255.255.0 {

 filename "pxeboot"; # boot image

 option routers 192.168.23.1; # PC's IP address

 # The net4501 will be assigned an address in this range

 range 192.168.23.191 192.168.23.200;

}

http://www.openbsd.org/
http://tftpd32.jounin.net/
http://kin.klever.net/pumpkin/
http://www.isc.org/sw/dhcp/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Don't Have a Crossover?

You can always use an Ethernet switch or hub in place of a crossover cable. If you do, make sure
that the PC and net4501 are the only devices connected.

Making an Ethernet crossover cable is simple, if you have an RJ45 crimper. You can cut the plug
off a perfectly good cable, swap pins 1 & 3 and 2 & 6, and stick a new plug back on.

If you don't have a crimpers, you can probably cut an existing cable in half, strip the ends off the
bare wires, cross the pairs, and twist the fine copper strands back together. Search the web for
"Ethernet crossover" to find a proper wiring diagram.

You can start the DHCP server with a command like this, possibly replacing fxp0 with a different interface

name:

dhcpd fxp0

Now it's time to configure the TFTP server, which is normally started by the inetd process. Edit /etc/inetd.conf
and look for a line that contains tftp. It should look something like this:

tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot

If you don't see such a line, go ahead and add one. The files that tftpd serves go in the /tftpboot directory. If
you want to use a different directory, change the last argument of the tftpd command. After saving inetd.conf,

restart the inetd process. The following commands should work:

killall -HUP inetd

You need to download two files from an OpenBSD mirror site and place them in the /tftpboot directory: pxeroot
and bsd.rd. Have a look at OpenBSD's list of mirror sites (http://openbsd.org/ftp.html) and pick one that is
close to you. The files you want are in the /pub/OpenBSD/n.n/i386/ directory. The PXE boot loader is named

pxeboot, and the RAM disk installation kernel is named bsd.rd. Download these and place them in the /tftpboot
directory. Make sure they are world-readable (i.e., chmod a+r).

Before booting OpenBSD, you must create a boot.conf. Since the net4501 doesn't have a normal video
interface, you'll be doing everything over the serial port. You need to tell OpenBSD that the serial port is the
console. The boot loader looks for instructions like this in a file named etc/boot.conf. To force the boot loader to
use the serial console, create /tftpboot/etc/boot.conf on the PC and put these two lines in the file:

set tty com0

boot tftp:bsd.rd

Now you're almost ready to try booting the net4501 for the first time. First, you need to configure the serial
console.

Configure the net4501 serial console

Before powering up the net4501, connect a "null-modem" cable between the serial port on the net4501 and the
serial port on the PC as shown in Figure 4-7. If your PC doesn't have a serial port, you can probably use a USB-
to-serial adapter. Start a terminal emulation program on the PC (e.g., hyperterm, minicom, cu, or tip) and set it
for 19,200 bps, 8 data bits, no parity, and 1 stop bit (8N1). For example, if your PC is running FreeBSD, you can

http://openbsd.org/ftp.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

use:

cu -s 19200 -l cuaa0

net4501 connected to PC with crossover cable and null modem.

Or, if you have the excellent, GNU screen program installed, simply type:

% screen /dev/tts/0 19200

Note that /dev/tts/0 is the name of the first serial port on Linux. Different operating systems use different
device names, unfortunately. When you supply power to the net4501, you should see some output like this
almost immediately:

comBIOS ver. 1.26a 20040819 Copyright (C) 2000-2004 Soekris

Engineering.

Soekris Engineering net4501

0064 Mbyte Memory CPU 80486 133 Mhz

Pri Mas SanDisk SDCFB-128 LBA 980-8-32 125 Mbyte

Slot Vend Dev ClassRev Cmd Stat CL LT HT Base1 Base2 Int

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0:00:0 1022 3000 06000000 0006 2280 00 00 00 00000000 00000000

0:18:0 100B 0020 02000000 0107 0290 00 3F 00 0000E001 A0000000 10

0:19:0 100B 0020 02000000 0107 0290 00 3F 00 0000E101 A0001000 11

0:20:0 100B 0020 02000000 0107 0290 00 3F 00 0000E201 A0002000 05

 5 Seconds to automatic boot. Press Ctrl-P for entering Monitor.

If you don't see any output, double check your null-modem cable connections and software settings. Also, your
PC may have more than one serial port. You can either try using /dev/cuaa1 (FreeBSD) or /dev/ttys/1 (Linux),
or move the cable from one port to the other.

Now you have to deal with a minor net4501 annoyance. Its BIOS comes factory-set with a serial port speed of
19,200 bps. However, after OpenBSD is installed, the default console speed will be 9,600 bps. Since you want
to be able to read both the BIOS boot messages and log in to the OpenBSD console, you should change the
BIOS console speed now to avoid any future headaches. To change settings in the BIOS, hit Ctrl-P before the
countdown reaches zero. Then, you'll find yourself in the comBIOS Monitor. A simple command changes the
serial port speed:

comBIOS Monitor. Press ? for help.

> set ConSpeed 9600

The change is saved immediately. Reconfigure your terminal program (cu, screen, kermit, etc.) settings for
9,600 and power-cycle the net4501. You should see the same boot screen as before. If you see gibberish, try
going back to 19,200 and changing the serial port speed again.

Boot the OpenBSD installer

With DHCP, TFTP, and the serial console ready to go, the net4501 should boot into the OpenBSD install kernel.
The PXE boot process outputs some indicators as it moves along. It should get an address with DHCP and fetch
the boot loader with TFTP. Then it executes the boot loader, sets the console to com0, and loads the bsd.rd
kernel:

BootManage UNDI, PXE-2.0 (build 082)

BootManage PXE-2.0 PROM 1.0, NATSEC 1.0, SDK 3.0/082 (OEM52)

Copyright (C) 1989,2000 bootix Technology GmbH, D-41466 Neuss.

PXE Software Copyright (C) 1997, 1998, 1999, 2000 Intel Corporation.

Licensed to National Semiconductor

CLIENT MAC ADDR: 00 00 24 C0 0C A8

CLIENT IP: 192.168.23.191 MASK: 255.255.255.0 DHCP IP: 192.168.23.1

GATEWAY IP: 192.168.23.1

probing: pc0 com0 com1 pci pxe![2.1] mem[577K 63M a20=on]

disk: hd0+*

net: mac 00:00:24:c0:0c:a8, ip 192.168.23.191, server192.168.23.1

>> OpenBSD/i386 PXEBOOT 1.02

switching console to com0

>> OpenBSD/i386 PXEBOOT 1.02

booting tftp:bsd.rd: 4302596+825452 [52+147936+134838]=0x5291b0

entry point at 0x100120

Copyright (c) 1982, 1986, 1989, 1991, 1993

 The Regents of the University of California. All rights

reserved.

Copyright (c) 1995-2005 OpenBSD. All rights reserved.

http://www.OpenBSD.org

http://www.OpenBSD.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Don't worry if you don't get this far the first time. Configuring DHCP, and especially TFTP, can be difficult. You'll
probably be able to figure out what's working and what's broken by looking at the console output. If you get
stuck, double-check the DHCP configuration and make sure that dhcpd was restarted after any configuration
changes. Check the system logs on the server for errors or warnings from dhcpd and tftpd. Filename
permissions are a common problem with TFTP. Make sure that the pxeboot and bsd.rd files are readable by the
tftpd process owner. You may also want to run tcpdump on the server while all this happens.

As the kernel boots, it outputs various messages about the processor, memory, buses, controllers, and devices.
Once the kernel has booted, the installation script runs and you'll see a prompt like this:

(I)nstall, (U)pgrade or (S)hell?

Enter I to start the installation process. You'll get two questions about your terminal type and keyboard

encoding. Simply hit Enter to accept the defaults, since they should be fine:

Terminal type? [vt220]

Do you wish to select a keyboard encoding table? [no]

No PXE?

The net4501 BIOS may not attempt a PXE boot if it thinks the CF card contains a filesystem. If you
see an error such as "No OS" or a generic "Disk error," you'll need take the CF card out, erase it,
and put it back into the net4501.

The best way to erase the CF card is to attach it to your PC with a USB or IDE CF card adapter,
and then use the dd utility to fill it with zeroes. For example:

dd if=/dev/zero of=/dev/da0

Make absolutely sure that you use the correct device name for the CF card. It should appear in
your dmesg output and/or syslogd messages. If you use the wrong device name you may
overwrite another filesystem!

Next, you'll receive a stern warning about backups, and the script asks if you are sure that you want to continue
installing OpenBSD. Answer yes. Since there is no data on the CF card yet, you have nothing to lose!

IS YOUR DATA BACKED UP? As with anything that modifies disk

contents, this program can cause SIGNIFICANT data loss.

It is often helpful to have the installation notes handy. For

complex disk configurations, relevant disk hardware manuals and a

calculator are useful.

Proceed with install? [no] yes

Partition the CF card

The next step is to select and partition the disk for OpenBSD. The only disk is the CF card, which shows up as
wd0 to OpenBSD:

Code View:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You will now initialize the disk(s) that OpenBSD will use.

To enable all available security features you should configure the disk(s) to

allow the creation of separate filesystems for /, /tmp, /var, /usr, and /home.

Available disks are: wd0.

Again, the installation script has the right idea, so just hit Enter to use wd0:

Which one is the root disk? (or 'done') [wd0]

The installation script then asks if the entire disk should be used for OpenBSD. Answer yes to this question:

Do you want to use *all* of wd0 for OpenBSD? [no] yes

Putting all of wd0 into an active OpenBSD MBR partition (type

'Ad6')...0: no dl

done.

Next you'll find yourself in OpenBSD's disk-label editor:

using MBR partition 3: type A6 off 32 (0x20) size 250848 (0x3d3e0)

Treating sectors 32-250880 as the OpenBSD portion of the disk.

You can use the 'b' command to change this.

Initial label editor (enter '?' for help at any prompt)

Partitioning the disk with a disk label is straightforward. First, delete any existing partitions with the d command

(CF cards often come with an MS-DOS filesystem):

> d

partition to delete: [] a

Then, create one large partition (or "slice") for the root filesystem. Don't use the whole CF card, however. You'll
create a small swap partition of 1,024 blocks after this. Take the default size value (250,848 in the following
example) and subtract 1,024. Use that value for the size of the "a" partition:

> a

partition: [a]

offset: [32]

size: [250848] 249824

FS type: [4.2BSD]

mount point: [none] /

And finally, create a small swap partition for reasons we'll explain later:

> a

partition: [b]

offset: [249856]

size: [1024]

FS type: [swap]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Save the new partition and exit with the q command:

> q

Write new label?: [y] y

No more disks to initialize.

OpenBSD filesystems:

wd0a /

After creating the disk label, allow the installer to create a filesystem on the first partition:

The next step *DESTROYS* all existing data on these partitions!

Are you really sure that you're ready to proceed? [no] yes

/dev/rwd0a: 249824 sectors in 976 cylinders of 8 tracks, 32

sectors

 122.0MB in 2 cyl groups (952 c/g, 119.00MB/g, 15232 i/g)

/dev/wd0a on /mnt type ffs (rw, asynchronous, local, ctime=Thu Oct

13 21:43:07 2005)

The filesystem is now ready. Before you can fill it up, however, you have to configure the network interface.

Configure the network

The next thing you should see is a prompt for the new system's hostname. We named ours "enki":

System hostname? (short form, e.g. 'foo') enki

After assigning the hostname, you'll enter the network configuration phase of the installation process. For now,
configure only the sis0 interface and leave the other two (sis1 and sis2) alone.

At this point, you'll probably just want to configure sis0 to get an address via DHCP. You know it already works,
or else you wouldn't have gotten this far. For many of the prompts, you can hit Enter to accept the default
values. Be sure to enter dhcp when asked about the IP address for sis0:

Code View:
Configure the network? [yes]

Available interfaces are: sis0 sis1 sis2.

Which one do you wish to initialize? (or 'done') [sis0]

Symbolic (host) name for sis0? [enki]

The media options for sis0 are currently

 media: Ethernet autoselect

Do you want to change the media options? [no]

IPv4 address for sis0? (or 'none' or 'dhcp') dhcp

Issuing hostname-associated DHCP request for sis0.

DHCPDISCOVER on sis0 to 255.255.255.255 port 67 interval 1

DHCPDISCOVER on sis0 to 255.255.255.255 port 67 interval 1

ip length 328 disagrees with bytes received 332.

accepting packet with data after udp payload.

DHCPOFFER from 192.168.23.1

DHCPREQUEST on sis0 to 255.255.255.255 port 67

ip length 328 disagrees with bytes received 332.

accepting packet with data after udp payload.

DHCPACK from 192.168.23.1

bound to 192.168.23.191 -- renewal in 43200 seconds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Available interfaces are: sis1 sis2.

Which one do you wish to initialize? (or 'done') [sis1] done

DNS domain name? (e.g. 'bar.com') [life-gone-hazy.com]

DNS nameserver? (IP address or 'none') [192.168.23.1]

Use the nameserver now? [yes]

Default IPv4 route? (IPv4 address, 'dhcp' or 'none') [dhcp]

Edit hosts with ed? [no]

Do you want to do any manual network configuration? [no]

Password for root account? (will not echo) sekrit

Password for root account? (again) sekrit

Don't worry if you see some errors from the DHCP client about "accepting packet with data after udp payload."
You should be able to get a DHCP lease anyway.

Got Internet?

If the net4501 can communicate with hosts on the Internet, you can just use one of the OpenBSD
mirror sites (in order for it to do so, the PC that is acting as DHCP and TFTP server must have
supplied a router address and DNS server addresses when it offered a DHCP lease). If not, you'll
need to copy some of the files onto a server on your local network.

Install software sets

Now that you have the network configured, you need to tell the installer how to obtain the installation sets.
These are .tgz files that contain the OpenBSD operating system. We recommend that you download these files
from an OpenBSD mirror site and serve them up locally with Apache or ftpd. You can also copy the files from an
OpenBSD CD-ROM, if you have one.

At the time of this writing, the latest OpenBSD version was 3.7. We'll use this version in the remaining example
instructions. To download the installation sets, visit a mirror site and go to the /pub/OpenBSD/3.7/i386
directory. On the CD-ROM it is just 3.7/i386. Download or copy the following files:

index.txt

bsd

base37.tgz

etc37.tgz

If you have a 256 MB CF card, you can also get these sets:

misc37.tgz

http://lib.ommolketab.ir
http://lib.ommolketab.ir

man37.tgz

game37.tgz

comp37.tgz

It's probably easiest to stick these files in a directory to be served by Apache. You may need to install Apache if
it is not already on your PC. We suggest that you create an openbsd directory under Apache's DocumentRoot

and place the installation sets there. For example:

mkdir /usr/local/www/data/openbsd

mv index.txt bsd *.tgz /usr/local/www/data/openbsd

Make sure that the openbsd directory and the files in it are readable by the Apache process user ID.

Now, getting back to the installation procedure, the media-selection prompt looks like this:

Code View:
You will now specify the location and names of the install

sets you want to load. You will be able to repeat this step until all of your

sets have been successfully loaded. If you are not sure what sets to install,

refer to the installation notes for details on the contents

of each.

Sets can be located on a (m)ounted filesystem; a (c)drom, (d)isk or

(t)ape device; or a (f)tp, (n)fs or (h)ttp server.

Select h for HTTP, nothing for the proxy URL, and no when asked if you want to see the list of known servers:

Where are the install sets? h

HTTP/FTP proxy URL? (e.g. 'http://proxy:8080', or 'none') [none]

Display the list of known http servers? [yes] no

Enter a URL that corresponds to your local HTTP server and directory where you put OpenBSD software sets. For
example:

Server? (IP address, hostname or 'done') http://192.168.23.1/

openbsd/

Once the installer connects to Apache, it obtains a list of files available on that server. You'll see a menu like
this:

The following sets are available. Type a filename, 'all' to select

all the sets, or 'done'. You may de-select a set by prepending a '-'

to its name.

 [X] bsd

 [X] bsd.rd

 [] bsd.mp

http://192.168.23.1/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [X] base37.tgz

 [X] etc37.tgz

 [X] misc37.tgz

 [X] comp37.tgz

 [X] man37.tgz

 [X] game37.tgz

 [] xbase37.tgz

 [] xetc37.tgz

 [] xshare37.tgz

 [] xfont37.tgz

 [] xserv37.tgz

File name? (or 'done') [bsd.mp]

You'll at least need bsd, base37.tgz, and etc37.tgz. These should barely fit onto a 128 MB CF card. If you have a
256 MB (or larger) CF card, you may want to include the manual pages (man37.tgz) as well. Compiler tools and
a build infrastructure are in comp37.tgz, while game37.tgz contains frivolous things like fortune and pom. We
recommend de-selecting comp37.tgz and game37.tgz, although they will fit on a 256 MB CF card.

Once you've selected the file sets you want, type done. The installer then fetches, verifies, and unpacks each file

set. Since writing to the CF card is relatively slow, this process may take a while. After all the sets have been
unpacked, the installer returns to the prompt asking where to find installation sets. Here you can enter done to

continue:

Where are the install sets? (or 'done') done

The installer now asks a few configuration questions. The first is about sshd, which you should enable:

Start sshd(8) by default? [yes]

We recommend that you also enable the Network Time Protocol daemon. If you have an NTP server on your
network, you can edit /etc/ntpd.conf later:

Start ntpd(8) by default? [no] yes

It also asks about X Windows, which you definitely do not want:

Do you expect to run the X Window System? [yes] no

Finally, OpenBSD asks if you want to make com0 the console. You must answer yes here:

Change the default console to com0? [no] yes

Available speeds are: 9600 19200 38400 57600 115200.

Which one should com0 use? (or 'done') [9600]

Saving configuration files...done.

Generating initial host.random file...done.

Then you'll be prompted to choose a time zone. Enter ? to list the available choices:

What timezone are you in? ('?' for list) [US/Pacific] ?

Africa/ Chile/ GB-Eire Israel NZ-CHAT Turkey

America/ Cuba GMT Jamaica Navajo UCT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Antarctica/ EET GMT+0 Japan PRC US/

Arctic/ EST GMT-0 Kwajalein PST8PDT UTC

Asia/ EST5EDT GMT0 Libya Pacific/ Universal

Atlantic/ Egypt Greenwich MET Poland W-SU

Australia/ Eire HST MST Portugal WET

Brazil/ Etc/ Hongkong MST7MDT ROC Zulu

CET Europe/ Iceland Mexico/ ROK posix/

CST6CDT Factory Indian/ Mideast/ Singapore posixrules

Canada/ GB Iran NZ SystemV/ right/

What timezone are you in? ('?' for list) [US/Pacific] US

What sub-timezone of 'US' are you in? ('?' for list) ?

Alaska Central Hawaii Mountain Samoa

Aleutian East-Indiana Indiana-Starke Pacific

Arizona Eastern Michigan Pacific-New

Select a sub-timezone of 'US' ('?' for list): Mountain

Setting local timezone to 'US/Mountain'...done.

Following time zone selection, the installer populates the /dev directory on the new filesystem. This takes a
while because of slow write speeds on the CF card.

Configure some /etc files

At this point, the installer has done all it can do. It shows you an uplifting message of congratulations and
leaves you at a shell prompt. Before rebooting, as the installer's message suggests, you must take care of a few
more things. By default, this system attaches its console to the video device and the PC keyboard port, neither
of which exists on the net4501. You'll need to tell OpenBSD to use the serial port instead and make sure it
starts a getty process on that port so you can log in.

The installer leaves the recently installed filesystem mounted under /mnt. You can use the chroot utility to run a
shell "inside" this new filesystem (it will be as if you booted into the operating system):

/mnt/usr/sbin/chroot /mnt sh

Now, what used to be /mnt is actually / from this shell's perspective. This allows you to easily modify some of
the files in /etc using vi and other standard tools that aren't present in the installer RAM disk.

We suggest that you disable the getty processes that are normally started for VGA consoles. In OpenBSD, the
/etc/ttys file controls how and where to start the getty processes. Use vi to edit this file:

export TERM=vt100

vi /etc/ttys

The format of /etc/ttys might seem confusing at first, but is actually quite simple. If you want the complete
rundown, see the ttys(5) manual page. Looking at the file, you'll see a number of lines for ttyC0 through ttyCb.
These are for the video console, which does not exist. Change the status to off for each of them.

You should also make sure that getty is enabled for tty00. The installer should have done this for you, but it is a
good idea to double-check. Otherwise, you won't be able to log in on the serial port. The tty00 line in /etc/ttys
should look like this:

tty00 "/usr/libexec/getty std.9600" xterm on secure

The next order of business is to fix up the /etc/fstab file. As you may have heard, Compact Flash memory has a
weakness: a single sector can only sustain a finite number of writes before it burns out and becomes unusable.
To extend the CF card's lifetime, you can put parts of the filesystem that see a lot of write activity in memory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(RAM, not flash). This is easier than it sounds. Simply edit the /etc/fstab file and add two mfs lines for the

memory filesystems:

/dev/wd0a / ffs rw,noatime 1 1

/dev/wd0b /var/run mfs rw,-s1024 0 0

/dev/wd0b /tmp mfs rw,-s8192 0 0

This is why you created a small swap partition earlier. OpenBSD uses the swap partition as a virtual mount point
for memory filesystems, even if you don't use that partition for swapping. The -s option dictates the size of the

memory filesystem in 512 byte blocks. The sizes just shown (512 KB for /var/run and 4 MB for /tmp) work well
for us, but you many need to adjust them for your environment. Note that we've also added the noatime option

to the root filesystem, which prevents the kernel from storing a "last accessed" time for files on that filesystem.
Otherwise, the kernel constantly updates the filesystem each time you open a file for reading. By disabling
these updates, you can extend the lifetime of the CF card.

Negative Available Space?

Don't be alarmed if you see a negative number under Avail and a Capacity greater than 100%.

Unix filesystems typically subtract some percentage of disk space from those calculations. Only
root can create new files when the capacity reaches 100%.

If you have a 128 MB CF card, you may find that it is almost out of space:

df

Filesystem 1K-blocks Used Avail Capacity Mounted on

/dev/wd0a 121022 117174 -2202 102% /

You can free up some space by removing binaries that you'll probably never use. Here's a good way to find
candidates:

du -a /bin/* /usr/bin/* /sbin/* /usr/sbin/* | sort -n | tail

1008 /usr/sbin/dnssec-signzone

1024 /usr/sbin/nsupdate

1040 /usr/sbin/host 1040 /usr/sbin/named-checkconf

1040 /usr/sbin/nslookup

1056 /usr/sbin/dig

1072 /sbin/isakmpd

1088 /usr/bin/lynx

1328 /usr/sbin/named

2144 /usr/bin/gdbtui

For example, you can probably do without gdbtui, named-checkconf, dnssec-signzone, nslookup, and lynx. If
you need to free up a lot more space, consider getting rid of Perl. The /usr/libdata/perl directory takes up about
35 MB.

Reboot!

With all these details taken care of, you are ready to reboot the net4501 into OpenBSD from the CF card:

exit

reboot

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On reboot, you should see the OpenBSD boot loader messages and then the kernel itself:

Using drive 0, partition 3.

Loading...

probing: pc0 com0 com1 pci mem[639K 63M a20=on]

disk: hd0+

>> OpenBSD/i386 BOOT 2.06

com0: 9600 baud

switching console to com0

>> OpenBSD/i386 BOOT 2.06

boot>

booting hd0a:/bsd: 4686240+945680 [52+241328+223324]=0x5d0864

After the kernel loads and prints lots of information about the devices available on the system, the serial
console should have a login prompt:

OpenBSD/i386 (enki.life-gone-hazy.com) (tty00)

login:

Congratulations! You've successfully installed OpenBSD on your net4501.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

From Installation to Gateway

Now that you have the operating system installed, the next task is to configure the services necessary to make
the box function as a gateway and firewall. In particular, you need a Dynamic Host Configuration Protocol
(DHCP) server, Network Address Translation (NAT), and a packet filter. You'll also need to set up a DNS cache
and an FTP proxy. Before that, however, you need to configure the net4501's network interfaces.

Configuring network interfaces

The net4501 has three Fast Ethernet interfaces. On the outside, these are labeled Net 0, Net 1, and Net 2. On
the inside (i.e., in OpenBSD), they are named sis0, sis1, and sis2. For this project, you need only two: you'll
use sis0 as the upstream interface (connected to your DSL or cable modem) and sis1 as the internal interface
(connected to your home network). In OpenBSD, files named /etc/hostname.sis0, /etc/hostname.sis1, and
/etc/hostname.sis2 determine the IP address for each interface. See the hostname.if(5) manual page for more
information.

Chances are good that your ISP uses DHCP to assign the IP address for your Internet connection. This makes
configuring the sis0 interface very simple. If you followed the previous instructions, sis0 is already configured to
use DHCP. The /etc/hostname.sis0 file should already contain this line:

dhcp NONE NONE NONE

Note: If you had a computer or router plugged directly into your cable or DSL modem before you installed your home
network gateway, you may need to power-cycle the modem before it gives you an IP address. Some cable and DSL
modems lock themselves to the first device they see when they are turned on.

If you need to give sis0 a static IP address, you'll need to edit /etc/hostname.sis0. The format is fairly simple.
The file should contain a single line with four fields:

[address family] [address] [netmask] [broadcast]

Here is an example:

inet 192.168.23.32 255.255.255.128 192.168.23.127

When using a static IP address, you also need to manually configure the upstream default gateway. On
OpenBSD, this bit of information goes in the /etc/mygate file:

192.168.23.1

You'll use sis1 as the internal network (your LAN) interface. Your other computers will either connect directly to
this port or be connected to it through a switch. For the sis1 interface, use a subnet from the private address
space as described in RFC1918 (http://www.faqs.org/rfcs/rfc1918.html). The following examples are based on
using the 10.0.23.0/24 subnet. Your /etc/hostname.sis1 file might look like this:

inet 10.0.23.1 255.255.255.0 10.0.23.255

http://www.faqs.org/rfcs/rfc1918.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reboot after you make your changes to the /etc/hostname.* files to be sure that the settings take effect
correctly on their own. Check that the addresses are assigned correctly by pinging both local interfaces, as well
as a server on the Internet (if you are connected).

Name services (DNS)

We recommend running a caching DNS server on your net4501. This improves the response time for certain
transactions because lookups are cached locally. You might also find it is more reliable than the servers
operated by your ISP.

OpenBSD comes with a customized version of ISC's BIND. The executable is called named. To enable it, simply
edit /etc/rc.conf and change the named_flags line so that it looks like this:

named_flags="" # for normal use:""

The next time your system boots, named will start automatically.

Even if your ISP has unreliable nameservers, you can leverage them to reduce overall DNS query times. Since
your ISP's DNS servers likely have a large amount of cached responses and are presumably close (network-
wise) to your gateway, it makes sense for the DNS server to query them first before initiating its own recursive
query.

You can tell named to use your ISP's DNS servers as forwarders. Edit /var/named/etc/named.conf and look for
the options section. Add these two lines inside the options section, replacing 10.1.2.3 with your ISP's

nameserver address:

forward first;

 forwarders { 10.1.2.3; };

Note that your ISP's DNS server may move to a different address at some time in the future. You should
periodically make sure your named.conf is up to date, or write a cron script to check it for you. See "Monitoring
your ISP's Nameserver" at the end of this chapter for an example.

You can start named now by running named. You'll probably see some syslog messages on the console when it

starts. You may also want to check the tail of /var/log/messages for errors with tail -f /var/log/messages.

Since named is (or will be) running on the gateway, you probably want the gateway's local /etc/resolv.conf to
point to the gateway's DNS server, rather than your ISP's. Note, however, that dhclient usually overwrites
resolv.conf with values received from the DHCP server each time the system boots. You need to tell dhclient
that it should ignore the nameservers received from DHCP and put localhost into resolv.conf instead. The way to
do so is to add this line to /etc/dhclient.conf:

supersede domain-name-servers 127.0.0.1;

The DHCP server

The DHCP daemon, dhcpd, listens for address assignment requests from machines on your internal network.
OpenBSD comes with a customized version of ISC's DHCP server installed by default. To enable dhcpd, edit
/etc/rc.conf again and change the line that starts with dhcpd_flags to look like this:

dhcpd_flags="" # for normal use: ""

The next step is a little harder. You have to write a DHCP configuration file that matches the subnet and
addresses you've chosen for sis1. Here's how it looks for the 10.0.23.0/24 subnet:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shared-network LOCAL-NET {

 # Specify your DNS server(s) here

 option domain-name-servers 10.0.23.1;

 # Declaration for your subnet

 subnet 10.0.23.0 netmask 255.255.255.0 {

 # Specify your router here

 option routers 10.0.23.1;

 # Specify the range of address to dish out

 range 10.0.23.33 10.0.23.254;

 }

}

Note that the domain-name-servers and option routers lines match the address you assigned to sis1.

The final step is to add sis1 to the /etc/dhcpd.interfaces file. For example:

List of network interfaces served by dhcpd(8).

#

ep0

ed0 le0

de1

sis1

Since the dhcpd.conf file can be a little tricky, you may want to run dhcpd manually to make sure there are no
syntax errors:

dhcpd sis1

If you see no output, the configuration file is fine. Otherwise, edit dhcpd.conf and fix the errors before
proceeding.

A proxy for that old protocol

If you plan on using FTP clients on your internal systems, you'll want to run an FTP proxy on the gateway. FTP
was developed in a time when all machines on the network had publicly routable addresses and security was not
a major concern. In the default mode of operation, FTP servers establish TCP connections back to FTP clients
when transferring data. Since you are using NAT and private address space, this technique won't work.

As a workaround, FTP "passive mode" was developed, whereby the client opens a connection to the server on a
high-numbered port for data transfers. Unfortunately, many popular FTP clients either aren't capable of passive
mode FTP or are set to active mode by default (notably Microsoft's Internet Explorer).

OpenBSD includes an FTP proxy that allows clients behind the proxy to use active mode FTP. The proxy handles
these inbound connections and associates them with the proper machine on the internal network. To enable the
proxy, edit /etc/inetd.conf and uncomment the following line:

127.0.0.1:8021 stream tcp nowait root /usr/libexec/ftp-proxy ftp-

proxy

After making this change, send inetd a HUP signal to have it re-read the configuration file:

kill -HUP `head -1 /var/run/inetd.pid`

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Later, you'll use a packet-filter redirect rule to intercept outbound FTP connections and send them to the proxy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Packet Filter (pf)

This home network gateway relies heavily on OpenBSD's packet filter, a.k.a. pf, for many of the features you
want. In particular, it is responsible for Network Address Translation (NAT) and blocking unwanted packets.
You'll also use it to improve the security of packets leaving the home network. We refer to these activities as
translating, filtering, and scrubbing.

To enable the packet filter, make sure the pf line in /etc/rc.conf looks like this:

pf=YES # Packet filter / NAT

With the packet filter enabled, your system automatically looks for pf instructions in /etc/pf.conf when it boots.

All of the example lines given in this section should be placed in that file. You'll probably find that pf.conf
already contains a number of lines that are commented out. You can either just delete them, or copy the default
pf.conf to a different filename if you'd like to refer to it later. For more additional information on OpenBSD's
packet filter, have a look at http://www.openbsd.org/faq/pf/, the pf(4), and the pf.conf(5) manual pages.

Options

The first statements in pf.conf deal with options that control the behavior of the firewall. There are many options
and settings, but the defaults are usually acceptable. We'll cover just two important settings, block-policy and

optimization.

block-policy

One important setting is the packet filter's default disposition when blocking a packet. There are two behaviors
to choose from. The filter can return the appropriate message to the packet's sender when a packet is filtered,
sending a packet with the RST (reset) flag set for blocked TCP packets or an "ICMP unreachable" for blocked
UDP packets (block-policy return). Alternatively, the filter can silently drop the packet, giving no indication

to the sender that a particular port is closed (block-policy drop). We suggest that you configure the filter to

return resets and ICMP messages, rather than silently drop the packets. To do so, make this the first line in
pf.conf:

set block-policy return

optimization

The packet filter can have stateful rules, meaning rules that create a state in the filter for traffic. Traffic passing
through the filter is checked against all states before being matched to rules, allowing traffic associated with a
stateful rule to pass through the filter even if there is only a rule for the initial connection.

For instance, the filter may have a stateful rule matching outbound SMTP (port 25) connections. The rule could
match only the first packet in those connections (an outbound TCP packet with a destination of port 25 and the
SYN flag set) and create a state. All traffic associated with that connection (inbound and outbound) would then
match the state and pass through the filter.

For TCP, pf adds and removes table entries according to the rules of the protocol. For UDP and other stateless
protocols, pf uses a set of timeouts to expire table entries created by inbound or outbound traffic. The pf.conf
manpage describes these in great detail, but making individual adjustments to the timeouts is usually
unnecessary. You can select the timeout policy with the optimization option, and you have four to choose

from:

http://www.openbsd.org/faq/pf/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

normal

Suitable for almost all networks.

aggressive

Aggressively expires connections, reducing firewall memory usage at the cost of sometimes dropping
connection state prematurely.

high-latency

Useful for extremely high-latency (long round-trip) networks such as satellite connections.

conservative

Uses very long timeouts to avoid dropping any connection prematurely. The downside is increased
memory usage.

We recommend that you stick with the normal optimization setting:

set optimization normal

Scrubbing

Scrubbing is a term that refers to pf's features for cleaning up incoming and outgoing packets. OpenBSD also
refers to this as normalization. One of the things that scrubbing does for you is buffer and reassemble IP
fragments. The kernel buffers these fragments until the entire IP/TCP/UDP header is present. This allows it to
avoid making bad decisions on incomplete p-ackets.

Another cool scrubbing feature is pf's ability to alter the IP ID field for outgoing packets. This is primarily used
as a way to obfuscate some details about your internal network. A paper published in 2002 ("A Technique for
Counting NATted Hosts," by Steve Bellovin, AT&T Labs Research) describes a technique for figuring out how
many hosts are behind a NAT box by examining the IP ID field values. Some people worry that ISPs may use
this technique to bill subscribers for using more than one computer on their home network. In response,
OpenBSD added the random-id scrubbing feature to pf. Randomizing the IP ID fields makes it harder to

differentiate multiple hosts sharing a single public IP address.

The following scrub statements implement normalization and randomizing. These should go at the beginning of

your /etc/pf.conf file:

scrub in all

scrub out all random-id

Translation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

pf can translate addresses for both incoming and outgoing packets. Outgoing address translation is also
sometimes called source NAT, or SNAT. Inbound translation is sometimes called destination NAT, or DNAT. We'll
show you how to implement both.

First, for outbound translation (SNAT), you need only a simple rule that maps addresses from the internal
interface (sis1) to the external interface (sis0):

nat on sis0 from (sis1:network) -> (sis0)

The nice thing about this rule is that it works even if sis0 has a dynamically assigned address. The token
(sis1:network) matches any IP address corresponding to the network on the sis1 interface. Similarly, (sis0)

corresponds to the address, or addresses, assigned to sis0.

Note: Any time that you can avoid hardcoding IP addresses in your configuration files is a big win.

The preceding rule applies only to connections initiated from the internal network. You need a DNAT rule if you
have a server running on your internal network that you'd like to access from the outside. For example, let's say
that you have a web server on an internal machine with a private address (as will be the case if you follow the
instructions in this chapter). You can't directly reach the private address from the outside and you can't assign
the gateway's public IP address to the web server, so what can you do? A rdr (redirect) packet filter rule

bridges this gap:

rdr pass on sis0 inet proto tcp from any to (sis0) port 80->

10.0.23.2

The rule instructs the kernel to take any packets destined for port 80 on any (sis0) address and forward them

to 10.0.23.2 instead. Note that this rule actually changes the destination IP address in the packet before
forwarding. That behavior is different than the way FreeBSD's ipfw redirection works.

Some applications, such as BitTorrent, use more than one TCP port number. The pf syntax allows you to specify
multiple ports if necessary. For example:

rdr pass on sis0 inet proto tcp from any to (sis0) port \

 { 6881, 6882, 6883, 6884, 6885, 6886, 6887, 6888, 6889 } \

 -> 10.0.23.3

We've split the rule across multiple lines for readability. When breaking a rule or statement into multiple lines,
be sure to escape the end of the line with a backslash, as in the preceding example.

Finally, here is an rdr rule for the FTP proxy. It intercepts outbound FTP connections coming from the internal

network and sends them to the ftp-proxy application listening on port 8021 instead:

rdr pass on sis1 proto tcp to port ftp -> 127.0.0.1 port 8021

The pass keyword in the redirection rules tells pf to implicitly pass (allow) any traffic matching the redirection.

If you omit pass here, you'll need additional rules later in the configuration file to explicitly pass the redirected

packets.

Filtering

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Filtering rules in pf start with either pass or block. This is where you decide which packets are allowed to reach

their destination and which are simply dropped.

The OpenBSD kernel evaluates pf.conf rules in the same order that they appear. Additionally, the kernel
evaluates every rule in the list until reaching the end or until finding a rule with the quick keyword. This is the

opposite of the way that some other packet filters work, such as FreeBSD's ipfw and Linux's iptables. OpenBSD
checks all the rules and applies the last one that is a match. This means that your filtering rules should proceed
from the general to the very specific.

We'll start the filtering section with a block rule that matches all inbound traffic. Thus, any traffic that does not

match a more specific rule later will be blocked and logged:

block in log

Next, you should allow all packets on the gateway's loopback interface. You may also want to implicitly trust
hosts connected to the internal network interface (sis1) and allow all of their packets. We're using the quick

keyword here to avoid processing any remaining rules:

pass quick on lo

pass quick on sis1

If you prefer not to implicitly trust all traffic outbound from the local network (perhaps you have some untrusted
systems), the two rules above could be replaced by more restrictive ones. For instance, this ruleset limits traffic
from the addresses in untrusted_hosts to TCP outgoing port 80 (HTTP) only:

untrusted_hosts="{ 192.168.23.66/32, 192.168.23.67/32}"

pass quick on lo

pass on sis1

pass in on sis1 inet proto tcp from $untrusted_hosts to any port 80 \

 keep state

block in on sis1 from $untrusted_hosts to any

Without the quick keyword, the last matching rule for any given traffic applies.

If you're allowing all packets on lo and sis1, the rest of the rules deal with sis0 only. First, here are a few rules
for outgoing packets on the sis0 i-nterface:

pass out on sis0 inet keep state

pass out on sis0 inet proto udp keep state

pass out on sis0 inet proto tcp modulate state

The first of these three applies to all IPv4 packets. The keep state option instructs the kernel to dynamically

create a temporary rule for these outgoing packets. Then, incoming packets that correspond to one of the
dynamic state rules are automatically allowed in. This is a nice way to allow incoming packets only if they are in
response to a conversation initiated by a host on your network.

The second rule is simply a more specific version of the first that applies only to UDP.

The third rule applies only to TCP connections. Here you must use the modulate state option. Its purpose is to

generate new, random initial sequence numbers (ISNs) for outgoing TCP connections. Research has shown that
many operating systems have poor ISN-selection algorithms, which in turn makes them susceptible to TCP
hijacking and man-in-the-middle attacks. The modulate state feature improves security by making it harder

for attackers to predict the TCP ISNs emanating from your home network. The modulate state statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implies keep state.

So far, the stateful filtering rules allow packets for connections initiated from inside the firewall. We call these
outgoing connections. But what about incoming connections? We already showed you how to add a DNAT rdr

rule that forwards incoming connections to an internal host. You may also want to allow incoming connections to
the gateway itself, although we feel it weakens the security of your firewall. You'll need to add a rule for each
service that should accept connections from the outside. For example, if you want to SSH in to your gateway
from the outside, make sure that sshd is enabled in /etc/rc.conf and add this rule:

pass in on sis0 proto tcp to (sis0) port ssh keep state

You may also want to accept ident connections. Some IRC and SMTP servers use this service to log the
username associated with a client TCP connection. You shouldn't be too surprised to learn that OpenBSD's ident
server doesn't send real usernames. Instead, it replies with a one-way hash value. The hash value and real
username are logged locally, which allows you to figure out who did what after the fact if necessary. OpenBSD's
inetd runs identd by default, so you simply need to add this rule to accept incoming connections:

pass in on sis0 proto tcp to (sis0) port ident keep state

You already added an rdr rule for the FTP proxy. However, you need another rule to allow incoming FTP data

connections (the connections that FTP servers make back to FTP clients). These connections use high-numbered
TCP ports, above 49151 by default. Since other applications may use ports in the same range, it is a little
unsafe to simply accept packets based on the port number. Fortunately, OpenBSD has a solution. You can allow
packets for sockets that are opened by certain users or groups. Since the FTP proxy runs as the proxy user, this
rule does the trick:

pass in on sis0 proto tcp to (sis0) port > 49151 user proxy keep state

We also suggest that you configure the gateway to respond to ICMP pings from the outside. Some people fear
ICMP, but we feel it is safe and useful in a number of situations. Here's the rule for pf.conf:

pass in on sis0 inet proto icmp to (sis0) icmp-type echoreq keep state

Note that you don't have to do anything special for ICMP_UNREACH_NEEDFRAG messages, which are used for
path MTU discovery. The reason is that ICMP_UNREACH_NEEDFRAG messages are matched to firewall state for
existing connections. In other words, if the ICMP_UNREACH_NEEDFRAG packet corresponds to a known
connection (due to a keep state rule), it is allowed to pass through.

Trying it out

Here is a complete pf.conf based on the suggested configuration in the previous section:

set block-policy return

set optimization normal

scrub in all

scrub out all random-id

nat on sis0 from (sis1:network) -> (sis0)

rdr pass on sis0 inet proto tcp from any to (sis0) port 80 -> 10.0.23.2

rdr pass on sis0 inet proto tcp from any to (sis0) port \

 { 6881, 6882, 6883, 6884, 6885, 6886, 6887, 6888, 6889 } \

 -> 10.0.23.3

rdr pass on sis1 proto tcp to port ftp -> 127.0.0.1 port 8021

http://lib.ommolketab.ir
http://lib.ommolketab.ir

block in log

pass quick on lo

pass quick on sis1

If you have untrusted hosts on your internal network, comment

out the above "pass quick on sis1" line and then uncomment the

following block

untrusted_hosts="{ 192.168.23.66/32, 192.168.23.67/32 }"

pass on sis1

pass in on sis1 inet proto tcp from $untrusted_hosts to \

any port 80 keep state

block in on sis1 from $untrusted_hosts to any

pass out on sis0 inet keep state

pass out on sis0 inet proto udp keep state

pass out on sis0 inet proto tcp modulate state

pass in on sis0 proto tcp to (sis0) port ssh keep state

pass in on sis0 proto tcp to (sis0) port ident keep state

pass in on sis0 proto tcp to (sis0) port > 49151 user proxy keep state

pass in on sis0 inet proto icmp to (sis0) icmp-type echoreq keep state

You can check the file for syntax errors with this command:

pfctl -nf /etc/pf.conf

Unfortunately, pfctl does not always give helpful messages about syntax errors. It will tell you the line number,
but that's all. Once the rules are error-free, you can reboot or load them with this command:

pfctl -f /etc/pf.conf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

At this point, you have a very nice, secure, and stable gateway that protects your home network from the evils
of the Internet. In this section we have a few ideas and alternatives that you may wish to explore further.

Wi-Fi

A wireless network interface is an obvious improvement to this project. These days, even most of the off-the-
shelf home gateway products support wireless Ethernet. Adding Wi-Fi to the net4501 isn't that difficult.

The net4501 has two connectors suitable for a wireless card: the 3.3V-only PCI slot and the Mini-PCI slot.
Finding a 3.3V PCI wireless card can be tricky, although not impossible. You may have more luck with the Mini-
PCI interface, since this is the standard used in most laptops. Given the popularity of wireless networking, many
vendors stock Mini-PCI cards along with the necessary radio cable "pigtails" required to connect an antenna to
the card.

OpenBSD currently supports a number of Wi-Fi card chipsets. We recommend that you use cards based on
Intersil PRISM2.5 and Cisco Aironet if possible. You can also use an Atheros chipset with OpenBSD 3.7 and later.
Also be aware that hardware vendors sometimes switch chipsets with only a minor change in the version
number. For example, the older D-LINK DWL-520 used a PRISM2.5 chipset, but the newer DWL-520+ uses a
Texas Instruments chipset. Before making a purchase, you should search the Web to find out if a particular
product uses a supported chipset. The following URLs should get you started:

http://www.openbsd.org/faq/faq6.html#Wireless

http://wiki.personaltelco.net/index.cgi/Prism2Card

http://www.seattlewireless.net/index.cgi/HardwareComparison

We also highly recommend the Netgate Mini-PCI wireless kit for Soekris boards. See http://www.netgate.com/.

After installing the wireless card, it appears as the wi0 interface, or an0 for Cisco Aironet chipsets. The kernel
outputs the device when it boots:

wi0 at pci0 dev 16 function 0 "Intersil PRISM2.5 Mini-PCI WLAN" rev

0x01: irq 10

wi0: PRISM2.5 ISL3874A(Mini-PCI), Firmware 1.1.0 (primary), 1.4.9

(station), ad8

The least complicated way to extend the internal network out over the wireless interface is to configure a
network bridge between the internal network Ethernet interface (sis1) and the wireless interface (wi0).

