
Meet
			 the Kinect
Create software capable
of reading and reacting to
body movement using the
Microsoft Kinect

Kean
Hall

Perry
M

eet the Kinect
Sean Kean, Jonathan Hall, and Phoenix Perry

Interact directly with your computer through physical motion with
Meet the Kinect. This book gets you started mastering the excit-

ing possibilities brought about by the Kinect, which was released
in 2010 by Microsoft and has become the fastest-selling electronic
device ever. The Kinect is able to read and track body movements.
It is the bridge between the physical reality in which you exist and
the virtual world created by your software.

Meet the Kinect shows you how to write scripts and software
enabling the use of the Kinect as an input device. You’ll learn
about the Kinect hardware and what it can do. You’ll install driv-
ers and learn to download and run the growing amount of Kinect
software freely available on the Internet. From there, you’ll move
into writing code using some of the more popular frameworks and
APIs, including the official Microsoft API and the language known
as Processing that is popular in the art and creative world. Along
the way, you’ll also learn the principles and terminology of volu-
metric computing that thanks to the Kinect is now wide-open and
totally accessible.

Turn to Meet the Kinect and discover how you can use this inex-
pensive, three-dimensional sensor to connect the physical and vir-
tual worlds. Whether your passion is to create technology-based
art projects, three-dimensional scanners, or adaptive devices for
sight-impaired individuals, or perhaps you’re searching for new
ways of interacting with PCs, or, even, new business ventures, this
book will show you how simple motions can capture big dreams
and opportunities.

Meet the Kinect An Introduction to Programming Natural User Interfaces

www.apress.com

US $29.99

Shelve in Computer Hardware/General

User level: Intermediate–Advanced

An Introduction to Programming Natural
User Interfaces

Technology in Action™

SOURCE CODE ONLINE

Also available:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

iv

 Contents at a Glance

 About the Authors.. xi
 About the Technical Reviewer .. xii
 Acknowledgments ... xiii
 Chapter 1: Getting Started ..1

 Chapter 2: Behind the Technology ..29

 Chapter 3: Applications in the Wild ..45

 Chapter 4: Scripting the Kinect...63

 Chapter 5: Kinect for Creatives...85

 Chapter 6: Application Development with the Beckon Framework101

 Chapter 7: 3D Games and User Interfaces with Unity..129

 Chapter 8: Microsoft’s Kinect SDK..151

 Chapter 9: Volumetric Display Techniques ...175

 Chapter 10: Where Do We Go From Here?...193

 Index ...201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 1

1

Getting Started

In this chapter you’ll unbox a new Kinect—or if you have one already, you’ll disconnect it from your
Xbox. Then you’ll install some software, plug the Kinect into a computer, and take a look at what all of
the fuss is about with this unique device. You’ll learn what the different components of the Kinect are
and be able to play with some simple controls to get a feel for how all the parts work together to make
the magic happen.

The Kinect is marketed, packaged, and designed for use with Microsoft’s Xbox gaming console. The
Xbox is a remarkable living room entertainment system, and if you haven’t tried Dance Central or Kinect
Sports, I recommend that you do—playing those two games at the 24-hour Best Buy in Union Square
here in NYC is what got me so excited about the Kinect in the first place. I dragged as many friends as I
could down to the store so they could see this amazing technology in action.

That said, this book is the unofficial manual for how to take a Kinect and use it outside the living
room—no Xbox required. Now, let’s make sure you have everything you need to unplug your Kinect
from the game system—or purchase one by itself, plug it into your computer, and get tinkering.

Buying the Correct Kinect
When I wanted to get my own Kinect, I spent a lot of time trying to figure out the right product to buy out
of all of the Xbox Kinect–branded merchandise. I really wanted to play the Xbox games and have a Kinect
that could work on my computer. Unfortunately, the Xbox Kinect system bundle isn’t packaged with this
goal in mind.

I ended up deciding to purchase the standalone Kinect sensor (Figure 1-1) and saved some money
by getting a used Xbox system on which to play the games. The standalone Kinect sensor package
includes an adapter cable that lets your Kinect draw power directly from a wall outlet instead of from the
Xbox console.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

2

Figure 1-1. Kinect Sensor with Kinect Adventures!—The only Xbox Kinect product that comes with all the

parts ready to hook up to your computer.

Another option is to buy the Kinect bundle that includes an Xbox console and the Kinect sensor. You
see that bundle as the second item in Figure 1-2. The danger is that people often purchase the Kinect
bundle thinking that it will immediately work for them…until they bring it home and find that they are
missing a cable and now have to buy one online and wait for it to arrive.

What the Kinect bundle lacks is the power adapter that you need in order to use your Kinect with a
personal computer via USB. While I fully endorse getting the full Xbox Kinect system bundle, you’ll need
to purchase this additional accessory, a US $30 power adapter, to be able to connect the Kinect to your
computer via normal USB. Figure 1-2 shows that power adapter, which is the third item listed in the
figure.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

3

Figure 1-2. Online product listings on Amazon.com for Kinect-related products—The first listing is the

Kinect you should probably get; otherwise, you will also need to purchase the third listing.

You might choose to go both routes at the same time: buy the standalone sensor for your computer
and buy the bundle for playing games. That’s an expensive path, but it lets you keep a Kinect plugged
into your computer for tinkering and always have another Kinect to use with your Xbox without having
to move cords and cameras around. Newer drivers and software are becoming available to support the
use of multiple Kinects simultaneously, so you might find value in having more than one at your
disposal.

Separating a Kinect from an Xbox
So, you already have an Xbox? Awesome. Okay, now you need to borrow the Kinect from your Xbox and
bring it over to a computer. You’ll probably want to ask permission from whomever’s Kinect you are
using before you proceed. I’m sure they’ll miss it! Tell them you’ll give it back after you show them all the
cool stuff you can do with a Kinect on a computer once you get through Chapter 3. They’ll thank you!

Disconnecting the Kinect from a late model Xbox is very straightforward. Simply locate the Kinect,
follow the cord to the back of your Xbox, and pull it out. Done. Now, you’ll just need the Kinect AC
adapter and you’ll be ready to move on to downloading and installing software.

If you’ve got a Kinect successfully hooked up to an early model Xbox, that’s great news—it means
you’ve got all the parts necessary to take the sensor and plug it into your computer. To disconnect your
Kinect from an older model Xbox, you’ll be removing two components—the Kinect sensor itself, and the
attached cable that leads to the Xbox and AC wall outlet (Figure 1-3). Once you’ve disconnected those
two things, you are all set.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

4

Figure 1-3. Unplugging the Kinect and AC adapter from an early model Xbox game console (Photo

courtesy Microsoft)

Making Sure You Have the AC Adapter
If you have a new model Xbox with a Kinect, it’s possible that they were purchased as a bundle. If that’s
the case, then you probably don’t yet own the adapter cable necessary to make the Kinect work on a
computer. Unfortunately, now you’ll have to purchase the AC adapter cable before you can continue.
The third item in Figure 1-2 shows the product information for the adapter as it should appear on
Amazon.com. Figure 1-4 shows a better image of the cable itself.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

5

Figure 1-4. Kinect USB extender on the left for newer XBox syststems, and the Kinect power adapter on the

right.

The power adapter cable is required for two reasons. First, the Kinect requires more power than a
standard USB port can deliver, probably because of all of the components it has inside, such as a motor,
a number of sensors, and a fan to push air through the device for cooling. The special USB port on the
late model Xbox can deliver this extra power, but because your computer can’t, you have to compensate
for that by plugging the Kinect into an electrical outlet with the AC adapter provided on the cable. This
need for an adapter cable is frustrating if you want to go mobile with the Kinect and a laptop—you’ll
need a 12-volt battery and some careful modification to get past that problem.

The second reason you need the adapter cable is that the cord on the Kinect uses a proprietary,
Xbox-only USB connector. This is frustrating, I know. The AC adapter cable has a port that accepts this
special USB shape on one end and turns it into a standard USB connector on the other. The older Xbox
systems have a standard USB port, which is why they also require an adapter cable to be compatible
with the Kinect. When Microsoft launches a version of Windows with Kinect support built-in, they may
introduce a lower-power version of the Kinect for use with computers that doesn’t require this pesky AC
adapter attachment.

Inspecting the Kinect, Part by Part
Now that you’ve acquired a Kinect, let’s take a closer look at all the parts. Figure 1-5 shows all the items
in the box from a standalone, Kinect Sensor purchase. The only ones you need to follow along with this
book are the AC Adapter and the Kinect itself. You can keep the USB extender, manuals, and Kinect
Adventures game disc in the box, as you may need them if you have or plan to get an Xbox.

Before you throw away that box, you should know that it functions as a handy way to store and
transport the bulky and oddly shaped Kinect. The device is pretty rugged; very few are returned defective
or broken, and they can take a beating. However, the original box is a popular way for people to bring the
sensor to and from meetups and hackathons in NYC. The foam inside is shaped perfectly to hold the
Kinect, making the box a simple, portable container, so you might want to hang on to it just in case.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

6

Figure 1-5. Contents of standalone Kinect sensor box: Manual, Kinect Adventures! game disc, the Kinect

itself, AC adapter, and special USB extender.

Now, let’s take a look at the inputs and outputs you’ll be able to take advantage of in applications
and when building your own projects or products. Being able to identify all the components on the
outside of the device (Figure 1-6) will be very helpful going forward. There’s a lot going on, and many
people aren’t quite sure which part does what. After reading through this section, you’ll know the
function of every part and be able to apply that knowledge to your advantage.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

7

Figure 1-6. Kinect external component identification— Output: A) IR (infrared) structured-light laser

projector, B) LED indicator, and K) motor to control tilt-in base. Input: F-I) Four microphones, C-D) two

cameras (RGB and IR), and E) one accelerometer

There are two basic ideas when working with hardware, and with technology in general, that are
really important: input and output. Input is information that comes into a system from an external
source, and output is information that goes out from a system. I learned about inputs and outputs by
hooking up stereos, TVs, and VCRs as a kid. An input to a stereo might be through a microphone or an
iPod, whereas an output could be to a speaker or amplifier. Many devices, such as an amplifier, can both
receive input and send output. The Kinect has sensors that act as inputs, reading (or sampling)
information in space about the physical environment in front of it. The Kinect also has actuators
(outputs) that allow it to write or act upon the physical space by changing it in different ways.

There are four microphones on the Kinect—that’s right, four! That’s not just stereo; it’s actually
quadraphonic sound. Combined with advanced digital signal processing in software, these four mics can
be used to do remarkable things. In combination, these four audio inputs can work to filter out
background noise and detect the relative position of anyone speaking within a room. Looking at the
Kinect head on, there are three adjacent mics on the right side, just below the “XBOX 360” label (Figure
1-6, G-I). A fourth microphone is on the left side (Figure 1-6, F). Microsoft’s official Kinect SDK (Software
Development Kit) is the first to reveal how to access the microphones, although other drivers are
expected to provide access to this hardware in the future.

The Kinect kind of looks like a huge, clunky old webcam, which is fitting because there’s actually a
standard webcam built right into the middle of it (Figure 1-6, C). Next to it is an infrared camera, which
is a bit more exotic than a standard webcam. Equally interesting, if not downright mysterious, is the 3-
axis accelerometer inside the device, behind the “XBOX 360” label. Most people didn’t expect the Kinect
to contain such a sensor, which is more common in devices designed to be held in your hand, such as a
mobile phone or the Nintendo Wii controller.

Now, for the outputs. You may have heard that the Kinect has a laser in it—it’s true. You can see it
glowing red (Figure 1-6, A) when the Kinect is plugged in, even though the light the projector emits is in
the infrared spectrum and mostly invisible. It works in combination with the infrared camera on the unit
(Figure 1-6, D) to derive the exact position in space of everything in the room it occupies. The other

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

8

light-based output is the LED indicator (Figure 1-6, B). It’s not easily accessible from frameworks such as
OpenNI; however, if you have a project that would benefit from feedback through the hardware, this
may be of interest to you. It could be an ideal way for the application to alert a user that something is
happening without requiring a screen. For example, in the 3D capture tool MatterPort, the user picks up
the Kinect and walks around the room—away from the computer—to photograph objects. An audible
beep from the computer lets the user know once a particular view has been adequately analyzed. This
beep could be accompanied by a flicker of the LED light on the unit as an additional cue, so the user
doesn’t have to be looking at the screen to register it.

Finally, the Kinect has the functional opposite of a sensor, called an actuator, in the form of a small
motor driving gears that pitch the tilt of the camera 30 degrees up or down. This could be put to novel
use in the applications you build. For example, by sweeping the device and its sensor elements up and
down through space, the Kinect can be used to capture high-resolution scans of the environment
around it. If you want to mount a Kinect to a robot, the motor could provide the mechanical up-and-
down motion of the camera. Additionally, if you employ face or body tracking, you can adjust the
position of the camera to adapt when a person moves out of the field of view.

Now that we have identified all of the Kinect hardware, let’s put it to use with software. You’ll have a
chance to see the imagery that comes from the RGB camera, as well as the depth image computed from
the infrared projector and camera combination.

KINECT TEARDOWN!

Interested in an insider view of the Kinect? The website iFixit has put together a writeup and a video that
take you through a tear-down of the Kinect device.

Read the teardown article at: http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/

Watch the teardown video at: http://www.ifixit.com/blog/blog/2010/11/05/kinect-teardown-video/

Please don’t try it at home! Don’t risk your own device. If you’re curious about what’s inside, visit
iFixit.com.

Downloading and Installing Software
The first time I plugged my Kinect into a computer to see how it worked, I used the software you’ll install
in this section. That software is RGBDemo, and I still reach for it whenever I want to demonstrate what
the Kinect is capable of and how it is different from a standard webcam. RGB stands for red, green and
blue—the colors the webcam in the middle of the Kinect can see. The D in Demo also stands for depth,
which the IR projector and IR camera generate with the help of a structured-light chip from a company
called PrimeSense. Who is PrimeSense?

PrimeSense is the Israeli company whose hardware reference design and structured-light decoding
chip are at the heart of the Kinect’s volumetric 3D camera system. This was a surprise to many who had
tracked the evolution of the Kinect (originally code-named Project Natal), as many thought Microsoft
would use the intellectual property of the two time-of-flight 3D sensor companies they had recently
acquired—3DV Systems and Canesta. Following the lead of the OpenKinect project, PrimeSense went on
to help found OpenNI in an effort to put the best tools in the hands of developers. OpenNI has launched
the first major store offering PC applications that make use of volumetric cameras such as those in the
Kinect with the debut of Arena, which will be covered in more detail in Chapter 3.

http://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/
http://www.ifixit.com/blog/blog/2010/11/05/kinect-teardown-video/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

9

While those approaching the Kinect from a natural user-interface perspective see the Kinect as a 3D
gesture-recognition device, people from engineering and robotics backgrounds refer to this particular
aspect of the Kinect’s hardware as an RGBD sensor. RGBDemo is intended to provide a demonstration of
how the Kinect performs as an RGBD sensor in applications such as machine vision and 3D
reconstruction—hence, the name RGBDemo. It’s the most straightforward way to get a look at the low-
level data from the Kinect on both Mac and Windows machines.

Why do you need to download software if the Kinect “just works” on your Xbox? Well, if you plugged
your Kinect into a computer without installing some drivers and applications that know how to talk to
the Kinect, nothing would happen! So, while I know you must be eager to get going, please wait until you
carefully go through the steps in order before plugging in your Kinect. Some of these steps need to be
carried out in a very specific order. Please follow along!

First, you’ll need to go on the Web and download RGBDemo, a powerful suite of open-source
software written by Nicolas Burrus to provide a toolkit that others can use to write programs and a
means for noncoders to see what the Kinect data really looks like. If you’re on Windows, then you’ll
install three included drivers from OpenNI that help RGBDemo make better sense of the data from the
Kinect. The RGBD-viewer application included with the software will show you the kind of imagery the
Kinect can see and the unique ways in which it does so—this will be how we test that you’ve got
everything hooked up correctly.

Nicolas Burrus, originally from Paris, explores the use of depth sensing cameras like the one in the
Kinect for his postdoctoral research in computer vision at the robotics lab of Carlos III University of
Madrid (http://roboticslab.uc3m.es/). Many thanks are owed to Nicolas for being the first to package
up a simple executable program anyone can use with the Kinect on their computer, the same month the
Kinect debuted. For coders, the collection of source code and related machine vision libraries he
assembled for RGBDemo helped many people get started building applications. For less technical
people, RGBDemo provided a means to see the Kinect data for the first time without having to write any
code. Burrus and his partner, Nicolas Tisserand, have since formed a company called manctl
(http://manctl.com) to further innovate around Kinect-related technology. Let’s take a look at how to get
started with RGBDemo.

Finding the Correct Version of RGBDemo
First, you need to find the correct version of RGBDemo for your operating system. Open up a web
browser and go to http://labs.manctl.com/rgbdemo in order to pull up the latest information about the
software project (Figure 1-7). Nicolas updates the codebase regularly, and you’ll need to pick the most
recent version that works on your system. As of this writing, v0.6.1 is the latest version that works for
Windows and Intel Mac OS X Snow Leopard. As of this writing, the RGBDemo project has just been given
a home on the manctl web site, so be aware that its appearance may have changed by the time you visit.

http://roboticslab.uc3m.es/
http://manctl.com
http://labs.manctl.com/rgbdemo
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

10

Figure 1-7. RGBDemo project web page

RGBDemo is an open-source software project. Delightfully, it therefore includes not only an
application ready to run as a “binary executable,” but the source code of its composition as well. Open-
source projects such as this one are valuable: If you find a problem with the software or want to extend it
in a new way, you have the recipe to cook your own version from the original instructions, which you
can then compile into your own improved “binary executable” application. Many open-source projects
come with only the source code and nothing you can use without knowing how to compile programs.
That’s not much fun if you aren’t that technical. RGBDemo is wonderful because it’s ready to run with
an executable binary file, in addition to letting you see how it was constructed.

Now, let’s jump to the binary software that can run on your operating system. To do that, the
following material is split up into different instructions for Windows and Mac users. After the download
and installation, we’ll meet up once again in the “Testing Your Kinect” section, where we’ll launch
RGBDemo and tinker around to make sure everything is working.

Downloading and Installing RGBDemo for Windows
Depending on which version of Windows you are using—XP, Vista, or Windows 7—your experience with
the details in this section may vary. These instructions address some of the hangups you could face
when downloading and installing on Vista that you might not experience on XP or Windows 7. You can
just skip the explanations of those problems if you don’t run into them, but they’re included so we don’t
leave any of the less advanced readers behind. This process can be tedious on Windows, compared to
the much simpler Mac installation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

11

Downloading the Binaries
Enough talk—let’s get that software! On the RGBDemo web page, click the Windows binaries download
link, as shown in Figure 1-8. The page will jump to a line that contains a link to a file called
RGBDemo-0.6.1rc1-Win32.zip (Figure 1-9). Before you click that download link, you’ll need to carefully
carry out two steps in sequence.

Figure 1-8. The link for Windows binaries on the Kinect RGBDemo page

First, I want you to select and copy the 28-character License Key, as shown in Figure 1-9. You will
need to use this in a moment and, if you copy it to your clipboard now, you will be able to paste it in the
next step without having to come back to this page and hunt for it. This long string of letters, numbers,
and symbols is a license to use the PrimeSense NITE middleware with the OpenNI framework.

Figure 1-9. Screen showing the License Key and the download link for the RGBDemo ZIP file

Great! Now, let’s click the link at the top of the screen (Figure 1-9) to download the RGBDemo-
0.6.1rc1-Win32.zip compressed file.

Bam! What just happened? Your browser is now at another site called SourceForge (Figure 1-10),
which hosts this popular file. Don’t be alarmed when the RGBDemo software starts to download
automatically. Or, you may see a dialog box prompting you to select a save location for the file. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

12

compressed file is over 60MB in size and could take a bit of time to download depending on the speed of
your Internet connection.

Figure 1-10. Downloading from SourceForge

You may need to respond to an alert that says something like This type of file can harm your
computer. Are you sure you want to download RGBDemo-0.6.1rc1-Win32.zip? Answer affirmatively, and
when RGBDemo-0.6.1rc1-Win32.zip is finished downloading, double-click the ZIP file to see the Extract
all files window (Figure 1-11). Simply click the icon for the RGBDemo folder and drag it out of the
window and over to your desktop to extract it there.

Figure 1-11. Dragging the RGBDemo folder to the desktop

You may be prompted with a Windows Security Warning asking Are you sure you want to copy
and move files to this folder? Click Yes. Windows will copy the folder and all its files over to the
desktop. Once it has finished, open the folder on your desktop and you’ll see a listing of all the files and
folders inside the directory (Figure 1-12).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

13

Figure 1-12. The complete directory of files inside the RGBDemo folder

Now, go into the directory labeled Drivers. Once you are in the Drivers directory, you will see a list
of three MSI installation files—don’t click any, yet! You’ll need to install them in a very critical order
(Figure 1-13), so pay attention and follow along, please. Perform the installation in the following order:

1. OpenNI-Win32

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

14

2. SensorKinect-Win-OpenSource32

3. NITE-Win32

Notice that the order in which the files are listed in the directory as shown in Figure 1-13 won’t
necessarily match the proper installation order. So be careful! Pay attention to the order as I describe it.

Figure 1-13. Critical order of driver installation: 1.) OpenNI- Win32, 2.) SensorKinect-Win-OpenSource32,

3.) NITE- Win32

First, you need to install OpenNI (Figure 1-14). This is a framework for “natural interface”
technology that allows modules for different hardware and software to talk with each other. Next, you’ll
install SensorKinect (Figure 1-16), a device module that registers the Kinect with OpenNI so it can read
its sensor data. Finally, you’ll install NITE (Figure 1-17), a “middleware” module that processes the
volumetric data coming from the Kinect and derives a map of a person’s skeletal structure that can be
used by an application, controlling gestures and other interactivity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

15

Figure 1-14. OpenNI install dialog showing default destination

Installing OpenNI
Double-click the OpenNI-Win32 file to start the installer. Depending on your settings and which version of
Windows you are using, you might get a Windows Security Warning (Figure 1-15, top). Just respond in
the affirmative—in this case, Install. Don’t worry, all of the software you are instructed to download in
this book are from safe sources. In the OpenNI setup application, you can accept the default path,
C:\Program Files\OpenNI, click Install, and close the window once it’s finished.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

16

Figure 1-15. Windows Security Warnings—It’s okay to trust software from PrimeSense Ltd; choose

Install.

Installing SensorKinect
Next, launch the SensorKinect-Win-OpenSource32 setup application and be sure that both OpenNI and
Sensor are checked in the component selection dialog box (Figure 1-16). Near the end of the installation,
you may see another Windows Security Warning (Figure 1-15, bottom)—click Install this driver
software anyway, then close the window when the process has completed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

17

Figure 1-16. Component install choices—Make sure both OpenNI and Sensor are checked

Installing PrimeSense NITE
Finally, install the last driver by launching the NITE- Win32 setup application. Agree to the license
agreement, keep the default installation path as C:\Program Files\Prime Sense\NITE\, and click
Install. In the next step, you’ll be prompted for a license key (Figure 1-17). Paste in the string of 28
characters that you copied from the RGBDemo download page (Figure 1-9) and hit Install. It’s normal
for a couple of command prompt windows to open and close by themselves during this step, so don’t be
alarmed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

18

Figure 1-17. PrimeSense prompt for NITE license key—0KOIk2JeIBYClPWVnMoRKn5cdY4=

Plugging in the Kinect
Congratulations! You are done installing. Now, for the fun part—you are ready to plug the Kinect into
your computer. Refer back to Figure 1-4 for a visual overview of the cords involved in this next series of
steps. Take the special male USB plug directly on the Kinect and plug it into the female USB connector
on the AC adapter cable. Plug the AC adapter into a wall outlet, and then plug the standard USB
connector into a USB port on your computer. This should look something like Figure 1-3 but instead of
unplugging from an Xbox you are plugging into your computer. You may see the Kinect’s LED indicator
turn on or blink. Now, go ahead and point the Kinect at yourself from a distance of about two feet.

Once you have plugged in the Kinect, you may see various system notifications (Figure 1-18,
bottom) about driver software installation. Depending on your system configuration, you may see
individual notifications for the motor, cameras, and Xbox NUI Audio. This could take a while, so please
be patient. Windows may be unable to find the audio drivers because these sensor drivers are only for
the PrimeSense-related components of the Kinect (Figure 1-18, top). When Microsoft licensed the
design, they added their own array of four microphones (See F-I in Figure 1-6) on top of the PrimeSense
reference specification. Microsoft has yet to distribute third-party drivers for the audio components on
Windows; however, they provide full audio support in their official SDK. Therefore, if prompted to locate
audio drivers, select the choice labeled Don’t show this message again for this device and don’t
worry about Windows not finding the Xbox NUI Audio device (Figure 1-18, top)—this is normal.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

19

Figure 1-18. Xbox NUI Audio driver not found message and system tray notification

If you are running Windows Vista, you will probably be prompted to restart; go ahead and do that.
When you return to Windows, it will show a screen saying it is configuring updates and warn you not to
turn off your computer. It could take a while depending on your system. When it’s done, you’ll finally be
able to tinker around with the Kinect on your computer!

Navigate to the RGBDemo folder on your desktop and launch the rgbd-viewer application (Figure 1-
12, last item in directory). A black command prompt window will appear with the message Setting
resolution to VGA. This is normal and should be followed by the graphical user interface window of
RGBDemo (Figure 1-21, later in the chapter).

Now, skip to the “Testing your Kinect” section, as the following pages explain the download and
installation process for Mac OS X. If you’re curious, take a look at the process as described in this section
for Apple computer users.

Downloading and Installing RGBDemo for Mac OS X
RGBDemo is available for the Intel-based Macs and requires Snow Leopard or Lion. Unfortunately,
PowerPC-based machines are not supported. Navigate to the RGBDemo site at
http://labs.manctl.com/rgbdemo and locate the Mac Binaries link.

http://labs.manctl.com/rgbdemo
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

20

The file is hosted at SourceForge, and will download automatically, as pictured in Figure 1-19. You
may need to confirm by clicking Yes in response to a message such as This type of file can harm your
computer. Are you sure you want to download RGBDemo-0.6.1-Darwin.dmg? There’s nothing in
RGBDemo that will harm your computer, so don’t worry.

Once the file has finished downloading, click it so it will expand into a disk image. The resulting disk
image (Figure 1-19, bottom) will contain two folders. Drag the RGBDemo folder onto the Applications
folder. Then, navigate to the Applications folder, find RGBDemo, and navigate into it. Once inside, you’ll
see a listing of all the files and folders in that directory (Figure 1-20). It’s that simple.

Figure 1-19. RGBDemo-0.6.1-Darwin.dmg download and resulting disk image containing RGBDemo folder

and link to Applications

Congratulations! You are done installing. Now, for the fun part—you are ready to plug the Kinect
into your computer. Refer to Figure 1-4 for a visual overview of the cords used in this next series of steps.
Take the special male USB plug on the Kinect and plug it into the female USB connector on the AC
adapter cable. Plug the AC adapter into a wall outlet, and then plug the standard USB connector into a
USB port on your computer. This should look something like Figure 1-3, but instead of unplugging from
an Xbox, you are plugging into your computer. You should see the Kinect’s LED indicator turn on or
blink.

Now, point the Kinect at yourself from a distance of about two feet. Let’s launch the rgbd-viewer
application as shown in Figure 1-20. You are ready to test the Kinect on yourself! You should see the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

21

RGBDemo user interface as pictured in Figure 1-21. This is the end of the section on downloading and
installing RGBDemo for Mac OS X. The rest of this chapter applies for both Windows and Apple
computers. Well done!

Figure 1-20. The complete directory of files in the RGBDemo folder, with the rgbd-viewer application

selected

Testing your Kinect
Are you ready to see yourself in volumetric 3D?! Okay, if you’ve followed the steps successfully, you
should be looking at yourself like I am in Figure 1-21. This colorful, realtime view of you looks like a
thermal camera image from a science fiction movie, but that’s where the similarity ends.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

22

Figure 1-21. RGBD Capture window in rgbd-viewer application. Main image shows merged depth range

image mapped to color values representing distance from sensor. Upper right image shows Color Image

stream from RGB camera. 3D View and Filters options are shown in the Show dropdown menu. Distance

value for each pixel is shown in upper middle Distance at... status corresponding to location of mouse

pointer on depth range image.

Instead of showing different colors representing a range of temperatures like a thermal camera, the
Kinect shows different colors for a range of distances from the camera. These colors are arbitrary—some
other drivers display the depth image as a grayscale range, instead. You can see the exact distance in
meters of any pixel, or picture element, in the image from the camera by moving your mouse over any
part of the colored image of yourself. Look just above and to the right of the depth image and you’ll see a
readout such as Distance at (0,414) = 0.000 m in Figure 1-21. Try rolling your pointer around and see
how far different things in your environment are from the camera. The readout is calibrated in meters,
not feet, but you can find a converter online.

Take a moment to jump around in front of the camera and observe how the depth image reflects
your movements in space. Pick up the Kinect and point it at the walls and floor around you, and note the
change in color corresponding to the change in distance of these objects from the device. All of the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

23

depth data about the scene can be sent to the programs you write, and the other chapters in this book
will go into detail about how that works. Additionally, you’ll learn about the fundamentals of people and
skeleton tracking in Chapter 2. For now, we’ll just focus on the basics of the data and imagery coming
out of the Kinect without any sophisticated middleware.

It’s a pretty simple idea—every pixel in the image has a location in space as measured from the
camera. No other consumer camera has ever had the Kinect’s ability to measure space. This is the raw
functionality of a “depth sensor”, which has been used in robotics and engineering for years. With just
the depth sensor, as well as skeletal tracking middleware and other tracking methods we’ll look at later,
software developers can create simple “natural interface” software that makes it easier to interact with
machines without touching them. It’s pretty cool—but what we’ll do next shows how, with the help of
the right software, the Kinect breaks away from just depth sensing to usher in a whole new class of
equipment, becoming the first consumer-grade volumetric 3D camera, or voxelcam for short.

In Figure 1-21, you can see a normal webcam view of yourself in the upper right corner labeled
Color Image. The signal is coming from the visible light camera sensor behind the lens in the middle of
the Kinect (Figure 1-6, C). What you are looking at in the Color Image window is a live video stream of
visible light, organized on your screen in the same way that still pictures and video have been displayed
on screens since the dawn of television—through a 2D table of picture elements, or pixels. Like a
spreadsheet with rows and columns of light samples, and a color value for each cell in the table, these
elements are stitched together to form a mosaic on the screen. Note that by default the Intensity Image
and the Amplitude Image in the lower right of the window in Figure 1-21 are turned off. Nothing is wrong
with your setup if you don’t see anything in that area.

Now, you’ll add another dimension to the camera image with the help of the depth range image
data. Breaking from all traditional photography and video as we’ve known it, we can now assign each
picture element a location in 3D space that reflects the position of the original surface from which it was
sampled (Figure 1-22). For every pixel in the depth image, we can extract three dimensions: its distance
from the camera (z), its vertical position in a column of the image table (y), and its horizontal position in
a row of the image table (x).

Figure 1-22. RGBDemo 3D View—synthetic camera in alignment with actual camera by default

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

24

These floating points, or “pixels in space”, are hard to imagine. They have no color or texture of their
own. They are merely used to indicate the presence of something that is reflecting the infrared laser
pattern. To provide a more concrete way of understanding these points in space, we’ll move from the 2D
metaphor of a spreadsheet to a 3D metaphor of a Rubik’s cube. Imagine each point as having a volume
of its own as represented by a single cube within the larger Rubik’s cube. An individual cubic volume
element, or voxel, from this larger 3D array of cubes acts as a container for information, with an address
in x, y, and z coordinates designating a chunk of physical space in the scene. That means we can merge
the picture elements from the webcam with the voxels from the Depth Cam to build a volumetric cubic
space that has both depth and color. This process assembles a live cloud of colored voxels in 3D space
that reconstruct the surface shape and appearance of objects in front of the Kinect (Figure 1-22). Unlike
2D computer vision technology, such as the Playstation Move or Nintendo Wii, this ability to parse the
voxel map of a scene with depth information is fundamental to understanding the power of the Kinect
and how you can work with it.

Are you ready to get voxelated? Okay, to see yourself in volumetric 3D, first click Show from the menu
bar in the RGBD Capture window, and then select 3D View. A new window will pop up labeled 3D View
(Figure 1-22). You’re not quite there yet—at this point you should see yourself like you would on a
normal webcam, but with some rough edges around your head and other objects. Here’s the fun part:
click on yourself and drag. Now, that’s what you’ve been waiting for (Figure 1-23)!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

25

Figure 1-23. 3D View with synthetic camera rotated slightly to the left. Top view shows default PointCloud

render mode, bottom view shows Triangles render mode

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

26

What you are looking at is a “synthetic camera” image in volumetric space. The synthetic camera
isn’t really there—its image is derived from peering at the floating volume elements in space from a
different angle than that at which they were originally sampled. You can take this synthetic camera and
spin it in any direction to look at the voxel data from any angle. Figure 1-24, for example, shows the
image rotated 90 degrees.

Since you are using only a single camera, the image will start to look more incomplete if you try to
peer behind objects facing it, and you can extrapolate this from Figure 1-24. It’s possible to arrange a
number of voxelcams in a space in order to build a more complete scene. Both the Microsoft Kinect SDK
and OpenNI framework actually include support for interfacing with multiple Kinects simultaneously.
Therefore, if you wanted to create an application that filled in imagery gaps from multiple angles, it is
possible to write software to do that. This single, comprehensive volumetric view of a space could be
observed from infinite perspectives, all positioned in real time interactively during playback with
synthetic cameras that map to the direction a viewer is looking.

Once people catch on to what this technology can really do, there will be an increased demand for
more truly immersive experiences. As volumetric sensor arrays become more common to meet this
demand, the possibilities of what can be created from this technology grow even more limitless. The
Kinect is the tip of the iceberg. Welcome to the volumetric age!

These buckets of information can be rendered in different ways. The default method for 3D View is
just a cloud of pixels in space, also called a point cloud (Figure 1-23, top). This view has lots of holes in it,
as you can see. You can zoom in to see the points even closer—the pattern they display reflects the
structured-light dot pattern invisibly cascading over you from the IR projector.

Since we don’t have multiple Kinects to fill in all the cracks of this synthetic camera image just yet,
let’s use the magic of polygons to render this information in a way we are more accustomed to seeing.
Select the button in the upper right section of the 3D View screen (Figure 1-23) labeled Triangles,
located to the right of the PointCloud and Surfels buttons. This will create a mesh of triangle-shaped
polygons that connect the dots and allow the visible light image data more surface area to display.
Notice the difference between point cloud view and triangle view (Figure 1-23, bottom). The ability to
create this kind of 3D imagery was only within reach of academic, entertainment, and military
institutions that could afford a price tag in the US$15,000 range only a few years ago.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

27

Figure 1-24. RGBDemo 3D View showing volumetric 3D synthetic camera perspective magically rotating

90 degrees perpendicular to the physical Kinect

You’ll notice the big hole in the image “behind” where you are sitting – that’s your shadow! Your
shape is silhouetted because you are blocking the IR projector from placing measurable light on the wall
behind you. It may not look like much, since this is a very rudimentary use of the technology, but you
can get an idea of where this capability is leading when you check out Microsoft Research’s KinectFusion
project for realtime dynamic 3D surface reconstruction. This ability to reconstruct the physical world in
digital space is a major theme at Microsoft, and simple applications that have you “digitize your world”
can be found in the Fun Labs minigames available from Xbox Live.

 Note Learn more about the the KinectFusion project at the following URL: http://research.microsoft.com/en-
us/projects/surfacerecon/

While most people only see the Kinect as a natural interface 3D gesture recognition device, it is
important to understand the imaging data that body-tracking software and other features are built upon.
The Kinect’s ability to gather spatial information is the heart of its unique hardware functionality. Some
of the great “hacks” seen on YouTube work with just this raw data and don’t even go to the level of using
the Kinect for gesture recognition. Microsoft Research’s debut of KinectFusion (Figure 1-25) at
SIGGRAPH 2011, the leading industry conference for graphics experts, shocked many in the tech world.
Previously, the volumetric video output from the Kinect was panned as too low quality to be useful.
KinectFusion’s high-resolution, realtime, photorealistic reconstruction of people and objects, even with

http://research.microsoft.com/en-us/projects/surfacerecon/
http://research.microsoft.com/en-us/projects/surfacerecon/
http://research.microsoft.com/en-us/projects/surfacerecon/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 1  GETTING STARTED

28

a shaky camera, demonstrated that a persistent model of an entire scene could be stored and updated
rapidly to fill in missing detail behind the view of the camera.

Figure 1-25. KinectFusion showing realtime reconstruction of person in 3D (left) and photorealistic

texture map model with lighting effects (right). Courtesy Microsoft Research.

It’s likely that what you’ve glimpsed in this chapter, seeing yourself in live volumetric 3D video, will
play a key part in shaping screen-based entertainment and virtual presence in the future. Instead of
using instant messaging or Skype as we know it, you could be communicating with friends, family, and
colleagues by “instant personing” them into your room with you. Receiving full 3D data of their bodies,
you may be able to tilt your head and look around them as if they were there, something not possible
with today’s 2D cameras. Expect a whole class of applications that invite you to “digitize” people and
objects in your home and bring them into a game or novel application. Now, you know what the real
Kinect data looks like and have a perspective on the kind of experiences that are possible in the not-too-
distant future. The rest of the book will go into more detail on how body-tracking points extracted from
this “voxelated” physical information can be used today to design applications with natural, gestural
interfaces.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 2

29

Behind the Technology

In this chapter, we’ll demystify the underlying technology behind Kinect. You’ll learn about the
principles of depth–sensing imagers, discover alternatives to Kinect that are available through other
manufacturers, and understand the general data output that all of these devices offer to your potential
applications. You can create applications through various drivers, processing libraries, and application
development environments. You’ll be exposed to new language that is used to describe working with
depth and natural interface technology and be provided with a mental framework for relating these new
ideas to ones you’re already familiar with from 2D technology.

One of the challenges of working with new technology is that the concepts behind it have not yet
worked their way into common knowledge or become household names. Because Kinect was designed
as a video game controller that can provide a “natural interface” for gaming, much of the literature on its
development focuses on its application as a “mouse/remote/game controller replacement” input device
for the living room. This is an emerging field, and a number of hardware and software manufacturers
have designed their own systems to accomplish this, albeit in slightly different ways. As a result, there
are disparities in the language used by people and companies from different backgrounds who are
developing this technology for different environments. In some cases, there is not even a well–defined
vocabulary that describes how aspects of this technology work when they are applied outside the
boundaries of a “natural interface.”

The problem is that since Kinect was liberated from its attachment to the Xbox, many of the most
interesting “hacks” have used the device in ways that were never intended by the manufacturers.
Therefore, as concepts and techniques once locked away in academic research or industrial applications
make their way into the public consciousness—through YouTube videos and other popular media—
there is a need to come up with descriptions of technology for conversational use by general audiences.
In order to explain how to use these new technologies as designed, while still addressing the imaginative
off–label uses that are driving innovation, liberties must be taken to bend “expert” terminology in order
to provide a more open–ended view of the technology’s possibilities.

