
[Team LiB]

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

Java Data Objects

By David Jordan, Craig Russell

Publisher: O'Reilly

Pub Date: April 2003

ISBN: 0-596-00276-9

Pages: 380

This book, written by the JDO Specification Lead and one of the key contributors to the JDO
Specification, is the definitive work on the JDO API. It gives you a thorough introduction to JDO,
starting with a simple application that demonstrates many of JDO's capabilities. It shows you how to
make classes persistent, how JDO maps persistent classes to the database, how to configure JDO at
runtime, how to perform transactions, and how to make queries. More advanced chapters cover
optional features such as nontransactional access and optimistic transactions. The book concludes by
discussing the use of JDO in web applications and J2EE environments Whether you only want to read
up on an interesting new technology, or are seriously considering an alternative to JDBC or EJB CMP,
you'll find that this book is essential. It provides by far the most authoritative and complete coverage
available.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

• Table of Contents

• Index

• Reviews

• Examples

• Reader Reviews

• Errata

Java Data Objects

By David Jordan, Craig Russell

Publisher: O'Reilly

Pub Date: April 2003

ISBN: 0-596-00276-9

Pages: 380

 Dedication

 Copyright

 Foreword

 Preface

 Who Should Read This Book?

 Organization

 Software and Versions

 Conventions

 Comments and Questions

 Acknowledgments

 Chapter 1. An Initial Tour

 Section 1.1. Defining a Persistent Object Model

 Section 1.2. Project Build Environment

 Section 1.3. Establish a Datastore Connection and Transaction

 Section 1.4. Operations on Instances

 Section 1.5. Summary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 2. An Overview of JDO Interfaces

 Section 2.1. The javax.jdo Package

 Section 2.2. The javax.jdo.spi Package

 Section 2.3. Optional Features

 Chapter 3. JDO Architectures

 Section 3.1. Architecture Within Application JVM

 Section 3.2. Datastore Access

 Section 3.3. System Architectures with a JDO Application

 Chapter 4. Defining Persistent Classes

 Section 4.1. Kinds of Classes and Instances

 Section 4.2. Java Classes and Metadata

 Section 4.3. Fields

 Chapter 5. Datastore Mappings

 Section 5.1. Mapping Approaches

 Section 5.2. Relational Modeling Constructs

 Section 5.3. Modeling Constructs in Java and Relational Models

 Section 5.4. Mapping Classes to Tables

 Section 5.5. Mapping a Single-Valued Field to a Column

 Section 5.6. Identity

 Section 5.7. Inheritance

 Section 5.8. References

 Section 5.9. Collections and Relationships

 Chapter 6. Class Enhancement

 Section 6.1. Enhancement Approaches

 Section 6.2. Binary Compatibility

 Section 6.3. Enhancement Effects on Your Code

 Section 6.4. Changes Made by the Enhancer

 Chapter 7. Establishing a JDO Runtime Environment

 Section 7.1. Configuring a PersistenceManagerFactory

 Section 7.2. Acquiring a PersistenceManager

 Section 7.3. Transactions

 Section 7.4. Multiple PersistenceManagers

 Section 7.5. Multithreading

 Chapter 8. Instance Management

 Section 8.1. Persistence of Instances

 Section 8.2. Extent Access

 Section 8.3. Accessing and Updating Instances

 Section 8.4. Deleting Instances

 Chapter 9. The JDO Query Language

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 9.1. Query Components

 Section 9.2. Creating and Initializing a Query

 Section 9.3. Changes in the Cache

 Section 9.4. Query Namespaces

 Section 9.5. Query Execution

 Section 9.6. The Query Filter

 Section 9.7. Ordering Query Results

 Section 9.8. Closing a Query

 Chapter 10. Identity

 Section 10.1. Overview

 Section 10.2. Datastore Identity

 Section 10.3. Application Identity

 Section 10.4. Nondurable Identity

 Section 10.5. Identity Methods

 Section 10.6. Advanced Topics

 Chapter 11. Lifecycle States and Transitions

 Section 11.1. Lifecycle States

 Section 11.2. State Interrogation

 Section 11.3. State Transitions

 Chapter 12. Field Management

 Section 12.1. Transactional Fields

 Section 12.2. null Values

 Section 12.3. Retrieval of Fields

 Section 12.4. Serialization

 Section 12.5. Managing Fields During Lifecycle Events

 Section 12.6. First- and Second-Class Objects

 Chapter 13. Cache Management

 Section 13.1. Explicit Management of Instances in the Cache

 Section 13.2. Cloning

 Section 13.3. Transient-Transactional Instances

 Section 13.4. Making a Persistent Instance Transient

 Chapter 14. Nontransactional Access

 Section 14.1. Nontransactional Features

 Section 14.2. Reading Outside a Transaction

 Section 14.3. Persistent-Nontransactional State

 Section 14.4. Retaining Values at Transaction Commit

 Section 14.5. Restoring Values at Transaction Rollback

 Section 14.6. Modifying Persistent Instances Outside a Transaction

 Chapter 15. Optimistic Transactions

 Section 15.1. Verification at Commit

 Section 15.2. Optimistic Transaction State Transitions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 15.3. Deleting Instances

 Section 15.4. Making Instances Transactional

 Section 15.5. Modifying Instances

 Section 15.6. Commit

 Section 15.7. Rollback

 Chapter 16. The Web-Server Environment

 Section 16.1. Web Servers

 Section 16.2. Struts with JDO

 Chapter 17. J2EE Application Servers

 Section 17.1. Enterprise JavaBeans Architecture

 Section 17.2. Stateless Session Beans

 Section 17.3. Bean-Managed Transactions

 Section 17.4. Message-Driven Beans

 Section 17.5. Persistent Entities and JDO

 Appendix A. Lifecycle States and Transitions

 Appendix B. JDO Metadata DTD

 Appendix C. JDO Interfaces and Exception Classes

 Section C.1. Interfaces

 Section C.2. Exceptions

 Appendix D. JDO Query Language BNF

 Section D.1. Parameter Declaration

 Section D.2. Variable Declaration

 Section D.3. Import Declaration

 Section D.4. Ordering Specification

 Section D.5. Type Specification

 Section D.6. Names

 Section D.7. Literal

 Section D.8. Filter Expressions

 Appendix E. Source Code for Examples

 Section E.1. The com.mediamania.appserver package

 Section E.2. The com.mediamania.content package

 Section E.3. The com.mediamania.hotcache package

 Section E.4. The com.mediamania.store package

 Colophon

 Index

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Dedication

To my wife Tina, whose emotional and financial support made this book possible; and to
Jennifer and Jeremy, who now think that their daddy has become addicted to his computer.

-David Jordan

To Kathy, Chris, Ali, and Juliana.

-Craig Russell

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of a lagotis and the topic of Java Data Objects is a
trademark of O'Reilly & Associates, Inc. Java and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries. O'Reilly & Associates, Inc. is independent of Sun Microsystems, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Foreword
Java Data Objects (JDO) is an important innovation for the Java platform. At a time when developers
were using JDBC almost exclusively for database access, and expert groups from major enterprise
vendors were devising the much-touted Enterprise Java Beans APIs for entity beans and container-
managed persistence, Craig Russell and David Jordan had the courage to take a different course.
With a handful of others, they looked for a simpler way to provide persistence in the Java platform,
something that would be both natural and convenient for programmers. This book describes the
result of their work: JDO.

The key, unique idea behind JDO is to provide database persistence in Java with a minimum of extra
stuff for the programmer to do. The programmer doesn't need to learn SQL, doesn't need to
tediously copy data into and out of their Java objects using JDBC calls, and can use Java classes,
fields, and references in a way that is natural to them, without lots of extra method calls and coding
that is extraneous to the programmer's focus and intent. Even queries can be written using Java
predicates instead of SQL. In other words, the programmer just writes Java; the persistence part is
automatic.

In addition to this transparent persistence, code written to JDO benefits from binary compatibility
across implementations on different datastores. JDO can be used with an object/relational mapping,
in which JDBC calls are generated automatically to map the data between Java objects and existing
relational databases. Alternatively, the JDO objects can be stored directly in file pages, providing the
functionality and performance of an object-oriented database.

The hard work on JDO paid off: the idea of transparent persistence has proven quite popular. JDO
has its own community web site, www.JDOCentral.com, and on enterprise Java discussion sites such
as www.TheServerSide.com, developers praise the simplicity and utility of JDO. Many developers use
JDO as a replacement for entity beans, by using data objects from within session beans. Others use
JDO as a convenient high-level replacement for JDBC calls in JSP pages or other Java code. JDO has
come a long way from the JDBC interface I defined in 1995 with Graham Hamilton, and JDO is quite
valuable in conjunction with J2EE.

I can't think of two individuals better qualified to write a book about JDO. Craig is the specification
lead for the JDO expert group, and Dave was one of the most active members of that group. But
their qualifications go far beyond that, and JDO was well designed as a result of those qualifications.
Both have over a decade of experience with issues in programming language persistence, including
subtle transaction semantics, different persistence models, relationships between objects, caching
performance, interactions between transient and persistent objects, and programming convenience in
practice. Both had extensive experience with C++ persistence before they applied their experience to
Java. Both were key members of the Object Data Management Group (http://www.odmg.org) for
years. And, most importantly, both were developers who appreciated and needed the functionality
that JDO provides.

Craig and Dave have put together a thorough, readable, and useful book. I hope you enjoy it as
much as I did.

-Rick Cattell, Deputy Software CTO Sun Microsystems, February 16, 2003

http://www.odmg.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Preface
JDO provides transparent persistence of your Java object models in transactional datastores. It
allows you to define your object model using all the capabilities provided in Java and it handles the
mapping of that data to a variety of underlying datastores. You do not need to learn and understand
a different data-modeling language like SQL. You will discover that JDO is very easy to use. Many
development organizations are discovering the significant development productivity advantages that
can be realized by using JDO.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Who Should Read This Book?

If you are a Java programmer who writes software that needs to store data beyond the duration of a
single Java Virtual Machine (JVM) context, then you should read this book. We assume that you
already know Java. But you don't need to have a lot of knowledge of databases, because JDO
insulates you from needing to know much about them.

Many Java developers have been using Java Database Connectivity (JDBC) to store their data in a
database. JDBC requires that you learn SQL. When you interact with a database via JDBC, you must
view your information model from the perspective of the relational data model, which is very different
from Java. Many developers never attain the advantages of object-oriented programming because
they never define an object model for their persistent data. Most of the application software becomes
very procedural-like code that manages data in the tables of the relational data model.

With JDO, Java becomes your data model and you only need to deal with instances of your classes
when interacting with the database. Having just the single data model of Java as the basis of your
data management simplifies your development task considerably.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Organization

This book has 17 chapters and 5 appendixes. The first three chapters provide a good overview,
showing a complete example, a high-level overview of the JDO interfaces, and a discussion of the
architectures in which JDO can be used. Chapter 3 through Chapter 6 deal with object modeling,
schema design, and aspects of the JDO software-development process. Chapter 7 covers aspects of
establishing a JDO runtime environment, which includes connecting to a datastore and issuing
transactions. The remaining chapters cover aspects of using JDO to store, access, and query
instances in the datastore. We start by presenting the basic concepts and gradually move to more
advanced topics, including features that are optional in JDO implementations. We complete the book
by discussing how you can integrate your applications into application-server and J2EE environments.

The following list provides a brief description of each chapter and appendix:

Chapter 1

Provides an introductory overview of JDO by walking through a small application that illustrates
many of JDO's capabilities.

Chapter 2

Provides a high-level introduction to all of JDO's interfaces. Details of these interfaces are
covered in the rest of the book. We also discuss class enhancement and the optional features in
JDO.

Chapter 3

Provides a description of the architectural components within a single JDO application and also
describes the various system architectures in which JDO implementations have been deployed.

Chapter 4

JDO maps your object models into a database. This chapter covers the Java object-modeling
capabilities supported by JDO.

Chapter 5

Explains approaches used for mapping your Java object models to the modeling components of
the underlying datastore.

Chapter 6

Covers the process and effects of enhancing your classes.
Chapter 7

Explains how to establish a connection with a datastore and establish a transaction context in
which to access objects in the database.

Chapter 8

Covers all aspects of the CRUD operations of using a database: Create, Read, Update, and
Delete. We show how to make objects persistent, accessing them from the database via
extents and navigation, and how to modify and delete them.

Chapter 9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JDO includes its own query language, which is based largely on Java, using its operators and
syntax to access objects using the data model defined by your classes.

Chapter 10

Identifies the various approaches for uniquely identifying an object in the database.
Chapter 11

Covers the lifecycle states used by a JDO implementation to manage objects in memory,
describing the state transitions that occur as your application and the JDO implemenation
perform operations on the objects.

Chapter 12

Describes transactional fields, null values in fields, special facilities that control the access of
fields, and mechanisms for you to manage fields during certain lifecycle events. The chapter
concludes with a discussion of first- and second-class objects.

Chapter 13

Covers advanced topics related to managing instances in the cache, including making
persistent instances transient, making transient instances transactional, cloning instances, and
refreshing and evicting instances in the cache.

Chapter 14

Covers techniques for accessing instances outside of a transaction.
Chapter 15

Covers all aspects of optimistic transactions in JDO.
Chapter 16

Explains how to use JDO in an application-server environment.
Chapter 17

Explains the use of JDO in an Enterprise Java Beans environment, using JDO as the persistence
service for session and entity beans, using either bean-managed persistence (BMP) or
container-managed persistence (CMP).

Appendix A

Provides a table containing all the lifecycle states and all transitions that occur for any
operation that changes the state of an instance.

Appendix B

Provides the XML Document Type Descriptor (DTD) for JDO metadata.
Appendix C

Provides the signature for all the methods in each JDO interface.
Appendix D

Provides the Backus-Naur Form (BNF) for the JDO Query Language.
Appendix E

Provides complete source code for the major classes used in the examples throughout the
book.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Software and Versions

This book is based on JDO release 1.0.1.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Conventions

The following typographical conventions are used in this book:

Italic

Used for filenames and pathnames, hostnames, domain names, URLs, and email addresses.
Italic is also used for new terms where they are defined.

Constant width

Used for code examples and fragments, XML elements and tags, and SQL commands, table
names, and column names. Constant width is also used for class, variable, and method names

and for Java keywords used within the text.

Constant width bold

Used for emphasis in some code examples.
Constant width italic

Used to indicate text that is replaceable. For example, in BeanNamePK, you would replace

BeanName with a specific bean name.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/jvadtaobj

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

[Team LiB]

http://www.oreilly.com/catalog/jvadtaobj
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Acknowledgments

We would like to thank our technical reviewers, who provided very valuable input. They include S.
Rajesh Babu (ObjectFrontier), Michael Bouschen (Tech@Spree), Ron Hitchens (Ronsoft
Technologies), Dennis Leinbaugh, Patrick Linskey (SolarMetric), Marc Prud'hommeaux (SolarMetric),
Eric Samson (LIBeLIS), David Tinker (Hemisphere Technologies), Mike Warren (Chemical Abstract
Service), and Abe White (SolarMetric). We also appreciate the valuable feedback from Linda
DeMichiel, Sun Microsystem's EJB specification lead. The feedback and suggestions from these
technical reviewers was invaluable.

We especially acknowledge the support and guidance of our editor, Michael Loukides. We would also
like to thank some of the other staff at O'Reilly, including David Futato, Robert Romano, Brian
Sawyer, and Mike Sierra.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 1. An Initial Tour
Java is a language that defines a runtime environment in which user-defined classes execute.
Instances of these user-defined classes may represent real-world data that is stored in a database,
filesystem, or mainframe transaction processing system. Additionally, small-footprint environments
often require a means of managing persistent data in local storage.

Because data-access techniques are different for each type of data source, accessing the data
presents a challenge to application developers, who need to use a different application programming
interface (API) for each type of data source. This means that you need to know at least two
languages to develop business logic for these data sources: the Java programming language and the
specialized data-access language required by the data source. The data-access language is likely to
be different for each data source, driving up the costs to learn and use each data source.

Prior to the release of Java Data Objects (JDO), three standards existed for storing Java data:
serialization, Java DataBase Connectivity (JDBC), and Enterprise JavaBeans (EJB) Container Managed
Persistence (CMP). Serialization is used to write the state of an object, and the graph of objects it
references, to an output stream. It preserves the relationships of Java objects such that the complete
graph can be reconstructed at a later point in time. But serialization does not support transactions,
queries, or the sharing of data among multiple users. It allows access only at the granularity of the
original serialization and becomes cumbersome when the application needs to manage multiple
serializations. Serialization is only used for persistence in the simplest of applications or in embedded
environments that cannot support a database effectively.

JDBC requires you to manage the values of fields explicitly and map them into relational database
tables. The developer is forced to deal with two very different data-model, language, and data-access
paradigms: Java and SQL's relational data model. The development effort to implement your own
mapping between the relational data model and your Java object model is so great that most
developers never define an object model for their data; they simply write procedural Java code to
manipulate the tables of the underlying relational database. The end result is that they are not
benefiting from the advantages of object-oriented development.

The EJB component architecture is designed to support distributed object computing. It also includes
support for persistence through Container Managed Persistence (CMP). Largely due to their
distributed capabilities, EJB applications are more complex and have more overhead than JDO.
However, JDO has been designed so that implementations can provide persistence support in an EJB
environment by integrating with EJB containers. If your application needs object persistence, but
does not need distributed object capabilities, you can use JDO instead of EJB components. The most
popular use of JDO in an EJB environment is to have EJB session beans directly manage JDO objects,
avoiding the use of Entity Beans. EJB components must be run in a managed, application-server
environment. But JDO applications can be run in either managed or nonmanaged environments,
providing you with the flexibility to choose the most appropriate environment to run your application.

You can develop applications more productively if you can focus on designing Java object models and
using JDO to store instances of your classes directly. You need to deal with only a single information
model. JDBC requires you to understand the relational model and the SQL language. When using EJB
CMP, you are also forced to learn and deal with many other aspects of its architecture. It also has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

modeling limitations not present in JDO.

JDO specifies the contracts between your persistent classes and the JDO runtime environment. JDO is
engineered to support a wide variety of data sources, including sources that are not commonly
considered databases. We therefore use the term datastore to refer to any underlying data source
that you access with JDO.

This chapter explores some of JDO's basic capabilities, by examining a small application developed by
a fictitious company called Media Mania, Inc. They rent and sell various forms of entertainment media
in stores located throughout the United States. Their stores have kiosks that provide information
about movies and the actors in those movies. This information is made available to the customers
and store staff to help select merchandise that will be of interest to the customers.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.1 Defining a Persistent Object Model

Figure 1-1 is a Unified Modeling Language (UML) diagram of the classes and interrelationships in the
Media Mania object model. A Movie instance represents a particular movie. Each actor who has
played a role in at least one movie is represented by an instance of Actor. The Role class represents
the specific roles an actor has played in a movie and thus represents a relationship between Movie
and Actor that includes an attribute (the name of the role). Each movie has one or more roles. An

actor may have played a role in more than one movie or may have played multiple roles in a single
movie.

Figure 1-1. UML diagram of the Media Mania object model

We will place these persistent classes and the application programs used to manage their instances in
the Java com.mediamania.prototype package.

1.1.1 The Classes to Persist

We will make the Movie, Actor, and Role classes persistent, so their instances can be stored in a

datastore. First we will examine the complete source code for each of these classes. An import
statement is included for each class, so it is clear which package contains each class used in the
example.

Example 1-1 provides the source code for the Movie class. JDO is defined in the javax.jdo package.

Notice that the class does not require you to import any JDO-specific classes. Java references and
collections defined in the java.util package are used to represent the relationships between our

classes, which is the standard practice used by most Java applications.

The fields of the Movie class use standard Java types such as String, Date, and int. You can

declare fields to be private; it is not necessary to define a public get and set method for each field.
The Movie class includes some methods to get and set the private fields in the class, though those

methods are used by other parts of the application and are not required by JDO. You can use
encapsulation, providing only the methods that support the abstraction being modeled. The class also
has static fields; these are not stored in the datastore.

The genres field is a String that contains the genres of the movie (action, romance, mystery, etc.).
A Set interface is used to reference a set of Role instances, representing the movie's cast. The
addRole() method adds elements to the cast collection, and getCast() returns an unmodifiable
Set containing the elements of the cast collection. These methods are not a JDO requirement, but
they are implemented as convenience methods for the application. The parseReleaseDate() and
formatReleaseDate() methods are used to standardize the format of the movie's release date. To
keep the code simple, a null is returned if the parseReleaseDate() parameter is in the wrong

format.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 1-1. Movie.java

package com.mediamania.prototype;

import java.util.Set;
import java.util.HashSet;
import java.util.Collections;
import java.util.Date;
import java.util.Calendar;
import java.text.SimpleDateFormat;
import java.text.ParsePosition;

public class Movie {
 private static SimpleDateFormat yearFmt = new SimpleDateFormat("yyyy");
 public static final String[] MPAAratings =
 { "G", "PG", "PG-13", "R", "NC-17", "NR" };
 private String title;
 private Date releaseDate;
 private int runningTime;
 private String rating;
 private String webSite;
 private String genres;
 private Set cast; // element type: Role

 private Movie()
 { }

 public Movie(String title, Date release, int duration, String rating,
 String genres) {
 this.title = title;
 releaseDate = release;
 runningTime = duration;
 this.rating = rating;
 this.genres = genres;
 cast = new HashSet();
 }
 public String getTitle() {
 return title;
 }
 public Date getReleaseDate() {
 return releaseDate;
 }
 public String getRating() {
 return rating;
 }
 public int getRunningTime() {
 return runningTime;
 }
 public void setWebSite(String site) {
 webSite = site;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public String getWebSite() {
 return webSite;
 }
 public String getGenres() {
 return genres;
 }
 public void addRole(Role role) {
 cast.add(role);
 }
 public Set getCast() {
 return Collections.unmodifiableSet(cast);
 }
 public static Date parseReleaseDate(String val) {
 Date date = null;
 try {
 date = yearFmt.parse(val);
 } catch (java.text.ParseException exc) { }
 return date;
 }
 public String formatReleaseDate() {
 return yearFmt.format(releaseDate);
 }
}

JDO imposes one requirement to make a class persistent: a no-arg constructor. If you do not define
any constructors in your class, the compiler generates a no-arg constructor. However, this
constructor is not generated if you define any constructors with arguments; in this case, you need to
provide a no-arg constructor. You can declare it to be private if you do not want your application

code to use it. Some JDO implementations can generate one for you, but this is an implementation-
specific, nonportable feature.

Example 1-2 provides the source for the Actor class. For our purposes, all actors have a unique

name that identifies them. It can be a stage name that is distinct and different from the given name.
Therefore, we represent the actor's name by a single String. Each actor has played one or more
roles, and the roles member models the Actor's side of the relationship between Actor and Role.

The comment on line [1] is used merely for documentation; it does not serve any functional purpose
in JDO. The addRole() and removeRole() methods in lines [2] and [3] are provided so that the
application can maintain the relationship from an Actor instance and its associated Role instances.

Example 1-2. Actor.java

package com.mediamania.prototype;

import java.util.Set;
import java.util.HashSet;
import java.util.Collections;

public class Actor {
 private String name;
 private Set roles; // element type: Role [1]

 private Actor()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 { }
 public Actor(String name) {
 this.name = name;
 roles = new HashSet();
 }
 public String getName() {
 return name;
 }
 public void addRole(Role role) { [2]
 roles.add(role);
 }
 public void removeRole(Role role) { [3]
 roles.remove(role);
 }
 public Set getRoles() {
 return Collections.unmodifiableSet(roles);
 }
}

Finally, Example 1-3 provides the source for the Role class. This class models the relationship
between a Movie and Actor and includes the specific name of the role played by the actor in the
movie. The Role constructor initializes the references to Movie and Actor, and it also updates the
other ends of its relationship by calling addRole(), which we defined in the Movie and Actor

classes.

Example 1-3. Role.java

package com.mediamania.prototype;

public class Role {
 private String name;
 private Actor actor;
 private Movie movie;

 private Role()
 { }
 public Role(String name, Actor actor, Movie movie) {
 this.name = name;
 this.actor = actor;
 this.movie = movie;
 actor.addRole(this);
 movie.addRole(this);
 }
 public String getName() {
 return name;
 }
 public Actor getActor() {
 return actor;
 }
 public Movie getMovie() {
 return movie;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
}

We have now examined the complete source code for each class that will have instances in the
datastore. These classes did not need to import and use any JDO-specific types. Furthermore, except
for providing a no-arg constructor, no data or methods needed to be defined to make these classes
persistent. The software used to access and modify fields and define and manage relationships
among instances corresponds to the standard practice used in most Java applications.

1.1.2 Declaring Classes to Be Persistent

It is necessary to identify which classes should be persistent and specify any persistence-related
information that is not expressible in Java. JDO uses a metadata file in XML format to specify this
information.

You can define metadata on a class or package basis, in one or more XML files. The name of the
metadata file for a single class is the name of the class, followed by a .jdo suffix. So, a metadata file
for the Movie class would be named Movie.jdo and placed in the same directory as the Movie.class

file. A metadata file for a Java package is contained in a file named package.jdo. A metadata file for a
Java package can contain metadata for multiple classes and multiple subpackages. Example 1-4
provides the metadata for the Media Mania object model. The metadata is specified for the package
and contained in a file named com/mediamania/prototype/package.jdo.

Example 1-4. JDO metadata in the file prototype/package.jdo

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC [1]
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.prototype" > [2]
 <class name="Movie" > [3]
 <field name="cast" > [4]
 <collection [5]
element-type="Role"/>
 </field>
 </class>
 <class name="Role" /> [6]
 <class name="Actor" >
 <field name="roles" >
 <collection
element-type="Role"/>
 </field>
 </class>
 </package>
</jdo>

The jdo_1_0.dtd file specified on line [1] provides a description of the XML elements that can be used
in a JDO metadata file. This document type definition (DTD) is standardized in JDO and should be
provided with a JDO implementation. It is also available for download at http://java.sun.com/dtd.

http://java.sun.com/dtd
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also alter the DOCTYPE to refer to a local copy in your filesystem.

The metadata file can contain persistence information for one or more packages that have persistent
classes. Each package is defined with a package element, which includes the name of the Java
package. Line [2] provides a package element for our com.mediamania.prototype package. Within
the package element are nested class elements that identify a persistent class of the package (e.g.,
line [3] has the class element for the Movie class). The file can contain multiple package elements

listed serially; they are not nested.

If information must be specified for a particular field of a class, a field element is nested within the
class element, as shown on line [4]. For example, you could declare the element type for each
collection in the model. This is not required, but it can result in a more efficient mapping. The Movie
class has a collection named cast, and the Actor class has a collection named roles; both contain
Role references. Line [5] specifies the element type for cast. In many cases, a default value for an

attribute is assumed in the metadata that provides the most commonly needed value.