First, create the /etc/hostname.wi0 file with the configuration information for the wireless interface (network
name, mode, channel). For example, these lines set the network name to "my network," the port type to hostap
mode, and the frequency to channel 10:

up

!wicontrol \$if -n "my network" -p 6 -f 10

http://www.openbsd.org/faq/faq6.html#Wireless
http://wiki.personaltelco.net/index.cgi/Prism2Card
http://www.seattlewireless.net/index.cgi/HardwareComparison
http://www.netgate.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In OpenBSD, a network bridge has its own interface name, such as br0. You can configure a bridge by adding
lines to a file named /etc/bridgename.br0. First add the real interfaces that belong to the bridge, and then bring
it up:

add sis1

add wi0

up

The packet filter configuration also needs a small change, since you want traffic to pass on both the wireless
interface and the bridge. Add new rules for wi0 and br0 that unconditionally pass all traffic sent and received:

pass quick on lo

pass quick on sis1

pass quick on wi0

pass quick on br0

After a reboot, you will find that the internal network extends over both the sis1 Ethernet interface and the wi0
wireless interface. DHCP will work for clients connecting over either interface.

Note: If you are a little more paranoid about your wireless network, you may want to use a routed, instead of bridged,
configuration. In other words, use a different subnet for sis1 and wi0 and route packets between them. This also makes it
easy to apply different firewall rules to each subnet.

Installing via a CF adapter

Instead of installing OpenBSD over the network, you can use a CF card adapter and copy files from an existing
OpenBSD system. You'll need to use fdisk, disklabel, and newfs to prepare the filesystem on the CF card. Don't
forget to make the CF card bootable and install the OpenBSD Master Boot Record with:

fdisk -u -f /usr/mdec/mbr wd4

This approach can be a bit tedious, since you may have to omit certain files from the CF to make everything fit
(another reason to the largest card that you can). You'll also need to edit a number of configuration files in the
/etc directory.

For an easy way to create a bootable OpenBSD CF card, check out "flashdist" by visiting
http://www.nmedia.net/~chris/soekris/.

Read-only CF card

With a little more work, you can make a read-only CF card. Any directories that must be writable, such as /dev
and /var, are mounted as memory-based filesystems. This should extend the life of your CF card if that is a
major concern for you. It's also nice from a security perspective because it becomes a little harder for attackers
to overwrite and delete important files. Google for "openbsd read-only flash" to get started down this path.

Monitoring your ISP's nameserver

In "From Installation to Gateway," earlier in this chapter, we suggested that you should use your ISP's
nameserver as a forwarder in named.conf. Since it will be hardcoded there, you'll want to know if your ISP
moves the nameserver to a new IP address some day. You can use the following shell script in a cron job to
make sure the upstream nameserver is still there. It extracts the value for forwarders and sends it a query

using dig:

http://www.nmedia.net/~chris/soekris/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

#!/bin/sh

nameserver=`awk '$1 == "forwarders" {print $3}' /var/named/etc/named.conf`

nameserver=`echo $nameserver | sed -e 's/;//'`

dig @$nameserver www.google.com >/dev/null

if test $? != 0 ; then

 echo ISP nameserver at $nameserver may be down or changed

fi

This simple script is likely to report false errors on occasion due to temporary network outages or other
problems. You may want to make it more robust by pinging the nameserver first or by not reporting the outage
until some number of consecutive errors occur.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Network Monitor

This network monitor can help you notice attacks or questionable traffic on your home or office
network-without having to change the network's topology. As a bonus, you'll get graphs and statistics about
network usage.

Depending on the features that you want in your monitoring system and the size of the network you are
monitoring, you could spend anywhere from two to five days on this project. The core set of functionality
(intrusion detection and simple network usage monitoring) should take less than two days to complete,
depending on your experience and skill level.

What You Need

Soekris net4801-50 single-board PC and case

12 volt, 1.2 amp power transformer

2.5-inch hard drive mounting kit for the net4801

2.5-inch-wide, 9.5 mm high, laptop hard drive, preferably 4200RPM

2.5-inch laptop drive-to-40-pin/power adapter for connecting the laptop drive to a regular
PATA (IDE) controller

Desktop PC with a standard (non-serial) PATA controller and a CD-ROM

FreeBSD installation CD

Introducing the Soekris net4801

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4801 is ideal for this project because it has enough processing power to monitor a sizeable WAN
connection (possibly up to several megabits) and the ability to use a disk drive for logs and graphs. Even with
space for a laptop hard drive, the total form factor including the case is identical to the very small (8.5 x 6 x 1
in, 21.5 x 15 x 2.5 cm) net4501 discussed in Chapter 4.

The front of the net4801 is shown in Figure 5-1. It features four LEDs, indicating power, error conditions,
network activity, and disk activity. The error LED is controllable from software and also remains lit until the
board's power-on self-test (POST) has completed.

The rear of the net4801, shown in Figure 5-2, has three fast Ethernet ports, a DB-9 serial connector, a small
power plug accepting 6–28 volts DC, and a USB connector.

Removing the cover, you can see the small mainboard pictured in Figure 5-3. A full-size PCI connector is
prominent along one side of the board. Like the rest of Soekris's line of single-board computers, this PCI slot
only supports 3.3V cards, so many PCI cards cannot work in the net4801. Carefully check specifications before
purchasing a PCI card for use in your net4801.

On the opposite side of the board, you'll find a white Mini-PCI connector and a black Compact Flash (CF) slot.
Next to the Mini-PCI connector are general purpose I/O (GPIO) pins and the header for a second serial port.
Along the top of the board near the LEDs, you'll see a 44-pin connector for the laptop hard drive.

Designed for performance and low power, the net4801 is based on AMD's Geode SC2100 platform. The SC2100
is a 32-bit, x86-compatible chip running at 266 MHz. The net4801-50 has 128 MB of RAM soldered directly to
the mainboard.

Soekris net4801, front view.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Soekris net4801, rear view.

Soekris net4801 with cover removed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4801's 2.5-inch drive mounting kit, shown in Figure 5-4, is relatively straightforward. The U-shaped
bracket sits directly on top of the mainboard. The kit comes with four hex standoff screws that replace the
screws holding the mainboard in place. The short 40-pin parallel ATA (PATA) cable connects the drive to the
mainboard. Note that you must use a 9.5 mm high hard drive. These have been standard for many years now.
Older laptop hard drives are 12.5 mm high and do not fit inside the net4801's case.

Without a drive in place, the net4801 doesn't require any extra steps to keep cool, since it generates so little
heat (barely warming up even under load). A laptop hard drive, however, may generate a little more heat than
you'd like. Reports on the Soekris mailing list indicate that some drives in the net4801 case don't require any
venting, while others do. If you want to be on the safe side, drill some small holes in the case so some of that
heat can escape.

We purchased a 12 V, 1.2 A "mini switch mode" power supply for our net4801 directly from Soekris
Engineering, along with the net4801 itself and the laptop drive mounting kit. This power supply is a regular wall
wart transformer, but with a very slim form factor that means it won't eat up more than one outlet on a power
strip. Since it is capable of 1.2 amps at 12 volts, it also has plenty of power to run the laptop drive. At any rate,
even with the laptop drive, our measurements show the system pulling about 10–12 watts under load.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Network Monitor

This network monitor can help you notice attacks or questionable traffic on your home or office
network-without having to change the network's topology. As a bonus, you'll get graphs and statistics about
network usage.

Depending on the features that you want in your monitoring system and the size of the network you are
monitoring, you could spend anywhere from two to five days on this project. The core set of functionality
(intrusion detection and simple network usage monitoring) should take less than two days to complete,
depending on your experience and skill level.

What You Need

Soekris net4801-50 single-board PC and case

12 volt, 1.2 amp power transformer

2.5-inch hard drive mounting kit for the net4801

2.5-inch-wide, 9.5 mm high, laptop hard drive, preferably 4200RPM

2.5-inch laptop drive-to-40-pin/power adapter for connecting the laptop drive to a regular
PATA (IDE) controller

Desktop PC with a standard (non-serial) PATA controller and a CD-ROM

FreeBSD installation CD

Introducing the Soekris net4801

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4801 is ideal for this project because it has enough processing power to monitor a sizeable WAN
connection (possibly up to several megabits) and the ability to use a disk drive for logs and graphs. Even with
space for a laptop hard drive, the total form factor including the case is identical to the very small (8.5 x 6 x 1
in, 21.5 x 15 x 2.5 cm) net4501 discussed in Chapter 4.

The front of the net4801 is shown in Figure 5-1. It features four LEDs, indicating power, error conditions,
network activity, and disk activity. The error LED is controllable from software and also remains lit until the
board's power-on self-test (POST) has completed.

The rear of the net4801, shown in Figure 5-2, has three fast Ethernet ports, a DB-9 serial connector, a small
power plug accepting 6–28 volts DC, and a USB connector.

Removing the cover, you can see the small mainboard pictured in Figure 5-3. A full-size PCI connector is
prominent along one side of the board. Like the rest of Soekris's line of single-board computers, this PCI slot
only supports 3.3V cards, so many PCI cards cannot work in the net4801. Carefully check specifications before
purchasing a PCI card for use in your net4801.

On the opposite side of the board, you'll find a white Mini-PCI connector and a black Compact Flash (CF) slot.
Next to the Mini-PCI connector are general purpose I/O (GPIO) pins and the header for a second serial port.
Along the top of the board near the LEDs, you'll see a 44-pin connector for the laptop hard drive.

Designed for performance and low power, the net4801 is based on AMD's Geode SC2100 platform. The SC2100
is a 32-bit, x86-compatible chip running at 266 MHz. The net4801-50 has 128 MB of RAM soldered directly to
the mainboard.

Soekris net4801, front view.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Soekris net4801, rear view.

Soekris net4801 with cover removed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The net4801's 2.5-inch drive mounting kit, shown in Figure 5-4, is relatively straightforward. The U-shaped
bracket sits directly on top of the mainboard. The kit comes with four hex standoff screws that replace the
screws holding the mainboard in place. The short 40-pin parallel ATA (PATA) cable connects the drive to the
mainboard. Note that you must use a 9.5 mm high hard drive. These have been standard for many years now.
Older laptop hard drives are 12.5 mm high and do not fit inside the net4801's case.

Without a drive in place, the net4801 doesn't require any extra steps to keep cool, since it generates so little
heat (barely warming up even under load). A laptop hard drive, however, may generate a little more heat than
you'd like. Reports on the Soekris mailing list indicate that some drives in the net4801 case don't require any
venting, while others do. If you want to be on the safe side, drill some small holes in the case so some of that
heat can escape.

We purchased a 12 V, 1.2 A "mini switch mode" power supply for our net4801 directly from Soekris
Engineering, along with the net4801 itself and the laptop drive mounting kit. This power supply is a regular wall
wart transformer, but with a very slim form factor that means it won't eat up more than one outlet on a power
strip. Since it is capable of 1.2 amps at 12 volts, it also has plenty of power to run the laptop drive. At any rate,
even with the laptop drive, our measurements show the system pulling about 10–12 watts under load.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Additional Hardware

The net4801 has two storage options: the CF slot on the board and the laptop hard drive connector. Since this
monitor will be logging a fair amount of information to disk and generating graphs, we're using a laptop drive
and leaving the CF clot empty. CF media have poor write performance and functional lifetime issues when
subjected to frequent writes.

This project doesn't require much drive capacity (1 GB would be fine), but storage has gotten so cheap that it is
difficult to find new laptop drives smaller than even 20 GB. We choose a 30 GB Fujitsu drive for this project.

Soekris net4801 hard drive mounting kit.

A 40-to-44 pin adapter for laptop hard drives.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You should probably get a 2.5-inch hard drive adapter so you can connect the laptop drive to a standard
desktop PC. This makes it much easier to install the operating system. The one that we used is shown in Figure
5-5. You'll notice that 2.5-inch hard drives have only one connector, providing both power and data transfer.
The adapter has a standard 40-pin PATA connector on one side, plus a standard molex power connector. The
other side is a 44-pin laptop drive connector.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Installing FreeBSD

The easiest way to install FreeBSD is from a CD-ROM. You can download and burn your own, or, if that is not an
option, you can buy a CD-ROM online. In either case, visit http://www.freebsd.org/where.html to see your
options.

At any given time, you'll probably find two major versions of FreeBSD available. For example, as we're writing
this chapter, Version 4.11 is the latest (and perhaps last) release in the 4.X series, and 5.4 is the latest release
in the 5.X series. If you are new to FreeBSD, it may not be immediately obvious which one you should choose.
You may want to spend some time reading the release announcements and mailing list archives to get a feel for
their stability. If you want to play it safe, install the latest version from the lower-numbered release.

At this time, we recommend using the latest 5.X release. We're using FreeBSD 5.4 throughout this chapter.

Download and burn the FreeBSD ISO image

If you have access to a CD writer, you can download and burn your own FreeBSD installation CD. Connect to
one of the mirror sites and go to the releases/i386/ISO-IMAGES directory. Choose the appropriate version (e.g.,
5.4) and go to that subdirectory. There you should see a number of .iso files. You'll only need disc1 to install
FreeBSD. Start downloading this large file to your computer and then go for a bike ride while waiting for it to
complete.

After downloading, it's a good idea to check the size and MD5 checksum of the ISO file. Download the
CHECKSUM.MD5 file from the same directory. Then, use a MD5 checksum program to calculate the checksum of
the ISO file. Windows users may need to install a program such as winmd5sum or fastsum. Unix users can use a
program like md5sum or md5:

% md5 5.4-RELEASE-i386-disc1.iso

MD5 (5.4-RELEASE-i386-disc1.iso) = 3dbb37485535e129354bc099e24aed99

% cat CHECKSUM.MD5

MD5 (5.4-RELEASE-i386-bootonly.iso) = 2afe65af7e7b994c3ce87cefda27352e

MD5 (5.4-RELEASE-i386-disc1.iso) = 3dbb37485535e129354bc099e24aed99

MD5 (5.4-RELEASE-i386-disc2.iso) = e4b748415ca783fce64cfafd6bd56f57

If the checksums do not match, your ISO file is either the wrong size or corrupted. If it's too small, you can try
to resume the transfer. Otherwise, delete the file and try the transfer again. Once the checksums match, go
ahead and burn the image to a CD.

Connect the laptop drive

You need to get the laptop drive connected to the standard PATA cable inside the desktop computer that you'll
be using to bootstrap the installation. First, connect the adapter to the laptop drive, taking care to honor pin
order. Pin one should be labeled on the adapter. Pin one on the laptop drive will be on the right when viewing
the laptop drive from the top down and the pins towards you. Ignore the smaller cluster of four pins on the
extreme right, as these are used for jumpers to set the drive to master or slave-leave those pins empty so the
laptop drive stays set to master (device 0).

Now the adapter and drive need to be connected to the PATA controller in whatever machine you're using to do
the installation. It is easiest to connect the drive to the primary PATA controller if your system has two PATA
controllers, since this is the logical location of the drive once it is in the net4801. You want the laptop drive to
be device 0 on controller 0 (master on the primary controller). When connecting the adapter to the standard
PATA cable, be sure to pay attention to pin one. Pin one is typically colored red on PATA cables. You'll also need
to connect the power cable on the adapter to a standard molex power connector inside the computer. Figure 5-
6 shows the hard drive and adapter connected to a standard-sized PC.

http://www.freebsd.org/where.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Install FreeBSD from the CD

In this section we'll explain how to install FreeBSD onto the laptop hard drive. However, first timers may find
our instructions somewhat terse. If you haven't installed FreeBSD before, you may want to have a look at the
"Installing FreeBSD" chapter of the FreeBSD Handbook. You can find a link to the Handbook on the FreeBSD
home page (http://www.freebsd.org).

Installing the laptop hard drive into a normal PC.

Insert the FreeBSD install CD into the computer and turn it on. If the computer does not boot from the CD-ROM,
you'll need to go to the BIOS setup and change the device boot order. When it works correctly, you should see a
"Welcome to FreeBSD!" screen with some ASCII art of the FreeBSD daemon. You can hit Enter here or wait
about ten seconds to automatically go to the install program, named sysinstall.

When you see the sysinstall menu, move the cursor to the "Standard" option and press Enter. The first step is to
set up the DOS partition table with the FDISK Partition Editor. Note that FreeBSD also calls these partitions
slices. Most likely your hard drive already has a slice. If so, delete it and then press "A" for Use Entire Disk.
Then press "S" for Set Bootable. You should see something like this:

Disk name: ad0 FDISK Partition

Editor

Disk Geometry 13424 cyls/15 heads/63 sectors = 12685680 sectors

(6194MB)

 Offset Size End Name PType Desc Subtype Flags

 0 63 62 - 12 unused 0

http://www.freebsd.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 63 12685617 12685679 ad0s1 8 freebsd 165 A

Hit Q to quit and go on to the next screen, which has some information and options regarding the boot sector.

We recommend using the FreeBSD Boot Manager (BootMgr), so simply press Enter here.

The next screen is the FreeBSD Disklabel Editor. Here, you'll create a number of partitions inside the slice. We
recommend pressing A for the Auto Defaults option. This should give you a reasonable partitioning scheme. If

you have your own preferences, feel free to use the other options to customize the partition sizes. When done,
press Q to quit.

Next, you'll see a screen titled Choose Distributions. Here you can pick and choose which parts of FreeBSD to
install. We recommend the Kern-Developer option. You'll need the kernel source to build a new FreeBSD kernel
later on. Move the cursor to the Kern-Developer line and press the spacebar.

The next question is about the FreeBSD ports collection. This is a large directory hierarchy of Makefiles and
other files used to download, compile, and install various free software packages. You'll use ports to build the
application software for the project, so say "Yes" here.

Now you should be back at the Choose Distributions screen. Move the cursor up to the Exit line and press Enter.

Next, you'll see a screen that asks you to choose the installation media. Since you're installing from the CD-
ROM, simply press Enter here.

Now you'll see a warning screen that gives you a last chance to abort the installation, in case you just realized
that the disk drive contains the only copy of your very own Great American Novel. When you are ready to
continue, press Enter. Then sit back and watch the fun.

You should see a few brief messages about creating filesystems, then some windows that display the progress
of installing various software bundles. If you have better things to do than watch the progress, feel free to step
away for a while and check back later. The ports collection in particular takes a long time to install. After some
time you should see a "Congratulation!" screen. Press Enter here.

After installation you'll see a screen asking if you want to configure a network device. We recommend that you
take up this offer (select Yes) and use the menus to configure your network. The installation procedure has

about a dozen more questions for you. We've listed them, and the answers that we recommend, in Table 5-1.

Table Questions and recommended answers for FreeBSD installation.

Question Answer

Do you want this machine to function as a network gateway? No

Do you want to configure inetd and the network services that it provides? No

Would you like to enable SSH login? Yes

Do you want to have anonymous FTP access to this machine? No

Do you want to configure this machine as an NFS server? No

Do you want to configure this machine as an NFS client? No

Would you like to customize your system console settings? No

Would you like to set this machine's time zone now? Yes

Is this machine's CMOS clock set to UTC? Yes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Question Answer

Would you like to enable Linux binary compatibility? No

Does this system have a PS/2, serial, or bus mouse? No

Would you like to browse the [package] collection now? No

Would you like to add any initial user accounts to the system? Yes

Now you must set the system manager's password. Choose a good one

Finally, you'll be asked if you want to set any last options. Answer No here, and you should find yourself back at

the main sysinstall screen. Press Tab to move the cursor to the Exit Install option, then press Enter. Confirm
your desire to exit the installation, eject the CD-ROM, and watch the computer reboot!

Configure the serial port for login

By default, FreeBSD does not spawn a login process on the serial port. This will be a problem when you move
the hard drive to the net4801 unless you modify /etc/ttys first. Bring up the file in an editor and find the line
that starts with ttyd0. Change the off field to on, and change the default terminal type to vt100 or xterm, like

this:

ttyd0 "/usr/libexec/getty std.9600" vt100 on secure

Note: While you're at it, you should also disable the logins on ttyv1 through ttyv7. These devices will not exist when
FreeBSD runs on the net4801. Be sure to leave at least one login (on ttyv0) in case you need to put the hard drive back
into a computer with a screen and keyboard.

Install the drive into the net4801

You are now ready to move the laptop hard drive from the installation computer to the net4801. First, make
sure the computer is powered off. Carefully separate the laptop drive from the 40-to-44 pin adapter.

Open up the net4801 case by removing the four small screws on the bottom side. Then locate four screws that
secure the mainboard to the bottom of the case. Remove these one by one and replace them with the hex-
shaped standoff screws that came with the drive mounting kit. Tighten the hex screws with a socket or wrench.
Set the U-shaped mounting bracket on top of the hex screws such that the open end is by the PATA connector,
as shown in Figure 5-7. Do not attach the bracket yet.

Warning: The bracket is not symmetric. One side is designed to avoid hitting the capacitors near the Mini-PCI connector.

net4801 hard drive bracket position.

Would you like to enable Linux binary compatibility? No

Does this system have a PS/2, serial, or bus mouse? No

Would you like to browse the [package] collection now? No

Would you like to add any initial user accounts to the system? Yes

Now you must set the system manager's password. Choose a good one

Finally, you'll be asked if you want to set any last options. Answer No here, and you should find yourself back at

the main sysinstall screen. Press Tab to move the cursor to the Exit Install option, then press Enter. Confirm
your desire to exit the installation, eject the CD-ROM, and watch the computer reboot!

Configure the serial port for login

By default, FreeBSD does not spawn a login process on the serial port. This will be a problem when you move
the hard drive to the net4801 unless you modify /etc/ttys first. Bring up the file in an editor and find the line
that starts with ttyd0. Change the off field to on, and change the default terminal type to vt100 or xterm, like

this:

ttyd0 "/usr/libexec/getty std.9600" vt100 on secure

Note: While you're at it, you should also disable the logins on ttyv1 through ttyv7. These devices will not exist when
FreeBSD runs on the net4801. Be sure to leave at least one login (on ttyv0) in case you need to put the hard drive back
into a computer with a screen and keyboard.

Install the drive into the net4801

You are now ready to move the laptop hard drive from the installation computer to the net4801. First, make
sure the computer is powered off. Carefully separate the laptop drive from the 40-to-44 pin adapter.

Open up the net4801 case by removing the four small screws on the bottom side. Then locate four screws that
secure the mainboard to the bottom of the case. Remove these one by one and replace them with the hex-
shaped standoff screws that came with the drive mounting kit. Tighten the hex screws with a socket or wrench.
Set the U-shaped mounting bracket on top of the hex screws such that the open end is by the PATA connector,
as shown in Figure 5-7. Do not attach the bracket yet.

Warning: The bracket is not symmetric. One side is designed to avoid hitting the capacitors near the Mini-PCI connector.

net4801 hard drive bracket position.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attaching the hard drive to the bracket.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Warning: If you pull too hard or twist the adapter, you might bend the pins on the drive.

Take the bracket off and attach the hard drive on top of it using the four screws from the mounting kit. Note
that when the bracket is in place, the hard drive sits above the bracket, rather than below it. You'll find four
holes underneath the hard drive that line up with the holes in the bracket (see Figure 5-8). Tighten the screws
and place the assembly back on top of the net4801 mainboard. Take the four screws from the mainboard and
insert them into the hex standoffs. Finally, connect the short PATA cable between the mainboard and hard drive.
The cable should line up perfectly with the two connectors.

You may want to make sure everything works before you close up the net4801 case. Also, you may want to drill
some ventilation holes in the case if you haven't done so already. Since the case is made of metal, be careful
about the resulting metal shavings. You'll probably want to do this outside or in a garage, away from your
computer equipment.

Connect a null modem serial cable between the net4801 and another computer. Start a terminal emulation
program on the other computer and configure the serial port for 19,200 baud, 8 data bits, no parity, and one
stop bit. When you power up the net4801, you should immediately see output similar to this in the terminal
program:

comBIOS ver. 1.27 20041122 Copyright (C) 2000-2004 Soekris

Engineering.

net4801

http://lib.ommolketab.ir
http://lib.ommolketab.ir

0128 Mbyte Memory CPU Geode 266 Mhz

Pri Mas TOSHIBA MK6412MAT LBA Xlt 789-255-63 6342 Mbyte

Slot Vend Dev ClassRev Cmd Stat CL LT HT Base1 Base2 Int

0:00:0 1078 0001 06000000 0107 0280 00 00 00 00000000 00000000

0:06:0 100B 0020 02000000 0107 0290 00 3F 00 0000E101 A0000000 10

0:07:0 100B 0020 02000000 0107 0290 00 3F 00 0000E201 A0001000 10

0:08:0 100B 0020 02000000 0107 0290 00 3F 00 0000E301 A0002000 10

0:18:2 100B 0502 01018001 0005 0280 00 00 00 00000000 00000000

0:19:0 0E11 A0F8 0C031008 0117 0280 08 38 00 A0003000 00000000 11

 5 Seconds to automatic boot. Press Ctrl-P for entering Monitor.

If you don't get any output, double-check your serial connection and terminal emulation settings. If you don't
see a drive listed below the memory and CPU information, power down the board and double-check the laptop
drive installation. The pins on the hard drive connector are small, and it's easy to be off by one.

You should make a few changes to some BIOS settings on the net4801. First, we recommend changing the
console speed to 9,600 baud, since this is the default console speed under FreeBSD. Second, you want the
system to treat the hard drive as primary. By default, the net4801 is set to treat the CF slot as primary. Hit
Ctrl-P during the power-on self test to enter the comBIOS monitor:

comBIOS Monitor. Press ? for help.

> set ConSpeed=9600

> set FLASH=secondary

Now, power down the net4801 and reconfigure your terminal emulator for 9,600 baud. Powering the system
back up, you should see POST output much like before. If you see gibberish, start over (at 19,200 baud) and try
to set the console speed again.

With everything in order, you'll see the FreeBSD boot loader run after the net4801 finishes its POST:

>> FreeBSD/i386 BOOT

Default: 0:ad(0,a)/boot/loader

boot:

The kernel will boot, displaying information about all the devices present in the system. Once you reach a login
prompt, log in as root again and we'll show you how to configure the network.

Connecting the network monitor in place.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configuring the network interfaces

All three of the net4801's network interfaces are required to passively monitor a connection to the Internet
while allowing you to view the logs and graphs the monitor will make. You'll configure two interfaces as a
network bridge between the gateway (router or other gateway) and the Internet. A network bridge forwards
Layer 2 (i.e., Ethernet) packets from one interface to the other. This allows the monitor to see all inbound and
outbound traffic without requiring you to change (or obtain!) any IP addresses between your gateway and the
Internet (most likely a DSL or cable modem). You'll place the third interface on your internal network ("inside"
the gateway), as shown in Figure 5-9.

On the exterior of the net4801 case, the three Fast Ethernet interfaces are labeled Eth0, Eth1, and Eth2. In
FreeBSD, these correspond to sis0, sis1, and sis2. Start by configuring sis2, since it's the easiest. If you want to
assign this interface an address with your DHCP server, add this line to /etc/rc.conf:

ifconfig_sis2="DHCP"

If you'd rather manually configure the IP address and netmask, use the appropriate ifconfig arguments instead
of the keyword DHCP. For example:

ifconfig_sis2="inet 172.16.5.9 netmask 255.255.255.0"

Note: You may see a similar line for another interface name (e.g., ifconfig_fxp0) from when you installed FreeBSD on

the other computer. You can leave it there in case you need to move the hard drive back to the other computer sometime.

You may want to reboot at this point and make sure that your ifconfig_sis2 configuration works as expected.

Now for the harder part: bridging the first two interfaces. The first step is to build a new kernel with the BRIDGE

option enabled. We recommend creating a custom kernel configuration file based on the GENERIC configuration:

cd /usr/src/sys/i386/conf

cp GENERIC NET4801

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vi NET4801

Add the following line to the end of the NET4801 file:

options BRIDGE

This may also be a good time to remove some drivers and features from the kernel that you'll never use. For
example, you probably don't need SCSI controllers, RAID, PCMCIA, FireWire, parallel port, or a floppy drive. But
be careful when removing kernel drivers. If you are too ambitious, you may create a kernel that won't run on
the hardware. Also, don't forget that you might need to take the hard drive out of the net4801 and put it into a
normal PC to fix a problem sometime in the future.

We also recommend that you disable building of kernel modules, simply to speed up the process of building a
kernel. To do so, add the following line to /etc/make.conf:

NO_MODULES=true

Now you're ready to start building the kernel. Issue the following c-ommands:

config NET4801

cd ../compile/NET4801

make depend all install

As this runs, you'll begin to understand how slow the net4801's processor is. For us, it took 37 minutes to
compile the kernel. If you lack the patience for this, you may want to move the laptop hard drive to a faster
machine and do all the compiling there.

When the new kernel is installed, reboot the net4801. When it comes back up, you can configure Ethernet
bridging with these commands:

sysctl net.link.ether.bridge.config=sis0,sis1

sysctl net.link.ether.bridge.enable=1

To see all the bridging configuration settings and statistics, run:

sysctl net.link.ether.bridge

To have the system automatically configure bridging each time it boots, add these lines to /etc/sysctl.conf:

net.link.ether.bridge.config=sis0,sis1

net.link.ether.bridge.enable=1

At this point, you can insert the net4801 into your network. Connect Eth0 to your DSL/cable modem or other
upstream device, and connect Eth 1 to your router/gateway, as shown in Figure 5-9. After connecting the
cables, make sure that packets are flowing through the net4801's bridged interfaces. Ping a few external hosts
from an internal system. If something appears to be wrong, restore the original network connections until you
debug the bridging configuration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Arpwatch

Arpwatch is a nifty little program based around the simple idea that you would like to know about any Layer 2
(Ethernet) addressing changes to your network. As you may know, ARP is the Address Resolution Protocol. An
ARP table provides a mapping between Ethernet and IP addresses. On Unix systems you can view the ARP table
by running arp -a:

arp -a

? (10.0.0.11) at 00:00:24:c4:3e:8a on sis1 [ethernet]

? (10.0.0.20) at 00:90:27:5c:87:56 on sis1 [ethernet]

? (10.0.0.21) at 00:90:27:16:aa:75 on sis1 [ethernet]

? (10.0.0.22) at 00:90:27:17:93:6e on sis1 [ethernet]

? (10.0.0.23) at 00:40:63:cb:38:52 on sis1 [ethernet]

? (10.0.0.27) at 00:02:b3:11:21:ec on sis1 [ethernet]

? (10.0.0.42) at 00:a0:c9:da:30:e9 on sis1 [ethernet]

? (10.0.0.98) at (incomplete) on sis1 [ethernet]

Arpwatch will notify you about changes to the ARP table. For example, you can find out if a new host joins the
network. This might be especially useful if you have a wireless network. Arpwatch also lets you know if a device
on your network changes its IP address.

To install Arpwatch, execute the following commands as root:

cd /usr/ports/net-mgmt/arpwatch

make all install

The install procedure creates a sample startup script named /usr/local/etc/rc.d/arpwatch.sh.sample. We
recommend that you rename or copy this file and use it to start Arpwatch automatically when your system
boots:

cd /usr/local/etc/rc.d

cp arpwatch.sh.sample arpwatch.sh

You can tell the script which interfaces to monitor by setting the arpwatch_interfaces configuration variable in

/etc/rc.conf. You probably want Arpwatch to monitor your internal network, which is on sis2, so add this line:

arpwatch_interfaces="sis2"

You might be tempted to also monitor the other network interfaces. Unfortunately, it won't work because those
interfaces are in bridged mode and do not have their own IP addresses.

Arpwatch uses both syslog and email to let you know about interesting events. Here's what the syslog message
looks like:

Jun 3 01:01:47 arpwatch: new station 172.16.5.241 0:0:24:c4:3e:8a

And here's the corresponding email notification:

Date: Fri, 3 Jun 2005 01:01:48 -0600 (MDT)

From: arpwatch@net4801 (Arpwatch)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To: root@net4801

Subject: new station (dhcp241)

 hostname: dhcp241

 ip address: 172.16.5.241

 ethernet address: 0:0:24:c4:3e:8a

 ethernet vendor: CONNECT AS

 timestamp: Friday, June 3, 2005 1:01:47 -0600

Most likely you won't notice the syslog messages unless you specifically look for them. Email is a much better
way to receive instant notifications. Messages are sent to root by default. You'll probably want to forward root's
mail to another address by defining an alias in /etc/mail/aliases:

cd /etc/mail

vi aliases

make

Alternatively, you can modify arpwatch.sh to include the -m option, followed by an email address, in the

arpwatch command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nagios

Nagios is a popular open source program for monitoring hosts, services, and networks. Nagios uses active
measurement and monitoring techniques. In other words, it sends periodic probes to hosts and services and
uses the corresponding reply (or lack of a reply) to determine the state of the host or service. You can use
Nagios to monitor your Internet connection, web server, mail server, and more.

Installing Nagios

As before, use FreeBSD's ports system to install Nagios. Begin by running make from the net-mgmt/nagios port

directory:

cd /usr/ports/net-mgmt/nagios

make

You may notice that the ports system installs a number of dependencies before actually building Nagios. For
example, Nagios requires m4, autoconf, and libtool, as well as the png, jpeg, and freetype libraries. If you
compile Nagios on the net4801 itself, this step may take more than an hour.

After compiling Nagios, the next step is to actually install it with this command:

make install

You should see a dialog box appear that asks you if you want to select certain optional plug-ins. These are not
the only plug-ins that will be installed. This is only a list of plug-ins that require additional packages to be
installed. We selected only the plug-ins that use SNMP:

Options for nagios-plugins 1.4_1,1

__

| |

 | [] QSTAT Game server query support |

 | [] FPING Support for non-flooding fast ping |

 | [X] NETSNMP SNMP support |

 | [] RADIUS Radius support |

 | [] MYSQL MySQL support |

 | [] PGSQL PostgreSQL support |

 | [] LDAP OpenLDAP support |

|__|

Towards the end of the installation, you'll be asked about creating a nagios user and group. Answer yes to both
of these questions.

To make FreeBSD automatically start Nagios when it boots, add this line to your /etc/rc.conf file:

nagios_enable="YES"

Installing Apache

Nagios has a web-based user interface. You'll need an HTTP server with CGI support, such as Apache, to use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nagios. We suggest that you install the latest version of Apache 2.x from FreeBSD ports:

cd /usr/ports/www/apache2

make

make install

To start Apache at boot time, add this line to /etc/rc.conf:

apache2_enable="YES"

Note that Apache's default log files are /var/log/httpd-access.log and /var/log/httpd-error.log. You may want to
add these to /etc/newsyslog.conf so that they are periodically rotated and archived.

Another installation default is that the data directory is a symbolic link to data-dist. You'll probably be better off
in the long term if you remove the symbolic link and create your own data directory:

cd /usr/local/www

ls -l data

lrwxr-xr-x 1 root wheel 24 Jun 26 23:18 data -> /usr/local/www/data-dist

rm data

mkdir data

Configuring Apache

You need to tell Apache where to find the Nagios HTML files and CGI scripts. Also, we recommend that you use
authentication-based access controls on the CGI scripts. You might feel that authentication is unnecessary since
the server is inside your firewall. However, Nagios uses the authenticated username to determine the type and
amount of information a user is allowed to see.

First, add ScriptAlias and Directory directives for the cgi-bin directory to the end of

/usr/local/etc/apache2/httpd.conf:

ScriptAlias /nagios/cgi-bin /usr/local/share/nagios/cgi-bin

<Directory "/usr/local/share/nagios/cgi-bin">

 AllowOverride AuthConfig

 Options ExecCGI

 Order allow,deny

 Allow from all

 AuthName "Nagios Access"

 AuthType Basic

 AuthUserFile /usr/local/etc/nagios/htpasswd.users

 require valid-user

</Directory>

Following that, add another pair of directives for the directory holding the HTML files:

Alias /nagios /usr/local/share/nagios

<Directory "/usr/local/share/nagios">

 Options None

 AllowOverride AuthConfig

 Order allow,deny

 Allow from all

</Directory>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that the order here is important. Be sure to put the cgi-bin directory first.

Start (or restart) Apache with this command:

/usr/local/etc/rc.d/apache2.sh restart

If the configuration is correct, you can go to a web browser and enter the net4801's hostname or IP address.
You should see a page that says "Index of /". Append /nagios/ to the URL, and you should see the Nagios
welcome page. From there you can read the Nagios documentation, which will come in handy for the next
section.

Configuring Nagios

Nagios uses a number of configuration files, located in /usr/local/etc/nagios. The installation provides samples
for each one. We'll go through them one at a time and let you know what to customize or leave alone.

The main configuration file is nagios.cfg. You can create it by copying the sample:

cp nagios.cfg-sample nagios.cfg

You don't need to change many settings in this file. By default, Nagios encourages you to place different
configuration "objects" into different configuration files. For example, nagios.cfg refers to hosts.cfg, services.cfg,
and others. Multiple configuration files can be confusing for first-time users, so we recommend placing
everything into one file, at least until you have a good understanding of the configuration syntax.

Find the following lines in nagios.cfg and either remove them or comment them out:

cfg_file=/usr/local/etc/nagios/contactgroups.cfg

cfg_file=/usr/local/etc/nagios/contacts.cfg

cfg_file=/usr/local/etc/nagios/dependencies.cfg

cfg_file=/usr/local/etc/nagios/escalations.cfg

cfg_file=/usr/local/etc/nagios/hostgroups.cfg

cfg_file=/usr/local/etc/nagios/hosts.cfg

cfg_file=/usr/local/etc/nagios/services.cfg

cfg_file=/usr/local/etc/nagios/timeperiods.cfg

Then add this line to take their place:

cfg_file=/usr/local/etc/nagios/mynet.cfg

You may have noticed other "include" files that are not commented out. You should create these by copying the
sample versions:

cp resource.cfg-sample resource.cfg

cp checkcommands.cfg-sample checkcommands.cfg

cp misccommands.cfg-sample misccommands.cfg

Now it's time to create mynet.cfg. The following sections describe each of the Nagios object types that you'll
need in that file. You may want to refer to the Object Definitions page of the Nagios documentation as we go
through them.

Hosts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Begin the configuration with objects that describe the hosts on your network. To keep things simple (for now),
you should define only one host. However, you should also make use of Nagios's inheritance feature to simplify
adding more hosts later. The first host object, named generic-host, is a template for the real hosts. This object
contains the variables that are common to all hosts:

define host {

 name generic-host

 check_command check-host-alive

 check_period 24x7

 check_interval 1

 max_check_attempts 5

 contact_groups the-contact-group

 notification_interval 60

 notification_period awake-times

 notification_options d,r

 register 0

 }

check-host-alive refers to a command object that exists in the checkcommands.cfg file. 24x7 and awake-

times refer to time period definitions that you'll add to this configuration file later. Similarly, the-contact-

group refers to a contact group object that you'll define later. The notification options d and r indicate that you

want to be notified when the host goes down (d) and recovers (r). Finally, setting register to 0 indicates that

this object is just a template and not a real host that should be monitored.

With the template object defined, you can easily add individual hosts, such as this one:

define host {

 host_name gateway

 alias Netgear Router

 address 172.16.5.1

 use generic-host

 }

The settings here should be intuitive. host_name is a short name for the host, and alias is a description of it.

address can be either an IP address or a hostname. The use line refers to the generic-host template where all

the other important values are defined. Note that you can override any of the other values in the real host
definition if you need to.

Hostgroups

A hostgroup is simply a group of hosts that have something in common. It may be silly to have a hostgroup for
very small networks, but Nagios complains unless your configuration has at least one hostgroup defined. The
members field contains a comma-separated list of hostnames. In this simple configuration, the hostgroup has

only one member:

define hostgroup {

 hostgroup_name home-hosts

 alias Home Network Hosts

 members gateway

 }

Services

Nagios can monitor services in addition to hosts. A service usually corresponds to a daemon process running on
a host, although it can be almost anything.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You should use the Nagios inheritance feature again here. The first service object is a template for checking a
DNS server:

define service {

 name dns-service

 service_description Check DNS Server

 max_check_attempts 5

 normal_check_interval 5

 retry_check_interval 3

 check_period 24x7

 notification_interval 30

 notification_period 24x7

 notification_options w,c,r

 contact_groups the-contact-group

 register 0

 }

Many of the parameters are similar to those in the host object. One difference is the notification_options

field. Here, w refers to a warning state, c refers to a critical state, and r refers to a recovery. You can define a

real service based on the dns-service template with just a few lines:

define service {

 host_name gateway

 check_command check_dns_name!localhost!127.0.0.1

 use dns-service

 }

The most interesting thing here is the check_command line. You can see it has three fields separated by

exclamation points. The first field (check_dns_name) refers to a command that you'll define later. The remaining

fields are command-line arguments that get passed to the command when it runs. In this case, you'll be calling
a command that makes a DNS query to make sure that the name localhost resolves to the IP address 127.0.0.1.
Note that the point of this service check is not necessarily to make sure that the value of localhost never

changes, but rather just to make sure that your DNS server is up and responding to queries.

Contactgroups

You've probably noticed the contact_groups fields in the host and service objects. A contact group is,

obviously, a group of contacts, which you'll define next. This simple configuration uses only one contact group,
which in turn has only one member:

define contactgroup {

 contactgroup_name the-contact-group

 alias The Only Contact Group

 members nagios

 }

Contacts

Here is a definition of a single contact, named nagios. Recall that contact names must correspond to the

authentication usernames in the HTTP server password file. The definition has quite a few fields:

define contact {

 contact_name nagios

 alias Nagios User

 email root

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 host_notification_period awake-times

 service_notification_period awake-times

 host_notification_options d,r

 host_notification_commands host-notify-by-email

 service_notification_options w,c,r

 service_notification_commands notify-by-email

 }

This example sets the contact's email address to root. You may want to choose a different address for your own

installation. Note that the contact has different notification settings for hosts and services. The
host_notification_options and service_notification_options settings match those found in the sample

host and service definitions, although that is not a requirement. For example, you may have one contact that
does not want to receive service warnings, while others do. The contact will be contacted only for states listed in
both the host/service object and the contact object. The host_notification_commands and

service_notification_commands settings refer to objects defined in the misccommands.cfg file.

Timeperiods

You've already seen a number of references to time periods in the previous objects. We recommend that you
define two simple time periods: 24x7 (all day, every day) and awake-times for the times when you (or other

people) are usually awake:

Code View:
define timeperiod {

 timeperiod_name 24x7

 alias All Day Every Day

 sunday 00:00-24:00

 monday 00:00-24:00

 tuesday 00:00-24:00

 wednesday 00:00-24:00

 thursday 00:00-24:00

 friday 00:00-24:00

 saturday 00:00-24:00

 }

define timeperiod {

 timeperiod_name awake-times

 alias Times people are usually awake

 sunday 09:00-22:00

 monday 07:00-21:00

 tuesday 07:00-21:00

 wednesday 07:00-21:00

 thursday 07:00-21:00

 friday 07:00-21:00

 saturday 09:00-22:00

 }

Commands

The final object definition is a special command to check your DNS server. The checkcommands.cfg already
includes a command named check_dns. However, that command doesn't quite work the way we want it to. It

always makes a query for www.yahoo.com and doesn't care what the answer is. With the following command,
you can specify both the name to check ($ARG1$) and the expected answer ($ARG2$):

define command {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 command_name check_dns_name

 command_line $USER1$/check_dns -H $ARG1$ -a $ARG2$ -s $HOSTADDRESS$

 }

Recall that the check_dns_name command is referenced in the "Check DNS Server" service for the gateway

host. The example we gave is:

check_command check_dns_name!localhost!127.0.0.1

In this case, $ARG1$ (the name to query) becomes localhost and $ARG22 (the expected answer) is 127.0.0.1.

The variable $HOSTADDRESS$ is set to the address of the host for the corresponding service definition.

CGI Configuration

Nagios uses CGI programs to display information about the hosts and services it monitors. While the web
interface is convenient to use, it is also a hassle to set up. CGI programs have certain security risks, and Nagios
is no exception.

The Nagios CGI programs use a configuration file named cgi.cfg. It contains settings for a wide variety of things,
including the directory for Nagios HTML files, other configuration files, authorization parameters, and
presentation options. You can probably just copy and use the sample configuration file:

cp cgi.cfg-sample cgi.cfg

If you read through cgi.cfg, you'll see a number of settings related to user authentication and privileges. Nagios
internally enforces certain restrictions on what users can see and do. By default, a user can only see information
on hosts and services for which it is listed as a contact. Most likely, your initial Nagios configuration will be
simple, with just a single contact.

Note that Nagios does not have its own authentication database. Instead, it relies on the HTTP server to
authenticate each user. Nagios assumes that the HTTP server is properly configured to execute CGI programs
only when the user provides valid authentication credentials. Recall that we asked you to add a HTTP Basic
authentication requirement to the Nagios cgi-bin directory back in "Configuring Apache."

Also note that the Nagios contact names must match the HTTP authentication usernames. Thus, you'll need to
add a user to the htpasswd.users file for each contact listed in the Nagios configuration. To add a password for a
contact named nagios, run this command:

htpasswd -c /usr/local/etc/nagios/htpasswd.users nagios

New password:

Re-type new password:

Adding password for user nagios

Running Nagios

Nagios has a nice feature that you can use to check your configuration file for errors. Since the configuration is
relatively complex, there is a good chance you'll make a few mistakes the first time. To validate the
configuration, run:

nagios -v /usr/local/etc/nagios/nagios.cfg

Any errors that you see must be fixed before Nagios runs. Warnings can be ignored, but may indicate a problem
that you should fix anyway. When the configuration file is error-free, run Nagios in the foreground for the first

http://lib.ommolketab.ir
http://lib.ommolketab.ir

time:

nagios /usr/local/etc/nagios/nagios.cfg

Nagios 2.0b2

Copyright (c) 1999-2005 Ethan Galstad (www.nagios.org)

Last Modified: 02-09-2005

License: GPL

Nagios 2.0b2 starting... (PID=18228)

Later, when you're sure it's all working correctly, start Nagios as a daemon process with the system startup
script:

/usr/local/etc/rc.d/nagios.sh start

Starting nagios.