As we move away from conventions of imaging and input systems based on 2D principles—such as
a webcam and a mouse—to those based on 3D systems such as Kinect, we will identify principles that
provide a concrete reference between the two dimensions. After that, we will look at the complete Kinect
“stack,” from hardware to software, in order to explain how this technology works.

Understanding the Technology Stack
The technology stack is a way of describing the relationship between the components that make up a
hardware and software solution. The scope of the stack can be adjusted to the context of what is being
described. Using a personal computer as an example, we can identify a hardware manufacturer (HP), an
operating system (Windows 7), and an application that users can run (Google Chrome). Using web
applications as an example, we can look at the server operating system (Linux), the web server software

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

30

(Apache), the database software (MySQL), and the web scripting language (PHP). The stack provides a
perspective on the complete system design and the chosen components in combination, or as elements
that can be swapped in and out. There are so many ways to use Kinect and its revolutionary inexpensive
3D depth sensor that people may choose different technology stacks depending on how they wish to
utilize the technology. This book is primarily about ways to use Kinect as way of enabling natural
interface experiences; others may use it for filmmaking, 3D reconstruction of objects and environments,
or providing a machine vision system for a new class of affordable robotics.

Originally, the only way to develop Kinect applications (apps) was to use a $10,000 Xbox
Development Kit (XDK) supplied by Microsoft to its partners at high–level studios so they could design
applications exclusively for the Xbox system (Figure 2-1, left). That changed dramatically only days after
Kinect’s retail release – software drivers interpreted the signal coming from Kinect’s USB port, which was
then written and released as open source software on the Internet. Suddenly, with the aid of the
“libfreenect” drivers, also known as “OpenKinect,” anyone could develop their own apps using the
Kinect sensor, free of charge. These drivers access raw data from various Kinect sensors, but don’t
provide a higher-level framework for making sense of the data in a natural interface–based development
environment. That didn’t stop curious and creative programmers from producing remarkable
applications, also known as “hacks,” that explored the possibilities of Kinect technology beyond gaming
(Figure 2-1, right).

Figure 2-1. Original Microsoft Xbox Kinect stack vs. OpenKinect/libfreenect stack

Once unofficial Kinect apps began to gather media attention and online buzz, the companies that
were previously designing software to enable the development of natural interface–based applications
took notice. PrimeSense, the company that developed the enabling technology behind the structured
light depth sensor inside Kinect, responded by spearheading the OpenNI initiative with a number of
other industry leaders – a driver framework that allows interoperability between any depth–sensing
hardware and the related software, which enables the creation of natural interface applications.

This gave developers another option for Kinect development – for the first time, they had access to a
driver framework that would not require them to consider a particular manufacturer or the
implementation of the depth–sensing hardware. Additionally, the OpenNI software came with tools that
increased the speed of development because they solved many of the harder problems of working with
raw sensor data that the libfreenect/OpenKinect drivers had not yet overcome. This software was freely
available, and its source code was openly viewable. PrimeSense separately released a freely available, but
closed source skeletal tracking middleware system called NITE that interprets raw data and computes
simplified coordinates of body parts in order to author gesture input commands, which is similar to the
technology used to create games with the Xbox Development Kit.

After OpenNI became available, Microsoft announced that a Kinect Software Development Kit for
Windows would become available in the spring of 2011 for non–commercial use. Soon, companies that
had spent years designing application development suites for authoring natural gesture software woke
up to find a growing market demand. Previously, their systems were not easily available for download
and came with licensing fees that made it too costly even to publish them on their websites. Suddenly,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

31

these companies needed to maintain relevance as thousands of developers were clamoring to create
sophisticated applications – the most accessible choice was open source software. By February 2011,
SoftKinectic announced the general availability of iisu, their driver system for any depth sensor as well as
a development environment for body gestures, in addition to their line of DepthSense camera hardware.
Omek Interactive moved to release their Beckon SDK while announcing a partnership with PMD
Technologies, a time–of–flight depth camera manufacturer. GestureTek, a pioneer in body–based
gesture interaction systems since the 1980s, prepared to offer their GestTrack3D SDK for general
availability.

Gradually development choices have become increasingly diversified for designers and developers
who are looking for tools that will help them take advantage of the possibilities offered by Kinect. Today,
there are dozens of hardware and software combinations that result in novel technology stacks that can
drive natural user interface experiences into the future (Figure 2-2). In the next section, we will explain
the factors that determine the shape of a Kinect stack, based on the individual components.

Figure 2-2. New alternative natural interface hardware and software stacks

Hardware
A variety of devices can capture 3D imagery. Most are still expensive, which is why Kinect is such a
significant breakthrough. Some devices are more appropriate for capturing still imagery, while other
designs are suited for producing a high frequency of still imagery over time to generate 3D depth video.
Each device captures depth information about the 3D world and stores it in ways that can reconstruct
the full dimensionality of the captured 3D data. The systems may use very different operational
approaches or come from different manufacturers, but the result is always data that contains some form
of 3D depth information.

It can be helpful to compare the different approaches of collecting 3D imagery with the choices for
collecting 2D information. Regardless of the device’s operational method, a traditional camera always
captures the 3D world and stores it in a 2D format. Whether it’s a pinhole camera, a large format plate
camera, a single lens reflex (SLR), a rangefinder, a point and shoot, or the camera in your phone, the
optical systems take in light and store a negative or raw image file in flat 2D. Therefore, just as these
different imaging systems exist with their own strengths and weaknesses for a particular application in
2D photography, there is a range of different ways to build 3D imaging systems as well. In depth–sensing
systems, the basic premise usually includes emitting a signal, having that signal bounce off the objects in
the environment, reading the signal as it returns, and computing the depth information (Figure 2-3).
Regardless of the technique used, the common thread between them is the generation of a depth map
image or a 3D point cloud of a scene.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

32

Figure 2-3. Shared principles of most 3D depth–sensing systems. Signal is sent from the emitter, signal

reflects back and is received by the sensor, calculations on returned signal are used to measure the distance

to the target.

Structured Light Camera Systems
A visible structured light approach was famously used as the basis for Radiohead’s breakthrough 2008
cameraless music video, “House of Cards,” from the album In Rainbows. With the aid of Geometric
Informatics’ custom system, close–up recordings of singer Tom Yorke’s face were captured as point
cloud data, which allowed the ”synthetic camera” viewpoints to be directed in postproduction. The
structured light approach was ideal for capturing the singer’s detailed facial expressions since this
technique can be used to capture subjects within a couple of feet. Another 3D capture technique called
LIDAR, or light detection and ranging, was used to gather large–scale 3D imagery spanning hundreds of
feet for renderings of buildings and roads. A US$75,000 Velodyne device with 64 synchronized spinning
lasers made this imagery possible.

The data resulting from the production of the Radiohead video was made openly available through a
Google code repository at http://code.google.com/creative/radiohead/. Kyle MacDonald explains how
to recreate a setup like the one used to create the close-ups in the video at
http://www.instructables.com/id/Structured-Light-3D-Scanning/ (Figure 2-4).

Structured light scanning is the process of generating 3D depth imagery data by projecting a known
signal on to a scene, such as bands of frequency, coded light, or a pattern of shapes, and observing the
way this pattern is deformed as it strikes surfaces at variable distances to calculate depth range. Kinect
uses an infrared structured light system, along with the ASUS WAVI Xtion and the PrimeSense reference

http://code.google.com/creative/radiohead/
http://www.instructables.com/id/Structured-Light-3D-Scanning/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

33

designs. Because these systems use invisible infrared light, there is no perceivable disturbance to the
environment during recording. This allows 3D capture to be unaffected by lighting conditions in the
scene. In contrast, visible structured light systems work by projecting patterns on to a scene that is
visible with the naked eye. Such systems provide their own illumination of the scene within the visible
spectrum, which can be quite noticeable.

The visible structured light approach has some advantages. Previously, this approach was one of the
less expensive options for generating depth imagery. It can produce higher resolution imagery than
other approaches, such as time–of–flight cameras, at a fraction of the cost. In a visible structured light
system, a projector can be used to overlay a pattern of shapes, such as lines, that are still or moving at
high frequencies and bend around objects. One or more cameras are pointed at the structured light and
calculations are processed on the resulting imagery to generate depth data. For example, the PR2 robot
by Willow Garage uses an LED “texture” projector to overlay a pattern on the scene in front of the robot
that looks like random red pixilated static. The Robot Operating System uses a narrow angle stereo
camera pair that is pointed at the visible pattern to generate a 3D point cloud. Artists like Kyle
MacDonald have successfully constructed visible structured light systems with off–the–shelf
components (Figure 2-4) including the Sony Playstation Eye high–speed camera, DLP data projectors,
and software written in Processing – an open source creative coding suite covered in Chapter 4. It is
technically possible, although perhaps costly, to modify this visible structured light approach into an
invisible structured light method if the projector signal and camera elements are adapted to work in the
infrared range. This is the range of light the Kinect uses so the user doesn’t actively see light coming from
the device.

Figure 2-4. Visible structured light setup pictured with a three–phase scanning technique. Lower frame
shows resulting point cloud imagery that can be viewed from any angle. Image licensed by Kyle
MacDonald under Creative Commons Attribution 3.0 Unported.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

34

Kinect’s structured light approach is similar in principle to the technique used to scan visible light,
as seen in Figure 2-4. A projector transmits a signal, a camera reads the signal, and computations are
made to derive the distance of the objects from the camera for every pixel in the resulting depth image.
However, the implementation details of Kinect’s approach, as designed by PrimeSense, are unique.
Instead of projecting a visible stream of changing shapes or bands of light, the invisible infrared laser
projector generates a static cloud of variably intense dots in a pattern that appears to be random. An
infrared laser striking a diffraction grating creates each of the dots by splitting the beam into thousands
of individual points of light.

How many dots of infrared light does Kinect project onto a scene? Some estimate 30,000 to 300,000
dots. One curious person went through the trouble of documenting the pattern and reconstructing it on
a grid in order to understand how the dots were structured. His conclusion was that a 3×3 grid is a
repetition of a 211 x 165 spot pattern, which creates an overall grid of 633 x 495 or 313,335 points of light
in total (see http://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/ for more
information).

These dots look like random static, until you see that there is a repeating pattern with nine sections
that make up a checkerboard. This light array is visible using a program like RGBDemo, which provides
access to the IR image stream. The pattern is structured in a way that makes the detection of any set of
dots registerable within the scope of the entire set – this is the essence of the architecture behind the
PrimeSense depth sensor system (Figure 2-5). Because they are structured in such a recognizable way,
the PrimeSense image processor chip can align these dots and make calculations based on them by
comparing their different positions in order to create a reference image. When these cameras and chips
are assembled into a system in the factory, all the components are calibrated by pointing the sensors at a
wall, which are a specific distance from the device. The projector displays its structured pattern, and the
IR camera captures an image that is stored on the PrimeSense chip as a registration of depth for all of the
pixels in the image using that particular distance. For now on, this image becomes the reference point
for calculating the distance to each pixel in a live depth image. The person’s face disrupts the uniform
pattern and is compared to the reference image in a process that derives the distance to each dot on the
face within centimeters.

http://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

35

Figure 2-5. PrimeSense depth sensor architecture. Color image CMOS sensor and audio components,

colored blue, are not required to produce a depth map. Image courtesy of PrimeSense.

A special camera that can see infrared light is required to read all of the dots. This is the camera
behind Kinect’s far right lens (Figure 1-6, D). This camera has a filter that masks the visible spectrum of
light by only allowing infrared light to hit the light sensors behind it. If you look closely at this lens, you
can see its iridescent green coating, which is how you can identify it from the visible light camera to its
left. This barrier reflects all the unnecessary visible light that is not required for the depth calculating
process, and only allows the infrared–projected dots to make it past the lens.

Kinect comes with another camera that is more familiar to us. It’s a simple webcam, similar to what
your laptop or phone might contain that captures visible light as red–green–blue, or RGB pixels. The
PrimeSense reference devices have this camera as well. However, another licensee, Asus, chose not to
include the RGB camera in their first WAVI Xtion unit. This camera is not used to generate the depth
map, yet is included in many new depth camera units as a method of mixing visible light imagery and
depth imagery together. Systems that combine visible light with depth maps are a form of volumetric
camera, especially when they are assembled in an array of multiple RGB/depth–sensing devices.
Combining an array of sensors can produce imagery without shadows where no depth information is
stored, which allows for an infinite perspective on a scene without noticeable gaps behind the objects.

Additionally, visible light cameras can be used for computational analysis. For example, computer
vision recognition software, such as OpenCV, can be applied to a scene to search for faces, and be

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

36

trained to associate those faces with individual users who are isolated from the depth map. There are a
variety of existing libraries and methods for deriving meaningful information from RGB imagery that can
be integrated into an application when the hardware uses this additional visible light camera.

The following subsections describe a number of depth sensors that implement the structured light
approach for deriving 3D scene information. They all utilize the PrimeSense design, but have different
choices for optional internal components and form factors. As PrimeSense continues to license the
design to more manufacturers, such as those producing flat screen TVs and set top boxes, developers
will find an ecosystem of choices that can be applied to design applications based on what they know
about Kinect. Many of these hardware manufacturers will choose to participate in OpenNI–compliant or
other standards–based app stores, which creates opportunities for app developers to distribute their
creations to a larger base of installed devices.

PrimeSense Reference Design
PrimeSense is an Israel–based company that makes the 3D–structured light technology that Microsoft
licensed for use in Kinect. A reference design product is available for developers to evaluate the
technology for use in new hardware, or for working with the OpenNI/NITE software that will be covered
in subsequent chapters. For the scope of this book, PrimeSense’s reference design is the same as
Kinect’s. The only differences are the lack of a motor, the need for an A/C power supply, and different
microphone components. The PS1080 design (Figure 2-6) was the first available and is being replaced by
a smaller model with a built-in stand. (More information is available at http://www.primesense.com).

 Tip The Xtion Pro Live manufactured by ASUS and mentioned in the next section is an exact implementation of
the PrimeSense reference design. If you want an implementation of the reference design and have trouble getting
the one from PrimeSense, the Xtion Pro Live is a good option.

Figure 2-6. The original PrimeSense reference design, the PS1080 (top), and the newer design (bottom)

http://www.primesense.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

37

PrimeSense is the primary designer of infrared structured light systems. However, other hardware
manufacturers produce depth imagery using alternative techniques that are described in upcoming
section “Time–of–Flight Camera Systems”. It is important to remember that regardless of the design, all
of these sensors generate a depth map that can be incorporated into software using similar principles. As
we get to the driver section of the stack, you’ll see that there are layers of software that abstract out the
particular hardware implementation and simply give you access to the 3D data regardless of the method
used to generate it.

ASUS WAVI Xtion PRO and PRO Live
ASUS, a Taiwanese computer manufacturer, was the second major licensee of the PrimeSense hardware
technology after Microsoft. The WAVI Xtion PRO is marketed as “the world’s first and only professional
PC motion–sensing software development kit.” The distinction is warranted because, unlike Kinect, this
product was designed with the intention of connecting it to a personal computer right out of the box and
is developer–friendly with software and content creation tools intentionally included. Developers who
build OpenNI–compliant software will have an opportunity to sell it in the ASUS Xtion store that will
accompany the WAVI Xtion product line.

More recently, ASUS has introduced the Xtion PRO Live. This newer model includes an RGB camera,
and is a precise implementation of PrimeSense’s reference design. More information about both models
is available at http://event.asus.com/wavi/Product/WAVI_Pro.aspx.

 Note Following is the direct link to the ASUS store page from which you can purchase the PRO Live model:
http://us.estore.asus.com/index.php?l=product_detail&p=4001.

Time–of–Flight Camera Systems
In contrast to structured light systems, time–of–flight camera systems don’t make use of a complex
projected pattern that needs to be decoded in order to calculate depth. Instead, these systems make use
of the constant speed of light, approximately 300 million meters per second, as the key to unlocking the
depth of objects in a scene. This depth ranging technique works by recording the time it takes a light
signal to travel from an emitter and bounce off an object in a scene, and eventually land back on a light
sensor in the unit. Extremely sensitive photo sensors and high–speed electronic components allow for a
calculation of distance to be made based upon the time it takes for the light to travel and bounce back.
This calculation is performed for every element in the sensor array, which requires the resolution of
these devices to be smaller than that of structured light systems, usually between 64x48 and 320x240
pixels.

There are a number of techniques—such as pulsed light, RF modulation, and range gating—that
manufacturers can use to make a time–of–flight system. Additionally, one can choose what type of light
source to use, which determines the price and suitability of a given environment. An array of LEDs can
be used to construct a consumer–priced system that works well for close range subjects, between two
centimeters and two meters. Laser light–based systems have the ability to extend up to two kilometers,
but these are out of the price range for anyone but large institutions.

LED–based time–of–flight sensors make up the bulk of the competition against PrimeSense
structured light depth sensors. The following section highlights the devices that are marketed for use in
3D natural interface systems. Because of the way these systems are designed, they have abilities that
structured light systems are unable to match. Depending on the type of illumination employed and the

http://event.asus.com/wavi/Product/WAVI_Pro.aspx
http://us.estore.asus.com/index.php?l=product_detail&p=4001
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

38

availability of ambient light suppression, time–of–flight units can be used outdoors in daylight.
Structured light systems are often unable to compete with the strength of light beyond indoor
conditions. Additionally, time–of–flight chip timing can be altered to provide depth precision over a
large distance, or it can be densely tuned to a small depth range, making these systems suitable for facial
capture where a high degree of detail is required over a short distance.

SoftKinetic DepthSense Cameras
SoftKinetic is a Belgium–based company that is bringing its DepthSense line of cameras to the US
market along with their 3D gesture recognition middleware, iisu. Their DepthSense cameras gather 3D
scene information using time–of–flight systems and include an RGB camera for sensing visible light
imagery similar to Kinect. Their DepthSense hardware enables the natural motion based interface for
the first game console designed for the Chinese market, iSec (http://www.eedoo.cn/html/eedoo/isec/).
More information about SoftKinetic is available at http://www.softkinetic.com/.

PMD [vision] time–of–flight cameras
PMDTec, headquartered in Germany, is the world’s leading supplier of integrated circuit technology for
time–of–flight cameras. Their PMD[vision] CamBoard reference design has a grid of 200x200 sensor
elements and provides companies that want to build their own products around this technology with an
idea of how it can be implemented, similar to the relationship between PrimeSense and Microsoft with
Kinect. The PMD [vision] O3 on the other hand, is packaged to be purchased direct from PMD and
contains a sensor grid of 64x48 elements. These two devices (shown in Figure 2-7) do not come with an
integrated RGB camera so they can only provide a depth and IR map. PMDTec’s newest high–resolution
prototypes capture up to 352x288 sensor elements. (More information is available at
http://www.pmdtec.com/).

Figure 2-7. The PMD [vision] CamCube, PMD [vision] CamBoard reference design, and PMD [vision]

ConceptCam. Photo by Kara Dahlberg.

http://www.eedoo.cn/html/eedoo/isec/
http://www.softkinetic.com/
http://www.pmdtec.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

39

Panasonic D-Imager
Panasonic’s D-Imager shown in Figure 2-8 is marketed as a depth–sensing solution for gaming systems
and digital signage. It was used to drive an interactive display at the Japanese pavilion during the World’s
Fair EXPO 2010 in Shanghai. The D-Imager can produce a 160x120-resolution depth map image at up to
30 frames per second. Panasonic’s device contains back light suppression technology to make it more
resilient to bright ambient light conditions. More information is available at http://panasonic-
electric-works.net/D-IMager.

Figure 2-8. Panasonic D-Imager time–of–flight depth sensor with an array of near infrared LEDs hidden

to the left and right of the lens.

Drivers & Data
Each of the devices mentioned in the previous hardware sections require drivers that can interpret the
raw signals coming out of them and turn those signals into usable data for applications. Drivers are the
next layer in the technology stack and are critical for developing software that can take full advantage of
these devices on a given platform.

The original manufacturers only provide drivers for these devices on platforms that they support.
This was the case with Kinect when it was initially released. Kinect was only usable on Xbox 360 systems
until the open source community reverse–engineered the device to produce the OpenKinect project and
the libfreenect drivers. Since then, there are multiple ways to work with Kinect on the platform you
desire, or with any of the other depth–sensing cameras listed in the previous hardware section. This is all
thanks to the magic of drivers – let’s look at the kind of data supplied by different drivers.

OpenKinect/Libfreenect
The OpenKinect project’s “libfreenect” open source driver for Kinect was the first available for general
use and is the basis for a number of projects. Once the OpenNI driver framework came out, many
projects dropped their dependencies on ‘libfreenect’ and moved over to the OpenNI drivers because
they offered more flexibility for swapping out Kinect for other hardware, as well as a more robust set of
features to build applications on top of. That said, many programmers still choose to use the

http://panasonic-electric-works.net/D-IMager
http://panasonic-electric-works.net/D-IMager
http://panasonic-electric-works.net/D-IMager
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

40

“libfreenect” driver because it is easy to redistribute without requiring users to download dependent
software.

Libfreenect provides access to three main sets of data from Kinect in the form of imagery. The most
important data is the raw depth map image (Figure 2-9). This is libfreenect’s only way of providing depth
information for your application. This image is encoded to an 11-bit depth and the intensity values map
to a specific distance from the camera. The rawest form of data displays this in shades of gray, yet most
utilities choose to display it as a colored image in order to distinguish between distances visually.

Figure 2-9. Depth map image from Libfreenect. Each color represents a distance from the camera.

The libfreenect driver also provides your application with a raw infrared (IR) image using the far
right camera (Figure 2-10). The driver uses a direct feed from the camera that is designed to look for the
dots of light produced by the IR projector. For that reason, image is filled with a speckled pattern that is
dispersed around the objects in the scene. Because the IR map is used to generate the depth map,
combining the two in a point cloud view provides a well–aligned 3D representation. However, the
representation must be calibrated. This need for calibration is one of the frustrating aspects of using the
Libfreenect drivers – OpenNI provides a calibrated mapping of the RGB data for the depth data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

41

Figure 2-10. IR map image from Libfreenect. Speckled dots are projected on the scene from the IR

projector.

The final image data provided by Libfreenect is the visible light RGB image (Figure 2-11) from the
middle camera in Kinect. The RGB camera provides the visual data you would work with to perform
calculations on a scene using computer vision software, such as OpenCV, for face recognition. As you’ll
see in Chapter 3’s coverage of the Body Dysmorphia Toy and the Ultra Seven/Kamehameha apps, this
visual data can also be fed back into the software you produce to provide an augmented reality view.
Your application can also align the RGB image data with the depth map to produce point clouds that will
reconstruct a scene like 3D Capture-It, which is also covered in Chapter 3.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

42

Figure 2-11. RGB map image from libfreenect

In addition to the image–based sensor data, Libfreenect also provides access to the 3-axis
accelerometer chip embedded in Kinect. This could be helpful for designing hand-held applications that
require users to move Kinect manually, as MatterPort does in Chapter 3. Libfreenect lets your
application read data, but it also control actuators on Kinect. The LED light can turn different colors and
turn on and off according to your design. The Kinect head can be tilted 30 degrees up or down using the
motor–control function.

OpenNI
As described on www.OpenNI.org, “the OpenNI organization is an industry–led, not–for–profit
organization formed to certify and promote the compatibility and interoperability of Natural Interaction
(NI) devices, applications, and middleware.” To carry out this mission, and with the strong support of
PrimeSense, the organization has created an open source framework called OpenNI that provides an
application–programming interface (API) for writing applications that use natural interaction. The API
covers communication with low–level devices, such as vision and audio sensors, as well as high–level
middleware solutions for visual tracking using computer vision.

OpenNI provides access to all of the data available through the Libfreenect driver. It also provides
benefits such as methods for converting from projective x, y coordinates of the depth map back to real

http://www.OpenNI.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

43

world x, y, and z coordinates in centimeters. This makes it easier to acquire a point cloud and generate
alternate viewpoints in a scene from synthesized camera views (see Figure 2-12). Additionally this
software provides the ability to track multiple people, and extract their gestures from skeletal body data.

Figure 2-12. Upper row, point cloud rotated to show alternate viewpoints. Lower row, source RGB, depth,

and IR map images for point cloud scene.

Commercial Drivers
The various software development kits designed to build applications for natural interaction all come
with their own series of drivers for Kinect and have other depth sensors built in. SoftKinetic’s issu, Omek
Interactive’s Beckon, and Gesturetek’s GestTrack3D have their own implementations and may have
varying ways of working with the device. In terms of the microphone array inside Kinect, Microsoft’s
drivers for Windows contain features not available in other drivers. Microsoft’s Kinect SDK is not yet
licensable for commercial use, but we expect that situation to change early in 2012 when Microsoft
releases a commercial version of their SDK.

Middleware and Application Development Environments
The last major component of the stack is the so–called Middleware – various modules of software that
act on sensor data and produce new functionality that an application can use. This type of functionality
may be incorporated into integrated application development environments so the degree to which you
are made aware of them as separate middleware modules depends on the software environment you are
using to design your application.

The ability to segment the depth map into isolated users (Figure 2-13, left) that are separated from
the background, or to extract and track a user’s hand (Figure 2-13, right) are functional time–saving
modules that can help you develop applications more quickly, and that dramatically reduce your
codebase’s size.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 2  BEHIND THE TECHNOLOGY

44

Figure 2-13. Left, user segmentation tracking two people. Right, demonstration of a point tracking a hand

The details of how to interface with this functionality may be different depending on the
development environment you chose to work in. However, the underlying concepts are similar. Skeletal
tracking middleware can track a user by segmenting that user into a skeleton with a series of “body data”
joints. These joints can be assigned matching values in your application for puppeting a character or to
listen for recognizable gestures.

As we move on to Chapter 3 and review applications in the wild, make note of how the programmers
have used the methods we’ve identified in this chapter. Now that you’re aware of how the technology
works, you’ll have a better idea of how to start making your own motion– and depth–aware apps.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 3

45

Applications in the Wild

In this chapter, we’ll take a look at some applications built by developers in the PC Kinect app scene’s
first year that demonstrate the functionality you can take advantage of in your own programs. As you
install the applications on your own computer, consider how the developers have leveraged the
capabilities of the Kinect to create a unique experience in their applications. In later chapters, it will be
your turn to design an application, so use this chapter for inspiration.

Control news and other realtime information from the Web with a wave of your hand using
SenseCast. Practice your super powers as Ultra Seven or Kamehameha transforms your body
movements into laser beams and exploding light. Freak yourself and your friends out as you adjust the
“puffiness” of the world around you with the clever Body Dysmorphia Toy. Finally, discover the wonders
of volumetric photography as an art form with MatterPort, an application that lets you scan the physical
world to produce 3-D photographic models of objects and environments.

OTHER SOURCES FOR KINECT APPLICATIONS

When people first began sharing their experiments with the Kinect, replication on your own computer
wasn’t easy. Many developers posted videos of their work to YouTube that were picked up by sites such as
KinectHacks.net and kinecthacks.com, These videos teased us all with the notion of what was possible.

OpenNI’s Arena at http://arena.openni.org is a great place to look for inspiration and for programs to
run on your computer. Currently, there are over 50 applications at the Arena. Zigfu.com takes the idea
even further with a portal that lets you download its app store and then install and navigate new motion
controlled apps that don’t require you to touch a mouse or keyboard.

Sensecast: Minority Report Meets the Web
Sensecast is a program that was created to help designers and content creators easily wrap text, images,
videos, RSS feeds, Twitter streams, and other Web-based media in a motion-controlled interface.
Combined with an online service to manage the media you publish to your displays, Sensecast aims to
be a complete authoring and publishing platform for motion-controlled content.

Sensecast is ideal for Web-like content such as photo slideshows and news feeds. The free Sensecast
client software (which you download to your computer) pulls media from the Web and/or your local
machine and arranges it in a series of menus and pages that you can then navigate with hand swipes and
hovers. Just plug in your Kinect, download and launch the client, and voila! You're flicking text and
images around the screen like it's 2054, as shown in Figure 3-1.

http://arena.openni.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

46

Figure 3-1. Creator Jonathan C. Hall demos Sensecast’s Kinect-aided motion controls.

Created by one of our co-authors, Jonathan Hall, Sensecast aims to lower the barriers to entry for
companies that want to put interesting content, rather than just signage and advertising, on public and
quasi-public screens. We walk you through using the free client software in this chapter. However,
Sensecast also offers a commercial version that integrates with social media channels, provides content
performance metrics, etc. Of course, there's nothing to stop you from setting up Sensecast to run a
Kinect-enabled display anywhere your heart desires, even in your own home. Want to flip through
recipes for inspiration while kneading pizza dough in the kitchen? How about setting up a touch-free,
germ-free bulletin and message board at your local school or community center? Or maybe you just
want to build the coolest motion-controlled multimedia doorbell in your neighborhood. Sensecast can
help.

In this exercise, we'll simply download and run the free client software available for Mac. More
information is available online for those who want to tweak our Kinected display. Note that the
Sensecast client can be configured to download assets from the Web or we can supply content manually
for the display. Supplying your own content allows you to run Sensecast as a standalone without an
Internet connection or content management system (CMS). The look and feel of the display is also
completely customizable: you just have to edit the markup in the included presentation.xml file and add
any of your own creative assets, such as fonts, images and sounds. In fact, there’s a lot we can do with
this little package. For those who want to explore beyond the simple content browser application
presented in this section, there's an expanding library of tips and tricks available online.

Step 1: Download the Client
The first thing you'll want to do is find and download the latest build of the Sensecast client software for
Mac by going to http://sensecast.com/downloads.

http://sensecast.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

47

Download the Sensecast disk image file (.DMG) and double-click to mount if it does not mount
automatically. You should see an install window something like the one in Figure 3-2.

Figure 3-2. Sensecast installer window

Step 2: Install the Dependencies
Next, you’ll need to run the installer to set up the correct builds of Sensecast, OpenNI, NITE, and the
device driver for your Kinect (or similar sensor). Double-click the installer, agree to the terms (if you
want) and follow the instructions of the install process. The installer will ask you where you want to store
Sensecast’s data, as shown in Figure 3-3. This is where all the programs will look for settings and assets.
By default, it creates a Sensecast folder in your Documents folder.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

48

Figure 3-3. Sensecast installer dialog

In the final steps of the install process, you should probably reject the Advanced Option to run
Sensecast on startup (which is intended for deployed Sensecast installations) and then select the sensor
you want to setup, as shown in Figure 3-4.

Figure 3-4. Sensecast installer dialog final steps

When the installer completes, go ahead and quit out of it. Now, as with the other Mac applications,
Sensecast has placed an application icon in your Applications folder. Find it, plug in your Kinect and
double click when ready!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

49

Step 3: Launch Sensecast
Launch Sensecast to see how the application runs out of the box. A motion-controlled image and news
browser will appear, as shown in Figure 3-5. Now, your whole screen is filled with Kinected-content joy!

Figure 3-5. The Sensecast app that ships with the software

Step 4: Rock Out!
By default, Sensecast uses only the hand-tracking machinery of OpenNI/NITE for navigation and
requires a "focus gesture" before it will start tracking your hand. If you're standing in front of the display
and you move around a little bit, you will be prompted to "Wave your hand back and forth to take
control of the screen." Go ahead and wave at the screen until you see the hand cursor appear and the
feedback image indicate that it's now tracking your hand. Now, as the Xbox folks say, you are the
controller!

Take a minute to explore the Sensecast demo. Find the hover controls and the swipe controls by
roaming the interface with the hand cursor. Browse the dummy content. This demo shows you the basic
set of elements and interactions that you can use to make your own content similarly navigable by hand-
waving magic. If this kind of thing floats your boat, you can check out http://sensecast.org to learn
how to customize Sensecast and to see more examples.

Ultra Seven
Do you sometimes dream of conquering the universe and beyond? Try out the Ultra Seven program
designed for Windows that will transform you into an intergalactic warrior. Ultra Seven is a popular
Japanese superhero from the 1960's show of the same name. He is a soldier from Nebula M-78, who

http://sensecast.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

50

becomes smitten with Earth while on a mission to map the Milky Way. Ultra Seven has several signature
moves that lend themselves well for use with the Kinect's gestural recognition capabilities.

Kinect-Ultra is available for Windows PCs with fairly fast CPUs and fairly advanced GPUs. You must
have at least OpenGL 2.0 and programmable shader capabilities in your graphics card. If your machine
meets those requirements, you shouldn’t have too much of a problem. If it doesn’t, please skip past this
application and the Kamehameha application. This app is at OpenNI Arena, which can be found at
http://bit.ly/ultraseven.

The project’s original page, where you can read more detailed instructions, updates, and watch
example videos is at http://code.google.com/p/kinect-ultra/. Check that you have the versions of
OpenNI, NITE, and SensorKinect that will work with this application as indicated in the documentation.

Once you have followed these instructions and have everything you need, plug in your Kinect, and
connect the Kinect to your computer. Open the application. Make sure the sensor can see you clearly
and you have enough space to move around freely. If you are having trouble, please consult the FAQ at
http://code.google.com/p/kinect-ultra/wiki/FAQ_en.

Going into the calibration pose with your arms up around your head will signal the sensor to
"clothe" you in the Ultra Seven costume. Figure 3-6 shows you how this transformation should look.
Now your body should be clothed in red, with your "skeleton" visible and a mohawkish boomerang
perched on top of your head. You are now ready to battle monsters, aliens, and your cat.

Figure 3-6. Calibration pose transforms you into Ultra Seven!

The crest alighting your crown is called the Eye Slugger. This fashionable head topper doubles as a
removable weapon. By reaching your hands to the back of your head, then thrusting them forward, you
can hurl this weapon in the direction you are facing. Don’t worry; it’ll return to you, too.

You can also place the Eye Slugger in midair. Stretch out your left arm to let the Kinect know what
you’re doing, then grab the weapon with your right hand, and place in front of you. Now you can move
your forearm in a chopping motion to strike your opponent/cat/laundry hamper with the weapon, as
shown in Figure 3-7.

http://bit.ly/ultraseven
http://code.google.com/p/kinect-ultra/
http://code.google.com/p/kinect-ultra/wiki/FAQ_en
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

51

Figure 3-7. Top row: demonstration of how to fling the Eye Slugger ; bottom row: advanced Eye Slugger

maneuver

Another trick up Ultra Seven’s sleeve is the Wide Shot, which allows you to shoot out a super stream
of energy by making an L shape with both arms. Bend your left arm across your chest and hold your right
arm vertical from the elbow with your hand up. The energy stream will fire out in the direction that your
body is oriented. Objects that the Kinect senses in the foreground will not be hit by the energy stream;
instead, it will pass by such objects and continue on its path.

Lastly, you also have at your fingertips the Emperium Beam. In the TV show, this energy ray would
shoot out from a green gem on Ultra Seven’s forehead. Bring your fingers to the sides of your forehead to
signal the beam. Aim! Fire! Figure 3-8 shows these slick moves.

4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

52

Figure 3-8. Top row: a powerful stream of energy triggered with pose ; bottom row: Emperium Beam in

action

After a couple minutes of play, your superhero cloak will start to blink on and off, signaling that it is
time for Ultra Seven to depart from Earth. In the TV show, the Ultramen could only stay on Earth for
short periods of time. When you begin to flash, crouch down and then thrust upwards. Your avatar will
shoot straight out the top of the screen, presumably bound for Nebula M-78 once again.

Kamehameha
A similar application by the same developer, Tomoto Washio, allows you to morph into a Super Saiyan.
If you are not familiar with the Dragon Ball Z series, a Super Saiyan is a powerful, rage-induced
transformation that may be achieved by advanced members of the Saiyan race under extraordinary
circumstances. The result of the transformation is apparently a flaming, golden aura and hair that defies
gravity, as shown in Figure 3-9.

This application is also available at OpenNI Arena. The short link to the site is
http://bit.ly/arkamehameha, and additional information can be found on the project page at
http://code.google.com/p/kinect-kamehameha. Like the previous superhero app, Kamehameha works
on faster Windows PC computers only. Follow the instructions and suggestions on the site. Make sure

http://bit.ly/arkamehameha
http://code.google.com/p/kinect-kamehameha
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

53

you have the correct versions of OpenNI, NITE, and SensorKinect. Once you are ready, plug in your
Kinect, connect the Kinect to your computer, and then open the application.

Standing in front of the Kinect sensor so that your body is visible, assume the standard calibration
pose with arms up around your head and your elbows bent, as shown in Figure 3-9. Allow the sensor
time to find your shape. You should begin to flash, and soon an aura and a head of electric hair will
appear around you. If the sensor is having a hard time finding you, try switching to party mode for easier
calibration.

Figure 3-9. Kamehameha calibration and transformation

Kamehameha was the name of the first king of Hawaii. He was purportedly born around 1738 when
Haley’s Comet was making its fiery journey across the sky. The timing was significant because legend at
the time spoke of a great king born under a comet who would unify the islands.

In the Dragon Ball series, Kamehameha refers to a signature energy attack, which is the move that
you will be able to perform with this application. The Kamehameha is formed when cupped hands are
drawn in front of the user and their latent energy is concentrated into a single point between the cupped
hands. The hands are then thrust forward to shoot out a streaming, powerful beam of energy. First, hold
your hands close together so that the sensor can see them. You will see a white ball of light form between
your hands that should look similar to the first image in the series in Figure 3-10.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

54

Figure 3-10. Kamehameha attack

Keeping your hands cupped, bend from the knee to lower your center of gravity. This movement
should signal the light to increase in intensity. From here, you can push the energy ball out from your
hands in any direction. Extend your arms out in a controlled motion and hold them towards your target
to see what happens.

If the motion detection isn’t working very well, try switching to Party Mode. Please note that this
technology is all relatively new, what some might call the bleeding edge, so developers are still trying to
work the kinks out. Kamehameha isn’t a title put out by a major game studio for sale on Xbox and
understandably is not yet as polished as a commercial program. Tomoto’s two Kinect apps are
noteworthy for being a couple of the first apps out that really put the motion control abilities to use.
Also, Tomoto provides all the code under an open source license for people to modify and learn from.

Body Dysmorphia
This Mac only app made with the Cinder creative coding framework is simple, but quite entertaining.
Basically you can make yourself look fat or thin in realtime. Body dysmorphia is a psychological disorder
that affects perhaps 1% of the population and causes the afflicted to obsess over a perceived defect in
one’s own appearance. Use this program created by Robert Hodgin to see yourself, your cat, and the
world in Stay Puft Marshmellow form.

A quick link to the download the program is at http://bit.ly/dysmorphia, and you can learn more
about the creator at http://roberthodgin.com/ and http://www.flight404.com/. Take a look at the

http://bit.ly/dysmorphia
http://roberthodgin.com/
http://www.flight404.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

55

instructions on the first site and click the link to download the application. Keep in mind that this
application will only work on a Mac operating system. Before opening the application, make sure that
your Kinect is plugged in and also connected to your computer. Once the green light is visible , you can
launch the application and start playing!

As soon as you open the program, you will see objects within the scope of your Kinect dysmorphed
in realtime. At the bottom left-hand side of the screen, you will find a key for various adjustments to the
image. Hold down the "P" key to inflate your subject and lowercase "p" to shrink it. Basically, the data
from the Kinect is manipulated by increasing or decreasing the radius of the points in the cloud. This has
a comical and cartoonish effect as you expand the points into puffy lumps and blobs. Do not expect a
realistic-looking image, but instead have fun adjusting the colors and textures in various ways using the
key.