All of the fields that can be persistent are made persistent by default. Static and final fields cannot be
made persistent. A field declared in Java to be transient is not persistent by default, but such a field
can be declared as persistent in the metadata file. Chapter 4 describes this capability.

Chapter 4, Chapter 10, Chapter 12, and Chapter 13 cover other characteristics you can specify for
classes and fields. For a simple class like Role, which does not have any collections, you can just list

the class in the metadata as shown on line [6], if no other metadata attributes are necessary.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.2 Project Build Environment

In this section, we examine a development environment to compile and run our JDO application. This
includes the project directory structure, the jar files necessary to build applications, and the syntax
for enhancing persistent classes. We describe class enhancement later in this section. The
environment setup partly depends on which JDO implementation you use. Your specific project's
development environment and directory structure may differ.

You can use either the Sun JDO reference implementation or another implementation of your
choosing. The examples in this book use the JDO reference implementation. You can download the
JDO reference implementation by visiting http://www.jcp.org and selecting JSR-12. Once you have
installed a JDO implementation, you will need to establish a project directory structure and define a
classpath that includes all the directories and jar files necessary to build and run your application.

JDO introduces a new step in your build process, called class enhancement. Each persistent class
must be enhanced so that it can be used in a JDO runtime environment. Your persistent classes are
compiled using a Java compiler that produces a class file. An enhancer program reads these class
files and JDO metadata and creates new class files that have been enhanced to operate in a JDO
environment. Your JDO application should load these enhanced class files. The JDO reference
implementation includes an enhancer called the reference enhancer.

1.2.1 Jars Needed to Use the JDO Reference Implementation

When using the JDO reference implementation, you should include the following jar files in your
classpath during development. At runtime, all of these jar files should be in your classpath.

jdo.jar

The standard interfaces and classes defined in the JDO specification.
jdori.jar

Sun's reference implementation of the JDO specification.
btree.jar

Software used by the JDO reference implementation to manage the storage of data in a file.
The reference implementation uses a file for the storage of persistent instances.

jta.jar

The Java Transaction API. The Synchronization interface defined in package
javax.transaction is used in the JDO interface and contained in this jar file. Other facilities

defined in this file are likely to be useful to a JDO implementation. You can download this jar
from http://java.sun.com/products/jta/index.html.

antlr.jar

Parsing technology used in the implementation of the JDO query language. The reference
implementation uses Version 2.7.0 of Antlr. You can download it from http://www.antlr.org.

http://www.jcp.org
http://java.sun.com/products/jta/index.html
http://www.antlr.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

xerces.jar

The reference implementation uses Xerces-J Release 1.4.3 to parse XML. It can be downloaded
from http://xml.apache.org/xerces-j/.

The first three jar files are included with the JDO reference implementation; the last three can be
downloaded from the specified web sites.

The reference implementation includes an additional jar, jdori-enhancer.jar, that contains the
reference enhancer implementation. The classes in jdori-enhancer.jar are also in jdori.jar. In most
cases, you will use jdori.jar in both your development and runtime environment, and not need jdori-
enhancer.jar. The jdori-enhancer.jar is packaged separately so that you can enhance your classes
using the reference enhancer independent of a particular JDO implementation. Some
implementations, besides the reference implementation, may distribute this jar for use with their
implementation.

If you use a different JDO implementation, its documentation should provide you with a list of all the
necessary jars. An implementation usually places all the necessary jars in a particular directory in
their installation. The jdo.jar file containing the interfaces defined in JDO should be used with all
implementations. This jar file is usually included with a vendor's implementation. JDOcentral.com
(http://www.jdocentral.com) provides numerous JDO resources, including free trial downloads of
many commercial JDO implementations.

1.2.2 Project Directory Structure

You should use the following directory structure for the Media Mania application development
environment. The project must have a root directory placed somewhere in the filesystem. The
following directories reside beneath the project's root directory:

src

This directory contains all of the application's source code. Under src, there is a subdirectory
hierarchy of com/mediamania/prototype (corresponding to the Java
com.mediamania.prototype package). This is where the Movie.java, Actor.java, and Role.java

source files reside.
classes

When the Java source files are compiled, their class files are placed in this directory.
enhanced

This is the directory that contains the enhanced class files (produced by the enhancer).
database

This directory contains the files used by the reference implementation to store our persistent
data.

Though this particular directory structure is not a requirement of JDO or the reference
implementation, you need to understand it to follow our description of the Media Mania application.

When you execute your JDO application, the Java runtime must load the enhanced version of the
class files, which are located in our enhanced directory. Therefore, the enhanced directory should be
listed prior to the classes directory in your classpath. As an alternative approach, you can also

http://xml.apache.org/xerces-j/
http://www.jdocentral.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

enhance in-place, replacing your unenhanced class file with their enhanced form.

1.2.3 Enhancing Classes for Persistence

A class must be enhanced before its instances can be managed in a JDO environment. A JDO
enhancer adds data and methods to your classes that enable their instances to be managed by a JDO
implementation. An enhancer reads a class file produced by the Java compiler and, using the JDO
metadata, produces a new, enhanced class file that includes the necessary functionality. JDO has
standardized the modifications made by enhancers so that enhanced class files are binary-compatible
and can be used with any JDO implementation. These enhanced files are also independent of any
specific datastore.

As mentioned previously, the enhancer provided with Sun's JDO reference implementation is called
the reference enhancer. A JDO vendor may provide its own enhancer; the command-line syntax
necessary to execute an enhancer may differ from the syntax shown here. Each implementation
should provide you with documentation explaining how to enhance your classes for use with their
implementation.

Example 1-5 provides the reference enhancer command for enhancing the persistent classes in our
Media Mania application. The -d argument specifies the root directory in which to place the enhanced

class files; we have specified our enhanced directory. The enhancer is given a list of JDO metadata
files and a set of class files to enhance. The directory separator and line-continuation symbols may
vary, depending on your operating system and build environment.

Example 1-5. Enhancing the persistent classes

java com.sun.jdori.enhancer.Main -d enhanced \
 classes/com/mediamania/prototype/package.jdo \
 classes/com/mediamania/prototype/Movie.class \
 classes/com/mediamania/prototype/Actor.class \
 classes/com/mediamania/prototype/Role.class

Though it is convenient to place the metadata files in the directory with the source code, the JDO
specification recommends that the metadata files be available via resources loaded by the same class
loader as the class files. The metadata is needed at both build and runtime. So, we have placed the
package.jdo metadata file under the classes directory hierarchy in the directory for the prototype

package.

The class files for all persistent classes in our object model are listed together in Example 1-5, but
you can also enhance each class individually. When this command executes, it places new, enhanced
class files in the enhanced directory.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.3 Establish a Datastore Connection and Transaction

Now that our classes have been enhanced, their instances can be stored in a datastore. We now
examine how an application establishes a connection with a datastore and executes operations within a
transaction. We begin to write software that makes direct use of the JDO interfaces. All JDO interfaces
used by an application are defined in the javax.jdo package.

JDO has an interface called PersistenceManager that has a connection with a datastore. A
PersistenceManager has an associated instance of the JDO Transaction interface used to control the
start and completion of a transaction. The Transaction instance is acquired by calling
currentTransaction() on the PersistenceManager instance.

1.3.1 Acquiring a PersistenceManager

A PersistenceManagerFactory is used to configure and acquire a PersistenceManager . Methods in
the PersistenceManagerFactory are used to set properties that control the behavior of the
PersistenceManager instances acquired from the factory. Therefore, the first step performed by a JDO
application is the acquisition of a PersistenceManagerFactory instance. To get this instance, call the
following static method of the JDOHelper class:

static PersistenceManagerFactory getPersistenceManagerFactory(Properties props);

The Properties instance can be populated programmatically or by loading property values from a

property file. Example 1-6 lists the contents of the property file we will use in our Media Mania
application. The PersistenceManagerFactoryClass property on line [1] specifies which JDO

implementation we are using by providing the name of the implementation's class that implements the
PersistenceManagerFactory interface. In this case, we specify the class defined in Sun's JDO reference

implementation. Other properties listed in Example 1-6 include the connection URL used to connect to a
particular datastore and a username and password, which may be necessary to establish a connection to
the datastore

Example 1-6. Contents of jdo.properties

javax.jdo.PersistenceManagerFactoryClass=com.sun.jdori.fostore.FOStorePMF [1]
javax.jdo.option.ConnectionURL=fostore:database/fostoredb
javax.jdo.option.ConnectionUserName=dave
javax.jdo.option.ConnectionPassword=jdo4me
javax.jdo.option.Optimistic=false

The format of the connection URL depends on the particular datastore being accessed. The JDO
reference implementation has its own storage facility called File Object Store (FOStore). The
ConnectionURL property in Example 1-6 specifies that the datastore is located in the database directory,

which is located in our project's root directory. In this case, we have provided a relative path; it is also
possible to provide an absolute path to the datastore. The URL specifies that the FOStore datastore files
will have a name prefix of fostoredb .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are using a different implementation, you will need to provide different values for these
properties. You may also need to provide values for additional properties. Check with your
implementation's documentation to determine the properties that are necessary.

1.3.2 Creating a FOStore Datastore

To use FOStore we must first create a datastore. The program in Example 1-7 creates a datastore using
the jdo.properties file; all applications use this property file. Line [1] loads the properties from
jdo.properties into a Properties instance. The program adds the
com.sun.jdori.option.ConnectionCreate property on line [2] to indicate that the datastore should
be created. Setting it to true instructs the implementation to create the datastore. We then call
getPersistenceManagerFactory() on line [3] to acquire the PersistenceManagerFactory . Line [4]
creates a PersistenceManager .

To complete the creation of the datastore, we must also begin and commit a transaction. The
PersistenceManager method currentTransaction() is called on line [5] to access the Transaction
instance associated with the PersistenceManager . The Transaction methods begin() and commit(
) are called on lines [6] and [7] to start and commit a transaction. When you execute this application,

a FOStore datastore is created in the database directory. Two files are created: fostore.btd and
fostore.btx .

Example 1-7. Creating a FOStore datastore

package com.mediamania;

import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Properties;
import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;
import javax.jdo.PersistenceManager;
import javax.jdo.Transaction;

public class CreateDatabase {
 public static void main(String[] args) {
 create();
 }
 public static void create() {
 try {
 InputStream propertyStream = new FileInputStream("jdo.properties");
 Properties jdoproperties = new Properties();
 jdoproperties.load(propertyStream); [1]
 jdoproperties.put("com.sun.jdori.option.ConnectionCreate", "true"); [2]
 PersistenceManagerFactory pmf =
 JDOHelper.getPersistenceManagerFactory(jdoproperties); [3]
 PersistenceManager pm = pmf.getPersistenceManager(); [4]
 Transaction tx = pm.currentTransaction(); [5]
 tx.begin(); [6]
 tx.commit(); [7]
 } catch (Exception e) {
 System.err.println("Exception creating the database");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 e.printStackTrace();
 System.exit(-1);
 }
 }
}

The JDO reference implementation provides this programmatic means to create a database. Most
databases provide a utility separate from JDO for creating a database. JDO does not define a standard,
vendor-independent interface for creating a database. Creation of a datastore is always datastore-
specific. This program illustrates how it is done using the FOStore datastore.

In addition, when you are using JDO with a relational database, there is often an additional step of
creating or mapping to an existing relational schema. The procedure to follow for establishing a schema
that corresponds with your JDO object model is implementation-specific. You should examine the
documentation of the implementation you are using to determine the necessary steps.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.4 Operations on Instances

Now we have a datastore in which we can store instances of our classes. Each application needs to acquire a
PersistenceManager to access and update the datastore. Example 1-8 provides the source for the
MediaManiaApp class, which serves as the base class for each application in this book. Each application is a
concrete subclass of MediaManiaApp that implements its application logic in the execute() method.

MediaManiaApp has a constructor that loads the properties from jdo.properties (line [1]). After loading
properties from the file, it calls getPropertyOverrides() and merges the returned properties into
jdoproperties . An application subclass can redefine getPropertyOverrides() to provide any additional

properties or change properties that are set in the jdo.properties file. The constructor gets a
PersistenceManagerFactory (line [2]) and then acquires a PersistenceManager (line [3]). We also
provide the getPersistenceManager() method to access the PersistenceManager from outside the
MediaManiaApp class. The Transaction associated with the PersistenceManager is acquired on line [4] .

The application subclasses make a call to executeTransaction() , defined in the MediaManiaApp class. This
method begins a transaction on line [5] . It then calls execute() on line [6] , which will execute the

subclass-specific functionality.

We chose this particular design for application classes to simplify and reduce the amount of redundant code in
the examples for establishing an environment to run. This is not required in JDO; you can choose an approach
that is best suited for your application environment.

After the return from the execute() method (implemented by a subclass), an attempt is made to commit

the transaction (line [7]). If any exceptions are thrown, the transaction is rolled back and the exception is
printed to the error stream.

Example 1-8. MediaManiaApp base class

package com.mediamania;

import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Properties;
import java.util.Map;
import java.util.HashMap;
import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;
import javax.jdo.PersistenceManager;
import javax.jdo.Transaction;

public abstract class MediaManiaApp {
 protected PersistenceManagerFactory pmf;
 protected PersistenceManager pm;
 protected Transaction tx;

 public abstract void execute(); // defined in concrete application subclasses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected static Map getPropertyOverrides() {
 return new HashMap();
 }
 public MediaManiaApp() {
 try {
 InputStream propertyStream = new FileInputStream("jdo.properties");
 Properties jdoproperties = new Properties();
 jdoproperties.load(propertyStream); [1]
 jdoproperties.putAll(getPropertyOverrides());
 pmf = JDOHelper.getPersistenceManagerFactory(jdoproperties); [2]
 pm = pmf.getPersistenceManager(); [3]
 tx = pm.currentTransaction(); [4]
 } catch (Exception e) {
 e.printStackTrace(System.err);
 System.exit(-1);
 }
 }
 public PersistenceManager getPersistenceManager() {
 return pm;
 }
 public void executeTransaction() {
 try {
 tx.begin(); [5]
 execute(); [6]
 tx.commit(); [7]
 } catch (Throwable exception) {
 exception.printStackTrace(System.err);
 if (tx.isActive()) tx.rollback();
 }
 }
}

1.4.1 Making Instances Persistent

Let's examine a simple application, called CreateMovie , that makes a single Movie instance persistent, as
shown in Example 1-9 . The functionality of the application is placed in execute() . After constructing an
instance of CreateMovie , we call executeTransaction() , which is defined in the MediaManiaApp base
class. It makes a call to execute() , which will be the method defined in this class. The execute() method
instantiates a single Movie instance on line [5] . Calling the PersistenceManager method makePersistent(
) on line [6] makes the Movie instance persistent. If the transaction commits successfully in
executeTransaction() , the Movie instance will be stored in the datastore.

Example 1-9. Creating a Movie instance and making it persistent

package com.mediamania.prototype;

import java.util.Calendar;
import java.util.Date;
import com.mediamania.MediaManiaApp;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class CreateMovie extends MediaManiaApp {
 public static void main(String[] args) {
 CreateMovie createMovie = new CreateMovie();
 createMovie.executeTransaction();
 }
 public void execute() {
 Calendar cal = Calendar.getInstance();
 cal.clear();
 cal.set(Calendar.YEAR, 1997);
 Date date = cal.getTime();
 Movie movie = new Movie("Titanic", date, 194, "PG-13", "historical, drama"); [5]
 pm.makePersistent(movie); [6]
 }
}

Now let's examine a larger application. LoadMovies , shown in Example 1-10 , reads a file containing movie
data and creates multiple instances of Movie . The name of the file is passed to the application as an
argument, and the LoadMovies constructor initializes a BufferedReader to read the data. The execute()
method reads one line at a time from the file and calls parseMovieData() , which parses the line of input
data, creates a Movie instance on line [1] , and makes it persistent on line [2] . When the transaction
commits in executeTransaction() , all of the newly created Movie instances will be stored in the datastore.

Example 1-10. LoadMovies

package com.mediamania.prototype;

import java.io.FileReader;
import java.io.BufferedReader;
import java.util.Calendar;
import java.util.Date;
import java.util.StringTokenizer;
import javax.jdo.PersistenceManager;
import com.mediamania.MediaManiaApp;

public class LoadMovies extends MediaManiaApp {
 private BufferedReader reader;

 public static void main(String[] args) {
 LoadMovies loadMovies = new LoadMovies(args[0]);
 loadMovies.executeTransaction();
 }
 public LoadMovies(String filename) {
 try {
 FileReader fr = new FileReader(filename);
 reader = new BufferedReader(fr);
 } catch (Exception e) {
 System.err.print("Unable to open input file ");
 System.err.println(filename);
 e.printStackTrace();
 System.exit(-1);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public void execute() {
 try {
 while (reader.ready()) {
 String line = reader.readLine();
 parseMovieData(line);
 }
 } catch (java.io.IOException e) {
 System.err.println("Exception reading input file");
 e.printStackTrace(System.err);
 }
 }
 public void parseMovieData(String line) {
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String title = tokenizer.nextToken();
 String dateStr = tokenizer.nextToken();
 Date releaseDate = Movie.parseReleaseDate(dateStr);
 int runningTime = 0;
 try {
 runningTime = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing running time for ");
 System.err.println(title);
 }
 String rating = tokenizer.nextToken();
 String genres = tokenizer.nextToken();
 Movie movie = new Movie(title, releaseDate, runningTime, rating, genres); [1]
 pm.makePersistent(movie); [2]
 }
}

The movie data is in a file with the following format:

movie title;release date;running time;movie rating;genre1,genre2,genre3

The format to use for release dates is maintained in the Movie class, so parseReleaseDate() is called to
create a Date instance from the input data. A movie is described by one or more genres, which are listed at

the end of the line of data.

1.4.2 Accessing Instances

Now let's access the Movie instances in the datastore to verify that they were stored successfully. There are

several ways to access instances in JDO:

Iterate an extent

Navigate the object model

Execute a query

An extent is a facility used to access all the instances of a particular class or the class and all its subclasses. If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the application wants to access only a subset of the instances, a query can be executed with a filter that
constrains the instances returned to those that satisfy a Boolean predicate. Once the application has accessed
an instance from the datastore, it can navigate to related instances in the datastore by traversing through
references and iterating collections in the object model. Instances that are not yet in memory are read from
the datastore on demand. These facilities for accessing instances are often used in combination, and JDO
ensures that each persistent instance is represented in the application memory only once per
PersistenceManager . Each PersistenceManager manages a single transaction context.

1.4.2.1 Iterating an extent

JDO provides the Extent interface for accessing the extent of a class. The extent allows access to all of the

instances of a class, but using an extent does not imply that all the instances are in memory. The
PrintMovies application, provided in Example 1-11 , uses the Movie extent.

Example 1-11. Iterating the Movie extent

package com.mediamania.prototype;

import java.util.Iterator;
import java.util.Set;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;
import com.mediamania.MediaManiaApp;

public class PrintMovies extends MediaManiaApp {

 public static void main(String[] args) {
 PrintMovies movies = new PrintMovies();
 movies.executeTransaction();
 }

 public void execute() {
 Extent extent = pm.getExtent(Movie.class, true); [1]
 Iterator iter = extent.iterator(); [2]
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next(); [3]
 System.out.print(movie.getTitle()); System.out.print(";");
 System.out.print(movie.getRating()); System.out.print(";");
 System.out.print(movie.formatReleaseDate()); System.out.print(";");
 System.out.print(movie.getRunningTime()); System.out.print(";");
 System.out.println(movie.getGenres()); [4]

 Set cast = movie.getCast(); [5]
 Iterator castIterator = cast.iterator();
 while (castIterator.hasNext()) {
 Role role = (Role) castIterator.next(); [6]
 System.out.print("\t");
 System.out.print(role.getName());
 System.out.print(", ");
 System.out.println(role.getActor().getName()); [7]
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 extent.close(iter); [8]
 }
}

On line [1] we acquire an Extent for the Movie class from the PersistenceManager . The second parameter
indicates whether to include instances of Movie subclasses. A value of false causes only Movie instances to

be returned, even if there are instances of subclasses. Though we don't currently have any classes that extend
the Movie class, providing a value of true will return instances of any such classes that we may define in the
future. The Extent interface has the iterator() method, which we call on line [2] to acquire an Iterator
that will access each element of the extent. Line [3] uses the Iterator to access Movie instances. The
application can then perform operations on the Movie instance to acquire data about the movie to print. For
example, on line [4] we call getGenres() to get the genres associated with the movie. On line [5] we
acquire the set of Role s. We acquire a reference to a Role on line [6] and then print the role's name. On line
[7] we navigate to the Actor for that role by calling getActor() , which we defined in the Role class. We

then print the actor's name.

Once the application has completed iteration through the extent, line [8] closes the Iterator to relinquish
any resources required to perform the extent iteration. Multiple Iterator instances can be used concurrently
on an Extent . This method closes a specific Iterator ; closeAll() closes all the Iterator instances
associated with an Extent .

1.4.2.2 Navigating the object model

Example 1-11 demonstrates iteration of the Movie extent. But on line [6] we also navigate to a set of related
Role instances by iterating a collection in our object model. On line [7] we use the Role instance to navigate
through a reference to the related Actor instance. Line [5] and [7] demonstrate, respectively, traversal of to-

many and to-one relationships. A relationship from one class to another has a cardinality that indicates
whether there are one or multiple associated instances. A reference is used for a cardinality of one, and a
collection is used when there can be more than one instance.

The syntax needed to access these related instances corresponds to the standard practice of navigating
instances in memory. The application does not need to make any direct calls to JDO interfaces between lines
[3] and [7] . It simply traverses among objects in memory. The related instances are not read from the
datastore and instantiated in memory until they are accessed directly by the application. Access to the
datastore is transparent; instances are brought into memory on demand. Some implementations provide
facilities separate from the Java interface that allow you to influence the implementation's access and caching
algorithms. Your Java application is insulated from these optimizations, but it can take advantage of them to
affect its overall performance.

The access of related persistent instances in a JDO environment is identical to the access of transient
instances in a non-JDO environment, so you can write your software in a manner that is independent of its use
in a JDO environment. Existing software written without any knowledge of JDO or any other persistence
concerns is able to navigate objects in the datastore through JDO. This capability yields dramatic increases in
development productivity and allows existing software to be incorporated into a JDO environment quickly and
easily.

1.4.2.3 Executing a query

It is also possible to perform a query on an Extent . The JDO Query interface is used to select a subset of the
instances that meet certain criteria. The remaining examples in this chapter need to access a specific Actor or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Movie based on a unique name. These methods, shown in Example 1-12 , are virtually identical; getActor()
performs a query to get an Actor based on a name, and getMovie() performs a query to get a Movie based

on a name.

Example 1-12. Query methods in the PrototypeQueries class

package com.mediamania.prototype;

import java.util.Collection;
import java.util.Iterator;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;
import javax.jdo.Query;

public class PrototypeQueries {
 public static Actor getActor(PersistenceManager pm, String actorName)
 {
 Extent actorExtent = pm.getExtent(Actor.class, true); [1]
 Query query = pm.newQuery(actorExtent, "name == actorName"); [2]
 query.declareParameters("String actorName"); [3]
 Collection result = (Collection) query.execute(actorName); [4]
 Iterator iter = result.iterator();
 Actor actor = null;
 if (iter.hasNext()) actor = (Actor)iter.next(); [5]
 query.close(result); [6]
 return actor;
 }
 public static Movie getMovie(PersistenceManager pm, String movieTitle)
 {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 Query query = pm.newQuery(movieExtent, "title == movieTitle");
 query.declareParameters("String movieTitle");
 Collection result = (Collection) query.execute(movieTitle);
 Iterator iter = result.iterator();
 Movie movie = null;
 if (iter.hasNext()) movie = (Movie)iter.next();
 query.close(result);
 return movie;
 }
}

Let's examine getActor() . On line [1] we get a reference to the Actor extent. Line [2] creates an instance
of Query using the newQuery() method defined in the PersistenceManager interface. The query is initialized

with the extent and a query filter to apply to the extent.

The name identifier in the filter is the name field in the Actor class. The namespace used to determine how to
interpret the identifier is based on the class of the Extent used to initialize the Query instance. The filter
expression requires that an Actor 's name field is equal to actorName . In the filter we can use the == operator
directly to compare two String s, instead of using the Java syntax (name.equals(actorName)).

The actorName identifier is a query parameter , which is declared on line [3] . A query parameter lets you
provide a value to be used when the query is executed. We have chosen to use the same name, actorName ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for the method parameter and query parameter. This practice is not required, and there is no direct
association between the names of our Java method parameters and our query parameters. The query is
executed on line [4] , passing getActor() 's actorName parameter as the value to use for the actorName

query parameter.

The result type of Query.execute() is declared as Object . In JDO 1.0.1, the returned instance is always a
Collection , so we cast the query result to a Collection . It is declared in JDO 1.0.1 to return Object , to
allow for a future extension of returning a value other than a Collection . Our method then acquires an
Iterator and, on line [5] , attempts to access an element. We assume here that there can only be a single
Actor instance with a given name. Before returning the result, line [6] closes the query result to relinquish
any associated resources. If the method finds an Actor instance with the given name, the instance is
returned. Otherwise, if the query result has no elements, a null is returned.

1.4.3 Modifying an Instance

Now let's examine two applications that modify instances in the datastore. Once an application has accessed
an instance from the datastore in a transaction, it can modify one or more fields of the instance. When the
transaction commits, all modifications that have been made to instances are propagated to the datastore
automatically.

The UpdateWebSite application provided in Example 1-13 is used to set the web site associated with a movie.

It takes two arguments: the first is the movie's title, and the second is the movie's web site URL. After
initializing the application instance, executeTransaction() is called, which calls the execute() method

defined in this class.

Line [1] calls getMovie() (defined in Example 1-12) to retrieve the Movie with the given title. If getMovie(
) returns null , the application reports that it could not find a Movie with the given title and returns.
Otherwise, on line [2] we call setWebSite() (defined for the Movie class in Example 1-1), which sets the
webSite field of Movie to the parameter value. When executeTransaction() commits the transaction, the
modification to the Movie instance is propagated to the datastore automatically.

Example 1-13. Modifying an attribute

package com.mediamania.prototype;

import com.mediamania.MediaManiaApp;

public class UpdateWebSite extends MediaManiaApp {
 private String movieTitle;
 private String newWebSite;

 public static void main (String[] args) {
 String title = args[0];
 String website = args[1];
 UpdateWebSite update = new UpdateWebSite(title, website);
 update.executeTransaction();
 }
 public UpdateWebSite(String title, String site) {
 movieTitle = title;
 newWebSite = site;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void execute() {
 Movie movie = PrototypeQueries.getMovie(pm, movieTitle); [1]
 if (movie == null) {
 System.err.print("Could not access movie with title of ");
 System.err.println(movieTitle);
 return;
 }
 movie.setWebSite(newWebSite); [2]
 }
}

As you can see in Example 1-13 , the application does not need to make any direct JDO interface calls to
modify the Movie field. This application accesses an instance and calls a method to modify the web site field.