Note that the startup script checks the value of nagios_enable from /etc/rc.conf. Double-check that setting if

Nagios does not start. If Nagios starts, but does not stay running, check /var/spool/nagios/nagios.log for error
messages.

The Nagios Host Detail screen.

Using Nagios

To use Nagios, go to your web browser and enter the URL containing the network monitor's hostname or IP
address, followed by /nagios/ (e.g., http://172.16.5.9/nagios/). You should see the main Nagios page with a
navigation menu on the left and some links to documentation in the main window.

http://172.16.5.9/nagios/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Click on the Host Detail link under the Monitoring section. You should be prompted to enter a username and
password. If you're following our example, enter nagios as the username and the password you created earlier
in "CGI Configuration." Once you're authenticated, you should see a screen like the one shown in Figure 5-10.

Take some time to explore some of the other Nagios pages and features. Many of them won't be very
interesting with just one host in the configuration. After some time, you'll probably be eager to add more hosts
and services to your configuration. Adding new hosts should be simple, since we used the template feature.
Simply copy the gateway entry and change the values as appropriate.

As you become more and more familiar with Nagios, you may want to use some of the advanced features, such
as host/service dependencies, hierarchical relationships, passive monitoring, and more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Snort

Snort is an open source intrusion detection system (IDS). It is designed to watch network traffic for certain
patterns and signatures. When a packet (or sequence of packets) matches a Snort rule, the event is logged
along with the source and destination addresses.

The number of alerts that you get from Snort is related to the number of services that you have running on your
systems. For TCP-based services, such as SMTP and HTTP, your computers won't even receive the interesting
traffic unless you have servers running to participate in the protocol conversation. For example, if you don't
have an HTTP server running, then any attempt to establish a connection results in a TCP reset and there is no
traffic for Snort to analyze. This may or may not be what you desire, depending on your level of paranoia. If you
want to see IDS alerts for services that you don't normally run, you'll need to run those servers or set up some
kind of a honey pot.

Installing Snort

As usual, installing a package such as Snort is simple with FreeBSD Ports:

cd /usr/port/security/snort

make all install

After typing make, you should see a dialog window that allows you to select a few optional features. Three of

these are support for databases (MySQL, PostgreSQL, and ODBC). If you enable one or more of these, you can
store alerts into a relational database instead of (or in addition to) a regular file. Another option is for a Snort
feature called "flexible response," which gives Snort the ability to actively close dangerous connections. This
feature is optional because it requires the libnet library. The final configuration option enables the code for
Prelude integration. Prelude calls itself a "hybrid intrusion detection system," which means that it can collect
intrusion alerts from a number of IDS systems.

We recommend that you enable MySQL support (or PostgreSQL if you prefer). Later in this chapter, we'll talk
about installing an optional application called BASE, which requires an SQL database, to view Snort alerts. If you
think you might want to use BASE, you might as well enable MySQL support now.

After installing Snort, add these two lines to /etc/rc.conf:

snort_enable="YES"

snort_interface="sis0"

Note that sis0 (a.k.a. Eth0) is the interface that should be connected to your Internet provider equipment (e.g.,
cable/DSL modem or router) as shown in Figure 5-9. If, after reading the Snort documentation, you want to use
some different command-line options, you can add an rc.conf variable named snort_flags.

Configuring Snort

After Snort is installed, you'll need to customize its configuration file, /usr/local/etc/snort.conf. The file is
installed read-only by default, so you may want to make it writable before editing it:

chmod +w /usr/local/etc/snort.conf

vi /usr/local/etc/snort.conf

Perhaps the most important snort.conf setting is the HOME_NET variable. This tells Snort the address (or

addresses) corresponding to your local network. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

var HOME_NET 192.168.5.1

Note that if your network includes a Network Address Translator (NAT) connected to Eth1 as shown in Figure 5-
9, HOME_NET should be set to your public IP address, rather than the private address space. Since Snort sits on

the public side of your NAT box, the addresses won't have been translated yet when Snort processes packets.

If your public IP address is dynamically assigned, you may have to update the HOME_NET variable when the

address changes. Snort has a feature to use whatever address is assigned to an interface, but that won't work
for us since we are using a bridging configuration where Eth0 and Eth1 don't have assigned addresses.

If you are using Snort to monitor a number of non-NATed hosts (at the office perhaps), you can set HOME_NET to

the whole subnet:

var HOME_NET 172.16.5.0/24

By default, Snort looks for all types of traffic on all hosts covered by HOME_NET. However, if you have only

certain services running on certain hosts, you can define those as well:

var DNS_SERVERS [172.16.5.1,172.16.5.2]

var SMTP_SERVERS [172.16.5.3,172.16.5.4]

var HTTP_SERVERS 172.16.5.5

var SQL_SERVERS 172.16.5.6

var TELNET_SERVERS 172.16.5.7

var SNMP_SERVERS 172.16.5.8

The snort.conf comments imply that setting these variables may make Snort more efficient. On the other hand,
you'll probably want to know if an SMTP server suddenly appears on a host that does not normally serve SMTP.
It is a trade-off, but we recommend leaving the *_SERVERS variables set to $HOME_NET.

The only other snort.conf change you should make at this point is to enable an output plug-in. We recommend
using the log_alert plug-in, which sends alert messages to syslog:

output alert_syslog: LOG_AUTH LOG_ALERT

Towards the end of snort.conf, you'll see a number of include lines that refer to Snort rule files. We

recommend leaving these as they are for now. After you have a little experience using Snort, you may want to
revisit this section and add or delete certain rules. Also note that when you update the Snort software in the
future, you may want to check the latest snort.conf-sample to see if any new rule sets have been added.

Running and using Snort

With some configurations, Snort writes log files to /var/log/snort. Create this directory and leave it owned by
root:

mkdir /var/log/snort

Before actually running Snort, you should test your configuration file with the -T option:

/usr/local/bin/snort -T |& less

Or, if you are using bash or ksh:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/usr/local/bin/snort -T 2>&1 1>/dev/null | less

You'll see a fair amount of output describing how various Snort components are configured. Any errors should
be at the end. If the configuration is error-free, go ahead and start it as a daemon:

/usr/local/etc/rc.d/snort.sh start

Starting snort.

After starting Snort for the first time, run top and monitor its CPU usage for a while. Depending on the amount
and type of traffic you have, Snort may have a hard time keeping up with the net4801. For example, here's
what top reports after Snort has been running for a few minutes, monitoring our T1:

Code View:
52 processes: 1 running, 51 sleeping

CPU states: 8.5% user, 0.0% nice, 3.1% system, 9.7% interrupt, 78.7% idle

Mem: 48M Active, 8072K Inact, 35M Wired, 1440K Cache, 22M Buf, 28M Free

Swap: 231M Total, 130M Used, 101M Free, 56% Inuse

 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND

21221 nagios 20 0 3376K 1148K kserel 55:29 0.00% 0.00% nagios

21924 root -58 0 71556K 40344K bpf 37:21 6.98% 6.98% snort

69679 root 96 0 2392K 996K select 6:33 0.00% 0.00% top

With only the syslog output method, you should find that messages are written to /var/log/auth.log.
Unfortunately, these syslog messages are difficult to read. The lines are very long and don't always give you
enough information to easily see if the threat is real. Here are some syslog entries from our monitor:

Jul 6 06:06:31 net4801 snort: [1:2570:7] WEB-MISC Invalid HTTP Version

String [Classification: Detection of a non-standard protocol or event]

 [Priority: 2]: {TCP} 80.58.15.235:36217 -> 206.168.0.13:80

Jul 6 06:06:32 net4801 snort: [1:485:4] ICMP Destination Unreachable

 Communication Administratively Prohibited [Classification: Misc

 activity] [Priority: 3]: { ICMP} 213.204.200.2 -> 206.168.0.9

Jul 6 06:06:39 net4801 snort: [1:1560:6] WEB-MISC /doc/ access

 [Classification: access to a potentially vulnerable web application]

 [Priority: 2]: {TCP} 202.241.4.130:35303 -> 206.168.0.9:80

Jul 6 06:06:41 net4801 snort: [122:17:0] (portscan) UDP Portscan

 {PROTO255} 195.251.229.5 -> 206.168.0.9

Jul 6 06:06:42 net4801 snort: [1:1560:6] WEB-MISC /doc/ access

 [Classification: access to a potentially vulnerable web application]

 [Priority: 2]: {TCP} 66.249.65.3:55601 -> 206.168.0.9:80

Jul 6 06:06:45 net4801 snort: [122:2:0] (portscan) TCP Decoy Portscan

 {PROTO255} 59.120.106.128 -> 206.168.0.9

Jul 6 06:06:53 net4801 snort: [106:4:1] (spp_rpc_decode) Incomplete RPC

 segment {TCP} 206.168.0.13:80 -> 24.118.57.248:32771

Jul 6 06:09:11 net4801 snort: [1:1852:3] WEB-MISC robots.txt access

 [Classification: access to a potentially vulnerable web application]

 [Priority: 2]: {TCP} 202.165.98.144:38898 -> 206.168.0.9:80

In addition to syslog, you should also have a number of subdirectories under /var/log/snort. Here, there is a
subdirectory for each source IP address, with one or more files in each subdirectory. These files have only a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

little more information about each alert (i.e., the IP header field values). But since they are organized by IP
address, you might find them more useful. For example, you can use this simple command to see which address
causes the most alerts:

du | sort -n

If your network is moderately busy and Snort generates more than a few alerts, you'll probably find it difficult to
sift through these files looking for important events. That's why we recommend you also install MySQL and
BASE, as described in the following sections. Note that when you enable the MySQL output plug-in in snort.conf,
Snort no longer writes to the IP address files in /var/log/snort.

However, if you decide to not use MySQL and keep logging to /var/log/snort, you'll need a cron job to make
sure the directory doesn't fill up over time. For example, the following crontab entry deletes subdirectories that
haven't been modified for 5 days:

0 4 * * * find /var/log/snort -type d -mtime +5 -print | xargs rm -rfv

Another long-term concern is how to keep up to date with new Snort rules. Perhaps the easiest way is to
periodically check FreeBSD ports for updates to the Snort package. We have some tips for doing so in "Staying
up-to-date with FreeBSD," at the end of this chapter. You can also download new rules from the Snort web site,
http://www.snort.org/, but you must be either a paid subscriber or register for free to receive delayed updates.

MySQL

Instead of (or in addition to) logging alerts to a disk file, you can make Snort put them into a database. If you
want to use BASE to view the alerts, then you'll need to install MySQL (or PostgreSQL).

You might be wondering if your little net4801 can really run MySQL in addition to Snort, Nagios, Apache, and
any other monitoring tools you may install. This is a valid concern. The answer depends on the amount of traffic
passing through the box. It may also depend on how cool you can keep the net4801. As the system works
harder, both the CPU and hard drive generate more heat. If the box gets too hot, it may crash or fail in some
other way. If you think this may be a problem, you can actually run MySQL and BASE on a different system.
Snort can send updates to a remote database.

As usual, you should install MySQL from ports. Unfortunately, this is a little bit confusing because ports has a
number of different MySQL directories for different MySQL versions. The ports makefiles define a default
version, which is currently 4.1. If you enabled MySQL when building Snort, the default MySQL client port should
have been installed. You can check by looking for a mysql directory in /var/db/pkg:

Code View:
ls /var/db/pkg/mysql*

/var/db/pkg/mysql-client-4.1.12:

+COMMENT +CONTENTS +DESC +MTREE_DIRS +REQUIRED_BY

When you find the version of the installed MySQL client port, install the matching server port. In this case, we'll
install MySQL version 4.1:

cd /usr/ports/databases/mysql41-server

make all install

Following installation, enable the MySQL server in /etc/rc.conf:

mysql_enable="YES"

http://www.snort.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You may also want to tune MySQL for this relatively small system by placing these lines in /etc/my.cnf:

[mysqld]

skip-locking

key_buffer = 64K

max_allowed_packet = 1M

table_cache = 4

sort_buffer_size = 64K

read_buffer_size = 256K

read_rnd_buffer_size = 256K

net_buffer_length = 2K

thread_stack = 64K

Then start the server with its startup script:

/usr/local/etc/rc.d/mysql-server.sh start

Starting mysql.

Snort Logging Locations

Snort may or may not create additional logfiles in /var/log/snort depending on the types of output
plug-ins that you use. When we use the syslog plug-in only, Snort creates IP address
subdirectories there. When we use both syslog and MySQL, Snort does not create these additional
files and directories. When we use MySQL alone, Snort writes data to /var/log/snort/alert.

Be sure to check whether or not Snort is putting files in /var/log/snort. If so, you'll need to do
something to make sure the files do not grow endlessly, eventually consuming all the space on this
partition. For simple files, such as /var/log/snort/alert, you can add an entry to
/etc/newsyslog.conf:

For other situations, you'll probably have to write your own shell script and run it periodically from
cron.

You may want to take a minute to read /usr/local/share/doc/snort/README.database. It describes how to set up
the database and configure the Snort output processor. You'll probably want to create a special database user
for Snort and BASE. We'll use the name snortusr. Since BASE actually requires more database privileges than
Snort, we recommend the following grant command to set up the database privileges. We also need to create

the Snort database itself:

mysql mysql

mysql> create database snort;

Query OK, 1 row affected (0.01 sec)

mysql> grant INSERT,SELECT,UPDATE,CREATE,DELETE on snort.* to

snortusr@localhost identified by 'sekrit';

Query OK, 0 rows affected (0.01 sec)

The next step is to create the necessary tables in the Snort database. The Snort distribution includes a script to
do just this. It is not installed anywhere when you run make install, so you'll need to get it from the ports

work directory:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cd /usr/ports/security/snort/work/snort-2.3.3

mysql -D snort < schemas/create_mysql

Now you can add a new output method to snort.conf with the same username and password from the MySQL
grant command:

output database: log, mysql, user=snortusr password=sekrit \

 dbname=snort host=localhost

Restart Snort after updating its configuration file. To make sure that everything is working, you can ask MySQL
to count the number of entries in the event table:

mysql -e 'select count(*) from event;' snort

+----------+

| count(*) |

+----------+

| 73 |

+----------+

BASE

The Basic Analysis and Security Engine (BASE) is a nifty web interface that displays and manages Snort alerts.
Those of you who took a chemistry class will appreciate that BASE is a fork of the code from the Analysis
Console for Intrusion Databases (ACID) project.

BASE relies on a number of additional software packages, such as Apache, PHP, and a number of PEAR (PEAR is
the PHP Extension and Application Repository.) modules. Install it from FreeBSD ports:

cd /usr/ports/security/base

make all install

We found that, for some reason, the ports system did not install all of the necessary PHP dependencies for us.
This may be due to the fact that the PHP source-code distribution was recently split into smaller modules. Or
perhaps the BASE dependency list is a little out of date. Whatever the reason, we manually installed the
following PHP ports:

/usr/ports/www/php4-session

/usr/ports/databases/php4-mysql

/usr/ports/devel/php4-pcre

The next steps are to configure PHP and then BASE. (You may want to read /usr/local/share/doc/base/README
for more verbose instructions.) Assuming that PHP was not already installed on your system, you'll need to
create and edit /usr/local/etc/php.ini. The easiest way is to copy the php.ini-recommended file that was
installed with PHP:

cd /usr/local/etc

cp php.ini-recommended php.ini

You'll probably want to change one line in the php.ini file. By default, PHP has very verbose debugging output.
Since the BASE code generates a lot of warnings, Apache's httpd-error.log quickly fills up with garbage. The
following setting is more appropriate:

error_reporting = E_ALL & ~E_NOTICE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next, make sure Apache knows what to do with a file that ends with .php. Add this line to
/usr/local/etc/apache2/httpd.conf:

AddHandler php-script .php

Note: You may also need to uncomment the PHP LoadModule directive in your httpd.conf.

Next, you must add additional configuration lines to httpd.conf. The BASE files are installed in
/usr/local/www/base, which is one directory up from the Apache data directory. You can either make a symbolic
link or, as we prefer, add this line to httpd.conf:

Alias /base/ "/usr/local/www/base/"

For convenience, we recommend that you add index.php to DirectoryIndex in httpd.conf:

DirectoryIndex index.html index.html.var index.php

To configure BASE, copy the sample configuration file and bring it up in an editor:

cd /usr/local/www/base

cp base_conf.php.dist base_conf.php

vi base_conf.php

Make sure the database name, database user, and password match those that you used in snort.conf. For
example:

$alert_dbname = "snort";

$alert_user = "snortusr";

$alert_password = "sekrit";

Screenshot of the main BASE page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see from the Alias line that you added to httpd.conf, the URLs for BASE should begin with /base.

You'll need to set BASE_urlpath to the same string in base_conf.php:

$BASE_urlpath = "/base";

At this point, you should be able to start using BASE. Fire up your browser and enter the net4801's hostname
followed by /base/. For example:

http://172.16.5.9/base/

The first time, you'll probably see a message that says "use the setup page to configure and optimize the DB."
Click on the setup page link, and then click on Create BASE AG. When you're done, go back to the main page. If
it's working, you should see something like the screenshot in Figure 5-11.

Customizing Snort

It is likely that you'll need to customize Snort before it becomes useful to you. We found that Snort generates a
lot of false positives, which tend to get in the way when trying to find real problems.

For example, our most common alert was "WEB-MISC Invalid HTTP Version String." This Snort rule was
designed to catch a certain buffer overflow bug in an obscure email/web server. The rule says that there must
be a newline character no less than five bytes after "HTTP/" in the request. However, Snort, or the rule, is not
smart enough to limit its search to only the first line of the HTTP request. One of our busy servers receives
many requests that look like:

GET /foo.html HTTP/1.1

...

Via: HTTP/1.1 silly inktomi proxy

http://172.16.5.9/base/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first line of the above request is valid, but the Via header (which is technically noncompliant, but of no real

threat), sets off the alert. To avoid receiving these alerts, we edited /usr/local/share/snort/web-misc.rules and
commented out the line containing the description "Invalid HTTP Version String." We also commented out these
other rules:

WEB-MISC /doc/ access

ICMP PING NMAP

WEB-MISC robots.txt access

Another annoyance we found with Snort is a large number of port-scan events. In particular, we found many
"Open Port," "UDP Portscan," and "TCP portsweep" alerts in our database. It seems that they are often triggered
by legitimate traffic, such as queries to our DNS server and outgoing SMTP connections. We chose to disable
port-scan alerts by commenting out the preprocessor sfportscan line in snort.conf.

Obviously, the type and number of alerts that you get from Snort depends on how many hosts you have and the
services that they run. You may find other types of false positives or alerts that you don't really care about. Use
BASE's feature to show unique alerts sorted by total number of events to find out which ones are most common
in your environment.

Snort maintenance

Neither Snort nor BASE automatically remove old alerts from MySQL. The database grows over time as more
and more alerts are added. This might not be much of a problem if the database is running on a fast system.
However, the net4801 becomes pretty slow as the database increases in size.

BASE has some features to help maintain the alert database. At the bottom of the pages that show alerts, you'll
see a small HTML form labeled "ACTION." Here you can email, delete, archive, and move alerts into Alert
Groups (AGs). You can use the delete and archive actions to keep the alert database small. However, these
operations can be slow, especially if you forget to do them regularly.

To help keep our database size down, we came up with a shell script you can run from cron. Our script uses
knowledge of the database structure, which is documented in the schemas/create_mysql file of the Snort
distribution. If the schema changes in a future release, this script may need to be modified.

The script works by finding the first CID (the column name that represents an event id) older than 24 hours and
then removing all entries with CIDs less than that. The one-day limit is pretty aggressive. If you want to keep
alerts for a longer period of time, simply change the INTERVAL 1 DAY argument to whatever you like. Here is

the script:

Code View:
#!/bin/sh

set -e

DB=snort

TABLES="data iphdr tcphdr udphdr icmphdr opt event acid_event"

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin

export PATH

Code View:
date

SENSORS=`mysql -N -e "select sid from sensor;" $DB`

for sid in $SENSORS ; do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MAXCID=`mysql -N -e "select cid from event where sid = $sid \

 and timestamp < DATE_SUB(NOW(), INTERVAL 1 DAY) \

 order by cid desc limit 1;" $DB`

 test -z "$MAXCID" && continue

 echo "SENSOR=$sid, MAXCID=$MAXCID"

 for t in $TABLES ; do

 SQL="delete low_priority from $t where sid = $sid and cid <= $MAXCID;"

 echo $SQL

 mysql -e "$SQL" $DB

 done

done

echo -n 'Optimize:'

for t in $TABLES ; do

 echo -n " $t"

 SQL="optimize table $t;"

 mysql -e "$SQL" $DB >/dev/null

done

echo ''

show how many rows in each table

for t in $TABLES ; do

 SQL="select count(*) from $t;"

 C=`mysql -N -e "$SQL" $DB`

 echo "$t $C"

done

date

If you save the script as trim_snort_db.sh in root's home directory, you can use this crontab entry:

0 0 * * * ./trim_snort_db.sh

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RRDTool

The final network-monitoring technique we'll present uses RRDTool and some simple scripts to create graphs
showing how much network traffic the hosts on your network send and receive over time. (Since the net4801 is
configured as a bridge between two interfaces, it is relatively simple to count packets that pass through them.)
This may help you understand why your network is occasionally slow or if certain hosts seem to be sourcing or
sinking more traffic than they should be.

RRDTool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) is a system for storing and displaying data
collected over time intervals, such as network interface counters, the number of spam emails in your inbox, and
the price of gasoline. RRDTool is nice because it provides fixed-size, long-term storage and because it generates
pretty good-looking graphs. The "RRD" in RRDTool stands for round-robin database. This apparently refers to
the way that the database stores its data. An RRD file consists of one or more data sources (DSes) and one or
more round-robin archives (RRAs). Data sources have attributes such as the data type and min/max values. An
archive consists of some number of time slots and an aggregation function. For example, you can define an
archive to store 24 hours worth of measurements at 5-minute intervals, plus a week's worth of data at 30-
minute intervals.

We recommend installing RRDTool from FreeBSD ports:

cd /usr/ports/net/rrdtool

make all install

Alternative topology for the network monitor.

The trouble with NAT

Network Address Translation presents a problem with our goal of measuring per-host bandwidth. Recall from
Figure 5-9 that the net4801 bridges the network between a cable/DSL modem and a router/gateway. If the
router/gateway is configured for NAT, the net4801 only sees the public IP address. The addresses of the internal
hosts are not in the packets flowing between Eth0 and Eth1.

If you are in this situation, you might prefer to change the topology so that the net4801 bridges the network

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

between the router/gateway and the Ethernet switch. This topology is shown in Figure 5-12. The advantage is
that you can monitor separate hosts with RRDTool, but Snort may see less traffic.

Setting up the counters

The goal is to see how many bytes and packets are sent to and from each host on our network. FreeBSD's ipfw
utility has a good way to get this information. All you need to do is add a number of count rules to the ipfw

configuration. First, make sure that the kernel has IPFIREWALL support. Go to the kernel configuration directory

and edit the current configuration file:

cd /sys/i386/conf

vi NET4801

Add the following lines to the end of the file:

options IPFIREWALL

options IPFIREWALL_DEFAULT_TO_ACCEPT

Note that we are not suggesting that you configure this system to actually filter any packets. You only want to
count the packets. Hence, the default-to-accept option ensures that you won't accidentally drop any packets. If
you have IPv6 on your network (or plan to), you might want to add these lines as well:

options IPV6FIREWALL

options IPV6FIREWALL_DEFAULT_TO_ACCEPT

After editing, build and install the new kernel:

config NET4801

cd ../compile

make depend all install

The FreeBSD firewall code does not, by default, receive bridged packets. To make this work, you also need to
enable a sysctl variable. You can add this line to /etc/sysctl.conf:

net.link.ether.bridge_ipfw=1

Another oddity is that the firewall only receives bridged packets on input. Bridged output packets do not go
through the firewall code. But this is not a serious problem because packets entering your network are received
on one interface, and packets leaving your network are received on the other.

This is probably a good time to reboot the system with the new kernel and sysctl setting. After the reboot, you
can add the ipfw rules to start counting packets. You can customize the following shell script and save it as
/etc/rc.firewall.count:

#!/bin/sh

IPFW="/sbin/ipfw -q"

COUNT="$IPFW add count"

SUBNET="206.168.0"

FIRST=0

LAST=31

IF_IN=sis0

IF_OUT=sis1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

$IPFW -f flush

i=$FIRST

while test $i -le $LAST ; do

 $COUNT ip from any to $SUBNET.$i in via $IF_IN

 $COUNT ip from $SUBNET.$i to any in via $IF_OUT

 i=`expr $i + 1`

done

Run the script manually a few times until you are satisfied that it works correctly. Note that with the -q option

to ipfw you won't see any output unless there is an error. You can type ipfw show to see the rules and their

counts, or to see only those rules with non-zero counts, use this command:

ipfw show | awk '$2'

You should see something like this:

00700 1740 488595 count ip from any to 206.168.0.3 in via sis0

00800 1800 124940 count ip from 206.168.0.3 to any in via sis1

00900 2491 381248 count ip from any to 206.168.0.4 in via sis0

01000 2451 805783 count ip from 206.168.0.4 to any in via sis1

01100 692 88447 count ip from any to 206.168.0.5 in via sis0

01200 795 312687 count ip from 206.168.0.5 to any in via sis1

01300 7886 2114851 count ip from any to 206.168.0.6 in via sis0

01400 8699 1393426 count ip from 206.168.0.6 to any in via sis1

When you are satisfied with the /etc/rc.firewall.count script, add the following lines to /etc/rc.conf so that it is
called when your system boots:

firewall_enable="YES"

firewall_script="/etc/rc.firewall.count"

Creating RRD files

Now you need to create the RRD files to store the counters. Recall that an RRD database is defined by a number
of Data Sets (DSes) and Round Robin Archives (RRAs). You'll be updating the RRD databases with a cron job
that runs every five minutes.

You should use one DS for each IP address on your network. Each DS definition has five parameters: name,
type, heartbeat, min, and max. Here, for example, is the dataset definition that we recommend you use:

DS:a0:DERIVE:600:0:U

The dataset name is relatively straightforward. Our example uses a0 through a31 to represent the 32 IP

addresses in a /27 subnet. The most appropriate dataset type is derive, which is like a derivative. It

automatically calculates the rate of change for an ever-increasing counter. The heartbeat parameter specifies
the maximum amount of time between data points. If, for some reason, the database is not updated within this
period, RRDTool inserts unknown values. We suggest 600 seconds (10 minutes) for the heartbeat value, which is

double the amount of time between normal updates. We also suggest 0 for the minimum and U (unknown) for

the maximum to specify no limit. The zero minimum catches cases when the counters are reset to zero and
which might otherwise result in a negative rate of change.

You'll also define five RRAs to store data at different granularity for different lengths of time between 1 day and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10 years. For example, the one-day RRA contains one value for each five-minute sample period. The 10-year
RRA stores one value for each week. An RRA definition has four parameters and looks like this:

RRA:AVERAGE:0.99:1:288

The first parameter defines the aggregation, or consolidation, function. In this case, values are averaged as they
are aggregated into each RRA. The second value is a number between 0 and 1 that specifies the fraction of
input data values that may be unknown before the aggregate value is also declared unknown. We recommend a
relatively high value (99%) so that you almost never have unknown values in the low-granularity RRAs. The
third parameter specifies how many primary data points constitute an aggregated data point. The suggested
step size is 300 seconds (five minutes). The final parameter is the number of aggregated data points to store
for this RRA. These are called rows in the RRDTool documentation. When you multiply the step size, the number
of steps, and the number of rows, you'll have the total time period covered by the RRA. For example, 300 x 1 x
288 results in 86400 seconds, or one day.

If you want to count packets in, packets out, bits in, and bits out, you should use four separate RRD files. Each
RRD file has the same internal structure and differs only in the name of the file. We recommend that you create
a simple shell script to create the databases. For example:

#!/bin/sh

set -e

for f in pktsin pktsout bitsin bitsout ; do

 test -f $f.rrd || rrdtool create $f.rrd \

 --step 300 \

 DS:a0:DERIVE:600:0:U \

 DS:a1:DERIVE:600:0:U \

 DS:a2:DERIVE:600:0:U \

 DS:a3:DERIVE:600:0:U \

 DS:a4:DERIVE:600:0:U \

 DS:a5:DERIVE:600:0:U \

 ...

 DS:a31:DERIVE:600:0:U \

 RRA:AVERAGE:0.99:1:288 \

 RRA:AVERAGE:0.99:6:336 \

 RRA:AVERAGE:0.99:12:744 \

 RRA:AVERAGE:0.99:288:365 \

 RRA:AVERAGE:0.99:2016:520

done

Obviously you'll need to customize the DS lines for your particular network. You may have more or fewer
addresses to monitor. You might be tempted to omit DS lines for addresses that you are not currently using. Be
warned, however, that once an RRD database is created, you cannot go back and modify it. If you need to add
more DS lines later, you must create a new RRD, then export and import the old data to the new database.
Speaking from experience, you will not enjoy that procedure.

Select somewhere on your system for the RRD files to reside. If you don't have any other preferences, we
suggest /usr/local/var/rrd. We also suggest placing the creation script here so that you can use it again in the
future if necessary. Once you have the location chosen, execute the script there to create the RRD files:

mkdir -p /usr/local/var/rrd

cd /usr/local/var/rrd

mv ~/create-rrds.sh .

sh create-rrds.sh

ls -l

total 2434

-rw-r--r-- 1 root wheel 1312 Jul 11 16:32 create-rrds.sh

-rw-r--r-- 1 root wheel 597672 Jul 11 16:32 bitsin.rrd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-rw-r--r-- 1 root wheel 597672 Jul 11 16:32 bitsout.rrd

-rw-r--r-- 1 root wheel 597672 Jul 11 16:32 pktsin.rrd

-rw-r--r-- 1 root wheel 597672 Jul 11 16:32 pktsout.rrd

Updating the RRDs

Now you need a way to periodically parse ipfw output and insert the values into the RRDs. Like many of life's
little problems, this one can be solved with Perl. You can run the following script from cron every five minutes.
Note that it has some hardcoded IP addresses. You'll need to modify it before trying to use it on your own
network:

Code View:
#!/usr/bin/perl

use strict;

use warnings;

use FindBin;

use RRDs;

my @rrds = qw (pktsin pktsout bitsin bitsout);

my $maxidx = 0;

my $data;

my $IPFW_CMD="/sbin/ipfw show|";

my $now = time;

ipfw output looks like this:

00900 25715 5083121

count ip from any to 206.168.0.4 in via sis0

01000 25734 10182547 count ip from 206.168.0.4 to any in via sis1

my $INPUT_PAT = '\d+\s+(\d+)\s+(\d+)\s+count ip from any ' .

 'to 206.168.0.(\d+) in via sis0';

my $OUTPUT_PAT = '\d+\s+(\d+)\s+(\d+)\s+count ip from 206.168.0.(\d+) ' .

 'to any in via sis1';

chdir $FindBin::Bin || die "$0: $!";

open (IPFW_CMD, $IPFW_CMD) || die "$IPFW_CMD: $!";

while (<IPFW_CMD>) {

 my $idx;

 chomp;

 if (/$INPUT_PAT/) {

 $idx = $3;

 $data->{pktsin}[$idx] += $1;

 $data->{bitsin}[$idx] += ($2 * 8); # convert to bits

 } elsif (/$OUTPUT_PAT/) {

Code View:
$idx = $3;

 $data->{pktsout}[$idx] += $1;

 $data->{bitsout}[$idx] += ($2 * 8); # convert to bits

 } else {

 next;

 }

 $maxidx = $idx if ($idx > $maxidx);

}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

close IPFW_CMD;

exit 1 if (0 == $maxidx);

foreach my $rrd (@rrds) {

 my @idxes = grep {$data->{$rrd}[$_] > 0} 0..$maxidx;

 my $Tmpl = join(':', map {"a$_"} @idxes);

 my $Vals = join(':', $now, @{$data->{$rrd}}[@idxes]);

 RRDs::update("$rrd.rrd", '--template', $Tmpl, $Vals);

 my $ERR = RRDs::error;

 die "ERROR while updating $rrd.rrd: $ERR\n" if $ERR;

 if (open(LOG, ">>$rrd.log")) {

 print LOG "rrdtool update $rrd.rrd --template $Tmpl $Vals\n";

 close(LOG);

 }

}

This script uses two Perl modules: FindBin and RRDs. The first is a part of the standard Perl installation. The
second is installed along with RRDTool.

The INPUT_PAT and OUTPUT_PAT variables contain regular expressions to match the input and output rules in the

ipfw output. Again, this sample script is hardcoded to match specific IP addresses. Make sure to modify these
for your own network.

This script assumes that it lives in the same directory as the RRD files (i.e., /usr/local/var/rrd). Rather than
hardcoding this directory name in the script, it calls chdir $FindBin::Bin to change the current directory to

wherever the script is stored. You'll need to modify this line if you want to place the script and RRD files in
different directories.

The script also assumes that host numbering starts with .0. You may need to modify the assignment of $idx if

your hosts are on a subnet that does not start with .0.

Note that the script creates a log of the RRD updates. You can use these logfiles to repopulate the RRD
database if you accidentally lose them or need to re-create them for some reason. If you don't want the logfiles,
you can remove or comment out those lines.

To run this script from cron every five minutes, add a line like this to root's crontab:

*/5 * * * * /usr/local/var/rrd/update-rrds.pl

Viewing RRD graphs

The best way to view your RRD graphs is in your web browser. RRDTool includes a program named rrdcgi that
enables you to write CGI scripts to generate RRD graphs. First, create a directory to hold the CGI scripts and
image files:

mkdir /usr/local/www/hoststats

chgrp www /usr/local/www/hoststats

chmod 775 /usr/local/www/hoststats

Note that the directory must be writable by the Apache user ID so that rrdcgi can create images there. Next,
you need to tell Apache how to access the directory and to execute CGI programs found there. Add these lines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to httpd.conf:

Alias /hoststats/ "/usr/local/www/hoststats/"

<Directory "/usr/local/www/hoststats">

 Options ExecCGI

</Directory>

AddHandler cgi-script .cgi

Then restart Apache:

/usr/local/etc/rc.d/apache2.sh restart

That was the easy part. The hard part is writing the rrdcgi script, or scripts. This is hard for a number of
reasons:

You'll probably find a lot of repeated "code" in the rrdcgi file. For example, if you want to display four
graphs on a page (one each for packets in, packets out, bits in, and bits out), you'll have four very similar
RRD::GRAPH definitions. Multiply this by the number of time scales (day, week, month, year, decade), and

now you have 20 graphs.

Each host that you want to display requires at least 2 lines in the RRD::GRAPH definition. If you want to

show 10 hosts, the code to generate the graph may be more than 20 lines long. It becomes a real hassle
when you need to change a few of these lines in each of 20 graphs.

There are a limited number of distinct colors that you can use on a graph. If you have more than 10 or so
hosts, you'll either need to aggregate them or separate them.

Some of these difficulties can be solved by writing scripts to generate your rrdcgi files. You can also embed
HTML forms into the script, allowing the user to select different graphs and time scales. We won't get that fancy
here. Instead we'll show you the basic design of an rrdcgi script and leave the fancy stuff for you to explore on
your own.

An rrdcgi script looks a lot like an HTML file. In fact, the rrdcgi interpreter acts only on special tags that begin
with <RRD::. Any text outside of these tags is passed through unchanged. Here is a simple example:

#!/usr/local/bin/rrdcgi

<HTML>

<BODY>

<H1>Simple Graph</H1>

<RRD::GRAPH simple.png

 --start -1day

 --imgformat PNG

 --width 300 --height 200

 DEF:var1=/usr/local/var/rrd/bitsin.rrd:a3:AVERAGE

 LINE1:var1#FF0000:host2

 >

</BODY>

</HTML>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As you can see, the script starts off with some HTML markup, but the interesting parts are the instructions for
drawing the graph. Everything inside the <RRD::Graph ... > tags is simply rrdgraph command-line arguments.

You'll want to read the rrdgraph documentation (e.g., manpage) to really understand how to make graphs.

This simple example has a few options, such as --start and --imgformat. The DEF line defines a variable. In

this case it says to take the average value of a3 from the /usr/local/var/rrd/bitsin.rrd file. The LINE1 line

instructs RRDTool to draw a 1-pixel-wide line representing the var1 data in red and label it "host2."

Save the script under /usr/local/www/hoststats/ with a name like simple.cgi. Go to your browser and enter the
URL corresponding to this file. When rrdcgi executes the code, it does two things. First it generates a PNG file
named simple.png in the same directory as the script. Then it replaces the RRD::Graph section with the

following HTML:

If everything is working correctly, you should see an image in your web browser when you access the CGI file. If
not, you may see an error message where the graph belongs. Also, check the Apache error log for messages.
Once you have it working, it's time to move on to a more complex graph. This one displays the bandwidth used
by six different hosts over the last 24-hour period:

Code View:
#!/usr/local/bin/rrdcgi

<HTML>

<HEAD><TITLE>Host Network Statistics</TITLE></HEAD>

<BODY>

<H1>Host Statistics</H1>

<RRD::GRAPH hoststats.bitsin.day.png

 --title="Bits In -- 1day"

 --start -1day

 --imgformat PNG

 --vertical-label "bits/sec"

 --width 500 --height 200

 --lower-limit 0

 --no-minor

 DEF:i4=/usr/local/var/rrd/bitsin.rrd:a4:AVERAGE

 DEF:i5=/usr/local/var/rrd/bitsin.rrd:a5:AVERAGE

 DEF:i6=/usr/local/var/rrd/bitsin.rrd:a6:AVERAGE

 DEF:i9=/usr/local/var/rrd/bitsin.rrd:a9:AVERAGE

 DEF:i13=/usr/local/var/rrd/bitsin.rrd:a13:AVERAGE

 DEF:i18=/usr/local/var/rrd/bitsin.rrd:a18:AVERAGE

 AREA:i4#FF0000:host1

 STACK:i5#FFFF00:host2

 STACK:i6#00FF00:host3

 STACK:i9#00FFFF:host4

 STACK:i13#0000FF:host6

 STACK:i18#FF00FF:host7

 >

</BODY>

</HTML>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A sample RRDTool graph.

The first section of the graph sets a number of options. Many of them are self-explanatory. The --start -1day

option specifies that the graph starts at the current time minus one day. The --lower-limit option ensures

that the Y-axis starts at zero. The --no-minor option disables minor grid lines and makes the graph look a little

less cluttered.

The next section defines six variables based on the data in /usr/local/var/rrd/bitsin.rrd. Note that RRDTool
automatically takes data from the appropriate RRA, depending on the --start value. We've specified AVERAGE

as the consolidation function in case the chosen RRA has too many data values to fit in the width of the graph.

The final section instructs RRDTool how to display the data. We'll display the first variable as an AREA and then

STACK subsequent variables on top of that. This allows you to quickly see the total bandwidth used by all hosts.

You can see how it looks in Figure 5-13. Alternatively, you might prefer to plot each variable as a LINE2.

Don't forget the final angle bracket (>) to close the RRD::Graph tag.

Once you get a good-looking graph, you can use it as a template to create more graphs. For example, to
change the "bits in" graph to "bits out," you need to change the DEF lines, the title, and the PNG image

filename. To change the one-day graph to a one-week graph, change the start value and the image filename.
You may find it easier in the long run to write a Perl script that generates rrdcgi scripts.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

Now that you have a decent network-monitoring platform, we have a few ideas for making it even better.

Staying up to date with FreeBSD

We recommend that you periodically update your FreeBSD system to stay on top of security issues, bug fixes,
and to take advantage of new features. Updating the software is a multi-step process. First you'll download the
updates from a server over the Internet. Then you'll build and install the new software. We'll show you how to
do so for both the operating system itself and the applications you've installed from ports.

One of the best ways to receive software updates is with a program called cvsup. It is similar to, and more
efficient than, anonymous CVS. It is also a little more complicated to set up, but we'll tackle it anyway. You'll
need to install the cvsup client from ports. We recommend the non-GUI version:

cd /usr/ports/net/cvsup-without-gui

make all install

Next, you'll create a "supfile" for each collection that you want to update. We'll discuss this separately for
/usr/src and /usr/ports.

Updating /usr/src

/usr/src contains all the source code for the FreeBSD operating system, including the kernel and userland
application such as ls, vi, and grep. Here is a sample supfile for /usr/src, which you might save as
/etc/usrsrc.supfile:

*default host=cvsup12.us.FreeBSD.org

*default base=/var/db

*default prefix=/usr

*default release=cvs tag=RELENG_5

*default delete use-rel-suffix

*default compress

src-all

Briefly, that configuration instructs cvsup to update all the files in /usr/src tagged with RELENG_5 from the

server named cvsup12.us.FreeBSD.org. Refer to the "Using CVSup" section of the FreeBSD Handbook for a
deeper explanation of each line in the file. The handbook also has a current list of cvsup servers around the
world.

To update the files, simply run cvsup with this filename as a command-line argument:

cvsup /etc/usrsrc.supfile

After you've updated /usr/src for the first time, you may want to add these lines to /etc/make.conf:

SUP_UPDATE=true

SUPFILE=/etc/usrsrc.supfile

Then, in the future, you can just run:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cd /usr/src

make update

After the files have been updated, you can compile and install the operating system. The standard method is:

cd /usr/src

make buildworld

make buildkernel KERNCONF=NET4801

make installkernel KERNCONF=NET4801

make installworld

mergemaster

reboot

Note that the buildworld and buildkernel steps will take a very long time on the net4801. If you don't have

the patience, you may want to pull the hard drive from the system and temporarily mount it in a box with a
faster processor. You may also want to do so if your net4801 seems to overheat under the stress of compiling
so much software.

The mergemaster program is designed to keep your system configuration files up to date. Since some of them
may have been modified by you, they are not overwritten by the installworld command. Instead,

mergemaster identifies files that have changed and asks you whether to use the new file, the old file, or to
merge them.

Updating /usr/ports

The supfile for /usr/ports is similar, with only a couple of changes. Here is a sample /etc/usrports.supfile:

*default host=cvsup12.us.FreeBSD.org

*default base=/var/db

*default prefix=/usr

*default release=cvs tag=.

*default delete use-rel-suffix

*default compress

ports-all

Note that the cvs tag is set to . for the ports collection. To fetch the files, run:

cvsup /etc/usrports.supfile

Alternatively, add this line to /etc/make.conf:

PORTSSUPFILE=/etc/usrports.supfile

Then run:

cd /usr/ports

make update

Updating the applications you've installed from ports is a little more complicated than for rebuilding the
operating system. A program called portupgrade makes this a little easier. Without it, you'd have to recompile
and reinstall each application manually. You can install portupgrade from ports:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cd /usr/ports/sysutils/portupgrade

make all install

Then, we recommend running the following set of commands to update all your ports applications:

portsdb -Uu

pkgdb -F

portversion -vL =

portupgrade -avr

/usr/local/sbin/portsclean --workclean

/usr/local/sbin/portsclean --distclean

/usr/local/sbin/portsclean -DD

Again, this will take a long time on the net4801, so you may want to perform these steps on a faster machine.

Additional Nagios features

Nagios has a number of additional features and plug-ins that we haven't mentioned yet. For example, you can
use SNMP to monitor various host resources such as disk space, memory usage, and CPU load. Nagios can warn
you before a filesystem totally runs out of disk space and when the system load average exceeds a threshold.
Install the net-mgmt/nagios-snmp-plug-ins port to use these features.

Another interesting Nagios-related port is the Nagios Remote Plug-in Executor (NRPE). It allows you to execute
a Nagios plug-in on a remote host. That means you must have Nagios installed on the remote host as well. The
NPRE port is net-mgmt/nrpe.

You can find more Nagios-related software by searching for "nagios" in the FreeBSD ports collection.

Additional software for Snort

The FreeBSD ports collection includes a number of useful Snort-related packages as well. Oinkmaster (found in
security/oinkmaster) is a tool that helps keep your rules up to date. It also helps you retrieve rule sets from
different sources. Oinkmaster even shows you the rules that are changed in each update.

snort-rep (found in security/snort-rep) is a little utility that generates either HTML or text reports from a syslog
file. A similar program is SnortSnarf (found in security/snortsnarf). If you are using the BASE application, these
tools may not be especially useful to you.

User authentication in BASE

By default, anyone that has access to Apache can use BASE to query the Snort alert database. If you would like
a somewhat more secure installation, you can use BASE's internal user-authentication system. First, click on the
Administration link from the main BASE page. Here you'll see links for creating users and roles. Add a role first,
and then a user. Then edit /usr/local/www/base/base_conf.php and set:

$Use_Auth_System = 1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Wi-Fi Extender

Have you ever been in a situation where you wanted to use a nearby wireless network but the signal was too
weak where you were sitting? How many times have you held your laptop up to your hotel room window
desperately searching for an open network? With this project, you can build a portable device that acts as a
gateway between two wireless networks. You can use it to extend wireless connectivity to your office, living
room, or hotel room. Figure 6-1 shows a situation where the extender comes in handy. The Wi-Fi extender is
actually quite simple: it routes traffic between two wireless networks, using standard protocols such as DHCP
and NAT.