Pressing "b" or "B" will adjust the amount of blur applied to the image. Adding blur by pressing
down an uppercase "B" will smooth out the points along the surface so the image is less lumpy. Play
around with the blur levels to find an amount you like in correlation to an amount of puffiness. If you
turn the blur up all the way, the image will look extremely impressionistic and lose detail, especially if
you also turn up the amount of puffiness, as shown in Figure 3-11. Increasing both blur and puffiness
can also erase the appearance of depth.

Figure 3-11. Body Dysmorphia Toy showing the user fully puffed and blurred

Remember that the Kinect has a limited usable range of about 2' to 20'. Therefore, if you get too
close or far away from the sensor, the dysmorphia filter will not work. The ideal range for using this
application is around 5' to 10'.

Next to the key along the bottom edge of your screen, you will find the gray scale depth map that the
infrared sensor has produced. Anything outside the recordable range of the Kinect will appear in black,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

56

as shown in Figure 3-12. You can use this guide and know that anything appearing in black will be
clipped and unaffected by the dysmorphia filter.

Figure 3-12. The Body Dysmorphia Toy applies puffiness to the user on the left within the range of depth

sensor, but not to the user on the right who is too close to the sensor.

You can also control what is viewable on your screen by adjusting the clipping plane. You can make
adjustments to decrease the usable depth as an easy way to isolate your subject from an object-filled
background. Simply adjust the clipping plane to include only the subject you are interested in, cutting
out elements from the foreground or background you'd like to discard, as shown in Figure 3-13.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

57

Figure 3-13. Body dysmorphia application used to clip information from the background

Hodgin’s body dysmorphia app shows how a novel, yet very straightforward use of the camera and
depth map data stream can provide an entertaining experience without even using gesture recognizers
and body data mappings. The next app we will show will reveal another level of usage for the same data
when matched with more sophisticated algorithms for 3-D scene reconstruction.

MatterPort
Photography takes a step towards its volumetric 3-D future with the software MatterPort. Go to
http://matterport.com to download the application, which is currently available only for Windows. This
program will allow you to easily take volumetric snapshots of objects or entire scenes and then stitch
them together to be viewable from all angles in a single 3-D model.

Snapshots are automatically taken based on your movements. The idea is that you move around the
room carrying the Kinect device. Every time you move to a new position and then pause, a picture is
automatically taken. The software in combination with the Kinect is able to detect your motion and
pausing, and take photos at each pause. You are thus able to capture an entire scene without returning
to the keyboard over and over again.

http://matterport.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

58

After each photo, the system shows a rough alignment of the overall scene. You are then able to fill
in the spots you missed. Once the basic alignments have been found, the program will spend some time
optimizing the alignments for maximum visual quality.

Begin by plugging in your Kinect, connecting the Kinect to your computer, and opening the
MatterPort software. On the right hand side of the screen, you will see the MatterPort Controls, as shown
in Figure 3-14. The top image on the screen will show the live camera view, which is what the Kinect is
pointed at right at that moment. The image underneath will be the last good capture, which will update
to show the past capture point as soon as you begin to capture a different image. You will use the control
buttons at the bottom of the panel on the screen as you go through the process of capturing a scene.
START is a toggle button that will initiate the capture and that you can use to pause and resume the
process. Backup will let you go back and remove the last capture in the series. Restart lets you start all
over again from scratch. The control buttons to the right enable you to refine a model, save a model, and
load files.

Figure 3-14. MatterPort live camera view, last good capture, and the various control buttons

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

59

To capture the room you are in, stand in the middle of the room and point the Kinect at a corner.
Click START, and MatterPort will begin to capture an image, as shown in Figure 3-15. You can click
START, which serves as a PAUSE button once the capture begins, if you need to take a break from the
process.

Figure 3-15. MatterPort Cloud Viewer window to the left of the control panel showing start of process with

one good capture displayed

When the image is captured, the application will make a sound. Once you hear the sound, a
screenshot will appear in the Last good capture section of the control panel. This screen will show the
last scan taken. There is no need to check the screen as you continue to scan. Every time you hear the
capture noise, you can quickly move the Kinect to a new position to cover more area in the room. The
new position should overlap with at least some of the area from the previous capture. As more images
are captured, they will automatically be aligned in the composite image.

Figure 3-16 shows how the 3D model gets built as you take more photos. The full-resolution of the
most recent capture will appear in the Cloud Viewer window to the left of the MatterPort controls. The
rest of the model will appear in reduced resolution. You can see in Figure 3-16 how the sharpest part of
the image in the Cloud Viewer corresponds to the last good capture image in the control panel to the
right.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

60

Figure 3-16. MatterPort capture in progress showing last good capture aligning with incoming capture

information

If you move the Kinect too fast, the alignment will fail. In such instances, move the camera so that
the view is similar to that shown in the last good capture. If the program does not create proper
alignment between items, you can repeatedly hit Backup to go back until the bad alignment is removed.
After a large number of capture screens, objects may align only roughly, as shown in Figure 3-17.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

61

Figure 3-17. MatterPort showing a roughly aligned 3-D capture

Use the mouse to browse around the composite image from different angles. Small misalignments
are okay since they can be fixed by clicking Refine, which will create a final result like that shown in
Figure 3-18. However, a large misalignment must generally be fixed by clicking Backup until the
alignment problem is removed. This final screenshot will continue to show a reduced-resolution cloud,
but a final full-resolution point cloud will be written to disk. Don’t forget to save your final, composite
image! MatterPort saves your composite image as a point cloud in a .ply file that can be opened in
Meshlab, which you can find at http://meshlab.sourceforge.net/.

http://meshlab.sourceforge.net/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 3  APPLICATIONS IN THE WILD

62

Figure 3-18. MatterPort showing rough mesh enhanced by using the Refine button

Now that you’ve walked through a number of different applications created by other users, start
thinking about how you can approach designing your own. In the following chapters, you’ll get
acquainted with various development environments and see what it’s like to put your ideas into action.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 4

63

Scripting the Kinect

Now that you've seen a little bit of what the Kinect can do, it's time to make it do your bidding! In this
chapter, we will use the cross-platform, noob-friendly Processing programming environment—along
with some Kinect libraries written by geniuses—to grab in–depth information from a Kinect sensor and
do our own rendering and analysis of it. Sound amazing? Prepare to amaze yourself.

Processing
First, a response to those of you who are saying to yourselves, “Uh, why Processing?” (or perhaps more
likely, “Uh, what's Processing?”). Processing is a sweet, little, self-contained programming language and
integrated development environment (IDE) that came out of the famed MIT Media Lab in 2001. It was
created by Ben Fry and Casey Reas, then two students in John Maeda's research group.

Originally, Processing was conceived as a software sketchbook for visual artists that would make it
simple to do basic computer programming for visual applications. Today, Processing is a free and open
source software platform for all kinds of interactive applications. It has scores of user-contributed
libraries and is actively maintained, improved, and used by tens of thousands of artists, developers,
hobbyists, and students.

What Processing Can Do For You
Processing is essentially a Java application and therefore can do everything that Java can do: drawing
and animating 2D and 3D graphics; manipulating images, sound and video; reading and writing data;
communicating via HTTP; and, of course, working with data from a Kinect sensor. But Processing has a
scripting syntax and simplified function calls that make it easy for newcomers and efficient for pro
coders of a certain stripe. It is “self-contained” in that it runs its own instance of the Java Virtual Machine
(JVM) on your computer, so it's a cinch to set up: just download and launch. Like Java, Processing works
across Windows, Mac, and Linux operating systems.

So, again, why Processing? If this is your first trip down the rabbit hole of computer programming,
well, Processing is as easy as it gets. It is the gateway drug to hackerdom. But, even if you're a C++
heavyweight who writes your own Assembler hacks, Processing still has its charms: the “sketchbook”
metaphor and pluggable libraries are a handy way to jump into exploring something completely new,
like a new piece of 3D-seeing hardware!

Download, Install, Explore
If you're familiar with other IDEs, such as Visual Studio, Xcode, Eclipse, or even Adobe products like
DreamWeaver, this is going to be the easiest setup of a programming environment you've ever
experienced! If this is your first IDE, well, suck it up. It doesn't get any easier. In this section, we're going

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

64

to download and install Processing, run some quick test code to make sure everything works, and then
explore the setup of the IDE, the filesystem, and some of the included sample sketches so you get a sense
of what Processing can do, and what you can do with Processing plus Kinect.

To download Processing, browse to http://processing.org/download, where you'll find download
packages for each of the major operating systems (Windows, Mac OS X, and Linux) and a second
Windows download for those of you who want to set up and use your own JVM separate from the
included one (not recommended). Click the download link appropriate for you.

Unlike many pieces of software you may have installed before, there's no separate installer program
with Processing. After you download it, you simply need to uncompress any compressed files, move
them to wherever you keep applications on your computer (usually C:\Program Files\Processing\ on
Windows, /Applications/Processing/ on Mac OS X, or ~/Applications/ on Linux), and launch the
program. You're done! Well, almost.

It's a good idea to try building some super simple script to make sure everything's in working order,
so let’s do that. When you launch Processing, you'll see a blank code window, like that in Figure 4-1,
open to a new “sketch.” Let's run our first script to make sure we're set up correctly. Write these five lines
of code into the code window, as shown in Figure 4-1, and click Run. The Run button is the circular “play”
button at the top left corner of the application window. You should see results like those in Figure 4-2.

size(800, 600);
fill(255, 0, 0);
rect(10, 10, 10, 10);
text("Hello World", 25, 20);
print("It works!");

http://processing.org/download
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

65

Figure 4-1. Processing’s application window

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

66

Figure 4-2. The output of our “Hello World” example

Our little example script generated a new application window that's 800 pixels wide by 600 pixels
tall. It then drew a 10-pixel-by-10-pixel red rectangle in the window starting at (10, 10) in (x, y)
coordinate space and rendered the text “Hello World” next to that rectangle. Finally, our script printed a
success message to the console. Got it? Good. Let's go just a tad deeper in preparation for using
Processing to control the Kinect.

Processing Libraries and Sketches
Since we're going to spend some time with Processing in this chapter writing scripts and adding Kinect
libraries written by third parties, you will not regret taking a little time now to browse the dozens of
useful libraries and example sketches included with the main Processing distribution. These examples
will give you an idea of how Processing works and what its capabilities are, as well as how the larger
Processing user community has extended those capabilities to create a formidable free software
platform for programming interactivity.

Included Examples
Start by taking a gander at the extensive list that opens under File  Examples... It should look
something like the list shown in Figure 4-3. Open one of the sketches under “Topics” that seems
interesting to you. Want to render cool visual effects? Check out the Firecube example under “Effects.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

67

Looking to build your own graphical user interface (GUI)? See how simple button and scrollbar elements
are implemented under the “GUI” topic. How about eerily complex and cool physics? Try a bunch of the
“Motion” examples.

Figure 4-3. The “palette” of examples in Processing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

68

Once you've seen enough to convince you that Processing is worth your while, let's take a last peek
under the hood before connecting the Kinect. Specifically, let's look at Processing's file organization and
how to extend the functionality of the application ourselves using freely available code libraries on the
Web.

Adding Libraries
A nice-but-not-comprehensive index of Processing libraries lives
at http://www.processing.org/reference/libraries/. There are some great libraries for helping your
Processing code interface with hardware, do advanced 3D work, and tie into other massively useful non-
Processing code bases such as OpenCV, the open source computer vision library. If you use Processing
again, you'll no doubt want to know how to add some of this free contributed code.

When you first launched Processing, a new sketch was created with the naming convention
sketch_datex. If you're following along, you created a 5-line “Hello World” script. Now, let's save that
sketch to our “Sketchbook.” Go ahead and click Save. Processing creates a sketchbook folder inside your
operating system's main documents folder, something like C:\My Documents\Processing\ on Windows
and /Documents/Processing on Mac OS X, depending on how your system is set up. In Processing's
“Preferences” pane, you can see—and change—the location of the sketchbook on the filesystem. In any
case, find out where it is and browse to that location.

Your Processing sketchbook is just a folder that contains any sketches or libraries you've created or
added from third parties. You should now see a folder inside it called sketch_datex, or whatever you
named your sketch if you gave it a name. Every Processing sketch gets its own folder, which helps keep
all related files and assets together.

Since you haven't yet added any contributed libraries to Processing, you won't have a “libraries”
folder in your sketchbook folder. Let's fix that now. Create a folder inside your sketchbook folder called
“libraries.” Note that you must name this folder “libraries,” as that is the specific name that Processing
looks for. In the next section, you will drop downloaded Kinect library files into it, relaunch Processing,
and voila! The libraries will be installed. Every time Processing starts up, it searches the sketchbook
folder for stuff to load. Sketches are arranged in the fly-out menus under File Sketchbook. Contributed
libraries are arranged under Sketch>Import Library...>Contributed. Whenever you add files to the
sketchbook and libraries folders like this, you have to relaunch Processing for the new libraries to
become available to your sketches and show up in the menu. Without further ado, let's add Kinect
libraries and start scripting the Kinect!

Finally Kinecting
Unfortunately, here is where PC, Mac, and Linux users must part ways. As of this writing, there's no
single Kinect library for Processing that does it all on all platforms. But that will change (if it hasn't
already by the time you read this)! Processing is constantly being extended by a devoted community of
hackers, and there's a particularly active group dedicated to unleashing the power of Kinect and Kinect-
like sensors. Once you feel comfortable with how this works, you might even take a look
around http://www.processing.org/reference/libraries/ for Kinect projects other than the ones we
use below.

We use two Kinect-for-Processing libraries here: dLibs for Windows by Thomas Diewald and
openkinect for Mac by Daniel Shiffman. Both of these projects implement partial functionality of the
Kinect using the drivers and libraries that are part of the open source libfreenect project, the pinnacle
accomplishment (so far!) of the OpenKinect community at http://openkinect.org and mentioned in the
Introduction. Although much of this book covers codebases that originated in commercial enterprises
and are partly or completely proprietary, this chapter is built entirely on free and open source software

http://www.processing.org/reference/libraries/
http://www.processing.org/reference/libraries/
http://openkinect.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

69

(FOSS) shared by talented hackers all over the world. Before jumping into the Windows-, Mac-, and
Linux-specific directions to follow, bask in the glow of that!

Kinect for Processing on Windows
Now that we’ve installed Processing, getting Kinect to work with it on your PC is a simple matter of
installing some compatible drivers and running some example code. For this, we turn to Thomas
Diewald’s dLibs project.

Adding dLibs
Let's do this. Browse to the dLibs code repository on GitHub: https://github.com/diwi/dLibs. Click
“Downloads” and select the .zip package to download somewhere on your computer. Unzip the folder
and inside you'll see a README document and a folder called “dLibs_freenect.” Copy or move the whole
“dLibs_freenect” folder into your newly-minted “libraries” folder inside Processing's sketchbook folder.
Now, do the exact same thing with Jonathan Feinberg's PeasyCam library, which dLibs uses in some of
its included examples. Download the zip archive from http://mrfeinberg.com/peasycam/#download and
move “peasycam” into your “libraries” folder. Whew! That's a lot of folder shuffling, but that's it!
Relaunch Processing and you should see dLibs_freenect and peasycam now available to you
under Sketch  Import Library…Contributed.

Updating Drivers
We can't use the library until we've updated our Kinect drivers to the libfreenect ones it expects. If you
already installed some Kinect drivers for Windows (e.g., to run RGBDemo in Chapter 1), we're going to
update them here to use libfreenect. Fortunately, they come precompiled and included with the dLibs
download. Unfortunately, you will probably also need to install the free, 5MB Microsoft Visual C++ 2010
Redistributable Package, which provides the runtime components necessary to use software compiled
with Visual C++ 2010, which these libfreenect files were (please note that you do not need this package if
you already have Visual C++ 2010 installed). Grab it
at http://www.microsoft.com/download/en/details.aspx?id=5555 or search ”Microsoft Visual C++ 2010
Redistributable Package” if the link has changed. Download the package and run the installer.

Now, make sure the Kinect is plugged into the PC with the power cord connected to the wall socket.
When the hardware is connected, Windows will launch a wizard to install drivers for the three
components—XBox NUI Motor, XBox NUI Audio, and XBox NUI Camera—or if you already installed
some drivers or otherwise, put the kibosh on the search. You can launch the wizard yourself from the
Device Manager (Control Panel System Device Manager). Find the three “XBox” components,
probably under “Human Interface Components” (if already installed) or with big yellow question marks
on them under “Other” (if not installed). If you have previously installed other Kinect drivers either with
OpenNI or the Microsoft Kinect SDK, you may see these devices set up under different headings in the
Device Manager. Right-click on each of the components and select “Update Driver Software...” As of this
writing, Windows will not find drivers for the Kinect using Windows Update, and you don't want it to.
Instead, steer the driver installation wizard to the kinect_driver_windows folder inside
dLibs_freenect/library. Once all three drivers are added, we're ready to launch one of the dLibs
samples.

https://github.com/diwi/dLibs
http://mrfeinberg.com/peasycam/#download
http://www.microsoft.com/download/en/details.aspx?id=5555
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

70

Running the Pointcloud Example
In Processing, under Processing  Examples..., you should now see some additional examples under the
contributed libraries. For comparison with RGBDemo from Chapter 1, let's look first at the dLibs
“pointcloud” example: kinect_basic_3d_pointcloud

Open and run the example. Right out of the box, the output of the sketch should look like Figure 4-4.
If you click and drag inside the window or use your mouse scroll wheel, you can alter the “camera”
perspective on the image/depth data (thanks to PeasyCam!) to something like that shown in Figure 4-5.
You'll notice that the output of this sketch is a lot like that of RGBDemo in Chapter 1, only now you can see
the script and edit it right in Processing!

Figure 4-4. The dLibs pointcloud sketch, run as is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

71

Figure 4-5. The dLibs pointcloud sketch with the perspective changed by clicking and dragging inside the

window

What the Pointcloud Sketch is Doing
A typical, very basic Processing sketch consists of a setup() function—called at the outset to set up any
parameters or processes used by the sketch—and a draw() function, which runs on the main loop,
constantly drawing and redrawing any elements you tell it to, whether static or animated. The
pointcloud sketch follows that convention with a few additional things going on: some preliminary
library import statements and variable declarations, an initialization routine for PeasyCam, which is
used to control the virtual “camera”, or perspective on the rendered 3D scene, and drawPointcloud(), a
custom-defined function that grabs all the points in the Kinect3D object and draw them. There is also a
stop() function that gets called whenever the sketch is terminated.

It’s almost always instructive to look at the code and try to understand what it’s doing. Here, for
example, is the original code for the drawPointcloud function and some of the variables used by it:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

72

Kinect3D k3d_;

int kinectFrame_size_x = VIDEO_FORMAT._RGB_.getWidth();
int kinectFrame_size_y = VIDEO_FORMAT._RGB_.getHeight();

void drawPointcloud(){

 KinectPoint3D kinect_3d[] = k3d_.get3D();

 int jump = 5;

 int cam_w_ = kinectFrame_size_x;
 int cam_h_ = kinectFrame_size_y;

 strokeWeight(3);

 for(int y = 0; y < cam_h_-jump ; y+=jump){
 for(int x = 0; x< cam_w_-jump*2 ; x+=jump){
 int index1 = y*cam_w_+x;

 if (kinect_3d[index1].getColor() == 0)
 continue;

 stroke(kinect_3d[index1].getColor());

 float cx = kinect_3d[index1].x;
 float cy = kinect_3d[index1].y;
 float cz = kinect_3d[index1].z;
 point(cx, cy, cz);

 }
 }
}

I know what you're saying to yourself: Kinect3D object? What and where is that? And what about
KinectPoint3D inside the drawPointcloud() function? Where did that come from, and how do I know
what it does? Here it's instructive to look through the documentation included with dLibs, which at least
identifies the properties and methods associated with all of the objects available from the library. Open
the included dLibs_freenect/reference/index.html in your browser.

Although the documentation is bare bones, you can see that the Kinect3D object manages data
collection from the Kinect, including frame rate, calibration, depth, and RGB images, etc. Calling the
function get3D() on the Kinect3D object like the example does inside drawPointcloud() returns a
640×480 array of points or pixels, each of which has both color (RGB) and position (X, Y, Z`)
values, sometimes called RGBZ data because it merges traditional RGB camera data (a 2D color image)
with depth information (the position of each pixel of that image on the Z axis). The library object for
holding each point is a KinectPoint3D object and so the sketch creates an array of these objects each
time it calls drawPointcloud() and stores it there.

KinectPoint3D kinect_3d[] = k3d_.get3D();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

73

Tweaking the Example
After you've played around with the example as is, let's try modifying it a bit. Specifically, let's tweak the
drawPointcloud() function and see what happens.

Higher Resolution
The first thing you can try is changing up the resolution of the rendered image. You can see that the
integer variable jump is used to skip over points in each array of RGBZ values coming from our Kinect3D
object. Try changing

 int jump = 5;

to

 int jump = 1;

Rendering every single data point rather than every fifth data point will take its toll on the program's
execution, which you'll notice in the slower frame rate when you run the sketch this time. Still, you
should also notice quite a bit more detail in the rendered image like those in Figures 4-6 and 4-7.

Figure 4-6. Our hi-res pointcloud reveals a new detail in the scene: a cat!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

74

Figure 4-7. The hi-res pointcloud, tilted

Depthmap
Alternatively, you might want your rendered image to show a different type of information, not just the
visible light RGB data. You might, for example, want the depth information somehow encoded in the
color of each pixel in the rendering, creating what’s called a “depthmap.” This example uses Processing's
stroke() function to render the pointcloud, where the color argument for the stroke is taken from the
KinectPoint3D. Now, let's take this value from the depth value at that pixel instead.

Replacestroke(kinect_3d[index1].getColor());

with

float depth = (10 +kinect_3d[index1].z)/10;
stroke(color(255* depth, 255* depth, 255* depth));

Essentially, we’re replacing the RGB color of the image with a gray value based on the distance of the
point from the Kinect. Now, objects that appear closer to the Kinect should be brighter than objects

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

75

farther away. We should note here that the Z values in our KinectPoint3D object are in negative meters
(distance in front of the camera) and are floating-point (decimal) numbers. So, if the tip of my nose is
exactly a meter and a third away from the connect, the Z value will be something like -1.333333, and the
transformation we've applied above to get the color will be affected accordingly. If you run the sketch,
you should see something like Figure 4-8.

Figure 4-8. The pointcloud sketch turned into a depthmap

Thresholding
That's all fine and good, but not incredibly useful. What really unlocks the power of the Kinect is the
ability to selectively analyze the 3D space in front of the sensor, to pick out objects and people in the
scene, and understand what's happening with them. What is the object? Is the person holding the
object? Is the person gesturing? Such questions form a classic topic in machine vision known as scene
analysis that has been extensively developed using 2D images over the past few decades. With the added
depth information from a Kinect-like sensor or depth camera, scene analysis becomes much easier and
more robust and the possibilities grow.

We can already begin to see these possibilities by modifying this sketch ever so slightly. We've
altered the rendering so that its colors reflect depth, but now let's try selecting only pixels from the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

76

Kinect within a certain depth range, a technique called thresholding. Note these two lines in the example
code:

if (kinect_3d[index1].getColor() == 0)
 continue;

As drawPointcloud() is looping through the 640×480 array of points, these lines tell the draw
function to just drop any black points typically associated with object “shadows.” In the following
example, an additional directive to drop any points beyond a depth of 2 meters has been added:

if (kinect_3d[index1].z < -2)
 continue;

Finally, we can comment out the earlier edits we made to create the depthmap with the “//”
comment characters. Now when we run the sketch, points must meet a certain depth threshold in order
to be rendered at all. In this case, anything more than 2 meters from the Kinect will be dropped, most of
it is probably background stuff. If you're just a meter or two away from your Kinect and it's clear behind
you when you run this sketch, you should see yourself fairly cleanly cut out from the black void behind
you as in Figure 4-9.

Figure 4-9. Thresholding example, with a poorly calibrated Kinect

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

77

When you have a camera that sees in 3D, it's that easy to pick out a very well-defined region of
interest in 3D space for further analysis. Now that you have your likeness as a cutout, what do you want
to do with it? We'll explore more in later chapters.

Kinect for Processing on Mac OS X
Getting Processing to talk to the Kinect on Mac OS X is a bit easier than on Windows, thanks to ITP's
Daniel Shiffman, who released his library based on libfreenect within weeks of the Kinect's release.

Adding OpenKinect
To install Shiffman’s library, simply browse to http://www.shiffman.net/p5/kinect/ and download the
openkinect.zip file, which contains the compiled library and some sketch examples. You'll be able to dig
a bit deeper into the examples if you also take a look at the source on
GitHub: https://github.com/shiffman/libfreenect/tree/master/wrappers/java/processing. Put this
whole folder inside your “libraries” folder inside your Processing sketchbook folder and, as always,
relaunch Processing.

Updating Drivers
Unlike on Windows, here we're able to let Processing drive the hardware directly—there's no separate
process to set up the Kinect or install drivers. You're ready to go!

Running the Pointcloud Example
Let's launch the included pointcloud example code as a point of reference. Under
Examples...Contributed Libraries  openkinect, you should see three or so examples. Open Pointcloud
and click Run. You should see something like Figure 4-10, yet another pointcloud not unlike that of the
RGBDemo program.

http://www.shiffman.net/p5/kinect/
https://github.com/shiffman/libfreenect/tree/master/wrappers/java/processing
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

78

Figure 4-10..Shiffman’s pointcloud sketch, run as is

What the Pointcloud Sketch is Doing
Again, we have an output that's a bit like RGBDemo from Chapter 1, only we can play with it in Processing!
This sketch obeys the convention in Processing of having a setup() function to set up any parameters or
processes used by the sketch and a draw() function that repeats as the sketch runs, drawing and
redrawing elements. As with the Windows examples, there's some other stuff going on too: import
statements to import the necessary library elements, some variable declarations, some helper functions
to get the data from the Kinect() object into the form the sketch needs to produce the rendering, and, of
course, a stop() function that gets called when the sketch is terminated.

Speaking of the Kinect() object, uh, what is it? If you read through the Windows example, you
learned that dLibs breaks up the data from the Kinect into a few different classes, and there was some
basic documentation for them included with the library. The openkinect library also wraps the Kinect
data with a few classes, but you can only learn about them through the included examples and by
looking at the source code. In particular, if you want to learn about the Kinect() object, which is the
main interface for the device, you want to look at the source on GitHub:

https://github.com/shiffman/libfreenect/blob/master/wrappers/java/processing/KinectProcessin
g/src/org/openkinect/processing/Kinect.java

https://github.com/shiffman/libfreenect/blob/master/wrappers/java/processing/KinectProcessin
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

79

Here you'll see that the properties and methods associated with this object mostly deal with the
depth and RGB data, like:

enableDepth()
enableRGB()
getDepthImage()
getVideoImage()
getRawDepth()
etc.

 Note It's cool that there's also an interface here for the Kinect's motor control, so that if you call tilt(15),
your Kinect will tilt to 15 degrees! However, the motor inside the Kinect is not rated for continuous or even
frequent use, and it will burn out, so use this feature judiciously.

Tweaking the Example
After you've played around with the example as is, let's try modifying it a bit. Specifically, let's tweak the
draw() function and see what happens.

Higher Resolution
Only because it’s stupid easy, the first thing we can do here is change the resolution as we did in
Windows. You can see that the integer variable skip is used to skip over data points from the Kinect,
because we just don’t need every point to render a point cloud. Try changing

 int skip = 4;

to

 int skip = 1;

Rendering every single data point rather than every fourth data point will take its toll on the
program's execution, which you'll notice in the slower frame rate when you run the sketch this time.
Unlike on Windows, where our point cloud included RGB values, higher resolution here just means
more “coverage” in the rendering, as in Figure 4-11.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

80

Figure 4-11. The pointcloud sketch at a higher resolution

Depthmap and Thresholding
The pointcloud example looks cool and all, but much of the power of the Kinect and Kinect-like sensors
is in the kinds of analysis they allow us to do in 3D space. If you skipped over the Windows section, you
may have missed this point, so I will repeat myself verbatim: What really unlocks the power of the Kinect
is the ability to selectively analyze the 3D space in front of the sensor, to pick out objects and people in
the scene, and understand what's happening with them. What is the object? Is the person holding the
object? Is the person gesturing? Such questions form a classic topic in machine vision known as scene
analysis that has been extensively developed using 2D images over the past few decades. With the added
depth information from a Kinect-like sensor or depth camera, scene analysis becomes much easier and
more robust and the possibilities grow.

With that said, let’s open the RGBDepthTest example, run it, and then tweak it to do some
rudimentary scene analysis of our own.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

81

Figure 4-12. The output of Shiffman’s RGBDepthTest sketch

When you run the sketch and enable the RGB image by hitting “r,” you’ll see the RGB image and
depth image—sometimes called a depthmap—side by side as in Figure 4-12. As you can imagine,
programmatically picking out a region of interest in this scene is quite a bit easier and likely more
accurate when we know at what depth we’re looking for it.

So, let’s do it. We’re going to need to add a bit of code to the top of the sketch, as well as the setup
and draw functions, to replace the depthmap with our own thresholded depth image.

Add these variable declarations to the top of the sketch to set the new depth image as well as the
minimum and maximum depth to show. We will only draw pixels in this range, cutting out everything
behind it.

PImage threshImage;
int minThresh = 0;
int maxThresh = 750;

Then provision the new depth image inside the setup() function:

void setup() {

 //...

Leave all the existing code intact and add

 threshImage = new PImage(640, 480);

}

Inside the draw() function, comment out the existing depth image renderer

//image(kinect.getDepthImage(),640,0);

Now add a routine inside the draw image to loop through all the depth pixels, setting any pixels
within our threshold range to a color (blue) and everything else to black, as in the following:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

82

int[] depth = kinect.getRawDepth();
 for (int i=0; i < 640*480; i++) {
 if (depth[i] > minThresh && depth[i] < maxThresh) {
 threshImage.pixels[i] = 0xFF0000FF;
 } else {
 threshImage.pixels[i] = 0;
 }
 }

Finally, draw our new depth image as follows:

 threshImage.updatePixels();
 image(threshImage, 640, 0);

When you run the sketch, you should see an output window like that shown in Figure 4-13.

Figure 4-13. Our thresholded depthmap as a model of the RGBDepthTest example sketch

Thresholding the image at a given depth allows you to select out a slice in space, in this case
grabbing a perfect outline of yourself at a given distance from the Kinect. Applying some of the
traditional machine vision analysis and algorithms to this “blob” is what makes many of the Kinect
applications go. In this chapter, we’ve just started down this long and fascinating path, building the
foundation for such work in processing. Good job!

Processing Plus Kinect: Beyond This Book
It's beyond the scope of this book to delve into everything you can do with Processing plus Kinect, but if
you're thinking Processing might be your tool of choice, there are some excellent resources out there on
the open Web. One is SimpleOpenNI, a Processing wrapper for PrimeSense's OpenNI framework
(covered in Chapter 6). SimpleOpenNI exposes in Processing all of the function calls and machine vision
jujitsu that makes building a complex, gestural interface possible.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 4  SCRIPTING THE KINECT

83

But don't leave this book with just Processing in your Kinect-hacking toolbox. There's much more
out there. Depending on what you want to build or accomplish, you may be better served by another
language or tool. In the next chapter, we survey the landscape of programming environments and
frameworks that support Kinect hacking and try to show what hackers, artists, researchers, and
visionaries in diverse domains have used to generate the veritable cornucopia of Kinect concoctions in
the less than one year since the device's release.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 5

85

Kinect for Creatives

If you followed the explosion of hacker activity around the release of the Kinect, you noticed that many
of the applications looked nothing like, say, Kinect Adventures for XBox. Armed with this revolutionary
device, creative people of all stripes envisioned their own novel use cases: virtual puppets, 3D scan-and-
print workflows, operating room image assistants, robots that see and follow people, gesture-controlled
hovercraft, no-frills motion-capture Jedi animations, etc. How could such a diverse set of applications be
possible?

The answer is in the accessibility of the Kinect to creative people: the mix of available software and
development platforms that creators use within their own more specialized domains, whether visual
arts, performance, robotics, or what have you. What follows is not a comprehensive list of these tools,
but a selective inventory of some of the more popular and potentially useful ones and an overview of
how to get started using the Kinect with them. These tools comprise a mix of free-and-open-source and
proprietary commercial products, which run the gamut in terms of their respective learning curves.
Processing, as discussed in the last chapter, may well be the right tool for the job if you're new to
programming but want to learn and if the application of your dreams requires 2D or simple 3D
animation, cross-platform support, and a smattering of its audio-visual and networking tools. In later
chapters, we'll look closely at the more intensive, dedicated SDKs (software development kits) and
development platforms for building rich gestural interfaces and 3D games—the kind of stuff you see, or
will see, on XBox. In this chapter, we survey a different corner of the vast Kinect-hacking toolshed: the
tools that creative coders (and non-coders) use to build all manner of projects, from Kinect-controlled
musical instruments to full, motion-controlled Web apps. The idea is to present you, the reader, with the
current breadth of tools available to execute your vision, whatever it is.

 Note Subsequent chapters in this book discuss other frameworks and platforms, such as Beckon, Unity,
OpenNI, and NITE. Those others are more general in nature and sometimes require deep programming expertise.
The platforms described in this chapter are aimed specifically at the creative and artistic community.

MaxMSP
MaxMSP is more obscure than a mainstream software like Adobe Flash, but it's tailor-made for certain
Kinect applications, for example those that involve the Kinect as an input to control sound or, say, stage
lighting. Also, if you're a very visual person, or just really code-averse, you will want to check
out MaxMSP.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

86

MaxMSP does cost money. If you’re on a budget or just prefer free software, you can look at
MaxMSP’s free-and-open-source competitor, PureData (PD). You can learn more about PureData at
http://puredata.info/.

Patcher Programming Languages
MaxMSP and PD are sometimes called "patcher" programming languages because they let you patch
together a bunch of pre-defined, graphical audio and video objects (including hardware), connecting
and combining those objects with virtual patchcords and building your entire application without
writing a line of code (though you can get under the hood and code if you want to).

That is not to say, however, that using a patcher language is necessarily any easier than writing
code—you still have to understand the architecture of what you're trying to program. In fact, an
argument can be made that patcher languages enforce good programming practice by forcing you to
break down an application into so many discrete but connected parts. There is no doubt that for certain
people and certain applications, patching is the way to go.

MaxMSP is a proprietary software, and a license will set you back about $400 (though significantly
less for students), but as of this writing, there is better, more widely available support for using MaxMSP
with Kinect than there is for PD.

What MaxMSP Can Do for You
MaxMSP is sometimes called just Max or Max/MSP/Jitter to denote all three components of the
interactive programming environment from San Francisco–based Cycling '74. Despite shortening the
name to MaxMSP for convenience, we shouldn't forget about Jitter! Jitter is the piece of the puzzle used
for working with “matrices,” a generic term for multidimensional data structures that include images
and video (and therefore Kinect data). Like Processing, the whole MaxMSP package was created to
support artists, educators, and researchers working intensively with audio-visual media and physical
computing.

Digital artist Liubo Borissov's “hackiscan” was created using MaxMSP and a Kinect. Figure 5-1
shows the output of the hackiscan art installation. And in Figure 5-2, you can see how the application is
set up inside the MaxMSP environment, which we’ll explore in more detail later on.

http://puredata.info/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

87

Figure 5-1. Digital artist Liubo Borissov’s “hackiscan” ensures your privacy at the airport the old-fashioned

way: with a fig leaf!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

88

Figure 5-2. Borissov’s hackiscan project “under the hood” in the MaxMSP authoring environment—see the

whole video online here: http://vimeo.com/17480291

Getting Started: MaxMSP + Kinect
The best available technique for getting Kinect data into MaxMSP comes from Jean-Marc Pelletier as
part of the broader OpenKinect project. Hit up Jean-Marc's GitHub repository for the latest code:

https://github.com/jmpelletier/jit.freenect.grab

Be sure to download the compiled “mex” and help files under Downloads  Download Packages on
GitHub. Put the /jit folder somewhere special on your machine and launch the help file, i.e., the one with
the extension .maxhelp. Now witness the plug-and-play magic of MaxMSP! Figure 5-3 shows what you’ll
see when you launch the help file.

http://vimeo.com/17480291
https://github.com/jmpelletier/jit.freenect.grab
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

89

Figure 5-3. The jit.freenect.grab.maxhelp help file presents you with Kinect data streams and a bunch of

parameters to tweak on them.

Check the “Use live camera input” box and click the “Open” button—you should see your Kinect
data streaming in. This help interface lets you play with all kinds of variables: you can invert the
coloration of the depthmap, for example, or tilt the Kinect's motor, like we did using RGBDemo.

Flash Actionscript
For those of us who cut our programming teeth on Adobe's (or way back when, Macromedia's) Flash
Actionscript—as many Web and interactive designers did during the last decade—it is glorious news,
indeed, to learn that several developer communities are actively working on connecting the Kinect to
Flash. As of this writing, however, using the Kinect from Flash is not an easy row to hoe.

But wait, we keep hearing that Flash is dead, right? Why would we want to use it? It turns out that
the rumors of Flash’s demise are greatly exaggerated. Yes, HTML5 will replace some uses of Flash on the
Web, such as for video. And yes, Flash is notoriously unsupported on Apple iOS devices because it
enables the creation of rich, app-like interactive experiences right in the browser (which Apple can't
charge for, thus undermining the App Store). But the Flash authoring environment is a powerful and

6

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

90

intuitive integrated development environment (IDE) that thousands of Web designers and developers
already know well. Flash's output, the SWF (pronounced “swiff”) or Flash movie, is a highly optimized,
Web-ready and cross-platform medium for rich video, animation, and interaction that will, no doubt,
live on in its own right for at least a few years to come.

What Flash Can Do For You
So why would you want to use Flash for your Kinect application? Well, if you're going to be delivering it
over the Web or using intensive 2D animation and interaction, or if you're already a Flash ninja, Flash
plus Kinect may be just the combination for you.

Biltz Agency, a Los Angeles–based digital agency that produces cutting-edge media and marketing
content for big brands, released a Kinect-to-Flash solution early in 2011 (more below) and demonstrated
the proof-of-concept media browser shown in Figure 5-4.

Figure 5-4. A Kinected media browser built in Flash by Blitz, a digital agency

Getting Started: Flash + Kinect
As of this writing, the primary technique used to talk to Flash from the Kinect is to run a small helper app
that grabs whatever data you want from the Kinect, does whatever low-level analysis you want to do on
that data in a language like C or C++, and then sends along the information you plan to use in your
application to Flash through a socket connection as if over a network connection. (In fact, it can be over
a network connection, though you'll more likely run the socket server and your Flash movie on the same
machine.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

91

Within the framework of this general approach, there is an important question to consider: How
much of your Kinect data analysis do you want to do in Flash, and how much can you do before you
send data on to Flash? As always, the answer is, “It depends.”