The method modifies the field using standard Java syntax. No additional programming is necessary prior to
commit in order to propagate the data to the datastore. The JDO environment propagates the modifications
automatically. This application performs an operation on persistent instances, yet it does not directly import or
use any JDO interfaces.

Now let's examine a larger application, called LoadRoles , that exhibits several JDO capabilities. LoadRoles ,

shown in Example 1-14 , is responsible for loading information about the movie roles and the actors who play
them. LoadRoles is passed a single argument that specifies the name of a file to read, and the constructor
initializes a BufferedReader to read the file. It reads the text file, which contains one role per line, in the

following format:

movie title;actor's name;role name

Usually, all the roles associated with a particular movie are grouped together in this file; LoadRoles performs

a small optimization to determine whether the role information being processed is for the same movie as the
previous role entry in the file.

Example 1-14. Instance modification and persistence-by-reachability

package com.mediamania.prototype;

import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;
import com.mediamania.MediaManiaApp;

public class LoadRoles extends MediaManiaApp {
 private BufferedReader reader;

 public static void main(String[] args) {
 LoadRoles loadRoles = new LoadRoles(args[0]);
 loadRoles.executeTransaction();
 }
 public LoadRoles(String filename) {
 try {
 FileReader fr = new FileReader(filename);
 reader = new BufferedReader(fr);
 } catch(java.io.IOException e){
 System.err.print("Unable to open input file ");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.err.println(filename);
 System.exit(-1);
 }
 }
 public void execute() {
 String lastTitle = "";
 Movie movie = null;
 try {
 while (reader.ready()) {
 String line = reader.readLine();
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String title = tokenizer.nextToken();
 String actorName = tokenizer.nextToken();
 String roleName = tokenizer.nextToken();
 if (!title.equals(lastTitle)) {
 movie = PrototypeQueries.getMovie(pm, title); [1]
 if (movie == null) {
 System.err.print("Movie title not found: ");
 System.err.println(title);
 continue;
 }
 lastTitle = title;
 }
 Actor actor = PrototypeQueries.getActor(pm, actorName); [2]
 if (actor == null) {
 actor = new Actor(actorName); [3]
 pm.makePersistent(actor); [4]
 }
 Role role = new Role(roleName, actor, movie); [5]
 }
 } catch (java.io.IOException e) {
 System.err.println("Exception reading input file");
 System.err.println(e);
 return;
 }
 }
}

The execute() method reads each entry in the file. First, it checks to see whether the new entry's movie title
is the same as the previous entry. If it is not, line [1] calls getMovie() to access the Movie with the new
title. If a Movie with that title does not exist in the datastore, the application prints an error message and
skips over the entry. On line [2] we attempt to access an Actor instance with the specified name. If no Actor
in the datastore has this name, a new Actor is created and given this name on line [3] , and made persistent

on line [4] .

Up to this point in the application, we have just been reading the input file and looking up instances in the
datastore that have been referenced by a name in the file. We perform the real task of the application on line
[5] , where we create a new Role instance. The Role constructor was defined in Example 1-3 ; it is repeated

here so that we can examine it in more detail:

public Role(String name, Actor actor, Movie movie) {
 this.name = name; [1]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.actor = actor; [2]
 this.movie = movie; [3]
 actor.addRole(this); [4]
 movie.addRole(this); [5]
}

Line [1] initializes the name of the Role . Line [2] establishes a reference to the associated Actor , and line
[3] establishes a reference to the associated Movie instance. The relationships between Actor and Role and
between Movie and Role are bidirectional, so it is also necessary to update the other side of each relationship.
On line [4] we call addRole() on actor , which adds this Role to the roles collection in the Actor class.
Similarly, line [5] calls addRole() on movie to add this Role to the cast collection field in the Movie class.
Adding the Role as an element in Actor.roles and Movie.cast causes a modification to the instances
referenced by actor and movie .

The Role constructor demonstrates that you can establish a relationship to an instance simply by initializing a

reference to it, and you can establish a relationship with more than one instance by adding references to a
collection. This process is how relationships are represented in Java and is supported directly by JDO. When
the transaction commits, the relationships established in memory are preserved in the datastore.

Upon return from the Role constructor, load() processes the next entry in the file. The while loop

terminates once we have exhausted the contents of the file.

You may have noticed that we never called makePersistent() on the Role instances we created. Still, at
commit, the Role instances are stored in the datastore because JDO supports persistence-by-reachability .

Persistence-by-reachability causes any transient (nonpersistent) instance of a persistent class to become
persistent at commit if it is reachable (directly or indirectly) by a persistent instance. Instances are reachable
through either a reference or collection of references. The set of all instances reachable from a given instance
is an object graph that is called the instance's complete closure of related instances. The reachability algorithm
is applied to all persistent instances transitively through all their references to instances in memory, causing
the complete closure to become persistent.

Removing all references to a persistent instance does not automatically delete the instance. You need to delete
instances explicitly, which we cover in the next section. If you establish a reference from a persistent instance
to a transient instance during a transaction, but you change this reference and no persistent instances
reference the transient instance at commit, it remains transient.

Persistence-by-reachability lets you write a lot of your software without having any explicit calls to JDO
interfaces to store instances. Much of your software can focus on establishing relationships among the
instances in memory, and the JDO implementation takes care of storing any new instances and relationships
you establish among the instances in memory. Your applications can construct fairly complex object graphs in
memory and make them persistent simply by establishing a reference to the graph from a persistent instance.

1.4.4 Deleting Instances

Now let's examine an application that deletes some instances from the datastore. In Example 1-15 , the
DeleteMovie application is used to delete a Movie instance. The title of the movie to delete is provided as the
argument to the program. Line [1] attempts to access the Movie instance. If no movie with the title exists,
the application reports an error and returns. On line [6] we call deletePersistent() to delete the Movie

instance itself.

Example 1-15. Deleting a Movie from the datastore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.mediamania.prototype;

import java.util.Collection;
import java.util.Set;
import java.util.Iterator;
import javax.jdo.PersistenceManager;
import com.mediamania.MediaManiaApp;

public class DeleteMovie extends MediaManiaApp {
 private String movieTitle;

 public static void main(String[] args) {
 String title = args[0];
 DeleteMovie deleteMovie = new DeleteMovie(title);
 deleteMovie.executeTransaction();
 }
 public DeleteMovie(String title) {
 movieTitle = title;
 }
 public void execute() {
 Movie movie = PrototypeQueries.getMovie(pm, movieTitle); [1]
 if (movie == null) {
 System.err.print("Could not access movie with title of ");
 System.err.println(movieTitle);
 return;
 }
 Set cast = movie.getCast(); [2]
 Iterator iter = cast.iterator();
 while (iter.hasNext()) {
 Role role = (Role) iter.next();
 Actor actor = role.getActor(); [3]
 actor.removeRole(role); [4]
 }
 pm.deletePersistentAll(cast); [5]
 pm.deletePersistent(movie); [6]
 }
}

But it is also necessary to delete the Role instances associated with the Movie . In addition, since an Actor
includes a reference to the Role instance, it is necessary to remove this reference. On line [2] we access the
set of Role instances associated with the Movie . We then iterate through each Role and access the
associated Actor on line [3] . Since we will be deleting the Role instance, on line [4] we remove the actor 's
reference to the Role . On line [5] we make a call to deletePersistentAll() to delete all the Role
instances in the movie's cast. When we commit the transaction, the Movie instance and associated Role
instances are deleted from the datastore, and the Actor instances associated with the Movie are updated so
that they no longer reference the deleted Role instances.

You must call these deletePersistent() methods explicitly to delete instances from the datastore. They are
not the inverse of makePersistent() , which uses the persistence-by-reachability algorithm. Furthermore,

there is no JDO datastore equivalent to Java's garbage collection, which deletes instances automatically once
they are no longer referenced by any instances in the datastore. Implementing the equivalent of a persistent
garbage collector is a very complex undertaking, and such systems often have poor performance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

1.5 Summary

As you can see, a large portion of an application can be written in a completely JDO-independent
manner using conventional Java modeling, syntax, and programming techniques. You can define your
application's persistent information model solely in terms of a Java object model. Once you access
instances from the datastore via an extent or query, your software looks no different from any other
Java software that accesses instances in memory. You do not need to learn any other data model or
access language like SQL. You do not need to figure out how to provide a mapping of your data
between a database representation and an in-memory object representation. You can fully exploit the
object-oriented capabilities of Java without any limitation. This includes use of inheritance and
polymorphism, which are not possible using technologies like JDBC and the Enterprise JavaBeans
(EJB) architecture. In addition, you can develop an application using an object model with much less
software than when using competitive architectures. Plain, ordinary Java objects can be stored in a
datastore and accessed in a transparent manner. JDO provides a very easy-to-learn and productive
environment to build Java applications that manage persistent data.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 2. An Overview of JDO Interfaces
JDO's interfaces are defined in two packages: javax.jdo and javax.jdo.spi. You use the interfaces
defined in the javax.jdo package to write your applications. This chapter introduces and describes

each of these interfaces at a high level. Each method defined in these interfaces is covered
thoroughly in this book. You can use the index to find information on a particular method.

The javax.jdo.spi package contains interfaces that JDO implementations use (spi stands for

service provider interface). It is a common practice to have such a package that defines interfaces for
use by the implementation of a Java API, distinct from the package that contains the interfaces for
use of the API. You should not directly use any of the interfaces defined in javax.jdo.spi. We
provide brief coverage of a few of the javax.jdo.spi interfaces that are directly involved in the

management of persistent class instances. If you are interested in a thorough understanding of the
interfaces in javax.jdo.spi, we encourage you to read the JDO specification.

We conclude this chapter by enumerating the optional features in JDO.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.1 The javax.jdo Package

The javax.jdo package contains all the interfaces you should use:

PersistenceManager

PersistenceManagerFactory

Transaction

Extent

Query

InstanceCallbacks

It also contains the JDOHelper class and a set of exception classes.

This is the complete set of JDO application interfaces! JDO has a relatively small API, allowing you to
learn it quickly and become productive applying it. JDO uses your Java classes as the data model for
representing and managing data, which is major contributing factor in its simplicity and ease of use.

Every method in each of these interfaces is described somewhere in this book. We introduce basic
JDO concepts first and gradually progress to more advanced topics. Semantically related methods are
often covered in the same section, but coverage of the methods for a particular interface is usually
dispersed throughout the text. Appendix C provides the signature for every method in each interface.
The index provides a reference to each place in the book where a method is covered. Here's a brief
description of each interface in the package:

PersistenceManager

PersistenceManager is your primary interface when using JDO. It provides methods to create

query and transaction objects, and it manages the lifecycle of persistent instances. Each
chapter introduces a few PersistenceManager methods. The interface is used for the basic

and advanced features in JDO.
PersistenceManagerFactory

The PersistenceManagerFactory is responsible for configuring and creating
PersistenceManager instances. It represents the particular JDO implementation you are

using; it has methods to determine the properties and optional features the implemention
supports. PersistenceManagerFactory also provides methods to control property values used

to establish a datastore connection and affect the configuration of the runtime environment in
which the PersistenceManager instances run; these methods are covered in Chapter 7.

JDOHelper

JDOHelper is a class that provides several static utility methods. As shown in Chapter 1, it is
used to construct a PersistenceManagerFactory instance from a Properties object. It also

provides methods to interrogate the lifecycle state of instances (covered in Chapter 11).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Transaction

The Transaction interface provides methods to manage the demarcation (begin and

commit/rollback) of transactions. Chapter 7 covers these methods in detail. Each
PersistenceManager instance has one associated Transaction instance, accessible via
currentTransaction(). Transaction also has methods for controlling the values of

transaction options.
Extent

The Extent interface is used to access all the instances of a class (and, potentially, its
subclasses). You acquire an Extent by calling the getExtent() method of a
PersistenceManager. You can either iterate over the Extent or use it to perform a query.
Chapter 8 covers the Extent interface in detail.

Query

You use the Query interface to perform queries. A Query instance has several components, and

the interface provides methods to specify a value for each of them. The query evaluates a filter
expressed in the JDO Query Language (JDOQL). Chapter 9 covers the Query interface in detail.

InstanceCallbacks

The InstanceCallbacks interface provides a means for you to specify some behavior to

perform when specific lifecycle events occur in an instance of a persistent class. The interface
defines methods that are called on an instance when it undergoes a lifecycle change. A
persistent class must implement the InstanceCallbacks interface for these methods to be

called. Chapter 12 and Chapter 13 cover this interface and its callback methods.

Figure 2-1 illustrates the relationships among the JDO interfaces and shows the method used to
create or navigate to the related instance.

Figure 2-1. Relationships among instances of JDO interfaces

Some methods in the JDO interfaces are used to perform advanced operations. Some applications
may use advanced JDO features, but a large percentage of the software in such applications will use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

only a small subset of JDO's methods. The following list of core JDO interfaces provide the majority,
and, in many cases, all of the functionality necessary to use JDO:

PersistenceManagerFactory properties

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

JDOHelper

getPersistenceManagerFactory(Properties)

PersistenceManagerFactory

getPersistenceManager()

PersistenceManager

makePersistent(Object)

deletePersistent(Object)

close()

newQuery(Class, String)

currentTransaction()

Transaction

begin()

commit()

rollback()

Query

declareParameters(String)

execute()

We demonstrated the use of most of these methods in Chapter 1. The fact that this list of interfaces
is so small is a major reason JDO is so easy to use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Your persistent classes can have fields of the following standard Java types: byte, short, char, int,
long, float, double, Byte, Short, Character, Integer, Long, Float, Double, BigInteger,
BigDecimal, String, Date, Set, and HashSet. Your persistent classes can contain references to both

persistent and transient classes. You can also define inheritance hierarchies and have references that
refer to instances of subclasses. JDO directly supports the persistence of your Java object models,
without requiring you to learn and use any new datatypes.

2.1.1 JDO Exception Classes

There are many opportunities for a component to fail that are not under the application's control. A
JDO implementation is often built as a layer on an underlying datastore interface, which itself might
use a layered protocol to another tier in a system's architecture. The source of an error may be
caused by the application, the JDO implementation, or the underlying datastore on one or several
tiers in an architecture.

JDO's exception philosophy is to treat all exceptions as runtime exceptions. This preserves the
transparency of JDO's interface as much as possible, allowing you to choose which specific exceptions
to catch based upon your application requirements.

JDO exceptions fall into several broad categories, each of which is treated separately:

Program errors that can be corrected and retried

Program errors that cannot be corrected, because the state of underlying components has been
changed and cannot be undone

Logic errors internal to the JDO implementation, which should be reported to the vendor's
technical support

Errors in the underlying datastore that can be corrected and retried

Errors in the underlying datastore that cannot be corrected, due to a failure of the datastore or
the communication path to the datastore

JDO uses several interfaces external to the JDO API itself (e.g., the Collection interfaces). An

exception that results from using one of these interfaces is used directly, without modification. If an
exception occurs in the underlying datastore, the exception is wrapped inside a JDO exception. If
your application causes a JDO exception, the exception contains the reason it was thrown.

Figure 2-2 illustrates the JDO exception inheritance hierarchy. The base exception class is called
JDOException, and it extends RuntimeException. The classes that extend JDOException divide

exceptions into those that are fatal and those that can be retried. The hierarchy is then extended
based on the original source of the error. JDO exceptions are serializable.

Figure 2-2. JDOException inheritance hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter provides complete coverage of the exception classes in the book. Let's examine each
exception class:

JDOException

JDOException is the base class for all JDO exceptions. Since it is a subclass of
RuntimeException, JDO exceptions do not need to be declared or caught. The class includes a
toString() method that returns a value indicating the nature of the exception. If the
PersistenceManager is internationalized, the descriptive string is also internationalized.

If an exception is relative to a specific instance of one of your classes, you can call
getFailedObject() to retrieve the instance. If the exception is caused by multiple instances,

then each instance is wrapped in its own exception instance, and all of these exceptions are
nested inside an exception that is thrown to the application. Such nested exceptions can occur
as a result of multiple underlying exceptions or from an exception that involves multiple
instances. You may have called a method that accepts a collection of instances, and multiple
instances in the collection failed the operation. Or you may have called commit() in
Transaction, which can fail on instances accessed during the transaction. In these cases, you
can call getNestedExceptions() on the thrown exception to retrieve the array of nested

exceptions. Each nested exception may have its own failed instance, returned by
getFailedObject().

JDOException contains all of the functionality needed to access information about the

exception. Its subclasses do not add any additional functionality to access information; they are
used strictly to categorize the type of exception and provide a means for the application to
catch and respond to an exception differently, based on its type and associated category.

JDOCanRetryException

This is the base class for exceptions that can be retried.
JDODataStoreException

This is the base class for datastore exceptions that can be retried.
JDOUserException

This is the base class for exceptions caused by your application that can be retried.
JDOUnsupportedOptionException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This exception is thrown if you attempt to use an optional JDO feature that the implementation
does not support.

JDOObjectNotFoundException

This exception occurs if an attempt is made to fetch an object that does not exist in the
datastore.

JDOFatalException

This is the base class for exceptions that are fatal and cannot be retried. Usually, when this
exception is thrown, the transaction has been rolled back and should be abandoned.

JDOFatalInternalException

This is the base class for all failures within the JDO implementation itself. There is no action
that can be taken to recover from this exception. You should report this exception to the JDO
vendor for corrective action.

JDOFatalUserException

This is the base class for exceptions caused by your application that cannot be retried.
JDOFatalDataStoreException

This is the base class for fatal datastore exceptions. When this exception is thrown, the
transaction has been rolled back. The cause of the exception may be a connection timeout, an
unrecoverable media error, an unrecoverable concurrency conflict, or some other cause outside
of the application's control.

JDOOptimisticVerificationException

A verification step (which is described in Chapter 15) is performed on all instances that are
new, modified, or deleted when you make a call to commit an optimistic transaction. If any
instances fail this verification step, a JDOOptimisticVerificationException is thrown. It

contains an array of nested exceptions; each nested exception contains an instance that failed
verification. More details on optimistic transactions and the verification step can be found in
Chapter 15.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.2 The javax.jdo.spi Package

The javax.jdo.spi package defines interfaces used by JDO implementations. Your application

should not use the interfaces in this package. However, a few interfaces in this package are useful for
you to be aware of, as they are directly responsible for managing the state of persistent instances.

PersistenceCapable

The PersistenceCapable interface allows an implementation to manage the values of fields

and the lifecycle state of persistent instances. Every instance managed by a
PersistenceManager needs to be of a class that implements PersistenceCapable. When you
enhance a persistent class, code is added to the class to implement the PersistenceCapable

interface.

You should not directly use the PersistenceCapable methods added by the enhancer. Some

of its methods provide information useful to your application; these methods are made
accessible to you through the JDOHelper and PersistenceManager interfaces.

StateManager

Every persistent and transactional instance has a reference to a StateManager instance.
(Chapter 13 covers transactional instances.) A StateManager interfaces with the
PersistenceManager and is responsible for managing the values of fields and state transitions

of an instance. (Chapter 11 covers state transitions.)
JDOPermission

The JDOPermission class is used to grant the JDO implementation permission to perform

privileged operations if you have a Java security manager in your Java runtime environment.
JDOPermission extends java.security.BasicPermission. The following permissions are

defined:

setStateManager

This permission allows a StateManager instance to manage an instance of
PersistenceCapable, allowing it to access and modify any of the fields in the class that

are defined as persistent or transactional. (Chapter 12 covers transactional fields.)
getMetadata

This permission allows a StateManager instance to access the metadata of any

registered persistent class.
closePersistenceManagerFactory

This permission must be granted to close a PersistenceManagerFactory.

Use of the JDOPermission class allows the security manager to restrict potentially malicious

classes from accessing information contained in instances of persistent classes.

Assume that you have placed the jar files for the JDO implementation you are using in the
/home/jdoImpl directory. The following sample policy-file entry grants any jars or class files in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that directory permission to get metadata and manage the state of persistent instances:
grant codeBase "file:/home/jdoImpl/" {
 permission javax.jdo.spi.JDOPermission "getMetadata";
 permission javax.jdo.spi.JDOPermission "setStateManager";
};

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

2.3 Optional Features

JDO defines some features that are optional; JDO-compliant implementations are not required to
implement them. Each optional feature is identified by a unique name, which includes a
javax.jdo.option prefix. You can call the supportedOptions() method, defined in
PersistenceManagerFactory, to determine which options an implementation supports; it returns a
Collection of Strings that contain an option string. Chapter 7 presents an example using this

method. Here we enumerate all the optional features and their names.

The optional features can be grouped into the following categories:

Identity options

Optional collections

Transaction-related optional features

2.3.1 Identity Options

Each instance managed in a JDO environment must have a unique identifier. The following options
are associated with identity:

javax.jdo.option.ApplicationIdentity

javax.jdo.option.DatastoreIdentity

javax.jdo.option.NonDurableIdentity

javax.jdo.option.ChangeApplicationIdentity

The first three options represent different kinds of identity. The fourth option indicates whether you
can change the value of the fields that represent the application identity of an instance.

Support for each form of identity is optional. However, an implementation must support either
datastore or application identity, and may support both. In Chapter 1 we used datastore identity,
which is supported by all of the current JDO implementations. Until we cover identity in depth in
Chapter 10, all of our examples will use datastore identity.

2.3.2 Optional Collections

All JDO implementations support the Collection and Set collection interfaces and the HashSet
collection class defined in the java.util package. Other collections are optional in JDO, though

current implementations support most of them. The following collection options are associated with a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

corresponding collection interface or class in the java.util package:

javax.jdo.option.ArrayList

javax.jdo.option.HashMap

javax.jdo.option.Hashtable

javax.jdo.option.LinkedList

javax.jdo.option.TreeMap

javax.jdo.option.TreeSet

javax.jdo.option.Vector

javax.jdo.option.Map

javax.jdo.option.List

javax.jdo.option.Array

javax.jdo.option.NullCollection

Chapter 4 discusses optional collections in more detail. The Array option indicates whether Java's
built-in arrays are supported. The NullCollection option indicates whether you can have a null

value for a reference to a collection.

2.3.3 Transaction-Related Optional Features

The following options deal with transactions and special handling of instances relative to transactions:

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.RetainValues

javax.jdo.option.TransientTransactional

javax.jdo.option.Optimistic

Some implementations allow you to read or modify an instance in memory outside of a transaction;
this capability is indicated by the NontransactionalRead and NontransactionalWrite options.

Some allow the instances you access during a transaction to be retained and made available after the
transaction commits; this capability is determined by the RetainValues option. Chapter 14 covers

nontransactional access and retaining of instances after commit. Some implementations let you have
instances that are transient yet also support transactional semantics; these are called transient
transactional instances, and they are covered in Chapter 13. The Optimistic option indicates

whether optimistic transactions are supported; these transactions are covered in Chapter 15.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 3. JDO Architectures
One of JDO's primary objectives is to provide you with a transparent, Java-centric view of persistent
information stored in a wide variety of datastores. You can use the Java programming model to
represent the data in your application domain and transparently retrieve and store this data from
various systems, without needing to learn a new data-access language for each type of datastore.
The JDO implementation provides the necessary mapping from your Java objects to the special
datatypes and relationships of the underlying datastore. Chapter 4 discusses Java modeling
capabilities you can use in your applications. This chapter provides a high-level overview of the
architectural aspects of JDO, as well as examples of environments in which JDO can be used. We
cannot enumerate all such environments in this book, because JDO is capable of running in a wide
variety of architectures.

A JDO implementation is a collection of classes that implement the interfaces defined in the JDO
specification. The implementation may be provided by an Enterprise Information System (EIS)
vendor or a third-party vendor; in this context, we refer to both as JDO vendors. A JDO
implementation provided by an EIS vendor will most likely be optimized for the specific EIS.

The JDO architecture simplifies the development of scalable, secure, and transactional JDO
implementations that support the JDO interface. You can access a wide variety of storage solutions
that have radically different architectures and data models, but you can use a single, consistent,
Java-centric view of the information from all the datastores.

The JDO architecture can be used to access and manage data contained in local storage systems and
heterogeneous EISs, such as enterprise resource planning (ERP) systems, mainframe transaction
processing systems, and database systems. JDO was designed to be suitable for a wide range of
uses, from embedded small-footprint systems to large-scale enterprise application servers. A JDO
implementation may provide an object-relational mapping tool that supports a broad array of
relational databases. JDO vendors can build implementations directly on the filesystem or as a layer
on top of a protocol stack with multiple components.

JDO has been designed to work in three primary environments:

Nonmanaged, single transaction

Involves a single transaction and a single JDO implementation, where compactness is the
primary concern. Nonmanaged refers to the lack of distribution and security within the JVM.
The security of the datastore is implemented by name/password controls.

Nonmanaged, multiple transactions

Identical to the first, except that the application uses extended features, such as concurrent
transactions.

Managed

Uses the full range of capabilities of an application server, including distributed components and
coordinated transactions. Security policies are applied to components based on user roles and
security domains.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can focus on developing your application's business and presentation logic without having to get
involved in the issues related to connecting to a specific EIS. The JDO implementation hides the EIS-
specific issues, such as datatype mapping, relationship mapping, and the retrieval and storage of
data. Your application sees only a Java view of the data, organized as classes using native Java
constructs. EIS-specific issues are important only during deployment of your application.

In a nonmanaged environment, you do not rely on the managed services of security, transaction, and
connection management offered by a middle-tier application server. Chapter 1 through Chapter 15
cover the uses of JDO in a nonmanaged environment, most of which also apply to a managed
environment.

When JDO is deployed in a managed environment, it uses the J2EE Java Connector Architecture,
which defines a set of portable, scalable, secure, and transactional mechanisms for integrating an EIS
with an application server. These mechanisms focus on important aspects of integration with
heterogeneous systems: instance management, connection management, and transaction
management. The Java Connector Architecture enables a standard JDO implementation to be
pluggable across application servers from multiple vendors.

Managed environments also provide transparency for application components' use of system-level
mechanisms-distributed transactions, security, and connection management-by hiding the
contracts between JDO implementation and the application server. Chapter 16 covers the use of JDO
in the web server environment. Chapter 17 explains how to use JDO to provide persistence services
in a J2EE application-server environment, which supports the Enterprise JavaBeans (EJB)
architecture.

Multiple JDO implementations-possibly multiple implementations per type of EIS or local
storage-can be plugged into an application server concurrently, or they can be used directly in a
two-tier or embedded architecture. JDO also allows a persistent class to be used concurrently with
multiple JDO implementations in the same Java Virtual Machine (JVM) or application-server
environment. This enables application components-deployed on a middle-tier application server or
client-tier-to access the underlying datastores using the same consistent, Java-centric view of data.