What You Need

4G Systems Access Cube

9–20 volt, 1 amp power supply

2 Mini-PCI Wi-Fi cards

2 Wi-Fi antennas

Parts for custom console cable (optional)

This diagram shows a situation where the Wi-Fi extender comes in handy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introducing the Access Cube

The Access Cube is a small black box measuring 7 x 5 x 7 cm, or 3 x 3 x 2 inches. Figure 6-2 shows the front of
it, where you'll find an RJ45 Ethernet jack (10/100 Mbps), a USB type A and another USB type mini-B port, and
a power connector. This side also has two small screws that secure the two halves of the case.

On the rear you'll see two RP-SMA antenna connectors, shown in Figure 6-3. A pair of wires inside the case
connects each antenna to one or more 802.11 cards. The wires have U.FL connectors, which are standard for
Mini-PCI wireless cards. We'll show you how to connect them later in the chapter.

The Access Cube is designed for wireless networking applications. You can add two Wi-Fi cards to the cube with
the two-sided Mini-PCI adapter. Since the Access Cube runs Linux, it supports a wide variety of 802.11 cards.
4G Systems sent us an 802.11b card based on the Prism chipset. You should be able to use any other Prism-
based card, as well as those based on Atheros, Aironet, and Hermes chipsets.

A 400 MHz MIPS CPU powers the Access Cube. The CPU runs cool enough to not require any active cooling (i.e.,
fans). However, some Access Cube users have reported overheating issues when using the cube outdoors.
Certainly the black color of the case does not help in that situation. We used the cube indoors only and did not
experience any heat-related problems.

In terms of memory, the Access Cube has 64 MB of RAM and 32 MB of flash. The flash memory holds the Linux
filesystem. While it may not seem like much space, 32 MB turns out to be plenty. In the default configuration,
some of the RAM is used as a temporary filesystem mounted on /var.

The Access Cube accepts a wide range of input voltages: between 7 and 24 volts DC. Our power meter says that
it consumes only 2–3 watts. The Access Cube also supports Power-over-Ethernet (PoE), although we won't be
using it in this project.

Front view of the Access Cube.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rear view of the Access Cube.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: Our Access Cube kit, delivered from the manufacturer in Germany, came with a 9-volt, 1.2-amp power transformer.
Unfortunately it has a European power plug and does not fit in North American sockets. The transformer can handle 110v
AC, so you can use it if you have the necessary socket adapter. Since we didn't have such an adapter, we looked for a
different transformer. We quickly found a 9 volt North American transformer in the closet, but it was rated for only 0.4
amps and did not provide enough power to the Access Cube. We found that a 12-volt, 1 amp transformer works great.

You may have noticed that the Access Cube doesn't have a serial port interface for console access. Actually, it
does, but it's not accessible with the case in place, and it's not a standard RS-232 interface. This isn't a huge
problem because the cube comes pre-loaded with Linux and you can log in over either the wired or wireless
network interface. If you do a lot of tinkering with the system, you may find a serial console cable useful. You
can either build one as described later in this chapter, or buy one directly from 4G Systems when ordering your
cube.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Wi-Fi Extender

Have you ever been in a situation where you wanted to use a nearby wireless network but the signal was too
weak where you were sitting? How many times have you held your laptop up to your hotel room window
desperately searching for an open network? With this project, you can build a portable device that acts as a
gateway between two wireless networks. You can use it to extend wireless connectivity to your office, living
room, or hotel room. Figure 6-1 shows a situation where the extender comes in handy. The Wi-Fi extender is
actually quite simple: it routes traffic between two wireless networks, using standard protocols such as DHCP
and NAT.

What You Need

4G Systems Access Cube

9–20 volt, 1 amp power supply

2 Mini-PCI Wi-Fi cards

2 Wi-Fi antennas

Parts for custom console cable (optional)

This diagram shows a situation where the Wi-Fi extender comes in handy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introducing the Access Cube

The Access Cube is a small black box measuring 7 x 5 x 7 cm, or 3 x 3 x 2 inches. Figure 6-2 shows the front of
it, where you'll find an RJ45 Ethernet jack (10/100 Mbps), a USB type A and another USB type mini-B port, and
a power connector. This side also has two small screws that secure the two halves of the case.

On the rear you'll see two RP-SMA antenna connectors, shown in Figure 6-3. A pair of wires inside the case
connects each antenna to one or more 802.11 cards. The wires have U.FL connectors, which are standard for
Mini-PCI wireless cards. We'll show you how to connect them later in the chapter.

The Access Cube is designed for wireless networking applications. You can add two Wi-Fi cards to the cube with
the two-sided Mini-PCI adapter. Since the Access Cube runs Linux, it supports a wide variety of 802.11 cards.
4G Systems sent us an 802.11b card based on the Prism chipset. You should be able to use any other Prism-
based card, as well as those based on Atheros, Aironet, and Hermes chipsets.

A 400 MHz MIPS CPU powers the Access Cube. The CPU runs cool enough to not require any active cooling (i.e.,
fans). However, some Access Cube users have reported overheating issues when using the cube outdoors.
Certainly the black color of the case does not help in that situation. We used the cube indoors only and did not
experience any heat-related problems.

In terms of memory, the Access Cube has 64 MB of RAM and 32 MB of flash. The flash memory holds the Linux
filesystem. While it may not seem like much space, 32 MB turns out to be plenty. In the default configuration,
some of the RAM is used as a temporary filesystem mounted on /var.

The Access Cube accepts a wide range of input voltages: between 7 and 24 volts DC. Our power meter says that
it consumes only 2–3 watts. The Access Cube also supports Power-over-Ethernet (PoE), although we won't be
using it in this project.

Front view of the Access Cube.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rear view of the Access Cube.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: Our Access Cube kit, delivered from the manufacturer in Germany, came with a 9-volt, 1.2-amp power transformer.
Unfortunately it has a European power plug and does not fit in North American sockets. The transformer can handle 110v
AC, so you can use it if you have the necessary socket adapter. Since we didn't have such an adapter, we looked for a
different transformer. We quickly found a 9 volt North American transformer in the closet, but it was rated for only 0.4
amps and did not provide enough power to the Access Cube. We found that a 12-volt, 1 amp transformer works great.

You may have noticed that the Access Cube doesn't have a serial port interface for console access. Actually, it
does, but it's not accessible with the case in place, and it's not a standard RS-232 interface. This isn't a huge
problem because the cube comes pre-loaded with Linux and you can log in over either the wired or wireless
network interface. If you do a lot of tinkering with the system, you may find a serial console cable useful. You
can either build one as described later in this chapter, or buy one directly from 4G Systems when ordering your
cube.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assembling the System

When you receive your Access Cube, you'll probably have to assemble everything. This is actually very easy,
since it has only a few different parts. Start by identifying the components. You should have:

The two mainboards, sandwiched together

The Mini-PCI adapter

Two 802.11 Mini-PCI cards

Two "rubber duck" antennas

A 7–24 volt power supply

Find the mainboards, which are shown in Figure 6-4. If you are curious, you can carefully pry the two boards
apart, as shown in Figure 6-5. It looks like CPU and memory live on the upper board, while the relatively bulky
connectors are on the lower board. Carefully reconnect the boards if you've taken them apart.

Note: Before you insert the Mini-PCI cards, you may want to jot down their MAC addresses somewhere (they should
appear on the cards), so this information is not sealed away inside the unit. This is especially important if your Wi-Fi
network uses MAC address filtering to decide which hosts are allowed to connect to it, but could come in handy in other
situations.

Access Cube mainboards sandwiched together.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Access Cube mainboards pulled apart.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Access Cube Mini-PCI adapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Mini-PCI 802.11b Wi-Fi card.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Mini-PCI adapter shown in Figure 6-6 fits on top of the two mainboards. But before attaching them, you'll
need to insert the two 802.11 cards. Insert the Mini-PCI card shown in Figure 6-7 into the slot at an angle, as
shown in Figure 6-8. Make sure the card is inserted as far as it will go (still at an angle), then press down on the
other end of the card so that it is parallel to the adapter. You should see two small clips that line up with
notches in the Mini-PCI card and keep it in place. Insert the second 802.11 card on the other side in the same
way.

The next step is to attach the small, circular U.FL connectors to the 802.11 card as shown in Figure 6-9. Your
Wi-Fi card probably has two connectors: one labeled MAIN and another labeled AUX. Attach the two antenna
cables to the MAIN connectors on each card. This is tricky because the connectors are very small. Use your
thumb and finger to line up the connectors and slowly apply pressure until you hear them click. If the
connectors are not aligned and you press too hard, you may bend the metal on the cable connector.

Now attach the Mini-PCI adapter (with 802.11 cards) to the top of the mainboard, as shown in Figure 6-10. The
only awkward part here is that the antenna cables are already attached and might get in your way. Make sure
they don't accidentally become detached. Then, slide the whole assembly into the bottom half of the case, as
shown in Figure 6-11. As you slide it in, make sure the wires don't get in the way or become pinched between
the case and boards.

Finally, slide the top half of the case in place and secure it with the two small screws. Again, watch the cables
closely so they don't become pinched somewhere. When you're ready to try it out, connect the power supply. If
you look closely, you'll see both a red and green LED somewhat hidden behind the case, between the USB and
power connectors. The red LED should turn off after a few seconds, while the green one remains lit. Now it's
time to go exploring!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exploring the Access Cube

Assuming that you don't have a serial console cable for your Access Cube, you'll need to log in with SSH. By
default the Access Cube enables both a wired and wireless interface when it boots. The wired interface has an
alias or "backdoor" address which, in theory, you can always use to reach the cube. The default backdoor
address is 192.168.0.250 and the default wireless interface address is 10.0.0.1.

Inserting the Wi-Fi card into the Mini-PCI adapter.

Attaching the internal antenna cable to the Wi-Fi card.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Logging In Through the Wired Interface

To log in through the wired interface, connect the Access Cube to your local area network. Or, if you don't have
a LAN, connect it to another computer with an Ethernet crossover cable. The green light next to the Ethernet
RJ45 jack lights up when the link has been established on the interface.

The Access Cube makes DHCP queries on eth0, so if you have a DHCP server on your network, it may get an
address that way. Unfortunately, you may have to guess or look at the DHCP server logs to figure out exactly
which address it receives.

If DHCP doesn't seem to work, you can always use the cube's backdoor address. You'll need to configure your
PC with an IP address (or an alias) on the same subnet that the Access Cube is using (192.168.0.0/24). You can
use any address other than 192.168.0.250, so let's choose 192.168.0.1. Here's how to add an alias to the first
Ethernet interface on a Linux system:

Code View:
ifconfig eth0:0 192.168.0.1 netmask 255.255.255.0 broadcast\ 192.168.0.255

Or, if you're using BSD (and assuming the Ethernet interface is named fxp0):

ifconfig fxp0 alias 192.168.0.1 netmask 255.255.255.0

Microsoft Windows users can add an IP alias in the Advanced TCP/IP Properties dialog for the appropriate
network connection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After adding the address or alias to the interface, test it with a simple ping. You should immediately see some
ping replies:

ping 192.168.0.250

PING 192.168.0.250 (192.168.0.250): 56 data bytes

64 bytes from 192.168.0.250: icmp_seq=0 ttl=64 time=0.850 ms

64 bytes from 192.168.0.250: icmp_seq=1 ttl=64 time=0.387 ms

64 bytes from 192.168.0.250: icmp_seq=2 ttl=64 time=0.400 ms

^C

--- 192.168.0.250 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.387/0.546/0.850/0.215 ms

Then, log in with SSH as root:

Code View:
ssh -l root 192.168.0.250

The authenticity of host '192.168.0.250 (192.168.0.250)' can't be established.

 DSA key fingerprint is ee:8f:e2:14:64:50:a8:28:73:7b:fc:0a:00:be:5e:4e.

 Are you sure you want to continue connecting (yes/no)? yes

 Warning: Permanently added '192.168.0.250' (DSA) to the list of known hosts.

 root@192.168.0.250's password: sekrit

 root@mtx-1:~#

Attaching the Mini-PCI adapter to the top mainboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sliding all the boards into the case.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note that your Access Cube comes with a preset, unique root password. You can find it on the "Configuration
Sheet" that came with the Access Cube kit. If you happen to install a filesystem image update from 4G Systems,
the root password will be changed or cleared. See the meshcube.org Wiki page titled Frequently Asked
Questions (http://www.meshcube.org/meshwiki/FrequentlyAskedQuestions) for the current default root
password.

Logging In Through the Wireless Interface

You can also log into the Access Cube through one of its wireless interfaces. By default, the first wireless
interface (wlan0) is given the SSID cube-ap and the IP address 10.0.0.1. A DHCP server runs on this interface
by default as well. If you plan to log in this way, be sure to attach an antenna to wlan0.

Your wireless-enabled laptop (or other computer) may automatically associate with the Access Cube's network
and get an IP address. You may need to pick the cube-ap network from a list or set it explicitly if other Wi-Fi
networks are nearby.

If for some reason DHCP is not working, you can try manually assigning an address such as 10.0.0.2. However,
it is more likely that you have a problem with the wireless network configuration. Once your laptop has an IP
address, test the network by pinging the Access Cube:

ping 10.0.0.1

 PING 10.0.0.1 (10.0.0.1): 56 data bytes

 64 bytes from 10.0.0.1: icmp_seq=0 ttl=64 time=4.337 ms

 64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=4.399 ms

 64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=4.664 ms

 ^C

 --- 10.0.0.1 ping statistics ---

 3 packets transmitted, 3 packets received, 0% packet loss

http://www.meshcube.org/meshwiki/FrequentlyAskedQuestions
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 round-trip min/avg/max/stddev = 4.337/4.467/4.664/0.174 ms

Once you've verified IP connectivity, log in with SSH as described previously for the wired network interface.
Instead of using 192.168.250, use 10.0.0.1.

Poking Around

Before getting serious, you'll probably want to spend a little time checking out the Access Cube's operating
system and marvel that it's really running Linux. For example, check out the processes that are running:

root@mtx-1:~# ps ax

 PID Uid VmSize Stat Command

 1 root 592 S init [2]

 2 root SW [keventd]

 3 root SWN [ksoftirqd_CPU0]

 4 root SW [kswapd]

 5 root SW [bdflush]

 6 root SW [kupdated]

 8 root SW [mtdblockd]

 9 root SW [khubd]

 43 root SWN [jffs2_gcd_mtd0]

 279 root 708 S udhcpc -b -p /var/run/udhcpc.eth0.pid -i eth0

 1102 root 828 S /usr/sbin/crond -c /etc/cron/crontabs

 1107 nobody 812 S /usr/bin/dnsmasq

 3368 root 592 S /usr/sbin/ifplugd -i eth0 -fwI -u0 -d10

 3379 root 1060 S /usr/sbin/olsrd -d 0

 3414 root 1692 S /usr/sbin/sshd

 3418 root 660 S /sbin/syslogd -n -C 500 -m 20

 3420 root 620 S /sbin/klogd -n

3432 root 584 S /sbin/getty 115200 tts/0 vt100

 3473 root 2064 S sshd: root@pts/0

 3475 root 1768 S -sh

 4046 root 792 R ps ax

Not surprisingly, it looks like a minimal Linux system. You have cron, sshd, and a DNS/DHCP server (dnsmasq).
The ifplugd process executes commands to configure (and unconfigure) network interfaces when it notices that
cables are plugged in (and unplugged). The olsrd process sends Optimized Link State Routing packets out the
wireless interfaces, hoping to find nearby nodes and join or create a mobile adhoc network.

Now let's look at the filesystems:

root@mtx-1:~# df -h

 Filesystem Size Used Available Use% Mounted on

 /dev/root 28.0M 12.1M 15.9M 43% /

 tmpfs 10.0M 32.0k 10.0M 0% /var

 root@mtx-1:~# mount

 /dev/root on / type jffs2 (rw)

 none on /dev type devfs (rw)

 /proc on /proc type proc (rw)

 tmpfs on /var type tmpfs (rw)

 devpts on /dev/pts type devpts (rw)

 usbdevfs on /proc/bus/usb type usbdevfs (rw)

The Access Cube's primary filesystem is 28 MB and only 43% full.Not bad! The 10 MB /var memory filesystem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

seems a bit excessive, however. We'll show you how to change it in the next section. In the mount output we

see that the primary filesystem is using the Journaling Flash File System (JFFS). As the name states, this is a
filesystem designed specifically for use with flash memory storage. For example, JFFS distributes writes evenly
to maximize the lifetime of the flash memory.

You might also note that syslog messages are written to /var/log. This means that the syslog messages won't
waste precious flash write cycles. It also means that syslog messages are not preserved between reboots.

How about network interfaces?

root@mtx-1:~# ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:0E:56:00:01:9E

 inet addr:10.0.0.87 Bcast:10.0.0.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:3070 errors:0 dropped:0 overruns:0 frame:0

 TX packets:4076 errors:2 dropped:0 overruns:0 carrier:4

 collisions:0 txqueuelen:1000

 RX bytes:1264335 (1.2 MiB) TX bytes:408405 (398.8 KiB)

 Interrupt:28

eth0:0 Link encap:Ethernet HWaddr 00:0E:56:00:01:9E

 inet addr:192.168.0.250 Bcast:192.168.0.255

Code View:
Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 Interrupt:28

 lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

 wifi0 Link encap:UNSPEC

 HWaddr 00-90-4B-0A-DF-9E-00-00-00-00-00-00-00-00-00-00

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:2 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1695 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:132 (132.0 B) TX bytes:138584 (135.3 KiB)

 Interrupt:4 Memory:c01af000-c01b0000

 wifi1 Link encap:UNSPEC

 HWaddr 00-02-6F-03-56-58-00-00-00-00-00-00-00-00-00-00

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1675 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:137268 (134.0 KiB)

 Interrupt:5 Memory:c01b1000-c01b2000

 wlan0 Link encap:Ethernet HWaddr 00:90:4B:0A:DF:9E

 inet addr:10.0.0.1 Bcast:10.255.255.255 Mask:255.0.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1695 errors:0 dropped:0 overruns:0 carrier:0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:138584 (135.3 KiB)

 Interrupt:4 Memory:c01af000-c01b0000

 wlan1 Link encap:Ethernet HWaddr 00:02:6F:03:56:58

 inet addr:172.16.0.1 Bcast:172.31.255.255 Mask:255.240.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1675 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:137268 (134.0 KiB)

 Interrupt:5 Memory:c01b1000-c01b2000

And the Wi-Fi interfaces:

Code View:
root@mtx-1:~# iwconfig

 lo no wireless extensions.

 eth0 no wireless extensions.

 wifi0 IEEE 802.11b ESSID:"cube-ap"

 Mode:Master Frequency:2.412GHz Access Point: 00:90:4B:0A: DF:9E

 Bit Rate:11Mb/s Sensitivity=1/3

 Retry min limit:8 RTS thr:off Fragment thr:off

Code View:
Encryption key:off

 Power Management:off

 Link Quality:0 Signal level:0 Noise level:0

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:1 Invalid misc:1840 Missed beacon:0

 wlan0 IEEE 802.11b ESSID:"cube-ap"

 Mode:Master Frequency:2.412GHz Access Point: 00:90:4B:0A DF:9E

 Bit Rate:11Mb/s Sensitivity=1/3

 Retry min limit:8 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:0 Signal level:0 Noise level:0

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:1 Invalid misc:1840 Missed beacon:0

 wifi1 IEEE 802.11b ESSID:"cube-mesh"

 Mode:Ad-Hoc Frequency:2.462GHz Cell: 02:02:64:2D:56:58

 Bit Rate:2Mb/s Sensitivity=1/3

 Retry min limit:8 RTS thr=250 B Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:0/70 Signal level:-100 dBm Noise level:-100 dBm

 Rx invalid nwid:0 Rx invalid crypt:3506 Rx invalid frag:0

 Tx excessive retries:252 Invalid misc:13586 Missed beacon:0

 wlan1 IEEE 802.11b ESSID:"cube-mesh"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Mode:Ad-Hoc Frequency:2.462GHz Cell: 02:02:64:2D:56:58

 Bit Rate:2Mb/s Sensitivity=1/3

 Retry min limit:8 RTS thr=250 B Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:0/70 Signal level:-100 dBm Noise level:-100 dBm

 Rx invalid nwid:0 Rx invalid crypt:3506 Rx invalid frag:0

 Tx excessive retries:252 Invalid misc:13586 Missed beacon:0

Notice that the wlan0 and wifi0 interfaces are very similar, as are wlan1 and wifi1. The wifi interfaces exist to
provide access to low-level aspects of the 802.11 protocols. They may be used by the wireless tools (iwconfig,

iwlist, etc) and programs such as kismet. We ignore these low-level interfaces in this book. You should always

use the wlan versions in your commands and configuration files.

If you run ls -l on a directory like /bin you'll notice something interesting:

root@mtx-1:~# ls -l /bin | head

 lrwxrwxrwx 1 root root 7 May 26 18:33 addgroup ->

 busybox

 lrwxrwxrwx 1 root root 7 May 26 18:33 adduser ->

 busybox

 -rwxr-xr-x 1 root root 1396204 May 26 18:33 bash

 -rwxr-xr-x 1 root root 916316 May 26 18:33 busybox

 lrwxrwxrwx 1 root root 7 May 26 18:33 cat -> busybox

 lrwxrwxrwx 1 root root 7 May 26 18:33 chgrp ->

busybox

 lrwxrwxrwx 1 root root 7 May 26 18:33 chmod ->

busybox

 lrwxrwxrwx 1 root root 7 May 26 18:33 chown ->

busybox

lrwxrwxrwx 1 root root 7 May 26 18:33 cp -> busybox

 lrwxrwxrwx 1 root root 7 May 26 18:33 cpio -> busybox

Most of the system executables are symbolic links to something called busybox. BusyBox

(http://www.busybox.net/) is a very cool project that combines stripped-down versions of Unix utilities into a
single executable. This technique is very space-efficient because it eliminates the overhead of having a separate
binary file for each command and maximizes code reuse. The downside is that some BusyBox commands lack
features found in their GNU equivalents. For example, the BusyBox ps command produces only one kind of
output. Any special options that you pass are silently ignored.

You may notice that the name "mtx" appears in some places, including your shell prompt. This is 4G System's
project name for the Access Cube, and is actually a shortened version of "matrix."

Customizing the System

The Access Cube is designed to work out-of-the-box in a meshrouting environment. In this mode, the Cube tries
to locate nearby nodes and use a meshrouting protocol to establish connectivity. As cool as this sounds, it is
something that we won't be using. So the first thing you should do is disable the meshrouting startup scripts. In
particular:

root@mtx-1:~# cd /etc/rc2.d

 root@mtx-1:~# mkdir disabled

 root@mtx-1:~# mv S20olsrd disabled

 root@mtx-1:~# mv S14hostap disabled

http://www.busybox.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want to change the backdoor address (on eth0), edit /etc/nylon/configip.conf. Edit
/etc/network/interfaces to change the default address for wlan0.

You may want to define one or two nameservers in the /etc/resolv.conf file. The nameservers allow you to use
DNS names instead of IP addresses. Note that these are usually overwritten when the DHCP client program
(udhcpc) gets a lease from a DHCP server.

At some point you should make sure the Access Cube's system clock is set accurately with the Network Time
Protocol (NTP). Although the Cube doesn't come with ntpd, it does have ntpdate (one of the few non-BusyBox
binaries). The boot scripts use ntpdate to synchronize the clock with an NTP server. If you have an NTP server
on your network, place a line like this in /etc/default/ntpdate:

NTPSERVERS="192.168.0.1"

If you don't have an NTP server on your network, don't worry. The script uses a public NTP server by default.
We wish that the Access Cube also had the ntpd program so that it could automatically keep the clock
synchronized as it runs. Since it has only ntpdate, you may want to add a cron job like this:

37 1 * * * /etc/init.d/ntpdate restart | /usr/bin/logger

You'll probably want to set the system's time zone as well. The time zone files are organized by continent and
city. Find your continent in /usr/share/zoneinfo. Then, in that directory, look for the name of a major nearby
city. The Unix convention is to make a symbolic link from /etc/localtime to the file you just found. For example:

root@mtx-1:~# ls /usr/share/zoneinfo

 Africa Arctic Australia Indian zone.tab

 America Asia CVS Pacific

 Antarctica Atlantic Europe iso3166.tab

 root@mtx-1:~# ls /usr/share/zoneinfo/America

 Adak Denver Louisville Rainy_River

 Anchorage Detroit Maceio Rankin_Inlet

 ...

 root@mtx-1:~# rm -f /etc/localtime

 root@mtx-1:~# ln -s /usr/share/zoneinfo/America/Denver /etc/localtime

 root@mtx-1:~# date

 Sun Nov 7 11:42:55 MST 2004

This is also a good time to add user accounts and change the root password. You can use the adduser command

to add a new user:

root@mtx-1:~# adduser -g 'Stewie Griffin' stew

 Changing password for stew

 Enter the new password (minimum of 5, maximum of 8 characters)

 Please use a combination of upper and lower case letters and numbers.

 Enter new password: die-Lois

 Re-enter new password: die-Lois

 Password changed.

Don't forget to set or change the root password:

root@mtx-1:~# passwd

 Changing password for root

 Enter the new password (minimum of 5, maximum of 8 characters)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Please use a combination of upper and lower case letters and numbers.

 Enter new password: sekrit

 Re-enter new password: sekrit

 Password changed.

If you feel that a 10 MB /var partition is excessive (as we do), you can decrease the value in /etc/fstab:

tmpfs /var tmpfs size=2m 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Wi-Fi Configuration

Up to this point you've seen how the Access Cube works and made a few minor tweaks to the operating system.
Now it's time to get your hands dirty with some wireless network configuration.

We'll use the wlan0 interface for the internal network. This is where you'll connect your laptop and/or other
systems. You can give it a fixed IP address from RFC 1918 private address space. A DHCP server listens on the
interface and hands out IP addresses to hosts joining the internal network. You'll also configure Network
Address Translation (NAT) so that the internal hosts can communicate with the rest of the Internet.

We'll use wlan1 as the upstream connection to the other wireless network. In most cases, you should get an IP
address and DNS configuration from the upstream DHCP server. The only tricky part here is choosing the right
wireless network when there is more than one.

wlan0

Let's start with the internal wireless interface. This one uses a static network name and a static IP address. You
can configure everything in /etc/network/interfaces:

iface wlan0 inet static

 address 172.17.0.1

 netmask 255.255.255.0

 wireless_mode ad-hoc

 wireless_essid foo

 wireless_channel 1

 #wireless_txpower 30

Those lines put the wireless interface into ad-hoc, or IBSS mode.

The example uses channel 1 and foo for the SSID. You should adjust these parameters as necessary for your

own situation. Note that the wireless_txpower line is commented out. The prism driver does not allow us to

set the transmit power. If you try to do so, you'll get this error message:

Error for wireless request "Set Tx Power" (8B26) :

 SET failed on device wlan0 ; Operation not supported.

If you're using another wireless chipset, you should be able to set the transmit power. We suggest setting it to a
relatively low value, such as 30 dBm, if you can. The transmit power should be set according to the distance
between your laptop and the Access Cube. If the power is high and the distance is short, the wireless network
may actually perform poorly. Plus, a lower transmit power reduces interference for other networks and makes it
harder for others to eavesdrop on you.

Test your new settings by bringing the interface up and down a few times:

root@mtx-1:~# ifdown wlan0

 root@mtx-1:~# ifup wlan0

 root@mtx-1:~# ifdown wlan0

 root@mtx-1:~# ifup wlan0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Prefer Master/BSS Mode?

You may want to use master/BSS mode instead. But if you do that, you should always set the
wlan1 SSID explicitly. Otherwise, the cube will associate with itself. That is, wlan1 in managed
mode is likely to associate with wlan0 in master mode

With the interface in the "up" state, run ifconfig and iwconfig to verify the settings:

root@mtx-1:~# ifconfig wlan0

wlan0 Link encap:Ethernet HWaddr 00:90:4B:0A:DF:9E

 inet addr:172.17.0.1 Bcast:172.17.255.255

 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

 Interrupt:4 Memory:c01af000-c01b0000

 root@mtx-1:~# iwconfig wlan0

 wlan0 IEEE 802.11b ESSID:"foo"

 Mode:Ad-Hoc Frequency:2.412GHz Cell: 02:90:45:92:DF:9E

 Bit Rate:2Mb/s Sensitivity=1/3

 Retry min limit:8 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:0/70 Signal level:-73 dBm Noise level:-73 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:25 Missed beacon:0

You probably also want to have the Access Cube answer DHCP requests on wlan0. The dnsmasq program
provides both DNS and DHCP. You'll need to edit /etc/dnsmasq.conf and find the first uncommented dhcp line:

dhcp-range=10.0.0.10,10.0.0.200,2h

Make sure the address range there matches the subnet that you're using for wlan0. If you're sticking with our
example configuration, change that line to:

dhcp-range=172.17.10,172.17.200,2h

You may want to look at other parts of the dnsmasq.conf while you have it in your editor, although most of the
defaults are perfectly acceptable.

Finally, with wlan0 in the "up" state, go to your laptop and make sure that you can associate with the wireless
network (e.g., SSID foo in our example), get an IP address from the DHCP server, and log into the Access

Cube.

wlan1

Configuring the other wireless interface, wlan1, is a little simpler. You can use these lines in
/etc/network/interfaces:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

iface wlan1 inet dhcp

 wireless_mode managed

 wireless_essid linksys

These lines set the mode to managed, which makes this interface a client of an access point. The example also

sets the network name (SSID) to a specific value: in this case. You'll probably need to change this setting as
you move the Access Cube from location to location. linksys is a common network name because it is the

default value for Linksys equipment, but it won't always be available. If you set the network name to any, the

card tries to associate with the network having the strongest signal. That may work in some situations, but not
all. You'll probably find that it is less trouble to occasionally edit /etc/network/interfaces, rather than leave the
network selection up to chance. Note that whenever you edit the interfaces file, you should reconfigure the
interface with a pair of ifdown and ifup commands.

Note the dhcp setting on the iface line. This tells the system to make a DHCP request for an address. When

udhcpc is successful, the output looks like this:

root@mtx-1:~# ifup wlan1

 udhcpc (v0.9.9-pre) started

 Sending discover...

 Sending select for 192.168.1.104...

 Lease of 192.168.1.104 obtained, lease time 86400

 adding dns 216.148.227.68

 adding dns 204.127.202.4

Once wlan1 has an IP address, try running a few pings and traceroutes to see if you can reach the public
Internet:

root@mtx-1:~# ping www.oreilly.com

 PING www.oreilly.com (208.201.239.36): 56 data bytes

 64 bytes from 208.201.239.36: icmp_seq=0 ttl=44 time=51.9 ms

 64 bytes from 208.201.239.36: icmp_seq=1 ttl=44 time=47.1 ms

 64 bytes from 208.201.239.36: icmp_seq=2 ttl=44 time=48.7 ms

 64 bytes from 208.201.239.36: icmp_seq=3 ttl=44 time=48.9 ms

NAT

The Access Cube comes preconfigured for NAT on eth0 and possibly on wlan1 as well. You can see the current
NAT rules with this command:

root@mtx-1:~# iptables -t nat --list --verbose

 Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

 Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

 0 0 eth0_masq all -- any eth0 anywhere anywhere

 0 0 wlan1_masq all -- any wlan1 anywhere anywhere

 Chain eth0_masq (1 references)

 pkts bytes target prot opt in out source destination

 0 0 MASQUERADE all -- any any anywhere anywhere

 Chain wlan1_masq (1 references)

 pkts bytes target prot opt in out source destination

 0 0 MASQUERADE all -- any any anywhere anywhere

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you don't see wlan1 in the output, edit /etc/shorewall/masq and add wlan1 to the bottom of that file:

#INTERFACE SUBNET ADDRESS PROTO PORT(S)

 eth0 0.0.0.0/0

 wlan1 0.0.0.0/0

Then reboot, or run:

root@mtx-1:~# /etc/init.d/shorewall restart

Install Kismet

Since you'll probably be using the Wi-Fi extender in unknown environments, you'll need a good utility for finding
nearby wireless networks. One of the best tools out there for Linux is called Kismet. Kismet puts interfaces into
monitoring mode and then eavesdrops on all wireless traffic. It provides a wealth of information about nearby
networks, including their operating mode (e.g., BSS, IBSS), signal strength, whether WEP is in use, how many
clients are using the network, and much more. Kismet also breaks WEP encoding if it can capture enough
packets. Unfortunately, the Access Cube does not come with Kismet pre-installed, but that's pretty easy to fix.

You can install Kismet from a precompiled binary package hosted on the 4G Systems web server. First, it's a
good idea to update the local package database:

root@mtx-1:~# ipkg update

 Downloading http://meshcube.org/nylon/stable/binary-feed/Packages.gz

 Inflating http://meshcube.org/nylon/stable/binary-feed/Packages.gz

 Updated list of available packages in /usr/lib/ipkg/lists/nylon-bin

 Downloading http://meshcube.org/nylon/stable/feed/Packages.gz

 Inflating http://meshcube.org/nylon/stable/feed/Packages.gz

 Updated list of available packages in /usr/lib/ipkg/lists/nylon

Then, install the Kismet package:

Code View:
root@mtx-1:~# ipkg install kismet

 Installing kismet (2004-04-R1-r0) to root...

 Downloading http://meshcube.org/nylon/unstable/feed/kismet_2004-04-R1-r0_mtx-1.ipk

 Configuring kismet

Kismet should run just fine without any special configuration. You may want to check that sound is disabled in
/etc/kismet.conf, anyway:

sound=false

The first time we ran Kismet, it refused to start and we got this error message:

Error opening terminal: xterm.

That happened because our TERM environment variable was set to xterm and there is no definition for xterm

under /etc/terminfo. Since there is a definition for xterm-color, we use that instead:

root@mtx-1:~# export TERM=xterm-color

http://meshcube.org/nylon/stable/binary-feed/Packages.gz
http://meshcube.org/nylon/stable/binary-feed/Packages.gz
http://meshcube.org/nylon/stable/feed/Packages.gz
http://meshcube.org/nylon/stable/feed/Packages.gz
http://meshcube.org/nylon/unstable/feed/kismet_2004-04-R1-r0_mtx-1.ipk
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now we can finally start Kismet. We like to use the -n option to disable logging:

root@mtx-1:~# root@mtx-1:~# kismet-n

We'll talk more about using Kismet later in this chapter.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Antenna Options

You have a number of choices for Wi-Fi antennas. The antenna that you use may affect the quality of the
wireless network connection, as well as the maximum distance between the Cube and another network.

Rubber Duck Antennas

"Rubber duck" refers to the short, black, semi-flexible antennas that you often find on access points and PCI Wi-
Fi cards. 4G Systems will happily include one or two of these in your order. They usually have a rotating joint on
the connector end so that you can easily orient the antenna as you please.

Rubber ducks are so-called omnidirectional antennas. They have the strongest signal in all directions
perpendicular to the antenna and weaker signal in the parallel direction. The shape is very similar to a
doughnut. This type of antenna is perfectly fine for most situations. You may want to consider one of the more
"directional" antennas if you plan to use the Wi-Fi extender in locations where the upstream network might be
farther away.

4G Systems describes their rubber duck antenna as a "+5 dBi probe." All this means is that it provides 5 dB
gain (about a factor of 3) compared to an imaginary isotropic (perfectly spherical) antenna. While this is low
compared to a more directional antenna, it's probably good enough for use within your house or office.

Parabolic Reflector

You can boost the signal strength of a rubber duck antenna by adding an inexpensive parabolic reflector. Hack
#83 in Wireless Hacks, Second Edition (O'Reilly) explains how to do this. In theory, a parabolic reflector should
provide about 10 dBi gain, or a factor of 10 increase in power levels.

Waveguide Antennas

Chances are you've heard of the famous "Pringles can" antenna. The Pringles can makes a very inexpensive, but
effective, waveguide. The Pringles can is not a requirement, however. Other types of cans make even better
waveguide antennas.

You can build your own can antenna for about $10 or less. Hacks #85 and #86 in Wireless Hacks, Second
Edition (O'Reilly) provide good instructions. You should have no problems finding a number of web sites that
also show you how. If you're lazy, you can buy a pre-made can antenna from a site such as (www.cantenna.com
Figure 6-12 shows how the Access Cube looks next to a Cantenna.

You should be able to achieve about 12–15 dBi, or a factor of 15–30, with a can antenna.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the Wi-Fi Extender

We've described how to configure Linux on the Access Cube, but we haven't really explained how to use your
little Wi-Fi extender. Here's how.

Find a Good Location

Location is one of the most important factors in how well the Wi-Fi extender works. In particular, the upstream
antenna (wlan1) should be in a location with a good signal to an existing 802.11 network. This might mean
placing the cube right next to, or on the other side of, a window. Or perhaps it needs to be up high or at a
corner where two walls meet. A can antenna gives you a little more flexibility because it can be placed a short
distance away from the Cube itself, and can be aimed in a particular direction.

Boot Up the Access Cube and Log In

Power up the Access Cube and make sure that your laptop is configured to use the internal wireless network.
The examples earlier in this chapter used the network name (SSID) foo. Set the network name on your laptop,
if necessary, and check that it associates properly with the Access Cube.

Once the wireless network is associated, try to get an address from the Access Cube DHCP server. This usually
happens automatically on Windows. On Unix systems you may need to run dhclient, dhcpcd, or udhcpc.

When your laptop has an IP address, you should be able to log in to the Access Cube through its wlan0
interface. Log in as root, or a nonprivileged user if you created one.

A Cantenna connected to the Access Cube.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finding Wireless Networks with iwlist

In some cases you may get lucky enough that the Access Cube automatically latches on to a nearby wireless
network. For that to work, the wlan1 SSID must be set to any. Remember wlan0 should be in ad hoc/IBSS

mode if you want to use this wildcard SSID.

Most likely, however, you'll need to log in to the Access Cube and manually set the upstream network
parameters.

You'll have to hunt for a suitable nearby Wi-Fi network if you don't already know of one. The yucky way to find
nearby networks is with the iwlist command:

Code View:
root@mtx-1:~# iwlist wlan1 scan

 wlan1 Scan completed :

 Cell 01 - Address: 00:0F:B3:35:83:6F

 ESSID:"moelter"

 Mode:Master

 Frequency:2.437GHz

 Quality:0/92 Signal level:-76 dBm Noise level:-97

 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

 Bit Rate:22Mb/s

 Extra:bcn_int=200

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Extra:resp_rate=110

 Cell 02 - Address: 00:30:AB:0A:E3:2B

 ESSID:"plugh"

 Mode:Master

 Frequency:2.437GHz

 Quality:0/92 Signal level:-67 dBm Noise level:-97

dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

 Extra:bcn_int=100

 Extra:resp_rate=10

 Cell 03 - Address: 00:90:4B:0A:DF:9E

 ESSID:"xyzzy"

 Mode:Master

 Frequency:2.462GHz

 Quality:0/92 Signal level:-61 dBm Noise level:-95

 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

 Extra:bcn_int=100

 Extra:resp_rate=10

We're mostly interested in the SSID values in this output. The other parameters don't matter as much. Notice
that iwlist always reports the link quality as 0/92 for some reason. To really find the link quality you need to
configure one of the network names and then run iwconfig:

root@mtx-1:~# iwconfig wlan1 essid plugh

 root@mtx-1:~# iwconfig wlan1

 wlan1 IEEE 802.11b ESSID:"plugh"

 Mode:Managed Frequency:2.437GHz Access Point: 00:30:AB:0A E3:2B

Bit Rate:11Mb/s Tx-Power:200 dBm Sensitivity=1/3

 Retry limit:8 RTS thr=250 B Fragment thr=65534 B

 Encryption key:off

 Power Management:off

 Link Quality:52/92 Signal level:-66 dBm Noise level:-99 dBm

 Rx invalid nwid:0 Rx invalid crypt:11 Rx invalid frag:0

 Tx excessive retries:450 Invalid misc:555410 Missed beacon:0

When you get associated with a network, you can see if it is open by making a DHCP query:

root@mtx-1:~# udhcpc -i wlan1

Then try some pings and see if you can reach the Internet. If that works, then you should be all set. The Access
Cube should happily NAT and forward packets from your internal network to this other.

Finding Wireless Networks with Kismet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the great things about Kismet is that it is so easy to use. The text-based screen is easy to understand
and help is readily available. We like to start Kismet with logging disabled:

root@mtx-1:~# kismet -n

Most likely you'll see a welcome message that explains how to get help. When you close that message, you'll
see the main Kismet screen, as shown in Figure 6-13. The large section lists known wireless networks, their
operating mode, channel, packet counts, and IP address ranges. A smaller area below describes recent
interesting events.

Press h or ? to see the Kismet help screen. It shows you the available commands and describes some of the

cryptic codes used in the main display. For example, access points (in BSS mode) are marked with the letter A

under the T (type) column. Ad hoc networks (IBSS mode) are listed with H.

When looking for a network that you can connect to, you'll probably want to avoid those that use WEP (or WPA),
indicated by a Y in the W column, unless you are authorized and have the necessary keys. Although Kismet can

(in theory) crack WEP keys, we do not recommend that you attempt it.

You'll probably want to choose a network with good signal strength. Kismet can sort the list of networks by
signal strength (press s then Q). Choose a network at the top of the list.

Kismet main screen.

Once you have a few candidate network names to try, use the procedure from the previous section. Assign the
network name to wlan1, then try to get an IP address with udhcpc. Alternatively, edit /etc/network/interfaces
and run ifup wlan1.

Gotchas

Watch out for situations where both network interfaces use the same subnet. It is common to find RFC1918
private addresses in use all over the place. The default configuration is to use 10.0.0.0/24 on wlan0 and
192.168.0.0/24 on eth0. It's quite possible that the Access Cube will get a DHCP-assigned IP address on wlan1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that falls within one of these existing networks. that happens, you won't be able to send packets out the wlan1
interface. Since you can't change the remote DHCP server, you'll need to change the conflicting subnet on the
Access Cube interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Building a Console Cable

The Access Cube has a "Debug Connector" that you can use to access the system console. The connector itself
is a very small miniature IDC header with 2 rows of 6 pins, shown in Figure 6-14. Three of these 12 pins are
used for the serial console. Pin 1 is Transmit Data, pin 2 is Receive Data, and pin 11 is Signal Ground.

Unfortunately you can't just connect these pins to a standard serial cable. The Access Cube uses 3.3 volt signal
levels, whereas standard RS-232C uses 12 volts. A page in the MeshCube Wiki provides instructions for building
a level shifter using a MAX3232 chip, a Mini-IDC connector, four small capacitors, and a small circuit board.
However, a MeshCube user discovered a simpler way.

Some mobile phones have serial interfaces that also use 3.3 volt signal levels. You can buy a data cable for
these phones that does exactly what we need. Most likely, the data cable includes a level shifter, similar to the
one on the MeshCube Wiki, embedded in the DB9 plug. Since the mobile phone uses a proprietary connector,
the only other thing we need is the Mini-IDC connector.

From the MeshCube Wiki, we found that Samtec (www.samtec.com) manufactures Mini-IDC cables and
connectors in various styles. We contacted a local distributor and ordered a few 2x6-pin connectors with cables,
as shown in Figure 6-15.

This fits perfectly onto the Access Cube's Debug Connector. We also ordered a data cable for Siemens mobile
phones, as shown in Figure 6-16, which is an aftermarket accessory sold for Siemens model S46, M46, C35,
S35, C3508, C25, S25, 6688, and SL45 phones. The only tricky part is connecting the tiny wires of the phone
cable to the tiny wires of the Samtec ribbon cable.

RFC1918 addresses are: 10.0.0.0 through 10.255.255.255, 172.16.0.0 through 172.31.255.254,
and 192.168.0.0 through 192.168.255.255.

Closeup of the Debug Connector.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You'll need to cut off the end of the phone cable that plugs into the phone. Do not cut off the RS232 connector!
Cut away the outer insulation and expose the inner wires. If your cable is like ours, it has only three wires: blue,
black, and white. Then crack open the phone-side connector and make note of which wires connect to which
pins. The phone connector has 12 pins. Pin 1 (black wire) connects to Signal Ground, pin 5 (white wire) to
Transmit Data, and pin 6 (blue wire) to Receive data.

Figure 6-17 is a schematic diagram of the cable you must build. DB9 pin 2 should connect to pin 1 on the Mini-
IDC. Similarly, DB9 pin 3 should connect to IDC pin 2, and pin 5 to pin 11.

If you're not really sure how the datacable is wired, you can figure it out with a continuity tester. The circuitry
inside the phone cable seems to isolate the transmit and receive wires on the two ends of the cable, such that
you cannot test their continuity. However, you'll be able to identify the ground wire. Then you'll know that the
other two are the transmit/receive pair. You have a 50% chance of correctly guessing which one is transmit and
which is receive. If it looks like you've guessed wrong, swap them and try again.

But how should you physically connect them? After considering the best way to connect these two cables, we
settled on using RJ45 connectors, just like you find on the end of an Ethernet cable. This was an easy route
because we already had the RJ45 plugs and a crimper tool. The Samtec and phone cable wires are smaller than
those in typical Cat5 cable, but it still works. Figure 6-18 shows how our cables look after adding the RJ45
connectors. Then we use an RJ45 coupler to join the two cables together, as shown in Figure 6-19.