What does it depend on? Well, a likely scenario for Flash application development is that you have
an idea for an application that requires the hand-tracking, skeleton-tracking magic provided by extant
machine vision libraries, like OpenCV or OpenNI/NITE. In that case, you're probably going to be in the
camp of those who do a lot of data processing before sending anything to Flash, at which point you're
sending some fairly minimal but powerful data, like the X-Y-Z coordinates of the hand-point tracked by
NITE. The other alternative is to work with the Kinect's depth and RGB data directly in Flash, grabbing
that data from the Kinect and hucking it over to your Flash movie for processing.

For the first alternative, the folks at Blitz Agency offer up a solution based on Node.js, a popular
Javascript Web server. Blitz runs a modified version of one of the OpenNI/Nite sample applications
called “SingleControl” and sends the pre-processed hand-point data over a socket to Flash using
Node.js. Their steps are detailed on their development blog:

http://labs.blitzagency.com/?p=2634

Using this technique requires you to run three things at once, and it looks something like this: 1)
start your socket server using Node.js and Blitz’s JavaScript file which is configured to broadcast data at
defined intervals (think “frames”); 2) run the modified SingleControl example to start collecting hand-
point data and feeding it to the socket server; 3) run your Flash movie with a Socket object and a listener
(ProgressEvent.SOCKET_DATA) to take some action whenever new handpoint data is received. Figure 5-
5 shows how lean the data passed to Flash really is: much smaller than an RGB or depth image!

http://labs.blitzagency.com/?p=2634
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

92

Figure 5-5. The X-Y-Z hand-point data passed to Flash from the included NITE example application,

SingleControl

The OpenKinect-based AS3Kinect project pursues the second alternative, getting fairly raw data
(images) from the Kinect and pumping it into Flash (again, using a socket server). Although this setup
also requires a fair bit of diligence, it can be well worth it if you’re itching to train your Flash/Actionscript
3 chops on a Kinect project. Details about the AS3Kinect project can be found here:

http://www.as3kinect.org/

http://www.as3kinect.org/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

93

openFrameworks
Unlike the other tools profiled in this chapter—and, in fact, most of the rest of this book—neither
openFrameworks nor Cinder (the next project profiled) provides you with a self-contained environment
for writing and compiling code. As the “openFrameworks” name implies, they are simply “frameworks,”
or bunches of pre-written code you can use to handle common tasks in the otherwise daunting
languages of C++ and OpenGL. C++ and OpenGL are two relatively old and extremely powerful
languages with which you can build very robust interactive desktop and mobile applications. C++ is your
low-level, functional programming language, while OpenGL handles your high-performance 2D and 3D
graphics processing and rendering.

As with Processing and Cinder (as we'll see) openFrameworks is built to support intuitive, sketch-
style “creative coding,” a domain that includes all the things that interactive artists, designers, and
application developers might want to do with graphics, media, data, and hardware.

That turns out to be a lot of things. The openFrameworks project, which began as a collaboration
between Zach Lieberman and Theodore Watson at Parsons School of Design, has grown to become a
vast and powerful library used by thousands of installation artists, performers, and hackers.

What openFrameworks Can Do for You
The openFrameworks community, which has forever had a hand in creative computer vision
applications, jumped right into the Kinect hacking frenzy. Why? The Kinect and Kinect-like sensors help
solve one of the fundamental challenges of creating interactive, vision-based applications: namely,
getting a clear picture of what the user is doing. Moreover, the Kinect can be powerfully combined with
some of the other tools built into or wrapped by openFrameworks. OpenCV, the computer vision library
discussed in the last chapter, is a great example. Whereas OpenCV can be used to accomplish tough
computer vision tasks, like face detection or recognition, those tasks become easier when combined
with the ability to see in 3D and, say, know roughly where to look in the image for faces. With
openFrameworks, we can bring both of these technologies under the same roof, so to speak, and do
some amazing stuff. One of the first demonstrations of the possibilities was the interactive puppet
prototype created by Design I/O's Emily Gobeille and openFrameworks co-creator Theo Watson, as
shown in Figure 5-6.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

94

Figure 5-6. A projected virtual puppet application built with openFrameworks by Emily Gobeille and

Theo Watson

Getting Started: openFrameworks + Kinect
Like C++ and OpenGL themselves, openFrameworks works cross-platform and can be used on PC, Mac,
and Linux. However, you have to supply your own integrated development environment (IDE), the
authoring environment that lets you pull together all the files of the frameworks and compile them along
with your own code. Supported IDEs for openFrameworks are Code::Blocks on all platforms, plus Visual
C++ 2008 and Visual C++ 2010 on Windows and Xcode on Mac.

Once you're set up with your IDE of choice, you'll need to go to the website to pull down the latest
release of openFrameworks, which is 0.07 as of this writing. (Not a reference to James Bond, as far as we
know!) Here is the URL to visit:

http://www.openframeworks.cc/download

Grabbing the latest release of openFrameworks for your intended platform and IDE should give you
sample projects inside the apps/examples folder that you can open and build to make sure everything is
set up. If you do that and get a number of compatibility and “file not found” errors, welcome: this is your
initiation to working with frameworks! Not to worry, it's very common to have to poke around following
error codes when you first start compiling your own programs from source code. Stay with it! The
openFrameworks examples, in particular, use relative addressing to pull in files and frameworks; so if
you try to compile a project that you have sitting in the wrong folder, it will certainly break.

Once you've successfully compiled a few of the basic examples, it's time to try some Kinect stuff. For
working from scratch with the libfreenect driver, Theo Watson released an “add-on” (the preferred term

http://www.openframeworks.cc/download
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

95

for an optional module or plugin) called ofxKinect, which wraps the libfreenect driver for use in
openFrameworks. Grab the add-on from https://github.com/ofTheo/ofxKinect.

Just download that project, move it to the /add-ons folder, move the example project to the
apps/examples folder, open the example project, and compile it. You can toggle between a kind of
feedback dashboard, shown in Figure 5-7, and the now-familiar pointcloud, shown in Figure 5-8. What’s
especially powerful about openFrameworks is its easy integration with that deep computer vision
library, OpenCV. As you can see in Figure 5-7, the bottom left feedback image is a depthmap, but now
has some additional analysis to detect the “blob” (i.e., the author) in the scene, courtesy of OpenCV.
Blob detection is indicated by rectangles drawn over the image.

Figure 5-7. The ofxKinect example project shows a depthmap, RGB image, and blob detection

https://github.com/ofTheo/ofxKinect
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

96

Figure 5-8. The ofxKinect example project would not be complete without showing a pointcloud view of

the data

Alternatively, if you want to use OpenNI’s pre-built abstraction layer and algorithmic magic, like
hand and skeletal tracking, Diederick Huijbers, a Dutch artist/developer and prolific contributor to
openFrameworks, released an add-on for openFrameworks that wraps OpenNI, called ofxOpenNI. Get
that add-on here:

https://github.com/roxlu/ofxOpenNI

Cinder
Much of what we've said above about openFrameworks can also be said about Cinder, a C++ framework
for “creative coding” that was released by The Barbarian Group digital agency in 2010. Cinder is a newer
project and probably a tad scarier than openFrameworks for the C++ newbie. There's a great deal of
overlap between the two projects, and comparing them point for point would require lots of space

https://github.com/roxlu/ofxOpenNI
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

97

and quite a bit of subtlety about things like design philosophy and C++ memory management. Suffice it
to say that both projects bear consideration if you're looking to create a slick C++ app.

What Cinder Can Do For You
So, why use Cinder for your Kinect app? The work created using Cinder speaks for itself. Simply put, it
can help you do awe-inspiring graphical work and push the envelope visually. Add in a depth-seeing
camera and you have the makings of a Roman orgy of interactive visual delights! As mentioned in
Chapter 3, digital artist Robert Hodgins's “Body Dysmorphia” was created using Cinder and
demonstrates some of the downright disturbing 3D visual effects that are possible. (Hodgins himself is a
co-creator of Cinder.) As shown in Figure 5-9, if the camera adds ten pounds, the Kinect plus Cinder
adds ten pounds and then some!

Figure 5-9. The Cinder-based Body Dysmorphia project by digital artist Robert Hodgins

Getting Started With Cinder
As with openFrameworks—or any frameworks, for that matter—you need to supply the IDE. Cinder will
work with Visual C++ 2008 and Visual C++ 2010 on Windows and with Xcode on Mac. As of this writing,
though, it does not play well with Linux.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

98

So, just download the latest release of Cinder and put it somewhere—anywhere. You can pull down
the code from here:

http://libcinder.org/download/

Again, it's a good idea to build one or two of the out-of-the-box examples inside the /samples folder.
If everything seems to build okay, it's time to rock the Kinect with Cinder.

Kinect support for Cinder doesn't come in a “block” (the preferred term for an optional module or
plugin) but in a couple of samples and supporting files from Hodgins, aptly named Cinder-Kinect. Get
these files here:

https://github.com/cinder/Cinder-Kinect

Cinder-Kinect wraps the libfreenect driver and is currently the only available option for making your
Kinect data available to Cinder. Download Cinder-Kinect and drop the whole folder (including the
/include, /lib, /samples, and /src folders) into the main Cinder /samples folder. This should ensure that
any relative locations used in the project files work. When you build the kinectBasic example, you get the
depth and RGB images from the Kinect.

And when you build the kinectPointCloud example, you get yet another variation on the 3D point
cloud. Though in our opinion, this is one of the most pleasing to the eye and interesting, in terms of the
level of detail it surfaces.

Figure 5-10. Cinder-Kinect’s version of the pointcloud

http://libcinder.org/download/
https://github.com/cinder/Cinder-Kinect
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 5  KINECT FOR CREATIVES

99

Now, Go Forth and Create!
In this chapter, we wanted to briefly introduce you to the palette of tools available for creative coding
with the Kinect. Each of these tools deserves a book of its own! If you choose one of them for your
project, you‘ll no doubt need to explore it in a bit more depth (no pun intended!). Our modest hope is
that now, as your ideas for awesome, creative Kinect projects arise, you’ll be that much better equipped
to find the right tool for the job having read this chapter. In the next chapter, we turn to some of the
most powerful and popular general development frameworks for Kinect. Onward!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 6

101

Application Development with the
Beckon Framework

Up until this point, we have covered open source platforms that work with Kinect. In addition to these
tools, other advanced commercial frameworks are available to explore. These suites can provide
additional tools, applications, and functionality. One exciting platform is Omek Interactive’s Beckon
Development Suite. Omek’s Beckon SDK performs skeleton tracking, gesture recognition, and blob
tracking, and it also comes with a suite of tools for recording custom gestures with the Kinect and many
of the other 3D sensor cameras currently available. These new gestures can then be used in any
application created with the Beckon SDK. For example, if you want to make a painting program, you can
design gestures specific to your application. In this chapter, we'll go through the basic Flash example
included with Beckon, we'll create a simple skeleton, and then we'll train our own gesture. We will then
integrate both the skeleton and trained gesture into a basic application. Using Flash with Beckon creates
a standalone application rather than a browser compatible .swf file. We will cover the use of Beckon with
Flash because of Flash’s capability for rapid prototyping of environments. As we go along, we'll also
discuss basic UX design strategies for gesture interfaces.

 Note The .swf files are compiled Flash files. They originally were referred to as “Shockwave Flash Files”, but
are today commonly referred to only by their extension .swf. The type of application you get using Beckon with
Flash is a stand-alone Flash application of the type stored in a .fla file.

What is Beckon?
Omek Interactive, a breakthrough company based in Israel, created Beckon. Their aim was to transform
the way people interact with their devices and applications, by providing tools and technology that
enable manufacturers and software developers to add gesture-based interfaces to their products.
Beckon is perhaps the most robust SDK covered in this book. Beckon is part middleware and part
toolbox. Middleware is a piece of software that sits between one application or hardware device and
another one. Up until this point in the book, you’ve been using either OpenNI and NITE or the Microsoft
SDK to extrapolate and analyze the data coming in from your Kinect. Beckon is unique in that it supports
nearly all of the depth cameras on the market (and has plans to support future cameras). By leveraging a
proprietary machine learning environment, Beckon allows developers and designers to create
completely customized interactive applications and immersed environments in Adobe Flash CS 5.5, C++
or C#, as well as plug-ins for the .NET framework and the Unity and OGRE game engines. It is fully

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

102

compatible with any game engine and natively supports the industry-standard FBX animation format
for blending pre-generated 3Dcontent with real-time tracking.

The Beckon API provides what it refers to as “scene intelligence” at the blob, skeleton, or gesture
level. The Basic and GUI Gesture Packs provide predefined, ready-to-use gestures for different contexts
(UI control, game control, etc.). Developers can easily integrate these Gesture Packs into their
applications.

Designers can also record completely original gestures, or gesture combinations, for their
applications using the applications that come with Beckon. The Gesture Authoring Toolkit is a suite of
tools that allows both designers and developers to define and manage their own gestures, and even to
create new gestures without writing code. Gestures can be very intuitive and combined together. In
music creation software, a gesture for a musician to loop a track might be drawing a circle in space. With
a first person martial arts game, perhaps a jump and a dodge are the right moves for a player to escape a
punch from an opponent.

Beckon’s machine learning environment can learn from many different samples of the same
gesture. Creating a gesture is a process of performing and recording it in front of the camera several
times. This process is referred to as training the machine learning environment. Machine learning is a
branch of Artificial Intelligence and is nothing to be afraid of. Simply put, the computer learns through
recorded gestures and gets better at recognizing the gesture with each new sample. Beckon allows
designers and developers to get highly accurate recognition, even across diverse populations. For
example, the way that a 12 year old boy and a 30 year old woman will look making the same gesture is
quite different. Beckon allows your program to identify both users with ease. While Beckon is a great tool
over all, it’s this feature that sets it a head above other technology specialized for Kinect.

Kinect, like any other sensor, requires the installation of a separate device driver built by the
community. Currently, the most popular solution is the SensorKinect, an open source project based on
the PrimeSensor device driver. It's important to understand that the SensorKinect drivers cannot co-
exist with the standard PrimeSensor drivers on the same PC, because the SensorKinect drivers were
designed to make the Kinect sensor appear as a standard PrimeSensor device. For this reason, we’d
recommend adding a new OS onto a blank partition on your hard drive and booting from there so that
you can switch back to other SDKs later. For this chapter, we will be using Windows 7; however, XP also
works. Because of the need to uninstall your drivers, you might want to read this chapter first to decide if
Beckon suits your needs.

 Note Beckon is currently available via a 90-day free trial evaluation version; however, Omek will be providing a
non-commercial version to the public with their next major release. If you would like to get your hands on a copy
now, you can request a copy here: www.omekinteractive.com/beckon-eval or by contacting the team at
info@omekinteractive.com. While you can’t purchase a license directly from Omek’s website, you can contact
their sales team, who will provide you with details on how to get a commercial version of their SDK. Pricing
depends on the type of application you are looking to commercialize, so it’s best to reach out to them for details.
On the upside, not only does Beckon work with Kinect, but it also works with the Panasonic D-Imager, the Asus
Xtion Pro, PMDTec’s GameCube 3.0, and the PMD[vision] CamCube. You'll also get access to the incredible
support team, who will ensure that you get the installation functional on your platform.

Speaking based on personal use, this platform performs flawlessly and Beckon’s stability cannot be
overstated. I’ve seen it seamlessly track a player in a game with as many as 40 people standing directly

http://www.omekinteractive.com/beckon-eval
mailto:info@omekinteractive.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

103

behind that person, cheering and taking photos. It also does a very good job at allowing one person to
leave a game and another to enter into the Kinect’s view and start playing. It will register the player
change and start tracking within seconds, with no calibration poses. Shockingly accurate, it was able to
recognize people as young as 2 and as old as 70+ years of age performing the same gestures. The
performance that Beckon delivers makes it worth the investment.

Regardless of the initial setup time, if you’re interested in developing a game or application
simultaneously for iOS, Android, touch display, and Kinect, Beckon really is a timesaver. Otherwise,
you’d have to have to build the iOS application in Objective C, the Droid version in Java, and the Kinect
version a language like C++. Plus, it’s fun, as a game developer, to be able to take a game to a festival and
set it up to run in a kiosk version making use of the Kinect. Beckon makes this very easy to do.

If you're scratching your head right now and thinking, “I heard Flash didn’t run on an iPad!”
welcome to the new version of Flash, CS 5.5, which supports multiscreen output natively from both
Flash and Flash Builder. The number one best-selling apps on the iTunes store are now made with Flash,
such as the heavily awarded Machinarium. Great tips are available for developing this way online. A
good place to start is the games section of the Adobe site here: www.adobe.com/devnet/games.html.

Installing Beckon
Kinect, like any other sensor, requires the installation of a separate device driver. To this end, we rely on
public components written by the Kinect-developers community. The most popular solution is
SensorKinect, an open source project based on the PrimeSensor device driver. It’s important to
understand that SensorKinect drivers cannot co-exist with the standard PrimeSensor drivers on the
same PC, because SensorKinect drivers were designed to make the Kinect sensor appear as a standard
PrimeSensor device.

Getting Beckon up and running takes a few steps. I recommend checking the Omek website for the
most up-to-date details, since the appropriate drivers will change as Omek releases updates and newer
versions of their software. The first thing you are going to need to do is to remove the Open NI SDK and
PrimeSense drivers you currently have on your OS An additional word to the wise is that you will also
need to make sure that you fully uninstall and remove from your system your libfreenect open Kinect
drivers. Failing to do so will cause Beckon to be unable to recognize the sensor camera. Afterwards, we
will re-download and install versions of OpenNI and the PrimSense drivers that are appropriate for
Beckon. Finally, we will install the Beckon SDK and license and get started.

 Note If you are a developer possibly coming over from the Mac OS and want to take full advantage of the SDK,
you’ll want to make sure you have Visual Studio Professional and the .NET framework installed as well.

Step 1: Remove Existing Drivers
The first step is to remove any existing drivers on your system that might conflict with the Beckon
software or the drivers needed to run that software. Some drivers are removed from the Control Panel.
Others are removed from the Windows Device Manager. Here is what to do for the Control Panel drivers:

1. Go to Start -> Settings -> Control Panel

2. Select the Programs Control Panel

http://www.adobe.com/devnet/games.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

104

3. Select the “Uninstall a Program” option

4. Uninstall any application having “OpenNI” or “PrimeSense” in their name.
Examples include: OpenNI 1.0.0, PrimeSensor 5.0.0 for Windows, Windows
Driver Package – PrimeSense (psdrv3) PrimeSensor, etc.

The following shows how to use Device Driver to remove drivers:

1. Go to Start  Computer

2. Right-click on Computer, and choose Manage

3. Click on Device Manager

4. Open Human Interface Devices

5. Find XBox NUI Camera, right-click, and choose Uninstall

6. Find XBox NUI Motor and XBox NUI Camera drivers, right-click, and uninstall
those too

Step 2: Install New Drivers
Now that any possibly conflicting other software and drivers are out of the way, you can download and
install what Beckon needs. Here are the instructions to follow:

1. Download the OpenNI 1.0.0.25 installer.

2. Download and install the SensorKinect 5.0.0 drivers.

3. Install OpenNI by running the installer downloaded in #1.

4. Install SensorKinect by running the installer downloaded in #2.

 Note Check the example download for this book for possibly new information regarding driver installation.

Step 3: Download and Install the Beckon SDK
Now it’s time to download and install the Beckon SDK. It’s best to use either Internet Explorer or Firefox
for that purpose, especially if you have a firewall installed. Here is the process to follow:

1. Navigate to the customer service portal at:
https://license.omekinteractive.com/solo/customers/Default.aspx

2. Log in using the customer ID and password provided to you by Omek and
download your license. Omek will email you this when they agree to give you a
license. See the Omek Beckon SDK Installation Guide if you get lost here.

3. Download the Beckon SD. Using the link provided in the email you received
from Beckon when you signed up for a non-commercial license, install the
software. The only tricky popup to watch out for will be the final popup in the

https://license.omekinteractive.com/solo/customers/Default.aspx
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

105

process, shown in Figure 6-1. If you have a Windows7 64 bit system with Visual
C++ installed, press “No.” Otherwise, press “Yes.”

Figure 6-1. The Beckon installer’s final, but tricky, popup.

Activating Beckon
Beckon SDK is license protected; you have 3 days to activate your license. Run the Tracking Viewer tool
to activate the software according to your license permissions. You’ll find that tool from your Start
menu, at Start  Omek Beckon  Tracking Viewer. Don’t run it quite yet, though.

First, plug in your Kinect device. Driver installation is part of the validation process.
Now run the Tracking Viewer. Beckon will walk you through the validation process. You will see a

popup notification that will let you know the drivers for Kinect are installing. You will see the Xbox NUI
Audio driver fail. This is perfectly normal and a sign that you have done everything correctly to this
point.

 Note The Omek Beckon SDK Installation Guide provides a simple step by step guide if you need more help.

Getting Started
Now we are going to see whether our installation was successful. The Beckon installation includes a
sample application that you can use to test for a successful install. From the Start Menu, launch “Omek
BeckonTracking Viewer”

 Note For reference, the executable is located in the following folder: C:/ Program Files/Omek/Beckon SDK/ bin/
Omek Beckon Tracking Viewer.exe

In the Omek Beckon Tracking Viewer, choose: Open  Live Camera. If everything is installed, you
will see something similar to Figure 6-2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

106

Figure 6-2. Omek Beckon Tracking Viewer

Incorporating Beckon with Flash
Now let’s use the Beckon SDK in Flash. Again, Flash with Beckon creates standalone applications, not
browser experiences. Beckon will not work in a browser with Flash or online; you don’t actually install
Beckon as a flash library or load it as a .swc file. However, the beat on the street is that this is the last
version of Beckon that does not include an embedded solution. The process for Beckon is different. The
way Beckon works with Flash is through Flash’s ExternalInterface. You create your flash file and expose
functions that will communicate with the Beckon SDK. Beckon has another application,
“OmekBeckonFlash.exe” that communicates between the running swf file and the Beckon library.
Beckon uses an xml file, config.xml, to tell the BeckonFlash application where to look for the swf to run.
It also sets some of the initial start settings.

To run the Beckon Flash example, do the following:

1. Create a new folder for the project (e.g., C:\MyProject)

2. Copy the necessary files from “C:\Program Files\Omek\Beckon SDK\bin” to
C:\MyProject. You can either follow the instructions on the Developer Guide,
under “Distribution of Omek-Based Content”, or simply copy everything from
inside the bin folder to your project’s folder.

3. Copy “C:\Program Files\Omek\Beckon SDK\samples\Flash” to C:\MyProject.
Make sure to name the target folder “Flash”, and with a capital “F”.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

107

4. Run OmekBeckonFlash.exe

5. Now the Flash example .swf will open in this application, and it will run linked
to the Omek SDK.

At this point, you should see something similar to Figure 6-3.This is not a browser but a separate,
standalone application

Figure 6-3. Default stand-alone Flash example running in OmekBeckonFlash.exe

The following is how Beckon communicates with Flash:

1. OmekBeckonFlash.exe loads the Flash/config.xml (you must keep this name)

2. The Flash project is loaded from the path, specified in the config.xml, in the
<movie swfPath=".\Flash\game.swf" /> tag.

3. The SDK is loaded and uses the exposed function in the .swf file to send data to
the running .swf file.

You should now be up and running with the Beckon SDK.

 Note Omek is currently streamlining the process of running Flash applications, so expect improvements. Expect
to see rapid updates, quick changes, and innovation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

108

Understanding the Beckon Flash Example
Before we create our own Flash file, let’s explore the Beckon Flash example. By understanding how
Beckon’s example works, you will be equipped to create a project from scratch.

How Beckon Works with Flash
 Before we even open Flash, we are going to do a basic walk-through of two lines of code so that we can
get the hang of how Beckon works with Flash. If you are used to working with Flash, you might be used
to seeing the ExternalInterface.callback() class. Using the ExternalInterface class, you can call an
ActionScript function in the Flash runtime environment. Usually, this class is used so that a running swf
file can communicate with JavaScript in a Browser. However, in this case, Beckon uses an additional
application, OmekBeckonFlash.exe, to run the swf file within. Because functions are exposed in the .swf
file, the OmekBeckonFlash application can send information from SDK to them.

We are going to look at two key methods of ExternalCalllback class. The first is .addCallback. This
method registers an ActionScript method as callable from the container swf.

Here’s the whole line of code that is in the Flash file.

ExternalInterface.addCallback("OmekGesture", onOmekGesture);

This addCallback method exposes onOmekGesture to the sdk.
The next method call passes arguments from the .swf file to the OmekBeckonFlash application. The

call sets up two way communications between Flash and Beckon. It also tells the OmekAddGesture
function to register the leftPush gesture if it is performed in the camera’s view. Here’s the relevant line of
code:

ExternalInterface.call("OmekAddGesture","leftPush");

Now that we have established how Beckon works with Flash, let’s look at the actual Flash file. Open
C:\MyProject\Flash\testOmekFlashPlayer in Flash. You will see the basic interface that ran when we
started the OmekBeckonFlash.exe file. That’s because parts of the interface were created within Flash.
Note that no box exists for the RGB video feed or for the depth map. This is because these elements are
added into the file through the config.xml file. Beckon uses both Flash and this file to set up the start
parameters for the OmekBeckonFlash application.

You can change a few things in the code to help you understand what is happening. First, resize the
text box on the stage labeled debugString_txt so that you can actually see all of the debug code that is
written there when BeckonFlash.exe runs the swf file. Resize it to be the size of the entire stage and make
the text about 10pt in size. You can go ahead and also make it white. Now set your background color to
black to make it easy to read. Save and export the application.

Now run the example again. Move around and you will see all of the debug copy writing to screen,
as shown in Figure 6-4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

109

Figure 6-4. Modified stand alone Flash example running in OmekBeckonFlash.exe

The greatest difficulty working with Flash and Beckon is the loss of a console window. You could use
brute force and drop a text box onto the screen and send messages to it, but a cleaner way to get debug
text on screen is to create a function that draws debug text via Actionscript.

Notice how the example now reflects the above changes. I triggered a few of the functions that are in
the file by performing gestures or causing alerts to display on screen. Try doing the same by moving to
close to the Kinect or walking out of view. You will now see all of the new lines being written to screen.
They were there before, but because the textbox was so small, you didn’t see the debug text being
displayed. Now you can easily in the debugString_txt box’s text.

I perform the right click gesture in Figure 6-4. Performing this gesture is just a matter of tapping
forward with a quick double-tap like motion as your right hand is slightly raised in front of you to about
chest height. It’s the same motion you’d make to tap someone on the shoulder who was sitting directly
in front of you. The debug text shows this gesture was seen by the camera and registered. Next, I
intentionally got to close to the camera to trigger the “Alert_TooClose” alert.

The reason the debugString_txt box is important is that, by running the swf in a 3rd party
application, you lose access to the normal console window in Flash. Creating messages that appear on-
screen for debugging purposes is a fundamental change that you are going to have to adapt to when
working with Beckon. A smart way to handle this is to create a debug mode in your application that you
can trigger with a keystroke to turn onscreen alerts on or off.

The Example Code
Now, let’s look at the code for Beckon’s Flash example. To look at the code, open the Actions panel and
look at the Actionscript on the first frame of the timeline.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

110

 Note Choose Windows > Actions from the menu to view the actions panel.

You should see an import at the top of the code. You are going to want to import the following class
in every Flash application you create using the Beckon SDK:

import flash.external.ExternalInterface;

Next up is the ExternalInterface code that exposes specified functions to the swf file. Step one is
always to expose the function to the Flash runtime environment. Step two is optional, and sends
messages to set up the functionality from the ExternalInterface.call method. The last step then is to
setup the exposed function.

Admittedly, this process of exposing functions feels like a hack. Without a doubt, it would be best if
Omek would build a version the Beckon sdk as a flash library so it could be released easily online, or
distributed to other people with a Kinect. For now, you are locked into the one system on which you
have running your specific copy of Beckon. Hopefully, this situation will change with future releases of
the Beckon sdk.

Three of the ExternalInterface.callback() methods in the action script are mandatory and must
be implemented in every file planning to use Beckon. Each integrates some basic functionally. We will
review these three mandatory methods and the functions they expose. Others are optional, but the three
we cover in this chapter are mandatory.

We cover the three methods out of the order that they are used in the ActionScript file. We cover
them in the order that we do because this allows us to explain the code more clearly. We’ll refer to the
ActionScript code by line number to make the discussion as easy to follow as we can.

Line 8 takes care of handling gestures by exposing the function onOmekGesture in the flash
runtime.

ExternalInterface.addCallback("OmekGesture", onOmekGesture);

The next method to look at is on line 56. This method lets the sdk know to register the leftPush
gesture. This gesture is a gesture included in the sdk. Each gesture that a user wants to detect must be
listed here, including custom gestures.

 ExternalInterface.call("OmekAddGesture","leftPush");

Now, review the exposed function onOmekGesture on line 106.

function onOmekGesture(gestureName:String, playerLabel:String):void
{
 debugString_txt.appendText("\nOmekGesture: " + gestureName + ":" + playerLabel);
}

This function can receive two strings from the SDK. The first is the name of the gesture received and
the next is the label of the player. Beckon can track multiple players and easily switch between them. It
supports up to 5 players. It can also track an unlimited number of what it refers to as candidates, or
possible players.

Skeleton Data
Next, let’s look at how to handle getting skeleton data into flash. Line 9 exposes the function
onOmekJointPosition:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

111

ExternalInterface.addCallback("OmekJointPosition", onOmekJointPosition);

You must list every joint you would like to receive, but not in the Flash file. Open the Config.html
file. This file is located in this folder: C:\MyProject\Flash. Open the file and take note of the <tracking>
tag. Its contents should appear as follows:

<tracking>
 <skeleton rawSkeleton="true"/>
 <joint name="rightFingerTip" screen="false" smooth="true"/>
 <joint name="leftFingerTip" screen="false" smooth="true"/>
 <joint name="torso" screen="false" smooth="true"/>
</tracking>

This <tracking> tag registers all of the joints to be tracked. You must list each joint that you want to
track. In this example, only the left and right fingertips and the torso are tracked. Since this tag sets up
the joints ahead of time in this xml file, there’s no need to use .call to send messages to the SDK.

Joint Positions
Now let’s look at the onOmekJointPosition function. It receives a joint’s name, the playerLabel
associated with the joint, and the X,Y,Z position of the joint in space. Here’s the code from the example:

function onOmekJointPosition(jointName:String, playerLabel:String, jointX:String,
jointY:String, jointZ:String, confidence:String):void
{
//give control on mouses to one specific player.
if(playerLabel == "0")
{
 if(jointName == "leftFingerTip")
 {
 //mirror X value in order to make the mouse move left and right like the hand.
 leftFingerTip_mc.x = stage.stageWidth - Number(jointX) * _screenScaleX + correctionX;
 leftFingerTip_mc.y = Number(jointY) * _screenScaleY + _correctionY;

 //debugString_txt.appendText("\nleftFingerTip_mc located at:
 //("+leftFingerTip_mc.x.toString()+","+leftFingerTip_mc.y.toString()+")");
 }
 if(jointName == "rightFingerTip")
 {
 rightFingerTip_mc.x = stage.stageWidth - Number(jointX) * _screenScaleX + correctionX;
 rightFingerTip_mc.y = Number(jointY) * _screenScaleY + _correctionY;
 }
 }
}

This function gives player 0 control and attaches to the circle graphic movie clips, leftFingerTip_mc
and rightFingerTip_mc, to the longest finger point of each hand. This function also prints the location of
these joints to the debugString_txt box on the stage.

Beckon can track multiple players and it assigns each player a number. The first player is player 0.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

112

Alerts
The last mandatory functionality is to handle Alerts. On line 10, notice the onOmekAlert function is
exposed to the Flash runtime environment:

ExternalInterface.addCallback("OmekAlert", onOmekAlert);

Each alert that you want to listen for must also be sent to the SDK with a .call method. On lines 62-
79 a partial list of the alert listeners that are available are sent to the sdk with each corresponding
message to listen for, starting with the following line:

ExternalInterface.call("OmekAddAlert","Alert_CalibrationDone");

Let’s look at the exposed onOmekAlert function now and see what it does:

function onOmekAlert(alertName:String, playerLabel:String):void
{
debugString_txt.appendText("\nOmekAlert: " + alertName + ":" + playerLabel);

if (alertName =="Alert_CalibrationDone"){
//only after Alert_CalibrationDone the OmekGetBodyDimensions will return the correct values
 ExternalInterface.call("OmekGetBodyDimensions","0");
 //ask for the body compensation of a specific player. return a value to
ExternalInterface.addCallback("OmekGetCompensationData", onOmekGetCompensationData);
 ExternalInterface.call("OmekGetCompensationData","0");
} else if (alertName == "Alert_CalibrationBegun"){
 ExternalInterface.call("OmekGetBodyDimensions","0");
 //ask for the body compensation of a specific player. return a value to
 //ExternalInterface.addCallback("OmekGetCompensationData", onOmekGetCompensationData);
 ExternalInterface.call("OmekGetCompensationData","0");
}

This function handles a few alerts. For each one, it just prints copy to the debugString_txt field.
Nothing fancy happens here. A handy use for this function in the future would be to display player
warnings on screen.

The Core Functionality
We are now finished with the code needed to set up Beckon Flash integration. Now that we have covered
the most basic setup, let’s look at how the functionality we’ve talked about is integrated into our
example. First, the code checks to see if a sensor is connected and ready. If the sensor is ready to use and
everything is hooked up, all of the appropriate queries are then sent to the sdk. This process starts on
line 21 with an addEventListener running every frame to see if the sensor is ready. Here is the relevant
code, beginning from line 21:

//wait for connecting to the sensor before querying it.
addEventListener(Event.ENTER_FRAME,checkIfSensorReady);
function checkIfSensorReady(e:Event):void
{
//ask if the sensor is ready to receive queries. return a value to
//ExternalInterface.addCallback("OmekIsSensorConnected", onOmekIsSensorConnected);
ExternalInterface.call("OmekIsSensorConnected","");
}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

113

Notice the next function, onOmekIsSensorConnected, is now exposed to the sdk and the
OmekIsSensorConnected function in the SDK is triggered by .call and receives false or true.

The onOmekIsSensorConnected function receives a string from the SDK. If it is the string true, the
function sendQueriesToSensor runs.

/**
 * function returns true or false if the sensor is connected.
 *
 * connected : boolean (as a string) "true" or "false", marking if the sensor is ready
 */
function onOmekIsSensorConnected(connected:String):void
{
 if (connected=="true")
 {
 removeEventListener(Event.ENTER_FRAME,checkIfSensorReady);
 sendQueriesToSensor();
 }
}

Next is the function sendQueriesToSensor. This is the function that sends all of the call messages to
the SDK. (sendQueriesToNSensor also exposes a few more functions). This is important because these
calls include all gestures to be tracked and all alert messages to send. For example:

function sendQueriesToSensor():void
{
 //set the number of players the sensor tracks
 ExternalInterface.call("OmekSetMaxPlayers","2");
 //ask for the tracked number of players. return a value to
 //ExternalInterface.addCallback("OmekGetMaxPlayers", onOmekGetMaxPlayers);
 ExternalInterface.call("OmekGetMaxPlayers","");

 //set the sensor's tracking mode to either: "all", "basic", "upper", or "sitting"
 ExternalInterface.call("OmekSetTrackingMode","all");
 //ask for the current tracking mode. return a value to
 //ExternalInterface.addCallback("OmekGetTrackingMode", onOmekGetTrackingMode);
 ExternalInterface.call("OmekGetTrackingMode","");

 //adding listeners for the sensor to specific gestures (see documentation
 //for full list of gestures available)
 ExternalInterface.call("OmekAddGesture","leftPush");
 ExternalInterface.call("OmekAddGesture","rightClick");
 ExternalInterface.call("OmekAddGesture","jumpNoHands");
 //removing listeners from the sensor to specific gestures
 ExternalInterface.call("OmekRemoveGesture","leftPush");

 //adding listeners to specific alerts (see documentation for full
 //list of alerts available).
 ExternalInterface.call("OmekAddAlert","Alert_CalibrationDone");
 ExternalInterface.call("OmekAddAlert","Alert_CalibrationBegun");
 ExternalInterface.call("OmekAddAlert","Alert_TooClose");
 ExternalInterface.call("OmekAddAlert","Alert_TooFar");
 ExternalInterface.call("OmekAddAlert","Alert_CloseToSide");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

114

 ExternalInterface.call("OmekAddAlert","Alert_OutOfFrame");
 ExternalInterface.call("OmekAddAlert","Alert_GoodLocation");
 ExternalInterface.call("OmekAddAlert","Alert_CloseToWall");
 ExternalInterface.call("OmekAddAlert","Alert_GoodBackground");
 ExternalInterface.call("OmekAddAlert","Alert_PlayerEnters");
 ExternalInterface.call("OmekAddAlert","Alert_PlayerLeaves");
 ExternalInterface.call("OmekAddAlert","Alert_GoodFrameRate");
 ExternalInterface.call("OmekAddAlert","Alert_LowFrameRate");
 //removing listeners from the sensor to specific alerts
 ExternalInterface.call("OmekAddAlert","Alert_GoodLocation");
 ExternalInterface.call("OmekRemoveAlert","Alert_GoodFrameRate");
 ExternalInterface.call("OmekAddAlert","Alert_CloseToWall");

 //ask for the current working directory. return a value to
 //ExternalInterface.addCallback("OmekGetWorkingDir", onOmekGetWorkingDir);
 ExternalInterface.call("OmekGetWorkingDir","");
 //ask for the sensor's properties. return a value to
 //ExternalInterface.addCallback("OmekGetSensorProperties", onOmekGetSensorProperties);
 ExternalInterface.call("OmekGetSensorProperties","");
 //ask for the body dimensions of a specific player. return a value to
 //ExternalInterface.addCallback("OmekGetBodyDimensions", onOmekGetBodyDimensions);
 ExternalInterface.call("OmekGetBodyDimensions","0");

 //get rgb or depth or player mask
 ExternalInterface.addCallback("OmekShowImage", onOmekShowImage);
 ExternalInterface.addCallback("OmekGetImageResolution", onOmekGetImageResolution);
 //ask for the resolution of the rgb image written in the xml. return a value to
 //ExternalInterface.addCallback("OmekGetImageResolution", onOmekGetImageResolution);
 ExternalInterface.call("OmekGetImageResolution","");

}

Modifying the Beckon Flash Example
Now we will add something to this example before moving on to creating our own example. Let’s track a
new joint: the head.