The persistent classes that you define can migrate easily from one environment to another. This also
allows you to debug persistent classes and parts of your application code in a simple one- or two-tier
environment and deploy them in another tier of the system architecture.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.1 Architecture Within Application JVM

JDO supports a variety of architectures within the application's JVM context. Your application can
have one or multiple PersistenceManagers accessing the same or different datastores concurrently.
Each PersistenceManager has its own persistent instance cache and its own associated
Transaction instance, which manages a distinct transactional context. A JDO implementation may

also maintain a shared cache of instances (not visible to applications) to optimize the application's
access of data in the datastore.

3.1.1 Single PersistenceManager

The simplest JDO application architecture has a single PersistenceManager, as illustrated in Figure
3-1. A PersistenceManager is the primary interface used by the application to access persistent

services. It is an interface that is implemented by an instance of the JDO implementation. The
persistent instances are managed in a cache, where they are used directly by the application. The
JDO implementation manages the persistent instances both by using application control (e.g., using
PersistenceManager and Query methods), and transparently (when the application accesses a field

that is not loaded). The cache contains other artifacts, used to track the identity and state of the
instances, but these artifacts are not visible to the application. Whenever we mention the cache, we
are referring to the cache of persistent instances.

Figure 3-1. Application using a single PersistenceManager to access a
datastore

The application cache is not a specific region of memory, as Figure 3-1 might imply; it is simply part
of the JVM's object heap. Each persistent class has a field, named jdoStateManager, added by the
enhancer to reference a StateManager. The StateManager manages the field values and lifecycle
state of the instance, and has a reference to its associated PersistenceManager. A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PersistenceManager may use one or more StateManagers; this detail is implementation-specific.
The jdoStateManager field for any instance being managed (either a persistent or transient
transactional instance) is set to reference a StateManager; otherwise, the jdoStateManager field is
null.

A persistent instance in the cache can directly reference other persistent instances in the same cache.
You can navigate from one instance to another using standard Java syntax. Instances of transient
classes (for example, your application class) can also reference these persistent instances. A
persistent instance in the cache can also reference transient instances of both persistent and
transient classes. The persistent classes themselves are responsible for managing references to
transient instances; the JDO implementation does not manage these references.

Figure 3-2 shows the relationships between the persistent instances, the StateManager, and the
PersistenceManager. Each persistent instance contains a reference to a StateManager, which can
manage one or more persistent instances. Each StateManager contains a reference to its
PersistenceManager, which can manage one or more StateManagers. Each PersistenceManager
contains a reference to its PersistenceManagerFactory, which can manage one or more
PersistenceManagers. Each PersistenceManager can manage one transaction serially, and
contains a reference to its Transaction instance. The PersistenceManager uses a StoreManager to

interact with the datastore; this relationship is not defined by the JDO specification.

Figure 3-2. UML diagram of persistent instance cache

3.1.2 Multiple PersistenceManagers Accessing the Same Datastore

You can instantiate multiple PersistenceManagers in your application from the same or different
PersistenceManagerFactorys. Figure 3-3 illustrates an application with two PersistenceManagers
from the same PersistenceManagerFactory.

Figure 3-3. Application with multiple PersistenceManagers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each PersistenceManager manages its own transaction context and application cache. In this
particular example, both PersistenceManagers access the same datastore and are from the same

JDO implementation. This is the typical architecture for managed environments where different
instances of the same component access the same datastore via different PersistenceManagers.

Both PersistenceManagers may have the same datastore instance in their caches, represented by

different persistent instances. This architecture provides for transactional isolation of changes made
to the same datastore instance by different transactions.

3.1.3 Multiple PersistenceManagers Accessing Different Datastores

Figure 3-4 illustrates PersistenceManagers accessing different datastores. These
PersistenceManagers could be from the same or different implementations. For example, one

datastore may be a relational database and the other an object database. Due to JDO's binary-
compatibility contract (covered in Chapter 6), PersistenceManagers from different implementations

can manage different instances of the same persistent classes. JDO is the first database-interface
technology to offer this high level of portability across database architectures.

Figure 3-4. Application with multiple JDO implementations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.4 Shared Implementation Cache

In addition to the application cache, some JDO implementations also maintain their own persistent
instance cache that sits between the application cache and the datastore. Your application does not
have access to this implementation cache. Its role is to cache the state of objects from the datastore
in memory, so they can be provided to the application without requiring access to the datastore. Use
of caches can result in significant performance improvements. A shared implementation cache is most
useful when you use nontransactional access, covered in Chapter 14, or optimistic transactions,
covered in Chapter 15. When you use datastore transactions, the shared cache is usually bypassed.

3.1.4.1 Shared implementation cache within a single JVM

Figure 3-5 illustrates a shared implementation cache that is managed within a single JVM. It allows
each of the PersistenceManagers to quickly access the state of objects that have been accessed

from the same datastore.

Figure 3-5. Implementation of a shared cache for transactions accessing
the same datastore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, if one PersistenceManager accesses a particular instance, the implementation needs
to read the instance from the datastore. But if the other PersistenceManager then accesses the

same instance, the implementation can use the data in the shared implementation cache and avoid
having to access the datastore.

3.1.4.2 Shared implementation cache distributed among JVMs

Several JDO implementations provide a distributed cache architecture, which allows them to migrate
the state of objects between JVMs. Figure 3-6 illustrates this architecture.

Figure 3-6. Implementation use of distributed, synchronized caches

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Again, the goal with these implementations is to avoid a datastore access whenever possible. For
some systems where multiple applications may access the same objects, these implementations
demonstrate substantial performance improvements.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.2 Datastore Access

We have explored the architecture in the application's JVM and discussed the application cache and
implementation cache. Now let's examine the architectures of JDO implementations. We'll discuss
each type of datastore separately.

These architectures don't affect your application's programming model, but they affect the
configuration of the environment in which your application executes. In particular, the
ConnectionURL property of the Properties instance used to construct the
PersistenceManagerFactory refers to a local or remote datastore.

3.2.1 Direct Access of Filesystem or Local Datastore

Some JDO implementations store the objects directly in a local filesystem or datastore. Figure 3-1
illustrates this architecture. There is only a single process context in this architecture. The JDO
implementation uses the Java I/O classes directly to manage the storage of the objects in a file. The
JDO Reference Implementation implements this architecture, as do some object databases.

3.2.2 Remote Access of a JDO Server

Some JDO implementations connect to a separate server that manages the datastore, as illustrated
in Figure 3-7. The JDO Reference Implementation implements this architecture, as do most object
databases. In this particular example, the JDO implementation itself provides a server built
specifically for object storage, which then manages the filesystem directly. The component that
executes in the same JVM as the JDO implementation and communicates with the remote server is
called a resource adapter. The protocols between the client JVM and the JDO Server are vendor-
specific.

Figure 3-7. Client access of a JDO server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2.3 Remote Access of a SQL Datastore

Figure 3-8 illustrates the use of a relational database server for object storage. This is the most
common architecture used by current commercial JDO implementations. Since the application is
written in Java, the JDO implementation uses JDBC to communicate with the database server. When
you deploy your application, you use a proprietary tool supplied by the JDO vendor to map your
application's Java objects to tables in the relational database. Some JDO implementations use your
application's persistent object model to create the relational schema for you.

Figure 3-8. Client access of a SQL datastore

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The relational vendor or a third party provides a JDBC driver to communicate with the database,
using protocols specific to the database. The JDBC driver is the resource adapter in this architecture.

Since the JDBC interface is well defined, this architecture offers a high degree of portability. JDO
implementations have been written to use a variety of datastores that provide a JDBC driver
implementation. While the JDBC interface is standard, the SQL data manipulation language, used by
the relational databases, varies considerably; the JDO implementation hides these differences from
JDO applications.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

3.3 System Architectures with a JDO Application

Now we'll examine where JDO objects and application logic can be placed relative to an application's
overall system architecture, including both managed and nonmanaged environments. In the
remaining examples in this chapter, we don't show the details of how the JDO implementation
manages the storage for the persistent instances.

3.3.1 JDO Rich Client with Local Datastore

The simplest form of system architecture is a one- or two-tier application that may be executed from
the command line, from a shell script, or via a graphical user interface. We refer to the application as
a rich client to distinguish it from a browser that simply displays HTML and executes applets. The
application uses local filesystem and JDO persistent services directly.

3.3.2 JDO Applications in a Web Server

Figure 3-9 illustrates how an application can use JDO to provide persistent services to the
implementation of a web servlet or JavaServer Pages (JSP). When using JSP pages, the application
typically will use JDO in one of two ways: by calling JDO's APIs directly in Java, or using a JSP tag
library to abstract the JDO API (similar to the way the JSP Standard Tag Library abstracts the JDBC
API).

Figure 3-9. JDO application running in a web server

With this architecture, the servlet/JSP page gets data from the browser in the form of strings from an
HTTP doGet() or doPost() request and uses JDO to implement the request. Your application may

use the Struts framework to implement the servlets and JSP pages in this architecture. We will
discuss the web-server access patterns in detail in Chapter 16.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.3 JDO Applications as Web Services

Figure 3-9 also illustrates the use of JDO as the persistence implementation for a web server
implementation of a web services endpoint. The web server may register the service using UDDI and
a registry service, and clients may find the service via the same registry.

A web server implementation uses a servlet to implement the service endpoint. The servlet can use
the JDO API for the persistent service, exactly as it does for servicing HTTP requests. The primary
difference between SOAP and standard HTTP is that with SOAP requests, the message data in the
HTTP message is formatted as SOAP XML instead of get/post data.

3.3.4 Rich Client Connecting to Application Server with EJB Components

Figure 3-10 illustrates a rich client connecting directly to an application server using EJB beans. This
architecture typically is implemented behind the firewall of a company, as it directly exposes
enterprise services to clients. The clients use the JNDI services of the J2EE client container to look up
services by name (including EJB beans) and to connect to the server via RMI/IIOP or a proprietary
protocol. Alternatively, a client may use SOAP protocols to access the middle-tier server.

Figure 3-10. Rich-client connection to an application server using EJB
beans

The EJB components inside the EJB container use other EJB components to implement their services.
They use a combination of JDBC and JDO to access persistent services. Session beans and message-
driven beans use JDO and JDBC directly. Entity beans use JDO transparently (the container
implements CMP entity beans using JDO but does not expose JDO as an API to the CMP developer).

3.3.5 Web Server with EJB Server

Figure 3-11 illustrates servlets and JSP pages that use the services of an EJB container to implement
the business logic of an enterprise application. The EJB beans executing inside the EJB container use
JDO as their persistence service. The web and EJB containers often reside in the same JVM in this
architecture, even though they represent different tiers of the architecture.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-11. Servlets and JSP pages access services of the EJB container

3.3.6 EJB Session Beans Using Session Bean Façades

Figure 3-12 illustrates the session bean delegating parts of the business logic to session bean façades
that use JDO as their implementation. This architecture allows location transparency among the
components. For example, if the session bean that interacts directly with clients delegates part of the
functionality to other session-bean components, this architecture allows the other components to be
located in different machines. Chapter 17 describes this architecture in detail.

Figure 3-12. EJB session beans using session bean delegates

3.3.7 JDO Providing Container-Managed Persistence

As a side note, an EJB server may implement J2EE container-managed persistence (CMP) entity
beans using JDO as the persistence layer. The J2EE components and the users of these components
are unaware that JDO is used for the implementation of the persistence service.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 4. Defining Persistent Classes
A Java program consists of many different kinds of classes, including:

Classes that model business objects

Classes that serve as user interface objects

Classes that provide various kinds of glue between different parts of the application

System classes of various sorts

JDO focuses on the classes whose data has a corresponding representation in the underlying
datastore: classes that represent business objects or classes that represent application-specific data
that must remain persistent between application invocations.

These classes may represent data that comes from a single entity in the datastore, or they may
represent data from several entities; JDO doesn't place any limitations on where the data comes
from. For example, the data may come from:

A single object in an object-oriented database

A single row of a relational database

The result of a relational database query, consisting of several rows

The merging of several tables in a relational database

The execution of a method from a data retrieval API that accesses an Enterprise Resource
Planning (ERP) system

A JDO implementation maps data from its representation in the datastore to its representation in
memory as a Java object, and vice versa. The mapping is based on metadata, which must be
available both when the Java class is enhanced and at runtime. JDO does not standardize the
mapping to a specific datastore.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.1 Kinds of Classes and Instances

First, we must define some terms and provide some distinctions that are essential for understanding
JDO. The term "object" often refers to either a class or an instance of a class, which can be confusing
sometimes. Therefore, we will use the terms "instance" and "class" instead of "object," because it will
be essential for you to understand which we are discussing.

4.1.1 Kinds of Classes

When using JDO, every class falls into one of the following two categories:

Persistent class

A persistent class can have its instances stored in the datastore. To be persistent, a class must
be specified in a metadata file and enhanced. The JDO specification refers to these as
persistence-capable classes.

Transient class

A transient class cannot have its instances stored in the datastore. Transient classes are not
listed in a metadata file.

Furthermore, classes can be distinguished by their use of the JDO API:

JDO-aware class

A JDO-aware class makes direct use of the JDO API. For example, it can perform a JDO query
to retrieve instances from the datastore, or make specific instances persistent.

JDO-transparent class

A JDO-transparent class does not make direct use of the JDO API.

Whether a class is JDO-aware or JDO-transparent is unrelated to whether it is persistent. For
example, the persistent classes Movie, Actor, and Role that we introduced in Chapter 1 are JDO-

transparent, because they never made an explicit call to the JDO API. On the other hand, the
MediaManiaApp class is JDO-aware, because it uses the JDO API directly: it creates a
PersistenceManager and uses it to execute transactions. MediaManiaApp is not persistent.

4.1.2 Kinds of Instances

JDO supports several kinds of instances. The names we introduce in this section are used throughout
the book to refer to these different kinds of instances. In particular, we use specific terminology to
differentiate a transient instance of a transient class from a transient instance of a persistent class.
All JDO implementations support the first three kinds of instances listed here; the last two are
optional:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instance of a transient class

All instances of a transient class are transient. For the most part, however, we focus on
instances of persistent classes.

Transient instance

A transient instance is an instance of a persistent class that is not associated with the
datastore. It is simply an instance you create in your application that is never made persistent
and is used independent of the datastore.

Persistent instance

A persistent instance is an instance of a persistent class whose behavior is linked to a
transactional datastore. Its fields are watched by the JDO implementation and saved to or
restored from the datastore, as appropriate. The datastore manages the state of its persistent
fields and information identifying its class.

Transient transactional instance

A transient transactional instance is transient and is not represented in the datastore. But it is
transactional, and its state is rolled back if a transactional rollback occurs. For JDO to manage
a transient transactional instance, you need to enhance its class. Transient transactional
instances are covered in Chapter 13.

Persistent nontransactional instance

A persistent-nontransactional instance is persistent, but it is not managed as part of a
transaction. Persistent nontransactional instances are discussed in Chapter 14.

Table 4-1 illustrates these different kinds of instances, based on their persistence and transactional
behavior.

Table 4-1. Kinds of instances

Behavior
Instance of

atransient class
Transient instance Persistent instance

Transactional
Transient transactional
instance

Persistent instance

Nontransactional
Instance of a transient
class

Transient instance
Persistent nontransactional
instance

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.2 Java Classes and Metadata

You can make most of your classes persistent in a JDO environment. JDO has the ability to make
plain ordinary Java objects (POJOs) persistent. This includes classes that represent the entities in
your application domain, utility classes that model other data, and abstractions you need to support
your application's functionality. Your classes can also use all of Java's class and field modifiers,
including: private, public, protected, static, transient, abstract, final, synchronized, and
volatile. In some cases, as we will explore later in this chapter, some of these modifiers cannot be

used with persistent fields.

The persistent state of a persistent class is represented entirely by the values of its Java fields. If you
have a class that has some state that needs to be preserved and it depends on inaccessible or
remote objects (e.g., it extends java.net.SocketImpl or uses Java Native Interface (JNI)), you

cannot make the class persistent. You also cannot have a persistent nonstatic inner class, because
the state of the inner class instance depends on the state of its enclosing instance.

With a few exceptions, system-defined classes (those defined in java.lang, java.io, java.net,

etc.) cannot be persistent. They are also not allowed to be the type of a persistent field. This includes
classes such as System, Thread, Socket, and File. We list the system classes that are supported in

Table 4-2 later in this chapter. You may be using an implementation that supports additional system-
defined classes, especially those for modeling state information. Relying on support for these
additional types will make your software dependent on that implementation.

As discussed in Chapter 1, each persistent class needs to have a no-arg constructor. If your class
does not define any constructors, the Java compiler generates a no-arg constructor automatically
(called the default constructor). But if you do define one or more constructors with arguments in a
persistent class, then you must also define a no-arg constructor manually.

When your application first accesses a persistent instance, the JDO implementation needs to
construct an instance, so it calls the no-arg constructor. The availability of a no-arg constructor is the
only requirement JDO imposes on your persistent classes. Some JDO enhancers can generate this
no-arg constructor for you if it does not already exist, but they are not required to do so.

You may not want other classes in your application calling the no-arg constructor. If this is the case,
you can declare it to be private. Or, if the class will have subclasses, declare it to be protected so

that the subclass constructors can call it.

4.2.1 JDO Metadata

Every class that you want to be persistent must be declared in a JDO metadata file. This file cannot
include any system classes. Any class that is not declared in a metadata file is a transient class,
except for the system classes that all implementations support. You typically place additional
persistence-related information that is not expressable in Java in the metadata file. This metadata is
used when a class is enhanced and also at runtime.

JDO metadata is stored in XML format. An XML Document Type Definition (DTD) defines the elements

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in a JDO metadata file. The JDO DTD is provided in Appendix B. It should be identical across all
implementations.

4.2.1.1 Metadata filenames

You can place the metadata for your application's classes in one or more XML files. A few rules exist
for the naming and directory placement of metadata files to assure portability among
implementations. For portability, metadata files should be available via resources loaded by the same
class loader as the persistent classes.

If you have a metadata file that contains information for a package or multiple packages, then the
name of the XML file should be package.jdo. (Here we literally mean the word "package," not the
name of an actual Java package.) The package.jdo file can be placed in one of the following
directories:

META-INF

In this case, package.jdo can contain metadata for any class in your application.
WEB-INF

Files like package.jdo should be placed in this directory when deploying a JDO application in a
web container.

(no directory)

The package.jdo file is not in any subdirectory of the classpath.
<package>

The package.jdo file is placed in the subdirectory that corresponds to the package defined in
the metadata. Thus, if package.jdo contains the metadata for the com.mediamania.content

package, it would placed in the com/mediamania/content directory.

If you have a metadata file that only contains information for a single class named classname, then
its filename should be classname.jdo and it should reside in the same directory as the class file,
based on the package of the class.

When the JDO implementation needs metadata for a class and the metadata has not been loaded
yet, the metadata is searched in the following order:

META-INF/package.jdo1.

WEB-INF/package.jdo2.

package.jdo3.

<package>/package.jdo4.

<package>/<class>.jdo5.

where <package> represents the directory corresponding to the package of the class and <class>
represents the name of the class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A search for the metadata for the Customer class in the com.mediamania.store package is

performed in the following order:

META-INF/package.jdo1.

WEB-INF/package.jdo2.

package.jdo3.

com/package.jdo4.

com/mediamania/package.jdo5.

com/mediamania/store/package.jdo6.

com/mediamania/store/Customer.jdo7.

If no metadata is found for the Customer class in any of these locations, it is considered a transient

class.

Once the metadata for a class has been loaded, it is not replaced. Metadata contained in a file higher
in the search order is used instead of metadata lower in the search order. This search order is
optimized so that implementations can cache metadata as soon as it is encountered, reducing the
number of file accesses that are needed to load the metadata.

Metadata that is not in its natural location may override metadata that is in its natural location. For
example, when the JDO implementation searches for the metadata for
com.mediamania.content.Movie, it may find the metadata for the com.mediamania.store.Rental

class in the com/mediamania/package.jdo file. In this case, a subsequent search for the metadata for
com.mediamania.store.Rental will use the metadata that has already been cached, instead of

looking in com/mediamania/store/package.jdo or com/mediamania/store/Rental.jdo.

These rules for the name and location of the metadata files apply both during enhancement and at
runtime. From now on, the term "metadata" refers to the aggregate of all the JDO metadata for all
packages and classes, regardless of their physical packaging in multiple files and directory placement.

4.2.1.2 jdo, package, and class metadata elements

The jdo element is the highest-level XML element in the metadata hierarchy. It does not have any
attributes of its own. It contains one or more nested package elements. A package element is used
to represent a specific Java package. It has a single required attribute, called name, that contains the

completely qualified name of the Java package.

Within a package element, you can nest one or more class elements. A class element identifies a
specific Java class in the enclosing package as persistent. The class element's only required attribute
is name, which is given the name of the class. You should only list classes in the metadata that you

want to be persistent.

The class element has the following additional optional attributes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

identity-type

objectid-class

requires-extent

persistence-capable-superclass

The identity-type attribute indicates which type of identity should be used with the class. It
defaults to datastore identity, which does not require any additional effort from you. The objectid-
class attribute identifies a class defined by the application to serve as the application identity of the

class. Chapter 10 covers the various forms of identity in detail; until then, we will use datastore
identity in all of our examples. The requires-extent attribute indicates whether an extent is
maintained for the class. Extents are covered in Chapter 8. The persistence-capable-superclass

attribute identifies the closest superclass in the inheritance hierarchy that is persistent, if there is
one.

4.2.1.3 Vendor extensions

The extension element specifies vendor-specific metadata extensions in a uniform manner. All JDO
metadata elements can have nested extension elements. The required vendor-name attribute

associates the extension with a specific vendor. Each vendor uses a unique name to identify
metadata extensions for their implementation. The vendor name "JDORI" is reserved for use with the
JDO reference implementation. A JDO implementation ignores any extension elements that have a
vendor-name value that does not correspond to their implementation. The extension element also
has optional key and value attributes. A key may or may not have an associated value. The vendor

chooses values for these attributes that they recognize and interpret. Consult your documentation to
see what metadata extensions are provided.

4.2.1.4 Nesting of metadata elements

The following illustrates the hierarchical nesting of metadata elements:

jdo
 package
 class
 field
 collection
 extension
 extension
 field
 map
 extension
 field
 array
 extension
 extension
 extension
 extension

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 extension

One or more extension elements can be nested within each of these elements (including extension
itself) to provide vendor-specific information. The field metadata elements (field, collection, map,
and array) are covered later in this chapter.

4.2.2 Inheritance

Each class in an inheritance hierarchy can be transient or persistent, independent of the persistence
of other classes in the hierarchy. Thus, a class can be persistent, even if its superclass is not. This
allows you have a persistent class that extends a transient class that was not designed to be
persistent. Likewise, a subclass of a persistent class may be transient or persistent.

If a persistent class has one or more persistent superclasses, the class element's persistence-
capable-superclass attribute must identify the most immediate persistent superclass. If the

superclass is in a different package, it must be specified with its fully qualified name. If the superclass
is in the same package, you can omit the package qualifier. You may wonder why you need to specify
this in the metadata. After all, the Java class declarations specify the branch of superclasses from a
class up to Object in an inheritance hierarchy, and your metadata identifies which of these classes

are persistent. But the metadata for a superclass may be specified in a different metadata file. JDO is
designed such that the enhancer can enhance a class in a stateless fashion, independent from other
classes. The order in which classes are enhanced is irrelevant, and a class can be enhanced without
the presence of any other classes. This greatly supports the simplicity of enhancer design, ease of
use, integration with classloaders, and-last, but not least-easy reproducability of errors.

To illustrate these concepts, the UML diagram in Figure 4-1 describes two inheritance hierarchies. We
use the stereotyping facility in UML to indicate whether a class is persistent or transient. In practice,
you are not likely to have an inheritance hierarchy with such a complicated mix of persistent and
transient classes. In many cases, the classes in an inheritance hierarchy are either all transient or all
persistent. But JDO provides you with the flexibility to choose whether each class in an inheritance
hierarchy is transient or persistent, as we have demonstrated here.

Figure 4-1. Persistence within an inheritance hierarchy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following metadata identifies the persistent superclass for each persistent class shown in Figure
4-1. This metadata is placed in the com/mediamania/inheritexample/package.jdo file.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.inheritexample" >
 <class name="A" />
 <class name="C"
 persistence-capable-superclass="A"/>
 <class name="E"
 persistence-capable-superclass="A"/>
 <class name="G"
 persistence-capable-superclass="C"/>
 <class name="H"
 persistence-capable-superclass="A"/>
 <class name="K" />
 <class name="M" />
 <class name="O"
 persistence-capable-superclass="K"/>
 </package>
</jdo>

4.2.3 The Media Mania Object Model

Let's examine the object model we use in most of the examples throughout this book. Media Mania,
Inc. provides a system in their stores that contains information about the various forms of media that
customers can rent or purchase. In Chapter 1 we created a prototype application contained in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

com.mediamania.prototype. Now, we replace this prototype with two new packages:
com.mediamania.content and com.mediamania.store.

The com.mediamania.content Java package contains classes that represent generic media content
information. The content handled by the stores includes movies and games. The Movie and Game
classes extend an abstract base class called MediaContent. The Studio class contains information

about the studio that produced the game or movie. Figure 4-2 illustrates the relationships among
these classes.

Figure 4-2. Studio and MediaContent classes in com.mediamania.content
package

Each person involved in a movie, as either the director or an actor, is represented by an instance of
MediaPerson. Figure 4-3 illustrates the relationships among Movie and MediaPerson instances.

Figure 4-3. Movie, Role, and MediaPerson classes in
com.mediamania.content package

A Movie instance has one or more Role instances representing the cast of the movie. It also has a
reference to the MediaPerson for the director of the movie. We assume a movie has a single director
(though in real life this is not always the case). The Role class references its Movie and a
MediaPerson who served as the actor for the particular role. Given a specific MediaPerson instance,

it is possible to access all the movies they directed and all the roles they have played in a movie. This
model also allows for an actor who has played multiple roles in the same movie.

In addition to the media content information, each store tracks the rental and purchase activities of
its customers. The com.mediamania.store package contains the classes representing store-specific

information. Figure 4-4 illustrates the relationships among these classes.

Figure 4-4. Classes in the com.mediamania.store package (except
MediaContent in the content package)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each customer that has rented or purchased some media content at the store is represented by an
instance of the Customer class. An Address instance contains address information for the customer.
The store tracks two kinds of transactions: rentals and purchases. These are represented by Rental
and Purchase classes that extend a Transaction base class. The store tracks the current items the

customer has out for rent and also keeps a history of all the customer's transactions.

A MediaItem instance represents a particular format of a given MediaContent item. For example, a
Movie can exist in VHS and DVD formats and a Game may be supported in formats for the Playstation,

Playstation 2, Xbox, and Nintendo GameCube. The stock of media items is designated as items to be
sold or rented. A RentalItem instance exists for each individual item that can be rented to a
customer. The items in stock that are currently available for rent are represented by RentalItem
instances that have a null value for their currentRental field. The model does not track the
individual items that are sold, but the MediaItem class tracks how many items for purchase are in
stock and how many have been sold year-to-date. Each Purchase instance contains a reference to
the specific MediaItem that the customer bought.