For the phone cable, we connected the blue wire to pin 1 of the RJ45 plug, white to pin 2, and black to pin 8.
Then, on the Samtec ribbon cable we connected pins 1 and 2 of the cable to pins 1 and 2 of the plug. (Note that
pin 1 is marked with a red stripe on the ribbon cable.) Finally, we connected pin 11 of the ribbon cable to pin 8
of the RJ45 plug.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mini-IDC connector and cable, Samtec P/N FFSD-06-S-10.00-01-N.

Cell phone data cable, with phone connector cut off.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cross-connecting the two ends of the serial cable.

Testing the new console cable is relatively straightforward. You'll need to remove the Access Cube's cover to
access the debug connector. Carefully slide the small IDC header onto the 12 pins. If you've done it right, the
red stripe on the ribbon cable should be on the side closer to the USB connector. When the cable is connected,
open a serial port communication program on the other computer. Set it for 115,200 bps, 8 data bits, no parity,
and 1 stop bit. When you type Enter, you should see a login prompt from the Access Cube. If you shut down the
cube and watch it boot, you should see something like this on the console:

YAMON ROM Monitor, Revision 02.17mtx1.

Copyright (c) 1999-2000 MIPS Technologies, Inc. - All Rights Reserved.

 For a list of available commands, type 'help'.

 Compilation time = Aug 19 2003 13:49:58

 MAC address = 00.0e.56.00.01.9e

 Processor Company ID = 0x03

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Processor ID/revision = 0x02 / 0x02

 Endianness = Little

 CPU = 324 MHz

 Flash memory size = 32 MByte

 SDRAM size = 64 MByte

 First free SDRAM address = 0x8008ac24

 Environment variable 'start' exists. After 2 seconds

 it will be interpreted as a YAMON command and executed.

 Press Ctrl-C to bypass this.

RJ45 jacks crimped on to the end of each cable.

An RJ45 straight-through coupler joins the two cables.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

Can't get enough of the Access Cube? Here are a couple more tips and ideas that should keep you busy for a
while.

Updating the Access Cube Software

The Access Cube uses a package management system called ipkg, which you've probably already used to install
extra software. You can use the same program to update any or all of the software on the system. To upgrade
everything, simply type:

root@mtx-1:~# ipkg upgrade

If the meshcube.org server has updated packages, they'll be downloaded and installed. You can also upgrade or
remove particular packages by specifying the package name on the command line. To see the list of packages
currently installed, type:

root@mtx-1:~# ipkg status | grep ^Package | less

To see the list of all available packages, type:

root@mtx-1:~# ipkg list | less

When upgrading, you may be prompted about whether or not certain files should be overwritten. A package
may have files that are specifically marked as configuration files. If ipkg detects that you've edited a
configuration file, you'll be asked whether you want to keep the current version, use the file from the package
update, or see how they differ. In most cases you'll probably want to keep the current version. If you're not
sure, see how they differ and then make your decision.

Loading a New Software Image

4G Systems provides an easy, albeit somewhat dangerous, way to "start over" with a fresh install of the latest
Access Cube software. Read http://www.meshcube.org/meshwiki/InstallingImages before considering this
approach. Note that this procedure entirely replaces the filesystem. Any files that you have created or modified
will be lost.

The Access Cube software includes a script called install-image. Your cube must be connected to the Internet so
that it can download the new image from the meshcube.org server. First, it's always a good idea to get an up-
to-date copy of the install-image script:

root@mtx-1:~# cd /tmp

 root@mtx-1:/tmp# wget http://meshcube.org/nylon/utils/install-image

Then execute it:

Code View:
root@mtx-1:/tmp# bash install-image

 *** INSTALL NEW NYLON IMAGE ***

 **

 *** !!! WARNING !!! ***

http://www.meshcube.org/meshwiki/InstallingImages
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 *** you will loose all your data!!! ***

 *** if you continue you will loose all your configuration, ***

 *** all files and other changes you made to your cube! ***

 *** ***

 *** do not power off the cube while flashing!!! ***

 **

 this script will download the nylon distribution image from a

 server, write it to the flash and then reboot the cube.

 this process will take about 10 minutes after the download has

 completed, and is not without risk. if the cube does not reboot

 after 10 minutes, something went wrong and you may have to use

 the serial cable to recover it.

 use install-image -h to see command line options

 GETTING IMAGE FROM: http://meshcube.org/nylon/stable/images

 IMAGE NAME: nylon.imgz

 *** do you really want to continue? (yes/no) yes

 * remounting /tmp to fit new images

 * downloading image from http://meshcube.org/nylon/stable/images

 Connecting to meshcube.org[217.160.210.161]:80

 nylon.imgz 100% |**************************| 10600 KB

 * preparing flash environment (chroot)

 * switching to single user mode

 **

 *** FLASHING IN PROGRESS ***

 *** ***

 *** !!!do not power off the cube in the next 10 minutes!!! ***

 **

 if you are connected via ssh you will not see any output up from

 this point. the flash process will continue nevertheless...

 *** please wait approximately 10 minutes until the cube reboots

 afterwards you will be able to login with empty password to the

 new system on

 ethernet: 192.168.0.250

 accesspoint: 10.0.0.1 essid cube-ap

 mesh: 172.16.0.1 essid cube-mesh

At this point, the instructions say to wait 10 minutes. During this time the Access Cube is unpacking the files
from the image and placing them onto the flash. It's hard to predict exactly how long this takes, and if you
interrupt the process before it's complete, you may be left with a broken Access Cube. After ten minutes, you
should be able to log in again as root, with no password.

Warning: To be on the safe side, make sure your Access Cube's power supply is connected to an uninterruptible power
supply (UPS).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Don't forget that this procedure has wiped out all of your configuration files and customizations. IP addresses
and other configuration settings have been reset back to their initial default values.

You'll probably want to install extra packages that you don't get with the update. For example, after you update
the ipkg database you must manually install Kismet:

root@mtx-1:/tmp# ipkg update

 root@mtx-1:/tmp# ipkg install kismet

PoE Wi-Fi Access Point

The Access Cube also makes a great wireless access point, especially since it supports Power over Ethernet
(PoE). This means that you need to run only one cable up to the Access Cube.

PoE works by placing DC power on the unused wires of an Ethernet cable. Even though Ethernet cables have 8
wires (four pairs), only two pairs are used for data transmission for speeds up to 100 Mb/sec. The PoE standard
(802.3af) supports two modes: A and B. In mode A, power is sent over the same pairs used for data
transmission. In mode B, the power is sent over the two unused pairs. The Access Cube supports only mode B,
which technically means it is not 802.3af compliant.

A PoE injector is the best way to put power onto the Ethernet cable. These cost anywhere from $10 to $75. The
PoE injector has two RJ45 ports and a power source. One RJ45 jack is for the unpowered Ethernet cable and the
other is for the powered cable, which connects to the Access Cube. Note that the cheaper injectors often require
a third-party power supply.

Using the Access Cube as a Wi-Fi access point is relatively straightforward, especially if you use only one
wireless card. Place the wlan0 in master mode and assign it a network name. Configure the DHCP server
(dnsmasq) as described under "wlan0" in "Wi-Fi Configuration," earlier in this chapter. You can choose to either
route and NAT two subnets (one wireless, one wired), or bridge the two networks together as a single subnet. If
you have only one Wi-Fi card, you can connect it to both antennas for improved coverage.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Portable, USB-Powered, Bridging Firewall

Have you ever wanted a simple little firewall box that you could easily take with you? Perhaps you could bring it
along when you visit your friends and family to upgrade and fix their computers. Or perhaps it could protect
your Windows-based laptops while connected to strange networks. In this chapter we'll show you how to build a
small, Linux-based bridging firewall that can be powered from a standard USB port.

What You Need

OpenBlockS/266 micro-server

Ethernet crossover cable

PC running Linux/BSD

USB cable with type A male connector

DC power plug with 4.0mm outer diameter and 1.7mm inner diameter

Compact Flash card, 128-256 MB

Soldering iron

A bridge is a layer two networking device that joins two network segments together. It is essentially just an
Ethernet switch with two ports. It simply forwards Ethernet (layer two) frames from one side to the other.
Bridges aren't nearly as popular today as they once were, because most people use switches and routers for
their Ethernet networks. However, a bridge is a neat hack for this project because it means you don't have to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

change the IP addresses of any devices connected to it as you roam from one network to another. See the
sidebar in What You Need for an explanation of the difference between a bridge and a switch.

This project is based around the OpenBlockS micro-server from Plat'Home in Japan. The OpenBlockS is small
and consumes very little power, about six watts (even less with a Compact Flash card instead of a hard drive).
To get everything working you'll also need a standard USB cable, a DC power plug, a soldering iron, a crossover
cable or Ethernet switch, and a machine that can be configured as an NFS server.

The OpenBlockS comes with a 128 MB Compact Flash (CF) card, which barely holds the Unix binaries. You
should purchase a larger CF card to make your life a little easier, or if you just want more storage. This firewall
project doesn't need any additional storage, however. Be somewhat careful when purchasing third-party CF
cards since not all of them work well as mini IDE drives. We've never had any problems with SanDisk CF cards.

Introducing the OpenBlockS

OpenBlockS is a series of products made by a company in Japan called Plat'Home (http://www.plathome.co.jp).
We asked a friend of ours, Kenjiro Cho, if he could get one for us from Japan. If you'd like to order one from
outside of Japan, visit the FATGadget site at http://www.fatgadget.jp/e_products/openblocks.html.

We received an OpenBlockS266. It is an ivory-colored box, measuring 3.25 x 4.5 x 1.5 inches, and is shown in
Figure 7-1. On the front are four lights, one for disk activity and the other three for user applications. The front
also has a 10-pin header labeled AUX that seems to be for communication with a UPS (it is probably just a
second serial port with a special connector).

On the other side, shown in Figure 7-2, you'll find two 100 Mbps Ethernet ports, a serial port, a push-button
labeled INIT, and a small 5V power connector. We haven't yet figured out what the INIT button does, but we
know it does not reset the box.

Since the product line is targeted towards Japanese users, all of the documentation is in Japanese. This makes it
a little difficult, but actually quite fun, to figure out how the OpenBlockS really works. For example, Figure 7-3
shows a page in the manual that describes the power, Ethernet, and serial ports.

Figure 7-4 shows the OpenBlockS internals, which consist of a small mainboard and, on top of that, an IDE-to-
Compact Flash adapter. You can remove this adapter, as shown in Figure 7-4, and insert a laptop hard drive in
its place! The mainboard, which sits under the heat-conducting aluminum frame, is shown by itself in Figure 7-
5.

This particular OpenBlockS model has a 266 MHz PowerPC CPU, 8 MB of Flash memory, and 64 MB of 133 Mhz
RAM.

It is, apparently, not possible to boot directly from the ATA/compact flash device. The OpenBlockS really wants
to boot from its internal flash memory. You can, with some effort, boot "diskless" over the network too.

The OpenBlockS266, front view.

http://www.plathome.co.jp
http://www.fatgadget.jp/e_products/openblocks.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The OpenBlockS266, rear view.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A page from the Japanese OpenBlockS manual.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The OpenBlockS266 comes with an external universal power supply that outputs 5V. The system has no fans, so
it relies on passive cooling. Inside there are a number of small pads that touch both the aluminum frame and
various chips on both sides of the mainboard. These seem to be heat-conducting pads designed to transfer heat
to the case. The case becomes warm, but not hot, after the box has been running for some time. Our
measurements show that the system draws 4 watts with the CF card, which is less than a standard ATX power
supply consumes when the computer is off! With a laptop hard drive the OpenBlockS consumes 6-8 watts.

Plat'Home includes a CD-ROM in the OpenBlockS package as well. It contains documentation, binary packages,
source code, and some utilities that run under Microsoft Windows. You can use these utilities to install software
on the OpenBlockS. However, chances are that you'll find more up-to-date versions on the Plat'Home FTP server
at ftp://ftp.plathome.co.jp/pub/OpenBlockS266/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Portable, USB-Powered, Bridging Firewall

Have you ever wanted a simple little firewall box that you could easily take with you? Perhaps you could bring it
along when you visit your friends and family to upgrade and fix their computers. Or perhaps it could protect
your Windows-based laptops while connected to strange networks. In this chapter we'll show you how to build a
small, Linux-based bridging firewall that can be powered from a standard USB port.

What You Need

OpenBlockS/266 micro-server

Ethernet crossover cable

PC running Linux/BSD

USB cable with type A male connector

DC power plug with 4.0mm outer diameter and 1.7mm inner diameter

Compact Flash card, 128-256 MB

Soldering iron

A bridge is a layer two networking device that joins two network segments together. It is essentially just an
Ethernet switch with two ports. It simply forwards Ethernet (layer two) frames from one side to the other.
Bridges aren't nearly as popular today as they once were, because most people use switches and routers for
their Ethernet networks. However, a bridge is a neat hack for this project because it means you don't have to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

change the IP addresses of any devices connected to it as you roam from one network to another. See the
sidebar in What You Need for an explanation of the difference between a bridge and a switch.

This project is based around the OpenBlockS micro-server from Plat'Home in Japan. The OpenBlockS is small
and consumes very little power, about six watts (even less with a Compact Flash card instead of a hard drive).
To get everything working you'll also need a standard USB cable, a DC power plug, a soldering iron, a crossover
cable or Ethernet switch, and a machine that can be configured as an NFS server.

The OpenBlockS comes with a 128 MB Compact Flash (CF) card, which barely holds the Unix binaries. You
should purchase a larger CF card to make your life a little easier, or if you just want more storage. This firewall
project doesn't need any additional storage, however. Be somewhat careful when purchasing third-party CF
cards since not all of them work well as mini IDE drives. We've never had any problems with SanDisk CF cards.

Introducing the OpenBlockS

OpenBlockS is a series of products made by a company in Japan called Plat'Home (http://www.plathome.co.jp).
We asked a friend of ours, Kenjiro Cho, if he could get one for us from Japan. If you'd like to order one from
outside of Japan, visit the FATGadget site at http://www.fatgadget.jp/e_products/openblocks.html.

We received an OpenBlockS266. It is an ivory-colored box, measuring 3.25 x 4.5 x 1.5 inches, and is shown in
Figure 7-1. On the front are four lights, one for disk activity and the other three for user applications. The front
also has a 10-pin header labeled AUX that seems to be for communication with a UPS (it is probably just a
second serial port with a special connector).

On the other side, shown in Figure 7-2, you'll find two 100 Mbps Ethernet ports, a serial port, a push-button
labeled INIT, and a small 5V power connector. We haven't yet figured out what the INIT button does, but we
know it does not reset the box.

Since the product line is targeted towards Japanese users, all of the documentation is in Japanese. This makes it
a little difficult, but actually quite fun, to figure out how the OpenBlockS really works. For example, Figure 7-3
shows a page in the manual that describes the power, Ethernet, and serial ports.

Figure 7-4 shows the OpenBlockS internals, which consist of a small mainboard and, on top of that, an IDE-to-
Compact Flash adapter. You can remove this adapter, as shown in Figure 7-4, and insert a laptop hard drive in
its place! The mainboard, which sits under the heat-conducting aluminum frame, is shown by itself in Figure 7-
5.

This particular OpenBlockS model has a 266 MHz PowerPC CPU, 8 MB of Flash memory, and 64 MB of 133 Mhz
RAM.

It is, apparently, not possible to boot directly from the ATA/compact flash device. The OpenBlockS really wants
to boot from its internal flash memory. You can, with some effort, boot "diskless" over the network too.

The OpenBlockS266, front view.

http://www.plathome.co.jp
http://www.fatgadget.jp/e_products/openblocks.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The OpenBlockS266, rear view.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A page from the Japanese OpenBlockS manual.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The OpenBlockS266 comes with an external universal power supply that outputs 5V. The system has no fans, so
it relies on passive cooling. Inside there are a number of small pads that touch both the aluminum frame and
various chips on both sides of the mainboard. These seem to be heat-conducting pads designed to transfer heat
to the case. The case becomes warm, but not hot, after the box has been running for some time. Our
measurements show that the system draws 4 watts with the CF card, which is less than a standard ATX power
supply consumes when the computer is off! With a laptop hard drive the OpenBlockS consumes 6-8 watts.

Plat'Home includes a CD-ROM in the OpenBlockS package as well. It contains documentation, binary packages,
source code, and some utilities that run under Microsoft Windows. You can use these utilities to install software
on the OpenBlockS. However, chances are that you'll find more up-to-date versions on the Plat'Home FTP server
at ftp://ftp.plathome.co.jp/pub/OpenBlockS266/.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SSD Linux

The OpenBlockS comes with Linux pre-installed on the internal flash memory. However, it is a stripped-down
version with only a subset of the GNU/Linux utilities. You'll probably want to install a larger set of the GNU/Linux
utilities from the CDROM onto the CF card. But before you do that, you should play with the box a little.

The OpenBlockS comes with a short cat5 (Ethernet) cable and RJ45-to-DB9 adapter. Plug the cable into the
console port as shown in Figure 7-6. Then connect the RJ45-to-DB9 adapter to the other end of the cable, and
plug that into a serial port of another PC as shown in Figure 7-7.

Open a terminal emulation program on the PC (e.g., hyperterm, minicom, cu, screen, or tip) set for 9,600 bps, 8
data bits, no parity, and one stop bit (8N1). The OpenBlockS does not have an on/off switch, so when you plug
the power cable into the little "DC IN" socket, you should immediately see some output like this on the screen:

405GPr 1.2 ROM Monitor (5/25/02) OBS266 1.3

 --------------------- System Info ----------------------

 Processor = 405GPr (New mode), PVR: 50910951

 CPU speed = 266 MHz

 PLB speed = 133 MHz

 OPB speed = 66 MHz

 EBC speed = 66 MHz

 PCI Bus speed = 33 MHz (Async)

 VCO speed = 800 MHz

 Feedback Clock = CPU

 Amount of SDRAM = 64 MBytes

 Internal PCI arbiter enabled

 --

OpenBlockS internals.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The OpenBlockS/266 mainboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The OpenBlockS serial console cable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Connecting OpenBlockS to another PC.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you don't see any output, check your serial cable connections and software settings. Terminal emulation
programs can be finicky and difficult to configure, so try a different program if the current one isn't working out
for you.

When the OpenBlockS boots Linux from the flash memory, it loads the kernel and then creates a RAM disk
within its 64 MB of system memory. The RAM disk is mounted as /dev/ram1 and populated with a few low-level
system utilities.

After a short amount of time, you'll see a Linux login prompt. The root password is root. Perhaps the first thing
you'll want to do is explore the filesystem-find out what's there and what's missing. Try to execute some of the
common Unix commands (ls, ps, top, df). At some point you'll probably find that certain useful programs are

missing.

Note: Note that the system is running from a RAM disk. Any changes that you make will be lost when the system reboots.
You'll probably want to use the CF card to build a more usable system.

One of the first things you should do is set the system time. Strictly speaking, it is not necessary. However, if
the clock is significantly off, you'll see a lot of warnings later when using tar to copy files to the new filesystem.
Unfortunately, you'll have to use the date command, which has an awkward syntax:

date mmddHHMMYYYY.SS

Note the odd ordering. It goes: month, day, hours, minutes, then year, followed by seconds. If it's 12:15 on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

October 26th, 2005 you would run:

date 102612152005.00

You should also set the TERM environment variable so that you can use vi and other full-screen applications:

export TERM=xterm

eval `resize`

Hubs, Bridges, Routers, and Switches

So, what's the difference between a hub, switch, bridge, and router? Hubs, switches, and bridges
all operate at layer two of the network stack. That means these devices do not have IP addresses.
They forward packets based on Ethernet addresses.

Hubs are "dumb" network devices that copy each packet received on a port to every other port.
The simplicity of a hub used to mean that it was the cheapest option for joining network segments.

These days, however, switches are so inexpensive that hubs are becoming extinct. Back in the
good old days when hubs were more common, bridges took on the role of today's switches. A
bridge usually has two ports, whereas switches have anywhere from four to 48.

A router is a layer three device, which means that it uses IP addresses to make forwarding
decisions. Routers are used to connect different IP subnets. Many of the small home/office routers
available today also provide network address translation (NAT) and firewall features.

Inserting a Compact Flash card into the adapter slot.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Putting Linux on the Compact Flash Card

The OpenBlockS comes with a 128 MB CF card, which is initially blank. Given that 512 MB CF cards were selling
for $30 at the time of this writing, you should consider replacing the 128 MB card with something bigger. With
the system powered off, insert the CF card as shown in Figure 7-8. Now we'll show you one way to load it up
with SSD/Linux.

The CF card looks just like a normal ATA device (i.e., hard drive) to the operating system. The first thing to do
is run fdisk and create a Linux partition. If the CF card already was already partitioned, you must delete the
existing partitions first:

obs# fdisk /dev/hda

 hda: hda1

Command (m for help): d

Selected partition 1

With an unpartitioned CF card, use these fdisk commands to create the Linux partition:

Command (m for help): n

Command action

 e extended

 p primary partition (1-4) p

Partition number (1-4): 1

First cylinder (1-978, default 1):

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using default value 1

Last cylinder or +size or +sizeM or +sizeK (1-978, default 978):

Using default value 978

Command (m for help): p

Disk /dev/hda: 128 MB, 128188416 bytes

8 heads, 32 sectors/track, 978 cylinders

Units = cylinders of 256 * 512 = 131072 bytes

 Device Boot Start End Blocks Id System

/dev/hda1 1 978 125168 83 Linux

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

 hda: hda1

 hda: hda1

Syncing disks.

After fdisk, create a filesystem with mke2fs:

obs# mke2fs /dev/hda1

mke2fs 1.32 (09- hda:Nov-2002)

 hda1

 hda: hda1

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

31360 inodes, 125168 blocks

6258 blocks (5.00%) reserved for the super user

First data block=1

16 block groups

8192 blocks per group, 8192 fragments per group

1960 inodes per group

Superblock backups stored on blocks:

 8193, 24577, 40961, 57345, 73729

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 24 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

Then, mount the new filesystem:

obs# mount /dev/hda1 /mnt

That was pretty easy, but the next step can be hard. Now that you have a blank filesystem, how can you get the
GNU/Linux binaries onto it? If you are a Windows user, you can try one of the setup tools on the CD-ROM. Since
we are not Windows users and we don't read Japanese, we chose to NFS-export the files from an existing Unix
system, mount that directory on the OpenBlockS, and then copy over the necessary files. See the Appendix,
"Running an NFS Server" for some hints on setting up an NFS server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We recommend that you download the most recent SSD/Linux ISO image from the Plat'Home FTP server at
ftp://ftp.plathome.co.jp/pub/ssdlinux/iso/. If you don't want to download that much, you can instead download
specific files from ftp://ftp.plathome.co.jp/pub/OpenBlockS266/LATEST/. You'll need at least
installation/zImage.initrd.treeboot, installation/ramdisk.image.gz, and all of the files in the binary directory.
Alternatively, you can also use the CD-ROM that came with your OpenBlockS kit, but it may be out of date.

For the examples in this chapter, we assume that you have a recent ISO image burned to CD-ROM and mounted
on your NFS server. If not, some of the pathnames may be different for you.

First, create a scratch directory on the NFS server that you can export to the OpenBlockS and use as a staging
area for extracting and manipulating files. Then, create a directory under which you can mount the OpenBlockS
CD-ROM:

nfs# mkdir /disk/openblocks

nfs# mkdir /cdrom

nfs# mount -t cd9660 /dev/cd0c /cdrom

nfs# vi /etc/exports

The directories that you just made should be exported by the NFS server. Add these lines to your /etc/exports
file on the server:

/disk/openblocks -maproot=root

/cdrom -alldirs

Restart or reconfigure mountd after updating /etc/exports. Test the new configuration by running showmount -

e.

Connect the OpenBlockS to the NFS server with a crossover cable or through an Ethernet switch. On the
OpenBlockS, assign it an IP address (replace 10.0.0.19 with an available address on your network) before you
try to mount the NFS filesystem:

obs# ifconfig eth0 10.0.0.19 netmask 255.255.255.0

Using a CF Card Reader

If the NFS server is not an option, you should also be able to use a Compact Flash card reader with
an existing Linux box. You should have no trouble finding an inexpensive "All-in-1" reader/writer
with a USB interface. Search your favorite shopping site for "flash card reader." Another option is
to use a PC Card/PCMCIA adapter, if your laptop has suitable slot.

Once you have the CF card inserted into the reader/adapter, the commands are essentially the
same. You'll need to fdisk and mke2fs the CF card, and then use rsync to copy the filesystem

over.

Where Am I?

Since you'll be issuing a lot of commands from the shell on both the NFS server and OpenBlockS,
things could get confusing. So, we'll use the nfs# prompt to show when you should be on the

server and obs# to show when you should be issuing the commands from a terminal session with

the OpenBlockS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you have a DHCP server on your network, you can use this command to automatically configure the first
network interface:

obs# dhclient eth0

When the OpenBlockS has an IP address, you can mount the two NFS-exported directories. Here we assume the
NFS server's IP address is 10.0.0.1, but yours will almost certainly be different:

obs# mkdir /nfs

obs# mkdir /cdrom

obs# mount 10.0.0.1:/disk/openblocks /nfs

obs# mount 10.0.0.1:/cdrom /cdrom

The CD-ROM files should be accessible as /cdrom:

obs# ls -lR /cdrom

total 60

lr-xr-xr-x 1 root wheel 1 May 20 16:27 0.2-STABLE -> .

-r--r--r-- 1 root wheel 175 May 20 16:43 AUTHORS

-r--r--r-- 1 root wheel 29476 May 20 16:43 ChangeLog

-r--r--r-- 1 root wheel 1823 May 20 16:43 LICENCE

-r--r--r-- 1 root wheel 2048 May 20 19:56 boot.catalog

dr-xr-xr-x 2 root wheel 18432 May 20 06:41 distfiles

dr-xr-xr-x 4 root wheel 2048 May 20 06:36 i386

dr-xr-xr-x 4 root wheel 2048 May 20 11:37 powerpc-obs200

dr-xr-xr-x 4 root wheel 2048 May 20 16:27 powerpc-obs266

dr-xr-xr-x 2 root wheel 2048 May 20 06:40 source

The first step is to install the zImage.initrd.treeboot onto the internal flash. The easiest way to do this is with
the flashcfg command from within SSD/Linux itself. For example:

obs# flashcfg -f /cdrom/powerpc-obs266/installation/zImage.initrd.treeboot

Load boot image to FlashROM

##

###

done

Note: There is a similar file named zImage.initrd.treeboot-product. It includes utilities that allow you to setup and
manage the OpenBlockS from a web browser.

The next step is to extract the contents of the base, etc, and kern packages onto the CF card. The version that
came on our CD-ROM, dated 20030708, did fit with only a few MB to spare. The more recent releases, however,
are too big. The contents of base.tgz won't fit onto the 128 MB CF card.

We noticed that Perl 5.8, with all of its header files and modules, takes about 30 MB. If you need Perl on the
system, you should get a larger CF card (256 MB cards are about $20 these days). Otherwise, you'll have to
omit the Perl files from the filesystem. Normally we could exclude the usr/lib/perl5 directory when extracting
the files with tar. However, it seems that the --exclude option is broken on the version of tar found on the

OpenBlockS boot image. Sigh...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To get around these problems, we extract the files into the scratch directory on the NFS server and then
manually remove usr/lib/perl5 before copying everything over to the CF card. For example, we ran these
commands on the NFS server:

nfs# mkdir CF-root

nfs# cd CF-root

nfs# tar xzfp /cdrom/powerpc-obs266/binary/base.tgz

nfs# tar xzfp /cdrom/powerpc-obs266/binary/etc.tgz

nfs# tar xzfp /cdrom/powerpc-obs266/binary/kern.tgz

nfs# rm -rf usr/lib/perl5

nfs# du -hs

116M

Now that we are below the CF size limit, we're ready to copy these files to the mounted CF partition on the
OpenBlocks. Note we use tar instead of cp because tar preserves hard and symbolic links in the filesystem:

obs# cd /nfs/CF-root

obs# tar cf - . | (cd /mnt; tar xvfp -)

The CF partition doesn't have any /dev entries yet. Use these commands to create them:

obs# cd /mnt/dev

obs# ./MAKEDEV generic

You also need to create an /etc/fstab file so Linux knows to mount the root filesystem from the CF card
(/dev/hda1). You can just copy the existing /etc/fstab file and change /dev/ram1 to /dev/hda1:

obs# cp /etc/fstab /mnt/etc/fstab

obs# vi /mnt/etc/fstab

It should look like this:

/dev/hda1 / ext2 defaults 1 1

none /proc proc defaults 0 0

Next, you need to tell the OpenBlockS to mount the CF card instead of creating a RAM disk. Use flashcfg with

the -c option to set the root device for subsequent reboots. For example:

obs# flashcfg -c harddisk

At this point you can reboot the system. If you want to double check your work before rebooting, make sure
that you've performed all of these steps correctly:

Copy zImage.initrd.treeboot to the flash memory with flashcfg.1.

Copy CF-root to /mnt with tar.2.

Create device entries in /mnt/dev with MAKEDEV.3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

3.

Copy /etc/fstab to /mnt/etc/fstab, then change the first line to /dev/hda1.4.

Tell the system to mount the harddisk filesystem with flashcfg -c.5.

When you're ready, reboot!

obs# reboot

Watch the console as the OpenBlockS reboots. If you screwed up something, you might not get a login prompt
after rebooting. For example, the first time we tried this, we forgot about the /dev entries and the system could
not open /dev/console for the getty process. If it happens to you, power-cycle the box. When it boots again,
type a key (e.g., the spacebar) when it pauses on the following line:

Linux/PPC load: root=/dev/hda1

Edit the command line and change hda1 to ram so that it uses the RAM disk instead of the CF card. Then you

can mount the CF card on /mnt and fix whatever needs fixing.

Customizing the Installation

SSD/Linux is a little different than most Linux installations because it uses BSD-style configuration files and
startup scripts. One of the first things you should do is edit /etc/rc.conf and set a few parameters. For example,
these three lines set the hostname, specify the IP address for the first Ethernet interface, and start the ssh
daemon:

hostname="obs.example.com"

ifconfig_eth0="10.0.0.19 netmask 255.255.255.0"

sshd=YES

Or, if you have a DHCP server on your network, you may want to use this configuration instead:

dhclient=YES

dhclient_flags=eth0

If you run df at this point, you'll see that the CF card is pretty much full. After installing the base, etc, and
kernel packages, you'll have only about 5 MB left. That doesn't leave much for adding your own applications and
data. Fortunately, you can probably free up enough space by removing unnecessary files and directories. For
example, go to the /usr/bin directory and list the files sorted by their size. For example:

obs# cd /usr/bin

obs# ls -l | sort -n +4 | tail

-rwxr-xr-x 1 root kmem 633400 Jan 19 2005 troff

-rwxr-xr-x 1 root kmem 900009 Jan 19 2005 localedef

-rwxr-xr-x 2 root kmem 1021680 Jan 19 2005 perl

-rwxr-xr-x 2 root kmem 1021680 Jan 19 2005 perl5.8.6

-r-xr-xr-x 1 root wheel 1088272 Jan 19 2005 nsupdate

-r-xr-xr-x 1 root wheel 1102948 Jan 19 2005 host

-r-xr-xr-x 1 root wheel 1103800 Jan 19 2005 nslookup

-r-xr-xr-x 1 root wheel 1109972 Jan 19 2005 dig

-rwxr-xr-x 1 root wheel 2291888 Jan 19 2005 run

http://lib.ommolketab.ir
http://lib.ommolketab.ir

-rwxr-xr-x 1 root wheel 5037680 Jan 19 2005 gdbtui

rm perl* nsupdate host nslookup dig gdbtui

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Turning the OpenBlockS into an Ethernet Bridge

Our goal is to turn the OpenBlockS into a bridging firewall. Unfortunately it takes a little tweaking to make that
work. We'll need to recompile the Linux kernel and build some additional tools. We are unlikely to find RPMs for
this particular platform, so we'll go to the trouble of compiling them from source.

Compiling a Linux Kernel

Since the CF card doesn't have enough space to hold the compiler and associated files, we created an entire
OpenBlockS filesystem on our NFS server. We'll chroot to the NFS-mounted filesystem on the OpenBlockS, do

our compiling, and then copy the binaries over to the CF card. First let's build the compiling filesystem and
verify that the compiler works. On the NFS server:

nfs# mkdir comp-chroot

nfs# cd comp-chroot

nfs# tar xzfp /cdrom/powerpc-obs266/binary/base.tgz

nfs# tar xzfp /cdrom/powerpc-obs266/binary/etc.tgz

nfs# tar xzfp /cdrom/powerpc-obs266/binary/kern.tgz

nfs# tar xzfp /cdrom/powerpc-obs266/binary/comp.tgz

nfs# tar xzfp /cdrom/powerpc-obs266/binary/man.tgz

On the OpenBlockS, you should set up a chroot environment on the NFS server, including the /dev directory:

Note: The obs-chroot# prompt indicates the command should be executed on the OpenBlockS under a chroot

environment. Whenever we use this convention, it will be right after using a chroot command to get there in the first

place.

obs# mkdir /nfs

obs# mount 10.0.0.1:/disk/openblocks/nfs

obs# cp /etc/resolv.conf /nfs/comp-chroot/etc/resolv.conf

obs# chroot /nfs/comp-chroot /bin/sh

obs-chroot# mount -t proc none /proc

obs-chroot# cd /dev

obs-chroot# ./MAKEDEV std

Now, let's see if we can compile something:

obs-chroot# cd /tmp

obs-chroot# gcc /usr/share/automake-1.9/ansi2knr.c

obs-chroot# ls -l a.out

-rwxr-xr-x 1 root wheel 25514 May 19 12:31 a.out

Looks like it worked! Now onto something more difficult: the kernel. The following instructions are based on
Plat'Home's document for building SSD/Linux from source
(http://openlab.plathome.co.jp/ssdlinux/develop.html.en). We are going to cheat a little bit and deviate from
that document because we want to compile only the kernel, rather than the entire system. The first step is to
extract the SSD/Linux source archive in our comp-chroot directory. This can be done on the NFS server:

nfs# cd /disk/openblocks/comp-chroot

http://openlab.plathome.co.jp/ssdlinux/develop.html.en
http://lib.ommolketab.ir
http://lib.ommolketab.ir

nfs# rm -rf usr/src

nfs# tar xzf /cdrom/source/src.tgz

We'll be using some scripts from the SSD/Linux distribution. They look for certain files in a distfiles directory. If
you have the OpenBlockS CD-ROM, it's probably easiest to just copy these files from the CD-ROM to the correct
directory:

nfs# mkdir -p usr/src/dist/distfiles

nfs# cp -Rp /cdrom/distfiles usr/src/dist

Otherwise, the install process will try to download the distfiles that it needs from ftp.plathome.co.jp. So if you
don't have the CD-ROM, make sure that your OpenBlockS can reach that server before proceeding.

On the OpenBlockS you need to set some environment variables and then run bmake from the appropriate

directory:

obs-chroot# export HOSTTYPE

obs-chroot# export MACHTYPE

obs-chroot# export SHELL

obs-chroot# export WITH_X11=no

obs-chroot# cd /usr/src/mkdist/kernel

obs-chroot# bmake

The bmake command extracts the kernel source code and applies a number of patches. At this point we have a

kernel source tree that we can compile on the OpenBlockS266. But before we do that, we need to apply another
kernel patch that allows the netfilter code to work with bridging. The patch file is available from
http://ebtables.sourceforge.net on the downloads page.

Note: The ebtables project also has a userland program called ebtables. It provides functionality similar to iptables, but
for layer two (Ethernet) packets. We don't need this utility for normal IP packet filtering because the ebtables kernel patch
makes bridged packets pass through the kernel's normal iptables tables. If you want to filter packets based on MAC
addresses or other layer two characteristics, the ebtables utility is easy to compile and install. We won't cover it in this
book, however.

At the time of writing, the ebtables project has patches for kernel Version 2.4.21 through 2.4.31. The latest
SSD/Linux kernel is Version 2.4.20, so we might have some problems applying this patch. We're going to give it
a try anyway. We downloaded ebtables-brnf-10_vs_2.4.21.diff from
http://ebtables.sourceforge.net/download.html and applied the patch on the NFS server:

nfs# cd comp-chroot/usr/src/linux

nfs# patch -s -p1 < /tmp/ebtables-brnf-10_vs_2.4.21.diff

Whew, the patch applies cleanly! Whatever the differences are between the 2.4.20 and 2.4.21 kernels, they
don't affect the same code that this patch does. Looks like there should be no problems compiling the patched
kernel. You are now ready to configure the new kernel on the OpenBlockS:

obs-chroot# cd /usr/src/linux

obs-chroot# make menuconfig

When the configuration menu appears, move the cursor down to "Networking options" and press Enter. Then

http://ebtables.sourceforge.net
http://ebtables.sourceforge.net/download.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

scroll down to enable both 802.1d Ethernet Bridging and ebtables:

<*> 802.1d Ethernet Bridging

 <*> Bridge: ebtables (NEW)

 < > ebt: filter table support

 < > ebt: nat table support

 < > ebt: broute table support

 < > ebt: log support

 < > ebt: IP filter support

 < > ebt: ARP filter support

 < > ebt: among filter support

 < > ebt: limit filter support

 < > ebt: 802.1Q VLAN filter support

 < > ebt: 802.3 filter support

 < > ebt: packet type filter support

 < > ebt: STP filter support

 < > ebt: mark filter support

 < > ebt: arp reply target support

 < > ebt: snat target support

 < > ebt: dnat target support

 < > ebt: redirect target support

 < > ebt: mark target support

Note: Since you'll be using iptables and not ebtables, you don't need any of the sub-options marked with "ebt:".
However, if you plan to experiment with ebtables, feel free to enable the options that seem interesting.

Finally, exit and save the new configuration and compile the kernel:

obs-chroot# make dep clean

obs-chroot# time make

...

real 85m59.389s

user 61m38.320s

sys 15m23.730s

After the kernel has been built, the next step is to create the initrd image that you'll load onto the OpenBlockS
internal flash. The initrd file consists of a kernel, plus a compressed filesystem that gets loaded into RAM.
Normally the filesystem is built by compiling all the userland programs and copying them to a "loop" filesystem.
However, you don't really want to spend the time compiling all the userland programs, so you can cheat by
using a pre-built ramdisk image from the OpenBlockS CD-ROM:

nfs# cp -p /cdrom/powerpc-obs266/installation/ramdisk.image.gz \

/disk/openblocks/comp-chroot/usr/src/linux/arch/ppc/boot/images

Now, on the OpenBlockS, execute a command to build the zImage.initrd.treeboot file:

obs-chroot# cd /usr/src/linux

obs-chroot# make zImage.initrd

When make is done, you should find the initrd file in the arch/ppc/boot/images directory. You can use flashcfg
from outside the chroot environment to load the image to the OpenBlockS internal flash memory:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obs-chroot# exit

obs# flashcfg -f /nfs/comp-chroot/usr/src/linux/arch/ppc/boot/

images/zImage.initrd.treeboot

One final step is to copy the new System.map file to the root directory:

obs# cp -p /nfs/comp-chroot/usr/src/linux/System.map \

/System.map.20050119

obs# rm /System.map

obs# ln /System.map.20050119

/System.map

obs# reboot

Note: The System.map file is used by a handful of Linux system utilities, such as klogd, depmod, and top. The file
contains a list of program addresses (such as 0x451223a) and symbol names (such as use_extra_magic). In other words,
the System.map file helps translate numeric program addresses into meaningful source code names, and vice-versa.

After the system boots, you can log in and use the uname command to verify that the new kernel is running:

obs# uname -a

Linux obs 2.4.20 #2 Fri Sep 23 13:02:40 JST 2005 ppc ppc405 OpenBlockS

SSD/Linux 0.2-20050119

The date should correspond to the time when you compiled the new kernel, and the version number (e.g., 0.2-
20050119) should correspond to the files from your CD-ROM or from the ftp.plathome.co.jp FTP server.

Installing the Bridge Utilities

Now that your kernel has support for Ethernet bridging, you also need a utility to configure the interfaces for
bridging. This software comes from http://bridge.sourceforge.net. You can use the NFS-mounted chroot
environment to compile this program as well. Download the latest bridge-utils tar file from SourceForge and
place it in the chroot filesystem. On the OpenBlockS, mount the NFS filesystem as before, and issue the chroot

command:

obs# mount 10.0.0.1:/disk/openblocks /nfs

obs# chroot /nfs/comp-chroot /bin/sh

Then, extract the software, and run ./configure and make:

obs-chroot# cd /tmp

obs-chroot# tar xzf bridge-utils-1.0.6.tgz

obs-chroot# cd bridge-utils-1.0.6

obs-chroot# ./configure

obs-chroot# make

After the bridge utilities have been compiled, install them into /usr/local:

obs-chroot# make install

http://bridge.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Remember that you are in the chroot environment, and the filesystem is really on the NFS server. Now you
need to copy the files that you just installed from the NFS server directory to the OpenBlockS CF card. You can
use rsync for this simple task:

obs-chroot# exit

obs# rsync -av /nfs/comp-chroot/usr/local /usr

We'll show you how to use the new brctl in just a bit. While you're still in compiling mode, however, we
recommend that you also install tcpdump.

Installing tcpdump

Installing tcpdump is optional, but chances are that you will want to have it while debugging your iptables rules.

You'll need both tcpdump and libpcap packages from http://www.tcpdump.org. Save the tar files and extract
them on the NFS server-under comp-chroot/tmp, for example. Then on the OpenBlockS, compile them like
this:

obs# chroot /nfs/comp-chroot /bin/sh

obs-chroot# cd /tmp/libpcap-2005.08.25

obs-chroot# ./configure && make && make install

obs-chroot# cd /tmp/tcpdump-3.8.3

obs-chroot# ./configure && make && make install

To copy the recently installed files from the chroot directory to the CF card, use the same rsync command as

before:

obs# rsync -av /nfs/comp-chroot/usr/local /usr

rsync or tar?

rsync is usually better at copying directory structures. However, we had to use two tar

commands earlier because rsync is not included on the smaller initrd filesystem.

Then, try it out and see if it actually works:

obs# tcpdump -n -i eth0 -c 10

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96

bytes

14:26:13.292815 IP 10.0.0.90.22 > 10.0.0.21.2627: P 3557754178:35577542

90(112) ack 679062017 win 11088 <nop,nop,timestamp 206621 31069398>

14:26:13.292963 IP 10.0.0.21.2627 > 10.0.0.90.22: . ack 112 win 57808

<nop,nop,timestamp 31069404 206616>

14:26:13.293997 IP 10.0.0.90.22 > 10.0.0.21.2627: P 112:224(112) ack 1

win 11088 <nop,nop,timestamp 206621 31069404>

14:26:13.295932 IP 10.0.0.90.22 > 10.0.0.21.2627: P 224:400(176) ack 1

win 11088 <nop,nop,timestamp 206622 31069404>

14:26:13.296078 IP 10.0.0.21.2627 > 10.0.0.90.22: . ack 400

win 57744 <nop,nop,timestamp 31069405 206621>

http://www.tcpdump.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

14:26:13.297259 IP 10.0.0.90.22 > 10.0.0.21.2627: P

400:544(144) ack 1 win 11088 <nop,nop,timestamp 206622 31069405>

14:26:13.298338 IP 10.0.0.90.22 > 10.0.0.21.2627: P

544:704(160) ack 1 win 11088 <nop,nop,timestamp 206622 31069405>

14:26:13.298478 IP 10.0.0.21.2627 > 10.0.0.90.22: . ack 704

win 57760 <nop,nop,timestamp 31069405 206622>

14:26:13.299675 IP 10.0.0.90.22 > 10.0.0.21.2627: P

704:864(160) ack 1 win 11088 <nop,nop,timestamp 206622 31069405>

14:26:13.300747 IP 10.0.0.90.22 > 10.0.0.21.2627: P

864:1008(144) ack 1 win 11088 <nop,nop,timestamp 206622 31069405>

10 packets captured

28 packets received by filter

0 packets dropped by kernel

Configuring the Bridge

In Linux, a bridge is sort of a virtual network interface. You create it with the brctl command. Then you add

real interfaces to the bridge, also with the brctl command.

Bridging does not work if one of the real Ethernet interfaces already has an IP address. Thus, you should
remove any ifconfig_eth0, ifconfig_eth1, and dhclient lines from /etc/rc.conf. If your interfaces already

have IP addresses you can zero them out with these commands:

obs# ifconfig eth0 inet 0.0.0.0

obs# ifconfig eth1 inet 0.0.0.0

To configure a bridge, execute the following commands:

obs# brctl addbr br0

obs# brctl addif br0 eth0

obs# brctl addif br0 eth1

obs# ifconfig eth0 up

obs# ifconfig eth1 up

Shortly after, you should see some messages like this from syslog:

device eth0 entered promiscuous mode

device eth1 entered promiscuous mode

br0: port 2(eth1) entering listening state

br0: port 1(eth0) entering listening state

br0: port 2(eth1) entering learning state

br0: port 1(eth0) entering learning state

br0: port 2(eth1) entering forwarding state

br0: topology change detected, propagating

br0: port 1(eth0) entering forwarding state

br0: topology change detected, propagating

Only after the bridge interface is up and working can you assign an IP address to it as well:

obs# ifconfig br0 inet 10.0.0.19 netmask 255.255.255.0

Or, if you prefer, with DHCP:

obs# dhclient br0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you have it all working, put the same commands into /etc/rc.local so they get executed each time the
OpenBlockS boots:

brctl addbr br0

brctl addif br0 eth0

brctl addif br0 eth1

ifconfig eth0 up

ifconfig eth1 up

dhclient br0

Note: Assigning an IP address to the OpenBlockS is entirely optional. It will function perfectly well as a bridge without any
IP address. The best reason to give it an IP address is so that you can log in to debug problems. You'll need an IP address
to use programs such as ping and traceroute on the OpenBlockS. If you are comfortable using the serial port console,
then you don't need to automatically assign the IP address when the system boots-just assign it whenever you need it.