First off, we need to let Beckon know that we want to receive the head joint in the flash runtime
environment. To do this, we need to modify the config.xml file and modify it to match the following
code:

C:\MyProject\Flash\config.xml
<tracking>
 <skeleton rawSkeleton="true"/>
 <joint name="rightFingerTip" screen="false" smooth="true"/>
 <joint name="leftFingerTip" screen="false" smooth="true"/>
 <joint name="torso" screen="false" smooth="true"/>
 <joint name="head" screen="false" smooth="true"/>
</tracking>

Add head tracking into the example by modifying the onOmekJointPosition function that starts on
line 164 of the testOmekFlashPlayer.fla file. Following is the new version of the function that you should
create:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

115

function onOmekJointPosition(jointName:String, playerLabel:String, jointX:String,
jointY:String, jointZ:String, confidence:String):void
{
//give control on mouses to one specific player.
if(playerLabel == "0")
{
if(jointName == "head") {

 myHead.x = stage.stageWidth - Number(jointX) * _screenScaleX + _correctionX;
 myHead.y =Number(jointY) * _screenScaleY + _correctionY;

}
if(jointName == "leftFingerTip")
{
 //mirror X value in order to make the mouse move left and right like the hand.
 leftFingerTip_mc.x = stage.stageWidth - Number(jointX) * _screenScaleX + _correctionX;
 leftFingerTip_mc.y = Number(jointY) * _screenScaleY + _correctionY;

 //debugString_txt.appendText("\nleftFingerTip_mc located at:
("+leftFingerTip_mc.x.toString()+","+leftFingerTip_mc.y.toString()+")");
}
if(jointName == "rightFingerTip")
{
 rightFingerTip_mc.x = stage.stageWidth - Number(jointX) * _screenScaleX + _correctionX;
 rightFingerTip_mc.y = Number(jointY) * _screenScaleY + _correctionY;
}
}
}

Finally, export and run OmekBeckonFlash.exe. You should see your movie clip head tracking
enabled and working, as shown in Figure 6-5.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

116

Figure 6-5 Beckon tracking the added head joint

Designing A Custom Gesture
Gesture design opens the door to a new world of user experience that’s just now being created. When
you start designing your gestures, you will want to keep a few basics in mind. Here are seven design
strategies to get you started:

1. First, the gesture should feel connected to the activity the user needs to
perform. Think about the popular 'pinch to peek' gesture for zooming photos
on the iPhone. It feels very intuitive and is an example of excellent gesture
design. The motions are natural for making an image larger or smaller, and
connect people to their photos in a more organic way.

 Tip What would be the best gestures for your application or game? Certainly the best would be gestures that
require no user manual and very little explanation. Allowing people to try and use your interface with absolutely no
prior exposure to your project will immediately let you know if the design is working. Can users figure out your
interface naturally, or do they need to stop and ask what to do? Is your interface friendly and inviting enough that
users can just start trying it out, or does it feel intimidating? A few false starts can spoil a user’s initial reaction to
an interface. If the interface continues to behave in unexpected ways, the user will likely quit using it at all.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

117

2. A second gesture rule of thumb is to consider user comfort and the body. The
days of the body needing to conform to the machine are over. I have continued
to wonder why we still use what looks like a glorified typewriter over 100 years
later, despite vast leaps in technology. Our QWERTY keyboard does nothing
but lead to RSI, Carpel Tunnel, and back pain for thousands of users.
Interfaces that are comfortable to use are going to be the most successful for
long-term use. Thankfully, with multi touch and computer vision at our
disposal for creating user experiences, we no longer need to rely on old
paradigms to create interaction models. Simply put, if it hurts, don’t do it—
and don’t ask your customers and users to do it.

3. Third, take into account basic human psychology when designing. Raising
your arms up to the sky universally feels uplifting, while kneeling has
connotations of prayer and surrender. For example, if you want someone to
feel happy while playing your game, it would be wise to read Jane McGonigal’s,
Reality is Broken. She documents many tactics for creating positive emotions
in gaming, the most common of which is touching another human. Human
touch releases a flood of oxytocin in the brain. Oxytocin is a chemical widely
associated with creating happiness in the mind. Gesture based SDKs allow for
player interaction, so touch would be a very easy way to trigger positive
emotions, bonding, and a feeling of connection in your players.

4. Fourth, use gesture conventions to your advantage and build upon them.
There’s absolutely no excuse to ignore gestures that people are familiar with
from other platforms or interaction models. Take those gestures and make
them work for the interface you are designing. At its core, design builds upon
existing paradigms and good design advances design discourse.

5. Fifth, don’t violate interaction models that users are accustomed to from the
real world or other interfaces. Gamers are used to the idea of picking up a
sword and they have a specific way they expect to hold and swing it. Take that
model into account when designing. Use gestures with arm swings to allow for
a fun, more realistic sword fight.

6. Sixth, interaction models should not be in conflict with the world in which
they exist. For instance, if a player is carrying a sword on their back in the
game, don’t make the player go through an interface to access that weapon.
Just allow them to reach up and grab it off their back. Otherwise, you will
design conflicting, confusing interactions that will be unintuitive to players.

7. Finally, an interface and gestures should work as a whole. Users should be able
to easily grasp the gestalt of the UX design and convey it to new users quickly
and with ease. Don't change the gesture used for a task to another gesture
halfway through the experience. Consider keeping gestures used for similar
experiences connected in their design.

In this area, much might be learned from the fields of yoga, neurology, and physical therapy. All
three of these fields have extensively explored the mind-body connection. What emotion arises by forms
created with the human body? What chemicals are triggered in our brains with which gestures? How will
mirror neurons impact group experience design? Without doubt, gestures that you add to your design
will have tremendous impact usability.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

118

Adding a New Gesture to the SDK
In Beckon, we can create, edit, and add gestures through GUI interfaces that require no code at all. We
are going to create a brand new gesture that doesn’t exist in the SDK as of yet and we'll call it from the
Flash example. To do this, we need to record ourselves performing the gesture a few times in front of the
sensor. To perform a gesture, you pose by putting your body into the form for that gesture. We will pose
a few times so that the machine learning environment will have samples to analyze and learn from. Each
recording of a pose is considered a sample. Those samples are combined into a Classifier of that gesture.
Beckon calls video clips sequences. A sequence is just a recording of a person performing the gesture.
Once we are getting good recognition from Beckon, we’ll add a listener for this new gesture into Flash.
When we perform it, if all goes well, the name of the gesture will appear in the debugString_txt box on
the stage to let us know it was recognized. We have to use three tools to go through the complete
process:

• The first tool, Omek Beckon Gesture Organizer, lets us add the gesture in name
only into the sdk.

• The second application, the Gesture Toolbox, enables us to select the gesture so
that we can record Examples. We record examples through the Kinect camera.
Record several examples. Once we have a few positive ones, we record a few
negative ones as well. From there, we will go into each file and mark each
recording, letting Beckon know where the gesture is positively performed by
marking it as such. Any unmarked clip or clip area will be analyzed as a negative
example.

• Finally, we launch the Gesture Learner, our third application, and tell it where our
examples are located. We also tell it a few things about what we are looking for
with our gesture. The Gesture Learner will analyze our clips and grade them.
Anything less than .96% should send us back into the Gesture Toolbox to get more
positive and negative examples. Ideally, we would like a grade of 1.

For the purpose of this chapter’s example, I’ve not included the recording of gestures from different
people as test gestures. Ideally, you would record these types of gestures and grade your examples
against test examples to make sure you were getting good recognition across many sources. This is an
easy step to add and the Beckon SDK has links to a tutorial to guide you through it.

Let’s get started. First off, we need to know how Beckon groups gestures into gesture groups it calls
classifiers. Again, a classifier is just a set of gesture recording of the exact same gesture that will be
analyzed together. These sequences will ultimately describe the classifier for the machine learning
environment. We need to go into the Classifier folder in the SDK and add a new folder for our new
gesture. Open the folder, which should have the following path:

C:\Beckon SDK\bin\Classifiers

Notice that there are two existing folders, GuiGesturePack and BasicGesturePack. These contain the
gestures that come with Beckon. Let’s add a folder and call it gameGestures. In that folder, I’d suggest a
new folder for each new gesture. For now, let’s just make one called leftHandUp. The full path and name
should be:

C:\Beckon SDK\bin\Classifiers \gameGestures\leftHandUp

Now create a folder in leftHandUp called examples:

C:\Beckon SDK\bin\Classifiers \gameGestures\leftHandUp\examples

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

119

Finally, add one more folder for your output once your gestures are trained:

C:\Beckon SDK\bin\Classifiers \gameGestures\leftHandUp\output

Now let’s launch one of the three GUI interfaces and add your gesture. Launch the Gesture
Organizer, which you’ll find at the following location:.

C:\Beckon SDK\bin\OmekGestgureOrganizer.exe

Once you have launched the Gesture Organizer, perform the following steps:

1. Click the Add Button and fill in the “Add Gestures” dialog as follows: Package
(gameGestures), File (leftHandUp), Gestures (leftHandUp), and Type (use
“Trained”). For this tutorial, modifying other fields is not necessary.

2. Click the Create Button to add this gesture and its package.

3. Click the Save Button in the Gesture Organizer menu, to apply these changes.

Your gesture now exists in the SDK and an .xml file has been generated. Of course, it doesn’t work
yet, but it will be available in the tools for marking sequences (Figure 6-6).

Figure 6-6 The Gesture Organizer with the added leftHandUp gesture.

 Note For more information about the different options in the Gesture Organizer, please refer to the Gesture
Training Manual in the docs folder.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

120

Recording a Gesture
Now that you’ve added a new gesture, you can record it. Let’s open the Gesture Toolbox, which is the
application we use to record gestures. The purpose of recording a gesture is to allow Beckon to register
the gesture later, when it is performed by a user in front of the sensor.

Execute the Gesture Toolbox by finding and double-clicking the following executable:

C:\Beckon SDK\bin\OmekGestgureToolbox.exe

There are a few tabs in this application. We will start off with the Recorder tab and then move into
the marker tab in the next section.

A word to the wise is that the Gesture Toolbox’s interface could be smoother to use. The name of
your file is going to be cut off in the viewer. Don’t worry; each clip you make will be saved, but you will
need to key over to see the name of each clip. Do that by pressing the right-arrow key when a clip’s name
has focus. You can key over the letters, but there’s no way to expand the field.

Clips are in numeric order automatically, but it’s easy to forget your place. For this reason, I
recommend keeping a list of which clips are positive examples and which are negative examples. It’s
helpful to know later. A positive example is a video recording of the gesture being performed. A negative
example is a recording of a body doing anything but the gesture being trained. These negative examples
help describe what the gesture is not. The positive ones tell the machine learning system what the
gesture is.

Follow these steps to record some examples of your gesture:

1. In the Recorder tab, select the “examples” folder as the output folder and set
the desired number of frames (usually between 200 and 500 frames).

2. Record a sequence of someone performing the desired gesture, by pressing the
Record Button. We call this a positive example, since it demonstrates what
should be detected as the trained gesture. When performing the gesture by
yourself, check the “countdown” option before starting to record. Make sure to
move around a bit. You should see dots pop up on each joint. If you don’t see
dots, you aren’t getting joint data.

3. Add more sequences in the same way. Add at least 3 or 4. It’s recommended to
move around a bit in the pose. Don’t just stand stock still. If you do, you’ll
never see the joints register. Sway slightly, shifting your weight from right to
left.

4. Also get a few negative examples of you not doing the gesture. This is very
important for successful gesture recognition later when we train our systems.

For the training sequences, try to perform the gesture very clearly, without mixing it with other
gestures. With “pose” gestures (like the one in this example), you can stay in the desired pose
continuously for most of the sequence, while you modify the style of the pose and its location.

Marking a Gesture
Once you’ve made several recordings of a gesture, you must tell the SDK which of those recordings
represent good versions of the gesture that you want to detect. You do that by marking the places in the
recordings where the gesture was performed. These marked clips will be used to train the classifier. Note
that it will also analyze sections not marked, considering those as negative examples, so be careful to
select all frames where the gesture is performed correctly.

Here is the process to follow in marking a gesture:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

121

1. Go to the Marker Tab and open the video sequence that you have recorded.
The video sequence will be loaded and displayed in the middle window.

2. Let the clip run and make sure that the gesture is performed as expected, and
that the tracking of the player is correct. If there is a problem, either delete the
clip and record a new one, or use the “Skip In/Out” options to ignore the
problematic frames.

3. Select the gesture to be marked in the gestures list at the top left window. In
this example, the gesture is called leftHandUp and it is located in the
gameGestures package. Select it by expanding the package and clicking the
gesture name.

4. View the video sequence and mark the gesture using the Mark In and Mark Out
buttons.

5. Repeat these steps for all the video sequences you have recorded with positive
examples

For your negative examples, load your clip, make sure you have the gesture selected, and save it.
Notice in Figure 6-7 the highlighted button after the sequence name with an ellipsis, or three dots, as the
label. This button with no name and only dots is the button that allows you to open your file viewer. If
you go into the folder where you are saving your gestures, you will see a list of clips by number.
Remember that I mentioned to keep track of which performances were the negative examples? Now that
you need to load the sequence video clips, it’s really helpful to know which ones are negative examples.
Select a negative example and it will open. You can press the regular video controls to play the clip and
mark the negative sequence using the exact same series of steps you used to mark the positive sequence.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

122

Figure 6-7.Omek Beckon Gesture Toolbox with the Sequence open button selected.

Training a Gesture
After recording and marking comes the training stage. In this stage, you will train the gesture based on
the recorded video sequences, using the Gesture Learner tool. Here you will find out if you did a good
job of performing the gesture in the clips or if you will need to go back and repeat the process.

Begin by opening and executing the GestureLearner. Double-click the following executable:

C:\Beckon SDK\bin\Omek Beckon Gesture Learner.exe

Then follow these steps:

1. Go to the Files Tab and add the trainings sequences. Click the Add Directory
Button, select the “examples” folder, and click the OK Button. This will add all
of the contained sequences.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

123

 Tip If you saved sequences of the target gesture in other folders, you can repeat the previous step and add
them as well.

2. Now set the “Output Files” options. Select your “output” folder created earlier.
It will contain all of the outputs of the training process. Click the OK Button.

3. Ensure that the “Package” field shows the name of your new package
(gameGestures).

4. Verify that the “Classifier” field holds the name of the file that you entered in
the Gesture Organizer. That file name should be leftHandUp.xml.

5. Go to the Gesture Tab and set the “Per Gesture Configuration” options. Click
on the “Gesture” field and select the target gesture (leftHandUp). Press the Add
Button to insert this gesture into the “Active Gestures” list.

You have now selected the gesture that will be trained. Sometimes you may want to train more than
one gesture in a single process; in these cases, you will repeat steps 1-5, adding required gestures one
after the other.

The tab contains all of the parameters that can be modified for the training process. It is beyond the
scope of this tutorial to explain all of these. We will examine a few examples only, while the rest can be
learned from the Gesture Manual document. The parameters are divided into different groups. In every
group, you can see a check box called “Auto”. Checking this option will indicate that the Learner should
find the parameters automatically.

Set the Advanced Tab parameters as follows:

Gesture Type. In our example, the trained gesture is a pose and not a motion,
so we will check the “Pose” option. Gestures like jump or punch will be a
“Moving” gesture. Leave the “Auto” option checked.

Data Processing. Leave the “Auto” option selected.

Joints. First, use the default values (“Auto” and “Both”) selected. Later on, you
can change these values and see how they influence the results. “Upper” will
use only the upper-body for the training, while “Lower” will use the lower-body
only. Selecting “Both” will try all of the body joints.

Learning Method. Select “Fast” for the first time; this will train the gesture
faster, so you can readily see some results. Later on, try to change this value to
“Best” to see its influence. The “Fast” and the “Best” methods use different
options, so the results may be different between the two methods.

After setting all of the wanted parameters, it’s time to run the training process. You do that as
follows:

6. Click the Add Button, at the bottom part of the window, to add a training job
with the current values. Note that the training process will not execute until
you click the Run Button in the next step

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

124

7. Click the Run Button to run all the jobs in the list. The jobs will run
sequentially (one after the other), and their results will be displayed
immediately as every job finishes.

8. If a job ends successfully, a “success” icon (a check shape) is displayed and the
score of this classifier is shown in the list. A “failure” icon will be displayed in
case of an error (“X” shaped).

9. Double click the line with the job name to see more details about the score.

You can run many training jobs at the same time, and you can add more as the current jobs are
running. Simply go back to the previous tabs (Files, Gesture, and Advanced), change any parameter, and
add a new job. Note that since randomness is applied to the algorithm, running the same parameters
twice may not result in the same output! Please refer to the Gesture Training Manual for more details
about the training options.

 Note If you have closed the Learner and want to retrieve the parameters of an old job, simply click the “Load”
button in the “Files” tab, browse to the folder where your required output is saved, and select the XML file.

Testing a Gesture
A classifier is created and published for every gesture that you create using the method described so far.
It is the classifier that enables you to use a gesture from Flash. Publishing a classifier simply refers to
adding it into the SDK, just as we did for leftHandUp.

Having published a classifier, you may want to test the classifier with a live camera. Here is how to
run a test:

1. Open the Gesture Toolbox and go to the Viewer tab.

2. Select the Input source (in the bottom right part of the screen):

• For live testing with a camera, select the Sensor option. Then select the type
of camera from the menu below.

• For a sequence, select the Sequence option. Then browse for the sequence,
or type its path in the text-box below.

3. Press the Start Button to initiate the execution of the tracking.

Select the target gestures in the Gestures Display (top left part of the screen). You may choose more
than one gesture. Perform the gesture. If you did everything correctly, you should see your gesture
register. See figure 6.8 for an example of the leftHandUp gesture correctly tracking.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

125

Figure 6-8. Viewer tab selected with the gesture open and correctly tracked.

Adding a Gesture for use by Flash
Now we can add our new gesture into our Flash file’s Actionscript. The first step is to add the gesture
listener into our calls. Find the following code block and add the bold lines into your code:

//adding listeners for the sensor to specific gestures (see documentation for full list of
 gestures available)
ExternalInterface.call("OmekAddGesture","leftPush");
ExternalInterface.call("OmekAddGesture","rightClick");
ExternalInterface.call("OmekAddGesture","jumpNoHands");
ExternalInterface.call("OmekAddGesture","leftHandUp");

//removing listeners from the sensor to specific gestures
ExternalInterface.call("OmekRemoveGesture","leftPush");
ExternalInterface.call("OmekRemoveGesture","rightClick");
ExternalInterface.call("OmekRemoveGesture","jumpNoHands");
ExternalInterface.call("OmekRemoveGesture","leftHandUp");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

126

Save and export the application. Then launch OmekBeckonFlash.exe. Now, when we perform the
leftHandUp gesture, the debugString_txt box should output the gesture’s name. The box should pop up
and read “leftHandUp.” If you are not seeing that result, go back and carefully check that you’ve
performed each step in this chapter correctly.

Building Functionality Based on a Gesture
Now that our new gesture is working and is being recognized, we can use the gesture to trigger
functionality in the application. Let’s go back into our code block add some new functionality to draw a
yellow box near our left fingertip when the application registers the gesture as having been performed.
Add the below code into the testOmekFlashPlayer.fla file above the function OnOmekGesture(). This
code just allows us to draw a yellow square graphic onscreen at every point where the application
correctly tracks the new leftHandUp gesture. In figure 6.9, you will see the gesture tracked at the moment
my left arm got to a certain point on screen above my shoulder.

 var gestureSeen:MovieClip = new MovieClip();
 var xNum:Number = 80;
 var yNum:Number = 80;
 gestureSeen.graphics.beginFill(0xFFcc00);
 gestureSeen.graphics.drawRect(xNum, yNum, 30,30);

function onOmekGesture(gestureName:String, playerLabel:String):void

{

 if (gestureName == "leftHandUp") {
 stage.addChild(gestureSeen);
 gestureSeen.x = xNum;
 gestureSeen.y = yNum;

 }
}

Add two more lines of code to get the position of your left finger tip and assign it to the xNum and
yNum variables. The two lines are shown in bold in the following example. Find the same block of code
in the example file and add the two lines shown in bold.

function onOmekJointPosition(jointName:String, playerLabel:String, jointX:String,
jointY:String, jointZ:String, confidence:String):void
{
 //give control on mouses to one specific player.
 if(playerLabel == "0")
 {

 }
 if(jointName == "leftFingerTip")
 {
 //mirror X value in order to make the mouse move left and right likethe hand.
 leftFingerTip_mc.x = stage.stageWidth - Number(jointX) *_screenScaleX + _correctionX;
 leftFingerTip_mc.y = Number(jointY) * _screenScaleY + _correctionY;
 xNum = leftFingerTip_mc.x;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 6  APPLICATION DEVELOPMENT WITH THE BECKON FRAMEWORK

127

 yNum = leftFingerTip_mc.y;
 }

Save and export the example project. Run the example again. Perform the LeftHandUp gesture. You
should see that Beckon will place a box on the screen at the position of your fingertip at the time you
performed the gesture (Figure 6-9).

Figure 6-9. Beckon registering the leftHandUp gesture and moving a box to the location of my left finger

tip where on screen the gesture was performed.

I hope that this example has introduced you to the main ideas behind the Beckon SDK. First, we
went over what Beckon does and then we got it up and running. We then added in new tracking
functionality to the existing example for your head. From there, it’s easy to map graphics to a skeleton.
Next, we went over some basics of interface design. Then we created our own gesture and added it to the
Beckon SDK and successful added a listener for it in Flash. Finally, we added a graphic to indicate
when—and, more importantly, where—our gesture occurred. That should give you enough of a start
with Beckon to create a basic interface.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 7

129

3D Games and User Interfaces
with Unity

For this chapter, we are going to be using a very popular game engine called Unity. By integrating
OpenNI, NITE, and Sensor Kinect in Unity, we will control a 3D character and multiple user interfaces.
After we cover the main components, we will build an example of each from the bottom up.

A game engine is a system designed for creating and developing video games, installation spaces,
and interfaces. What you can do with a game engine goes far beyond just creating games. Unity is used
commonly to create architectural installations and 3D user interfaces. Game engines are designed to
work with mobile devices, computers, and game consoles. Most offer a rendering engine for 2D and 3D
graphics, a physics engine (for collision detection and adding physics), sound, scripting, animation, and
more. A game engine is a real-time 3D environment easily repurposed in many ways. It can create
brilliant responsive environments, 3D projection maps, and interactive displays just as easily as it can
create games.

So what is a game engine exactly? It’s a game creation tool, which is different from a 3D package.
You usually would not use an engine to model your 3D characters but to put them together and turn
them into a playable game. Three-dimensional software packages at every level of the industry export
files that engines support. If you are new to 3D and want to try it out for free, check out Blender and
Google SketchUp. For more serious users, you are already most likely using Maya or 3D Studio Max. If
you are a student, Maya also has a free educational version. Note that .fbx files are native for Unity
support, and Unity converts all polygons to polygon triangles.

Unity is a great game platform that’s competitive with much more expensive engines, such as the
Unreal Engine, but it has a free edition. If a game or application created in Unity grosses more than
$100,000, Unity requires a license be purchased. This makes the free edition ideal for beginners. This
edition limits the complexity of the games and disables some of the pro features such as mobile
functionality, but you can still make a good game with the tools available.

The Kinect galvanized the open source community After the Kinect data stream was successfully
converted into useable data by the Open Kinect community, the indie development scene exploded with
activity. Games, art installations, and other experimental computer user interactions were created all
over the world.

Installing Unity and Supporting Software
Let’s get started. First, download Unity from http://unity3d.com/. Install Unity as you would install any
other application on your platform. I will be using Mac OS X 10.6.8 for the examples here, but Unity is
platform agnostic as are the ZigFu scripts we will be running.

http://unity3d.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

130

 Note This chapter is created with Unity version 3.4. Older versions are not compliant with the software covered
here.

Next, we are going to use an extremely easy install script from ZigFu. ZigFu has created a package
with one install script that includes OpenNI, Sensor Kinect, and NITE. ZigFu has the unique attribute of
being written by two ex-PrimeSense employees and two other developers. PrimeSense was the company
that created NITE. As a result, these Unity scripts for OpenNI are the most stable available and have the
advantage of being open source. ZigFu is Amir Hirsch, Ted Blackman, Roee Shenberg, and Shlomo
Zippel. When asked where they got their name from, they cited the ’90s meme, All Your Base Are Belong
to Us. In addition, they think of moving in front of a Kinect as “zigging.”

Download the Installer script from www.Zigfu.com. In addition, download the Unity package on
www.Zigfu.com. This is the package we will import to run Kinect in Unity. Unzip these files and move
them into your Documents folder.

 Caution ZigFu recommends a complete deinstall of Open Kinect, NITE, and OpenNI before running their
install.sh script. I found deinstalling unnecessary, but you may want to follow ZigFu’s recommendation.

Following are the steps for executing ZigFu’s installer script on a Mac. The process on a Windows PC
will be similar, and perhaps even easier, as the Windows installer enables you do everything with a single
click.

1. Launch a terminal window. Do that on the Mac by going to Mac  Application
 Utilities  Terminal.

A terminal window should open, and you should see something like that in Figure 7-1.

http://www.Zigfu.com
http://www.Zigfu.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

131

Figure 7-1. The Mac OS X terminal window

2. Navigate to the folder containing the installer script that you downloaded. For
example, I issued the following command on my system:

cd Documents/ZigFuOpenNIMac

3. Issue the following command to execute the installer script as the root user:

sudo sh install.sh

4. The sudo command might be new to you. There’s a user in your Mac OS that’s
a superuser, or root user, used for system administration. This user account
has privileges that your regular account does not have. The sudo command
allows you to execute a single command as if you were logged on as this special
user known as root.

5. You will be prompted for your user password. Enter it. The installation will
run, and the following lines of code will appear in the Terminal window.

You Know What You Doing (Installing OpenNI)
Installing OpenNI

copying shared libraries...OK
copying executables...OK
copying include files...OK
...
*** DONE ***
For Great Justice... (Type “sh test.sh” to run the UserTracker demo)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

132

6. Now we are going to test to make sure everything installed correctly by
running the test script. Type the following command and press Enter:

sh test.sh

7. This window should pop open, and you should see yourself moving around, as
shown in Figure 7-2. What you see in the figure is a depth map. A depth map is
an image channel that contains information relating to the distance to the
surfaces of scene objects from a viewpoint, in this case from the Kinect.

The installation is complete! You are ready to move on and explore what Unity has to offer. Make
sure to close the PrimeSense User Tracker Viewer before moving on to avoid conflicts with subsequent
examples.

Figure 7-2. A Kinect depth map as generated by Unity

Exploring the Unity Interface
Launch Unity. Let’s create a project and explore the interface together.

Projects
Here’s how to create a project:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

133

1. Select File  New Project from the menu.

2. It’s a good idea to always import Unity’s Standard Assets. In the popup, you
will see a whole list of possibilities to include in your project. Select Standard
Assets and press Create Project.

3. Import the ZigFu Unity package for all of the examples. Start by selecting
Assets  Import Package  Custom Package from the menu.

4. Navigate to your Documents folder and import the following file:

UnityOpenNIBindings-v1.1.unitypackage

5. From the ensuing popup, just let Unity import all the appropriate libraries for
the project it needs.

Unity should now have a few tabs open. The first thing you are going to want to do is note that in the
upper left you see two tabs, Scene and Game. Click Game to switch to the Game tab.

The Workspace
To make working in Unity easier, grab the Game tab and drag it to the left. It will pop in as its own
separate tab area. The gray bar between the two windows can be adjusted by dragging. After moving the
tab, you should see results similar to those in Figure 7-3.

Figure 7-3. The Unity workspace

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

134

The left tab is now Game Viewer. In this tab, you can see everything that is in the current scene in 3D
space from the perspective of the camera. A camera in 3D space works just like a regular camera and
should be positioned to frame all the appropriate visual elements in the scene.

The tab on the right of the Game Viewer is the Scene Viewer tab. This tab shows the 3D world of the
selected scene. You can think of scenes exactly like you’d think of levels. For each level in your game,
you’ll create a scene. In the upper-right corner of the Scene Viewer, there is an exotic creature found in
many 3D packages known as a Gizmo, and yes, that’s the official name. Fear not, it will not reproduce if
you feed it after midnight or get it wet. It shows you the X, Y, Z, and perspective views. It’s easy to
remember X, Y, and Z as R, G, and B in this color scene. Click and rotate on the X, Y, Z, or center cube
(perspective view) axis to see the game from these angles.

 Note Viewing from different angles doesn’t move the camera, only what the user is looking at in the current
scene.

The final tab to the far right is the Inspector. If you know Flash, you can think of this tab like the
Properties Inspector. The Inspector allows you to set the properties for a selected object’s components.
The Inspector also allows you to attach scripts to game objects to introduce functionality in Unity. This
is exactly what ZigFu has already done to make their examples work. ZigFu designed a basic scene with
game objects and then attached scripts to the game objects to bind with OpenNI.

You’ll see two tabs on the bottom of the workspace. The bottom left tab is your Hierarchy Viewer.
Everything in this tab is actually an object in your game. The bottom right tab is the Project folder for the
current project. Everything in this folder is hiding in User  New Unity Project 1  Assets. Anything
added to the Assets file will automatically update in this tab viewer. However, the object will not be in
the game until it is added to a scene by dragging it into the Scene or Inspector.

Basic Navigation and Transform Tools
Now let’s run down the buttons surrounding the tabs. The buttons to your top left (Figure 7-4) are your
basic navigation and transform tools with key commands that match most 3D applications.

Figure 7-4. Basic navigation and transform tools

The buttons in Figure 7-4 operate as follows, working from left to right. The letters in parentheses
are the keyboard shortcuts.

• The Hand tool (Q) allows you to move around the 3D world.

• The Move tool (W) allows you to move around a selected game object in the Scene
tab.

• The Rotate tool (W) allows you to rotate around your selected game object in the
Scene tab.

• The Scale tool (R) allows you to scale a selected game object in the Scene tab.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

135

Another handy key command to know is F. Pressing F on your keyboard will focus the Scene tab on
any game object selected in the Hierarchy tab.

Play Controls
The next buttons to the right are the play controls (Figure 7-5).

Figure 7-5. Unity’s play controls

The Play button runs the current scene. If you press the Play button while the scene is playing, the
scene stops. Unity has a specific interface particularity to be aware of. If in Play mode, these buttons will
glow blue. Any changes made in the Inspector during this time to game object properties will be lost
when the scene is stopped. There is no way to save changes made during Play mode unless you add an
additional plug-in to Unity. If you hit on a property change that you like while in Play mode, write that
change down and reenter it once you are out of Play mode.

 Tip A three-button mouse is critical for working in Unity’s 3D space. All three buttons are used to smoothly
move around the scene in 3D space. Holding down Option and left-clicking allows you to pan the perspective. The
middle mouse scroll zooms in and out of a scene. Pressing the scroll middle button down will toggle into the Hand
tool. Right-clicking rotates perspective. Option+right-clicking provides an additional Zoom tool.

Understanding ZigFu’s Relation to Unity
ZigFu is a set of C# scripts that bind with OpenNI and PrimeSense’s NITE to allow Unity to access NITE’s
functionality. OpenNI is an open source standard for creating compatibility across the newly emerging
field of natural interaction devices, applications, and middleware. OpenNI is an abstraction layer that
integrates middleware with hardware and applications.

OpenNI and NITE
OpenNI has been geared mainly toward 3D sensors, but nothing in OpenNI is specific to PrimeSense’s
NITE or the Kinect. OpenNI is an interface that allows developers of middleware such as NITE get a
depth stream, skeleton data, audio, infrared (IR), hand points, an RGB image, and gesture detection.
OpenNI doesn’t specifically care how these points were generated or from where.

OpenNI relies upon modules to retrieve device data and pass that data into OpenNI and any
middleware. Anyone can write a module for any camera or sensor and register it with OpenNI. NITE is
middleware that gives digital devices the power to translate and respond to user interaction without
wearable equipment or controls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

136

 Note The important point to understand about OpenNI is that is it not specific to hardware or middleware.
OpenNI can be used with any OpenNI-compliant hardware. For example, you can use OpenNI with the PrimeSense
reference design, the Microsoft Kinect, the Asus Xtion, and with any OpenNI-compliant middleware such as NITE,
and soon Beckon.

NITE, then, is the intermediary standing between OpenNI and your application, in this case Unity.
In the case of the Kinect, PrimeSense made not only the middleware but also the motion sensor chip
inside the Kinect. This really changes nothing practically, but it’s a fun fact to know and part of what
makes NITE so robust.

Unity and ZigFu
Unity allows users to create scripts and attach those scripts to game objects as components.
Components are how game functionality is added to any game, and they drive the game objects. ZigFu
has created scripts for Unity to bind, or talk with, OpenNI.

ZigFu has created sample scripts to familiarize users with OpenNI’s functionality. Before ZigFu,
developers in Unity wrote their own bindings. There’s still nothing stopping developers from doing this
now should they be so inclined and skilled. With the way Unity works, you can very easily attach the
ZigFu scripts onto one object and any custom scripts that you might create onto that same object or any
other object.

Unity is surprisingly tolerant of this kind of development. In fact, Unity supports not one but three
scripting languages: JavaScript, C#, and Boo. Developers can use all three simultaneously, and there’s no
need to choose one language over the other. One of your game object’s components can be in C# and
the other in Boo.

Running the ZigFu Game Examples
Go to your Project folder and open the folder called _Scenes. These are the ZigFu-created scenes, which
are examples demonstrating OpenNI functionality. Some of these you need two people to actually use,
so be prepared to get a friend to help at some point to run the multiplayer examples.

ZigFu divides examples into two categories: game and interface. We’ll go over the game examples
first, in this section, and then the interface examples.

Avatar2Players
Double-click Avatar2Players (two people required). You should see two soldiers standing side by side on
a floor, as shown in Figure 7-6. If you cannot see them in your Scene tab, adjust the view until you do see
them. You can select a soldier in your Hierarchy tab and press F on your keyboard. Scene view will now
focus on the selected object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

137

Figure 7-6. The Avatar2Players game

OpenNI is not tracking a player yet. That’s because you need to play each scene to start the tracking.
Press the black Play button now.

You will now see a little yellow view port in the bottom of your Game tab. Make sure that you and
your fellow player are both visible in the camera view. You both need to stand in the calibration pose to
calibrate OpenNI. This pose is exactly like the stick ’em up pose in a bank robbery. Both hands up now,
please!

Make sure your elbows are parallel to your shoulders and your hands are at the same height. After
the Kinect catches you and your partner as the players, you will see the 3D model jump into your body
positions.

 Note OpenNI is removing the calibration pose by the end of 2011. If you are reading this chapter after then, you
might not need to do a calibration pose. Dance around and see if you are tracked. If you are, then good. If not, then
try the calibration pose.

Let’s now look a little bit deeper into this scene from Figure 7-6 and how to navigate around it. Do
the following:

1. Click Soldier in the Hierarchy tab.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

138

2. Direct your attention to the right Inspector tab.

3. Turn down the arrow next to OpenNI Skeleton (script).

Now visible is a list of all the joints you can get access to with OpenNI and what game objects the
joints are attached to in Unity. Note how all the corresponding joints are mapped onto the game objects.
The script joints coming from OpenNI are on the left, and the game objects in the scene are listed on the
right. They have simply been named to match the names of the joint they correspond to. Single-click any
game object joint on the right of the list, and you will see it jump to its associated object listed in the
Hierarchy tab. Double-clicking will open that object up in the Inspector. To go back to the Soldier,
simply single-click it in the Hierarchy again.

In the Hierarchy tab, you will see all objects in the game. In this example, there is a Directional
Light, which is lighting the scene. Next down in the list is the Floor. Click it to see the components
attached to this game object. The Transform component is on every game object. Next, you will see the
Box Collider, Mesh Renderer with the shaders for the Soldier, and the floor and their respective
Normalmap. A Mesh Renderer takes the geometry from the Mesh Filter and renders it at the location
defined by an object’s Transform component in the Inspector. A normal map, or normal mapping, is a
way to make an object look like it has a higher polygonal count than it actually does by faking lighting
and dents via a 2D file that’s applied to the mesh of an object. Creating normals, meshes, and textures is
beyond the scope of this tutorial, but is part of every 3D workflow. See the manual for your 3D package
to learn more.

The next object in the Hierarchy tab is the Main Camera. Open this object and note that there is a
ZigFu script applied to it called ExitOnEscape that allows you to exit a game when you press Escape. You
can add this script to any scene where you want this behavior. The script is specific just to this ZigFu
example and not part of OpenNI.

 Note To add a script component to a game object, select the game object in the Hierarchy tab to open up the
object’s list of components in the Inspector. This is a very straightforward process, but it feels strange the first
time you do it. All you are doing is attaching a new component, a script component, to your game object via
dragging it into the Inspector Window with that game object’s components revealed. You expose an object’s
components whenever you select it in the Hierarchy tab. If you need help, there are several tutorial videos on
YouTube. In addition, visit the Unity forums at www.unity3d.com. The Unity community provides good support; the
user forums are full of programmers who are kind enough to help newbies out. If you ever get stuck in a jam, the
forums should be the first place you turn to for help.

Following are some of the scripts that you can add to a game object:

ChangeColor is for changing the color of the boxes in the ItemSelector scene.

Exitonescape exits the game when Escape is pressed.

ObjectPeruser simply instantiates a Prefab for every detected user and is used
in the TopDownUserMap scene.

StartSessesionMessage displays the “perform focus gesture to start session”
when you are not in a session.

http://www.unity3d.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

139

The next object is the sensor object. Select this object and notice that in the Inspector tab several
OpenNI scripts are attached. The sensor object itself is an empty game object. Unity allows you to create
empty game objects. This empty object was created to attach scripts to it that run in the scene. These
scripts are all related to OpenNI functionality, and are as follows:

Open NIUser Tracker: Allows for Unity to track users up to the maximum
number of users OpenNI registers. There is no default maximum number.

Open NIDepthMapViewer: Simply displays the Kinect depth map in your game
when it is running. Remember it will not be visible until the game is running.

OpenNIUsers Radar: Pops a dark gray user tracker box up on-screen in the
game with a number attached to each specific user the game registers. If you
want to use this script in a newly created scene, you must link this script to the
Open NIUser Tracker in the Inspector.

Open NISplit Screen Skeleton Control: Allows users to have two players on-
screen at once. This might be helpful for a first-person shooter with a split
screen.

The final object in the Hierarchy is the Soldier. Soldier is a Prefab; that’s why it is blue. A Prefab is a
collection of game objects and components that can be used again and again in a game. They are saved
in the Project tab view. Prefabs are basic functionality in Unity.

Soldier is actually a ZigFu-created Prefab you can add to any scene. Look in the Project tab and open
the OpenNI folder and then the Prefabs. The Prefab Soldier is located within. To add a Prefab to a scene,
simply drag the Prefab from the Project folder in the Scene Viewer.

AvatarFrontFacing
AvatarFrontFacing is almost exactly like Avatar2Players, but it has just one Skeleton, and it implements
some additional functionality. Double-click AvatarFrontFacing and play the scene. Do the Calibration
pose and watch yourself dance around as a soldier.

Select your Sensor Game Object in the Hierarchy tab. Notice the last script component added,
OpenNIContext. The OpenNIContext script allows .oni files to be loaded instead of using the live sensor.
(.oni files are files that contain prerecorded skeleton data.) To record .oni files, use NIViewer, which
comes with OpenNI. (There’s more documentation on recording .oni files in the OpenNI manual.) Any
.oni file you recorded can easily be linked in Unity using the OpenNIContext component. This is an easy
way to do very cheap and effective motion capture without a motion capture suite.

TopDownUserMap
TopDownUserMap shows a top-down game map in which the Kinect drives the location of the player on
the floor. The UsersContainer Object in the Hierarchy tab has the Object Per Use and the Open NIUser
Tracker scripts attached to it.

Blockman3rdPerson
Blockman3rdPerson adds a few new bits of functionality. Run it and watch what happens. The skeleton
is made from Unity game objects, and the camera follows the Blockman in space.