The store has different rental policies and prices, based on the popularity of an item and how recently
it became available. A RentalCode instance maintains information about a particular rental policy.
Each MediaItem instance is associated with a particular RentalCode, which may change over time.

A Rental instance represents a customer's rental of a particular media item; it references the specific
RentalItem rented. This is necessary so the store can track which item has been rented and update

the customer account when it is returned, taking into account any late fees that may be due. The
RentalCode associated with the MediaItem at the time of rental is associated with the Rental
instance. This is necessary because the RentalCode for a MediaItem will change occasionally.

Appendix E provides all the classes for the model. The following metadata specifies the packages and
persistent classes for the object model. Since it contains metadata information for the
com.mediamania.content and com.mediamania.store packages, we place the metadata in a file

named com/mediamania/package.jdo, based on their common base package name.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.content" >
 <class name="Studio" >
 </class>
 <class name="MediaContent" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <class name="Movie"
 persistence-capable-superclass="MediaContent">
 </class>
 <class name="MediaPerson" >
 </class>
 <class name="Game" />
 <class name="Role" />
 </package>
 <package name="com.mediamania.store" >
 <class name="MediaItem" >
 </class>
 <class name="RentalItem"/>
 <class name="Customer" >
 </class>
 <class name="Address" />
 <class name="Transaction" />
 <class name="Purchase"
 persistence-capable-superclass="Transaction"/>
 <class name="Rental"
 persistence-capable-superclass="Transaction"/>
 <class name="RentalCode" />
 </package>
</jdo>

The metadata lists each persistent class in the content and store packages. If an inheritance

relationship exists, the metadata specifies the persistent superclass. Later in this chapter, we will add
more information that provides information about the fields and relationships.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

4.3 Fields

Fields contain the state of an instance. JDO provides for the access, management, and storage of an
instance's fields in a datastore. All of Java's field type categories are supported: primitive types,
reference types, and interface types. JDO also supports all of Java's field modifiers, including
private, public, protected, static, transient, final, and volatile. But static and final

fields cannot be persistent, as we will discuss later in this chapter.

As we explained earlier, you can have both transient and persistent instances of a persistent class.
The individual fields of a persistent class can also be transient or persistent for all of the class's
persistent instances. A field's type and modifiers determine whether it is persistent or transient, by
default. You can override the default persistence of a field in the metadata. We cover transient fields
later in this chapter.

You can specify persistence-related information about a field by using the field metadata element.
Its required name attribute should have the name of the field in the Java class declaration. It has

attributes to control the field's persistence and the type of its elements if it is a collection. We cover
these attributes later in this chapter. If the class uses application identity, one or more fields need to
indicate they are a primary-key field; Chapter 10 covers this in detail. Chapter 12 addresses
advanced field-management facilities enabled by the remaining field element attributes.

You do not need to provide metadata for every field in a class. Default values are assumed for any
fields that lack metadata declarations. These default values usually provide the behavior that you
need. So, in many circumstances, you do not need to provide field metadata.

4.3.1 Supported Types

You cannot make many system-defined classes persistent, nor can you have a field of a system-
defined class. Table 4-2 lists the system-defined types in the Java language environment that JDO
implementations do support.

Table 4-2. Supported field types

Primitives java.lang java.util java.math

boolean Boolean Locale BigInteger

byte Byte Date BigDecimal

short Short HashSet

char Character Collection

int Integer Set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Primitives java.lang java.util java.math

long Long

float Float

double Double

 String

 Number

 Object

You can declare a field to refer to a persistent class instance. In addition, you can use Java's
polymorphism to declare a field that refers to a base class and have it reference a subclass instance.
You should be accustomed to using polymorphic references in your object models. Object databases
have supported them for many years, but this modeling capability has not been available in relational
database schemas and interfaces. The JDO implementation is responsible for implementing such
polymorphic references on top of the underlying datastore, including a relational datastore. If a field
is declared to be a reference to a transient class, and you assign a reference to an instance of a
subclass that is persistent, the instance is not stored, because the field's declared type is not
persistent.

You can use fields of Object and interface types. You can assign a reference to an instance of any
class to an Object field, and an instance of any class implementing an interface can be assigned to

an interface. You can also use interface inheritance in your model. Interface fields are transient by
default, so you need to declare the field persistent explicitly in your metadata. We recommend you
assign only instances of types supported by JDO to Object and interface fields. If an implementation
restricts the type of instance that can be assigned to such a field, it will throw a ClassCastException

when an incorrect assignment is made.

4.3.1.1 Collections

You can use a collection to represent multiple values of a given type or to represent to-many
relationships among classes in an object model. Table 4-3 lists the Collection and Set collection
interfaces and the HashSet collection class from the java.util package that are available in all JDO

implementations. Additional collection classes that are optional in JDO are listed with their associated
option property name. If an implementation supports the collection, it will return the collection's
associated property string when you call PersistenceManagerFactory.supportedOptions().

Table 4-3. Collection interfaces and classes

Interface in the

java.util package

Class implementing the

interface in the java.util package
JDO option property

Collection portable (all implementations)

long Long

float Float

double Double

 String

 Number

 Object

You can declare a field to refer to a persistent class instance. In addition, you can use Java's
polymorphism to declare a field that refers to a base class and have it reference a subclass instance.
You should be accustomed to using polymorphic references in your object models. Object databases
have supported them for many years, but this modeling capability has not been available in relational
database schemas and interfaces. The JDO implementation is responsible for implementing such
polymorphic references on top of the underlying datastore, including a relational datastore. If a field
is declared to be a reference to a transient class, and you assign a reference to an instance of a
subclass that is persistent, the instance is not stored, because the field's declared type is not
persistent.

You can use fields of Object and interface types. You can assign a reference to an instance of any
class to an Object field, and an instance of any class implementing an interface can be assigned to

an interface. You can also use interface inheritance in your model. Interface fields are transient by
default, so you need to declare the field persistent explicitly in your metadata. We recommend you
assign only instances of types supported by JDO to Object and interface fields. If an implementation
restricts the type of instance that can be assigned to such a field, it will throw a ClassCastException

when an incorrect assignment is made.

4.3.1.1 Collections

You can use a collection to represent multiple values of a given type or to represent to-many
relationships among classes in an object model. Table 4-3 lists the Collection and Set collection
interfaces and the HashSet collection class from the java.util package that are available in all JDO

implementations. Additional collection classes that are optional in JDO are listed with their associated
option property name. If an implementation supports the collection, it will return the collection's
associated property string when you call PersistenceManagerFactory.supportedOptions().

Table 4-3. Collection interfaces and classes

Interface in the

java.util package

Class implementing the

interface in the java.util package
JDO option property

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface in the

java.util package

Class implementing the

interface in the java.util package
JDO option property

Collection portable (all implementations)

Set portable (all implementations)

 HashSet portable (all implementations)

Hashtable javax.jdo.option.Hashtable

 TreeSet javax.jdo.option.TreeSet

List javax.jdo.option.List

 ArrayList javax.jdo.option.ArrayList

 LinkedList javax.jdo.option.LinkedList

 Vector javax.jdo.option.Vector

Map javax.jdo.option.Map

 HashMap javax.jdo.option.HashMap

 TreeMap javax.jdo.option.TreeMap

You use a collection element to specify a collection's characteristics in the metadata. By default,
collection-typed fields are persistent with an Object element type. You use the collection
element's element-type attribute to specify the collection's element type. Specifying the element

type is not required, but we recommend you specify it. The type name you specify uses Java's rules
for naming: if no package is provided in the name, the package is assumed to be the same package
as the enclosing persistent class in the metadata. Inner classes are identified with the $ marker. At

some point, the Java language may allow you to specify a collection's element type directly when you
declare the collection in your Java code, in which case this metadata will no longer be necessary.

A Map maintains a set of key-value pairs; both the key and value have a type. You use a map element

to specify the characteristics of map's keys and values in the metadata. By default, map-typed fields
are persistent and their key and value types are Object. You can use the map element's key-type
and value-type attributes to specify a more specific type. As with collections, Java's rules for naming
apply if the package is not provided, and inner classes can be identified with the $ marker.

We encourage you to specify the types of collection elements and the keys and values of Maps. Some

implementations use a far less efficient means of accessing the elements if you do not specify the
type.

4.3.1.2 Arrays

Array fields are optional in JDO. The JDO javax.jdo.option.Array option property indicates

whether an implementation supports them. You should not share a specific array among several
persistent instances. The JDO specification does not state whether multidimensional arrays are
supported. Support for multidimensional arrays varies among implementations.

Collection portable (all implementations)

Set portable (all implementations)

 HashSet portable (all implementations)

Hashtable javax.jdo.option.Hashtable

 TreeSet javax.jdo.option.TreeSet

List javax.jdo.option.List

 ArrayList javax.jdo.option.ArrayList

 LinkedList javax.jdo.option.LinkedList

 Vector javax.jdo.option.Vector

Map javax.jdo.option.Map

 HashMap javax.jdo.option.HashMap

 TreeMap javax.jdo.option.TreeMap

You use a collection element to specify a collection's characteristics in the metadata. By default,
collection-typed fields are persistent with an Object element type. You use the collection
element's element-type attribute to specify the collection's element type. Specifying the element

type is not required, but we recommend you specify it. The type name you specify uses Java's rules
for naming: if no package is provided in the name, the package is assumed to be the same package
as the enclosing persistent class in the metadata. Inner classes are identified with the $ marker. At

some point, the Java language may allow you to specify a collection's element type directly when you
declare the collection in your Java code, in which case this metadata will no longer be necessary.

A Map maintains a set of key-value pairs; both the key and value have a type. You use a map element

to specify the characteristics of map's keys and values in the metadata. By default, map-typed fields
are persistent and their key and value types are Object. You can use the map element's key-type
and value-type attributes to specify a more specific type. As with collections, Java's rules for naming
apply if the package is not provided, and inner classes can be identified with the $ marker.

We encourage you to specify the types of collection elements and the keys and values of Maps. Some

implementations use a far less efficient means of accessing the elements if you do not specify the
type.

4.3.1.2 Arrays

Array fields are optional in JDO. The JDO javax.jdo.option.Array option property indicates

whether an implementation supports them. You should not share a specific array among several
persistent instances. The JDO specification does not state whether multidimensional arrays are
supported. Support for multidimensional arrays varies among implementations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3.2 Persistence of Fields

A field's type and modifiers in a Java class declaration determine whether it is persistent by default.
You can also override the default persistence of a field by declaring it as persistent or transient in the
metadata.

Some fields cannot be persistent. A field declared in Java to be static or final is always transient.
A static field has only one value; the field is associated with the class itself and shared by all
instances. A final field has one value per instance. But a final field is initialized once by the

constructor and its value can never be changed once the instance is constructed. Each constructor
may initialize a final field differently. JDO implementations call the no-arg constructor to create an
instance you access from the datastore. The field values from the datastore are set after the no-arg
constructor is called. Thus, it is not possible for the JDO implementation to manage a final field's

persistent state in memory.

Fields of the following types are persistent by default:

Any type identified in Table 4-2 or Table 4-3 (except for Object)

References to instances of persistent classes

Fields of the following types are transient by default:

References to transient application classes

References to system classes defined in JDK packages (unless supported in JDO)

Interface references

Object references

Though interface and Object references are transient by default, you can still declare them to be

persistent in the metadata.

4.3.2.1 Controlling field persistence with metadata

Java's transient modifier is used to specify whether a field and the object graph it may reference
should be serialized. By default, a field declared transient in a Java class declaration is transient
from a JDO perspective, but you can override this in the metadata. You can use the field element's
persistence-modifier attribute to specify whether a field is persistent, by giving it one of the

following values:

"persistent"

The field is persistent.
"none"

The field is transient.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"transactional"

The field is a transactional field, which is a transient field that has transactional behavior.
Chapter 12 covers transactional fields.

So, a transient field in Java (specified via the transient modifier in the Java class declaration) is

distinct from a transient field in JDO. If you declare a field in a Java class declaration with the
transient modifier, it can be transient or persistent in JDO; and if a field does not have the Java
transient modifier, it can also be transient or persistent, depending on the field's persistence-
modifier attribute. If you do not specify the persistence-modifier attribute in the metadata, its

default value is based on the field's type and modifiers, as defined in the Java class declaration.

There is no restriction on the type of a transient field. Transient fields are managed entirely by the
application, not by the JDO implementation. A JDO implementation calls the no-arg constructor to
instantiate an instance when the application accesses it from the datastore. You can define the
default constructor to initialize transient and final fields. The InstanceCallbacks interface can also

be used to manage the state of transient fields; this is covered in Chapter 12.

Persistent and transactional fields are also referred to as managed fields, since the JDO
implementation manages their state. Figure 4-5 illustrates which kinds of fields are managed and
which are transient.

Figure 4-5. Managed and transient fields

4.3.2.2 Inherited fields

A class's metadata cannot specify characteristics for any field it inherits from a superclass, so a
subclass cannot alter the persistence of an inherited field. Therefore, a field identified as persistent by
the class's metadata is persistent in all subclasses; if it is transactional, it is transactional in all
subclasses, and if it is transient, it is transient in all subclasses.

Consider class E, contained in the inheritance hierarchy depicted in Figure 4-1. E is a persistent class
that extends the transient class B. B extends the persistent class A. For any instance of B, E, or any
class extending E, the fields of B are transient, and you cannot make them persistent in the metadata
unless you make B a persistent class.

Of course, you can declare a class with a field that has the same name as a field in a superclass.
Even though the field name is the same, these are two different fields. Therefore, you can have
different values for their persistence-modifier attribute.

4.3.3 Complete Metadata for the Media Mania Model

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now we can present the complete metadata for our Media Mania model, including the additional
metadata we have covered:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jdo PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
 <package name="com.mediamania.content" >
 <class name="Studio" >
 <field name="content" >
 <collection element-type="MediaContent"/>
 </field>
 </class>
 <class name="MediaContent" >
 <field name="mediaItems" >
 <collection element-type="com.mediamania.store.MediaItems"/>
 </field>
 </class>
 <class name="Movie"
 persistence-capable-superclass="MediaContent">
 <field name="cast" >
 <collection element-type="Role"/>
 </field>
 </class>
 <class name="MediaPerson" >
 <field name="actingRoles" >
 <collection element-type="Role"/>
 </field>
 <field name="moviesDirected" >
 <collection element-type="Movie"/>
 </field>
 </class>
 <class name="Game"
 persistence-capable-superclass="MediaContent" />
 <class name="Role" />
 </package>
 <package name="com.mediamania.store" >
 <class name="MediaItem" >
 <field name="rentalItems">
 <collection element-type="RentalItem"/>
 </field>
 </class>
 <class name="RentalItem"/>
 <class name="Customer" >
 <field name="currentRentals">
 <collection element-type="Rental"/>
 </field>
 <field name="transactionHistory">
 <collection element-type="Transaction"/>
 </field>
 </class>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <class name="Address" />
 <class name="Transaction" />
 <class name="Purchase"
 persistence-capable-superclass="Transaction"/>
 <class name="Rental"
 persistence-capable-superclass="Transaction"/>
 <class name="RentalCode" />
 </package>
</jdo>

We specified each collection's element type in the model. The mediaItems field in MediaContent is

the only collection whose element type is a class in a different package, so we specified the full
package name.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 5. Datastore Mappings
JDO supports the storage of your object model in a variety of datastore architectures. The primary
datastore architectures envisioned for use with JDO are:

Relational database

Organized as a set of tables, each containing a set of rows and columns. A column can store
values of a particular atomic type. Each table cell in a particular row and column stores a value
of the column's type. The value stored can be a null value. Instances are identified uniquely by
the value of primary-key columns. Relationships are defined, and may be enforced, by
annotating specific columns as foreign keys that reference columns in a table.

Pure object database

An extension of the JVM object model. Domain objects are stored with their primitive fields,
just as instances are stored in the JVM. Instances are identified by a system-generated unique
identifier. References are stored as objects, including instances of system-defined classes.
Unreferenced instances are garbage collected. An extent is not an intrinsic construct in a pure
object database; it is implemented as a class containing a set of objects. In this model, any
reference type can be shared among multiple objects, and changes made to the instance of the
reference type are visible to all objects that reference it.

Hybrid object database

Organized as a set of class extents, each containing a set of instances in which primitive and
complex fields are stored. Domain objects are stored with their primitive fields; some complex
field types (e.g., collections of primitive types and reference types) are also stored with the
domain object. Instances are identified by a system-generated unique identifier. Unreferenced
instances must be deleted explicitly.

Application Programming Interface (API)

Defined by an API to an abstract domain model. The API defines methods to create, read,
update, and delete abstract domain instances. The underlying datastore implementation is
completely hidden by the API. Many complex system products use this type of architecture.

The JDO 1.0.1 Specification does not specify a standard for mapping to specific datastores. JDO
implementations support one or more datastores and often provide a means for you to direct the
mapping process by specifying additional, vendor-specific metadata. These mapping directives can be
placed in the JDO metadata files or in an implementation-specific location. Some vendors allow you to
specify the mapping via a graphical environment that depicts the Java and datastore models, allowing
you to associate items in the two models to define a mapping. Regardless of where this vendor-
specific mapping information is placed, it does not affect your Java source code.

Current JDO implementations provide support for relational databases, as well as pure and hybrid
object databases. As JDO implementations become available for other database architectures, other
mapping facilities will likely be considered. For example, there are databases based on the XML data
model. Mappings might soon be defined between the XML database and a set of Java classes. Such
an interface would likely be based on the Java Architecture for XML Binding (JAXB) standard.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SQL is the dominant relational language in use. Today, most Java applications access a relational
database through Java Database Connectivity (JDBC), which provides an interface for Java
applications to issue SQL commands to a relational database. Since a relational database uses the
relational data model, which is different from Java's object model, a mapping is required between the
modeling constructs of Java and the relational database.

Since relational databases are prevalent, and because most people are familiar with the relational
data model, we will focus on the mapping strategies and approaches employed when JDO is used
with a relational database. However, much of the discussion is fairly generic and can apply to other
database architectures.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.1 Mapping Approaches

Several approaches can be used to establish a mapping between your persistent Java classes and a
relational schema:

Generate a relational schema from your persistent Java classes

If you are developing a new application in Java and you do not have an existing relational
database schema, you can let the JDO implementation generate a relational schema from your
object model. This approach is commonly called forward engineering the model. This approach
yields a high level of development productivity because all of the schema design and mapping
work is done automatically by the JDO implementation. The JDO specification does not require
support for the automatic generation of a schema. Some implementations do not support this
approach and require you to define the mapping to an existing schema. Many of the
implementations that do support schema generation let you specify some metadata to help
direct the algorithms generating the schema.

Generate your persistent Java classes from a relational schema

In many cases, you may already be using a relational database schema and you would like to
write a new application with an object view of the data. In this scenario, many implementations
provide tools you can use that analyze your relational schema and generate a Java object
model for you. This approach lets you develop an object-oriented Java application quickly. It is
commonly called reverse-engineering the model.

Define a mapping between Java classes and a relational schema

You may have an existing relational schema and a separately designed object model and you
would like to define a mapping between the two. In this case, you can use metadata directives
to define how a class and its fields should be mapped to the underlying datastore. This
approach is commonly called a bridge mapping between the two models.

If you are using JDO with a relational database, JDO does not preclude you from having some
applications access the datastore with JDBC and others access it with JDO. This capability allows you
to migrate to JDO gradually from a suite of JDBC-based applications. If you have an existing
relational schema, you will likely use reverse-engineering or a bridge mapping. If you access the
relational database with JDO and JDBC, it becomes more important to understand how the object
model is mapped to the relational schema and follow any rules the implementation may have about
accessing the additional columns and tables it requires.

Once you have developed a JDO application with an object model and associated datastore, the
object model and the datastore schema will likely evolve as the needs of your application evolve. The
JDO metadata can be used to deal with this evolution of the two data models. JDO does not define
any specific support for datastore-schema evolution, object-model evolution, or the associated
aspects of evolving the two distinct data models. Support for these is implementation-specific.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.2 Relational Modeling Constructs

Before we discuss the mapping between Java classes and a relational schema, we will first provide a
brief summary of the modeling constructs found in relational schemas. This is not meant to cover all
aspects of a relational schema; it will simply define the terms we use in this chapter.

A relational schema is organized as a set of tables. A table is usually defined for each entity in the
application domain you are modeling. When you design an object model, an entity is represented by
a class. Each table consists of rows and columns. A row contains the data for a specific instance of an
entity being modeled. A column contains the values for one of the attributes of the entity. A table cell
is the intersection of a particular row and column in the table, and it contains the value of an
attribute for a specific entity instance.

The type of a column is the same for all rows of a table. Relational databases do not support Java's
capability for a field to reference one of many different types. ANSI SQL 92 defines a standard set of
supported column datatypes. Relational database products support these standard datatypes and
usually support their own additional, proprietary datatypes. One issue developers often contend with
is the use of a datatype that is specific to one database product but not supported by another. JDO
helps insulate your applications from these datatype differences, since you only deal with Java types,
which are then mapped to the various underlying datastore types.

Often, one or more columns are defined as the table's primary key to identify a row uniquely. A table
can have only one primary-key constraint. The primary-key constraint requires that the columns
have a unique value for each row, and the primary-key columns cannot contain a null value.

One or more columns in a table may be defined as a foreign-key constraint, which is used to enforce
referential integrity in the datastore. A row's foreign-key columns contain the same values as
columns in a specific row of the referenced table.

A relationship between the rows of tables can be coerced by specifying a join condition, which is an
expression that uses the columns of the tables being joined. Primary-key and foreign-key constraints
can be used to define relationships between tables, and, they can be used as the basis of a join. To
establish a relationship between table A and B, where table B has a foreign key referencing table A, a
join condition requires that the foreign key in B is equal to the primary key in A. This is the primary
means of expressing a relationship between rows, so relational databases have optimized their
performance of these join conditions using indexes. But it is not necessary to use columns in primary-
and foreign-key constraints to perform a join; any columns in the tables may be used to establish an
association among tables.

A table may have one or more indexes, associated with one or more columns. Indexes are used to
optimize the performance of access to rows with specific values or a range of values for one or more
columns. Indexes help optimize the performance of join operations.

5.2.1 SQL 99

The SQL 99 specification includes some support for defining object constructs in SQL. It has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

introduced the notion of table inheritance: a table can have subtables. In addition, a column can
contain structured datatypes, such as arrays and User-Defined Types (UDTs). You can also define
inheritance hierarchies of UDTs.

At this time, the level of support for SQL 99 varies considerably among relational databases. Some
databases do not support any of the constructs defined in SQL 99. Others have implemented only a
subset of its facilities, sometimes with nonstandard syntax.

Many applications do not use the object capabilities found in those databases that do support them.
Many developers defining objects in languages like Java prefer to specify their object model once in
Java and then use an interface like JDO to map their Java modeling constructs to the underlying
datastore. As the relational database vendors broaden their support for SQL 99 object constructs,
JDO implementations will be able to map the Java models onto the SQL 99 constructs, based on
customer demand. The examples in this book do not assume the availability of SQL 99 facilities.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.3 Modeling Constructs in Java and Relational Models

The Java object model and the relational data model are two separate and distinct data models with
separate type systems and approaches for representing data and expression computations. Table 5-1
summarizes the typical data-specific mappings that are specified between an object model and a
relational schema.

Table 5-1. Mapping between object models and relational schemas

Java modeling construct Relational modeling construct

Class Table

Field Column

Instance Row

Identity Primary key

Reference Foreign key

Interface No relational equivalent

Collection No relational equivalent

Class inheritance One or multiple tables

Collections in JDO can be represented only as memory instances, with no direct representation as a
collection in the datastore. They are instantiated on demand and discarded when they are no longer
needed. There are exceptions to these general rules, and some implementations support more
advanced mappings. This chapter examines several ways of representing a Java collection in a
relational datastore.

If you start with a set of Java classes and let the JDO implementation generate a relational schema
for them, it will choose an appropriate relational representation of your Java model and define the
mapping between your classes and the relational tables. The implementation will make a number of
relational schema design decisions, including choosing names for tables and columns, column types
for your Java fields, and how collections and relationships in your model are represented. It may
provide graphical tools or metadata extensions that you can use to help direct its schema generation
and relational mapping process.

It is beneficial to understand the various mapping decisions that are made. This will allow you to
assess the flexibility that various JDO implementations offer and determine which ones will integrate
more easily into your current environment. We don't describe specific vendor capabilities in this book,
because more JDO implementations are becoming available and each vendor's capabilities are also
broadening. Vendor-specific descriptions would soon be out-of-date.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following sections describe the various relational mapping situations and how implementations
typically address them.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.4 Mapping Classes to Tables

If your object model does not use inheritance, you usually have a separate relational table for each
class. We cover the mapping of classes in an inheritance hierarchy later in this chapter. To establish a
mapping from a Java class to a specific table, in most JDO implementations you specify the mapping
in your JDO metadata with an extension element nested within the class element. For example, the
following example illustrates the metadata necessary to map the MediaItem class to a table called
Items:

<class name="MediaItem" >
 <field name="rentalItems">
 <collection
element-type="RentalItem"/>
 </field>
 <extension
vendor-name="vendorX" key="table" value="Items" />
 <extension vendor-name="vendorY" key="sqlname" value="Items" />
</class>

You identify the implementation you are using in the vendor-name attribute. As we mentioned

previously, the datastore mappings in JDO 1.0.1 are implementation-specific. This may be
standardized in JDO 2.0. Each JDO vendor provides documentation explaining which value to use for
the vendor-name attribute and which values are supported for the key attribute.

In the previous code, we provided the metadata for two vendors, identified as vendorX and vendorY.

An implementation will use only metadata extensions that it recognizes. This allows you to place the
metadata for multiple vendors in the same JDO metadata file. vendorX uses a value of "table" for
the key attribute to indicate which relational table the MediaItem class should be mapped to, and
vendorY uses the value "sqlname". You should check the implementation's documentation to see
which values they require. We provide the name of the table (Items) in the relational schema in the
value attribute. If you were to port your application to another JDO implementation, you would need
to add an extension element that has values in the vendor-name and key attributes that are

appropriate for that implementation. However, your Java class would not have to change.

If you don't specify a table for a class, most implementations assume that you would like them to
generate the table name for you. You may or may not like the name that they use. If you are just
prototyping your application and do not have an existing schema to map to, it can be more
productive to just let the implementation generate any name. Once you move beyond the prototype
stage of your project, you can always add this metadata to specify a specific name for the table.

You may wish to partition the fields of your class across multiple tables. Not all relational JDO
implementations support this capability. To partition the fields of a class among several tables, you
need to specify which table (and column) each field should be mapped to. An extension that is
similar, or identical, to the one provided earlier would be placed in the field element instead of the
class element.