Configuring the Firewall

Linux's netfilter (iptables) has too many features to fully cover here. You can find numerous references on using
iptables, starting with http://www.netfilter.org/, or by entering "iptables" into any search engine. For now we'll
provide a couple of simple examples to help get you started.

Web and DNS only

One of our favorite ideas for this project is to implement the OpenBlockS as a firewall that you can use to
protect an unpatched Microsoft Windows box while downloading patches from the Internet. With so many
Windows viruses scanning the Internet these days, many people have a hard time downloading and applying
patches before their system becomes infected. We'll configure the bridging firewall to pass only packets
necessary for a Windows Update session.

One way to accomplish the task is to allow only packets to and from Microsoft servers. This is, unfortunately, a
little difficult because you can't simply configure your system to talk only to *.microsoft.com. The Windows
Update procedure uses numerous servers on different IP addresses and networks. If you take this route, you'll
probably need a tool like tcpdump to find out where Windows Update is trying to get to. In my tests, Windows
Update communicated with three separate servers on three different subnets.

The optimal approach is to restrict communication based on TCP and UDP ports. For Windows Update to work,
the system needs to send and receive DNS queries on UDP port 53, HTTP on port 80, and HTTPS on port 443. If
you are using DHCP, the firewall should pass UDP ports 67 and 68 as well. Here is a shell script that sets up
netfilter for these ports:

#!/bin/sh

I="iptables -A FORWARD"

iptables --flush

allow HTTP and HTTPS

for p in 80 443 ; do

 $I --proto tcp --dport $p -j ACCEPT

 $I --proto tcp --sport $p -j ACCEPT

done

allow DNS and DHCP

http://www.netfilter.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

for p in 53 67 68; do

 $I --proto udp --dport $p -j ACCEPT

 $I --proto udp --sport $p -j ACCEPT

done

allow ICMP for Path MTU Discovery

$I --proto icmp --j ACCEPT

uncomment the LOG line for debugging

#$I -j LOG

$I -j DROP

Note that these rules use the FORWARD table because that is where iptables looks for packets that get forwarded

through the OpenBlockS. If you are worried about attacks against the OpenBlockS itself, you'll want to block
packets to or from the OpenBlockS IP address using the INPUT and/or OUTPUT tables.

You may be able to get by without the rule to accept ICMP packets. In our case, we were connecting through a
VPN tunnel that had a lower-than-normal MTU. We had to accept ICMP responses so that path MTU discovery
worked correctly.

To utilize these rules each time the OpenBlockS boots, save the script as /etc/rc.iptables and add this line to
/etc/rc.conf:

iptables=YES

Connection tracking

Linux iptables has a nifty feature called connection tracking. This is a kernel option that should be enabled by
default. When enabled, the kernel keeps track of established connections for both TCP and UDP. You can then
use this information to allow or deny packets based on the state of their associated connection. It is primarily
useful for allowing packets associated with connections initiated inside the firewall and denying incoming
connections from the outside.

Using connection tracking with bridging is a little bit confusing. Our first attempts didn't quite work the way we
expected them to. We eventually worked it out by trial and error. The following script allows outgoing TCP and
UDP connections, while blocking unsolicited traffic coming in from the outside:

#!/bin/sh

I="iptables -A FORWARD"

iptables --flush

Note this rule set assumes that the device-to-be-protected

is connected to ETH1 and the upstream network is

connected to ETH0.

Allow TCP connections we initiate

$I -p tcp -m state --state ESTABLISHED -i eth0 -j ACCEPT

$I -p tcp -m state --state NEW,ESTABLISHED -i eth1 -j ACCEPT

Allow UDP connections we initiate

$I -p udp -m state --state ESTABLISHED -i eth0 -j ACCEPT

$I -p udp -m state --state NEW,ESTABLISHED -i eth1 -j ACCEPT

allow ICMP for Path MTU Discovery

$I --proto icmp --j ACCEPT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

uncomment the LOG line for debugging

#$I -j LOG

$I -j DROP

As noted in the script comments, these rules assume that "inside the firewall" is connected to eth1, while eth0
connects to the Big Bad Internet.

If you like to use FTP, the connection-tracking rules may cause a problem for FTP data connections. Unless you
enable "passive" mode, an FTP server may try to establish a connection back to your FTP client. To allow that,
add this rule to the script before the final DROP rule:

for incoming FTP data connections

$I -p tcp -m state --state NEW,ESTABLISHED --sport 20 -i eth0 -j ACCEPT

If you want to make these rules permanent, save the iptables commands to /etc/rc.iptables and add this line to
/etc/rc.conf:

iptables=YES

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the Firewall

Now that the firewall is complete, we will tell you how to actually use it. This firewall is designed so that you can
easily protect a host (or network of hosts) by placing the OpenBlockS between the host and its network device
(i.e., switch or router). Figure 7-9 shows how this works for a single PC connected to a DSL router.

When connecting the OpenBlockS to a desktop or laptop computer, you must use an Ethernet crossover cable.
They are easy to make if you have the necessary tools. Otherwise, you can purchase one for $10 or less. The
easiest way to connect the OpenBlockS is to remove the Ethernet cable from the PC and insert it into one of the
OpenBlockS ports. Then use the crossover cable to connect the PC to the other OpenBlockS port.

If you're using the simple firewall configuration ("Web and DNS only") it does not matter which OpenBlockS port
goes to the PC. The simple firewall rules do not refer to IP addresses or interface names, so they are
symmetrical.

On the other hand, if you're using the connection-tracking firewall features ("Connection tracking"), the firewall
is no longer symmetric. You should connect ETHER-1 (eth1) to the PC or laptop, and ETHER-0 (eth0) to the
router.

Using the OpenBlockS to protect a PC.

After connecting the Ethernet cables, power up the OpenBlockS. Your PC won't be able to send or receive any
packets until the OpenBlockS is fully up and running, but that should only take a minute or two. When it's done
booting you should be able to surf the Web and ping other hosts. You can also try pinging the OpenBlockS itself,
if you happen to know its address. If something seems to be wrong you may need to log in on the serial port
console.

If the OpenBlockS is up and running but blocking your traffic, you'll need to debug the firewall rules. Log in and
run this command:

iptables --list --verbose

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 62 packets, 5316 bytes)

 pkts bytes target prot opt in out source destination

 304 45893 ACCEPT tcp -- any any anywhere anywhere tcp dpt:www

 354 259K ACCEPT tcp -- any any anywhere anywhere tcp spt:www

 248 29091 ACCEPT tcp -- any any anywhere anywhere tcp dpt:443

 210 102K ACCEPT tcp -- any any anywhere anywhere tcp spt:443

 0 0 ACCEPT tcp -- any any anywhere anywhere tcp dpt:ssh

 0 0 ACCEPT tcp -- any any anywhere anywhere tcp spt:ssh

 7 448 ACCEPT udp -- any any anywhere anywhere udp dpt:domain

 7 1648 ACCEPT udp -- any any anywhere anywhere udp spt:domain

 0 0 ACCEPT udp -- any any anywhere anywhere udp dpt:bootps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0 0 ACCEPT udp -- any any anywhere anywhere udp spt:bootps

 0 0 ACCEPT udp -- any any anywhere anywhere udp dpt:bootpc

 0 0 ACCEPT udp -- any any anywhere anywhere udp spt:bootpc

 268 22512 ACCEPT icmp -- any any anywhere anywhere

 2 152 DROP all -- any any anywhere anywhere

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)

 pkts bytes target prot opt in out source destination

If you see non-zero values in the pkts and bytes columns, it means at least some packets are getting through.

If the counters for the DROP rule are high, you may want to enable logging by uncommenting the LOG rule in the

sample rules from the previous section and reloading the rules. When you're logged in as root, you'll see a
message on your screen for each packet that gets dropped. This may help you understand what, if anything, is
wrong with your rules. Keep in mind that the firewall should block some packets-thats what it's there for!

You may also want run tcpdump or tethereal (if you have it) to help debug problems. For example, run tcpdump
on eth0 to see packets coming from your PC:

tcpdump -n -i eth0

Then try surfing the Web or pinging some hosts while tcpdump is running. If you don't see any packets at all,
then something is probably wrong with the Ethernet cable. Make sure that it is a crossover, and that it is
plugged in correctly.

If you get really desperate and just want to remove the firewall rules altogether, run this command:

iptables --flush

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Powering OpenBlockS via USB

For a few bucks, you can build a cable to power the OpenBlockS from a USB port. This makes the OpenBlockS
quite a bit more portable since you won't have to carry around the power supply.

USB ports must provide at least 0.5 amps at 5 volts, which corresponds to 2.5 watts. Our tests indicate the
OpenBlockS draws as much as 0.64 amps from a USB port, which means the host system is providing more
power than is required by the specification. Chances are that yours will as well, but there is no guarantee. Note
that these measurements were taken when using a CF card for storage. We doubt that most USB ports provide
enough power for a laptop hard drive.

You'll need to be careful when other USB devices are connected to the host computer. In fact, the 0.5 amp
requirement is per-controller, rather than per-port. In other words, the available power is shared between all
USB devices connected to a single controller. With too many devices on one controller, you may not have
enough power to go around. Also, keep in mind that self-powered USB hubs generally do not provide as much
power, so if you decide to use a USB hub, verify that it will supply enough power.

Note: If you think the host computer cannot supply enough power for the OpenBlockS from a single controller, you can
use a "double USB cable" to combine the power from two controllers. That should, in theory, double the amount of current
available to the OpenBlockS. These double USB cables are often included with external laptop hard drive enclosures, but
we don't see them being sold separately. Of course, with a soldering iron and a little creativity you can create your own.

Building the cable is relatively easy and requires a little bit of soldering. Start with a normal USB cable and cut
off the end that does not plug into the computer. Strip off the protective coating, and you should find four wires.
Hopefully one will be red and another black. These are, most likely, the positive and negative power wires. If
you're not sure, grab a multimeter and test the wires with the cable plugged into a USB port, and with the
computer powered up. You've found the right pair when the multimeter reads +5.0 volts or so. Figure 7-10
shows the pin assignments for a standard USB type-A male connector.

Pinouts for USB Type A male connector.

Expose the bare wires and connect them to a DC power plug just like the one from the OpenBlockS power
supply. The one that we purchased has an outer diameter of 4.0 mm and an inner diameter of 1.7 mm. If you
don't have a local electronics parts store, search the Web for "DC power plug 1.7mm 4.0mm." We recommend
buying at least two in case you botch the first one. Be sure to check the power supply label for the plug polarity.
Ours has positive on the center of the plug and negative on the outside. Yours should be the same. Figure 7-11
shows the cable just after soldering the wires to the plug. Figure 7-12 shows the completed cable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: USB cables come in different thicknesses. If you find a DC power plug like the one we used, a thick USB cable may
not fit through the power plug's sheath. If you can find a thinner USB cable, however, it should fit just fine. The drawback
to using a thinner USB cable is that the wires are very thin and weak. You might have a harder time stripping and
soldering the thin wires, and the plug is more fragile until you can secure the sheath.

When your USB power cable is ready, try it out. If you have a multimeter, take a moment to test the continuity
of your new cable. If you have any doubts about your soldering skills, use the continuity tester to make sure
that the red and black wires are not in contact with each other. If it looks good, open a serial connection to the
console and plug in the power cable. Since the USB cable carries a nontrivial amount of electric current, be
prepared to unplug either end quickly if something doesn't seem right. You should see console output almost
immediately, just as you did with the normal power supply. Figure 7-13 shows how the finished unit looks.

USB power cable after soldering the red and black wires to the DC power plug.

Completed USB power cable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finished project with USB power, Ethernet crossover to laptop, and upstream Internet connection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

Here are a few additional ideas that you might want to try out on your OpenBlockS, whether or not you use it
for a bridging firewall.

Ethereal

Ethereal is a nice alternative to tcpdump for snooping on network traffic. It knows about more protocols and,
therefore, is able to provide more detailed information. However, it's also a larger package and more difficult to
compile. We recommend installing Ethereal only if you have a 256 MB or larger CF card, or a laptop hard drive
(see "Using a Laptop Hard Drive," later in this section).

Another feature of Ethereal is its graphical user interface, which uses the GTK toolkit. Since our little box doesn't
have any X Windows libraries (or other programs), we can't take advantage of the GUI. Fortunately, the
./configure script is smart enough to detect the missing libraries and compile only the text-based version.

If you are using a CF card, you'll want to extract the source code on the NFS server, then switch to the
OpenBlockS, mount the NFS share, and compile the source. The shell prompts in the following examples
indicate where each command should be executed from. If you have a laptop hard drive, you can extract there
and skip the NFS and chroot steps. Our instructions assume you're using NFS, just in case.

Ethereal depends on the glib library, which in turn requires something called pkg-config. You can get it from
pkgconfig.freedesktop.org:

nfs# cd

/disk/openblocks/comp-chroot/tmp

nfs# wget http://pkgconfig.freedesktop.org/releases/pkg-config-0.19.tar.gz

nfs# tar xzvf pkg-config-0.19.tar.gz

obs# chroot /nfs/comp-chroot /bin/sh

obs-chroot# cd /tmp/pkg-config-0.19

obs-chroot# ./configure && make && make install

Next, install glib, which is distributed with GTK. You can find it on the GTK FTP server at
ftp://ftp.gtk.org/pub/gtk/. We recommend using the latest stable glib version, which at this time is 2.4.8:

nfs# tar xzf glib-2.4.8.tar.gz

Then, on the OpenBlockS:

obs-chroot# cd /tmp/glib-2.4.8

obs-chroot# ./configure && make && make install

If you haven't already installed libpcap, as described in "Installing tcpdump," earlier in this chapter, you'll need
to do that before compiling Ethereal. You'll also need to make the operating system aware of the recently
installed libraries before compiling Ethereal. Otherwise, you may get some linking errors during the next step.
To make Linux rescan the shared library directories, simply execute the ldconfig command:

obs-chroot# ldconfig

Now you can compile Ethereal. Download it from http://www.ethereal.com if you haven't already done so. After
extracting the source code on the NFS server, use these commands to compile it on the OpenBlockS:

http://www.ethereal.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

obs-chroot# cd /tmp/ethereal-0.10.12

obs-chroot# ./configure && make

Note that the configure script should realize that you don't have any X-Windows libraries installed, or the GTK+
library in particular. It should still configure and compile the text-only version of Ethereal, named tethereal. As
you'll see, compilation proceeds slowly. You'll also probably see that it fails at a particular point when the linker
(ld) runs out of memory:

collect2: ld terminated with signal 15 [Terminated]

We tried various linker options, such as --no-keep-memory, but they didn't help. In the end, the only thing that

allowed us to get past this step was to create a swapfile for Linux. We found that a 30 MB swapfile was
sufficient. If you don't have 30 MB free on your filesystem, you probably shouldn't try to compile Ethereal
anyway, since it takes around 66 MB when installed.

Note that swapping to a CF card is a pretty bad idea in general, because flash memory has a limited number of
read/write cycles it can support. You should probably only do so in an emergency, such as this one. Here are the
commands for creating a swapfile:

obs# dd if=/dev/zero of=/swapfile bs=1M count=30

obs# mkswap /swapfile

obs# swapon /swapfile

With that, compilation proceeds without running out of memory, and we can finally install Ethereal:

obs-chroot# make && make install

Again, use rsync to copy the recently installed files from the comp-chroot directories to the CF card:

obs-chroot# exit

obs# rsync -av /nfs/comp-chroot/usr/local /usr

Don't forget to remove the swapfile when you're done compiling:

obs[164]# swapoff /swapfile

obs[165]# rm /swapfile

Then, run tethereal and see how it works and looks:

Code View:
obs# /usr/local/bin/tethereal

device br0 entered promiscuous mode

Capturing on br0

 0.000000 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=48

 0.010029 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=48

 0.010771 10.0.0.3 -> 10.0.0.21 TCP 4272 > ssh [ACK]

Seq=0 Ack=96

Win=58352 Len=0

 0.019840 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=48

 0.029939 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=48

 0.030656 10.0.0.3 -> 10.0.0.21 TCP 4272 > ssh [ACK]

Seq=0 Ack=192

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Win=58352 Len=0

 0.050106 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=48

 0.059844 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=48

 0.060582 10.0.0.3 -> 10.0.0.21 TCP 4272 > ssh [ACK]

Seq=0 Ack=288

Win=58352 Len=0

 0.070932 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=64

 0.079849 10.0.0.21 -> 10.0.0.3 SSH Encrypted response packet len=48

 0.080585 10.0.0.3 -> 10.0.0.21 TCP 4272 > ssh [ACK]

Seq=0 Ack=400

Win=58352 Len=0

Updating the Internal Flash

You already know how to update the internal flash with the flashcfg utility. The OpenBlockS BIOS also has a
special mode where it attempts to update the flash image using DHCP and TFTP. This may be particularly useful
if the internal flash memory somehow becomes corrupted, or flashcfg doesn't work. To enable this mode you
need to crack open the case and change a DIP-switch setting. Of course, the system should be powered off
while doing that. Remove the four side screws first and then remove the top cover. Next, remove the four
screws that keep the CF card adapter in place. Slide the adapter out of its snug-fitting 44-pin IDE connector.
With the adapter out of the way, you can see the small DIP switch with two switches located near the coin-sized
battery. Set switch #2 to ON, as shown in Figure 7-14.

Setting DIP switch #2 to ON inside the OpenBlockS.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With switch #2 set, the OpenBlockS will make DHCP requests on ETHER-0 before loading the flash image. If the
DHCP requests fail, it will proceed to load the flash image anyway. Since DHCP and/or TFTP might not work
correctly the first time, you may need to repeatedly power-cycle the OpenBlockS by disconnecting the power.

The first step is to configure a DHCP server on a working Unix system. We used the one developed by ISC and
put this in /etc/dhcpd.conf:

subnet 10.0.0.0 netmask 255.255.255.0 {

 range dynamic-bootp 10.0.0.11 10.0.0.20;

 option broadcast-address 10.0.0.255;

 filename "zImage.initrd.treeboot";

}

Note that zImage.initrd.treeboot is the name of the file that OpenBlockS will download (via TFTP) and store onto
the internal flash memory. The directory where that file exists is specified on the tfptd command line, which is
normally started by inetd. For example, here is the line for tfptd in our /etc/inetd.conf:

tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot

Thus, you should either copy zImage.initrd.treeboot to /tftpboot or change the TFTP directory in /etc/inetd.conf.

With dhcpd running and tftpd enabled in /etc/inetd.conf, you're ready to boot the OpenBlockS and watch what
happens. You should see it get an IP address and issue a TFTP request for the given file. Chances are, however,
that it won't work the first time. If your OpenBlockS is like ours, it doesn't answer ARP requests in this mode.
We had to manually add an ARP entry on the other system before it worked. We found the IP and Ethernet
addresses by running dhcpd with the -d option:

nfs# dhcpd -d

...

DHCPOFFER on 10.0.0.18 to 00:80:6d:51:02:cd via fxp0

DHCPDISCOVER from 00:80:6d:51:02:cd via fxp0

Then, we manually added the necessary ARP table entry:

nfs# arp -s 10.0.0.18 00: 80:6d:51:02:cd

Other problems that you may encounter include seeing errors like "permission denied" or "file not found." In
these cases, double-check your directory names, file names, and permissions on both. Also check your firewall
rules (if any) and run tcpdump or ethereal if necessary.

If everything goes well, you'll see something like this on the OpenBlockS console:

-- FLASH BOOT Update --

Sending bootp request ...

Loading file "blah.img" ...

Sending tftp boot request ...

Transfer Complete ...

Loaded successfully ...

FLASH UPDATE Success

Note that it may take a little time between before the last line appears- be patient.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After the flash has been updated, power down, change DIP switch #2 back to OFF and reboot. Make sure that it
correctly loads the new image before you replace everything and close up the case.

Using a Laptop Hard Drive

Another neat thing about the OpenBlockS is that it can use a laptop hard drive, like the one in Figure 7-15,
instead of the Compact Flash card. You might want to install a hard drive if you have one lying around, or if you
need a lot more disk space for some reason. Note that the hard drive consumes much more power than the CF
card. You should not use the USB power cable in conjunction with the hard drive. Use the normal power supply
instead.

Installing the hard drive is a simple procedure. Begin by halting the system and disconnecting the power.
Remove the top of the OpenBlockS case, then remove the four screws that secure the green CF adapter board
to the aluminum frame. Gently disconnect the adapter board from the 44-pin connector and remove it.

Your OpenBlockS kit should include a small, flexible grey square that appears to be some kind of plastic
material, as shown in Figure 7-16. The diagrams on the Japanese documentation show that the square should
be placed underneath the hard drive. We can only assume it's some kind of insulator or perhaps helps dissipate
heat from the hard drive to the case. The grey square just sits loosely on top of the aluminum frame. It may
move around a little bit, but won't go anywhere once the drive is installed on top of it.

Install the hard drive, as shown in Figure 7-17, by setting it in place and then sliding it forward into the 44-pin
connector. You may need to apply pressure to the connector so it doesn't get pushed too far forward. Once the
drive is in place, you can secure it to the aluminum frame with the four screws from the CF adapter board. Note
that the screws go into the side of the hard drive, rather than the bottom.

A laptop (2.5-inch) hard drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preparing to insert a hard drive in the OpenBlockS.

Inserting the laptop hard drive.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

After installing the hard drive, you can use it exactly as you used the CF card, except now you have much more
disk space! You'll need to partition the drive with fdisk and initialize the filesystem with mke2fs. We highly
recommend that you create at least two partitions on the hard drive: one for swapping and one or more for
filesystems.

Trying NetBSD

With a little effort you can get NetBSD, the world's most portable operating system, to run on the OpenBlockS.
The hardest part is finding a binary release that you can download and install. After a little searching, we found
one at http://tokuda.ddo.jp/NetBSD/. The good stuff was in a subdirectory named
20050924/evbppc/binary/sets. We downloaded the following files:

Code View:
-rw-r--r-- 1 wessels wessels 23670263 Sep 25 22:26 base.tgz

-rw-r--r-- 1 wessels wessels 168699 Sep 25 22:26 etc.tgz

-rw-r--r-- 1 wessels wessels 3076057 Sep 25 22:25 kern-OPENBLOCKS266.tgz

-rw-r--r-- 1 wessels wessels 8347733 Sep 25 22:27 man.tgz

The first step is to put the NetBSD kernel onto the OpenBlockS flash. The kern-OPENBLOCKS266.tgz archive
contains two files: netbsd and netbsd.img. The .img version should be written to the internal flash memory. If
the OpenBlockS is already running SSD/Linux, you can use the flashcfg utility. Otherwise, use the procedure
described in "Updating the Internal Flash," earlier in this section. If you try to boot NetBSD right after flashing,
you'll see that it sort of works, but it stops and prompts you for a root device. At this point we suggest that you
set up an NFS and DHCP server. Here is a sample configuration for the ISC DHCP server:

http://tokuda.ddo.jp/NetBSD/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

host openblocks {

 hardware ethernet 00:0a:85:01:95:62;

 fixed-address 10.0.0.28;

 next-server 10.0.0.21;

 option host-name "obs";

 option routers 10.0.0.3;

 option root-path "/disk/netbsd/ROOT";

}

Note that the next-server option specifies the NFS server's IP address. You can probably omit it if the DHCP
server and NFS server are the same system.

Next, create the /disk/netbsd/ROOT directory on the NFS server and fill it up with the base, etc, and man sets
that you downloaded:

nfs# mkdir /disk/netbsd/ROOT nfs# cd /disk/netbsd/ROOT

nfs# tar xzfp /tmp/base.tgz

nfs# tar xzfp /tmp/etc.tgz

nfs# tar xzfp /tmp/man.tgz

Another option is to populate the CF card from an existing NetBSD system, if you have one. This
works best if the existing system has the same architecture (PowerPC), but you may be able to
make it work from a different system and some creativity with a cross-compiler.

When the NFS and DHCP servers are ready, boot the NetBSD kernel and enter the following values when
prompted:

root device: emac0

dump device: (Hit Enter)

file system (default generic): nfs

root on emac0

nfs_boot: trying DHCP/BOOTP

nfs_boot: DHCP next-server: 10.0.0.21

nfs_boot: my_name=obs

Code View:
nfs_boot: my_addr=10.0.0.28

nfs_boot: my_mask=255.255.255.0

nfs_boot: gateway=10.0.0.3

root on 10.0.0.21:/disk2/netbsd/ROOT

root time: 0x434d7a15

inittodr: Clock has lost 13068 day(s) - CHECK AND RESET THE DATE.

warning: no /dev/console

init path (default /sbin/init): (Hit Enter) init: copying out path `/sbin/init' 11

init: Creating mfs /dev (408 blocks, 1024 inodes)

NetBSD has a neat trick: if /dev/console does not exist, it creates a memory filesystem for /dev and runs
MAKEDEV all there. This, unfortunately, failed on our OpenBlockS because the /dev filesystem ran out of

inodes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

uid 0, pid 1902, command mknod, on /dev: out of inodes

mknod: cgd0o: No space left on device

[...repeats...]

You may see a lot of these error messages, but they stop eventually. Then you'll be prompted to enter single-
user mode:

Enter pathname of shell or RETURN for /bin/sh: (Hit Enter)

Terminal type? [unknown] xterm

Use the following commands to put a NetBSD filesystem on the Compact Flash card:

Code View:
obs# fdisk -f /dev/wd0

wd0: no disk label

Disk: /dev/wd0c

NetBSD disklabel disk geometry:

cylinders: 980, heads: 8, sectors/track: 32 (256

sectors/cylinder)

total sectors: 250880

BIOS disk geometry:

cylinders: 980, heads: 8, sectors/track: 32 (256

sectors/cylinder)

total sectors: 250880

Partition table:

0: FreeBSD or 386BSD or old NetBSD (sysid 165)

 start 32, size 250848 (122 MB, Cyls 0-980), Active

1: <UNUSED>

2: <UNUSED>

3: <UNUSED>

obs# disklabel -e -I wd0

obs# disklabel -r wd0

wd0c:

type: ESDI

disk: SanDisk SDCFB-12

...

3 partitions:

size offset fstype [fsize bsize cpg/sgs]

 a: 250880 0 4.2BSD 0 0 0

 c: 250880 0 unused 0 0

obs# newfs /dev/rwd0a

Next, mount the NFS directory (again) and extract the base and etc sets onto the CF card:

obs# mkdir/nfs

obs# mount 10.0.0.21:/disk2/netbsd /nfs

obs# mount /dev /wd0a /mnt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obs# cd /mnt

obs# tar xzfp /nfs /base.tgz

obs# tar xzfp /nfs /etc.tgz

obs# umount /nfs

You'll need to make /dev entries on the CF card:

obs# cd /mnt/dev

obs# sh MAKEDEV std wd0 bpf

Note that we didn't make all devices to preserve disk space and inodes on the CF card. You may need to go
back and create more devices later.

You also need to create the /etc/fstab file:

obs# cat > /mnt/etc/fstab

/dev/wd0a/ffsrw 0 1

procfs/proc procfs rw 0 0

^D

obs# mkdir /mnt/proc

Finally, set a root password so that you can log in after the system boots from the CF card:

obs# chroot /mnt /bin/sh

obs-chroot# passwd root

New Password:

Retype New Password:

obs-chroot# exit

Now you should be able to reboot the system:

obs# reboot

This time, when the kernel prompts you, give these answers instead:

root device: wd0

dump device (default wd0b): none

file system (default generic): (Hit Enter)

root on wd0a

mountroot: trying lfs...

mountroot: trying ffs...

root file system type: ffs

init path (default /sbin/init): (Hit Enter)

At some point you'll see this message:

/etc/rc.conf is not configured. Multiuser boot aborted.

Enter pathname of shell or RETURN for /bin/sh:

Enter single-user mode, make the disk writable, and edit /etc/rc.conf. Change the rc_configured setting to

YES:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

obs# mount -o rw /

obs# vi /etc/rc.conf

rc_configured=YES

Now you can either type exit to continue to multi-user mode, or reboot to reboot again. After rebooting, you

should be able to log in as root and play around with NetBSD!

Note that NetBSD does not have a flashcfg utility. If you want to switch back to SSD/Linux, you'll need to use
the flash-updating procedure described in "Updating the Internal Flash," earlier in this section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cheap Wi-Fi SSH Client

In this project, we have a little fun with the ZipIt Wireless Messenger from Aeronix. This $99 handheld device is
sold as a way for kids to send instant messages without tying up the family PC. The ZipIt runs Linux and a
custom instant messenger application. We'll show you how to load another Linux distribution so you can run the
standard Unix utilities, including SSH. We'll also show you how to cross-compile and load your own programs
onto the ZipIt.

What You Need

ZipIt Wireless Messenger

PC running Windows, Linux, or BSD

Note: As we went to press, the manufacturers of the ZipIT released a software upgrade (version 2.xx) that makes it
impossible to use the software update procedure described in this chapter. If you buy a ZipIt and it happens to have the
old software (version 1.xx), you have only one chance to load Linux as described here. Once the ZipIt's software is
updated to version 2.xx, the only way to load Linux is by attempting the "3 wire mod" described at
http://aibohack.com/zipit/serial.htm.

Introducing the ZipIt Wireless Messenger

The Zipit Wireless Messenger is a small handheld computer with a keyboard and LCD screen and built-in Wi-Fi.
It is sold by K-Byte (a.k.a. Aeronix) as a device that kids can use to "instant message" their friends without
tying up the family computer. It's about the same size as a men's wallet (see Figure 8-1), and looks a lot like
the Nintendo Game Boy Advance SP.

The ZipIt supports the instant messenger protocols from AOL, Yahoo!, and MSN. Future software updates will

http://aibohack.com/zipit/serial.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

allow the ZipIt to play streaming audio through the small speaker or headphone jack. It comes in a number of
different colors. We bought a white one, shown in Figure 8-2. The ZipIt homepage is http://zipitwireless.com.

Inside, the ZipIt uses an ARM-based processor made by Cirrus Logic. It has 16 MB SDRAM and the software (or
firmware) is stored on 2 MB of flash memory. The Wi-Fi chip is made be Agere Systems, and the sound
processor by Wolfson Micro.

The keyboard, shown in Figure 8-3, is comparable in size to a BlackBerry. You won't be able to use many fingers
at once, which means typing will be a little slow. Depending on how you hold the ZipIt, you may find it easier to
just type with your thumbs. The keyboard has Alt, Shift, Control, and even Arrow keys. It does not have a
separate row for digits 0–9. For those you must use the Alt key, which can be frustrating. Another annoyance is
that the Enter and Backspace keys are not quite where you would usually expect to find them.

The LCD screen is 320 pixels wide and 240 pixels high, which is also known as Quarter VGA or QVGA. Each pixel
has 4 bits, or 16 shades of grey. This is a relatively common screen size for PDAs and mobile phones. As we'll
see later, the text-mode font uses 8x8 pixel characters, which results in a 40x30 character screen.
Unfortunately, there is no backlighting for the LCD. You cannot really use the ZipIt in low light.

The ZipIt uses an internal rechargeable battery and comes with a small A/C adapter, shown in Figure 8-4. The
battery seems to provide three or more hours of operating time, comparable to some laptops. The ZipIt Instant
Messenger application puts the device to sleep if the lid is closed, which makes the battery last even longer.

We mentioned that the ZipIt has a sound processor. A small speaker is located on the bottom. It also has a
headphone jack on the back side, as shown in Figure 8-5. In that same figure you can also see the on/off
switch, two status lights, and the power adapter jack.

Zipit's Wireless Messenger application runs on Linux, although most people would never know it. Aeronix
documents their use of Linux at http://www.zipitwireless.com/linux.html. Thanks to this and the work of a few
smart folks, you can load your own Linux software images onto the ZipIt.

The ZipIt opened up for use.

http://zipitwireless.com
http://www.zipitwireless.com/linux.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A closeup view of the keyboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ZipIt Wireless Messenger with its charger.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ZipIt's controls and connectors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cheap Wi-Fi SSH Client

In this project, we have a little fun with the ZipIt Wireless Messenger from Aeronix. This $99 handheld device is
sold as a way for kids to send instant messages without tying up the family PC. The ZipIt runs Linux and a
custom instant messenger application. We'll show you how to load another Linux distribution so you can run the
standard Unix utilities, including SSH. We'll also show you how to cross-compile and load your own programs
onto the ZipIt.

What You Need

ZipIt Wireless Messenger

PC running Windows, Linux, or BSD

Note: As we went to press, the manufacturers of the ZipIT released a software upgrade (version 2.xx) that makes it
impossible to use the software update procedure described in this chapter. If you buy a ZipIt and it happens to have the
old software (version 1.xx), you have only one chance to load Linux as described here. Once the ZipIt's software is
updated to version 2.xx, the only way to load Linux is by attempting the "3 wire mod" described at
http://aibohack.com/zipit/serial.htm.

Introducing the ZipIt Wireless Messenger

The Zipit Wireless Messenger is a small handheld computer with a keyboard and LCD screen and built-in Wi-Fi.
It is sold by K-Byte (a.k.a. Aeronix) as a device that kids can use to "instant message" their friends without
tying up the family computer. It's about the same size as a men's wallet (see Figure 8-1), and looks a lot like
the Nintendo Game Boy Advance SP.

The ZipIt supports the instant messenger protocols from AOL, Yahoo!, and MSN. Future software updates will

http://aibohack.com/zipit/serial.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

allow the ZipIt to play streaming audio through the small speaker or headphone jack. It comes in a number of
different colors. We bought a white one, shown in Figure 8-2. The ZipIt homepage is http://zipitwireless.com.

Inside, the ZipIt uses an ARM-based processor made by Cirrus Logic. It has 16 MB SDRAM and the software (or
firmware) is stored on 2 MB of flash memory. The Wi-Fi chip is made be Agere Systems, and the sound
processor by Wolfson Micro.

The keyboard, shown in Figure 8-3, is comparable in size to a BlackBerry. You won't be able to use many fingers
at once, which means typing will be a little slow. Depending on how you hold the ZipIt, you may find it easier to
just type with your thumbs. The keyboard has Alt, Shift, Control, and even Arrow keys. It does not have a
separate row for digits 0–9. For those you must use the Alt key, which can be frustrating. Another annoyance is
that the Enter and Backspace keys are not quite where you would usually expect to find them.

The LCD screen is 320 pixels wide and 240 pixels high, which is also known as Quarter VGA or QVGA. Each pixel
has 4 bits, or 16 shades of grey. This is a relatively common screen size for PDAs and mobile phones. As we'll
see later, the text-mode font uses 8x8 pixel characters, which results in a 40x30 character screen.
Unfortunately, there is no backlighting for the LCD. You cannot really use the ZipIt in low light.

The ZipIt uses an internal rechargeable battery and comes with a small A/C adapter, shown in Figure 8-4. The
battery seems to provide three or more hours of operating time, comparable to some laptops. The ZipIt Instant
Messenger application puts the device to sleep if the lid is closed, which makes the battery last even longer.

We mentioned that the ZipIt has a sound processor. A small speaker is located on the bottom. It also has a
headphone jack on the back side, as shown in Figure 8-5. In that same figure you can also see the on/off
switch, two status lights, and the power adapter jack.

Zipit's Wireless Messenger application runs on Linux, although most people would never know it. Aeronix
documents their use of Linux at http://www.zipitwireless.com/linux.html. Thanks to this and the work of a few
smart folks, you can load your own Linux software images onto the ZipIt.

The ZipIt opened up for use.

http://zipitwireless.com
http://www.zipitwireless.com/linux.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A closeup view of the keyboard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ZipIt Wireless Messenger with its charger.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ZipIt's controls and connectors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Updating the ZipIt Firmware

We'll be talking about two different firmware images. The first, called BURN3, is not much different than the
original firmware from Aeronix. One important difference, however, is that you get a Linux login prompt instead
of the ZipIt messenger application. Since the BURN3 firmware still includes the (large) messenger application,
the flash memory does not have room for many other Linux utilities. However, it does include a program that
makes it easier to update the flash memory, which you can use to load the second firmware image.

The other firmware image is called OpenZipIt. By removing the ZipIt messenger application, OpenZipIt makes
room for more Linux utilities. You'll find an SSH client and server, an IRC client, a number of MP3 utilities, as
well as most of the BusyBox programs. BusyBox is discussed elsewhere in Chapters 6 and Chapter 9.

We found the instructions for updating the firmware at http://aibohack.com/zipit/reflash.htm and
http://www.elinux.org/wiki/ZipItWiFiFlash. You may want to check those sites for additional or updated
information.

How It Works

One feature of the ZipIt instant messenger application is that it checks for software updates each time it runs.
We can exploit this feature to load a new firmware image. Here's an overview of the ZipIt's software update
procedure:

It issues a DNS request for www.zipitwireless.net.1.

It sends an HTTP request to www.zipitwireless.net. The requested URL includes a hexadecimal number
that identifies your ZipIt. The response contains three lines: the version number of the latest firmware, a
URL corresponding to the current firmware image, and a checksum.

2.

If the version number is newer, the ZipIt makes an HTTP request for the new firmware.3.

If the firmware download is successful and matches the checksum, it is written to the flash memory.
Following that the ZipIt reboots itself.

4.

The key to loading nonstandard firmware onto the ZipIt is intercepting the DNS query. Then you can force the
ZipIt to send the HTTP request to your own server. In the next two sections we provide step-by-step
instructions for loading new firmware. One method uses a program called zrs written by "AiboPet," which runs
under Microsoft Windows. The other uses BIND and Apache on a Unix box. Select the one that you are more
comfortable with.

You should always be cautious when updating the firmware on devices such as the ZipIt. If something goes
wrong during the middle of the procedure, the ZipIt may be left in a nonfunctioning state. The device is most
vulnerable when it is actually writing the new data to flash memory. If this operation does not complete (due to
loss of power, for example), it won't be able to boot up properly. If this happens to your Zip It, you may be able
to rescue it with a complicated procedure known as the "3 Wire mod." It involves soldering tiny wires onto the
ZipIt's circuit board, adding an RS-232 level shifter (see "Building a Console Cable" in Chapter 6), and uploading
a new kernel over a serial port. See http://aibohack.com/zipit/serial.htm, and good luck!

ZRS on Windows

http://aibohack.com/zipit/reflash.htm
http://www.elinux.org/wiki/ZipItWiFiFlash
http://aibohack.com/zipit/serial.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

In order to use this approach you need a Windows box with a wireless network interface. If you don't have a Wi-
Fi interface for the computer, you can use an access point connected directly to the computer's Ethernet
interface instead. In other words, connect the access point's WAN port to the PC, instead of to your cable/DSL
modem. Just make sure that the access point does not answer DHCP and/or DNS requests itself.

The most important step in this procedure is to make the ZipIt use the Windows box as its DNS server. The
ZipIt should find a wireless network, but not get an IP address from DHCP. Then you'll see a dialog box where
you can manually enter the ZipIt's IP address and DNS server. This procedure works best when there are no
other Wi-Fi networks nearby. Otherwise, the ZipIt may get an address from one of them and you won't be able
to manually set the IP addresses.

The Wireless Network Connection Status dialog box.

The Wireless Networks tab of the Wireless Network Connection Properties dialog box.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the step-by-step process for updating the firmware with Windows:

Download http://aibohack.com/zipit/zipit_reflash_kit03.zip and save it to the \TEMP directory on your
computer. Extract the .zip file so that new files are created in a subdirectory named
\TEMP\ZIPIT_REFLASH_KIT03.

1.

Stop the DHCP and DNS services if they are running. Go to Control Panel Administrative Tools
Services. If you see DHCP Server and DNS Server in the list of services, check their status. If the status is
Started, right click on the line and select the Stop option.

2.

Go to Control Panel Network Connections Wireless Network Connection, as shown in Figure 8-6.
Click on Properties and then click on the Wireless Network tab to see a window like the one in Figure 8-7.
Remove any existing networks from the Preferred Networks list. Select Add... and create a new network
named "zipnet," as shown in Figure 8-8. Set Network Authentication to Open, set "Data encryption" to
Disabled, and select the ad hoc checkbox at the bottom of the window. Click on OK when you are finished.

3.

Returning to the Wireless Network Connection Properties dialog box, select the General tab, shown in
Figure 8-9. Highlight the Internet Protocol (TCP/IP) line; then click on Properties, and you should see a
window like the one shown in Figure 8-10. Select the "Use the following IP address" option and enter the
IP address (10.0.4.1) and subnet mask (255.255.255.0); then click on OK.

4.

5.

http://aibohack.com/zipit/zipit_reflash_kit03.zip
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Turn on the ZipIt. It should find your "zipnet" network, but fail to get an IP address. It brings up a dialog
box where you can enter the ZipIt's address and DNS server. Enter 10.0.4.2 for the ZipIt's address,
255.255.255.0 for the netmask, and 10.0.4.1 for the DNS server and gateway. Do not press Next yet!

5.

On the Windows box, open a shell and go to the \TEMP\ZIPIT_REFLASH_KIT03 directory where you
unpacked zipit_reflash_kit03.zip. Run the following command, the output of which is shown in Figure 8-11:

zrs burn3 10.0.4.1

6.

Now press Next on the ZipIt. It should report that a software update is available and ask you for
confirmation. Press Next again, and watch the ZipIt download, verify, and install the new firmware. When
the update is complete, the ZipIt will reboot itself.

7.

Kill the zrs program on the Windows box by typing Ctrl-C. You may now take down the "zipnet" network
and restore the wireless network adapter to its previous settings.

8.

The Association tab of the Wireless Network Properties dialog box.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The General tab of the Wireless Network Connection Properties dialog box.

BIND and Apache

In order to use this approach, you need a wireless network with a BIND nameserver that you control, unzip for
Unix, and an HTTP server such as Apache. As with the Windows-based procedure, the most important step is
getting the ZipIt to send its DNS queries to your server. Here are the step-by-step instructions:

Assigning an IP address to your wireless network adapter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Running the ZRS command

On the DNS server, edit BIND's named.conf file, which is often found in the /etc/namedb directory, and1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

add the following lines:

zone "zipitwireless.net" {

 type master;

 file "/tmp/zipitwireless.net";

};

1.

Create the /tmp/zipitwireless.net zone file and add these lines:

$TTL 86400

$ORIGIN zipitwireless.net.

@ IN SOA your.host.name dns.your.host.name (

 1 3600 900 608400 86400)

 IN NS your.host.name.

www IN A 192.168.0.1

Replace your.host.name and 192.168.0.1 with the name and address of your server.

2.

Restart your nameserver and test the new configuration:

kill -HUP `cat /var/run/named.pid`

 # dig @127.0.0.1 www.zipitwireless.net

...

;; ANSWER SECTION:

www.zipitwireless.net. 1D IN CNAME zipitwireless.net.

zipitwireless.net. 1D IN A 192.168.0.1

3.

On your HTTP server, make a user named zippy, and create its home directory and a public_html
directory:

httpd# adduser zippy

 httpd# mkdir ~zippy

 httpd# mkdir ~zippy/public_html

4.

The ZipIt will first make an HTTP request for /~zippy/NNNNN.txt. Since we don't really know what NNNN
will be, we use an Apache trick to map all such files to a known filename. Add this line to httpd.conf:

AliasMatch ^/~zippy/.*\.txt /home/zippy/public_html/current.txt

Don't forget to restart Apache after changing the configuration file. For example:

httpd# /etc/init.d/apache2.sh restart

5.

Download http://aibohack.com/zipit/zipit_reflash_kit03.zip and save it to your /tmp directory.6.

We need two files from the zipit_reflash_kit03.zip archive. One is burn3.txt, and the other is burn3.bin.
Copy these to zippy's public_html directory:

7.

http://aibohack.com/zipit/zipit_reflash_kit03.zip
http://lib.ommolketab.ir
http://lib.ommolketab.ir

httpd# cp /tmp/burn3.txt /tmp/burn3.bin .

httpd# cat burn3.txt

1.99

http://wherever/burn3.bin

E9FD47F7CE97390B2447DFE096F86479

Edit burn3.txt and change the URL line to this:

http://www.zipitwireless.net/~zippy/burn3.bin

7.

Make current.txt a symbolic link to burn3.txt:

ln -s burn3.txt current.txt

8.

Test the whole setup by requesting the following URL, either with a command line client such as wget, or
with your favorite web browser:

wget http://www.zipitwireless.net/~zippy/XXXXXX.txt

You should see:

1.99

http://www.zipitwireless.net/~zippy/burn3.bin

E9FD47F7CE97390B2447DFE096F86479

9.

You may want to run some debugging commands before starting the update procedure. You can use
tcpdump on the DNS server like this:

tcpdump -n -s 1500 -v port domain

We also recommend that you watch the Apache access log with a command like this:

httpd# tail -f /var/log/apache2/access_log

10.

Turn on the ZipIt. Watch the screen to make sure that it selects your Wi-Fi network (instead of your
neighbor's). Within a short time, you should see a screen that says "An update for the the ZipIt(tm)
Wireless Messenger is available." Press Next again and watch the ZipIt download, verify, and install the
new firmware. When the update is complete, the ZipIt will reboot itself.