Let’s look at the Hierarchy tab to see what is in this example. First, there’s a Blockman Container.
Open it to find the Blockman Prefab. This is another ZigFu Prefab you can use in any of your projects.
Click the Blockman to open it in the Inspector. Note something new: after the list of joints, notice there

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

140

are three check boxes again. This time, unlike with the Soldiers Prefab, Update Joint Positions is
checked. Uncheck that option and run the example again. See the difference? The game objects no
longer change rotation as you move. In fact, the whole skeleton is now wrong. Recheck the option to put
things right again and move forward.

Next, look at the Camera settings. Select the Camera in the Hierarchy tab, and in the Inspector,
notice the new script Smooth Follow. Smooth Follow is a default Unity script that can be found in the
Standard Assets folder we imported in the beginning of our project. In the Project tab, open the Standard
Assets folder and then the Scripts subfolder. Smooth Follow is here, and it can be dropped onto any
camera and told what game object to follow. Here the script causes the camera to follow the Blockman’s
Head.

Sensor sits at the bottom of our Hierarchy tab again and looks very similar to previous examples. It’s
an empty game object with the OpenNI scripts attached. Here we are using the Open NISingle Skeleton
Controller just as we were in the AvatarFrontFacing example.

Running the Interface Examples
Moving forward, we are now going to look at the next examples used to create user experiences. Open
and play FollowHandPoint in the _Scenes folder in our Project Tab. Try it out. Sparkly right? You’ll see
Unity’s default Ellipsoid Particle Emitter component playing in the background while the OpenNI script
tracks a sphere.

All that’s happening here is that the Follow Hand Point (script) is attached to the Hand Follower
Object in the Hierarchy. The script exists inside the Project tab in the Scripts subfolder
HandpointControls. Open and note it. We will use it later to build an example from scratch.

Inside Hand Follower in the Hierarchy tab is the parent game object holding two other game objects
we haven’t covered yet, particle systems. A particle system is a system of fuzzy particles. They are
frequently used to generate stars, fire, and other natural phenomena. These systems can be used and
abused in interesting ways. Although particle systems are outside the scope of this chapter, they are
worth a future look. Create them just like any other game object, by choosing the following menu option:

Main Menu  Game Object  Create Other  Particle System

 Note The following scenes are more complex and perhaps not ideal for beginners; however, anyone can run
them and play them. In addition, beginners are welcome to modify examples to their own ends until they have a
better understanding of Unity. These scenes are here for more advanced users interested in creating interfaces.

Item Selector
The subsequent example in the _Scenes folder is Item Selector. Open and play this scene now. This
example features new functionality for interface design. In the Hierarchy tab, there are six objects: one
camera, four planes, and an empty game object called Static Menu. All of the OpenNI scripts are
attached here. Select Static Menu and notice the scripts in the Inspector.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

141

Item Selector Scripts
The Static Menu game object has all of the scripts for this scene attached to it. Select Static Menu to
expose its components in the Hierarchy tab. Expand the Items arrow of the Static Menu script. This
script can take as many game objects as needed. Simply drag game objects onto the elements you want
the game objects attached to. Element 0 has Plane 1 and so forth.

 Note The Static Menu script is a complex composite hand point control that reacts to the lower-level events
from the building blocks ZigFu provides. To open a script and look at what is made of, right-click while over it in
the Inspector and choose Edit Script or click the gear icon in the far right corner of the script name.

The check box Select on Push is our first gesture. Push simply is a quick push forward with your
hand in space. There’s not much to it really. Try performing it a few times while the scene is playing to
get the feel for it. When you perform it successfully over one of the planes, the box will turn from green
(highlighted) to blue (selected).

The next script component attached to this game object is Push Detector. Push Detector is another
one of ZigFu’s custom scripts that is not part of OpenNI. For those out there with more programming
experience, you can write your own detector using the ZigFu primitives such as:

Hand_Create(Vector3 position)
Hand_Update(Vector3 position)
Hand_Destroy()
PushDetector_Push()
PushDetector_Release()
PushDetector_Click()
ItemSelector_Select(int index)
ItemSelector_Next()
ItemSelector_Prev()

Fader, another custom ZigFu script, maps a physical region in space to a normalized 0-1 range. The
Item Selector can then take the 0-1 range and split it into logical regions with hysteresis between them,
including special scroll regions.

When the Item Selector scene is running, there are two faders because the Push Detector implicitly
adds one in runtime. The Push Detector fader is on the Z axis, and the other fader is the X axis. The size
represents physical size (in millimeters), so 300 is 30 cm, or about 1 ft.

Item Selector Parameters
Some of the Item Selector parameters are as follows:

Number of items: How many logical items the script detects.

Hysteresis: A value between 0 and 1. It defines overlap between logical items,
prevents the selected index from “bouncing” between two logical areas.
Different applications need different settings, and they can be tweaked in
development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

142

Scroll Region: How much of the range is dedicated to a scroll region. For
example, 0.2 would be 20% from each side dedicated to scrolling (sending the
Next and Prev messages).

Item Selector Operation
To fully understand what the Item Selector does, create a blank game object and drag a fader and item
selector into the object. In addition, add a new script that listens to the Item Selector messages and
prints them out. Let’s create a script to output which items are selected to the console. To create a script,
go to Main Menu  Assets  Create  C#script. Name your script in your project. Select the script in the
Hierarchy and choose Open. This will open Unity’s scripting environment. Type in the following code:

void ItemSelector_Select(int index)
{
 print("Item selector select " + index);
}

void ItemSelector_Next()
{
 print("Item selector next");
}

void ItemSelector_Prev()
{
 print("Item selector prev");
}

Now add the script to the game object you created. In addition, you are going to need to manually
link up the Fader to the Item Selector in the Inspector. This will print the element you are focused on in
the console. To view the console, press Shift+Com+C or go to Main Menu  Window  Console.

The various wait times control the repeat logic of the scrolling (similar to holding down on a
keyboard key: you get the first keypress, slight pause, and then repeated keypressing slowly
accelerating). The Session Manager waits for the focus gesture and starts a hand point session. The
Session Manager heads up the display on the left of the screen seen only in Plat mode is added
implicitly, such as OpenNIContext, but can also be added explicitly if you want to change the default
settings (which gestures to listen to, for example).

The OpenNISessionManager provides a wrapper for the HandTracking and GestureDetection
OpenNI streams. The main advantage of this model is that the gesture detector is based on a raw depth
stream; no skeleton detector needed. This means that ZigFu’s hand tracker will work even when you are
on the couch covered with a blanket and do not resemble any humanoid form. Just do the gesture and
you’re in control!

CoverFlow
CoverFlow creates your basic carousel user experience. The Menu Game Object has a hand point
controller, fader, scrolling menu, and dummy feed. The scrolling menu adds just that to your scene. You
can set direction, window size, dampening, and scroll region size. The main difference between a static
and scrolling menu is that the scrolling menu is going to be the actual parent of all children added to it.

Here are the main properties of the Scrolling Menu component in more detail:

Direction: Distance between menu items

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

143

RepositionBasedOnBounds: Should the menu layout items be based on their
actual bounds, or just based on the “Direction” property?

WindowSize: How many on-screen items before scrolling. Passed to
ItemSelector

ScrollRegionSize: Passed to ItemSelector

The dummy feed just generates dummy meshes and is a custom ZigFu script. You can change mesh
color and other features after selecting the Menu Item component that’s linked to this script in the
Hierarchy tab.

Slide Viewer
Slide Viewer is a basic slide viewer that is very similar in nature to CoverFlow. However, the feed isn’t a
dummy feed, but a feed of images for a folder. Path is where you set the path to these images, and your
search pattern is for the type of files you want it to include from this directory.

Creating a Skeleton from Scratch
Unity and OpenNI are a powerful combination. With them, you can create a skeleton from scratch. The
following steps walk you through the process. A skeleton is a term associated with a visualization of all
possible joints an API can detect. In this case, we will make a “stick man skeleton.” The reason you’d be
interested in doing this is to see that your tracking is working and to later to replace your default game
objects with real graphics created in a program like Maya. Bones, rigging, and character animation are
beyond the scope of this tutorial, but all 3D packages have plenty of documentation about how to do
this. In addition, see the Unity manual for instructions specific to Unity.

Task 1. Add the OpenNI Functionality
Your first step is to create a new scene and add some OpenNI functionality. Here is the process to follow:

1. Go to the Main Menu. Choose File  New Scene.

2. Save your scene as MySkeleton.

3. In that new scene, create an empty game object and add the OpenNI scripts
onto it. Choose Main Menu  Game Object  Create Empty to create a new
game object.

4. Rename the game object OpenNI Functionality. Do that by pressing Ctr+right-
click and choosing the Rename option. Note: You can actually specify any
name that you like. For example, the game object is called Sensor in the ZigFu
scenes. All it does is hold the component scripts to talk with OpenNI.

5. Now go to the Project tab and open the OpenNI folder. Make sure the OpenNI
Functionality Game Object is selected in the Hierarchy and open in the
Inspector. Now click and drag Open NIDepthmap Viewer into the Inspector.
Do the same for OpenNIUser Tracker and Open NIUsers Radar and Open
NISingle Skeleton Controller.

1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

144

6. We now need to connect our OpenNI Tracker to our Open NIUsers Radar to
make our Radar work. Simply select and drag the Open NIUser Tracker onto
the Open NIUsers Radar script. Figure 7-7 shows the correct configuration.

Figure 7-7. OpenNI User Tracker configuration

Now that you’ve tied in the necessary OpenNI functionality, you can move on to make a basic
skeleton.

Task 2. Making the Basic Skeleton
Let’s get started creating our first skeleton. Here are the steps to follow:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

145

1. Create an empty game object from the Main menu. Select the following option
to do that: Main Menu  Game Object  Create Empty.

2. Your new empty game object will now be in the Hierarchy tab. Select the
object and Ctr+right-click. Choose Rename. Rename the object Custom
Skeleton.

3. Now create a new object, a sphere, as follows: Main Menu  Game Object 
Create Other  Sphere.

4. Now add the sphere to the Custom Skeleton in the Hierarchy. Simply select the
sphere and drag it on the words Custom Skeleton. A black arrow will appear
while you drag. When you see the back arrow, drop the object.

5. The Custom Skeleton should have a drop-down arrow next to it, and the
sphere should be located within it. This sphere will be our head. Let’s rename
it Head to match. Rename by pressing Ctr+right-click and then select the
Rename option.

6. Select the sphere and move it upward using the Move tool. The Move tool is
automatically activated when an object is selected. Click the green arrow and
move the sphere upward in Y space.

7. Repeat steps 3-6 for each of the two hands. Create two new spheres, add them
to the Custom Skeleton, and rename them. Then position them. Since the
location of these objects is going to actually be generated by the user, these
positions are only for the game developers’ benefit when not in Play mode.

 Note This process of creating objects that are part of a larger object is called parenting. We are adding the
sphere objects as children of the Custom Skeleton, their parent.

8. Create two cubes for the left and right shoulders. Do exactly the same as you
did for the spheres, but choose to create cubes instead: Main Menu  Game
Object  Create Other  Cube.

The Hierarchy tab now should look like the one shown in Figure 7-8.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

146

Figure 7-8. Custom skeleton hierarchy after adding the three spheres and two cubes

End this task by lighting the scene. Do that by adding a directional light from the following menu
option: Main Menu  Create Other  Directional Light.

Task 3. Connecting the Pieces Together
Now it’s time to make the skeleton work by linking in the game objects and components. Here’s what to
do:

1. First, you’ll connect the Custom Skeleton Game Object to the OpenNI
Skeleton. (ZigFu makes this process nearly effortless.) Go to the Project tab,
open the OpenNI folder, and then open the Scripts subfolder. Scroll until Open
NISkeleton is visible. Select it and drag it onto the Custom Skeleton Game
Object just as we did for the spheres and cube.

2. Next you must connect the objects (the shapes we created earlier) in the
Custom Skeleton to the appropriate joints in Open NISkeleton. Select Custom
Skeleton in the Hierarchy tab. In the Inspector tab, there should be the script
for Open NISkeleton. Click the arrow next to this script to expose all the joints.
Select and drag the Head created in Unity in Custom Skeleton in the Hierarchy
tab onto the Head in the Open NISkeleton script. Your result should look like
Figure 7-9. Especially note the second item, the Head item, in the list in the
bottom section of the figure.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

147

Figure 7-9. The Head item linked to the Open NISkeleton script

3. Repeat Step 2 for the Right Hand, Left Hand, Right Shoulder, and Left
Shoulder. If the Inspector changes to the selected object in the Hierarchy tab
such as the Cube or Sphere, simply click and drag a little bit faster.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

148

4. After the list of joints, there are three check boxes that tell Unity how to move
these objects’ Transform in relation to the skeleton. Set these check boxes as
follows:

Update Joint Positions: Check this box. This box allows the object’s Transform
to change to match the rotation of the joints on the skeleton. If a model was
created in a 3D package, there is no need to check this because most likely there
will no need to move joint position, just rotate the joints.

Update Root Position: This will update the game object (Custom Skeleton) in
relation to the user in 3D space. If this is checked, the objects will move in 3D
space with the user; otherwise, the game object will stay in a fixed position,
even though the joints will move.

Update Orientation: Check this box. This updates the rotation of the joints in
3D space.

5. The remaining option is for Scale. Expand this menu. The default unit of
measurement in OpenNI is millimeters and in Unity is in meters. This option
scales the game object approximately. For this exercise, change the scale of X,
Y, and Z to 0.008.

6. Now select OpenNI Functionality in your Hierarchy tab so that you can access
its components in the Inspector. In the Inspector, find the OpenNISingle
Skeleton Controller script. Open the arrow to expose all of this component’s
properties. Drag the Custom Skeleton from the Hierarchy tab onto the
Skeletons property of the OpenNISingle Skeleton Controller.

7. Lastly, drag the OpenNI Functionality onto the OpenNISingle Skeleton
Controller User Tracker.

That was the magic sauce! Now run the scene and perform the calibration pose. After the tracker
latches onto your skeleton, you should see results like those in Figure 7-10.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

149

Figure 7-10. The custom skeleton in operation

Creating a Custom Hand Tracker
For the last order of business, let’s make a custom hand-tracker example from scratch. Create a new
scene and call it MyScene. Now add a cube game object to the scene and open it in the Hierarchy tab.
Open the HandpointControl folder. Select the Follow Hand Point script onto the Cube in the Inspector.
Play the scene, do the calibration, and voilà—hand tracking. ZigFu can be that simple. Figure 7-11 shows
the hand-tracking scene in operation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 7  3D GAMES AND USER INTERFACES WITH UNITY

150

Figure 7-11. The hand-tracker scene

On a final note, ZigFu are developers worth watching. Other interesting projects they have include a
set of Unity scripts for the official Microsoft SDK that are calibration free as of today.

http://groups.google.com/group/unitykinect/browse_thread/thread/7217ea5eaf4d37e2

In addition, the next thing they plan on doing is wrapping the Beckon SDK with OpenNI, and then
Unity will work seamlessly with any sensor supported by Beckon. Expanded controller free games and
interfaces are becoming more and more common, and even by the day this book is released, new
updates will be available. In summary, developing games and experiences that go beyond mice and
controllers positions any creator at the front of user experience design.

http://groups.google.com/group/unitykinect/browse_thread/thread/7217ea5eaf4d37e2
http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 8

151

Microsoft’s Kinect SDK

Microsoft Research launched its Kinect for Windows Software Development Kit (SDK) with great fanfare
on June 16, 2011, a little more than seven months after the device was released into the wild. While
Microsoft perhaps never intended to support development for the Kinect on Windows and was likely
surprised by the intensive interest the device generated, the company is aggressively supporting the
platform now—you’ll want to watch for updates from Microsoft Research as no print book can possibly
keep abreast of the latest developments:

http://research.microsoft.com/kinectsdk/

That said, there’s enough to the Kinect SDK and associated resources (such as the Coding4Fun
Kinect Toolkit, which includes helper and example code) to get you up and running building apps with
some of the most sophisticated and mature Kinect code available. The resources covered here offer a
great way for C#, C++, and Visual Basic developers—as well as intrepid beginners—to start using the
Kinect with Microsoft’s wonderfully robust code for user segmentation, skeletal tracking, and even
speech recognition. (The Windows SDK is the best toolset available if you want to tap into the Kinect’s
multimicrophone array, for example.)

 Note Coding for Windows is not the same as coding for Xbox. Microsoft has a separate programming
framework called XNA and development environment called Game Studio for developers to create indie games for
Xbox Live. As of this writing, Kinect functionalities have not been exposed in XNA, though company insiders say
that’s forthcoming. The Kinect SDK covered in this chapter empowers you to created Kinect apps for only the
Windows platform, not Xbox.

6

http://research.microsoft.com/kinectsdk/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

152

Coding4Fun
Often the best way to learn a new tool is to look at examples of how other folks use it to implement their
apps, thought experiments, and other feats of code. To that end, there’s Coding4Fun (Figure 8-1), a
Microsoft site dedicated to enthusiast adventures with the company’s technologies. To mark the launch
of the Kinect SDK in June 2011, Microsoft held a camp at the Microsoft campus in Redmond,
Washington, where 30-odd developers were given a Kinect, the SDK, and 24 hours to create sweet little
apps that demonstrate the possibilities of this new toolset. The apps became the basis of Microsoft’s
showcase/repository of Kinect projects on Coding4Fun, which is well worth checking out before, during,
or after you read this chapter:

http://channel9.msdn.com/coding4fun/kinect

New projects and examples are frequently posted on the Coding4Fun site, often with source code,
so it’s the first place to look in case there’s a project out there that can jump-start your own Kinect-for-
Windows project.

Figure 8-1. The Coding4Fun Kinect section

Kinect SDK Pros and Cons
The upside to using Microsoft’s SDK is considerable. It gives you better Application Programming
Interfaces (APIs) than any other package for accessing Kinect’s specific hardware capabilities, such as its

http://channel9.msdn.com/coding4fun/kinect
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

153

four-element microphone array. The SDK also ships with Microsoft’s Kinect runtime and other
supporting software, which give you the power of Microsoft’s engineering and algorithms for
implementing user segmentation, skeletal tracking, and (if you include the Speech SDK) voice control,
all without leaving Windows’s powerful application frameworks.

These components you get from the Kinect SDK are, in a word, bad ass. We’ve run the various
middleware discussed elsewhere in the book such as PrimeSense’s open source OpenNI, and used them
to implement some of the same functionality. While all of this software is amazing, our experience put
Microsoft’s Kinect code at the top performance-wise for its low-latency responsiveness and the pure
magic of its calibration-free skeletal tracking algorithm.

The downside—at least, for some of you—is that all you can really do with Microsoft’s SDK right
now is “code for fun” because the license permits only limited, noncommercial use of the software. (As
you probably can guess, the company says that a commercial-use license is forthcoming, though the
price and terms are anyone’s guess.) Moreover, if you’re new to programming C#, C++, or Visual Basic or
to using an integrated development environment (IDE), the excellent-but-formidable Microsoft Visual
Studio and supported languages may well scare off the fainthearted.

For the rest of you, put some coffee on.

Getting Started with the Kinect SDK
To set up a Kinect development environment on Windows, you’re going to need a Kinect, an open USB
port, and Windows 7, plus a lot of (no-cost) software from Microsoft, including the appropriate Visual
Studio edition for your programming language of choice and the Kinect SDK itself from Microsoft
Research. Everything you need is itemized below under “Requirements,” along with some common
gotchas.

Requirements
The requirements for working with the Kinect SDK are many but manageable. And the only costs should
be your PC and the Kinect. Note that I use the term “PC” inclusively—I was able to run everything in this
chapter on a Mac Mini running Windows 7 on Bootcamp. However, as of this writing, you cannot use the
Kinect SDK via a virtual machine like Parallels or VMware. Word to the wise.

System
You’ll need a fairly current PC to run the software described in this chapter: a dual-core, 2.66 GHz or
faster processor; Windows 7–compatible graphics card that supports DirectX 9.0c capabilities (which
were released in August 2004, so if your computer is less than five years old running Windows 7, you’re
probably good); and at least 2 GB of RAM (4 GB is recommended). And of course, you need a Kinect
sensor! But hopefully you squared that away in Chapter 1.

Software-wise, you must be running Windows 7, either the 64- or 32-bit version, and you’re going to
need to know which version you have so that you can download the correct version of the SDK. To find
out which version you have, check out Control Panel  System and Security  System and scan down to
where it says “System type.” You should see either “64-bit Operating System” or “32-bit Operating
System.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

154

Visual Studio 2010
If you’re a Windows developer, you probably have a version of Visual Studio already installed. Any 2010
edition will suffice, and the Express editions are recommended here simply because they’re free. To
download yours, just browse to:

http://www.microsoft.com/visualstudio

Under the Products tab, click Visual Basic Express, Visual C# Express, or Visual C++ Express
depending on which language you plan to code in. Since many of the examples available online are
written in C#, we’ll use Visual C# Express here. That way, we’ll be all set up to pull down and pull apart
most of the code we find on the interwebs. Click Install Now to download and install Visual C# Express.
Just go with the default installation options unless you have some personal reason for changing them.

Additional Frameworks and Supporting Software

.NET Framework
Without a doubt, you need the .NET 4.0 framework for building your apps in Visual Studio. The
framework is typically bundled with Visual Studio, but if not, download and run the installer—it’s fairly
large and can take some time:

http://msdn.microsoft.com/en-us/netframework/aa569263

Beyond that, the other supporting software described here is optional. Still, if you plan on exploring
Kinect for Windows in depth, you might as well get this software installed now, as it is used in some of
the examples included with the SDK, as well as many third-party examples found online.

DirectX Runtime and SDK
Microsoft’s DirectX software consists of a number of libraries largely used to handle media and graphics
functions necessary for creating games. The Sample Shape Game that ships with the Kinect SDK (below),
for example, uses DirectX.

Microsoft DirectX SDK (June 2010 or later version):
http://www.microsoft.com/download/en/details.aspx?id=6812

And the current DirectX end-user runtime:

http://www.microsoft.com/download/en/details.aspx?id=35

Microsoft’s Speech Platform
Again, these components are optional. However, they do differentiate Microsoft’s offering for Kinect
developers from the other packages described in this book. If you plan on integrating speech recognition
in your app or just want to play around with this feature of the Sample Shape Game, download these
packages and run the installers. Note that even if you are on a 64-bit machine, you must download the
x86 (32-bit) edition of the Speech Platform software. The 64-bit version will not work:

Microsoft Speech Platform SDK, version 10.2 (x86 edition)
http://www.microsoft.com/download/en/details.aspx?id=14373

Microsoft Speech Platform Runtime, version 10.2 (x86 edition)
http://www.microsoft.com/download/en/details.aspx?id=10208

http://www.microsoft.com/visualstudio
http://msdn.microsoft.com/en-us/netframework/aa569263
http://www.microsoft.com/download/en/details.aspx?id=6812
http://www.microsoft.com/download/en/details.aspx?id=35
http://www.microsoft.com/download/en/details.aspx?id=14373
http://www.microsoft.com/download/en/details.aspx?id=10208
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

155

Microsoft Kinect Speech Platform (US English version)
http://go.microsoft.com/fwlink/?LinkId=220942

The Kinect SDK and Coding4Fun Kinect Toolkit
Finally, the Kinect stuff! Browse to the Kinect SDK landing page (below) and click Download. Here you
need to choose the 32- or 64-bit version depending on your operating system as described under
“System” above. The URL for the Kinect SDK landing page is:

http://research.microsoft.com/kinectsdk/

Run the installer. When it is finished, you’re ready to launch Visual Studio (in our case, Visual C#
Express) and start using the Kinect SDK.

However, there’s one final optional piece of software that you probably want to download. The
Coding4Fun Kinect Toolkit wraps some typical tasks we do with Kinect data into simpler function calls—
such as converting raw data into a bitmapped image—making the code you have to write simpler and
cleaner. This library is used in some of the samples included with the SDK and is a recommended
addition to your setup. You can download the library here:

http://c4fkinect.codeplex.com/

Choose the zipped current release, download it, and extract it. There’s no installer program for the
Coding4Fun library. Instead, we have to add a reference to it in each project in which we want to use the
library. This is a task to do inside Visual Studio, our development environment, when setting up a new
Kinect project, as detailed below. For now, just stash the downloaded, unarchived library wherever you
want to keep it, such as inside the Visual Studio 2010 folder that should now appear in your Documents
folder.

Running and Troubleshooting the Samples
Before we try to build our own code, we should try running the two compiled samples included with the
SDK to make sure everything’s working as expected. You should see that the SDK is installed by looking
for it under Programs in the Start menu. There are two compiled sample applications now under
Programs  Kinect for Windows SDK  Sample Skeletal Viewer and Programs  Kinect for Windows
SDK  Sample Shape Game in the Start menu. Let’s launch the Sample Skeletal Viewer. You should see
results similar to those in Figure 8-2.

http://go.microsoft.com/fwlink/?LinkId=220942
http://research.microsoft.com/kinectsdk/
http://c4fkinect.codeplex.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

156

Figure 8-2. The working Sample Skeletal Viewer program included with the Kinect SDK

If you get an alert like “NuiInitalize Failed” or see the window in Figure 8-3, something is amiss:

Figure 8-3. The Sample Skeletal Viewer program failing

In that case, it’s time to troubleshoot. As always, make sure the Kinect is plugged into your PC and
the power cord is connected to a wall socket. If you have many USB devices or use a USB hub, you’re
going to have to make room for the Kinect: Either plug it directly into one of the ports on the PC itself, or
if it must be on a hub, make sure the Kinect not sharing the hub with any other high-throughput USB
devices.

Another potential source of trouble is the drivers. If you installed third-party device drivers for the
Kinect to run any of the other packages or examples in this book, the new ones included with the Kinect
SDK should supersede the third-party drivers. However, if there is a conflict, you may need to uninstall
the other drivers in the Device Manager (see below).

When the Kinect is connected the first time after the SDK has been installed, Windows
automagically installs drivers for the various hardware components, which are now identified as the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

157

Microsoft Kinect Device, Microsoft Kinect Camera, and Microsoft Kinect Audio Array Control. If you take
a look at the Device Manager, you should find these three components under a Microsoft Kinect list
item. If, however, you still see Xbox NUI Motor, XBox NUI Camera, and XBox NUI Audio under the
generic Human Interface Components list item, you will want to right-click each one and select
Uninstall.

Finally, you may also need to uninstall and reinstall the Kinect SDK and drivers after making these
changes. Once you see Microsoft Kinect and its three components here in the Device Manager, you
should be golden. But if you’re still not, you will need to check out the forums online to troubleshoot
your particular issue.

Setting Up New Kinect Projects
If you’re new to Windows development, you may want to bookmark this section as you’ll have to
perform the steps we cover here every time you set up a new project in Visual C# Express in which you
want to use the Kinect SDK.

Basically, the process is this:

1. Create a new Windows Presentation Foundation (WPF) project.

2. Add references to the Kinect SDK and the Coding4Fun Kinect library.

3. Add “using” statements to tell our code what libraries we’re using.

4. Create standard Loaded and Closed events in our application to initialize and
uninitialize the resources that Visual Studio uses when running a Kinect
application.

Similar steps are also covered in a Quickstart video series on the Microsoft Research site.

Step 1: Create a New Project
To create a new WPF project in Visual C# Express, just launch the application and choose File  New
Project… or New Project… from the home screen. In the dialog window that opens, choose WPF
Application, as shown in Figure 8-4.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

158

Figure 8-4. The New Project dialog window in Visual C# Express

Windows Presentation Foundation is simply the system Windows uses to organize and link user
interface elements in Windows applications. XML (or XAML) files are at the heart of WPF—you’ll see one
called MainWindow.Xaml when your new project is created.

Step 2: Add References to the Kinect SDK and Coding4Fun
Next, we want to add references to the code we’re going to use in the project. If this is your first time
using a Visual Studio program, it’s worth exploring the layout of your new project window and
identifying what’s what. Figure 8-5 shows the window.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

159

Figure 8-5. The New Project window

To add a reference, which is just an external resource to be used by your application or “Solution,”
note the list item References in the Solution Explorer panel at the upper right of the window. Right-click
References and choose Add Reference… In the dialog box that opens, shown in Figure 8-6, scan down
under the .NET tab for the component named Microsoft.Research.Kinect, select it, and click OK.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

160

Figure 8-6. The Add Reference dialog for adding the SDK to a project

Excellent: one down, one to go! Now take the same steps to add the Coding4Fun Kinect Toolkit.
Only this time, in the Add Reference dialog box (again, Figure 8-6), choose the Browse tab and browse to
the location on your computer where you stashed the extracted Coding4Fun files. In the
Coding4Fun.Kinect folder, select Coding4Fun.Kinect.Wpf.dll and click OK. Bingo! Your References list in
the Solution Explorer should now look like Figure 8-7:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

161

Figure 8-7. The list of references in the project window’s Solution Explorer panel after the SDK and

Coding4Fun have been added

Step 3: Add “Using” Statements
At long last, we’re ready to code! You’re going to want to switch from editing the XAML file to editing the
C# (“C-Sharp”) file called MainWindow.xaml.cs. Do this by clicking the tab MainWindow.xaml.cs in the
main area of the project. You should see the code shown in Figure 8-8.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

162

Figure 8-8. The C# code in MainWindow.xaml.cs

You’ll see “using” statements already in place. Place your cursor after the last one, make a new line,
and type:

using Microsoft.Research.Kinect.Nui;
using Microsoft.Research.Kinect.Audio;
using Coding4Fun.Kinect.Wpf;

Done and done. (Don’t type that, though!)

Step 4: Create Loaded and Closed Events
One more step for our Kinect project template to be complete! The reason for this step is simple: we
need to make sure we initialize and uninitialize the Kinect runtime in every application that uses it, lest
chaos (or at least, poor memory management) ensues. So, we’re going to add functions that will
initialize it for us whenever our application window is loaded and uninitialize it whenever the window is
closed.

To do so, switch back to the XAML file tab and look at the Properties panel at the bottom right of the
project window. Click the Events tab and scan down the alphabetical list of events until you see the
Loaded event shown in Figure 8-9.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

163

Figure 8-9. The Properties panel highlighting the Loaded event

Double-click the Loaded event. Visual Studio automatically creates an empty event callback
function and switches back to your .cs file where the function lives:

private void Window_Loaded(object sender, RoutedEventArgs e)
 {

 }

Now, repeat these steps to add a Closed event to your application, which adds the Window_Closed
event callback function to your .cs file. All we need to do is put up our initialization and uninitialization
code, and we’re done. Fortunately, the Kinect SDK makes this code super simple.

Put your cursor before (and outside) the Window_Loaded function and give your Kinect runtime a
name like this:

Runtime kinect = new Runtime();

Now inside the Window_Loaded function, initialize the runtime with the intialize() function, which
takes configuration options as arguments separated by the “|” character. We’re simply telling the
application to use the Kinect’s RGB color camera and raw depth:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

164

kinect.Initialize(RuntimeOptions.UseColor | RuntimeOptions.UseDepth);

Finally, add an uninitalize() function call inside the Window_Closed function:

kinect.Uninitialize();

When you’re done, the code in your .cs file should look about like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using Microsoft.Research.Kinect.Nui;
using Microsoft.Research.Kinect.Audio;
using Coding4Fun.Kinect.Wpf;

namespace WpfApplication1
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 Runtime kinect = new Runtime();
 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 kinect.Initialize(RuntimeOptions.UseColor | RuntimeOptions.UseDepth);
 }

 private void Window_Closed(object sender, EventArgs e)
 {
 kinect.Uninitialize();
 }

 }
}

Sweet! You can successfully build and run/debug this application now, which you should do to
make sure there are no syntax mistakes. Click the green arrow shown in Figure 8-10.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

165

Figure 8-10. The green arrow to initiate a build and debug sequence

Of course, the application does absolutely nothing! Nothing you can see, anyway. But it is safely
initializing and uninitializing the Kinect runtime so that now any code we want to sandwich between the
Loaded and the Closed events will execute properly. This is the basic template setup we’ll want to use for
each new Kinect project we work on, so you might just save it somewhere to be copied as needed.

Now, we build.

Building a Simple Application
Building a Kinect application is now just a matter of laying out our user interface in the XAML file (which
we can do easily with the authoring tools in Visual Studio) and putting some code to execute between
the Loaded and Closed events we just addressed (which the Coding4Fun Toolkit is going to make a
snap). Let’s do it.

Deciding What to Build
Like many of the bootstrap examples we’ve covered, let’s say we just want to built a simple app along the
lines of the Sample Skeletal Viewer, but we want to do it from scratch so that we really learn what it
takes. (The source for the samples is provided with the SDK, but they don’t utilize the Coding4Fun
helper library and are therefore a bit more complex.) Essentially, we want to create an app that gets the
major raw data streams (color and depth images), does some of the analysis we need to make that data
more useful (user segmentation and skeletal tracking), and renders it to the screen. How do we do it?

Laying Out the UI
Starting from the template we created in the last section, select the MainWindow.XAML tab. Note in the
design view (upper) panel that there’s a white Main Window box. This represents the main application
window that will sit right inside the chrome when you launch your app.

If you click the Main Window box, handles appear at the corners that you can click and drag to
resize it as in Figure 8-11. Let’s just do a little clicking and dragging to lay out the main window for our
application and any objects in it just the way we want.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

166

Figure 8-11. The design view of the XAML file lets you move and resize objects with the mouse

I dragged the corners of my main window out to a width of 800 pixels and a height of 350 pixels. You
can see the attribute values in the code view change when you release the mouse, and you can modify
them in code as well as in the Properties panel at the bottom left of the project window. In code view, for
example, the attributes of my Window tag look like this:

Title="MainWindow" Height="350" Width="800" Closed="Window_Closed" Loaded="Window_Loaded"

Now open up the Toolbox as in Figure 8-12 in the upper left of the project window (it is identified in
the overview of the project window earlier in this chapter) and drag an image object from the palette of
“tools” onto the main window. As we did with the main window, size the image object using the handles,
the Properties panel, or the XAML code. Just make sure to accommodate the aspect ratio of the 640 × 480
resolution Kinect. For example, I sized mine to 320 pixels by 240 pixels.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

167

Figure 8-12. The Toolbox in Visual Studio, with an image object highlighted

You can then copy and paste another instance of the image object onto the main window so that we
have one for the RGB image and one for the depth image. Arrange them however you like, and notice
that the Properties panel for the selected object gives its default name (e.g., “image1,” “image2,” etc.).
You can change these names if you want, but these are the names we’ll be using to target these objects
programmatically in code. Speaking of which, let’s leave our layout as is and start to wire it up in the .cs
file.

Wiring Up the UI with Code
Here’s how we’re going to make this work: We’ll use events from the Kinect runtime to trigger a function
whenever there’s a new frame of image data from the RGB camera and another function whenever
there’s a new frame of depth data. These functions will update the content of the appropriate image
object in the main window, and we’ll have an application that collects and renders the major data
streams from the Kinect, just like that.

So, below our initialization of the Kinect runtime inside the Window_Loaded function, type in some
code to listen for the new frame or FrameReady events and tie them to appropriate callback functions,
which we’ll define later:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

168

kinect.VideoFrameReady += new EventHandler<ImageFrameReadyEventArgs>(kinect_VideoFrameReady);
kinect.DepthFrameReady += new EventHandler<ImageFrameReadyEventArgs>(kinect_DepthFrameReady);

Next, we have to open these data streams from the Kinect device to start generating images. Simply
add:

kinect.VideoStream.Open(ImageStreamType.Video, 2, ImageResolution.Resolution640x480,
ImageType.Color);
kinect.DepthStream.Open(ImageStreamType.Depth, 2, ImageResolution.Resolution320x240,
ImageType.Depth);

This code is fairly self-explanatory: we’re using built-in settings and types to configure and start
each data stream. The second argument in the Stream.Open() function (i.e., the “2”) is the only obscure
one: it refers to the PoolSize, or the number of buffers to use for playback of the stream data. It must be a
number from 1 to 4. We chose 2: one buffer to display the current frame and one buffer to load the new
frame. Adding more buffers introduces latency but can give smoother playback of the data.

Finally, to get this application working, we need to define the functions we tied to the FrameReady
events, the kinect_VideoFrameReady and kinect_DepthFrameReady functions. Again, these functions
simply need to update our image objects with the image data from the color and depth streams from the
Kinect. Using the ToBitmapSource() function available to us from Coding4Fun, this is quite easy:

void kinect_VideoFrameReady(object sender, ImageFrameReadyEventArgs e)
{
 image1.Source = e.ImageFrame.ToBitmapSource();
}

void kinect_DepthFrameReady(object sender, ImageFrameReadyEventArgs e)
{
 image2.Source = e.ImageFrame.ToBitmapSource();
}

The names “image1” and “image2,” you’ll recall, are the defaults given to the image objects we
dragged into our main window from the Toolbox. If you changed these names in the XAML file, you need
to change them here in the code, too. With that done, we’re ready to build and run this project. You
should get an output window like that in Figure 8-13.

Figure 8-13. Color and depth images

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

169

That was easy! But it gives us nothing that we can’t get with libfreenect. Where’s the magic? Good
question. Let’s see if we can add some of Microsoft’s special sauce!

First, we can try getting a depth image that identifies people in the scene in front of the Kinect, a
task commonly called user segmentation but might be called player segmentation in the context of the
Microsoft APIs. With the Kinect SDK, we can add player segmentation just by changing our runtime
configuration and depth image type from Depth to DepthAndPlayerIndex throughout the code. That
means changing the initialization to:

kinect.Initialize(RuntimeOptions.UseColor | RuntimeOptions.UseDepthAndPlayerIndex);

And changing the image type in the DepthStream.Open() like so:

kinect.DepthStream.Open(ImageStreamType.Depth, 2, ImageResolution.Resolution320x240,
ImageType.DepthAndPlayerIndex);

And we can get something like the image in Figure 8-14, where the “player” is now segmented in the
scene and given a color overlay.