If you use optimistic transactions, the JDO implementation requires either a version-number column
or a list of columns whose values are used to detect concurrency violations. These track whether

http://lib.ommolketab.ir
http://lib.ommolketab.ir

another transaction has performed a concurrent update on an instance. Another approach is to have
a timestamp field that is updated whenever a row changes. Chapter 15 covers optimistic transactions
and how they are implemented. Most implementations allow you to specify the name of the version
column. If you don't specify the column name, the implementation uses a default column name.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.5 Mapping a Single-Valued Field to a Column

A primitive or single-valued Java field usually is mapped to a single column of a table. Some
implementations allow a field to be mapped to multiple columns, but such a feature is not supported
by most implementations or needed in most applications. When mapping a Java field to a relational
column, you need to consider the name and the type to be used for the associated column. The types
are always different, since Java and SQL have their own distinct type systems. The name of the field
and column can be either the same or different.

5.5.1 Name-Mapping

When you're mapping a field in Java to a relational column, you can use different names. In some
cases, you may have to use a different name, because some names in Java may not be allowable as
a column name in the relational database. In Java, class and field names are case-sensitive Unicode
characters. Some relational databases and JDBC drivers may have restrictions on the names that are
used (e.g., the table and column names must be US ASCII, names are case-insensitive, or names
must be uppercase). Using a field or class name that is a keyword in SQL or the relational database
also necessitates a mapping to a different name in the datastore.

You may wish to map the firstName field of the Customer class to a column named fname:

<class name="Customer" >
 <field name="firstName" >
 <extension
vendor-name="vendorX" key="column" value="fname"/>
 <extension vendor-name="vendorY" key="sqlname" value="fname"/>
 </field>
</class>

If the firstName field does not already have a field element, you need to add one to specify the
column name in a nested extension element. In this case, to specify the column to map the field to,
vendorX uses a value of "column" and vendorY uses a value of "sqlname" for the key attribute.
Again, the value for the key attribute is implementation-specific and you can provide extension

elements for multiple implementations without any interference.

5.5.2 Type-Mapping

Besides specifying the name of the column, you may also want to indicate the column's datatype. The
datatypes that can be used for a specific Java type vary across relational datastores and JDO
implementations. The supported column types for each Java datatype in each underlying datastore
should be specified in your JDO implementation's documentation. Table 5-2 provides a list of the
relational column datatypes commonly supported for the Java types supported by JDO.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-2. Java types and corresponding column types found in relational
databases

Java type Column datatypes

Boolean, boolean BIT, TINYINT, SMALLINT, BYTE, INT2

Byte, byte TINYINT, SMALLINT, BYTE, INT2

Character, char INTEGER, CHAR, VARCHAR

Short, short SMALLINT, INTEGER, NUMBER, INT2

Integer, int INTEGER, NUMBER, INT4

Long, long BIGINT, DECIMAL, INT8

Float, float FLOAT, DECIMAL, REAL

Double, double DOUBLE, NUMBER, DECIMAL

BigInteger DECIMAL, NUMBER, NUMERIC, BIGINT

BigDecimal DECIMAL, NUMBER, DOUBLE

String CHAR, VARCHAR, VARCHAR2, LONGVARCHAR, CLOB

Date TIMESTAMP, DATE, DATETIME

Locale VARCHAR

ANSI SQL defines some of these column types. Others are supported by specific relational databases
and found in applications' schemas. Some implementations allow you to specify the maximum size of
a String stored in the datastore.

BLOBs

You may be using JDO with an existing relational schema that has a column defined as a
binary large object (BLOB) and wonder how JDO deals with them. The short answer is that
the JDO 1.0.1 Specification does not directly specify the mapping for any datastore-
specific datatype. Your JDO implementation defines the mappings it supports from Java
types to the datatypes of the underlying datastore.

You should ask yourself what kind of data the BLOB contains and why it is being stored as
a BLOB. In some circumstances, a BLOB contains structured data that may be more
appropriately and easily represented as persistent objects in JDO. Sometimes BLOBs are
used as a denormalizing technique to simplify the modeling and access of a complex graph
of data. In other cases, BLOBs and denormalization are used as an optimization technique
because a normalized representation of the data cannot be efficiently accessed.

The best approach for dealing with data commonly found in a BLOB depends on the kind
of data involved and how effective your JDO implementation and datastore are in dealing
with the data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5.3 Indexes

JDO does not define the concept of an index. Indexes can be added to columns independent of the
JDO environment. However, some implementations may allow you to specify indexes in the
metadata, allowing you to provide the index information relative to the fields in your Java classes. An
index on a single field is usually specified as a nested extension of a field element. If the index
includes more than one column, it will likely be specified with an extension of the class element, so

that you can specify the order of the fields in the index.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.6 Identity

An instance is identified uniquely in the datastore via an identity value. JDO has two durable types of
identity: datastore and application. With both types, the identity value is stored in one or more
columns of the class's table. Those columns become the table's primary key.

For example, we use datastore identity for the Movie class defined in the com.mediamania.content
package. The JDO implementation may represent datastore identity as an INTEGER in the relational
schema. Line [1] of Example 5-1 illustrates the use of the oid column to store the datastore identity
value for the Movie table, which is defined as the table's primary key on line [2].

Example 5-1. Datastore identity stored in a primary-key column

CREATE TABLE Movie (
 oid INTEGER [1]
 title VARCHAR(24),
 rating CHAR(4),
 genres CHAR(16),
 PRIMARY KEY(oid) [2]
)

Each implementation has its own default name for this column, but you can usually specify the name
that should be used.

You may have a table with no primary key defined, but instead have a unique index defined for one
or more columns. With either a primary key or a unique index, the associated columns are used for
storing the identity value. If you use a unique index for a JDO identity, none of the columns in the
index can have a null value.

With datastore identity, either the JDO implementation or the datastore itself provides a unique
identity value for each instance. The datastore identity value is separate from the fields you define in
your class. The representation of the datastore identity is managed entirely by the JDO
implementation.

Some databases automatically generate primary keys when rows are inserted into a table. These
columns typically use a special sequence type. Essentially, they are read-only columns whose values
cannot be changed when they are under application control. Some JDO implementations may allow
you to map datastore identity to use these columns.

With application identity, you specify one or more Java fields in a class to be the primary-key fields.
These fields are mapped onto the columns that serve as the primary key of the class's table. When
using application identity you must specify which fields in the class are primary-key fields and define
an application-identity class.

Chapter 10 covers identity in detail, but feel free to examine this chapter if you would like more on
this now. An understanding of identity does not require any material in the intervening chapters. If
you are trying to implement a JDO application as you read this book, and you are using an existing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relational database schema that has defined primary keys, you may want to jump ahead and read
Chapter 10. Otherwise, just assume while reading this chapter that your table contains one or more
columns that serve as identity columns, and that they correspond to some specific fields in your
class.

JDO implementations often use a unique number to provide a datastore-identity value. These
numbers are often generated by a sequence facility. Your application may use a sequence generator
in your existing relational schemas to provide unique values for a primary key. Some JDO
implementations allow you to identify a specific sequence in the datastore to use for obtaining unique
identity values for datastore identity. This sequence is often specified in the metadata using a
vendor-specific extension element. Currently, applications cannot directly access such a sequence

generator to assist in generating unique values for application identity using a standard JDO syntax.
However, some JDO implementations provide facilities for generating unique values for your
application-identity classes. If you are using application identity and do not have a real-world
identifier that defines the identify for a particular instance, you will need to use an interface provided
by the JDO implementation or datastore to obtain unique values. Such a facility is being considered
for a future JDO release.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.7 Inheritance

You may have one or more inheritance hierarchies in your object model. JDO implementations
provide an assortment of approaches for mapping the Java classes in an inheritance hierarchy into
the nonhierarchical relational tables. To understand the different mapping alternatives that are
available, consider the inheritance hierarchy in Figure 5-1.

Figure 5-1. Inheritance hierarchy to be mapped to tables

JDO implementations support one or more of the following mapping strategies:

Each class in the hierarchy has a separate table. With this approach, a separate table is
used for each class: A, B1, B2, C1, C2, C3, C4. Each table contains only the fields from its
associated class. To access all the fields of a C1 instance, including the fields inherited from A
and B1, it is necessary to access the tables corresponding to A, B1, and C1. Accessing a B2
instance requires accessing A and B2.

With this approach, typically the primary keys for B1 and B2 are defined as foreign keys on A,
the primary keys for C1 and C2 are defined as foreign keys on B1, and the primary keys for C3
and C4 are defined as foreign keys on B2.

Each class in the hierarchy has a separate table, but inherited fields are duplicated in
the tables for each subclass. This approach avoids the need to access the tables for A and
B1 when accessing an instance of C1; only C1 needs to be accessed. However, when you use
this mapping strategy, support for inheritance and polymorphism becomes very cumbersome.
Accessing an instance of class A requires a join of all of A's tables.

The hierarchy is flattened into a single table containing all the classes. This is the
default approach used for many JDO implementations. All of the classes in the hierarchy are
placed in one table, which must have a column for every field of every class in the hierarchy.
Essentially, all of the classes in a hierarchy are merged into one table. This approach relies on
the datastore's efficient storage-management support of null fields, since a row for an instance
of C2 will not use the fields of C1, B2, C3, and C4.

With this approach, the JDO implementation uses an additional type-discriminator column that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

has a unique value for each class stored in the table. When you retrieve the values for an
instance, the value of this column determines the class of the instance to be constructed.

Combination of separate classes and flattened hierarchy. This approach combines fields
from multiple classes into a number of tables, but the mapping between classes and tables is
not one to one. For example, suppose you define three tables: A, B1, and B2.

Table A contains the primary key, a type-discriminator column, and all the fields declared
in class A.

Table B1 contains a primary key that is also a foreign key to table A, and columns for each
field in classes B1, C1, and C2.

Table B2 contains a primary key that is also a foreign key to table A, and columns for each
field in classes B2, C3, and C4.

Leaves of the hierarchy determine the tables. This approach results in four tables,
corresponding to the C1, C2, C3, and C4 classes. But there may also be instances of A, B1, and
B2. The classes are grouped, by default, into the following tables:

Table 1 contains the data for the A, B1, and C1 classes.

Table 2 contains the data for the C2 class.

Table 3 contains the data for the B2 and C3 classes.

Table 4 contains the data for the C4 class.

A vendor may support one or more of these inheritance-mapping approaches. All of the approaches
are vendor-specific; JDO does not standardize inheritance-mapping. Each approach has performance
implications, since an instance's field values may be spread among several tables that must be joined
and accessed. If a vendor supports more than one inheritance-mapping approach, the vendor usually
will have a metadata extension that you can use to specify which approach to use. As you can

imagine, only one approach can be used for each inheritance hierarchy.

For a class in an inheritance hierarchy, when the fields of an instance are mapped to multiple tables,
the columns containing the instance's identity value need to exist in each table used to represent the
class. So, when you use the first inheritance-mapping approach, an instance of C1 has the same
primary-key value in the tables that correspond to classes A, B1, and C1. Some implementations let
you specify the names of the primary-key columns for each table used in the inheritance hierarchy.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.8 References

The datastore's representation of a reference to an instance (either a class or interface reference)
depends on the identity type defined for the reference's class. The class's identity type determines
the primary-key (or unique-key) columns of the class's table. In addition, a class may be mapped to
one or more tables. A Java reference is represented in the datastore by a foreign key that refers to
the tables associated with the class of the reference. For example, Example 5-1 defined the Movie
table. Example 5-2 defines a Role table for the Role class in the com.mediamania.content package.
The Role class has a reference, named movie, to the Movie class. On line [1], the Role table defines
a foreign key to reference the primary key of the Movie table.

Example 5-2. Foreign key used to reference a primary-key column

CREATE TABLE Role (
 oid INTEGER,
 name VARCHAR(20),
 movie INTEGER,
 PRIMARY KEY(oid),
 FOREIGN KEY(movie) REFERENCES Movie(oid) [1]
)

Your application does not have to deal with primary and foreign keys; it simply uses standard Java
syntax, using the reference to access the object in memory. You also do not need to specify anything
specific in the metadata for a reference; its declaration in Java provides all of the necessary
information.

JDO supports Java's polymorphism, allowing a reference to refer to an instance of any subclass of the
reference's declared class. A JDO implementation must be able to determine the type of the instance
being referred to, so that it can access the right table (or tables). Implementations employ various
techniques to store this type information. With some inheritance-mapping approaches, the
implementation requires a type-discriminator column to identify the type of an instance. Most
implementations allow you to specify the name for the type-discriminator column.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

5.9 Collections and Relationships

In a relational data model, relations are usually normalized . A relation is in first normal form if the cells
of a table contain only a single atomic value, which is nondecomposable as far as the database is
concerned. Initially, relational databases supported only simple types, such as integers, strings, and
dates. Over time, they have added support for column types that can represent a set of data. But most
relational database schema designs represent a collection of values with a set of rows.

You can represent a collection using a foreign key or a join table. We will examine each of these
techniques in the following subsections. We'll consider the Movie and Role classes in the
com.mediamania.content package and examine alternate ways of representing the relationship

between these two classes in Java and a relational schema. For this discussion, we will ignore the
inheritance relationship between Movie and MediaContent . We'll focus on the one-to-many
relationship that exists between Movie and Role .

This mapping discussion is important when you are mapping between an existing relational schema and
Java classes. If you're letting the JDO implementation generate a relational schema for you, or letting it
generate your Java classes automatically from a relational schema, you do not need to be as
concerned with the following discussion. However, as your object model and relational schema evolve,
understanding the following material will become more important.

5.9.1 Using a Foreign Key

A one-to-many relationship between tables A and B usually is represented in a relational schema with a
foreign key in B referencing the primary key in A. In the case of Movie and Role , the Role table
should contain a foreign key that references the primary key of the Movie table. Example 5-3 uses this
technique in the definition of the Movie and Role tables.

Example 5-3. SQL tables using a foreign key to represent a collection

CREATE TABLE Movie (
 oid INTEGER,
 title VARCHAR(24),
 rating CHAR(4),
 genres CHAR(16),
 PRIMARY KEY(oid)
)

CREATE TABLE Role (
 oid INTEGER,
 name VARCHAR(20),
 movie INTEGER, [1]
 PRIMARY KEY(oid),
 FOREIGN KEY(movie) REFERENCES Movie(oid)
)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Suppose you have Movie and Role tables, defined in SQL as shown in Example 5-3 . With this schema,
each Role row can reference only one Movie row. Multiple Role rows can reference the same Movie
row via their movie column, declared on line [1] . Thus, the foreign-key column movie establishes the
one-to-many relationship between Movie and Role in a relational schema.

The following SQL query accesses the Role rows that are associated with a specific Movie :

SELECT name
FROM Movie, Role
WHERE title = 'Braveheart' AND Movie.oid = Role.movie

The join of the oid column in the Movie table with the movie column in the Role table associates the
rows in the Role table with the one row in the Movie table that has a title column equal to
'Braveheart '.

You may have an existing relational schema that represents a collection or relationship using this
foreign-key technique, and you may have to use this schema in your JDO application. Alternatively, if
you do not have an existing schema, you may want to use a foreign key to represent your collection,
as shown in Example 5-3 . We will now examine several Java class designs to represent the
relationship between Movie and Role with this relational schema.

5.9.1.1 Isomorphic mapping

Example 5-4 provides our first Java class design, in which we define a direct isomorphic mapping
(identical form and structure) with the relational tables in Example 5-3 .

Example 5-4. Isomorphic mapping between classes and tables

public class Movie {
 private String theTitle;
 private String movieRating;
 private String genres;
}

public class Role {
 private String name;
 private Movie movie; [1]
}

The Java classes do not have the oid table columns that are used to store the datastore identity in the
relational tables. The Role class's movie field, declared on line [1] , provides a reference to the
associated Movie instance.

The following JDO metadata defines the mapping between the schema defined in Example 5-3 and the
Java classes declared in Example 5-4 :

<jdo>
 <package name="com.mediamania.content" >
 <class name="Movie" >
 <field name = "theTitle" >
 <extension vendor-name="vendorX" key="column" value="title" />
 </field>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <field name = "movieRating" >
 <extension vendor-name="vendorX" key="column" value="rating" />
 </field>
 <field name = "genres" >
 <extension vendor-name="vendorX" key="column" value="genres" />
 </field>
 <extension vendor-name="vendorX" key="table" value="Movie" />
 </class>
 <class name="Role" >
 <field name="name" >
 <extension vendor-name="vendorX" key="column" value="name" />
 </field>
 <field name="movie" >
 <extension vendor-name="vendorX" key="column" value="movie" />
 </field>
 <extension vendor-name="vendorX" key="table" value="Role" />
 </class>
 </package>
</jdo>

However, the Java model in Example 5-4 does not provide a means to navigate from a Movie instance
to its associated Role instances. Java and the JVM do not have the join facility found in a relational
database. You could implement equivalent functionality in Java by examining all the Role instances to
determine which instances reference a specific Movie instance. But this would be very inefficient if
there were a large number of Role instances. Furthermore, this is not how you would normally

represent and access such a relationship in Java.

If you are interested in accessing all the Role instances associated with a Movie referenced by the
variable movie , and pm is initialized to the PersistenceManager , you can execute the following code:

Query q = pm.newQuery(Role.class);
q.setFilter("movie == param1");
q.declareParameters("Movie param1");
Collection result = (Collection) q.execute(movie);

This query returns an unmodifiable collection of Role s that refer to the Movie . The performance of

this query would likely be similar to the performance you would get if the foreign key were represented
by a collection, as we will describe in the following section.

You can also implement a method in the Movie class to add a Role to the movie:

 void addRole(Role role) {
 role.setMovie(this);
 }

This method removes the Role from whatever Movie it currently refers to and replaces it with the
Movie (referenced by this). But this technique does not allow you to execute a portable query that
navigates from a Movie to a Role , which can be done by using the contains() construct (described
in Chapter 9). In order to do this, you would need to define a collection in Movie and map it to the

datastore.

5.9.1.2 Defining a collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You may want to define a collection in your Movie class that contains the set of associated Role
instances, modeled by the foreign key movie (declared on line [1] in Example 5-3). Example 5-5

shows the Java classes for such a model.

Example 5-5. Using the foreign key to represent a collection

public class Movie {
 private String theTitle;
 private String movieRating;
 private String genres;
 private Set cast; [1]
}

public class Role {
 private String name;
}

With this mapping, the movie column in the Role table represents the cast collection in the Movie
class, which contains the Role s associated with a movie. Line [1] of the JDO metadata shown in
Example 5-6 identifies the use of the movie column in the Role table for this purpose.

Example 5-6. JDO metadata for Java classes in Example 5-5 and schema in
Example 5-3

<jdo>
 <package name="com.mediamania.content" >
 <class name="Movie" >
 <field name = "theTitle" >
 <extension vendor-name="vendorX" key="column" value="title" />
 </field>
 <field name = "movieRating" >
 <extension vendor-name="vendorX" key="column" value="rating" />
 </field>
 <field name = "genres" >
 <extension vendor-name="vendorX" key="column" value="genres" />
 </field>
 <field name="cast" >
 <collection element-type="Role"/>
 <extension vendor-name="vendorX" key="rel-column" value="Movie" /> [1]
 </field>
 <extension vendor-name="vendorX" key="table" value="Movie" />
 </class>
 <class name="Role" >
 <field name="name" >
 <extension vendor-name="vendorX" key="column" value="name" />
 </field>
 <extension vendor-name="vendorX" key="table" value="Role" />
 </class>
 </package>
</jdo>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The use of the rel-column on line [1] tells the implementation that the relation should be treated as a

one-to-many association.

5.9.1.3 Defining a collection and a reference

Instead of using the Java model shown in Example 5-4 , you are more likely to define the Movie class
with a collection to contain the set of associated Role instances (as shown in line [1] of Example 5-7),
in addition to the Movie reference in Role .

Example 5-7. Using a foreign key for both a collection and a reference in
Java

public class Movie {
 private String theTitle;
 private String movieRating;
 private String genres;
 private Set cast; [1]
}

public class Role {
 private String name;
 private Movie movie; [2]
}

The metadata for the Java classes in Example 5-7 would be similar to Example 5-6 , except we would
also associate the movie field in the Role class with the movie column in the Role table. Adding a Role
reference to a particular Movie instance's cast collection establishes a relationship between the Movie
and Role instances. You can acquire an Iterator from a Movie instance's cast collection to access
each Role instance associated with the Movie instance.

However, this model has a complication. Suppose you have two Movie instances. What happens if your
Java application adds the same Role reference to the cast collection in both Movie instances? In Java,
each cast collection could easily contain a reference to the same Role instance. But the collection is
represented in the datastore via the foreign-key column named movie in the Role table. The movie
column for a given Role row can reference only a single Movie row. How would this be handled at
commit time? The implementation cannot store the fact that two Movie instances are referencing the
same Role , given the schema defined in Example 5-3 ; it can store only one reference. The
implementation should throw an exception at commit, or it may silently store only one of the Movie
references. Consider the movie reference in the Role class, which can reference only a single Movie . If
the Role instance is in memory, it may reference one of the Movie instances (let's call it M) that
reference the Role in their cast collection. This may result in M being the one Movie that gets
associated with the Role in the datastore.

However, if a Role can be referenced by multiple Movie s and a Movie can reference multiple Role s,

this is really a many-to-many relationship. But our design states that there should be a one-to-many
relationship between Movie and Role . So, this situation should not occur if your Java application is

honoring the cardinality of the relationship. Representing a many-to-many relationship in Java requires
a collection in the classes at both ends of the relationship.

5.9.1.4 Managed relationships

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using a foreign key in the relational datastore to represent a collection in Java becomes especially
cumbersome when the foreign key is represented by a reference at one end of the relationship and a
collection at the other end. Some JDO implementations handle the mapping of a single foreign key to
both sides of a relationship by providing a managed relationship . With this capability, if the application
updates one side of a relationship, the JDO implementation updates the other side automatically. Some
vendors do not support managed relationships, because they result in behavior that differs from the
behavior of Java when using references and collections in non-JDO environments.

For example, if the application adds a Role instance to a Movie instance's cast collection, the
implementation automatically sets the Role instance's movie reference to the Movie instance. Or, if the
application removes a Role from a Movie instance's cast collection, the Role instance's movie
reference is set to null automatically. Similarly, if the application sets the Role instance's movie
reference to a particular Movie instance A, the implementation automatically removes the Role from
the cast collection of the Movie instance currently referenced by movie (unless it is null) and it adds
the Role to A's cast collection.

Currently, JDO does not support managed relationships, but some JDO implementations do support
them. Implementations that support managed relationships provide a metadata extension that allows

you to identify a field's inverse member , which is the member at the other end of the relationship. The
metadata for specifying a managed relationship between Movie and Role would look like this:

<jdo>
 <package name="com.mediamania.content" >
 <class name="Movie" >
 <field name="cast" >
 <collection element-type="Role"/>
 <extension vendor-name="vendorX" [1]
 key="inverse" value="Role.movie"/>
 </field>
 <extension vendor-name="vendorX" key="table" value="Movie" />
 </class>
 <class name="Role" >
 <field name="movie" >
 <extension vendor-name="vendorX" key="column" value="movie"/>
 <extension vendor-name="vendorX" [2]
 key="inverse" value="Movie.cast"/>
 </field>
 <extension vendor-name="vendorX" key="table" value="Role" />
 </class>
 </package>
</jdo>

On line [1] , an extension element is nested within the field element for Movie.cast to specify that
Role.movie is its inverse member in the relationship. On line [2] , an extension element is also
nested in the field element for Role.movie to specify that Movies.cast is its inverse member.

Use of managed relationships in a JDO implementation is not portable to other JDO implementations.
Many Java developers may consider such automatic maintenance behavior unusual. But it solves the
problem of an application attempting to establish a relationship between Java instances that cannot be
represented in the datastore with the schema defined in Example 5-3 . A future JDO release may add
support for managed relationships, if an approach can be designed that preserves JDO's level of
transparency and consistency with Java.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.9.2 Using a Join Table

We have presented three Java class designs that could be used to represent the schema defined in
Example 5-3 . Now let's consider another datastore representation of the Movie.cast collection. Some

JDO implementations represent a collection with a set of rows in a join table . Each row contains the
value for one collection element. Instead of having a foreign key in the Role table, a separate join table
is defined to contain the elements of the cast collection. Example 5-8 provides a schema using a join
table named Movie_cast .

Example 5-8. Use of a join table to represent a collection

CREATE TABLE Movie (
 oid INTEGER,
 title VARCHAR(24),
 rating CHAR(4),
 genres CHAR(16),
 PRIMARY KEY(oid)
)

CREATE TABLE Role (
 oid INTEGER,
 name VARCHAR(20),
 PRIMARY KEY(oid),

)

CREATE TABLE Movie_cast (
 movieoid INTEGER NOT NULL,
 roleoid INTEGER,
 PRIMARY KEY(movieoid, roleoid),
 FOREIGN KEY(movieoid) REFERENCES Movie(oid), [1]
 FOREIGN KEY(roleoid) REFERENCES Role(oid), [2]
 CONSTRAINT r UNIQUE(roleoid) [3]
)

The Movie_cast join table has two columns: movieoid references the associated Movie row (line [1]),
and roleoid references the associated Role row (line [2]). Each element in a Movie.cast collection
has a corresponding row in the Movie_cast table.

If a table like Movie_cast is used to represent a one-to-many relationship, you should define a unique

constraint on the join table columns that correspond to the many side of the relationship. In this case,
the roleoid has a unique constraint, shown on line [3] , because it would be illegal to have the same
Role appear more than once in the table. Even though the JDO implementation might allow you to add
the Role to two different Movie s, the datastore would disallow the operation at commit time.

Most JDO implementations let you specify the name of the join table representing a collection. We
would specify the name of the table for the Movie.cast field by nesting a vendor-specific metadata
extension within the collection element specified for Movie.cast . Most JDO implementations also

let you specify the name of each column in the table.

Example 5-8 actually illustrates how many-to-many relationships normally are represented in a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relational schema (except you would not have the UNIQUE constraint specified on line [3]). A given
row in the Movie table can be associated with multiple rows in the Movie_cast table via the movieoid
foreign key, and a given row in the Role table can be associated with multiple rows in the Movie_cast

table. You would represent the many-to-many relationship in Java with a collection in both classes
involved in the relationship. However, with this particular relational schema, it would be necessary to
define a managed relationship to represent the many-to-many relationship. A single row in the
Movie_cast table would represent the existence of an element in the collections of both classes

involved in the many-to-many relationship.

5.9.3 One-to-One Relationships

In Java, you represent a one-to-one relationship between two classes by having a reference in each
class that refers to an instance of the other class. As an example, consider the one-to-one relationship
that exists between the Rental and RentalItem classes in the Media Mania application, illustrated in
Figure 4-4 . The Rental class has a field named rentalItem that references an instance of RentalItem
. Likewise, the RentalItem class has a field named currentRental that references a Rental instance.