11.

Do not forget to remove the zipitwireless.net zone from your named.conf file. If you do not, you'll be very
confused later on if you try to download something from the real site but keep getting error messages
coming from your own server.

12.

http://wherever/burn3.bin
http://www.zipitwireless.net/~zippy/burn3.bin
http://www.zipitwireless.net/~zippy/burn3.bin
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Playing with the BURN3 Firmware

When you turn on the ZipIt after loading the BURN3 firmware, you should see Tux the penguin peeking over the
top of the ZipIt logo and a message that says "Hacked by ZipItPet." After a short time, you should also see a
login prompt, as shown in Figure 8-12. Type root and press Enter. There is no password, so you should get a

shell prompt right away.

Try out a few Unix commands, such as ls, ps, df, and df. Thanks to BusyBox, you should find a lot of standard
Unix utilities on the ZipIt. However, a person can have only so much fun running programs like pwd, mv, and
echo.

One of the first things you'll notice is that the screen is only 40 characters wide. This means you'll get a messy
display from programs, such as ifconfig, that assume the screen is at least 80 characters wide. See Figure 8-13
for an example. Another annoyance is the penguin logo stays at the top of the screen, which makes the
effective display area smaller than necessary. If you press Alt-P2, you'll get a login prompt on the second virtual
console, which does not have the logo. Alt-P1 takes you back to the first.

Using the keyboard is relatively straightforward, although frustrating at times. Entering IP addresses is a pain
since you have to hold down the Alt key for each number, but not for the period separating them. The Next key
sends a Tab character, which is useful for command-line completion. The arrow keypad works just like the
arrows on your full-size keyboard. Press the ... key to get the Escape character, and press Alt-... to get a pipe
character ("|").

The Linux login prompt.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Running ifconfig.

About the most exciting thing you can do from this firmware is associate with a wireless access point, get an IP
address, and ping another computer. The Wi-Fi interface usually associates with the strongest network by
default. You can use iwconfig to see which network, if any, is currently associated:

iwconfig eth0

eth0 IEEE 802.11b ESSID:"plugh" Nickname:"Linux"

 Frequency:2.427 GHz Access Point: 00:30:AB:0A:E3:2B

 Bit Rate=11.534 Mb/s

 ...

Use this command if you need to make the ZipIt associate with a particular Wi-Fi network:

iwconfig eth0 essid OtherNet

If your Wi-Fi network uses WEP (Wired Equivalent Privacy), you can set the key with this command:

iwconfig eth0 key XXXX-XXXX-XXXX-XXXX

Once the wireless network is set up, you can probably get an IP address via DHCP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

udhcpc eth0

udhcpc (v0.9.9-pre) started

Sending discover...

Sending select for 172.16.0.242

Lease of 172.16.0.242 obtained, lease time 3600

Now that your ZipIt has an IP address, you can ping something:

ping 172.16.0.1

PING 172.16.0.1 (172.16.0.1) 56 bytes of data.

64 bytes from 172.16.0.1: icmp_seq=1 ttl=64 time=9.0 ms

64 bytes from 172.16.0.1: icmp_seq=2 ttl=64 time=8.1 ms

64 bytes from 172.16.0.1: icmp_seq=3 ttl=64 time=7.4 ms

64 bytes from 172.16.0.1: icmp_seq=4 ttl=64 time=6.7 ms

64 bytes from 172.16.0.1: icmp_seq=5 ttl=64 time=5.1 ms

Note that the filesystem is actually a RAM disk. The compressed filesystem image is stored on the flash
memory. The RAM disk is created each time the system boots, but changes are not written back to the flash
memory. If you edit a file, such as /etc/network/interfaces, the changes will be lost when you turn off the ZipIt.

When you're done using the ZipIt, simply turn it off. Indeed, this is your only option since there is no halt or

shutdown command. Since it uses a RAM disk, you don't need to worry about corrupting the filesystem.

Running the Original ZipIt Application

If you'd like to use the ZipIt's instant messenger application, simply type zrun. You should then see the familiar

screens as the ZipIt searches for wireless networks and connects to your instant messenger accounts.

Note that there is no way to exit the instant messenger application and return to the Linux shell. The only way
to get back to the shell is to power-cycle the ZipIt. Furthermore, if you turn the ZipIt on again within a short
amount of time, you'll probably find the instant messenger application is still running. Turning off the device
with that application running puts it into sleep mode. We found that the ZipIt must remain off for a minute or
two to fully power-cycle it.

If you want to revert back to the manufacturer's firmware, follow the instructions in "Reverting to the Original
Firmware". Otherwise, if you want to have even more Linux fun with the ZipIt, install the OpenZipIt firmware as
described in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Loading OpenZipIt

OpenZipIt is a firmware image that doesn't have the ZipIt messenger application. Instead, it includes some
additional Linux libraries and utilities. The most interesting new application is the Dropbear SSH client and
server. OpenZipIt also includes a curses-based IRC client called weechat. The other utilities are related to
playing MP3 files and controlling the sound system.

Note that you must have the BURN3 firmware loaded before you can install the OpenZipIt firmware. The
procedure for loading OpenZipIt is to mount an NFS filesystem and then use the zflash utility to copy new files
to the ZipIt's flash memory.

The first step is to configure a Linux or BSD system as an NFS server. (See the Appendix for those instructions.)
In the following instructions, we assume that your exported directory is named /exported/dir.

When the NFS server is ready, download and unpack http://www.aibohack.com/zipit/zipit_tool_extras.zip. Copy
the two files named zflash and loader.bin to your export directory:

nfs# cd /tmp

nfs# unzip /tmp/zipit_tool_extras.zip

nfs# ls -l NFS_REFLASH

total 42

-rw-rw-rw- 1 wessels wessels 3376 Apr 8 16:22 loader.bin

drwxrwxrwx 2 wessels wessels 512 Apr 8 15:58 src_loader

drwxrwxrwx 2 wessels wessels 512 Apr 8 16:03 src_zflash

-rw-rw-rw- 1 wessels wessels 35152 Apr 8 16:22 zflash

nfs# cp NFS_REFLASH/loader.bin NFS_REFLASH/zflash /exported/dir

nfs# chmod 755 /exported/dir/zflash

Next, download zimage.dat and ramdisk.gz from http://groups.yahoo.com/group/zipitwireless/files/OpenZipit/.
You'll need a Yahoo! account to access these files. Copy or save them to the exported directory as well:

nfs# cp zimage.dat ramdisk.gz /exported/dir

Everything is now in place to load the new firmware. But first, we have a little time-saving tip: typing long
commands on the ZipIt can be frustrating. We recommend that you make a little shell script in /exported/dir
named go.sh containing the following command line:

./zflash loader.bin zimage.dat ramdisk.gz

Turn on your ZipIt (with the BURN3 firmware) and log in as root. Execute the necessary commands to get an IP
address and make sure you can ping your NFS server:

zipit# udhcpc eth0

zipit# ping 172.16.0.4

Then, mount the NFS filesystem with this command:

zipit# mount -r -o nolock -o intr 172.16.0.4:/exported/dir /mnt

zipit# cd /mnt

zipit# ls

go.sh loader.bin ramdisk.gz zflash zimage.dat

zipit# sh go.sh

http://www.aibohack.com/zipit/zipit_tool_extras.zip
http://groups.yahoo.com/group/zipitwireless/files/OpenZipit/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The zflash program performs some sanity checks on the files that you give it. If you've done everything
correctly, it asks if you really want to overwrite the flash memory:

WARNING: this is a dangerous operation

--

 if power is disconnected during the

 process, the device won't work again

 if the data files provided are flawed

 the device may never boot again

Repairing the device requires soldering

 Danger level = DANGEROUS

(to proceed type "Yes")

Proceed? Yes

DANGEROUS OPERATION BEGUN

 DO NOT UNPLUG POWER/BATTERY

Erasing FlashROM...Erased!

Writing FlashROM...Wrote!

Verify FlashROM...Verified!

All done

(please reset the device)

When it is done, turn off the power, wait a few seconds, and then turn it back on. When it reboots you should
have a screen with Tux the Penguin and a login prompt.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Playing with OpenZipIt

Logging in and setting up the network is the same as with the BURN3 firmware. Log in as root with no
password. Use iwconfig and udhcpc to configure the network.

Remote Access with SSH

SSH is probably the most useful application on your new firmware. It allows you to log in remotely to your other
systems. If you can stand using the small screen, you can now carry around the small ZipIt instead of your
bulky laptop. As long as you can log into a shell account somewhere, you can run text-mode applications
remotely to your heart's content: lynx or links for surfing the Web, centericq for AIM/MSN/ICQ, and of course
frotz for your interactive fiction needs. OpenZipIt uses the Dropbear SSH client and server
(http://matt.ucc.asn.au/dropbear/dropbear.html). If you normally use OpenSSH on your Linux and/or BSD
boxes, you should find that Dropbear works almost exactly the same:

zipit# ssh -l wessels 172.16.0.4

Host '172.16.0.4' is not in the trusted hosts file.

(fingerprint 77:ae:a8:21:25:7c:ef:77:87:b9:46:0f:36:88:73:81)

Do you want to continue connecting? (y/n) y

Password:

If you plan to use curses-based applications, such as vi and top, remotely, you probably want to make sure that
the remote host knows about your limited screen size. You can use stty to print the screen size:

remote% stty -a

speed 9600 baud; 30 rows; 40 columns

....

If you get a different answer, you can force the correct screen size, also with stty:

remote% stty rows 30 cols 40

Streaming Audio

In theory the ZipIt hardware and OpenZipIt software should allow you to play streaming MP3 audio files. In
practice it doesn't quite work perfectly yet, at least not for us. Nonetheless, its kind of fun to experiment with.

The first step is to load a few kernel modules that enable the sound drivers:

zipit# insmod wm8751l

zipit# insmod ep7212_audiodma

zipit# insmod zipitaudio

The developer of OpenZipIt left a shell script named /usr/bin/go2 that contains those commands. You can avoid
typing the long insmod commands and just run go2 instead.

You'll also need a streaming audio server running on another machine. We chose to use a simple server called
AMPLE (http://ample.sourceforge.net/). Shoutcast is another obvious choice.

The OpenZipIt streaming audio client is called freebase. Start it with a URL that refers to your server. For
example:

http://matt.ucc.asn.au/dropbear/dropbear.html
http://ample.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

zipit# freebase http://172.16.0.4:1234/

You should hear music coming out of the ZipIt's small speaker. The sound is much better if you use the
headphone output. However, you'll probably hear the music cut out unless the MP3 file is 64 Kb/sec or less.

You can control the audio output volume with a program called aumix. To use it, however, you must also specify
the mixer device name, which is nonstandard:

zipit# aumix -d /dev/zipm -I

Setting the Time

OpenZipit also includes an NTP client program, named ntpclient. You can use this simple utility to set the
device's date and time:

zipit# ntpclient 172.16.0.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

Now that you're enjoying Linux on the ZipIt, here are some tips and ideas for future improvements.

Modifying the RAM disk

You may want to modify certain configuration files on the RAM disk. You may also want to add new programs or
other files to the disk image. Here's the basic procedure:

nfs# gunzip ramdisk.gz

nfs# mount ramdisk /mnt -t ext2 -o loop=/dev/loop0

nfs# ls /mnt

bin etc lib lost+found opt root tmp var

dev home linuxrc mnt proc sbin usr

Now you can edit and add files under the /mnt partition. When you're done, unmount it and compress it again:

nfs# umount /mnt

nfs# gzip -9 ramdisk

Now you can store the updated ramdisk.gz image on the ZipIt with the zflash procedure described in "Loading
OpenZipIt," earlier in this chapter. You can add new files as long as ramdisk.gz stays under 1.4 MB.

Reverting Back to the BURN3 Firmware

You can use the zflash procedure (described in "Loading OpenZipIt") to put the BURN3 firmware back onto your
ZipIt. You'll need to download http://www.aibohack.com/zipit/zipit_parts_burn3.zip. This is the same BURN3
firmware image, except it is separated into three files suitable for use with zflash.

Reverting to the Original Firmware

If you want to go all the way back to the original ZipIt firmware, you can download it from the
www.zipitwireless.net web site and use either of the techniques described in the previous sections "ZRS on
Windows" or "BIND and Apache."

First, check the "Release history" section of http://elinux.org/wiki/ZipItTechDetails for the current software
release. You'll see a table of version numbers, filenames, and checksums. Download the latest firmware image.
For example:

wget http://www.zipitwireless.net/~zippy/bootrom.S73HS0O1.bin

Then, create a corresponding .txt file that refers to the firmware filename and has the correct checksum:

cat > bootrom122.txt <<EOF

1.99

http://www.zipitwireless.net/~zippy/bootrom.S73HS0O1.bin

9146A4C0D370EB0524838E7B06AED343

EOF

You should now be able to perform the update using either your own DNS and Apache servers ("BIND and
Apache") or with the zrs utility on Windows ("ZRS on Windows").

http://www.aibohack.com/zipit/zipit_parts_burn3.zip
http://elinux.org/wiki/ZipItTechDetails
http://www.zipitwireless.net/~zippy/bootrom.S73HS0O1.bin
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cross Compiling

If you're willing to work at it, you can compile your own programs to run on the ZipIt. Of course, you can't just
compile and run any old program. A particular program may not compile if it tries to use libraries or hardware
features that do not exist for the ZipIt. Check out the cross-compiling instructions at
http://elinux.org/wiki/ZipItCompile if you'd like to give it a try.

http://elinux.org/wiki/ZipItCompile
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bluetooth LED Sign

In this chapter we'll show you how to use a gumstix "waysmall" computer to control an LED moving sign. These
are the signs that you see displaying scrolling messages in bars, restaurants, airports, and so on. The sign we're
using has a serial port and a relatively open control protocol. The waysmall computer has two serial ports and a
Bluetooth interface. It receives messages for the sign via Bluetooth and then issues appropriate formatting and
control commands over a serial port to the sign.

What You Need

Gumstix basix platform board with Bluetooth

Gumstix waysmall STUART expansion board

Multi Media Card (optional)

(2) Mini-DIN-8 to DB9 null-modem serial cables

Scrolling LED sign with serial port, such as Pro-Lite Tru-Color II

RJ11 plug

RJ11 plug crimper

PC running Linux with GCC installed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bluetooth-enabled PC, phone, or PDA

If you're having a hard time seeing why we think this is a cool project, here are some ideas:

Use it in a NOC environment to know when critical systems or services go down.

Build your own news or stock ticker.

Display text messages received from IM or IRC.

Allow people to entertain themselves by posting messages from their mobile phones.

Display the artist and title of a song being played on your digital jukebox.

Remind you when the next bus or train is coming.

If you just want to control the sign from a computer, you don't really need the gumstix. All you need is a serial
port and some code. However, using Bluetooth opens up more possibilities, such as sending messages from
PDAs and mobiles phones, and easily allowing more than one person (or computer) to display a message.

The inspiration for this project goes back to a Linux Journal article published in 1999 in Issue 62
(http://www.linuxjournal.com/article/2823). The author of that article, Walt Stoneburner, also maintains a
number of web pages about various LED signs (http://wls.wwco.com/ledsigns/). Walt's original work was done
with the Pro-Lite PL-M2014R sign, with which he seems to have a love/hate relationship. He also mentions
BetaBrite signs as another inexpensive alternative. In fact, both Pro-Lite and BetaBrite appear to use the same
communication protocol.

We decided to use a Pro-Lite sign also, largely because someone has written a Perl module that implements the
control protocol. We purchased a Pro-Lite sign through eBay, not really knowing if it would work with this
module. In fact it works very well. It turned out to be a PL-M2014RV6, which is printed only on the back of the
sign. Neither the user manual nor box gives any hint as to the model number of the sign. This leads us to
believe that Pro-Lite probably does not make any other similar signs that are not compatible with the same
control protocol.

Introducing the gumstix

The gumstix is an extremely small general-purpose computer system by today's standards. It is based on Intel's
XScale processor, which is really an ARM CPU. The gumstix is similar to the kind of hardware that you'd find
inside a cell phone, PDA, or GPS. Not surprisingly, the gumstix is about the same size and shape as a stick of
gum, as shown in Figure 9-1 and Figure 9-2.

The gumstix comes in either 200 or 400 MHz models. The original boards have 4 MB flash memory and 64 MB
RAM. Newer "xm" models feature 16 MB flash memory. A version of Linux (currently kernel 2.6.11) and the
BusyBox suite of applications are pre-installed.

http://www.linuxjournal.com/article/2823
http://wls.wwco.com/ledsigns/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Front side of the gumstix board.

Back side of the gumstix board, showing Bluetooth and MMC connectors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The gumstix comes with a number of daughterboard options. Technically, "gumstix" refers only to the CPU
board itself. When paired with a daughter board and a case, the gumstix becomes a "waysmall" computer. We'll
use the terms interchangeably in this book.

For this project we've chosen the waysmall STUART daughterboard, which includes two serial ports and a USB
device interface; it also allows you to use Bluetooth in addition to the two serial ports (earlier offerings were
wired up in such a way that the second serial port and the Bluetooth port used the same UART). Figure 9-3
shows the two boards side by side. Note that the "waysmall original board" also has two serial ports, but you
cannot use the second port and the Bluetooth interface at the same time.

The waysmall STUART board allows us to use them together. A number of other daughter boards are available
from the manufacturer, including some with audio, Compact Flash, and even Ethernet.

The gumstix board also includes a Multi Media Card (MMC) slot. Here you can add more storage if the on-board
flash memory (4 or 16 MB) is not enough. You might want to get an MMC card for the gumstix, if only because it
is a convenient way to transfer files. Note that even though Secure Digital (SD) memory cards look exactly like
MMC cards, they are not quite the same thing (see http://en.wikipedia.org/wiki/Secure_Digital). Both MMC and
SD seem to work well from Linux. However, if you want to access the card from the gumstix boot monitor,
perhaps to copy a new software image, you'd better stick with MMC.

http://en.wikipedia.org/wiki/Secure_Digital
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bluetooth LED Sign

In this chapter we'll show you how to use a gumstix "waysmall" computer to control an LED moving sign. These
are the signs that you see displaying scrolling messages in bars, restaurants, airports, and so on. The sign we're
using has a serial port and a relatively open control protocol. The waysmall computer has two serial ports and a
Bluetooth interface. It receives messages for the sign via Bluetooth and then issues appropriate formatting and
control commands over a serial port to the sign.

What You Need

Gumstix basix platform board with Bluetooth

Gumstix waysmall STUART expansion board

Multi Media Card (optional)

(2) Mini-DIN-8 to DB9 null-modem serial cables

Scrolling LED sign with serial port, such as Pro-Lite Tru-Color II

RJ11 plug

RJ11 plug crimper

PC running Linux with GCC installed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bluetooth-enabled PC, phone, or PDA

If you're having a hard time seeing why we think this is a cool project, here are some ideas:

Use it in a NOC environment to know when critical systems or services go down.

Build your own news or stock ticker.

Display text messages received from IM or IRC.

Allow people to entertain themselves by posting messages from their mobile phones.

Display the artist and title of a song being played on your digital jukebox.

Remind you when the next bus or train is coming.

If you just want to control the sign from a computer, you don't really need the gumstix. All you need is a serial
port and some code. However, using Bluetooth opens up more possibilities, such as sending messages from
PDAs and mobiles phones, and easily allowing more than one person (or computer) to display a message.

The inspiration for this project goes back to a Linux Journal article published in 1999 in Issue 62
(http://www.linuxjournal.com/article/2823). The author of that article, Walt Stoneburner, also maintains a
number of web pages about various LED signs (http://wls.wwco.com/ledsigns/). Walt's original work was done
with the Pro-Lite PL-M2014R sign, with which he seems to have a love/hate relationship. He also mentions
BetaBrite signs as another inexpensive alternative. In fact, both Pro-Lite and BetaBrite appear to use the same
communication protocol.

We decided to use a Pro-Lite sign also, largely because someone has written a Perl module that implements the
control protocol. We purchased a Pro-Lite sign through eBay, not really knowing if it would work with this
module. In fact it works very well. It turned out to be a PL-M2014RV6, which is printed only on the back of the
sign. Neither the user manual nor box gives any hint as to the model number of the sign. This leads us to
believe that Pro-Lite probably does not make any other similar signs that are not compatible with the same
control protocol.

Introducing the gumstix

The gumstix is an extremely small general-purpose computer system by today's standards. It is based on Intel's
XScale processor, which is really an ARM CPU. The gumstix is similar to the kind of hardware that you'd find
inside a cell phone, PDA, or GPS. Not surprisingly, the gumstix is about the same size and shape as a stick of
gum, as shown in Figure 9-1 and Figure 9-2.

The gumstix comes in either 200 or 400 MHz models. The original boards have 4 MB flash memory and 64 MB
RAM. Newer "xm" models feature 16 MB flash memory. A version of Linux (currently kernel 2.6.11) and the
BusyBox suite of applications are pre-installed.

http://www.linuxjournal.com/article/2823
http://wls.wwco.com/ledsigns/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Front side of the gumstix board.

Back side of the gumstix board, showing Bluetooth and MMC connectors.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The gumstix comes with a number of daughterboard options. Technically, "gumstix" refers only to the CPU
board itself. When paired with a daughter board and a case, the gumstix becomes a "waysmall" computer. We'll
use the terms interchangeably in this book.

For this project we've chosen the waysmall STUART daughterboard, which includes two serial ports and a USB
device interface; it also allows you to use Bluetooth in addition to the two serial ports (earlier offerings were
wired up in such a way that the second serial port and the Bluetooth port used the same UART). Figure 9-3
shows the two boards side by side. Note that the "waysmall original board" also has two serial ports, but you
cannot use the second port and the Bluetooth interface at the same time.

The waysmall STUART board allows us to use them together. A number of other daughter boards are available
from the manufacturer, including some with audio, Compact Flash, and even Ethernet.

The gumstix board also includes a Multi Media Card (MMC) slot. Here you can add more storage if the on-board
flash memory (4 or 16 MB) is not enough. You might want to get an MMC card for the gumstix, if only because it
is a convenient way to transfer files. Note that even though Secure Digital (SD) memory cards look exactly like
MMC cards, they are not quite the same thing (see http://en.wikipedia.org/wiki/Secure_Digital). Both MMC and
SD seem to work well from Linux. However, if you want to access the card from the gumstix boot monitor,
perhaps to copy a new software image, you'd better stick with MMC.

http://en.wikipedia.org/wiki/Secure_Digital
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Assembling the System

When you receive your gumstix kit you'll need to assemble the following pieces:

The gumstix processor board

The waysmall STUART daughter board (part number BRD00003)

The waysmall case

The Bluetooth antenna (included with the processor board)

The gumstix and waysmall daughter board.

The gumstix and waysmall boards connected, with SD memory card inserted.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What's a STUART

The gumstix's PXA processor has four different UARTs, or Universal Asynchronous Receiver
Transmitters. They are named FFUART, STUART, BTUART, and HWUART. The first serial port is
connected to FFUART. The waysmall STUART board connects the STUART to the second serial port.
That means that you cannot use both Bluetooth and the second serial port with the original
waysmall board. See http://www.gumstix.org/tikiwiki/tiki-view_faq.php?faqId=13.

Snapping the two boards together is simple. Align the boards on top of each other so that the white, rectangular
connectors are together. Press the boards together until you hear a "snap." Figure 9-4 shows how they look
when connected and with an MMC card inserted into the slot. At this point you can actually start tinkering with
the gumstix if you like. But you might as well take the time to fit it into its little case.

The two boards should fit snugly inside the white plastic waysmall case. Figure 9-5 shows our case, which
unfortunately didn't come with a cutout for the Bluetooth antenna, so we made our own. It looks like the
gumstix site does sell a version of the case with a hole for the antenna. Either we ordered the wrong one or
they only offered it after we bought ours. Since the case is made of plastic, it is easy to cut out a notch. We
marked the top of the case with two lines on each side of the antenna and used a small coping saw to cut out
the notch, as shown in Figure 9-6. The result is shown in Figure 9-7.

http://www.gumstix.org/tikiwiki/tiki-view_faq.php?faqId=13
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exploring the gumstix

To start playing with the gumstix, connect the serial port cable between the gumstix and your PC, and use a
terminal program such as kermit, screen, or HyperTerminal to set up a serial console and then apply power. In
Figure 9-8 you see a pair of round mini-din connectors, which are serial ports. The one that is closest to the
center is ttyS0, or the console port. The other one is ttyS2. The gumstix serial port is configured for 115,200
bps and 8N1.

We need to cut a notch in the waysmall case for the Bluetooth antenna.

Cutting the case with a coping saw.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Bluetooth antenna installed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The power connector is located on the side of the case. As soon as you apply power, you should see the
following output on the console:

U-Boot 1.1.1 (Oct 3 2004 - 18:38:12)

*** Welcome to Gumstix ***

U-Boot code: A3F00000 -> A3F1B01C BSS: -> A3F4CB54

RAM Configuration:

Bank #0: a0000000 64 MB

erase_region_count = 32 erase_region_size = 131072

Flash: 4 MB

Hit any key to stop autoboot: 0

JFFS2 loading 'boot/uImage' to 0xa2000000

Scanning JFFS2 FS: done.

JFFS2 load complete: 809898 bytes loaded to 0xa2000000

Booting image at a2000000 ...

 Image Name: uImage

 Image Type: ARM Linux Kernel Image (gzip compressed)

 Data Size: 809834 Bytes = 790.9 kB

 Load Address: a0008000

 Entry Point: a0008000

 Verifying Checksum ... OK

 Uncompressing Kernel Image ... OK

Starting kernel ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then you'll see a more-or-less typical Linux kernel boot sequence. At the end is a login prompt:

Welcome to the Gumstix Linux Distribution!

gumstix login:

Enter root at the login prompt and gumstix for the password. Then you should have a no-frills shell prompt

from which you can run commands such as ps, ls, and df. Note that most of these commands are a part of the
BusyBox collection, which we also talked about in Chapter 6.

Take some time to explore the system and find out what's there and what's not. For example, the gumstix has
vi, but not less. It has an SSH server (Dropbear) and an HTTP server (Boa). It has ifconfig, ping, and other
networking utilities, but no true Ethernet interfaces.

Be sure to take a moment to marvel at how much functionality the gumstix has on its tiny, 4MB filesystem:

df -h

Filesystem Size Used Available Use% Mounted on

/dev/mtdblock2 3.8M 3.4M 388.0k 90% /

Customizing the System

Admittedly, there is not much to customize, but you might want to:

Change the root password.

Add a non-root user.

Change the hostname, via /etc/hostname.

Change the time zone, via /etc/TZ.

In the next section, we'll show you how to add software packages to the gumstix.

Connecting the waysmall computer to a laptop: You can get Ethernet on other gumstix expansion
boards, just not on the one we are using (waysmall STUART).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Building Software for the gumstix

The gumstix folks provide a nifty buildroot environment. This is a directory structure that you can copy to an
existing Linux box. It provides a cross-compiler so you can build new binaries for the gumstix. You'll need the
cross compiler later when we write some code for sending messages to the sign.

The buildroot environment is available through a Subversion source code control server. To get it, you first need
to install a Subversion client on your other Linux box. For example, to install the Subversion client on Gentoo,
try this:

USE="-berkdb" emerge -av subversion

With Subversion installed, use this command to check out the gumstix buildroot environment:

svn co http://svn.gumstix.com/gumstix-buildroot/trunk gumstix-buildroot

You may notice that the checked-out repository is not very big (about 15 MB). That's because it doesn't actually
contain all the files that you need to create the environment. It mostly contains scripts, Makefiles, and empty
directories. These scripts and Makefiles download various source files, such as a C library, C/C++ compiler, and
the Linux kernel, from various other locations. To finish the installation:

cd gumstix-buildroot

make

Unless something is seriously wrong, make should run to completion without errors. The end result is a J2FFS
filesystem image, which will be named root_fs_arm_nofpu.

The buildroot environment includes some extra software packages that are not built by default. For example, we
were frustrated with the BusyBox /bin/sh and wanted to use bash instead. Getting bash compiled for the
gumstix is as easy as adding this line to the top-level Makefile:

TARGETS+=bash

Then run make again. You can search the Makefile for other commented-out TARGETS lines to see what other
software is available. You can also list the *.mk files in the make directory.

After you've built new software, how should you copy it to the gumstix? If you have a program like minicom,
you can use the Zmodem file-transfer protocol to upload it. Another option is to use a MMC card, if you have
one. Unfortunately you cannot (or should not) remove the MMC card while the system is running. A third option
is to connect the gumstix's USB port to another computer and use usbnet (see
http://www.gumstix.org/tikiwiki/tiki-index.php?page=tutorial) to copy the files over. Finally, another way is to
install the new J2FFS filesystem image on the gumstix flash. Although that procedure is overkill if you have just
one or two files to copy, we'll describe it anyway, in case you want to upgrade all of the gumstix software later.

Note: These instructions for installing a new filesystem image come from the gumstix.org web site. Be sure to check
there occasionally for more recent instructions.

The gumstix boot monitor, called u-boot, supports uploading new filesystem images with the Kermit transfer

http://www.gumstix.org/tikiwiki/tiki-index.php?page=tutorial
http://lib.ommolketab.ir
http://lib.ommolketab.ir

protocol. We'll use the Kermit terminal emulation program on Linux to do this:

% kermit

C-Kermit 8.0.209, 17 Mar 2003, for Linux

 Copyright (C) 1985, 2003,

 Trustees of Columbia University in the City of New York.

Type ? or HELP for help.

C-Kermit> set port /dev/tts/0

C-Kermit> set speed 115200

/dev/tts/0, 115200 bps

C-Kermit> set carrier-watch off

C-Kermit> connect

Connecting to /dev/tts/0, speed 115200

Power up your gumstix and interrupt the boot procedure by pressing any key within three seconds:

U-Boot 1.1.1 (Oct 3 2004 - 18:38:12)

*** Welcome to Gumstix ***

U-Boot code: A3F00000 -> A3F1B01C BSS: -> A3F4CB54

RAM Configuration:

Bank #0: a0000000 64 MB

erase_region_count = 32 erase_region_size = 131072

Flash: 4 MB

Hit any key to stop autoboot: 0

GUM>

From here, issue the following command to tell the gumstix you are uploading a file:

GUM> loadb a2000000

Then escape back to the Kermit prompt by typing Control-\ C (or whatever it told you the escape sequence

is). At the Kermit prompt, issue the following commands to send the file:

C-Kermit> robust

C-Kermit> send /tmp/root_fs_arm_nofpu

Kermit displays the upload progress, which should take a few minutes. When it's done, you'll see the C-Kermit

prompt again. Connect back to the serial port, and you'll see a status message from the gumstix about the
upload:

C-Kermit> connect

Connecting to /dev/tts/0, speed 115200

 Escape character: Ctrl-\ (ASCII 28, FS): enabled

Type the escape character followed by C to get back,

or followed by ? to see other options.

--

Total Size = 0x003b2da4 = 3878308 Bytes

Start Addr = 0xA2000000

Then, issue the following commands to install the new filesystem image on the gumstix flash. Note, if you have
a 16 MB "xm" model, use era 1:2-127 instead:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

GUM> echo ${filesize}

3B2DA4

GUM> era 1:2-31

Erase Flash Sectors 2-31 in Bank # 1

.............................. done

GUM> cp.b a2000000 40000 ${filesize}

Copy to Flash... done

GUM>

When it's done, reboot the gumstix:

GUM> reset

resetting ...

U-Boot 1.1.1 (Oct 3 2004 - 18:38:12)

*** Welcome to Gumstix ***

U-Boot code: A3F00000 -> A3F1B01C BSS: -> A3F4CB54

RAM Configuration:

Bank #0: a0000000 64 MB

erase_region_count = 32 erase_region_size = 131072

Flash: 4 MB

Hit any key to stop autoboot: 0

JFFS2 loading 'boot/uImage' to 0xa2000000

Scanning JFFS2 FS: done.

JFFS2 load complete: 710820 bytes loaded to 0xa2000000

Booting image at a2000000 ...

 Image Name: uImage

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 710756 Bytes = 694.1 kB

 Load Address: a0008000

 Entry Point: a0008000

 Verifying Checksum ... OK

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Learning About Bluetooth

One of the most exciting things about the gumstix is its built-in Bluetooth interface. Bluetooth is sometimes
called "Personal Area Networking," which is to say that it has a range of about 10 feet. One of the most common
uses for Bluetooth today is for mobile phone headsets and synchronizing PDAs.

Bluetooth devices support a number of "profiles" designed to facilitate interoperation. For example, there's a
headset profile, a fax profile, a serial port profile, a file transfer profile, and many more. We'll be using the
Serial Port (SP) profile, which creates a virtual serial port over a Bluetooth connection.

The gumstix boots with Bluetooth enabled, so we don't need to worry about configuring the kernel or drivers.
For example, you should see something like this when the kernel boots:

Bluetooth: Core ver 2.7

NET: Registered protocol family 31

Bluetooth: HCI device and connection manager initialized

Bluetooth: HCI socket layer initialized

Bluetooth: HCI UART driver ver 2.1

Bluetooth: HCI H4 protocol initialized

Bluetooth: L2CAP ver 2.6

Bluetooth: L2CAP socket layer initialized

Bluetooth: BNEP (Ethernet Emulation) ver 1.2

Bluetooth: BNEP filters: protocol multicast

Bluetooth: RFCOMM ver 1.3

Bluetooth: RFCOMM socket layer initialized

Bluetooth: RFCOMM TTY layer initialized

Those messages indicate Bluetooth support in the kernel. One of the system rc scripts, /etc/init.d/S30bluetooth,
is responsible for configuring devices and starting various daemon processes. It is executed automatically each
time the system boots. You can also run it manually to start and stop the Bluetooth-related daemons:

/etc/init.d/S30bluetooth stop

Stopping Bluetooth subsystem: pand dund rfcomm hidd sdpd hcid

/dev/ttyS3.

To start them again, run:

/etc/init.d/S30bluetooth start

Set (GPIO,out,clear) via /proc/gpio/GPIO7

Set (GPIO,out,set) via /proc/gpio/GPIO7

Starting Bluetooth subsystem: /dev/ttyS3 hcid sdpd rfcomm pand.

pand is the Personal Area Network daemon. It provides TCP/IP over Bluetooth. As cool as it sounds, you won't
need it for this project. You can disable pand by editing /etc/default/bluetooth. Find the PAND_ENABLE variable

and set it to false.

HCI stands for Host Controller Interface. hcitool and hciconfig are tools that you'll use to configure Bluetooth on
the gumstix. Use this command to see the address of the local interface:

hcitool dev

 hci0 00:80:37:1C:3A:FF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You may want to add this address to your /etc/bluetooth/hosts file:

echo 00:80:37:1C:3A:FF gumstix

> /etc/bluetooth/hosts

Also run hciconfig, which should remind you of ifconfig:

hciconfig hci0 up

hciconfig -a

hci0: Type: UART

 BD Address: 00:80:37:1C:3A:FF ACL MTU: 672:8 SCO MTU:

64:0

 UP RUNNING PSCAN ISCAN INQUIRY

RX bytes:900 acl:0 sco:0 events:99 errors:0

 TX bytes:838 acl:0 sco:0 commands:48 errors:0

 Features: 0xff 0xfb 0x01 0x00 0x00 0x00 0x00 0x00

 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

 Link policy: RSWITCH HOLD SNIFF PARK

 Link mode: SLAVE ACCEPT

 Name: 'Gumstix (0)'

 Class: 0x820116

 Service Classes: Networking, Information

 Device Class: Computer, Palm

 HCI Ver: 1.1 (0x1) HCI Rev: 0x8105 LMP Ver: 1.1 (0x1) LMP

 Subver: 0x8d40

 Manufacturer: Ericsson Technology Licensing (0)

We initially had a lot of difficulty with Bluetooth on the gumstix. It was not communicating very well with other
Bluetooth devices. At first, we suspected interference from our nearby 802.11 network. But eventually we found
some good suggestions in the gumstix-users mailing list archive. The trick was to change the setting for
HCIATTACH_SPEED in /etc/default/bluetooth:

HCIATTACH_SPEED=230400

Most Bluetooth interfaces for PCs have a USB interface. On the gumstix, however, Bluetooth uses a Universal
Asynchronous Receiver/Transmitter (UART), which is essentially a serial port. hciattach is the program that
attaches the Bluetooth device to the UART. HCIATTACH_SPEED is the speed at which these two devices should

communicate. The default setting of 921600 is too high, especially for our 200 MHz model gumstix. By lowering
this setting, all of our Bluetooth communications problems disappeared. These speed problems may have been
fixed in the recent gumstix software releases. However, since this application does not require high speed
communication, we still recommend the 230400 setting.

The hcid daemon manages local Bluetooth devices and responds to certain Bluetooth queries. It has a
configuration file, named /etc/bluetooth/hcid.conf. This configuration file is where you'll set the security policy
and other parameters, such as the device name. Here is our hcid.conf:

HCId options

options {

 autoinit yes;

 security none;

 pairing none;

}

Default settings for HCI devices

device {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 name "LED sign";

 class 0x820116;

 iscan enable; pscan enable;

 lm master,accept;

 lp rswitch,hold,sniff,park;

}

The security none line means that other Bluetooth devices can connect without establishing a trust

relationship first. If you set it to auto instead, you'll need to place a numeric password in /etc/bluetooth/pin and

give that number to Bluetooth users who are allowed to connect.

One of the most important hcid.conf settings is the link mode (lm), which we set to master,accept. In a

Bluetooth connection, one side is the master and the other side is the slave. The device that initiates a
connection assumes the role of master. This means that the gumstix becomes the slave for incoming
connections. However, when the gumstix is the slave, it becomes undiscoverable by other devices. Fortunately,
Bluetooth allows devices to switch roles after connecting. The link-mode setting controls how the device treats
incoming connections. When set to master,accept this device accepts incoming connections in slave mode, but

then requests to switch roles and become the master.

Testing the Bluetooth Connection

Eventually, our goal is to be able to send messages to the sign from a phone or PDA. But if you are new to
Bluetooth, you'll probably have an easier time if you start playing with another Bluetooth-enabled Linux
computer. To demonstrate how to get Bluetooth up and running, we'll show you how to log into the gumstix
from another computer.

On your other computer, make sure that Bluetooth is up and running. If you've never done this before, you may
want to refer to Chapter 7 of Linux Unwired (O'Reilly). When you have the Bluetooth interface up and the
gumstix nearby, run this command on the other computer:

desktop # hcitool inq

Inquiring ...

 00:80:37:1C:3A:FF clock offset: 0x2269 class:

0x820116

If you don't get any output the first time, run the command again. Note that the Bluetooth address
(00:80:37:1C:3A:FF here) should match what you see in the hciconfig output on the gumstix. If not, then

either you are running the command from the wrong computer or you have other Bluetooth devices nearby.

At this point you can try using l2ping to test low-level Bluetooth connectivity:

desktop # l2ping 00:80:37:1C:3A:FF

Ping: 00:80:37:1C:3A:FF from 00:E0:98:CC:A3:B4 (data size 20) ...

20 bytes from 00:80:37:1C:3A:FF id 200 time 37.74ms

20 bytes from 00:80:37:1C:3A:FF id 201 time 31.09ms

20 bytes from 00:80:37:1C:3A:FF id 202 time 35.18ms

20 bytes from 00:80:37:1C:3A:FF id 203 time 28.39ms

20 bytes from 00:80:37:1C:3A:FF id 204 time 30.48ms

20 bytes from 00:80:37:1C:3A:FF id 205 time 36.68ms

20 bytes from 00:80:37:1C:3A:FF id 206 time 42.81ms

The next step is to try to establish a "serial port" connection over Bluetooth. This uses a Bluetooth protocol
called Radio Frequency Communications (RFCOMM). To begin, you must bind a remote Bluetooth address to a
local pseudo-tty device. Here is the command that binds the first RFCOMM tty to the gumstix Bluetooth address:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

desktop # rfcomm bind 0 00:80:37:1C:3A:FF

To print the current bindings, run rfcomm with no arguments:

desktop # rfcomm

rfcomm0: 00:80:37:1C:3A:FF channel 1 clean

Next, configure a serial port communications program, such as minicom, to open the rfcomm device. It might be
either /dev/bluetooth/rfcomm/0 or /dev/rfcomm0, depending on your particular Linux distribution and version.
The port speed settings are unimportant for Bluetooth. After starting the communications program, press Enter
a few times and you should see a login prompt:

Welcome to the Gumstix Linux Distribution!

gumstix login:

Now you can log into the gumstix over Bluetooth. If you are brave, you can even do away with the serial cable
connected to ttyS0 and just use Bluetooth instead. We don't recommend it, however.

Here are some other commands that may help you debug Bluetooth problems. When the Bluetooth connection
is established, rfcomm shows some slightly different output:

desktop # rfcomm

rfcomm0: 00:80:37:1C:3A:FF channel 1 connected [tty-attached]

You can also see some connection information with hcitool:

desktop # hcitool con

Connections:

 < ACL 00:80:37:1C:3A:FF handle 41 state 1 lm MASTER

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Pro-Lite LED Sign

For this project we need a LED messaging sign that we can control through a serial port. Unfortunately, the
market for these signs is not very "hacking friendly." That is, the sign makers perceive their customers as
people who are not smart enough to write their own software for controlling the sign. Sign manufacturers do not
openly publish the protocols used to control their signs. The LED signs are often expensive and sold as a part of
a kit that includes Windows-based software or even a dedicated computer.

Figure 9-9 shows what the PL-M2014R looks like. It's slightly more than two feet wide and four inches high. The
power and serial port connectors are on the left side. It also comes with a remote control (not pictured). Figure
9-10 is a close-up of the sign. Here you can see the individual pixels (LEDs). The display is 7 LEDs high and 80
wide. The sign is wide enough to display about 13 characters in the normal font.

Purchasing a Pro-Lite sign can be a little tricky. Only a few online retailers offer it, and you may have to call a
salesperson to place an order. We used Ebay, where a small number of Pro-Lite signs were selling for between
$50 and $175.

Pro-Lite Sign Features

The PL-M2014R has 26 pages, named with the letters A to Z. Each page is limited to about 1,000 characters.
Pages can either be displayed individually, or chained together. When displayed individually, the message in a
given page is displayed over and over until the sign is instructed to do otherwise. In chained mode, pages are
displayed one after the other, repeating in the same order each time.

The PL-M2014R boasts 26 different "colors." In fact, it has five different colors (red, orange, yellow, lime,
green), 3 brightness levels (dim, normal, bright), and a number of color combinations (rainbow, green on red,
etc). See Table 9-1 (page 257) for the list of available colors.

The sign also has 8 different "fonts" or character sizes. In addition to the normal font, it has bold, italic, and
flashing. These can be combined to create fonts such as "flashing bold italic." See Table 9-2 (page 258) for the
full list.

The Pro-Lite PL-M2014R LED sign.

Close-up of the Pro-Lite sign showing individual pixels.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The sign also has 26 different "effects." Most of these determine how messages appear or disappear. For
example, you can have messages enter from the left, top, or bottom, or just appear all at once. Also included
among the possible effects are commands to pause the scrolling display and to show the date and time. See
Table 9-3 (page 259) for the full list of effects.

The Pro-Lite has a trivia mode and comes with a number of pre-loaded questions and answers. In trivia mode it
displays a normal page, then question, then another normal page, and finally the answer. You can delete all the
trivia data to have more memory for your own messages. You can also program your own trivia questions and
answers.

If you just need the sign to display messages that don't change very often, you can use the infrared remote
control. However, for our purposes, we'll need to use the sign's serial port to send instructions from the
gumstix.

The Serial Port

The Pro-Lite sign should come with a serial cable. It has a DB9 connector on one end and an RJ11 plug on the
other. The gumstix uses a round 8-pin Mini-DIN connector, so this cable won't work. You might be able to find a
DB9-to-Mini-DIN-8 adapter, but we think it's not too difficult to make a custom cable. One easy way is to buy a
pre-made cable with the Mini-DIN connector, then cut off the other end and crimp an RJ11 plug in its place.

The serial cable needs only three wires: receive data, transmit data, and signal ground. On the mini-din
connector these are pins 3 (Transmit), 4 (Ground), and 5 (Receive). These should be connected to pins 1, 2,
and 3 of the RJ11 plug as shown in Figure 9-11. Note that we're assuming the RJ11 plug has 4 pins, such that 2
and 3 are in the center, but some might actually have 6. If you have a 6-pin plug, then add one to the RJ11 pin
assignments.

The PL-M2014R's serial port defaults to 9,600 bps, which is the highest speed that it supports.

Diagram of the serial cable between gumstix and the sign.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using the gumstix's second serial port on the waysmall STUART board requires a little bit of voodoo. We have to
tell the gumstix processor to connect the second serial port to the PXA's STUART. Put the following lines into
/etc/init.d/S60ttyS2 and make the file executable:

#!/bin/sh

#

Configure /dev/ttyS2

#

if test "$1" = "start" ; then

 echo "Configuring /dev/ttyS2:"

 modprobe proc_gpio

 echo "AF2 in" > /proc/gpio/GPIO46

 echo "AF1 out" > /proc/gpio/GPIO47

fi

Then either reboot or run the script manually:

/etc/init.d/S60ttyS2 start

Configuring /dev/ttyS2:

Set (AF2,in,set) via /proc/gpio/GPIO46

Set (AF1,out,set) via /proc/gpio/GPIO47

Testing the Sign's Serial Port

After building the cable, you should test it out to make sure that everything is connected and working properly.
Here's how you can send some simple test messages to the sign from the shell:

T=/dev/ttyS2

stty -F $T speed 9600 cs8 \

 -parenb -cstopb cread clocal \

 -crtscts -ignpar -echo nl1 cr3

stty -F $T opost -ocrnl onlcr

cat $T >/dev/null &

echo '<ID01>' > $T

echo '<ID01><PA>testing 1 2 3 ... ' > $T

echo '<ID01><RPA>' > $T

The stty commands configure certain serial port parameters, such as the speed, flow-control, and other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

settings. The cat command is necessary to read characters coming back from the sign. The echo commands

send data to the sign.