Figure 8-14. Color and DepthAndPlayerIndex images

Now, what about proper skeletal tracking, the stuff that makes actual gameplay using the Kinect
sensor possible? In essence, implementing skeletal tracking in your application is no more difficult than
implementing the color and depth image functionalities as above. Just add an option to the runtime
configuration and a SkeletonFrameReady event and callback. In the Window_Loaded function, that’s
changing/adding two lines:

kinect.Initialize(RuntimeOptions.UseColor | RuntimeOptions.UseDepthAndPlayerIndex |
RuntimeOptions.UseSkeletalTracking);
SkeletonFrameReady += new
EventHandler<SkeletonFrameReadyEventArgs>(kinect_SkeletonFrameReady);

In practice, of course, to use the skeleton information, you need to write a
kinect_SkeletonFrameReady function that uses the data intelligently, mapping the body joints to objects
and controllers in the application, etc. Following is a simplified version of the full Skeletal Viewer code

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

170

that maps and draws that data to the screen, producing a result similar to that in Figure 8-15 (after
adding a third image object to display the skeleton):

Figure 8-15. Displaying the skeleton in the center of the window

The code, partially borrowed from the Sample Skeletal Viewer, looks something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using Microsoft.Research.Kinect.Nui;
using Microsoft.Research.Kinect.Audio;
using Coding4Fun.Kinect.Wpf;

namespace WpfApplication1
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

171

 }

 Runtime kinect = new Runtime();

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 kinect.Initialize(RuntimeOptions.UseColor | RuntimeOptions.UseDepthAndPlayerIndex
| RuntimeOptions.UseSkeletalTracking);
 kinect.VideoFrameReady += new
EventHandler<ImageFrameReadyEventArgs>(kinect_VideoFrameReady);
 kinect.DepthFrameReady += new
EventHandler<ImageFrameReadyEventArgs>(kinect_DepthFrameReady);
 kinect.SkeletonFrameReady += new
EventHandler<SkeletonFrameReadyEventArgs>(kinect_SkeletonFrameReady);
 kinect.VideoStream.Open(ImageStreamType.Video, 2,
ImageResolution.Resolution640x480, ImageType.Color);
 kinect.DepthStream.Open(ImageStreamType.Depth, 2,
ImageResolution.Resolution320x240, ImageType.DepthAndPlayerIndex);
 }

 void kinect_VideoFrameReady(object sender, ImageFrameReadyEventArgs e)
 {
 image1.Source = e.ImageFrame.ToBitmapSource();
 }

 void kinect_DepthFrameReady(object sender, ImageFrameReadyEventArgs e)
 {
 image2.Source = e.ImageFrame.ToBitmapSource();
 }

 void kinect_SkeletonFrameReady(object sender, SkeletonFrameReadyEventArgs e)
 {
 SkeletonFrame skeletonFrame = e.SkeletonFrame;
 int iSkeleton = 0;
 Brush[] brushes = new Brush[6];
 brushes[0] = new SolidColorBrush(Color.FromRgb(255, 0, 0));
 brushes[1] = new SolidColorBrush(Color.FromRgb(0, 255, 0));
 brushes[2] = new SolidColorBrush(Color.FromRgb(64, 255, 255));
 brushes[3] = new SolidColorBrush(Color.FromRgb(255, 255, 64));
 brushes[4] = new SolidColorBrush(Color.FromRgb(255, 64, 255));
 brushes[5] = new SolidColorBrush(Color.FromRgb(128, 128, 255));

 canvas1.Children.Clear();
 foreach (SkeletonData data in skeletonFrame.Skeletons)
 {
 if (SkeletonTrackingState.Tracked == data.TrackingState)
 {
 // Draw bones
 Brush brush = brushes[iSkeleton % brushes.Length];
 canvas1.Children.Add(getBodySegment(data.Joints, brush, JointID.HipCenter,
JointID.Spine, JointID.ShoulderCenter, JointID.Head));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

172

 canvas1.Children.Add(getBodySegment(data.Joints, brush,
JointID.ShoulderCenter, JointID.ShoulderLeft, JointID.ElbowLeft, JointID.WristLeft,
JointID.HandLeft));
 canvas1.Children.Add(getBodySegment(data.Joints, brush,
JointID.ShoulderCenter, JointID.ShoulderRight, JointID.ElbowRight, JointID.WristRight,
JointID.HandRight));
 canvas1.Children.Add(getBodySegment(data.Joints, brush, JointID.HipCenter,
JointID.HipLeft, JointID.KneeLeft, JointID.AnkleLeft, JointID.FootLeft));
 canvas1.Children.Add(getBodySegment(data.Joints, brush, JointID.HipCenter,
JointID.HipRight, JointID.KneeRight, JointID.AnkleRight, JointID.FootRight));

 // Draw joints
 foreach (Joint joint in data.Joints)
 {
 Point jointPos = getDisplayPosition(joint);
 Line jointLine = new Line();
 jointLine.X1 = jointPos.X - 3;
 jointLine.X2 = jointLine.X1 + 6;
 jointLine.Y1 = jointLine.Y2 = jointPos.Y;
 jointLine.Stroke = brushes[0];
 jointLine.StrokeThickness = 6;
 canvas1.Children.Add(jointLine);
 }
 }
 iSkeleton++;
 } // for each skeleton
 }

 private Point getDisplayPosition(Joint joint)
 {
 float depthX, depthY;
 kinect.SkeletonEngine.SkeletonToDepthImage(joint.Position, out depthX, out
depthY);
 depthX = depthX * 320; //convert to 320, 240 space
 depthY = depthY * 240; //convert to 320, 240 space
 int colorX, colorY;
 ImageViewArea iv = new ImageViewArea();
 // only ImageResolution.Resolution640x480 is supported at this point

kinect.NuiCamera.GetColorPixelCoordinatesFromDepthPixel(ImageResolution.Resolution640x480, iv,
(int)depthX, (int)depthY, (short)0, out colorX, out colorY);

 // map back to skeleton.Width & skeleton.Height
 return new Point((int)(canvas1.Width * colorX / 640.0), (int)(canvas1.Height *
colorY / 480));
 }

 Polyline getBodySegment(Microsoft.Research.Kinect.Nui.JointsCollection joints, Brush
brush, params JointID[] ids)
 {
 PointCollection points = new PointCollection(ids.Length);
 for (int i = 0; i < ids.Length; ++i)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 8  MICROSOFT’S KINECT SDK

173

 {
 points.Add(getDisplayPosition(joints[ids[i]]));
 }

 Polyline polyline = new Polyline();
 polyline.Points = points;
 polyline.Stroke = brush;
 polyline.StrokeThickness = 5;
 return polyline;
 }

 private void Window_Closed(object sender, EventArgs e)
 {
 kinect.Uninitialize();
 }

 }
}

Need More?
In this chapter, we’ve tried to give a detailed introduction to all of the tools needed to build an
application with Microsoft’s Kinect SDK, but obviously the application presented is rather basic: we used
only the Kinect’s camera and depth capabilities (not even touching sound) and straight-out-of-the-box
user segmentation skeletal tracking.

There’s lots more to do, and if the Microsoft toolset appeals to you, no doubt you’ll want to do lots
more! That’s beyond the scope of this book, but there’s a growing body of example code out there on the
Coding4Fun site and the open Web for you to draw on, much of it tackling specific tasks and use cases.
Search around, subscribe to forums, and watch Microsoft, because after a slow start supporting Kinect
developers, now they’re really going for it!

 Note For an even deeper treatment of the Microsoft SDK for the Kinect, you can do no better than to grab a
copy of Jarrett Webb’s and James Ashley’s book Beginning Kinect Programming. It’s also published by Apress.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 9

175

Volumetric Display Techniques

In this chapter, you will become familiar with the various techniques for the volumetric display of visual
imagery. Unlike a traditional 2D screen, or even the newest glasses-based stereoscopic 3D TVs and
movie theatre experiences, volumetric technologies providethe viewer with a feeling of “holographic”
imagery with varying degrees of motion parallax based on the technique used to recreate a display in
natural 3D space. Motion parallax describes the ability to perceive depth based on the movement of the
observer relative to multiple stationary objects against a background. Believe it or not, many people
cannot actually perceive the 3D effect from stereo glasses because their brains lack full stereovision
development. How come these people aren’t bumping into things? It’s because every slight movement
of your head reveals the depth of your surroundings. This feature, not yet available in any mass market
3D solution, is what sets this novel approach apart from glasses-based experiences.

Perhaps the most well-known practical example of a volumetric display from the realm of science
fiction is from the original Star Wars movie, when R2D2 displays a recording of Princess Leia telling Obi
WanKinobe he’s her only hope. Depth-sensing photographic technology, such as the Kinect, effectively
captures “holographic”or volumetric video recordings, but doesn’t provide a way to display them back
into volumetric 3D space. Volumetric displays are the key to projecting these “holographic” experiences
back into the dimensionality of everyday life. For the most part still on the edge of research and
prohibitively priced for consumers to experience at home, these displays won’t make it into your
livingroom this year—but the pace of technology’s progress takes unexpected leaps, as the Kinect has
shown us.

This chapter will cover the full spectrum of novel display types, including those that strictly qualify
as volumetric displays and many that do not. It will cover those that contain key aspects, such as motion
parallax and multiple views on a screen, and some that have none of those qualities yet receive
recognition, as the public erroneously refers to them as “holographic” because their imagery hangs in
the air. This is an introduction to display technology that many are unfamiliar with, as little up-to-date
information on the topic has been collected on the internet. These innovative approaches will likely be
seen more in the future, perhaps in combination, to satisfy the demands of a public having been primed
by the Kinect’s volumetric camera and who will come to expect more than just a 2D screen for truly
immersive experiences.

Static Volume Displays
If you’ve been through any major American mall or tourist area in the past couple of years, you’ve likely
seen the novelty service that takes a 3D portrait photo, which then gets etched into a clear plastic prism
(Figure 9-1), a process known as sub-surface laser engraving. While this isn’t a volumetric display that
can be updated, it provides a reference point for understanding the first class of displays known as static
volume displays.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

176

Figure 9-1. A Sub-Surface Laser Engraving. Image courtesy LooxisFL.com

For a volumetric display that can come to life and change like video in realtime, we’ll need to look at
ways to turn colored light on and off for a volume of interest instead of simply having an image statically
etched in place. A straightforward way to accomplish this is through the use of LEDs in a cube formation,
wherein each single Light Emitting Diode acts as a voxel. Figure 9-2 shows such a device. It is built by
eight-year-old Joey Hudy who is the driving force behind the site “Look What Joey’s Making” at
http://lwjm.us/. Joey builds the LED display shown in Figure 9-2 for sale. Visit his website to order
yours today.

http://lwjm.us/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

177

Figure 9-2. Arduino shield for a 3 × 3 × 3 LED display by eighth grader, Joey Hudy, courtesy of lwjm.us

One of the largest commercially available displays of this type has an array of 66×48×24 LED lights
and is created by Seekway (http://seekway.com.cn). That’s 76,032 individual lights that need to be wired
up in a circuit and individually addressed with a microprocessor. The unit is roughly 6 feet tall, 1.5 feet
deep and 3 feet wide. It costs many thousands of dollars.

 Note For the hobbyist who’d like to create their own simple LED display, two great resources are from articles
at Instructables.com. One is for creating an 8×8 cube: www.instructables.com/id/Led-Cube-8x8x8/ and the
other is a bit simpler, for creating a 4×4×4 LED cube: www.instructables.com/id/LED-Cube-4x4x4/. And, of
course, do not forget Joey Hudy’s site at http://lwjm.us/.

http://seekway.com.cn
http://www.instructables.com/id/Led-Cube-8x8x8/
http://www.instructables.com/id/LED-Cube-4x4x4/
http://lwjm.us/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

178

Projection onto Static Volumes
A very clever technique to overcome the need to electrically wire up individual lights to a gridded out
cube is to simply project light onto a reflective material at that volume of interest in space. Albert
Hwang, Matt Parker, and Elliot Woods created Lumarca, an open source design project (Figure 9-3), to
accomplish this through the hanging of hundreds of strings in a very special way so that a projector can
be pointed into the mesh with extraordinary results. With custom software for calibration and very
precise positioning of an SVGA (1024 × 768) projector into the string array, each string can be
individually addressed with light, regardless of where it resides in space—at the front of the volume, at
the back, and anywhere in between and side to side. Every string must be carefully placed so as not to
obscure the projector beam from hitting another string behind it.

The details of how to construct one of these on your own for less than US$100 are on the project’s
website at http://madparker.com/lumarca/construction. At the New York MakerFaire 2011, the team
debuted a pico projector- sized kit, roughly 1 foot cubed. Taking this miniaturization further, could
“strings” or dots 3D laser etched into a small plastic prism with a pocket projector reproduce this type of
display in a solid state medium? Researchers at Columbia have taken a step in this direction with their
work on projected passive optical scattering (http://www.cs.columbia.edu/CAVE/projects/3d_display/).
There’s still much to research and develop with regard to volumetric 3D displays, so mixing and
matching these techniques could lead to innovations previously undiscovered. Onward pioneers!

Figure 9-3. Lumarca volumetric display with projection onto hanging strings. Photo by Jeff Howard

Swept Volume Displays
Swept volume volumetric displays are in many ways the “traditional” volumetric display. Patent
applications for these devices go back to the 1950s and 1960s but we only began to see actual

http://madparker.com/lumarca/construction
http://www.cs.columbia.edu/CAVE/projects/3d_display/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

179

implementation in the last couple of decades. A swept volume display takes a single light emitting 2D
slice of a volume and, through a mechanism that rapidly moves the location of the slice and its content
in context with the space it is pushing through, uses the persistence of vision optical effect to imprint a
volumetric 3D image hanging in space.

In 1988, the New York Hall of Science spent US$40,000 to construct a volumetric 3D display that
could interactively depict “The Quantum Atom.” With the reciprocating mechanical motion of a platter
painted with light from a computer controlled oscilloscope, the individual slices of a solid moving object
were carved into space inside a cylinder, which allowed audiences to walk 360 degrees around the
interactive electronic 3D image. Alan Jackson, the designer of that display, has launched a new initiative
to get affordably-priced units that utilize the same reciprocating motion swept volume technique into
the hands of developers, using modern hardware and open source software.

Alan’s VoxieBox (http://voxiebox.com) will be available in kit or preassembled form starting in 2012.
Similar to the OpenNI initiative of Primesense, the VoxieBox will promote an open source framework
being developed for volumetric displays at OpenVoxel.org to attract a developer community that can
take advantage of these devices’ unique capabilities. While the Kinect has done so much to make
technology accessibility for development around 3D capture, the VoxieBox and other devices that the
OpenVoxel framework will support aspire to do the same for volumetric 3D displays. Unlike the
proprietary commercial devices and research projects that debuted, and then failed to gather
momentum in the public eye, efforts leveraging the passion of open source innovators have a chance for
success.

One of those research projects was from the Institute for Creative Technologies at the University of
Southern California. This project relied on a swept volume mechanism to enable their “Interactive 360º
Light Field Display” (Figure 9-5). In this design, a projector is positioned pointing down from above the
spinning mirror. This direct approach could be the basis for reproducing the desired effect in a
controlled environment—perhaps an art, museum, or retail installation—for a more self-contained
apparatus that doesn’t have room for a projector at a distance. More information can be found about
this system at http://gl.ict.usc.edu/Research/3DDisplay/.

In 2002, Actuality Systems introduced a product that used a swept volume technique similar to the
rotating mirror system described by the Institute for Creative Technologies. Their device, Perspecta
(Figure 9-4), cost roughly $30,000 and used a sophisticated series of optics under the rotating screen to
make the device significantly more compact. Because the projection wasn’t from above, a viewer could
place their hand on top of the glass screen without interrupting the image display. Perspecta devices
were marketed to the medical industry to visualize the volumetric imagery produced from MRI scanners.
One drawback to systems that rely on physical motion to sweep out imagery is that parts can break
down and need more frequent replacement than solid state systems and the persistence of vision effect
can be interrupted from vibrations that disturb the intended path of the screen through space.
Therefore, such systems would be unsuitable for mobile applications inside vehicles and unacceptable
in environments exposed to the rumble of a spinning machine. Perhaps due to difficulty in gaining
acceptance for such a unique product, Actuality Systems closed down in 2009 yet its engineers are
available for consulting from opticsforhire.com.

http://voxiebox.com
http://gl.ict.usc.edu/Research/3DDisplay/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

180

Figure 9-4. Perspecta Volumetric Display by Actuality Systems, Inc. Images courtesy OpticsForHire.com

One of the main drawbacks of these swept volume systems is the maintenance of the device with
moving parts. LightSpace Technologies created a remarkable approach to address this problem with the
DepthCube. By rapidly cycling a projected image onto one of 20 vertically stacked liquid crystal coated
plates, a volume of slices that has depth is built up. The LCD plates remain opaque until electric current
is applied, at which point they become transparent. Utilizing the DepthCube design, with only one of the
20 plates opaque at a time, a projector can present the correct image slice onto that plate from the full
volume stack. With everything synced up and running very fast, persistence of vision blends the image
slice stack into a cohesive volumetric image. See the DepthCube in action at
http://youtu.be/RAasdH10Irg .

Other than in patent filings and academic papers, there is very little information online about how
to construct your own swept volume display. This will change as more attention is drawn to their unique
abilities. We need to see a greater community brought together with a shared interest in seeing this
technology reach the mainstream. Until then, this how-to-guide for constructing a spinning swept
volume with LED lights gives an idea of what is involved: http://bit.ly/makevolumedisplay.

Should you require a projector based image generator for high resolution displays where LED
begins to show its limits, the DLP developer kits from Texas Instruments (http://bit.ly/dlpdevkits)
provide a strong base to build upon. Texas Instruments’ Digital Light Processing with a Digital
Micromirror Device, which sells for $350, with the DLP Pico Projector Development Kit can run at 1,440
frames per second in one color, is smaller than a deck of cards, and produces an image brightness of 7
lumen, making it ideal for very short throw installations. At its native 480 × 320, you’ll want to keep the
projected image small to make for the densest image quality. For $3,500 the DLP LightCommander
offers a more modular design—about the size of a fog machine—that can go up to 5,000 frames per

http://youtu.be/RAasdH10Irg
http://bit.ly/makevolumedisplay
http://bit.ly/dlpdevkits
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

181

second in monochrome binary pattern mode and supply 200 lumens-worth of light out of a Nikon f-
mount interchangeable lens. Its native resolution is 1024 × 768. The DLP Discovery 4100 Kit costs
upwards of US$8.000 and offers resolutions of HD 1080p (1920 ×1080), along with much more advanced
feature sets.

Pepper’s Ghost-Based Displays
While swept volume techniques can produce true volumetric 3D imagery that hangs in the air,
providinga unique perspective from every angle, the price tag for such systems are prohibitively high,
especially for displays that are relatively small. On the other end of the spectrum and dating back to the
1860s, is a technique that was developed as a theatrical special effect, which can scale to very large
environments and which has been used to provide a convincing “in air” visual effect. John Henry
Pepper’s illusion was originally used to magically display transparent ghosts on stage for a performance
of Charles Dickens’s A Haunted Man. Now referred to as “Pepper’s Ghost” (Figure 9-5), this optical
illusion relies on the reflection of light from an obscured source onto a transparent film or glass plate
where the image is seen to be hanging in space. This same principle is what makes teleprompters and
heads-up displays work. Variations on this technique are behind many “holographic” imagery effects
and displays.

Figure 9-5. Illustration of the “Pepper’s Ghost” illusion by Professor John Henry Pepper at London’s Royal

Polytechnic, 1881

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

182

A number of commercial solutions are available to bring this type of display to life on both large and
small scales. Musion Eyeliner 3D (http://eyeliner3d.com) and Arena 3D Industrial Illusion
(http://arena3d.com) sell and lease systems that are used for trade exhibits and major entertainment
productions. Teleportec (www.teleportec.com/) sells a smaller system tailored to telepresence, which
can place a remotely conferenced person behind a podium for a speech or at a board table for a meeting.

Alexander McQueen received much fanfare for his use of a Pepper’s Ghost-based illusion for his
Widows of Culloden, autumn/winter 2006/2007 fashion show, in which Kate Moss materialized and
floated above the stage. Prerecorded video of the model, shot from four different angles, 90 degrees
apart, was reflected from hidden screens suspended above four panels of glass that formed a transparent
pyramid shape.

 Note Illustrated characters from the band Gorillaz famously performed live at the 2007 Grammy awards with
Madonna via the Eyeliner 3D system; however, because the thin film used to reflect off of it is sensitive to
vibrations, it is less than ideal for a thunderously loud concert setting. The band has since discontinued use of
“holographic” stage tricks.

A number of companies have created smaller self-contained Pepper’s Ghost-based display cases
that work well for showcasing a hovering or transparent product—even mixing digital video and a real
physical object into the same display area. Figure 9-6 shows a simple three-sided Pepper’s Ghost design
using a MacBook. This design was created by Ujjval Panchal. You can read more at his blog:
http://blog.ujjvalpanchal.com/3d-holographic-display-prototype-1/.

http://eyeliner3d.com
http://arena3d.com
http://www.teleportec.com/
http://blog.ujjvalpanchal.com/3d-holographic-display-prototype-1/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

183

Figure 9-6. Three-pane Pepper’s Ghost display with MacBook. Photo courtesy Ujjval Panchal

HoloCube (www.holocube.eu/) has a number of simple and pleasing box-shaped designs for
viewing in one direction. RealFiction (www.realfiction.com/) and Vizoo (www.vizoo.com/) sell
pyramid-shaped systems, working off an arrangement similar to the Alexander McQueen show, that
allow viewing from 180 to 360 degrees with either three or four separate channels of video corresponding
to different angles.

 Note Because the imagery being presented on these displays originates from 2D screens or projection sources,
they are not truly volumetric or “holographic” in the sense that you can look around objects from any angle.

An innovative use of the Pepper’s Ghost technique is to separate a single 2D display or projection
into multiple Pepper’s Ghost layers, which can be stacked up to recreate a foreground, middle ground,
and background. A prototype accessory for the iPhone was created on this principle, called i3dg (Figure
9-7), and at lost word was slated to go into production early in 2012. You can see the display in action in
this video—http://youtu.be/JnGPtVNmtvI—and learn more at http://i3dg.mobi.

http://www.holocube.eu/
http://www.realfiction.com/
http://www.vizoo.com/
http://youtu.be/JnGPtVNmtvI%E2%80%94and
http://i3dg.mobi
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

184

Figure 9-7. The i3Dg accessory for iPhone utilizes three panes of plastic to create a multi-depth experience,

utilizing the principle of Pepper’s Ghost. Image courtesy i3Dg

The original mock-up for this design came from using plastic CD cases; others online have
successfully recreated this effect using various materials. On a larger scale, with a flatscreen TV or
uniquely shaped projection surface, this technique could be employed to create a very eye-catching
experience with a real sense of depth and motion parallax with the right content or application.

Multi View Autostereoscopic Flatscreens
Of all the technologies described in this chapter, multiview autostereoscopic displays are the most
mature and accessible technology. Available from a variety of specialized providers, they can be used
with existing development tools at a cost that is not as prohibitive as the more researched and industrial
level technologies. The market size is currently about 2–4 thousand autostereoscopic 3D displays per
year for digital signage applications, which keeps the price tag for these items around US$5,000. Each
display requires a significant amount of resources to carefully produce—from custom manufacturing
precision slanted lenticular sheets for every model of LCD to the “clean room” environment needed to
adhere the multiview layer to the screen. Additionally, the custom content production and hardware
requirements can be substantial for delivering enough views to the screens to make the viewing
experience truly eye popping without causing eye strain. Mainstream consumer adoption of such
screens would drive the cost down considerably—just as Kinect did for the depth-sensing volumetric
camera market.

Displays are available from a variety of manufacturers. Magnetic3D (http://magnetic3d.com),
3DFusion (http://3dfusion.com), and Exceptional3D (http://exceptional3d.com) are all based in New
York and offer nine-view displays at varying levels of size and quality. Alioscopy

http://magnetic3d.com
http://3dfusion.com
http://exceptional3d.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

185

(http://alioscopyusa.com / http://alioscopy.com), uses an eight-view display technique. Lower-end
displays can be found with four and five views, and on the high end, Dimenco (www.dimenco.eu),
founded by a team that worked on autostereoscopic screens at Philips, boasts a twenty-eight-view
system. Dimenco’s approach relies on 2D + depth map source material and a dedicated hardware
“rendering box,” which limits its potential to use native multiview content. Magnetic3D’s nine-view
allows a center channel to act as a reference image with four views to each the left and right for peering
around an object. In a slated lenticular design, finding the right compromise between the number of
views to give a good motion parallex and not packing so many views in that there is ghosting or cross-
talk between the layers of pixels underneath is a careful balance.

As with any of the volumetric displays discussed in this chapter, somewhere along the line, you'll
have to figure out how you will optimize multiple views of your application or content to match the
physical properties of a display. These screens are at their best when the viewer can feel depth that both
drops behind the screen and protrudes out from it. Thomas J. Zerega, founder of Magnetic3D, suggests
that content and application developers can design experiences that utilize these displays to their limits,
enabling "True Volumetric Perception" by following best practices in how content is prepared. When
visual assets protruding out from the plane of the screen get cut off by the LCD's border edges, a
"window violation" that disturbs the perception of depth is produced. To avoid this experience,
programmers can create in-app physics that avoid such glitches by design. You can use this effect to
your advantage by letterboxing the display area; that is, placing a black border around the content on the
screen. This way, when an object is meant to come out from the screen, it can break the digital
letterboxing—to a great popping effect—without getting cut off by the hard physical “boxing” of the
display edge.

Laser Plasma Emission Displays
If the idea of producing images hanging in air instead of stuck to a screen is what you are after—pulsed
laser’s crackling light in free space is going to excite you. Japan’s National Institute of Advanced
Industrial Science and Technology (http://bit.ly/plasmaemission) has partnered with Keio University
and Burton Inc. to push the edge of using lasers to light up air molecules in a true volumetric display that
works without the need for a generated medium such as mist.

The mechanism by which this type of display works is fascinating on two levels. First, it shows a real
time demonstration of a dynamic display that matches the variable point abilities of the static plastic
etching laser noted at the beginning of thischapter. This is great, because the mechanism isn’t bound by
a set grid of voxels that it must adhere to. This is in contrast to other static or swept displays, which are
locked into the boundaries of pixels or LEDs.

The second level of interest is the inspiration to apply the optical tricks leveraged to focus the laser
beam to other types of display optics. The use of a diffusion lens moving in the z-axis and a second optic
modulating in the x and y plane might have application with the other approaches outlined in this
chapter. As more interest gravitates towards the aspiration of true volumetric displays, we’re bound to
see a mixing and matching of these techniques to bring about more breakthroughs. Stay tuned to
Burton, Inc (http://burton-jp.com) for more developments with this technology. The latest
demonstration of their display can show 50,000 voxel points in space per second. Check out the videos at
http://youtu.be/EndNwMBEiVU and http://youtu.be/KfVS-npfVuY to see it in action.

Free-space Aerosol Displays
Molecules that float in air—sprayed water, dense fog, and fine mist—can be used as a medium for
projection with stunning results. The commercial products that fall into this category tend to be based
on 2D source material, so their degree of true volumetricness is owing to the illusion that a borderless

http://alioscopyusa.com/
http://alioscopy.com
http://www.dimenco.eu
http://bit.ly/plasmaemission
http://burton-jp.com
http://youtu.be/EndNwMBEiVU
http://youtu.be/KfVS-npfVuY
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

186

volume of space contains a floating slice of imagery without the traditional boundaries of a screen.
However, in custom engineered setups with multiple sources of imagery and clever manipulations of in-
air particles, anything is possible.

 Note You can view an excellent image from “In the Evening at Koi Pond” at:
http://commons.wikimedia.org/wiki/File:In_the_Evening_at_Koi_Pond_in_Expo_2005.JPG.

The market for this type of display is often stage shows or big events with an array of unique lighting
of which an in-air display is one part of the larger experience. At the World’s Fair EXPO 2005 in Japan, I
witnessed a remarkable use of this technique in Robert Wilson's "In the Evening at Koi Pond". This
system combined projections on giant solid objects floating in a pond with multiple projections in
fountain mist that floated hundreds of feet in the air. The use of free space projection was reserved for
moments when a certain character would appear or other accents to the main choreography took place.
This gave those moments jaw-dropping impact.Therefore in an installation or performance situation,
consider theuse of the techniques described in this chapter in combination for best effect.

The IO2 Heliodisplay
The IO2 Heliodisplay (www.io2technology.com) uses ambient air passed through a series of thermal
controlled metal plates to create a sheet of ultrafine invisible articles that jet out from the unit. At less
than 10 microns, the semi-invisible atomized water particles are similar to human breath when exhaled.
Therefore, there is no visible fog or heavy moisture from this unique design in contrast to other
approaches. Used in combination with a high-powered 4500 lumen projector, optimized for a rear
projection setup and this air stream, a visible image can be seen to hang in the air a distance from the
unit (Figure 9-8). The unit costsUS $48,000 forthe base model, and US$68,000 for an interactive unit.

Figure 9-8. Heliodisplay embedded in a table and various orientation options. Image i2o Technologies

http://www.io2technology.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

187

An upright configuration, which can be hidden in a wall, casts the air stream out horizontally and
can be tall enough to project an image of a life-sized human. A table-mounted unit sends the air stream
up vertically with the effect of an image floating above the surface. The unit can also be hung upside
down and send the screen out in virtually any direction on special order. The trick is to design content
with a black background and hide all of the physical components, as well as the projector and the
heliodisplay unit, so all that is seen is the floating imagery. The system does not work with a front
projection or short throw projector, so you'll need to configure this in such a way that you can place the
projector about five feet behind it. A small tank filled with tap water allows the unit to run for a couple of
days to a week, depending on its settings; a special disk needs to be replaced every sixmonths to a year. It
can even be used outdoors—but you'll need an environment without too much wind, as windwill distort
the image. Speaking of distortion, don't expect this to look as clear and crisp as a flatscreen normal
projection TV. If you look closely at the product images, you can see that a streaking effect is noticeable.
As with any technology, it’s best to consider how to leverage limitations in a way that makes them look
like advantages, perhaps working the streaks and wavy flow of the screen into an aesthetic that fits the
application.

The FogScreen Display
If you don’t need something up close and personal, and instead want to go larger than life for the stage—
look no further than the FogScreen (fogscreen.com) from Finland (Figure 9-9). Their units use a laminar
airflow process to create a thin screen made of water in the form of visible fog, and ultrasonic waves.
Their entry-level unit, the FogScreen EZ, is priced under US $30,000 and unlike the Heliodisplay, is
available to rent worldwide. The FogScreen Pro can be connected in series for variable scale installations
and is available for order by the meter starting at US $33,000 for one meter, US $100,000 for four meters,
and US $175,000 for eight meters, with a variety of prices in between.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

188

Figure 9-9. FogScreen projections at E3 conference. Photo by wili_hybrid.

The FogScreen gets a great deal of use in stage lighting and event displays, whereas the i2o unit is
more suited for intimate settings at a smaller scale. In contrast to the floor- and wall-mounted
Heliodisplay, the Fogscreen works in one orientation—from above. This allows the unit to be hidden out
of the way along with its projector attached to the ceiling. Because the light scatters rather than reflects
from the particles in the air, the FogScreen must also be used in a rear projection capacity. This property
could be used to your advantage, as some researchers have experimented with two projectors pointing
at either side of the screen to show a different image, giving a sense of 3D. The FogScreen has controls to
change the level of opacity in the screen. That means you can use it for a “reveal” effect of someone
coming out from behind a curtain of projection, or make it transparent enough to appear floating in air
with no edges.

One especially promising technique relies on the fact that dispersion of light through fog has
directionality. At the Interaction 2011 conference, researchers from Osaka University used a three-
projector setup pointed at a cylinder of fog to demonstrate different images of a 3D object based on
different angles of view, satisfying motion parallax. Remarkable video of this innovative technique can
be seen at http://youtu.be/yzIeiyzRLCw. The use of multiple projectors to satisfy multiple views into a
scene is the basis for light field-based displays.

http://youtu.be/yzIeiyzRLCw
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

189

Projected Light Field Arrays
An area of volumetric imaging currently receiving much attention relates to the use of an array of
projectors to recreate multiple views of a scene onto a diffused light filter. The general idea is that, the
more projectors you can add at more angles, the better you can recreate the original light field of a 3D
scene. Therefore, when the viewer observes the scene through a special diffuser film, the movement of
the viewer’s head through the viewing angle will stimulate the motion parallax required to provide the
sensation of viewing a 3D scene. With the advent of low cost projectors, including pico class devices of
diminutive size, this approach is much more financially feasible then it would have been only a few years
ago.

The projected light field approach is applied to produce a novel effect in fVisiOn—floating 3D vision
on the table—a research project from Shunsuke Yoshida at Japan’s National Institute of Information and
Communications Technology. The intent of this project is to create a display that doesn’t interfere with
the workspace of a table, but instead allows for the comingling of real 3D objects and virtual ones.

 Note You can learn more and watch a video at the project’s website:
http://mmc.nict.go.jp/people/shun/fVisiOn/fVisiOn.html.

Instead of implementing a standard planar sheet to combine the projected light into a cohesive 3D
image, the fVisiOn approach relies on a cone shaped screen. As seen in Figure 9-10, the display is made
up of an array of pico projectors all pointed inward in a circle onto the cone. The white dots of light
visible in the upper right hand image show the densely packed ring of projectors. Two layers of filtered
material are placed on top of the cone to increase the contrast in the image.

http://mmc.nict.go.jp/people/shun/fVisiOn/fVisiOn.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

190

Figure 9-10. The fVisiOn display deconstructed. Upper left shows the cone shaped diffuser and pico

projector at one angle; upper right shows dozens of projectors in place, appearing as dots of light; lower left

and right show two layers of filters that increase the contrast in the image to produce a floating digital

object.

While the fVisiOn provides insight into how light field displays can be used on a small scale, many
are eager to know how volumetric 3D experiences will scale up to bring voxies to the big screen of a
theatre. The answers may lie in a series of innovation initiatives spearheaded by the European Union.
Three projects: HOLOVISION (www.holovisionproject.org), OSIRIS (www.osiris-project.eu), and
COHERENT (www.coherentproject.org) were established to position European countries and
companies as the leading pioneers of holographic media capture, transmission, and display. The
primary integrator for these technologies is a Hungarian company called Holographika
(www.holografika.com/).

Through the use of roughly 100 projectors focused on a diffusion screen, Holographika's displays
recreate a light field to provide a discreet view into a scene, dependent on each viewer's position with
regard to the screen. This technique is similar to the efforts from Osaka University researchers with fog,
the difference being, this company now has units in production ready to be rented or purchased. It's
fitting that a Hungarian company achieved this marvel, as it was, in fact, a Hungarian scientist who
invented the field of holography.

While the products from Holographika are not priced for consumers, ranging from US $45,000–
150,000, they've set the bar very high and will provide a reference spec by which to judge future
solutions. For home and office usage, the rear projection models appear visually similar to early
widescreen TVs before plasma and LCD. In order to pack all the projectors inside, there needs to be
enough depth to bounce the images onto the screen. However, the more breathtaking innovation lies in
the front projected solution for large scale theatre environments(Figure 9-11).

http://www.holovisionproject.org
http://www.osiris-project.eu
http://www.coherentproject.org
http://www.holografika.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 9  VOLUMETRIC DISPLAY TECHNIQUES

191

Figure 9-11. HoloVizio C80 by Holografika

The HoloVizio C80 has ushered in the age of volumetric 3D movie theatres, what people may one
day call the voxies for short.This isn’t science fiction. The C80 unit is currently being demonstrated in
trade shows around the world. Where traditional movie theatres have one projector, or perhaps two for
stereoscopic 3D, Holographika's technique employs upwards of 80 projectors. Presently, the maximum-
sized screen is around 140" wide—large enough for a small indie theatre. Now, we just need a new
generation of storytellers to kick start the voxie business with volumetric motion pictures that take
advantage of this disruptive innovation. Which would you pay more for—a night out at the movies or the
voxies?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C H A P T E R 10

193

Where Do We Go From Here?

Working on this book has meant a lot to each of us. In the Kinect, we see a wonderful device that can be
used for creative expression. We also see a device and technology that is capable of changing the way we
put technology to work in our daily lives. At first, the Kinect and its skeleton-tracking technology are all
about games and cool art projects. But it doesn’t end there. The underlying technology has profound
implications on how people and technology interact. In this Afterword, we each offer a few final
thoughts on the impact of the technology and where it might take us in the future.

Sean Kean
I hope this introduction to development with the Microsoft Kinect has provided you with a solid
foundation from which to execute new ideas that redefine our relationship with technology. You now
have the building blocks for creating experiences that can help us move past the limited means of
interacting with machines from the past and pave the way to a more humane relationship between
people and devices in the future. As someone who initially became interested in technology for artistic
and social expression, I’ve always felt the mouse and keyboard were a legacy of office environments that
fell short of capturing the ways I wanted to play with machines. Innovations such as the Kinect, as well
as the software that you will now go forth and develop, will write a new chapter of how society and
technology evolve with one another.

Roughly one year after the Kinect’s debut in November 2010, we’ve seen this device put to use in so
many breathtaking ways. It’s been overwhelming to keep track of or even classify the different usages.
Seeing the public’s imagination captured by the ‘Kinect hacks’ that have flooded the web, it’s clear that
body gesture-based control of software is something people are eager to have integrated into their
lifestyle once they’ve witnessed it. However, one application of this technology hasn’t received quite as
much attention as the others and it’s the one I’ve been most excited about since I first saw Oliver Kreyos
demonstrate it in a post to YouTube last year.

In a video entitled “3D Video Capture with Kinect” (http://youtube/7QrnwoO1-8A), posted just ten
days after the device hit stores, Oliver was the first to show volumetric 3D video that allows a viewer to
move a virtual camera 360 degrees around a live scene during its recording. This still blows my mind
and I think it’s the sleeping giant of the Kinect that will mark a fundamental shift in the way motion
pictures, photography, and live video will be experienced in the very near future. Once the tools for
creating, sharing, and viewing volumetric 3D video can be demonstrated in a more mature state for the
general population to consider, I’m confident that we will see widespread adoption of it for everything
from video conferencing to sports, to feature films and truly 3D game systems. This is the dawning of the
volumetric age.

I have feared for some time that with so much exposure to flat screen media on televisions,
computers, and phones, society has eroded some of our innate abilities to decode the physical 3D world
around us. I believe this shift from 2D to volumetric 3D experiences has the potential to reignite hope for

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10  WHERE DO WE GO FROM HERE?

194

a new spatial awareness that can revive a section of our minds that has lain dormant since screen media
became ubiquitous. Things will truly get interesting once digital media can more closely match the
depth perception capabilities we were born with but have had no way to reconcile with 2D media and
traditional software interfaces.

Let’s take a look at what’s involved in bringing about the volumetric 3D video revolution. By
examining how 2D video is created and experienced by consumers today, we can look at what needs to
be put in place to do the same for volumetric 3D. Along the way, I hope you see a number of exciting
opportunities to develop technology that fits into the needs that will arise as creators go from shooting
2D motion pictures to pioneering the voxies, video that is viewable from any 360 degree angle and is
based on the voxel point cloud imagery generated from devices such as the Kinect.

For a consumer, recording HD video with an iPhone, trimming it on the device, and uploading it to
YouTube or Facebook to share with the world is remarkably effortless. A professional may choose to use
a more elaborate SLR camera that would require the additional step of connecting it to a computer along
with opting to edit the video in a program, such as FinalCut or iMovie, before uploading it to the web,
perhaps opting for an alternative video sharing site such as Vimeo.com. Refined over many years, there
are simple, affordable, and accessible solutions for users to capture, edit, and view shared video. We will
need comparable devices, services, and software to bring volumetric 3D to the mainstream market.
Luckily, millions of people now have a device to capture basic volumetric 3D video with the Kinect.

If you followed through till the end of chapter 1, you’ve already seen yourself captured in primitive
volumetric 3D and are able to spin around your view with a synthetic camera. The latest versions of
Microsoft’s SDK, as well as OpenNI, lets developers make use of multiple Kinects that could be arranged
in such a way to fill in the empty shadows resulting from just one camera. With the KinectFusion
project, Microsoft Research shows us that there is a bright future ahead for reconstructing full 3D
models of scenes in realtime (see Figure 1-25) using just one Kinect and software utilizing standard
computer graphics processing chipsets. The only problem with the Kinect as a video recording device is
that the user is tethered to a computer and wall outlet. This has resulted in Kinect videos containing
roughly the same subject matter – people sitting at their computers.