We would likely define one or two methods that would preserve the relationship between these two
classes and ensure that an instance of Rental and an instance of RentalItem refer to one another with

these references.

For this example, we ignore the inheritance relationship between the Rental and Transaction classes.
We define two relational tables, named Rental and RentalItem :

CREATE TABLE Rental (
 oid INTEGER,
 item INTEGER, [1]
 return TIMESTAMP,
 actualReturn TIMESTAMP,
 code INTEGER,
 PRIMARY KEY(oid),
 FOREIGN KEY(item) REFERENCES RentalItem(oid), [2]
 FOREIGN KEY(code) REFERENCES RentalCode(oid)
 CONSTRAINT uniqitem UNIQUE(item) [3]
)

CREATE TABLE RentalItem (
 oid INTEGER,
 mediaItem INTEGER,
 serial VARCHAR(16),
 currentRental INTEGER,
 PRIMARY KEY(oid),
 FOREIGN KEY(currentRental) REFERENCES Rental(oid),
 FOREIGN KEY(mediaItem) REFERENCES MediaItem(oid),
 CONSTRAINT uniqcurr UNIQUE(currentRental)
)

The Rental and RentalItem tables each have a foreign key that references the other table. The
Rental table has a column named item , declared on line [1] , that is a foreign key (line [2]) that
references the RentalItem table. The RentalItem table has a column named currentRental ,
declared on line [4] , that is a foreign key (line [5]) that references a row in the Rental table.

The uniqitem unique constraint on line [3] in the Rental table ensures that only a single row in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rental refers to a particular row in the RentalItem table. Likewise, the uniqcurr unique constraint on
line [6] in the RentalItem table ensures that there is only a single row in the RentalItem table that
refers to a particular row in the Rental table. While this relational representation directly mirrors our

use of references in Java, it is actually redundant to maintain a foreign key in both tables in the
relational model.

It is sufficient to define a foreign key in only one of the tables, having it reference the primary key of
the other table. The tables could be defined as follows:

CREATE TABLE Rental (
 oid INTEGER,
 return TIMESTAMP,
 actualReturn TIMESTAMP,
 code INTEGER,

 item INTEGER, [1]
 PRIMARY KEY(oid),
 FOREIGN KEY(item) REFERENCES RentalItem(oid), [2]
 FOREIGN KEY(mediaItem) REFERENCES MediaItem(oid),
 CONSTRAINT uniqitem UNIQUE(item) [3]
)

CREATE TABLE RentalItem (
 oid INTEGER,
 mediaItem INTEGER,
 serial VARCHAR(16),
 PRIMARY KEY(oid)
)

The item column declared on line [1] in the Rental table is a foreign key (line [2]) that references a
row in the RentalItem table. The uniqitem unique constraint on line [3] makes sure that only a single
row in Rental refers to a particular row in the RentalItem table. The item column is sufficient to
model the one-to-one relationship between Rental and RentalItem .

One-to-one relationships have some of the same issues that we explored with one-to-many
relationships, relative to their representation in a relational datastore and how they are mapped into
Java. To deal with these issues, some implementations support one-to-one managed relationships.

5.9.4 Representing Lists and Maps

Suppose we decide to use an ordered list of Role s in the Movie class. In Java, a List is used to
represent an ordered collection. We redefine the Movie class as follows:

public class Movie {
 private String title;
 private String rating;
 private String genres;
 private List cast;
}

A JDO implementation must preserve a List 's ordering in the datastore. To do so, it must maintain an

ordering column to indicate the relative ordering of each collection element. If the collection is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

represented by a join table, as in Example 5-8 , the ordering column is placed in the join table. The
Movie_cast table then has the column declared on line [1] :

CREATE TABLE Movie_cast (
 movieoid INTEGER,
 roleoid INTEGER,
 elementidx INTEGER, [1]
 FOREIGN KEY(movieoid) REFERENCES Movie(oid)
 FOREIGN KEY(roleoid) REFERENCES Role(oid)
)

If the collection is represented by a foreign key (as in Example 5-3), the ordering column is placed in
the table containing the foreign key. Thus, the ordering column is placed directly in the Role table.

Most implementations let you state the name of this ordering column.

By default, an implementation must preserve the ordering of the elements in a List in the datastore.

Java does not provide an unordered collection class that allows duplicate elements. Some JDO
implementations allow a List to be used to represent a collection when the ordering of the elements is
not preserved in the datastore. You can specify this by nesting an extension element in the List 's
field or collection metadata element. If you do not need to preserve the order of a collection, this

provides a more efficient mapping to the datastore.

If your persistent class has a Map , you must store the key and value of each Map element. The join

table requires a column for the key and the value. Implementations usually let you declare the names
of these columns. A Map does not require an ordering column.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 6. Class Enhancement
You need to enhance a persistent class before you can use it in a JDO runtime environment. Class
enhancement enables the state of a persistent instance in memory to be synchronized with its
representation in the datastore. A persistent class must be enhanced so that it implements the
javax.jdo.spi.PersistenceCapable interface. The PersistenceCapable interface defines a set of

methods that the JDO implementation uses to manage instances.

You also need to enhance every class that directly accesses a managed field of a persistent class.
JDO field-mediation code needs to be inserted to ensure proper access and management of the field.
If your persistent class has a managed field that is not private, any class that directly accesses the

field needs to be enhanced. Such a class is referred to as a persistence-aware class. This is distinct
from a class being JDO-aware, which describes a class that makes direct calls to JDO interfaces at
the source level. A persistence-aware class may itself be transient or persistent. So, even though you
have a class that is transient, if it directly accesses a managed field, you need to enhance it. You
would not list a transient persistence-aware class in the metadata, because any class listed in a
metadata file is persistent. So, the only place you identify that a transient class is persistence-aware
is in your build files that enhance the class.

We recommend that you declare all of your managed fields to be private; this is considered a best

practice in object-oriented development. Independent of the need in JDO to enhance persistence-
aware classes, such accesses represent a loss of encapsulation and can often lead to data-integrity
issues. Fields declared private cannot be accessed directly by another class. Using private fields

thus minimizes the number of persistence-aware classes that need to be enhanced. If a nonmediated
access occurs because you forgot to enhance a persistence-aware class, your application will likely
behave incorrectly. So, always declare your fields to be private.

The JDO specification defines a standard reference-enhancement contract, which thoroughly specifies
all the requirements to enhance a class. Enhanced classes are independent of any particular JDO
implementation and datastore.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.1 Enhancement Approaches

You may not be familiar with class enhancement, but it is not JDO-specific and it has been applied in
other software technologies. There are several approaches that can be used to enhance a class.
Enhancement can be performed by:

Implementing enhancement yourself manually

Using a source-code enhancer

Using a byte-code enhancer

Each enhancement approach requires access to the JDO metadata you have defined.

You may explicitly declare that your class implements PersistenceCapable. In this case, you need
to implement the PersistenceCapable contract fully, as specified by the JDO specification. An
enhancer ignores a class if you have explicitly declared that it implements PersistenceCapable. We

do not recommend this approach; it is tedious and error-prone.

A source-code enhancer reads your original source code and adds the source necessary to support
the JDO enhancement contract. The revised source is compiled and is then ready for execution in a
JDO environment. At the time this book was written, only one vendor supported a source-code
enhancer; the vender also supported a byte-code enhancer.

The most common approach for enhancing a class is to use a JDO byte-code enhancer. It reads a
class file produced by the Java compiler and generates a new class file that has been enhanced. With
a byte-code enhancer, you can make classes persistent even if you do not have the source code.
Figure 6-1 illustrates the process of using a byte-code enhancer to enhance the Movie class.

Figure 6-1. Byte-code enhancement process

All persistent and persistence-aware classes need to be enhanced before they can be used in a JDO
runtime environment. They must be enhanced before or during their loading into the JVM at runtime.
Some implementations may enhance classes in the class loader itself during the class-loading
process. Class enhancement is often performed as an additional step in the build process. Most
vendors provide an Ant task you can use to enhance your classes in an Ant build file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Consult your implementation's documentation to determine which technique they use for class
enhancement; this will ensure your classes implement the PersistenceCapable interface. At the

time this book was written, most JDO implementations supported a byte-code enhancer, so we
assume that you are using one.

6.1.1 Reference Enhancer

The JDO reference implementation, implemented by Sun Microsystems, includes a reference
enhancer that enhances class files according to the reference-enhancement contract.

The following command uses the reference enhancer to enhance the persistent classes in the Media
Mania object model:

java com.sun.jdori.enhancer.Main -d enhanced -s classes \
 classes/com/mediamania/content/Studio.class \
 classes/com/mediamania/content/MediaContent.class \
 classes/com/mediamania/content/Movie.class \
 classes/com/mediamania/content/Game.class \
 classes/com/mediamania/content/Role.class \
 classes/com/mediamania/content/MediaPerson.class \
 classes/com/mediamania/store/MediaItem.class \
 classes/com/mediamania/store/RentalItem.class \
 classes/com/mediamania/store/RentalCode.class \
 classes/com/mediamania/store/Customer.class \
 classes/com/mediamania/store/Address.class \
 classes/com/mediamania/store/Transaction.class \
 classes/com/mediamania/store/Purchase.class \
 classes/com/mediamania/store/Rental.class

This command places the enhanced class files in a separate directory hierarchy named enhanced. You
can also enhance the class files in place, replacing your original class file with the enhanced form by
using the -f command option. Another useful option is -v, which produces verbose output indicating
the actions performed by the enhancer.

6.1.2 Vendor-Specific Enhancement

A JDO vendor can use Sun's reference enhancer directly with their implementation, or they can
implement their own enhancer that performs the same function. A vendor can extend the
enhancements required in the reference-enhancement contract by adding their own methods and
fields to be used in their runtime environment. However, these additional implementation-specific
enhancements cannot conflict with the reference-enhancement contract.

The reference-enhancement contract establishes guidelines for how a vendor can add enhancements,
so the enhanced classes are usable with any other JDO implementation's runtime environment. The
reference-enhancement contract adds fields and methods whose names begin with "jdo". Any
methods and fields added by another vendor's enhancer do not have a name that begins with "jdo";
they begin with some other string that has a vendor-identifying name followed by the string "jdo".

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.2 Binary Compatibility

The standard enhancement interface defined by the JDO reference-enhancement contract provides
binary compatibility among all enhancers and runtime environments. It requires that:

A class enhanced by the reference enhancer is usable with any JDO-compliant runtime
environment.

A class enhanced by a JDO-compliant vendor's enhancer is usable by the reference
implementation's runtime environment.

A class enhanced by a JDO-compliant vendor's enhancer is usable by any other JDO-compliant
runtime environment.

Furthermore, an enhanced class file can be shared concurrently in a JVM among several coresident
JDO implementations.

An implementation's runtime environment can determine whether a class was enhanced by its own
enhancer. If it has, the implementation's runtime environment can use any implementation-specific
enhancements that were placed in the class file. Otherwise, it must use the standard reference-
enhancement interface contract. Table 6-1 shows which enhancement interface a JDO runtime
environment will use, based on the enhancer used to enhance the class.

Table 6-1. Enhancement interfaces used

Enhancer used Reference runtime Vendor A runtime Vendor B runtime

Reference enhancer Reference enhancement Reference enhancement Reference enhancement

Vendor A enhancer Reference enhancement Vendor A enhancement Reference enhancement

Vendor B enhancer Reference enhancement Reference enhancement Vendor B enhancement

You can distribute your classes in either their enhanced or unenhanced form. Both forms are portable
across implementations. If you are distributing the classes as a third-party class library that will be
used in a variety of applications, you probably should distribute them unenhanced. The developers
using your classes can then choose which enhancer to use. In this case, we recommend you provide
them with the necessary metadata for your classes, which they may need to customize. If you are
deploying an application that uses a specific JDO implementation, you may distribute your persistent
classes in their enhanced form. It does not matter though, because a class distributed in its enhanced
form can still be used with any JDO-compliant implementation. If you expect your classes will be used
with multiple JDO implementations and you wish to distribute them in their enhanced form, we
recommend that you use the Sun reference enhancer.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.3 Enhancement Effects on Your Code

It is important for you to understand how enhancement affects your persistent classes. Enhancement
does not alter the logic or functional behavior that you have defined. It adds code to mediate all
access to a field to ensure that its value has been read from the datastore and that any modifications
are tracked. You will not see any behavioral differences between transient instances of enhanced
classes and transient instances of the same nonenhanced classes.

The PersistenceCapable interface is designed to avoid name conflicts with fields and methods that
you define. All of its declared method names are prefixed with "jdo". To avoid selecting a name the
enhancer uses, you should not declare a persistent class with fields or methods that start with "jdo".
The reference-enhancement contract adds additional methods and fields that begin with "jdo" to

your classes.

The enhancer does not change the behavior of introspection. All of the fields and methods added to
an enhanced class are exposed when you use the Java reflection APIs.

Your enhanced classes will have dependencies on the JDO JDOImplHelper, StateManager, and
PersistenceCapable interfaces, defined in the javax.jdo.spi package. Therefore, your enhanced

classes need to have the jdo.jar file that contains their definitions available in your classpath at
runtime.

Class enhancement will not impact source-line-level debugging. You can debug your enhanced
classes using the line numbers of your original source code. You will be able to work at the source
level as if the class had not been enhanced. If the enhancer makes any code modifications that
change the offset of any byte codes within a method, it updates the line number references to reflect
the change.

However, as you will learn in this chapter and Chapter 12, a JDO implementation has some flexibility
as to when it initializes an instance's persistent fields. The enhancer places field-mediation code in
your application classes to ensure the field is loaded before your application classes access a field.
But this field mediation is not applied to debuggers or software that uses introspection. These will
access the field directly, even when it has not been loaded by the JDO implementation. This may
confuse you, because the field's value will change when it is loaded from the datastore. This can even
occur if the specific field you are examining in the debugger has not been accessed by the
application; it could get loaded as a result of an access to another field in the instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

6.4 Changes Made by the Enhancer

The remainder of this chapter describes in more detail some of the changes made to your class files
by the enhancer. We do not cover all the methods added by an enhancer. Nor do we explain all of the
functionality added to a class to enable transparent persistence. You do not need to understand all
the details of class enhancement; your application should never directly use the fields and methods
added by enhancement. But it is useful, though not necessary, to have a basic understanding of how
your classes are modified by the process. We list all the fields that are added by class enhancement
and some of the methods. To gain a thorough understanding of the enhancement contract, you
should read the JDO specification. You do not need to understand the remaining material in this
chapter to use JDO. If you are not interested in the details of enhancement, you can skip over the
remainder of this chapter.

The enhancer adds an interface, fields, and methods to your persistent classes so that they can be
stored in a datastore transparently. The enhancer adds the following line to the definition of a
persistent class:

implements javax.jdo.spi.PersistenceCapable

The PersistenceCapable interface defines methods the JDO implementation uses to manage

instances in a JDO runtime environment. The enhancer adds the implementation of these
PersistenceCapable methods. It also adds metadata information to each class, which is used by the

JDO runtime environment to manage the fields.

A getfield byte-code instruction performs all field-read accesses at the class-file level, and a
putfield byte-code instruction performs all field modifications. There is a different getfield and
putfield instruction for each type in Java. The JDO implementation mediates all accesses and

updates to a managed field to ensure its value has been retrieved from the datastore before your
application accesses it and all modifications have been captured. The enhancer replaces each
getfield and putfield byte-code instruction for a managed field with a call to a method it

generates to provide this mediation.

6.4.1 Metadata

The enhancer generates its own metadata, based on the class declaration and the metadata you
have defined. This metadata is added during enhancement to each persistent class as static fields.
The JDO runtime environment uses this information to manage the fields of the class. Access of this
metadata information is much more efficient than using Java reflection.

6.4.1.1 Class metadata

The following static fields are added to represent class-level metadata:

private final static int jdoInheritedFieldCount;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

private final static Class jdoPersistenceCapableSuperclass;
private final static long serialVersionUID;
jdoInheritedFieldCount

Initialized to the number of managed fields inherited from superclasses.
jdoPersistenceCapableSuperclass

Initialized to the Class instance of the most immediate superclass that is persistent within the
hierarchy. It is null if the class is the topmost persistent class in the hierarchy or if it is not in

an inheritance hierarchy.
serialVersionUID

Added only if it does not already exist in the class. It is used with serialization and has the
same value as the class in its non-enhanced form. This allows you to serialize a persistent
instance and later deserialize it into an instance of the class in its unenhanced form.

6.4.1.2 Field metadata

The following fields provide information about each managed field in the class:

private final static String[] jdoFieldNames;
private final static Class[] jdoFieldTypes;
private final static byte[] jdoFieldFlags;

Each managed field has an index value that is used to identify it uniquely. A field's index value is used
to access its entries in these arrays.

jdoFieldNames

Contains the name of each field.
jdoFieldTypes

Contains the type of each field.
jdoFieldFlags

Contains some flags to indicate the form of access and mediation that should be performed for
the fields. It also has a flag to indicate whether the field should be serialized.

6.4.1.3 Class registration

A static initializer is added to each persistent class. This static initialization code is executed after any
other initialization you may have defined in the class. It registers the class with the JDO runtime
environment by calling the static registerClass() method defined in the JDOImplHelper class.
This class is defined in the javax.jdo.spi package, and it provides utility methods used by JDO

implementations. If the persistent class is not abstract, a helper instance of the class is constructed
and passed to registerClass().

The generated static metadata fields are passed as arguments to registerClass(). The
JDOImplHelper class provides methods that allow this information to be shared by all JDO

implementations that manage instances of the class in the JVM.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4.2 Instance-Level Data

The reference enhancer adds the following two fields to the least-derived (topmost) persistent class
in an inheritance hierarchy:

protected transient javax.jdo.spi.StateManager jdoStateManager;
protected transient byte jdoFlags;

These are the only two fields added to a class that affect the size of an instance in memory.

jdoStateManager

This field contains a reference to the StateManager that manages the fields of persistent and
transient transactional instances. This field is null for nontransactional transient instances.

jdoFlags

This field indicates the state of the fields in the instance.

The StateManager instance referenced by jdoStateManager manages the value of the jdoFlags

field. Since these two fields are transient, they do not impact serialization.

6.4.3 Field Mediation

Access to a managed field is mediated by the JDO implementation to ensure its value has been
retrieved from the datastore before it is accessed by the application and to capture all application
modifications to the field. Nonmanaged fields are ignored by the enhancer. No enhancement is
performed on access to nonmanaged fields, because they lie outside the domain of persistence and
may be accessed like any normal Java field, obeying the accessibility rules dictated by the public,
private, and protected modifiers and default package access.

6.4.3.1 Generated accessors and mutators

The enhancer generates a get and set method for each managed field in a persistent class. These
methods have the following form:

final static mmm ttt jdoGetField(theclass instance);

final static mmm void jdoSetField(theclass instance, ttt newValue);

with the following elements:

Field

This is the name of the field in the class.
mmm

This is the same access modifier (public, private, or protected) as the corresponding field in

the nonenhanced class. This ensures the security of instances by preserving the same field
access restrictions that are declared in the class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ttt

This is the type of the field in the nonenhanced class.
theclass

This is the class in which this static method is defined. This parameter is used to pass an
instance of the class to the static method.

These generated methods examine the values in jdoFlags and jdoFieldFlags and perform the

appropriate behavior to get or set the field's value. These methods provide access mediation of the
managed fields.

The enhancer must enhance every class that has a getfield or putfield byte-code instruction for a
managed field of a persistent class. Each getfield is replaced with a call to the corresponding
jdoGetField(), and each putfield is replaced with a call to the corresponding jdoSetField().
The jdoSetField() methods enable the StateManager to track which fields in each instance are
modified by the application. The PersistenceManager can then automatically propagate all instance

modifications to the datastore at transaction commit.

As it turns out, the stack signature required for the getfield and putfield byte codes matches the
stack signature needed for the call to jdoGetField() and jdoSetField(). The enhancer needs to
replace only a single byte-code instruction- getfield or putfield-without needing to add or alter

any other byte-code instructions. So, replacing these byte codes does not increase the size of the
byte code in your class.

The timing of managed field accesses, for both transient and persistent instances, will be different
from the timing of field accesses in an unenhanced class, because the getfield and putfield byte-

code instructions are replaced with calls to these generated static methods. But the methods are
defined as static and final, which reduces their method-call overhead. Furthermore, since they are
static and final methods, a HotSpot or other Just-In-Time (JIT) environment can optimize the

byte code by removing the method call entirely.

6.4.3.2 Management of field values

The methods described in this section are used to mediate application access to managed fields. The
StateManager instance referenced by the jdoStateManager field manages the state of the managed

fields in a persistent instance by using the following two methods added by enhancement:

public void jdoReplaceField(int field);
public void jdoProvideField(int field);

The parameter passed to these methods is the index value that uniquely identifies a field.

Since jdoReplaceField() and jdoProvideField() are placed in the class, the StateManager can

access and alter every managed field, regardless of the field's access modifier (e.g., default package-
level, private, and protected). At the same time, it preserves the field-accessibility restrictions for
all classes except the StateManager, which must be granted permission explicitly in Java runtime
environments that enforce security. You must use the JDOPermission class, described in Chapter 2,
to grant permission to the StateManager.

The StateManager uses jdoReplaceField() to store values from the datastore in the instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

jdoReplaceField() calls the StateManager method replacingXXXField() to get a value for the

field. The XXX corresponds to one of the specific field types handled in JDO. The StateManager has a
replacingXXXField() method for each field type. The jdoReplaceField() method assigns to the
field the value that is returned by replacingXXXField().

The StateManager uses jdoProvideField() to retrieve a field value from an instance.
jdoProvideField() calls the StateManager method providedXXXField() to access a field's

value. There is a providedXXXField() method for each field type, denoted by XXX.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 7. Establishing a JDO Runtime
Environment
This chapter describes how to establish a JDO runtime environment. This includes specifying the
particular JDO implementation to be used, connecting to the datastore, and setting various properties
that control the management of transactions and the cache of persistent instances.

Your primary interface when using JDO is the PersistenceManager interface. You configure a
PersistenceManager instance by using a PersistenceManagerFactory instance, which you can
create by calling a method defined in JDOHelper. Or, in a Java 2 Platform, Enterprise Edition (J2EE)

environment, you would likely use Java Naming and Directory Interface (JNDI) to store and look up
one or more PersistenceManagerFactory instances.

You can initialize and set various properties within the PersistenceManagerFactory, including the

information needed to connect to the datastore. Once you have established the desired configuration,
you call a PersistenceManagerFactory method to create a PersistenceManager instance. You can
create multiple PersistenceManagers from a single PersistenceManagerFactory, and you can alter
some of the properties in a PersistenceManager once it has been created.

A PersistenceManager instance has a one-to-one relationship with an associated Transaction
instance. The PersistenceManager interface provides a method to access this instance. The property
settings in the PersistenceManager and Transaction instances control the runtime behavior of the

JDO runtime environment.

Figure 7-1 illustrates the relationships among these classes and the methods you can use to access
and create the associated instances. This chapter describes the capabilities these interfaces provide,
so you can configure your application's runtime environment for accessing the datastore.

Figure 7-1. Interfaces used to configure and control the JDO runtime
environment

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.1 Configuring a PersistenceManagerFactory

A PersistenceManagerFactory has a number of properties you can use to configure a
PersistenceManager. You should initialize these property values when the
PersistenceManagerFactory is first created via the JDOHelper interface. Once you have
constructed a PersistenceManagerFactory with the necessary property values, you call
getPersistenceManager() to construct a PersistenceManager instance. The values of the
properties in the PersistenceManagerFactory instance become the default settings for the
properties in all the PersistenceManager instances created by the factory.

To create a PersistenceManagerFactory, initialize a Properties instance and pass it as a
parameter to one of the following JDOHelper methods:

public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props, ClassLoader cl);
public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props);

The second method, without a ClassLoader parameter, uses the ClassLoader in the calling thread's

current context to resolve the class name.

Table 7-1 lists the keys that you can specify in the Properties object to initialize the
PersistenceManagerFactory. A JDO implementation may have some of its own additional properties
that are necessary. Such vendor-specific properties should not have the javax.jdo.option prefix;

instead, they should use a prefix that identifies the specific implementation.

Table 7-1. Standard property keys used to initialize a
PersistenceManagerFactory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionDriverName

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name

javax.jdo.option.IgnoreCache

javax.jdo.option.Optimistic

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

The keys and values in a Properties instance are represented by String instances. Each property
listed in Table 7-1 has a corresponding property value in PersistenceManagerFactory that is either
a String or a boolean. The value of a String property is used directly, without change. In the case
of a boolean property, the String value in the Properties instance is considered true if it
compares equal to "true" (ignoring case); otherwise, it is initialized to false.

You must include the javax.jdo.PersistenceManagerFactoryClass property, which is used to

specify the implementation-specific class of the instance this method returns. The name associated
with this property should be the fully qualified name of the implementation's class that implements
the PersistenceManagerFactory interface. Your implementation's documentation should provide

you with the name of this class.

If you do not initialize a property, the implementation can choose the default value. A JDO vendor will
likely choose default values that work best with its implementation. Therefore, the default values are
not likely to be consistent across different implementations. To ensure that your application is
portable and has consistent behavior across implementations, you should initialize the values of all
the properties that are relevant to your application.

The following code populates a Properties instance with JDO properties and constructs a
PersistenceManagerFactory using JDOHelper. The RestoreValues property is initialized to false,
because its property value is not equal to "true" (ignoring case).

import java.util.Properties;
import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;

...

PersistenceManagerFactory pmf = null;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Properties properties = new Properties();
properties.put("javax.jdo.PersistenceManagerFactoryClass",
 "com.sun.jdori.fostore.FOStorePMF");
properties.put("javax.jdo.option.ConnectionURL", "fostore:database/fostore");
properties.put("javax.jdo.option.ConnectionUserName", "dave");
properties.put("javax.jdo.option.ConnectionPassword", "jdo4me");
properties.put("javax.jdo.option.Optimistic", "false");
properties.put("javax.jdo.option.IgnoreCache", "false");
properties.put("javax.jdo.option.RetainValues", "true");
properties.put("javax.jdo.option.RestoreValues", "yes"); // will be set to false
pmf = JDOHelper.getPersistenceManagerFactory(properties);

The two getPersistenceManagerFactory() methods delegate to a static
getPersistenceManagerFactory() method, which should exist in the class named in the
javax.jdo.PersistenceManagerFactoryClass property. If any exceptions are thrown while trying
to call this static method, a JDOFatalUserException or JDOFatalInternalException is thrown,

depending on whether the exception is due to your application or the implementation. The nested
exception indicates the cause of the exception. A JDOFatalUserException is thrown if the class
specified by the javax.jdo.PersistenceManagerFactoryClass property is not found or accessible.

If the class exists, but it does not have a public static implementation of
getPersistenceManagerFactory(Properties), a JDOFatalInternalException is thrown. If the
method does exist, but it throws an exception, it is rethrown by the JDOHelper method.