Each sign command begins with the token <ID01>. This is the identifier for sign #1, in case you have multiple

signs chained together. The first command that we send is empty and is there just to wake up the sign in case
we haven't talked to it for a while. The second command sends some text to the sign. <PA> refers to page A of

the sign's memory. The third command, <RPA>, means "run page A."

Here's another neat little trick. You can use the following command to display the current date and time:

date '+<ID01><PA>%c ' > $T

As you continue playing with the sign, you'll probably discover some of its annoying quirks. In particular,
updates to the currently displayed page take effect immediately. In other words, a long message gets cut off as
soon as you send a new one. Normally, this won't be a problem. But it does become difficult to use the sign as a
frequently updated display. To see what we mean, try this:

while true; do date '+<ID01><PA>%c ' > $T ; sleep 1 ; done

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Putting It All Together

By now you should have Bluetooth working. That is, you can log in to the gumstix over Bluetooth from another
computer or perhaps a PDA. You should also be able to send messages to the LED sign over the serial port. In
this section, we'll explain how to glue these two together.

Bluetooth Configuration

One of the neat things about Bluetooth is you can run a number of different services on the same interface
using channels. We'll actually run a number of "virtual serial ports" over the Bluetooth connection. This allows
multiple PDAs/phones/computers to be connected at the same time. It also means that we can reserve one
channel for logging into the gumstix and the other channels for talking to the sign. By default the gumstix runs
getty on channel 1. We need to set up the other channels using rfcomm.

Earlier we showed you how to use rfcomm bind on another computer to bind a local RFCOMM device to a

remote Bluetooth address. But on the gumstix we don't know the addresses of the devices that will connect. We
want to accept RFCOMM connections from anyone. In this case we use rfcomm listen instead. It waits for an

RFCOMM connection on a given channel and then sets up the necessary binding. Our getty process uses
rfcomm0 and channel 1. Use this command to accept incoming connections on rfcomm1 and channel 2:

gumstix # /usr/sbin/rfcomm -r listen 1 2

rfcomm listen waits for a remote connection, stays running as long as the other side is connected, and then

exits when the connection is closed. Therefore, we need a way to start another rfcomm listen for the next

incoming connection. You can use a while loop in a shell script or, even better, do so by adding these lines to
/etc/inittab:

null::respawn:/usr/sbin/rfcomm -r listen 1 2

null::respawn:/usr/sbin/rfcomm -r listen 2 3

null::respawn:/usr/sbin/rfcomm -r listen 3 4

null::respawn:/usr/sbin/rfcomm -r listen 4 5

null::respawn:/usr/sbin/rfcomm -r listen 5 6

Reboot or type init -q to have init re-read its configuration file and start these processes.

By default, the gumstix only has four RFCOMM device entries in /dev. The preceding example goes up to
rfcomm5, so we'll need to add at least two more. One way to do it is by editing sources/device_table.txt in the
gumstix-buildroot source tree. Then, of course, build and install a new filesystem image as described in
"Building Software for the gumstix," earlier in this chapter. An easier way is to execute a few mknod commands

manually. Even though /dev/ is a memory filesystem, the device entries should persist between reboots. To add
four new RFCOMM devices, run:

/bin/mknod /dev/rfcomm4 c 216 4

/bin/mknod /dev/rfcomm5 c 216 5

/bin/mknod /dev/rfcomm6 c 216 6

/bin/mknod /dev/rfcomm7 c 216 7

Next, we need to talk about Bluetooth's Service Discovery Protocol (SDP). This protocol allows one Bluetooth
device to ask another about the services it provides. For example, to see the services offered by your gumstix,
you can type:

gumstix # sdptool browse ff:ff:ff:00:00:00

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Services are not automatically advertised. Even though we have some rfcomm listeners, they won't be
announced via SDP until we explicitly add them. The syntax is:

gumstix # /usr/bin/sdptool add --channel=2 SP

Note that SP refers to Bluetooth's Serial Port profile. It is essentially a virtual serial port running over the
Bluetooth connection.

You may have noticed that the gumstix advertises an SP on RFCOMM channel 1 by default. This channel is used
by getty so we can log in to the gumstix over Bluetooth. We think it is a good idea to leave getty running, but
you probably don't want it announced by SDP because, as we'll see later, certain Bluetooth applications will try
connecting to the first SP channel they find. They should connect to the LED sign process, rather than getty. So
we need to delete this channel from the SDP configuration. We recommend adding the following lines to
/etc/init.d/S31bluetooth:

delete the entry for channel 1, which connects to our getty

assume its id is always 0x10000

/usr/bin/sdptool del 0x10000

/usr/bin/sdptool add --channel=2 SP

/usr/bin/sdptool add --channel=3 SP

/usr/bin/sdptool add --channel=4 SP

/usr/bin/sdptool add --channel=5 SP

/usr/bin/sdptool add --channel=6 SP

If you want to get really fancy, you can also use sdptool to add descriptions for each SP channel:

/usr/bin/sdptool setattr 0x010001 0x100 "LED Sign Chan 1"

/usr/bin/sdptool setattr 0x010002 0x100 "LED Sign Chan 2"

/usr/bin/sdptool setattr 0x010003 0x100 "LED Sign Chan 3"

/usr/bin/sdptool setattr 0x010004 0x100 "LED Sign Chan 4"

/usr/bin/sdptool setattr 0x010005 0x100 "LED Sign Chan 5"

Getting Messages from Bluetooth to the Sign

The next step in our little project is to write some code that reads messages from the RFCOMM devices, adds
some formatting instructions, and then writes them to the Pro-Lite sign. Example 9-1 shows one way to
accomplish this in C. We call this program rfcomm-to-sign.

Example. The rfcommm-to-sign.c program

Code View:
#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <err.h>

#include <assert.h>

#include <termios.h>

#include <syslog.h>

#include <errno.h>

#include <sys/file.h>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

#define INPUT_BUF_LEN 1024

#define LOCK_PATH "/tmp/sign.lck"

int

get_sign_lock(void)

{

 int fd = open(LOCK_PATH, O_RDONLY|O_CREAT);

 if (fd < 0)

 err(1, LOCK_PATH);

 if (flock(fd, LOCK_EX) < 0)

 err(1, LOCK_PATH);

 return fd;

}

int

open_sign(char *dev)

{

 struct termios T;

 int fd = open(dev, O_RDWR);

 if (fd < 0)

 err(1, dev);

 syslog(LOG_DEBUG, "sign opened");

 if (tcgetattr(fd, &T) < 0)

 err(1, "tcgetattr");

 cfsetspeed(&T, B9600);

 T.c_cflag = CS8 | CREAD | CLOCAL;

 T.c_iflag = 0;

 T.c_oflag = 0;

 T.c_lflag = 0;

 T.c_cc[VMIN] = 0;

 T.c_cc[VTIME] = 0;

 if (tcsetattr(fd, TCSANOW, &T) < 0)

 err(1, "tcgetattr");

 return fd;

}

Code View:
int

open_rfcomm(char *dev)

{

 int fd;

 for (;;) {

 if ((fd = open(dev, O_RDWR)) >= 0)

 break;

 if (ENODEV != errno)

 err(1, dev);

 sleep(3);

 }

 syslog(LOG_DEBUG, "%s opened", dev);

 return fd;

}

int

read_rfcomm(int fd, char **line)

{

 static char inbuf[INPUT_BUF_LEN];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 char c;

 int l = 0;

 while ((read(fd, &c, 1) > 0) && l <

INPUT_BUF_LEN) {

 if (c == 0xd || c == 0xa || c == 0x0) {

 if (l)

 break;

 else

 continue;

 }

 inbuf[l++] = c;

 }

 inbuf[l] = 0;

 syslog(LOG_DEBUG, "read {%s}", inbuf);

 *line = &inbuf[0];

 return l;

}

int

write_sign(int fd, char *buf, int len)

{

 int i;

 char junk[10];

 for (i = 0; i < len; i++) {

 if (write(fd, buf+i, 1) < 0) {

 syslog(LOG_ERR, "write_sign: %s", strerror(errno));

 break;

 }

 read(fd, junk, 10);

 usleep(5000);

 }

 return i;

}

int

write_sign_str(int fd, char *buf)

{

 int len = 0;

 syslog(LOG_NOTICE, "writing {%s} to FD %d", buf, fd);

Code View:
len = write_sign(fd, buf, strlen(buf));

 len += write_sign(fd, "\r\n", 2);

 return len;

}

int

write_message(int fd, char *buf, int len, char *page, char *nextpage)

{

 int nblen = len + 50;

 char *newbuf = malloc(nblen);

 write_sign_str(fd, "<ID01>");

 snprintf(newbuf, nblen, "<ID01><P%s>%s<FZ><%s>", page, buf, nextpage);

 write_sign_str(fd, newbuf);

 free(newbuf);

 return 0;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

void

validate_page(char *page)

{

 if (strlen(page) > 1 || *page < 'A' || *page > 'Z')

 errx(1, "Page should be a single character A-Z");

}

int

main(int argc, char *argv[])

{

 int rfcomm;

 char *buf = NULL;

 char *rfcomm_dev = NULL;

 char *sign_dev = NULL;

 char *page = NULL;

 char *nextpage = NULL;

 if (argc != 5) {

 fprintf(stderr,

 "usage: rfcomm-to-sign rfcommdev signdev page nextpage\n");

 exit(1);

 }

 openlog("rfcomm-to-sign", 0, LOG_DAEMON);

 rfcomm_dev = argv[1];

 sign_dev = argv[2];

 page = argv[3];

 nextpage = argv[4];

 validate_page(page);

 validate_page(nextpage);

 rfcomm = open_rfcomm(rfcomm_dev);

 for (;;) {

 int len;

 int lock;

 int sign;

 write(rfcomm, "ready>\r\n", 7);

 if ((len = read_rfcomm(rfcomm, &buf)) < 0)

 break;

 lock = get_sign_lock();

 sign = open_sign(sign_dev);

write_message(sign, buf, len, page, nextpage);

 close(sign);

 close(lock);

 }

 return 0;

}

Here's how rfcomm-to-sign works. It takes four command-line arguments: an RFCOMM device pathname, the
serial port pathname for the sign, and two sign page names (A–Z). The first page refers to where the message
will be stored, while the second will be the name of the page to display after this one.

The program begins by opening the RFCOMM device. The open() call will fail until another device establishes a

connection on the corresponding channel, so the program loops until the open() call succeeds. Then it reads

http://lib.ommolketab.ir
http://lib.ommolketab.ir

characters from the RFCOMM device. When it reads an end-of-line character, it writes the message to the sign.
Since the sign serial port may be shared by numerous processes (i.e., other RFCOMM channels), the program
uses file locking to make sure that it has exclusive access to the serial port while writing.

Note that you can't compile source code on the gumstix itself. You'll need to cross-compile it on another Linux
box using buildroot tools, described in "Building Software for the gumstix," earlier in this chapter. Assuming the
source code file is named rfcomm-to-sign.c, you can compile it like this (adjusting the pathnames as
necessary):

desktop # XGCC=/some/where/gumstix-buildroot/build_arm_nofpu/staging_

dir/bin/arm-linux-uclibc-gcc

desktop # $XGCC -Wall -o rfcomm-to-sign rfcomm-to-sign.c

Copy the binary to the gumstix using Zmodem, Kermit, or with the MMC card. You need to run the program for
every RFCOMM channel that you want to use. Assuming you've saved the binary as /usr/bin/rfcomm-to-sign,
add these lines to /etc/inittab:

null::respawn:/usr/bin/rfcomm-to-sign /dev/rfcomm1 /dev/ttyS2 A B

null::respawn:/usr/bin/rfcomm-to-sign /dev/rfcomm2 /dev/ttyS2 B C

null::respawn:/usr/bin/rfcomm-to-sign /dev/rfcomm3 /dev/ttyS2 C D

null::respawn:/usr/bin/rfcomm-to-sign /dev/rfcomm4 /dev/ttyS2 D E

null::respawn:/usr/bin/rfcomm-to-sign /dev/rfcomm5 /dev/ttyS2 E A

As usual, execute init -q to have init start these processes without rebooting.

Note that rfcomm-to-sign uses syslogd for most errors and debugging. Check /var/log/messages for errors and
notifications the first few times you run the program. Also keep in mind that /var/log/messages is on a memory
filesystem and is lost each time you reboot. If you have problems, run the program from a shell window and see
what happens when you send a message to the sign through Bluetooth.

Mounting the gumstix to the back of the Pro-Lite sign.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mounting the gumstix on the Sign

Most likely you'll want to put the sign up on display for others to see. If so, you can take a few minutes and
attach the gumstix to the back of the sign, as shown in Figure 9-12. With a few sticky pads and cable ties, you
can hide everything, including the serial cable. You'll probably want to leave the Bluetooth antenna sticking up
(or down) a little bit for better reception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sending Messages to the Sign

Finally we have everything in place to send a message to the sign from a Bluetooth-enabled device. This section
describes a few ways to do just that!

From PalmOS

If you have a Palm PDA or a phone that runs PalmOS, you can install the free BtSerial Pro application from
http://www.whizoo.com/apps/btserial.php. As the name implies, it is a Bluetooth serial port communication
program.

After launching BtSerialPro, you'll see the screen shown in Figure 9-13. Click on Open to locate nearby Bluetooth
devices. BtSerialPro opens up another little window and displays a list of device names, as shown in Figure 9-14.
We gave our gumstix the name "LED sign" (in /etc/bluetooth/hcid.conf). Click on Connect to establish the
Bluetooth connection.

When BtSerialPro establishes a Bluetooth connection, you should see the diagnostic messages shown in Figure
9-15. It will say "RFCOMM connection up!" and tell you about the maximum packet size. The ready> prompt

comes from our rfcomm-to-sign program and provides further evidence that the communication is working
properly.

Now you can enter some text to send to the sign. Either use the Grafitti area or bring up the keyboard and enter
a message. Figure 9-16 shows where we typed "go cougs!" on the Send line. After clicking on the Send button,
BtSerialPro writes the message over the RFCOMM channel to the sign. Then our program sends another ready>

prompt, indicating it is ready for another message.

From KDE

KDE, the K Desktop Environment, has pretty good support for Bluetooth. If you've installed the KDE Bluetooth
utilities, you'll see a little blue "K" (similar to the Bluetooth "B") in your KDE panel. If you need help installing
the KDE Bluetooth software, visit http://kde-bluetooth.sourceforge.net/. On Gentoo Linux we installed net-
wireless/kdebluetooth from Portage.

Launching BtSerial.

Device names shown by BtSerial.

http://www.whizoo.com/apps/btserial.php
http://kde-bluetooth.sourceforge.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

BtSerial's diagnostic messages.

Clicking on the KDE Bluetooth icon brings up Konqueror (the KDE web/file browser) with bluetooth:/ in the

location box (Figure 9-17). The main window shows two icons: one for the LED sign and another for the local
Bluetooth device. The icons are chosen based on the class reported by each device.

Click on the LED sign icon and you'll see something like the window shown in Figure 9-18. Now you are
browsing the services available on the gumstix. Although you can click on the Public Browse Group Root and
SDP Server icons, they don't really lead to anywhere interesting since KDE doesn't know how to display the data
it receives. The useful icons are the ones that look like serial port cables. They show up as "Sign Page 1," etc.
for us because we added those descriptions to our /etc/init.d/S31bluetooth file.

Click on one of the serial port icons to establish an RFCOMM connection. KDE should then bring up the Bluetooth
Serial Chat window, as shown in Figure 9-19. Here you'll see the ready> prompt from rfcomm-to-sign. Type

some text into the bottom box and click on Send. In our example we're hoping that someone receives our
request for a pizza.

From a Linux Shell

Sending messages to the sign from the Linux shell is almost as easy as just echoing or cating text to the
RFCOMM device file. However, it depends on how you do it. But before we get to that, we have to talk a little
about stty.

The stty command controls certain terminal device characteristics, such as data rate, flow control, end-of-line

processing, and more. Before using shell commands to read from and write to RFCOMM devices, you should
make sure they have reasonable stty settings. In particular, echo must be disabled. Otherwise characters read

from the gumstix-side of the connection will be echoed back to the gumstix, creating an endless loop. You
should also ensure that the read characteristic is enabled. You can set both of these with one command:

desktop # stty -echo cread < /dev/bluetooth/rfcomm/1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fortunately, the stty settings are "sticky," so you should only need to set them once before using an RFCOMM
device.

Now, if you want to interactively write messages to the sign, simply run:

desktop # cat > /dev/bluetooth/rfcomm/3

Sending a message.

Browsing Bluetooth in KDE.

Browsing Bluetooth services.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then type your messages, one line at a time. The RFCOMM connection stays up as long as cat stays running.
You can type as many messages as you like, but with our one-page-per-RFCOMM-device design, each additional
message overwrites the previous one.

Generating messages using echo from a shell script is a little trickier. The problem is that the RFCOMM device

must stay open long enough for the gumstix to open the RFCOMM device on its side and then read from it. This
command, for example, probably won't work:

desktop # echo "this does not work" > /dev/bluetooth/rfcomm/2

The reason is that the device gets closed right after the message is written. The RFCOMM connection does not
stay up long enough for our rfcomm-to-sign program to return from its short sleep() and successfully open the

device.

An easy way to solve this problem is to add a sleep call after the echo and run both commands from a subshell,

like this:

desktop # (echo "this works better" ; sleep 5) > /dev/bluetooth/rfcomm/2

Our rfcomm-to-sign program uses a three-second sleep between attempts to open the RFCOMM device, so five
seconds here should be sufficient. You may want to write a little shell script that hides some of the ugliness. For
example:

#!/bin/sh

set -e

RNUM=$1 ; shift

http://lib.ommolketab.ir
http://lib.ommolketab.ir

stty -echo

exec > /dev/bluetooth/rfcomm/$RNUM

cat

sleep 5

Then you can use it like this:

desktop # echo "this works better" | ./ledsign.sh 1

KDE Bluetooth chat.

Another way is to use a slightly more complicated shell script that also reads from the RFCOMM device. If we
can make it read the ready> prompt before writing the message, we can be sure that the message is actually

received by rfcomm-to-sign. Here is one way to do it:

#!/bin/sh

set -e

RNUM=$1; shift

read MSG

exec < /dev/bluetooth/rfcomm/$RNUM

exec > /dev/bluetooth/rfcomm/$RNUM

stty -echo cread

read prompt

echo "$MSG"

read prompt

The script first reads the message from stdin. Then it reassigns stdin and stdout to the RFCOMM device. It reads
the prompt from rfcomm-to-sign, writes the message, and then waits for the next prompt. We also added the
necessary stty settings for good measure. Here's how you would use it:

desktop # date | ./ledsign.sh 4

One drawback to the second version is that it might get stuck on one of the read prompt calls. Since there is no

http://lib.ommolketab.ir
http://lib.ommolketab.ir

timeout, the script will block until interrupted. If you are sending messages to the sign automatically (versus
interactively), you may want to use the sleep() approach instead.

Pro-Lite Control Protocol

As we mentioned earlier, you can use different colors, fonts, and effects with the Pro-Lite sign by inserting
special codes in your message. For example, to display a message in red, you could send:

<CB>50% Off Today Only

The following tables show the control codes for the sign's colors, fonts, effects, and a few miscellaneous things.

Colors

Table 9-1 lists the 26 color codes supported by the Pro-Lite sign. Note that the sign really only has five colors:
red, orange, yellow, lime, and green. The yellow and lime colors are almost the same. One of the colors, called
Rainbow, uses all five colors at once.

In addition to the five colors, the sign also has three different brightness levels. Some of the color codes use
shadows and different background colors as well. Some of these look okay, and some look hideous. You should
try them out for yourself to see which ones you like.

Table The Pro-Lite's color codes

Code Color

<CA> Dim red

<CB> Red

<CC> Bright red

<CD> Orange

<CE> Bright orange

<CF> Light yellow

<CG> Yellow

<CH> Bright yellow

<CI> Lime

<CJ> Dim lime

<CK> Bright lime

<CL> Bright green

<CM> Green

<CN> Dim green

<CO> Yellow/green/red

<CP> Rainbow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Code Color

<CQ> Red/green 3-D

<CR> Red/yellow 3-D

<CS> Green/red 3-D

<CT> Green/yellow 3-D

<CU> Green on red

<CV> Red on green

<CW> Orange on green

<CX> Lime on red

<CY> Green on red 3-D

<CZ> Red on green 3-D

Fonts

Table 9-2 lists the Pro-Lite's font codes. Note that these all start with the letter "S," probably because the Pro-
Lite documentation also refers to these as size codes.

The font choices are pretty simple: normal, bold, italic, and bold plus italic. Any of those can be made to flash
as well, for a total of 8 font codes. The bold font looks okay, but italic is a little too hard to read. The bold plus
italic font displays about half as many characters on the sign as the normal font.

Table The Pro-Lite's font codes

Code Font

<SA> Normal

<SB> Bold

<SC> Italic

<SD> Bold italic

<SE> Flashing normal

<SF> Flashing bold

<SG> Flashing italic

<SH> Flashing bold italic

Effects

Table 9-3 lists the 26 different effects. As you use the sign more and more, you'll probably want to take
advantage of these effects to break up the monotony of a simple scrolling display.

<CQ> Red/green 3-D

<CR> Red/yellow 3-D

<CS> Green/red 3-D

<CT> Green/yellow 3-D

<CU> Green on red

<CV> Red on green

<CW> Orange on green

<CX> Lime on red

<CY> Green on red 3-D

<CZ> Red on green 3-D

Fonts

Table 9-2 lists the Pro-Lite's font codes. Note that these all start with the letter "S," probably because the Pro-
Lite documentation also refers to these as size codes.

The font choices are pretty simple: normal, bold, italic, and bold plus italic. Any of those can be made to flash
as well, for a total of 8 font codes. The bold font looks okay, but italic is a little too hard to read. The bold plus
italic font displays about half as many characters on the sign as the normal font.

Table The Pro-Lite's font codes

Code Font

<SA> Normal

<SB> Bold

<SC> Italic

<SD> Bold italic

<SE> Flashing normal

<SF> Flashing bold

<SG> Flashing italic

<SH> Flashing bold italic

Effects

Table 9-3 lists the 26 different effects. As you use the sign more and more, you'll probably want to take
advantage of these effects to break up the monotony of a simple scrolling display.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table The Pro-Lite's effect codes

Code Effect

<FA> AUTO (L)

<FB> OPEN (L)

<FC> COVER (L)

<FD> DATE

<FE> CYCLING (L)

<FF> CLOSE LEFT (T)

<FG> CLOSE RIGHT (T)

<FH> CLOSE CENTER (T)

<FI> SCROLL UP (L)

<FJ> SCROLL DOWN (L)

<FK> OVERLAP (L)

<FL> STACKING (L)

<FM> COMIC 1 (L)

<FN> COMIC 2 (L)

<FO> BEEP

<FP> PAUSE (T)

<FQ> APPEAR (L)

<FR> RANDOM (L)

<FS> SHIFT (L)

<FT> TIME

<FU> MAGIC (L)

<FV> THANK YOU

<FW> WELCOME

<FX> SLOW SPEED

<FY> NORMAL SPEED

<FZ>< x > CHAIN to page x (T)

Some of these effects are meant to be used at the beginning of a message. They affect the way that the
message appears on the display. Such effects are marked with (L) in the table. For example, the OPEN effect
erases the display and then causes the message to appear one column at a time from both ends leading toward
the center. The COVER effect is similar, except that the display is not erased first. The AUTO effect introduces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the message with a randomly chosen effect and color each time. The RANDOM effect, on the other hand,
introduces the message by turning on one pixel at a time in a random order. MAGIC is similar to AUTO, except
that it only affects the color.

The effects marked with (T) are meant to be used at the end of a message. They affect the way that the
message disappears. For example, CLOSE LEFT erases the message one row at a time from right to left. You
may find the PAUSE effect to be very useful. It freezes the display for one second. The Pro-Lite documentation
says that this is a trailing effect, but you can use it in the middle of a message too.

Two effects are named DATE and TIME. These display the date and time based on the sign's internal clock.
Apparently these effects use hardcoded colors that you cannot change. See the next section for the command
that sets the sign's clock.

The CHAIN effect is somewhat special because it must be followed by another code representing the next page
to display. For example, <FZ><C> tells the sign to display page "C" next.

Note that some of the codes have different effects in older versions of the Pro-Lite protocol. For example, Walt
Stoneburner's site describes an earlier version of the sign software where DATE and TIME were together in a
single effect.

Miscellaneous

Table 9-4 lists a few miscellaneous protocol commands. We use the first one (<Px>) in rfcomm-to-sign.c to

program each page. The second one (<RPx>) instructs the sign to run (or display) the specified page

immediately.

Table Miscellaneous protocol commands

Code Description

<Px> Program page x

<RPx> Run (display) page x

<TYYYYMMDDWhhmmssX> Set the time

The code for setting the time is a little bit different than the others. Most of the commands must be preceded by
a sign identifier, such as <ID01>. The time-setting command, however, must not. That means that you can't use

rfcomm-to-sign to set the time since the program inserts the ID string before each command.

In the command string given in Table 9-4, the T represents an actual "T" (for time). All other letters must be

replaced by numbers. YYYYMMDD represents the year, month, and day. W represents the day of the week (1–7).

hhmmss represents the hour, minute, and seconds. X is either 0 (for AM/PM mode) or 1 (for 24-hour mode).

Make sure that the gumstix clock is set correctly before using the following commands to set the sign's clock.
(We've noticed that the gumstix' clock is reset when it reboots.) Since you can't use rfcomm-to-sign to set the
clock, you can use this trick instead:

T=/dev/ttyS2

stty -F $T speed 9600 cs8 -parenb -cstopb cread clocal \

 -crtscts -ignpar -echo nl1 cr3 opost

-ocrnl onlcr

cat $T >/dev/null &

date '+<T%Y%m%d%u%H%M%S0>' >

$T

kill %1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Extra Credit

If you've followed all the steps in this chapter, you have a pretty neat Bluetooth-enabled, Linux-powered LED
sign. Here are some ideas for making the project even better.

Using OBEX Transfers

We've shown you how to transfer data from a handheld device to the gumstix using Bluetooth's serial port
emulation. While this seems to work okay, it is not the only option. If your phone/PDA doesn't have an
application that supports the Bluetooth serial port (SP) profile, you can use the Object Exchange (OBEX)
protocol instead.

OBEX is, essentially, a file transfer protocol. Bluetooth devices use OBEX to send images, vCards (i.e., address
book entries), calendar data, and other types of files. OBEX was originally developed for use with infrared (IrDA)
interfaces, but has been adopted by Bluetooth as well.

Your gumstix should already have everything you need to accept files via OBEX. In particular, make sure that
the OBEX Push Daemon, /usr/sbin/opd, is present. If not, you'll need to go to the gumstix buildroot environment
as described in "Building Software for the gumstix," earlier in this chapter, and build a new filesystem. Make
sure that openobex has been added to the TARGETS variable in the top-level Makefile:

For Bluetooth

TARGETS+=bluez-utils openobex

OBEX Versus SP

If you have the option to use either OBEX or SP, you may prefer to use OBEX for long or repeated
messages. You can save a long message as a note or memo and then send it many times. SP
mode, on the other hand, is better for usage that resembles a conversation. Once the serial port
session has been established, you can quickly send multiple messages.

If you changed the Makefile, build a new root filesystem and upload it to the gumstix flash memory. Recall that
by updating the flash memory, any files that you have added or edited will be lost. If you have an MMC or SD
card, you may want to make a copy of these files before updating the flash memory:

/etc/default/bluetooth

/etc/bluetooth/hosts

/etc/bluetooth/hcid.conf

/etc/init.d/S60ttyS2

/etc/inittab

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/etc/init.d/S31bluetooth

You'll need to make an important change to /etc/bluetooth/hcid.conf. One of the settings there is the device
class. Bit #20 (0x100000 hex) in the class value should be turned on to indicate OBEX support. The default
value is 0x820116, so you can change it to 0x920116:

Local device class

class 0x920116;

Reboot or restart the Bluetooth daemons after editing hcid.conf. Then, after verifying that opd is installed, add
these lines to /etc/init.d/S31bluetooth:

test -d /tmp/obex || mkdir /tmp/obex

/usr/sbin/opd --mode OBEX --channel 10 --path /tmp/obex --sdp --daemon

Files sent to the gumstix will appear in the /tmp/obex directory. The --sdp option instructs opd to automatically

advertise the OBEX service via the Service Discovery Protocol. You may want to run opd manually a few times
before running it from S31bluetooth. Use the same command line, but without the --daemon option.

When opd is running, make sure that OBEX appears in the list of Bluetooth services:

sdptool browse ff:ff:ff:00:00:00

...

Service Name: OBEX Object Push

Service RecHandle: 0x10006

Service Class ID List:

 "OBEX Object Push" (0x1105)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 10

 "OBEX" (0x0008)

Profile Descriptor List:

 "OBEX Object Push" (0x1105)

 Version: 0x0100

Now you are ready to attempt a file transfer from your phone or PDA. If you have a PDA running PalmOS, go to
the Memo Pad and create a new memo. While still viewing the memo, press the Menu button. You should see a
Send Memo option. Select it and then find your gumstix in the device list. Click on OK. If everything works, you
should have a new file in the /tmp/obex directory.

Bluetooth-enabled mobile phone users may have to work a little harder to use OBEX transfer. If your phone has
a way to store notes or memos, it probably also has an option to send them via Bluetooth. Otherwise, you can
try sending an address book entry to the gumstix. It should show up on the other side as a vCard. If you plan to
use this technique to get messages to the LED sign, you'll need to write some code to strip out the vCard tags
and other formatting.

If you're having a hard time getting OBEX to work, kill the opd daemon process and run it from the command
line. You should see output like this during a successful transfer:

Code View:
obex_event: 1 6(EV_UNKNOWN) 0(CMD_CONNECT) 0

Unknown event 6 !

 obex_event: 1 1(EV_REQHINT) 0(CMD_CONNECT) 0

 obex_event: 1 2(EV_REQ) 0(CMD_CONNECT) 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

opd[338]: OBEX connect from 00:07:E0:00:1F:F8

 obex_event: 1 3(EV_REQDONE) 0(CMD_CONNECT) 0

 obex_event: 1 1(EV_REQHINT) 2(CMD_PUT) 0

 obex_event: 1 0(EV_PROGRESS) 2(CMD_PUT) 0

 obex_event: 1 0(EV_PROGRESS) 2(CMD_PUT) 0

 obex_event: 1 2(EV_REQ) 2(CMD_PUT) 0

HEADER_LENGTH = 15

Handle_OBEX_CMD_PUT() Skipped header 05

HEADER_TYPE = 'text/plain' #11

00: 74 65 78 74 2f 70 6c 61 69 6e 00 text/plain.

Handle_OBEX_CMD_PUT() Skipped header c0

Filename = /tmp/obex/memo via.txt

Wrote /tmp/obex/memo via.txt (15 bytes)

 obex_event: 1 3(EV_REQDONE) 2(CMD_PUT) 0

 obex_event: 1 1(EV_REQHINT) 1(CMD_DISCONNECT) 0

 obex_event: 1 2(EV_REQ) 1(CMD_DISCONNECT) 0

opd[338]: OBEX disconnect from 00:07:E0:00:1F:F8

 obex_event: 1 3(EV_REQDONE) 1(CMD_DISCONNECT) 0

 obex_event: 1 4(EV_LINKERR) 0(CMD_CONNECT) 0

opd[338]: lost link to 00:07:E0:00:1F:F8

Once OBEX is working to the point where files appear in the /tmp/obex directory, you'll need to write some
scripts that send the message to the sign. The following shell script should help get you started:

#!/bin/sh

scan-obex.sh: periodically scan the OBEX dropoff

directory and send incoming messages to the sign

cd /tmp/obex

test -d /tmp/trash || mkdir /tmp/trash

while true ; do

 sleep 1

 for k in * ; do

 test "$k" = "*" &&

continue

 echo "found file: $k"

 msg=`cat "$k" | tr '\r' ' ' | tr '\n'

' '`

 msg=`echo $msg`

 echo "sending message: $msg"

 /usr/local/bin/to-sign.sh A $msg

 mv "$k" /tmp/trash

 sleep 30

 done

done

Note that the to-obex.sh script assumes that files might contain whitespace characters. It also changes newlines
and carriage returns in the message to spaces. It calls another script, named to-sign.sh, to actually send the
message to the sign:

#!/bin/sh

to-sign.sh: write a message to the LED sign tty

http://lib.ommolketab.ir
http://lib.ommolketab.ir

T=/dev/ttyS2

PAGE=$1; shift

MSG="$*"

stty -F $T speed 9600 cs8 -parenb -cstopb -cread clocal crtscts \

 -ignpar -echo nl1 cr3

stty -F $T opost -ocrnl onlcr

cat $T >/dev/null &

echo "<ID01>" >$T

echo "<ID01><P${PAGE}> $MSG<FP>"

>$T

echo '<ID01><RP${PAGE}>' >$T

Remove Special Characters from Received Messages

Most of the Pro-Lite control codes do useful things like change colors and add special effects. However, it
probably won't take a really curious person very long to find a number of ways to hack the sign. For example, a
simple command can delete all pages from memory.

To protect against this, you may have to block certain Pro-Lite commands. You could just block all commands
by disallowing the < and > characters, for example. But that seems like overkill since many of the commands

are useful.

Filtering Offensive Messages

If you plan to use the sign in a public setting where anyone can post a message, you can be sure that someone
will write an offensive message just to see if they can. You may be forced to add some filtering to the code. For
example, a simple method for detecting profanity is to compare words in messages with those in a "bad words"
file.

One Less Power Supply

It would be nice to have only one power cord running from the wall to the sign. The Pro-Lite uses a 9V power
supply, while the gumstix uses 5V. With a handful of parts and a little soldering, you should be able to build a
gizmo that takes 9V from the sign's supply and provides 5V to the gumstix. It might be as simple as an LM7805
voltage regulator plus a heat sink.

Prepending the Device Name to Messages

If you use the sign in a public setting, it may be nice to automatically insert the Bluetooth device name into
every message. This adds some accountability and makes the message display similar to a chat room.

Each time rfcomm-to-sign gets a new RFCOMM connection it can run rfcomm show to get the address of the

device connected on its channel. Then it can run hcitool name x:x:x:x:x:x to get the connected device's

name.

If prepending device names is too awkward, you may want to at least consider giving each page a different
color. At the very least this allows viewers to tell when one message ends and another begins. Of course, if
messages include color codes, such as <CB>, the sender can override the default color for a page, anyway.

Aging Messages from the Sign

Depending on your particular use of the sign, it may make sense to put a time limit on how long a particular
message will be displayed. The sign doesn't have any built-in features to support this, so you'll need to
implement it in software on the gumstix.

One approach is to modify rfcomm-to-sign so that it keeps track of how long it has been trying to open the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RFCOMM device. After some amount of time, say 10 minutes, it can send a message to the sign to erase the
corresponding page. If you are using the page-chaining technique, you don't want to actually erase the page,
but instead send an empty message followed by an instruction to jump to the appropriate page.

Scaling the Software

Our design has a one-to-one mapping of RFCOMM channels to sign pages. Although our examples use only five
channels and pages, you could easily extend this to all 26 of the Pro-Lite's pages.

A Bluetooth device cannot be connected to more than seven other devices at once. However, each
device can use multiple RFCOMM channels and some devices may be disconnected when idle.

The drawback is that each page requires two processes running from /etc/inittab: the rfcomm listen process,

and rfcomm-to-sign. At some point this may become a significant burden for the lil' gumstix.

One way to reduce the number of processes is by modifying rfcomm-to-sign so that a single process manages
all channels and pages. This makes the program more complicated since it will need to use nonblocking I/O and
select(). On the upside, however, a single process makes certain sign-related tasks easier. For example, you

can chain pages together based on the number of active messages or change the order in which they are
displayed.

With a single rfcomm-to-sign process, you can also do away with the one-channel-per-page limitation. Instead,
messages might be displayed in the order they are received, regardless of who sends them.

You can, in theory, have up to 60 RFCOMM channels. However, since each channel requires a separate rfcomm

listen process, this may not be realistic. If you really need that many, you'll probably want have a look at the

rfcomm source code and see if you can write a new program that manages multiple listeners, or perhaps build it
directly into a program like rfcomm-to-sign.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix. Running an NFS Server

A couple of the projects in this book utilize a Network File System (NFS) server. This appendix provides basic
instructions for setting up an NFS server on an existing Linux or FreeBSD box.

About NFS

NFS is, as the name implies, a protocol for accessing remote filesystems over a network. The NFS server
exports one or more filesystems. NFS clients mount exported filesystems and then access their files normally.

If you have an existing Linux or BSD box, you should be able to turn it into an NFS server without much trouble.
NFS features must be enabled in your kernel, and usually are by default. If you've disabled NFS in your kernel,
you'll need to either load a kernel module or build a new kernel. In addition, a properly configured NFS server
has a number of daemon processes, including nfsd (or rpc.nfsd), mountd (or rpc.mountd), portmap rpc.statd,
and rpc.lockd. NFS clients do not require any daemon processes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix. Running an NFS Server

A couple of the projects in this book utilize a Network File System (NFS) server. This appendix provides basic
instructions for setting up an NFS server on an existing Linux or FreeBSD box.

About NFS

NFS is, as the name implies, a protocol for accessing remote filesystems over a network. The NFS server
exports one or more filesystems. NFS clients mount exported filesystems and then access their files normally.

If you have an existing Linux or BSD box, you should be able to turn it into an NFS server without much trouble.
NFS features must be enabled in your kernel, and usually are by default. If you've disabled NFS in your kernel,
you'll need to either load a kernel module or build a new kernel. In addition, a properly configured NFS server
has a number of daemon processes, including nfsd (or rpc.nfsd), mountd (or rpc.mountd), portmap rpc.statd,
and rpc.lockd. NFS clients do not require any daemon processes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Exports File

The /etc/exports file lists filesystems that are to be exported (i.e., made available) via NFS. The file format is a
little bit complicated, but the basic format is:

/filesystem [-options] [addrs]

Each line specifies a filesystem that should be exported with certain options. If addrs is given, then only

those clients are allowed to mount the filesystem.

Here is one of the simplest exports files possible:

/usr

That file makes the /usr directory available to everyone that can reach your NFS server. You might be able to
get by with something that simple. In some cases, however, you'll need an option or two. Here are a few useful
options:

-ro

Specifies that the directory should be read-only. Unless you add the -ro option, NFS clients are allowed

to write to the exported directory, subject to standard Unix permissions of course.

-maproot=root

By default, remote access from the root user is treated as though the remote userid is nobody. This
prevents abuse by remote superusers, but can be annoying when you are doing useful work as root. Add
the option -maproot=root to allow root to read and write files with full root privileges. This gives total

control to anyone with root privileges on a remote machine, so try to avoid using this option if you can.

-alldirs

By default, NFS clients must mount the same directory that is exported. For example, if the server
exports /usr, the client cannot mount /usr/local. To remove this restriction, use the -alldirs option.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Starting NFS Services

What follows are basic instructions for starting NFS without rebooting your system. Unless you are already using
NFS for another reason, we do not recommend that you permanently enable NFS. Instead, start and stop it as
necessary to reduce your exposure to potential security issues.

Linux

First, you'll need to make sure that the nfs-utils package is installed on your system. RedHat users and other
RPM-enabled systems should locate a recent nfs-utils RPM and install it. For Debian Linux:

apt-get install nfs-kernel-server

For Gentoo Linux:

emerge nfs-utils

Once nfs-utils is installed, you should be able to start the NFS daemon processes by running these two init.d
scripts:

/etc/init.d/portmap start

/etc/init.d/nfs start

You may want to refer to the Linux NFS-HOWTO, which can be found at http://nfs.sourceforge.net/nfs-howto/.

FreeBSD

On FreeBSD you can start all of the NFS-related services with this simple command:

/etc/rc.d/nfsd onestart

Note that by using onestart, you can start the services without enabling them in /etc/rc.conf.

showmount

After starting the NFS server processes, test your exports file with this command:

showmount -e

Exports list on localhost:

/usr Everyone

If you don't see any filesystems exported, check the format of the /etc/exports file and try again. Don't forget to
restart the server after modifying the file. On most systems you can also just send a HUP signal to the mountd
process.

http://nfs.sourceforge.net/nfs-howto/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Mounting

An NFS client mounts the remote filesystem with the mount command. The remote filesystem is specified as an

IP address, followed by colon, and then the remote directory. For example:

mount 172.16.1.1:/usr /mnt

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

4G Access

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Access Cube
AMD
antenna
Apache 2nd
Arpwatch

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

BASE 2nd
BIND
Black Dog
Bluetooth 2nd 3rd
Bokat, Tanya

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

case-modding
Compact Flash 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

DHCP 2nd 3rd
Digital Video Recorders (DVRs)
DNS 2nd
Dornier, Pascal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Ethereal
Ethernet,
 bridge
 crossover cable 2nd
 power-over-Ethernet (POE)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

firewall 2nd
FreeBSD
 updating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Gentoo 2nd
 configuring for sound
gumstix 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

hard drive 2nd 3rd 4th
 Partitioning 2nd 3rd 4th 5th 6th 7th
Hardy, David
Hauppauge
Hughes, Craig
Hylands, Dave

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Infrared
iPod
iptables utility 2nd 3rd 4th 5th
iwconfig utility 2nd 3rd 4th
iwlist utility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Jaeggli, Joel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Keelan, Ken
Kismet 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

LCD character display
LED character display
Linksys
Linux,
 kernel 2nd
 SSD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Maymi, Fernando
memory
Mikrotik
Mini-box.com 2nd
Mini-PCI
MySQL
MythTV 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Nagios 2nd
Nano-ITX
NAT
NetBSD
network,
 gateway 2nd
 monitor
Nokia
NorhTec

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

OBEX
OpenBlockS
OpenBrick
OpenBSD
OpenZipIt
OQO

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

packet filter (pf)
PalmOS
PC Engines
Plat'Home 2nd
power,
 conservation
 converter
 over Ethernet (POE)
 supply 2nd
Pro-Lite 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

remote control
RRDTool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

serial port 2nd 3rd 4th
Sharp
Shuttle 2nd 3rd
Silver, Amy
Snort 2nd
Soekris 2nd 3rd
Spiegel, Jared
SSH

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

tcpdump 2nd
TV
 as display
 tuner card 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

VIA 2nd
via USB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

Wi-Fi 2nd 3rd 4th 5th
WildLab

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

X Windows 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [V] [W] [X] [Z]

ZipIt 2nd
 updating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Small Form Factor PCs - Graphically Rich Book
	Table of Contents
	
	Preface
	Introduction
	What Is Small Form Factor?
	Why Small Form Factor?
	Small Form Factor Systems
	More Cool Hardware

	Digital Audio Jukebox
	Introducing the VIA EPIA-M
	Additional Hardware
	Step 1: Install and Configure Gentoo Linux
	Step 2: X Windows and XMMS
	Step 3: Infrared Remote Control
	Case Modding
	Extra Credit

	Digital Video Recorder with MythTV
	Introducing the Shuttle ST62K XPC
	Operating System: Gentoo Linux
	X Windows
	MythTV
	Adding a Remote Control
	Starting MythTV Automatically
	Using Your TV as the Display
	Extra Credit

	Home Network Gateway
	Introducing the Soekris net4501
	Additional Hardware
	Installing OpenBSD
	From Installation to Gateway
	Packet Filter (pf)
	Extra Credit

	Network Monitor
	Introducing the Soekris net4801
	Additional Hardware
	Installing FreeBSD
	Arpwatch
	Nagios
	Snort
	RRDTool
	Extra Credit

	Wi-Fi Extender
	Introducing the Access Cube
	Assembling the System
	Exploring the Access Cube
	Wi-Fi Configuration
	Antenna Options
	Using the Wi-Fi Extender
	Building a Console Cable
	Extra Credit

	A Portable, USB-Powered, Bridging Firewall
	Introducing the OpenBlockS
	SSD Linux
	Turning the OpenBlockS into an Ethernet Bridge
	Using the Firewall
	Powering OpenBlockS via USB
	Extra Credit

	Cheap Wi-Fi SSH Client
	Introducing the ZipIt Wireless Messenger
	Updating the ZipIt Firmware
	Playing with the BURN3 Firmware
	Loading OpenZipIt
	Playing with OpenZipIt
	Extra Credit

	Bluetooth LED Sign
	Introducing the gumstix
	Assembling the System
	Exploring the gumstix
	Building Software for the gumstix
	Learning About Bluetooth
	The Pro-Lite LED Sign
	Putting It All Together
	Sending Messages to the Sign
	Extra Credit

	Running an NFS Server
	About NFS
	The Exports File
	Starting NFS Services
	Mounting

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	X
	Z