I’d much rather shoot active video running around outdoors, adventuring in remote locations, and
everything else we’ve come to expect that is possible from portable electronics today. Prior to the
introduction of Sony’s Portapak in 1967, video was pretty much immobile – just as we are today with the
Kinect. TV studio equipment was so large and power intensive that it had to stay in the studio. After the
Portapak’s introduction, video art flourished with artists such as Nam June Paik and Bill Viola, who
strapped on battery powered equipment and used the medium to explore visual expression in ways that
were previously only available by working with film. Today, every smartphone is far more capable than a
Portapak – yet we will likely want to return to specialty hardware devices to take advantage of
volumetric 3D’s promise. This will create exciting opportunities for those that wish to design and
manufacture novel cinematic tools.

For higher production quality capture, there is an exciting array of possiblities that go beyond the
Kinect. The structured light approach from the PrimeSense solution is not able to work outside in bright
lighting conditions that interfere with the infrared laser. Time-of-flight sensors offer one alternative to go
where the Kinect cannot; however, their depthmap resolution is currently much smaller than that which
is offered by PrimeSense and still relies on emitted light with a limited sensing range. A remarkable new
imagining technology called a light field, or plenoptic, camera debuted this year from Lytro
(www.lytro.com) that may eventually be embedded into a tool for the volumetric cinematographer.

This unique imager makes use of a micro lens array that computes all the light rays entering the
camera from a number of angles and produces a depthmap similar to 3D sensors such as the Kinect.
While not yet a realtime video solution, keep your eye on how this technology develops. An array of Lytro
cameras surrounding a scene from different angles would not only be able to gather multiple depthmaps
without interference from each other, but they would also be able to refocus on any point in an scene at
the time of viewing. This would result in the type of depth of field that we’ve come to expect from high
quality SLR cameras, but conceivably in realtime based on the users’s perspective into an image. Lytro’s

z

http://www.lytro.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10  WHERE DO WE GO FROM HERE?

195

consumer focused product may turn out to be just as disruptive and accessible to hack as the Kinect. Its
breakthrough price point of US$399 is astonishing when you consider Raytrix’s (http://raytrix.de)
cameras, the only competitor, start at around US$20,000.

Before the Kinect, there was a lot of research into techniques for computing 3D scene information
from stereo cameras and multi camera arrays in a technique called photogrammetry. With the advent of
more mature cloud computing environments, a number of solutions are cropping up to handle this type
of image processing on remote servers to reduce the requirements on user machines. For use on your
local machine, AgiSoft's PhotoScan (http://www.agisoft.ru/) is a desktop photogrammetry solution
available for Windows and Mac OS X. Processing still imagery from an array of cameras at different
perspectives is now possible using tools such as Autodesk’s 123D Catch (http://123dapp.com/catch)
and Hypr3D (www.hypr3d.com) with photomapped 3D models of a scene returned after uploading a
series of images. By using a number of inexpensive HD cameras, such as those available from GoPro (
www.gopro.com), its conceivable to assemble a large rig with dozens of units that would capture video
from an assortment of angles and then break down each frame from each camera into a series of
photogrammetry batch processing jobs. Combined with 3D sensors, such as the Kinect to aid in depth
mapping, we are bound to see some very interesting solutions for generating high quality volumetric 3D
imagery with a blend of these techniques.

What’s the difference between producing a movie in 2D and a voxie in volumetric 3D? To start,
movie directors are accustomed to having absolute control over the viewer’s perspective into a story
through a single camera view. However, in the world of the voxie, the budding volumetric
cinematographer must wrestle with choreographing performers, lighting, and camera rigs during
production in a way that takes into account the way that the audience may gaze into the scene from any
angle, such as by moving their head, using a controller, or simply walking around a volumetric display.
But that’s only the start. We’ll need entirely new software to handle post production editing,
transmission, storage, and display of this truly new media.

The good news is this software is being actively developed right now. The first live internet video
stream of volumetric 3D video occurred during the Art&&Code 3D (http://artandcode.com/3d) event in
Pittsburg in October 2011. This transmitted a 360 degree video of the speakers straight to web browsers
tuning in around the world. This marked a significant technical accomplishment that will no doubt
begin to inspire others to create more robust solutions that move beyond the limitations of sharing this
depth-enabled media on systems such as YouTube and Vimeo, which currently have no capacity to store
the complete volumetric data in their 2D file format.

A YouTube for volumetric 3D video , or free viewpoint video (FVV) as it is also refereed, could act as
a repository for large voxel datasets in video form that could be analyzed and reprocessed with more
sophisticated algorithms for 3D reconstruction, such as KinectFusion when they become available at a
later point. Many people may choose to upload all of their raw volumetric video to the cloud and use
web-based editing services to finish their videos in order to minimize the processing requirements on
their own equipment. For more sophisticated directors, there will be a demand for professional grade
workstation software for local editing and post production effects. Back in the cloud, machine vision
middleware, similar to Primesense’s NITE, could provide novel features based on user segmenting,
skeletal tracking, and pattern recognition that could be applied to uploads in order to generate
structured information for categorizing videos, objects within them, and even the semantic analysis of
storylines. Once the videos are online with interactive and embeddable viewers, we can expect to see
them shared online within Facebook streams and linked into the same places where 2D photos and
video are used now. The opportunity for users to create mashups and remixes of user submitted
volumetric video will be fascinating to watch unfold as clever artists and programmers leverage the
capabilities of depth-enabled video in ways that are hard to predict.

Yet there isn’t much use in capturing volumetric video if you are just going to look at it on a plain old
2D screen. While interim solutions will be available that use head tracking to allow you to experience
simulated motion parallax to look around volumetric 3D on 2D screens, the driving reason to develop
this type of content will result from the availability of true volumetric 3D displays that mature from

http://raytrix.de
http://www.agisoft.ru/
http://123dapp.com/catch
http://www.hypr3d.com
http://www.gopro.com
http://artandcode.com/3d
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10  WHERE DO WE GO FROM HERE?

196

techniques documented in chapter 9. As more compelling voxel-based video content and services are
created, along with games and professional 3D applications, volumetric displays will break through a
whole new era of entertainment and spatial computing. As recently demonstrated by Microsoft
Research’s work with a touch interface for both a true 360 degree volumetric 3D display called Vermeer
(http://research.microsoft.com/en-us/projects/vermeer/) and a their Holodesk
(http://research.microsoft.com/apps/video/default.aspx?id=154571), which relies on head tracking,
interacting with touchable imagery that occupies real 3D space opens up a realm of opportunities that
were previously considered science fiction.

What kind of content and applications will consumers desire when the ability to reach out and
touch volumetric video displays is priced within reach? We’ll soon find out and that’s where I’ll be going
from here. Join the volumetric age by getting involved in the community at volumetric.org and by
following updates to this book at meetthekinect.com .

--Sean Kean

Phoenix Perry
Sages of the future often look foolish in hindsight. Frequently, they overstate the speed of immediate
developments and underestimate the huge changes coming in the long term. That said, I am writing this
prediction on the day of the death of Steve Jobs. The era of mouse-based computing has come to a close.
The doors of Apple stores across America are covered in candles and the playing field for the future of
computing is wide open. Gesture based computing is the future of interface design. This revolution has
been developing for 20 years and the time for it is finally here. Visual recognition systems, touch screens,
gesture based interfaces and voice control will be combined to replace remotes and mice over the next 5
years, particularly in casual computing experiences. User experiences will become more organic and
biocentric. The wave of natural interfaces is the next big boom coming in design technology.

My disenchantment with the mouse began in 1999 when I developed an extreme case of carpel
tunnel. The interface of my personal computer broke my body through bad design. I couldn’t comb my
hair. My boyfriend brushed my teeth and the tool that had allowed me to become a thriving creator had
destroyed my body. As a result, I’ve spent the last 10 years healing and exploring alternate modes for
computer control that allow for long term use without harming the human body. With these new modes
of interactivity, we can safely develop computing experiences that match our bodies and work for the
span of a human lifetime. The computing experience is being wildly rethought. Designers and DIY
makers are pushing the market forward by creating new experiences. Users hunger for richer, more
personalized, tactile experiences. We are rethinking the digital experience and integrating it into the
human experience. From reactive signage integrating facial recognition with mobile shopping
experiences and smart living rooms to new ways to heal the mind and body, there is no end to the
immersive experiences waiting to be created.

Culturally, music and art making are being torn wide open. Your instrument can be anything you
could possibly imagine and even draw with your fingers in the air. Media artists can map video and
images directly on the body, including the face, with precision. Motion capture can happen in your
living room. Artists can draw in 3D in the physical world with just their hands and then print the results
out via a desktop fabrication machine bought for under $3000 from MakerBot Industries. Research is
being done with brain wave control that might allow artists to work by simply closing their eyes. The
future has arrived. It just looks different than we expected, and fortunately it’s not the pristine corporate
modeled plastic interface of the past but seamlessly integrating into the human landscape. The future of
design is open source and in the hands of the makers.

--Phoenix Perry

http://research.microsoft.com/en-us/projects/vermeer/
http://research.microsoft.com/apps/video/default.aspx?id=154571
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10  WHERE DO WE GO FROM HERE?

197

Johnathan C. Hall
If you’re reading this, I can assume that you at least find Microsoft’s Kinect and other Kinect-like sensors
to be intriguing. If you were born in the last millennium and don’t take every technological feat for
granted, you might even agree that these devices are pretty amazing. But are they revolutionary? I don’t
have the answer, but I can tell you where I’m looking for this technology to support social, cultural, and
economic change—for better and worse—and it’s not in the living room. It’s in public and quasi-public
spaces.

A touch-free computer interface has a certain utility that's inherent in its touchlessness. For
example, a touch-free interface is more hygienic and therefore offers clear advantages if used in
hospitals and doctor's offices, in clean rooms, operating rooms, and rest rooms. A touch-free interface
can also empower even vertically-challenged people like me (I'm 5'9"... okay 5'8"... on my tippy toes)
to intuitively manipulate arbitrarily large media for experiences in immersive entertainment, art,
education, or marketing. A touch-free interface can even initiate "passive" interaction by responding to
where and how many people are situated in a given space and providing intelligent, contextual
feedback. much like the "ubiquitous computing" scenarios envisioned by the legendary Xerox PARC
scientist Mark Weiser among others.

There remain, of course, significant barriers to our realization of these benefits. For example, I was
mortified by my very first Kinect experience when, after a vigorous round of Kinect Adventures, I was
presented with pictures of myself caught in compromising poses. As my Xbox threatened to post them to
Facebook. I shrieked, “Noooooooooo!” and dove to yank the plug out of the wall. Who's going to be
caught dead gesticulating like a moron anywhere but their living room?

Ten years ago, I might’ve asked, equally incredulous, “Who’s going to be caught dead having a
messy breakup with their significant other over the phone on a crowded train?” And yet, this genre is a
staple in the soundtrack of commuter life in major metropolitan areas. The point is our cultural rules
and habits do change in the wake of technological innovation and adoption: witness the mobile phone.

I believe that people will grow accustomed to a certain constrained repertoire of motion-controlled
interactions with public screens over time. Part of that evolution is cultural, but part of it is in the
technology itself or, more specifically, in the design of applications. Applications for touch-free
interfaces in public spaces will necessarily be less physically demanding than Kinect Adventures or most
Xbox games, and will be more like the Xbox dashboard, intended for quick, casual, mostly utilitarian
interaction. My work on Sensecast (see Chapter 3) is designed to support just this level of engagement:
check in for a meeting in the lobby, browse some information relevant to your health at the doctor’s
office, grab the full text of a news story on your phone, and go. (Of course, it’s far too early in the lifecycle
of this work to say that we are doing it right.)

Like our willingness to post our “status” publicly on Facebook or to “check in” at a Starbucks, our
interactions with public screens have the potential to create whole new ecosystems of cultural and
economic value, as well as exploitation, as we’ll see below. My hope is that we can steer this potential
toward the good: to transform public spaces into more sociable places through shared media that
orchestrates our interaction not only with computers but with each other. Our collective habit today is
one of passive, solitary media consumption. Smart filters, niche blogs, and micro-blogging let us tailor
our media diets to only our own interests. So-called social and mobile apps, meanwhile, isolate us from
our geographic communities by channeling our attention away from them. Imagine Kinected
applications that get us on our feet in common spaces, meeting our neighbors, permeating our day-to-
day lives. Imagine:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10  WHERE DO WE GO FROM HERE?

198

• 8:00 a.m. On the train platform, commuters gather around a display that bears
headlines and photos from a town council meeting the night before. One reads:
“Youth Center to Go to Referendum.” The display polls the surrounding audience
for a literal thumbs-up or thumbs-down on this decision, records their gestures,
and collects/displays the aggregate town sentiment. Before you board the train,
you can beam the full story to your mobile phone.

• 3:00 p.m. High school student council members meet in the public arcade with
signs urging action on the town’s stalled youth center project. They hold the signs
up to a community display, where an onboard Kinect recognizes their activity and
snaps a photo, distributing the image across a town-wide network.

• 7:00 p.m. A chime sounds in a crowded café, and a ceiling-mounted digital display
starts showing quiz questions about local data: Did the crime rate go up or down
this year? What percent of the town budget goes to education? How much does the
average family pay in property taxes? Onlookers are able to "buzz in" by
mimicking a game-show push-button with two hands. The display then selects
and follows whomever buzzed in first, allowing him/her to choose an answer on
screen.

While I’ve given my examples a decidedly civic cast to make a point, a much broader set of
applications and games will no doubt be unleashed upon our public spaces by creative technology
companies, advertisers, non-profits, and government entities in the years to come. Some will be good
and some bad. But the potential is there is to create real value for people by delivering rich experiences,
critical information, and spontaneous play around the shared interests and spaces of real, not virtual,
communities. By designing for public and quasi-public spaces, developers of Kinected applications can
explore a new era of real, not virtual, social and location-based media.

The first application for Sensecast was a news browser placed just outside a Columbia Journalism
School café in a semi-public building with high foot traffic. It encouraged passers-by to read a given
story lede, and if so moved, to “like” it with a thumbs-up gesture. Why? Our historian colleagues at the J
School note that before 1900, people didn’t read newspapers alone but rather aloud with friends and
strangers gathered around. If philosopher Jürgen Habermas is to be believed, this socio-political
dimension of public life, now lost to history, can support a more vital democracy. Perhaps with shared,
Kinected news displays that persuade us to also connect with each other, we can resuscitate it.

Maybe. But maybe not. Privacy is a holy term in the American and European lexicons and publicity
a suspect one (consider the words “publicity stunt,” “publicity whore,” etc.). The humanist geographer
Yi-Fu Tuan points out that, in the ancient Greek world, these poles were reversed: privacy is related to
the Greek word for idiot, as purely private folk were considered to be like shut-ins not fit for any role in
society. Meanwhile, the lofty peaks of human flourishing were reserved for those willing to roll out to the
agora, to make themselves known, to act on a public stage. In most of the modern world, however,
privacy is king.

Still, the jury on publicity is not yet in. We tack between obliviousness to the tools of surveillance
(security cameras, browser cookies, social networks, etc.) and a justified paranoia about them. As I wax
euphoric about the potential of Kinect-like cameras to transform public space for the better, no doubt
some of you are growing duly uncomfortable with the level of surveillance that’s entailed—or, at least,
enabled.

I consider these concerns, as I’ve said, “justified paranoias.” While I freely refer to the Kinect as a
“camera,” you will note that Microsoft and device manufacturers in the space explicitly do not. They
diligently assert their preferred term: “sensor.” That choice is a conscious marketing decision intended
to make vague the data that the device collects. As you’ve seen throughout this book, these “sensors”
that we’ve willingly invited into our homes are powerful cameras capable of passively collecting quite a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CHAPTER 10  WHERE DO WE GO FROM HERE?

199

bit of intimate detail about us, our dimensions, our homes, and our families. We know from patent
filings that as Microsoft rolls out live TV service on its Xbox platform—replacing cable’s set-top box—the
company is integrating Kinect into systems for parental control and advertising. The Kinect not only
provides you a convenient remote control that you will never lose again, it provides Microsoft and its
partners a rich profile of you and realtime data on who’s watching. We’re all Nielsen families now!

This all may seem creepy. Do we just accept as true the dystopian aphorism promulgated by
Napster creator Sean Parker in a recent talk at the 2011 Web 2.0 Summit in San Francisco–“Today’s
creepy is tomorrow’s necessity”?

Again, I don’t have the answer. I’ve chosen to focus my work on Kinected applications for public
spaces, a domain that seems less frought with privacy concerns than whatever the likes of Microsoft,
Apple, Google, and Facebook might be doing with our “private” data. This domain is not free of concern,
of course. Consider that 3D-hinted facial recognition algorithms are probably an order of magnitude
more robust than their straight 2D counterparts. Deploying Kinects widely in public space could
conceivably spell the end to anonymity in public. Of course, that outcome is a ways off and possibly
intractable, as ownership of physical space is not nearly as consolidated as ownership of, say, mobile
platforms, thus preventing any one party from owning all the data. But is it technologically possible? Yes.

In any case, there is clearly a non-trivial trade-off to be made when weighing the values of privacy
and publicity. Companies and individuals have built amazing products and made them available to us
for free or at low cost in exchange for a share of our privacy. And indeed, like the ancient Greeks, we may
stand to gain something ourselves by living more public lives. We also stand to be exploited and sold as
“eyeballs,” or now “skeletons.” No doubt the Kinect and the ecosystem of companies and developers
building with it will stretch concepts of privacy and publicity in new directions. You, by picking up this
book and doing with it whatever you do with it, are part of that vanguard. Please Kinect responsibly.

--Jonathan Hall

http://lib.ommolketab.ir
http//lib.ommolketab.ir




201

Index

Numbers & Symbols
3D depth–sensing systems, 32

A
AC adapter, 4, 5

B
Beckon, 101

activation, 105
gesture

building functionality, 126–27
design, 116–17
in Flash file, 125–26
marking process, 120–22
recording process, 120
SDK, 118–19
testing process, 124–25
training process, 122–24

Gesture Authoring Toolkit, 102
installation, 103

download and install Beckon SDK,
104

install new drivers, 104
remove existing drivers, 103

machine learning environment, 102
middleware, 101
Omek Beckon Tracking Viewer, 105
OpenNI/NITE, 101
scene intelligence, 102
SensorKinect, 102
setup time, 103

with Flash, 106
addCallback method, 108
alerts, 112
code, 109
communication, 107
core functions, 112–14
debug text, 109
difficulties, 109
ExternalInterface, 106
joint positions, 111
modification, 114–16
OmekBeckonFlash application, 106,

108
resize text, 108
skeleton data, 110
standalone application, 107
start settings, 106

Body dysmorphia, 54
blur and puffiness image, 55
clip information, 56
dysmorphia filter, 56
Hodgin’s body dysmorphia app, 57

C
Cinder, 96

Kinect, 98
uses, 97

COHERENT project, 190

D, E
Depth–sensing imagers, 29

application development
environments, 43

challenges, 29

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 INDEX

202

Depth–sensing imagers (cont.)
drivers and data, 39

commercial drivers, 43
OpenKinect/Libfreenect, 39–42
OpenNI, 42–43

hardware, 31–32
Middleware, 43
mouse replacement, 29
natural interface, 29
stack technology, 29–31
structured light approach, 32

3D depth imagery data, 32
advantages, 33
ASUS WAVI Xtion PRO, 37
LIDAR, 32
PrimeSense depth sensor system,

34
PrimeSense reference design, 36–

37
Pro Live, 37
three-phase scanning technique,

33
visible light cameras, 35

time–of–flight camera systems, 37
Panasonic D-Imager, 39
PMD [vision], 38
SoftKinetic DepthSense Cameras,

38

F
Flash Actionscript, 89

AS3Kinect project, 92
Kinect, 90
Kinected media browser, 90
SingleControl, 91
uses, 90

FogScreen display, 187–88
Free-space aerosol displays, 185

FogScreen display, 187–88
IO2 Heliodisplay, 186–87

Future aspects
Halls concept, 197, 199
Keane's view, 193

3D scene information, 195
3D Video Capture, 193

KinectFusion, 194
micro lens array, 195
Time-of-flight sensors, 194
volumetric 3D video, 195

Perry's view, 196

G
Game engine, 129
GestureTek, 31
Gizmo, 134

H
Hacks application, 30
Holographika, 190
HOLOVISION project, 190
HoloVizio C80, 191

I, J
IO2 Heliodisplay, 186–87

K
Kamehameha

calibration and transformation, 53
motion detection, 54
signature energy attack, 53
working principle, 52

Kinect external component identification,
6, 7

Kinect Sensor box, 5

L
Laser plasma emission displays, 185
Libfreenect drivers, 30
LIDAR, 32

M
MatterPort

3-D capture, 60
3-D model, 57
Cloud Viewer Window, 59
Controls, 58, 59
good capture section, 59, 60
Refine button, 61, 62
snapshots, 57

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 INDEX

203

MaxMSP, 85
hackiscan, 86
Jitter, 86
Kinect, 88
patcher programming languages, 86
uses, 86

Multiview autostereoscopic displays, 184–
85

N
NITE, 30

O
openFrameworks, 93

blob detection, 95
creative coding, 93
Kinect, 94
ofxKinect, 95, 96
projected virtual puppet application, 94
uses, 93

OpenKinect, 30
OpenKinect/Libfreenect, 39
OpenNI, 42–43
OSIRIS project, 190

P, Q
Panasonic D-Imager, 39
Patcher programming languages, 86
Pepper’s Ghost-based displays, 181–84
PMD[vision] CamBoard reference design,

38
PrimeSense depth sensor system, 34
PrimeSense reference design, 36–37
Processing, 63

adding libraries, 68
download, install and explore, 64–66
kinecting, 68
libraries and sketches, 66
on Mac OS, 77

adding OpenKinect, 77
depthmap and thresholding, 80–82
higher resolution pointcloud, 79–80
Pointcloud, 77–79
updating drivers, 77

on Windows, 69
adding dLibs, 69
Depthmap, 74–75
dLibs Pointcloud, 70–71
higher resolution Pointcloud, 73, 74
Pointcloud sketch, 71–72
thresholding, 75–77
updating drivers, 69

standard examples, 66–68

R
RGBDemo, 9

binaries downloading
complete directory, 12
download link, 11
License Key, 11
OpenNI, 14
RGBDemo folder dragging, 12
SourceForge, 11

correct version, 9, 10
Kinect application, 18, 19
Mac OS X, 19, 20
OpenNI installation, 15
PrimeSense NITE installation, 17
SensorKinect installation, 16
volumetric 3D view

Color Image window, 23
depth data, 23
metaphor, 24
rgbd-viewer application, 21
synthetic camera, 23, 26, 27, 28
thermal camera, 22
volumetric 3D camera, 23

Robot Operating System, 33

S
Scripting. See Processing
Sensecast program

client software downloading, 46
hand-tracking machinery, 49
installation

Advance option and sensor, 48
Sensecast installer dialog, 47

Jonathan Hall, 46

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 INDEX

204

Sensecast program (cont.)
Kinected display, 46
launching, 49
motion-controlled content, 45
Web-like content, 45

Single lens reflex (SLR), 31
SoftKinetic DepthSense cameras, 38
Stack technology, 29
Static volume displays, 175–77
Structured light camera systems

3D depth imagery data, 32
advantages, 33
ASUS WAVI Xtion PRO, 37
LIDAR, 32
PrimeSense depth sensor system, 34
PrimeSense reference design, 36–37
Pro Live, 37
three-phase scanning technique, 33
visible light cameras, 35

Swept volume displays, 178–81

T
Time–of–flight camera systems, 37

Panasonic D-Imager, 39
PMD[vision], 38
SoftKinetic DepthSense cameras, 38

U
Ultra Seven program, 49

Calibration pose, 50
Emperium Beam, 51, 52
Eye Slugger, 50, 51
OpenNI Arena, 50
Wide Shot, 51

Unity, 129
hand tracker, 149–50
installation and supporting software,

129–32
interface, 132

navigation and transform tools, 134–
35

play controls, 135
project creation, 132–33
workspace, 133–34

stick man skeleton, 143
creation steps, 144
in game objects and components,

146–49
OpenNI functionality, 143

ZigFu. See ZigFu
USB port, 5

V
Volumetric display techniques, 175

free-space aerosal displays, 185
FogScreen display, 187–88
IO2 Heliodisplay, 186–87

laser plasma emission displays, 185
multiview autostereoscopic displays,

184–85
Pepper’s Ghost-based displays, 181–

84
projected light field arrays, 189–91
projection onto static volumes, 178
static volume displays, 175–77
swept volume displays, 178–81

W
WAVI Xtion PRO, 37
Windows Software Development Kit

(SDK), 151
advantages, 153
application building

decision analysis, 165
UI layout, 165–67

Coding4Fun, 152
disadvantages, 153
requirements

.NET framework, 154
Coding4Fun Kinect Toolkit, 155
DirectX software, 154
Microsoft’s Speech Platform, 154
system, 153
Visual Studio 2010, 154

running and troubleshooting, 155–57
setting up, 157

add references, 158–61
add using statements, 161–62

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 INDEX

205

create loaded and closed events,
162–65

create new WPF project, 157–58
writing up the UI with code, 167–73

X, Y
Xbox Development Kit (XDK), 30
Xbox Kinect system, 1, 3
Xtion PRO Live, 37

Z
ZigFu, 130, 135

and Unity, 136

game examples
Avatar2Players, 136–39
AvatarFrontFacing, 139
Blockman3rdPerson, 139
TopDownUserMap, 139

interface examples
CoverFlow, 142
Item Selector operation, 142
Item Selector parameters, 141
Item Selector scripts, 141
Slide Viewer, 143

OpenNI and NITE, 135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Meet the Kinect
An Introduction to Programming

Natural User Interfaces


















  

Sean Kean
Jonathan C. Hall
Phoenix Perry

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Meet the Kinect: Programming and Scripting Natural User Interfaces

Copyright © 2011 by Sean Kean, Jonathan C. Hall, and Phoenix Perry

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews, scholarly analysis, or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-3888-1

ISBN-13 (electronic): 978-1-4302-3889-8

Trademarked names, logos, and images may appear in this book. Rather than using a trademark symbol with every
occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion regarding whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Jarrett Webb
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Scribendi.com
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information regarding translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/
source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dedicated to Christa Erickson, artist, educator,
flaneuse, and esteemed mentor.

—Sean Kean

http://lib.ommolketab.ir
http//lib.ommolketab.ir

v

Contents

 About the Authors.. xi

 About the Technical Reviewer .. xii

 Acknowledgments ... xiii

 Chapter 1: Getting Started ..1

Buying the Correct Kinect ..1
Separating a Kinect from an Xbox ...3

Making Sure You Have the AC Adapter..4
Inspecting the Kinect, Part by Part ..5
Downloading and Installing Software..8

Finding the Correct Version of RGBDemo... 9
Downloading and Installing RGBDemo for Windows .. 10
Downloading and Installing RGBDemo for Mac OS X ... 19

Testing your Kinect ..21

 Chapter 2: Behind the Technology ..29

Understanding the Technology Stack ..29
Hardware ...31
Structured Light Camera Systems...32

PrimeSense Reference Design ... 36
ASUS WAVI Xtion PRO and PRO Live... 37

Time–of–Flight Camera Systems...37
SoftKinetic DepthSense Cameras... 38

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CONTENTS

vi

PMD [vision] time–of–flight cameras ... 38
Panasonic D-Imager ... 39

Drivers & Data..39
OpenKinect/Libfreenect .. 39
OpenNI .. 42
Commercial Drivers .. 43

Middleware and Application Development Environments ...43

 Chapter 3: Applications in the Wild ..45

Sensecast: Minority Report Meets the Web...45
Step 1: Download the Client ... 46
Step 2: Install the Dependencies .. 47
Step 3: Launch Sensecast .. 49
Step 4: Rock Out!.. 49

Ultra Seven ..49
Kamehameha...52

Body Dysmorphia...54
MatterPort..57

 Chapter 4: Scripting the Kinect...63

Processing ...63
What Processing Can Do For You ... 63
Download, Install, Explore .. 63
Processing Libraries and Sketches .. 66
Finally Kinecting ... 68

Kinect for Processing on Windows ..69
Adding dLibs... 69
Updating Drivers ... 69
Running the Pointcloud Example.. 70

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CONTENTS

vii

What the Pointcloud Sketch is Doing.. 71
Tweaking the Example ... 73

Kinect for Processing on Mac OS X ...77
Adding OpenKinect ... 77
Updating Drivers ... 77
Running the Pointcloud Example.. 77
What the Pointcloud Sketch is Doing.. 78
Tweaking the Example ... 79

Processing Plus Kinect: Beyond This Book..82

 Chapter 5: Kinect for Creatives...85

MaxMSP...85
Patcher Programming Languages .. 86
What MaxMSP Can Do for You.. 86
Getting Started: MaxMSP + Kinect ... 88

Flash Actionscript ..89
What Flash Can Do For You .. 90
Getting Started: Flash + Kinect .. 90

openFrameworks...93
What openFrameworks Can Do for You.. 93
Getting Started: openFrameworks + Kinect ... 94

Cinder ..96
What Cinder Can Do For You... 97
Getting Started With Cinder .. 97

Now, Go Forth and Create! ..98

 Chapter 6: Application Development with the Beckon Framework101

What is Beckon? ..101

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CONTENTS

viii

Installing Beckon ...103
Step 1: Remove Existing Drivers .. 103
Step 2: Install New Drivers ... 104
Step 3: Download and Install the Beckon SDK ... 104

Activating Beckon..105
Getting Started...105

Incorporating Beckon with Flash ...106
Understanding the Beckon Flash Example ..108

How Beckon Works with Flash ... 108
The Example Code .. 109
Skeleton Data ... 110
Joint Positions .. 111
Alerts .. 111
The Core Functionality.. 112

Modifying the Beckon Flash Example..114
Designing A Custom Gesture ...116
Adding a New Gesture to the SDK ...117

Recording a Gesture ... 119
Marking a Gesture .. 120
Training a Gesture .. 121
Testing a Gesture.. 123

Adding a Gesture for use by Flash...124
Building Functionality Based on a Gesture ..125

 Chapter 7: 3D Games and User Interfaces with Unity..129

Installing Unity and Supporting Software ..129
Exploring the Unity Interface ...132

Projects... 132

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CONTENTS

ix

The Workspace... 133
Basic Navigation and Transform Tools ... 134
Play Controls... 135

Understanding ZigFu’s Relation to Unity..135
OpenNI and NITE... 135
Unity and ZigFu... 136

Running the ZigFu Game Examples ...136
Avatar2Players.. 136
AvatarFrontFacing .. 139
TopDownUserMap .. 139
Blockman3rdPerson ... 139

Running the Interface Examples..140
Item Selector .. 140
CoverFlow... 142
Slide Viewer.. 143

Creating a Skeleton from Scratch..143
Task 1. Add the OpenNI Functionality... 143
Task 2. Making the Basic Skeleton .. 144
Task 3. Connecting the Pieces Together .. 146

Creating a Custom Hand Tracker...149

 Chapter 8: Microsoft’s Kinect SDK..151

Coding4Fun..152

Kinect SDK Pros and Cons ...152
Getting Started with the Kinect SDK..153

Requirements ... 153
Running and Troubleshooting the Samples.. 155
Setting Up New Kinect Projects.. 157

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CONTENTS

x

Building a Simple Application..165
Need More? ...173

 Chapter 9: Volumetric Display Techniques ...175

Static Volume Displays ..175
Projection onto Static Volumes..178

Swept Volume Displays ...178
Pepper’s Ghost-Based Displays...181
Multi View Autostereoscopic Flatscreens..184

Laser Plasma Emission Displays ...185
Free-space Aerosol Displays ...185

The IO2 Heliodisplay ... 186
The FogScreen Display ... 187

Projected Light Field Arrays...189

 Chapter 10: Where Do We Go From Here?...193

Sean Kean..193
Phoenix Perry...196

Johnathan C. Hall...197

 Index ...201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xi

About the Authors

 Sean Kean is an artist and entrepreneur living in Brooklyn, New York.
With a background spanning engineering, art, education, and travel, he is
passionate about simplifying complex technology in order to make tools
more accessible to others. Insatiable in his curiosity, the author has filled
his passport as a flight attendant, rediscovered learning through play as
an early childhood educator, studied the streets and buildings of New
York City in order to earn both a taxi driver license and real estate sales
license, and has been programming well enough to be dangerous for
more than 20 years. Sean is currently working to bridge the gap between

the physical and digital worlds at HERE, Inc. (http://here.st), to bring volumetric 3D TVs mainstream
with the VoxieBox (www.voxiebox.com), and to help professionals working with volumetric depth
cameras, software, and displays to connect to each other through the Volumetric Society
(www.volumetric.org) via a publication, conference, and local chapter meetups you can help set up in
your city.

 Jonathan C. Hall is one of the creators of Sensecast, an application that
makes it easy to build motion-controlled interfaces for content using a Kinect.
He has been an independent designer/developer for digital projects for the last
decade. Hall has also done stints as a beat reporter, a researcher for the
smartest person in the world, a technology consultant to the likes of Rob Jarvik
and King Abdullah II of Jordan, and a student of the sciences and
humanities. Jonathan holds a BA from Harvard University, where he studied
languages and religion, and about half a PhD (Communications) from
Columbia University.

 Phoenix Perry was born in Denver, CO, in 1975. From digital arts curator to
Creative Director, she has gained extensive experience in new media, design, and
user interfaces. Perry's work spans a large range of disciplines, including drawing,
generative art, video, games, and sound. Her projects have been seen worldwide at
venues and festivals, including Come out and Play, the Maker Faire at the New
York Hall of Science, the Lincoln Center, Transmediale, the Yerba Buena Center
for the Arts, the LAMCA, Harvest Works, Babycastles, the European Media Arts
Festival, GenArt, the Seoul Film Festival, and Harvestworks. She is adjunct faculty
at NYU-Poly in Integrated Digital Media and owns Devotion Gallery in Brooklyn,
NY.

http://here.st
http://www.voxiebox.com
http://www.volumetric.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

xii

About the Technical Reviewer

 Jarrett Webb creates imaginative, dynamic, interactive, immersive
experiences using multi-touch technology and the Kinect. He lives in
Austin, TX.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiii

Acknowledgments

With deep gratitude to my parents and to my wife, Kate, who have supported even my most ill-advised
endeavors.

Jonathan C. Hall

My thanks to Amir Hirsch, Alona Lerman, the OpenKinect community, and the amazing team at Apress
for helping make this book possible.

Phoenix Perry

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Getting Started
	Buying the Correct Kinect
	Separating a Kinect from an Xbox
	Making Sure You Have the AC Adapter
	Inspecting the Kinect, Part by Part
	Downloading and Installing Software
	Finding the Correct Version of RGBDemo
	Downloading and Installing RGBDemo for Windows
	Downloading and Installing RGBDemo for Mac OS X

	Testing your Kinect

	Behind the Technology
	Understanding the Technology Stack
	Hardware
	Structured Light Camera Systems
	PrimeSense Reference Design
	ASUS WAVI Xtion PRO and PRO Live

	Time–of–Flight Camera Systems
	SoftKinetic DepthSense Cameras
	PMD [vision] time–of–flight cameras
	Panasonic D-Imager

	Drivers & Data
	OpenKinect/Libfreenect
	OpenNI
	Commercial Drivers

	Middleware and Application Development Environments

	Applications in the Wild
	Sensecast: Minority Report Meets the Web
	Step 1: Download the Client
	Step 2: Install the Dependencies
	Step 3: Launch Sensecast
	Step 4: Rock Out!

	Ultra Seven
	Kamehameha
	Body Dysmorphia
	MatterPort

	Scripting the Kinect
	Processing
	What Processing Can Do For You
	Download, Install, Explore
	Processing Libraries and Sketches
	Finally Kinecting

	Kinect for Processing on Windows
	Adding dLibs
	Updating Drivers
	Running the Pointcloud Example
	What the Pointcloud Sketch is Doing
	Tweaking the Example

	Kinect for Processing on Mac OS X
	Adding OpenKinect
	Updating Drivers
	Running the Pointcloud Example
	What the Pointcloud Sketch is Doing
	Tweaking the Example

	Processing Plus Kinect: Beyond This Book

	Kinect for Creatives
	MaxMSP
	Patcher Programming Languages
	What MaxMSP Can Do for You
	Getting Started: MaxMSP + Kinect

	Flash Actionscript
	What Flash Can Do For You
	Getting Started: Flash + Kinect

	openFrameworks
	What openFrameworks Can Do for You
	Getting Started: openFrameworks + Kinect

	Cinder
	What Cinder Can Do For You
	Getting Started With Cinder

	Now, Go Forth and Create!

	Application Development with the Beckon Framework
	What is Beckon?
	Installing Beckon
	Step 1: Remove Existing Drivers
	Step 2: Install New Drivers
	Step 3: Download and Install the Beckon SDK

	Activating Beckon
	Getting Started
	Incorporating Beckon with Flash
	Understanding the Beckon Flash Example
	How Beckon Works with Flash
	The Example Code
	Skeleton Data
	Joint Positions
	Alerts
	The Core Functionality

	Modifying the Beckon Flash Example
	Designing A Custom Gesture
	Adding a New Gesture to the SDK
	Recording a Gesture
	Marking a Gesture
	Training a Gesture
	Testing a Gesture

	Adding a Gesture for use by Flash
	Building Functionality Based on a Gesture

	3D Games and User Interfaces with Unity
	Installing Unity and Supporting Software
	Exploring the Unity Interface
	Projects
	The Workspace
	Basic Navigation and Transform Tools
	Play Controls

	Understanding ZigFu’s Relation to Unity
	OpenNI and NITE
	Unity and ZigFu

	Running the ZigFu Game Examples
	Avatar2Players
	AvatarFrontFacing
	TopDownUserMap
	Blockman3rdPerson

	Running the Interface Examples
	Item Selector
	CoverFlow
	Slide Viewer

	Creating a Skeleton from Scratch
	Task 1. Add the OpenNI Functionality
	Task 2. Making the Basic Skeleton
	Task 3. Connecting the Pieces Together

	Creating a Custom Hand Tracker

	Microsoft’s Kinect SDK
	Coding4Fun
	Kinect SDK Pros and Cons
	Getting Started with the Kinect SDK
	Requirements
	Running and Troubleshooting the Samples
	Setting Up New Kinect Projects

	Building a Simple Application
	Need More?

	Volumetric Display Techniques
	Static Volume Displays
	Projection onto Static Volumes
	Swept Volume Displays
	Pepper’s Ghost-Based Displays
	Multi View Autostereoscopic Flatscreens
	Laser Plasma Emission Displays
	Free-space Aerosol Displays
	The IO2 Heliodisplay
	The FogScreen Display

	Projected Light Field Arrays

	Where Do We Go From Here?
	Sean Kean
	Phoenix Perry
	Johnathan C. Hall

	Index
	Numbers & Symbols
	A
	B
	C
	D, E
	F
	G
	H
	I, J
	K
	L
	M
	N
	O
	P, Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