Implementations may manage a map of instantiated PersistenceManagerFactory instances that
have specific property key values, and return a previously instantiated PersistenceManagerFactory
instance with the property values you request. The same PersistenceManagerFactory instance can

be returned when the application makes multiple calls to construct an instance with the same
property values, using the same or different Properties instances.

The PersistenceManagerFactory interface provides methods to get and set the values of its
properties. However, since getPersistenceManagerFactory() can return a previously constructed
PersistenceManagerFactory instance, the returned instance is sealed (i.e., its properties cannot be

changed), and any call to alter a property with a set method throws an exception. Portable
applications should therefore completely initialize the PersistenceManagerFactory with the
properties in a Properties instance. If you want to call the set methods to initialize property values,
you can construct the PersistenceManagerFactory with a vendor-specific constructor. This will

return a nonsealed instance that can have its properties changed, but using such vendor-specific
constructors is not portable.

7.1.1 Connection Properties

The following connection properties are used to configure a datastore connection:

javax.jdo.option.ConnectionURL

The ConnectionURL property identifies the specific datastore to access. The syntax and value

of this parameter is determined by the underlying datastore. If you are using a JDO
implementation that is layered on top of a JDBC connection, you will likely specify the same
value a JDBC application would use to establish a connection. The JDO implementation uses the
ConnectionURL property value to establish its internal JDBC connection.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.jdo.option.ConnectionDriverName

The ConnectionDriverName property is used to specify the particular database driver. For
example, oracle.jdbc.driver.OracleDriver is a common driver used with Oracle. A
ConnectionDriverName is normally required when accessing a relational database with JDBC.

Some datastores, such as an object database, do not have multiple drivers. For these
datastores, it is not necessary to provide a value for ConnectionDriverName.

javax.jdo.option.ConnectionUserName and javax.jdo.option.ConnectionPassword

Most datastores perform access authentication by requiring a username and password. The
ConnectionUserName and ConnectionPassword properties are used to initialize these
connection properties. An alternative to providing these two values in the Properties object
used to initialize the PersistenceManagerFactory is to call the getPersistenceManager()
method that accepts the userid and password as parameters.

javax.jdo.option.ConnectionFactoryName

The ConnectionFactoryName property identifies the name of the connection factory from

which the JDO implementation should obtain datastore connections. JNDI is used to locate the
connection factory with the given name.

Instead of providing the name of the factory, you can directly provide the ConnectionFactory
instance by passing it as a parameter to setConnectionFactory().

If you are running in a managed environment that has other connection properties that you can and
want to set in your application, you can configure a connection factory. When you use a connection
factory, the ConnectionURL, ConnectionUserName, and ConnectionPassword connection properties
are overridden by the ConnectionFactory and ConnectionFactoryName properties.

If you set multiple connection properties, they are evaluated in order. If you specify
ConnectionFactory, all other connection properties are ignored. If you do not specify
ConnectionFactory, but you specify ConnectionFactoryName, all other properties are ignored.

If you use a connection factory, you should provide values for the following properties, if the
datastore has a corresponding concept:

URL

The URL of the datastore
UserName

The name of the user establishing the connection
Password

The password for the user
DriverName

The driver name for the connection
ServerName

The name of the server for the datastore
PortNumber

The port number for establishing a connection to the datastore
MaxPool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The maximum number of connections in the connection pool
MinPool

The minimum number of connections in the connection pool
MsWait

The number of milliseconds to wait for an available connection from the connection pool before
throwing a JDODataStoreException

LogWriter

The PrintWriter to which messages should be sent
LoginTimeout

The number of seconds to wait for a new connection to be established to the datastore

The PersistenceManagerFactory instance may also support additional properties that are specific to
the datastore or PersistenceManager.

In an application-server environment, a connection factory always returns connections that are
enlisted in the thread's current transaction context. Using optimistic transactions requires an
additional connection factory that returns connections that are not enlisted in the current transaction
context. (Chapter 15 discusses this in detail.) For this purpose, the ConnectionFactory2Name
property and setConnectionFactory2() method are used:

javax.jdo.option.ConnectionFactory2Name

The ConnectionFactory2Name property identifies the name of the connection factory from

which nontransactional datastore connections are obtained. JNDI is used to locate the
connection factory by name.

Alternatively, you can specify the connection factory instance directly by passing it as a
parameter to setConnectionFactory2().

The following list provides the get and set methods for each of the connection properties:

javax.jdo.option.ConnectionURL

Get method: String getConnectionURL()

Set method: void setConnectionURL(String)
javax.jdo.option.ConnectionUserName

Get method: String getConnectionUserName()

Set method: void setConnectionUserName(String)
javax.jdo.option.ConnectionPassword

Get method: none

Set method: void setConnectionPassword(String)
javax.jdo.option.ConnectionFactoryName

Get methods: String getConnectionFactoryName(), Object getConnectionFactory()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Set methods: void setConnectionFactoryName(String), void
setConnectionFactory(Object)

javax.jdo.option.ConnectionFactory2Name

Get methods: String getConnectionFactory2Name(), Object getConnectionFactory2()

Set methods: void setConnectionFactory2Name(String), void
setConnectionFactory2(Object)

javax.jdo.option.ConnectionDriverName

Get method: String getConnectionDriverName()

Set method: void setConnectionDriverName(String)

7.1.2 Optional Feature Properties

Properties are also available to initialize the settings of the optional features. Specifically, the
following transaction properties can be initialized (they are covered in detail in later chapters):

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Optimistic

javax.jdo.option.RetainValues

These properties affect the runtime behavior of the application. You can provide a value for these
flags when you configure your JDO runtime environment. The flags can be initialized in the
Properties object used to construct the PersistenceManagerFactory. If you attempt to set one of
these properties to true and the implementation does not support it, a
JDOUnsupportedOptionException is thrown.

The following list provides the get and set methods for the optional feature properties:

javax.jdo.option.NontransactionalRead

Get method: boolean getNontransactionalRead()

Set method: void setNontransactionalRead(boolean)
javax.jdo.option.NontransactionalWrite

Get method: boolean getNontransactionalWrite()

Set method: void setNontransactionalWrite(boolean)
javax.jdo.option.Optimistic

Get method: boolean getOptimistic()

Set method: void setOptimistic(boolean)
javax.jdo.option.RetainValues

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Get method: boolean getRetainValues()

Set method: void setRetainValues(boolean)

7.1.3 Flags

You can also set some additional flags to control the behavior of your JDO environment. These flags
have the following properties, which can be used to configure the PersistenceManagerFactory:

javax.jdo.option.IgnoreCache

javax.jdo.option.Multithreaded

javax.jdo.option.RestoreValues

We discuss Multithreaded and RestoreValues later in this chapter. Chapter 8 and Chapter 9
describe IgnoreCache.

7.1.4 Flags Settings in Multiple Interfaces

Some features have flags that you can get and set to control the behavior of your JDO environment.
These flags are maintained in several JDO interfaces. Table 7-2 lists these features and the JDO
interfaces that have associated flags and methods for managing their settings.

Table 7-2. Methods to manage flags for features

Feature Interfaces with methods to get/set flags

NontransactionalRead PersistenceManagerFactory, Transaction

NontransactionalWrite PersistenceManagerFactory, Transaction

Optimistic PersistenceManagerFactory, Transaction

RetainValues PersistenceManagerFactory, Transaction

RestoreValues PersistenceManagerFactory, Transaction

IgnoreCache PersistenceManagerFactory, PersistenceManager, Query

All of these flags have Boolean values. For example, the following methods are defined in
Transaction and PersistenceManagerFactory:

void setOptimistic(boolean flag);
boolean getOptimistic();

If the implementation does not support an optional feature, the value of the associated flag in these
interfaces is false. If you attempt to set the flag to true, a JDOUnsupportedOptionException is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

thrown. For optional features that the implementation does support, it can choose a default value of
true or false for the flag. A JDO vendor usually selects a default value most suited to their

implementation.

If you want to guarantee that your application behaves consistently across implementations, you
should set the values of these flags explicitly (assuming that the implementation supports the feature
you wish to enable). Setting a flag to false protects you from unexpected behavior in the future, if
the implementation later enables the feature with a default setting of true. You can initialize these
flags within the property file that you use to construct the PersistenceManagerFactory.

7.1.5 Determining the Optional Features and Default Flag Settings

You can determine which optional features an implementation supports by calling the following
PersistenceManagerFactory method:

Collection supportedOptions();

This method returns a Collection of String values, where each element represents an optional

feature or query language that the implementation supports. If the implementation does not support
an optional feature, this method does not return its associated option string.

The string "javax.jdo.query.JDOQL" indicates that the standard JDO query language is supported.

An implementation may also support other query languages; if so, a value is returned to identify each
supported query language. These alternative, implementation-specific query languages (and their
associated names) are not defined in the JDO specification.

Example 7-1 is a small application that lists the optional features and default flag values for the
optional features listed in Table 7-2. It extends the MediaManiaApp class used in Chapter 1. To get

the implementation's default values, the property file used to initialize the
PersistenceManagerFactory should not initialize the properties. The application calls
supportedOptions() on line [1] to access the options supported by the implementation. Lines [2]
through [7] call PersistenceManagerFactory methods to access the default values for the optional

feature flags.

Example 7-1. Getting an implementation's optional features and default
flag values

package com.mediamania;

import java.util.Collection;
import java.util.Iterator;
import javax.jdo.PersistenceManagerFactory;

public class GetOptions extends MediaManiaApp {

 public static void main(String[] args) {
 GetOptions options = new GetOptions();
 options.print();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void print() {
 Collection options = pmf.supportedOptions(); [1]
 Iterator iter = options.iterator();
 System.out.println("Supported options:");
 while (iter.hasNext()) {
 String option = (String) iter.next();
 System.out.println(option);
 }
 System.out.println("\nDefault values for flags:");
 System.out.print("IgnoreCache ");
 System.out.println(pmf.getIgnoreCache()); [2]
 System.out.print("NontransactionalRead ");
 System.out.println(pmf.getNontransactionalRead()); [3]
 System.out.print("NontransactionalWrite ");
 System.out.println(pmf.getNontransactionalWrite()); [4]
 System.out.print("Optimistic ");
 System.out.println(pmf.getOptimistic()); [5]
 System.out.print("RestoreValues ");
 System.out.println(pmf.getRestoreValues()); [6]
 System.out.print("RetainValues ");
 System.out.println(pmf.getRetainValues()); [7]
 }
 public void execute() {
 }
}

Sun's JDO reference implementation produces the following output for this program:

Supported options:
javax.jdo.option.TransientTransactional
javax.jdo.option.NontransactionalRead
javax.jdo.option.NontransactionalWrite
javax.jdo.option.RetainValues
javax.jdo.option.Optimistic
javax.jdo.option.ApplicationIdentity
javax.jdo.option.DatastoreIdentity
javax.jdo.option.ArrayList
javax.jdo.option.HashMap
javax.jdo.option.Hashtable
javax.jdo.option.LinkedList
javax.jdo.option.TreeMap
javax.jdo.option.TreeSet
javax.jdo.option.Vector
javax.jdo.option.Array
javax.jdo.option.NullCollection
javax.jdo.query.JDOQL

Default values for flags:
IgnoreCache true
NontransactionalRead true
NontransactionalWrite false
Optimistic true

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RestoreValues true
RetainValues true

Notice that all of the flags in Table 7-2 have a setting maintained in a PersistenceManagerFactory
instance. When you call getPersistenceManager() to construct a PersistenceManager instance,
the values of the flags in the PersistenceManagerFactory are copied into the PersistenceManager
instance. When you call currentTransaction() to access the associated Transaction instance,
the transaction-related flags in the Transaction instance get the same values that were set in the
PersistenceManagerFactory instance. If you want a flag in the Transaction instance to have a
different value, you can call the flag's set method in the Transaction interface. But do not call these

methods when a transaction is active.

The value of the IgnoreCache flag in a PersistenceManager affects the behavior of extent iteration

and queries. Basically, it determines whether changes you have already made to instances in the
application cache should be reflected in extents and the results of queries. The IgnoreCache flag is

covered in Chapter 8 and Chapter 9 when we cover extents and queries, respectively.

In a nonmanaged environment, you can use multiple PersistenceManager instances. Each call to
PersistenceManagerFactory.getPersistenceManager() returns a new instance for your use. You
can change the IgnoreCache flag in a PersistenceManager instance. So, it is possible to have two
PersistenceManager instances, where one has its IgnoreCache flag set to true, and the other has it
set to false.

The IgnoreCache setting in a PersistenceManager establishes the initial value of the IgnoreCache
flag in each Query you construct via a call to PersistenceManager.newQuery(). So, you can
construct multiple Query instances and set the values of their respective IgnoreCache flags

independently.

7.1.6 Vendor-Specific Properties

A JDO implementation can define its own property keys. You can use the property keys to initialize
implementation-specific properties when you configure a PersistenceManagerFactory. Each such

property key should have a prefix that associates it with the vendor's implementation.
Implementations silently ignore any properties that they do not recognize. If they recognize a
property key that they do not support and you specify a value that enables the feature, a
JDOFatalUserException is thrown when you call getPersistenceManagerFactory().

7.1.7 Nonconfigurable Properties

A JDO vendor may provide nonconfigurable properties and make them available to your application
via a Properties instance, which can be retrieved with the following PersistenceManagerFactory

method:

Properties getProperties();

Each key and value is a String. All JDO implementations support two standard keys:

VendorName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the JDO vendor
VersionNumber

The release number of the vendor's implementation

Other properties returned by getProperties() are vendor-specific. This method does not return

the configurable properties we covered previously. Your application can modify the returned
Properties instance, but the modifications do not affect the behavior of the
PersistenceManagerFactory instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.2 Acquiring a PersistenceManager

Once you have configured a PersistenceManagerFactory with the appropriate property settings,
you can call one of the following PersistenceManagerFactory methods to construct a
PersistenceManager instance:

PersistenceManager getPersistenceManager();
PersistenceManager getPersistenceManager(String userid, String password);

The returned instance may come from a pool of PersistenceManager instances, but the property
values in the returned PersistenceManager instance are equal to their values in the
PersistenceManagerFactory instance.

After your first call to getPersistenceManager(), none of the set methods in the
PersistenceManagerFactory will succeed. You may be able to modify the setting of operational

parameters dynamically using a vendor-specific interface.

If you acquire the PersistenceManager by calling the getPersistenceManager() method that has
the userid and password parameters, all of the manager's accesses to get a connection from the
connection factory use the provided userid and password. If PersistenceManager instances are
pooled, then getPersistenceManager() returns only a PersistenceManager instance with the
same userid and password.

You may need to access the PersistenceManagerFactory that was used to create a
PersistenceManager. You can call the following PersistenceManager method to access it:

PersistenceManagerFactory getPersistenceManagerFactory();

If a PersistenceManagerFactory instance was not used to create the PersistenceManager instance
(e.g., a call to a vendor-specific PersistenceManager constructor was used), this method returns
null.

7.2.1 User Object

Your application may use multiple PersistenceManager instances concurrently. You may find it
useful to define a class that is responsible for managing and tracking the set of PersistenceManager

instances. In such circumstances, it is useful to associate the manager object responsible for each
PersistenceManager instance and be able to access the manager object from the
PersistenceManager instance. The following PersistenceManager methods allow you to set and get
an instance to be associated with a PersistenceManager instance:

void setUserObject(Object object);
Object getUserObject();

You have complete freedom in how this user object is used. The implementation does not inspect or
use it in any way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2.2 Closing a PersistenceManager

A PersistenceManager maintains a set of resources that it uses to manage persistent instances. If
you are finished using a PersistenceManager, you can close it to free up its resources by calling its
close() method:

void
close();

After you call close(), all methods on the PersistenceManager instance (except isClosed())
throw a JDOFatalUserException. If the current transaction is active when you call close(), a
JDOUserException is thrown.

When the PersistenceManager instance is closed, it might be returned to a pool of
PersistenceManager instances or garbage-collected, at the choice of the implementation. Before it
can be used to satisfy another getPersistenceManager() request, its properties are reset to the
values specified in its associated PersistenceManagerFactory instance.

You can call the following PersistenceManager method to determine whether a
PersistenceManager is closed:

boolean isClosed();

Once the PersistenceManager instance has been constructed or retrieved from a pool, it returns
false. It returns true only after close() has successfully closed the instance.

7.2.3 Closing a PersistenceManagerFactory

A PersistenceManagerFactory also maintains significant resources. If you no longer need a
PersistenceManagerFactory, you can close it with the following method:

void close();

This method disables the PersistenceManagerFactory and relinquishes its associated resources.

Closing a PersistenceManagerFactory prematurely can have a significant impact on the operation

of the JDO environment. Therefore, a security check is made for
JDOPermission("closePersistenceManagerFactory") to determine whether the caller has been
granted permission to close a PersistenceManagerFactory. If the permission check fails, close()
does not close the PersistenceManagerFactory and throws a SecurityException.

This close() method automatically closes all PersistenceManager instances that are still open and
do not have an active Transaction. If some PersistenceManager instances do have active
Transaction instances, a JDOUserException is thrown. The JDOUserException instance thrown to
the caller of close() does not have a failed instance. It has a nested exception array that contains
a JDOUserException for each PersistenceManager that could not be closed. Each nested
JDOUserException references a PersistenceManager as the failed instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.3 Transactions

Accesses and updates to persistent instances are performed in the context of a transaction. The JDO
Transaction interface provides the methods you use to begin and commit a transaction. It also has methods to
manage the settings of transaction flags. It is similar in functionality to a javax.transaction.UserTransaction
. Both interfaces have begin() , commit() , and rollback() methods with the same semantics and

behavior.

A one-to-one relationship exists between a PersistenceManager and its associated Transaction instance. A
PersistenceManager instance represents a single view of persistent data, including persistent instances that

have been cached across multiple serial transactions. If your application needs multiple concurrent transactions,
each transaction will have its own Transaction instance and associated PersistenceManager instance.

You call methods in the JDO Transaction interface to perform operations on a transaction. The underlying

datastore has its own representation for a transaction, with its own operations and interfaces. JDO supports a
type of transaction referred to as a datastore transaction . This is not the transaction in the underlying
datastore. We refer to the transaction at the datastore level as the transaction in the datastore , to distinguish it
from the JDO datastore transaction.

7.3.1 Properties of Transactions

Transactions have a set of common properties that are referred to as the ACID (Atomic, Consistent, Isolated,
Durable) properties of a transaction. JDO transactions support these properties.

Atomic

Within a transaction, either all or none of the changes made to instances are propagated to the datastore.
Consistent

A change to a value in an instance is consistent with changes to any other values in the same instance and
all other instances in the same transaction.

Isolated

Changes to instances are isolated from changes made in other transactions.
Durable

Changes to persistent instances survive the end of the Java Virtual Machine context in which they are
made.

7.3.2 Transactions and Locking in the Datastore

Instead of attempting to redefine the semantics of datastore transactions, JDO defines operations on persistent
instances that use the underlying datastore operations. In order to understand the differences between the JDO
transaction modes, it is useful to understand how transaction guarantees are implemented in datastores.

Durability is mainly a datastore-implementation detail, in which changes are guaranteed to be persistent in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

face of various failure modes of hardware, software, and the computing environment.

Atomicity means that the datastore manages the changes associated with each instance, such that at commit
time all of the changes to each instance are applied, and a failure to apply any change invalidates the entire set
of changes. Additionally, all changes are made to the instances, or none are made.

Consistency is a responsibility shared between the application and the datastore. It applies to all of the instances
that were accessed during a transaction, whether the access was for read or write. Consistency requires that if
multiple instances are related in some way, then changes in one of the instances are made consistently with
changes in other instances.

7.3.2.1 Transaction-isolation levels

Isolation is the most complex of the transaction guarantees, and datastore vendors adopt many strategies to
achieve it. Isolation is so complex because there is a significant performance penalty associated with strict
isolation , which requires that transactions execute as if they operated completely independent of each another.
Therefore, datastores provide varying levels of isolation with different performance characteristics, allowing
applications to choose a level of isolation that provides an appropriate balance between consistency and
performance.

The isolation levels can be characterized as follows:

Level 0 (Dirty Read; Read Uncommitted)

Transactions might read data from transactions that have not yet committed; therefore, there is no
guarantee of consistency, although concurrency is highest.

Level 1 (Cursor Stability; Read Committed)

Transactions will read data only from committed transactions. Updates in one transaction will not overwrite
updates from another transaction. Reading the same data twice might result in different data the second
time.

Level 2 (Repeatable Read)

Updates in one transaction will not overwrite updates from another transaction. Reading the same data
twice is guaranteed to return the same results each time, but queries might return different results due to
inserted data between the queries (sometimes called phantom reads).

Level 3 (Serializable; Isolated)

Updates in one transaction will not overwrite updates from another transaction. Reading the same data
twice is guaranteed to return the same results each time. Reading data prevents other transactions from
updating the data. Queries return the same results if they are executed twice.

It is significant to note here that JDO does not mandate any specific isolation level; decisions regarding which
isolation level to use, whether to expose the isolation level to applications, and how to expose the level are made
by the JDO implementation.

7.3.2.2 Locking in the datastore

To implement level 1, level 2, and level 3 transaction isolation, datastores often implement isolation of
transactions in the datastore using locking . Locking is typically implemented by associating a lock instance with
each datastore operation. The lock instance contains the transaction identifier, the lock mode, and the datastore
instance. Locks are stored in a lock table .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When an operation is performed to read, write, insert, or delete a datastore instance, the datastore creates a
lock instance for the current operation and tries to add the lock to the lock table. The lock addition fails if an
incompatible lock already exists in the lock table. Depending on the datastore implementation, the
incompatibility might result in the transaction waiting for some timeout period, or immediately failing. During the
timeout period, the transaction with the conflicting lock might commit or roll back, thereby allowing the waiting
transaction to proceed.

Lock compatibilities are typically implemented using a lock-compatibility matrix , a simplified version of which is
illustrated in Table 7-3 . Most datastores implement a much more sophisticated version of this matrix.

Table 7-3. Lock-compatibility matrix

 Lock Requested

Lock Held Exclusive Shared

Exclusive No No

Shared No OK

Read requests use shared locks, while insert, update, and delete requests use exclusive locks. Thus, multiple
transactions can read the same datastore instances without conflict, but if a transaction is reading an instance,
that instance cannot be updated or deleted by another transaction until all transactions holding the shared lock
complete. Similarly, if a transaction deletes an instance, no other transaction can access that instance until the
transaction holding the exclusive lock on the deleted instance completes.

The effect of locking with long transactions is significant. While the long transaction is active, all other
transactions that attempt to access instances used in it are subject to the compatibility rules of the lock table.
Even if the long transaction only holds read locks, other transactions that attempt to update the same instances
will wait for completion of the long transaction.

This is a simplified view of datastore locks; for a more detailed understanding of database locking, you should
consult your JDO implementation's documentation.

7.3.3 Types of Transactions in JDO

Transactions are a fundamental aspect of JDO. All changes to instances that should be reflected in the datastore
are performed in the context of a transaction. JDO supports three transaction-management strategies:

Nontransactional access

The ability to access instances from the datastore without having a transaction in the datastore in progress
is an optional feature in JDO. The NontransactionalRead and NontransactionalWrite features

determine whether an application can read and modify instances in memory outside of a transaction. But
any modifications you make to instances in memory outside of a transaction cannot be propagated directly
to the datastore.

Datastore transaction

When you use a datastore transaction, all the operations you perform on persistent data are done within a
single transaction in the datastore. This means that between the first data access in the transaction and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the commit of that transaction, a single active transaction is used in the datastore. Datastore transactions
are supported in all JDO implementations.

Optimistic transaction

When you use an optimistic transaction, operations on instances in memory outside a JDO transaction or
before transaction commit are implemented by the JDO implementation with a series of short local
transactions in the datastore. If an optimistic transaction has updates that need to be propagated to the
datastore, when you commit the optimistic transaction the JDO implementation uses an underlying
transaction in the datastore to verify that the proposed changes do not conflict with updates that may
have been committed by other, concurrent transactions. Optimistic transactions are an optional feature in
JDO.

If you anticipate that you will primarily have concurrent transactions attempting to access and modify the same
instances, resulting in lock conflicts, then you should use datastore transactions. If you anticipate that lock
conflicts will not occur, you should consider optimistic transactions. In these situations, optimistic transactions
place fewer demands on the datastore, because locks are not maintained throughout the duration of the
optimistic transaction. We continue to use datastore transactions until we cover nontransactional access in
Chapter 14 and optimistic transactions in Chapter 15 .

7.3.4 Acquiring a Transaction

You can access the Transaction instance associated with a PersistenceManager by calling the following
PersistenceManager method:

Transaction currentTransaction();

All calls you make to currentTransaction() for a given PersistenceManager instance return the same
Transaction instance until you have closed the PersistenceManager instance with a call to close() . You can
use the same Transaction instance to execute multiple serial transactions. If you want to execute multiple
parallel transactions in a JVM, then you can use multiple PersistenceManager instances.

You can call the following Transaction method to access its associated PersistenceManager instance:

PersistenceManager getPersistenceManager();

7.3.5 Setting the Transaction Type

PersistenceManagerFactory and Transaction instances each maintain a flag that indicates whether to use a

datastore or optimistic transaction. If an implementation does not support optimistic transactions, these
PersistenceManagerFactory and Transaction flags will always be false . If the application attempts to set
the flag to true , a JDOUnsupportedOptionException is thrown. If the implementation supports optimistic
transactions, whether the default value is true or false is the implementation's choice.

You can initialize the Optimistic flag when the PersistenceManagerFactory instance is constructed. You can
also get and set the Optimistic flag in the PersistenceManagerFactory and Transaction instances with the

following methods:

void setOptimistic(boolean flag);
boolean getOptimistic();

Calling setOptimistic() with a false parameter value indicates that datastore transactions should be used,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and calling it with a true value indicates that optimistic transactions should be used. You cannot call these
methods when a Transaction instance is active (i.e., after you call begin() and before you call commit() or
rollback()).

7.3.6 Transaction Demarcation

Your application is responsible for transaction demarcation in a nonmanaged environment. In the managed
environment of an application server, transaction demarcation is performed for you automatically. One exception
is when you use bean-managed transactions. The following discussion applies only when you are running in a
nonmanaged environment or using bean-managed transactions in an EJB environment. Managed environments
are covered in Chapter 16 and Chapter 17 . If you call these transaction-demarcation methods in a managed
environment with container-managed transactions, a JDOUserException is thrown.

You call the following Transaction method to begin a transaction:

void begin();

You then call commit() or rollback() to complete the transaction:

void commit();
void rollback();

Calling commit() indicates that you want all the updates that were made in the transaction to be propagated to
the datastore. Calling rollback() indicates that none of the changes should be made in the datastore.

The following code illustrates the use of begin() , commit() , and rollback() . It also shows that you can
use the same Transaction instance to execute multiple transactions serially. In addition, it demonstrates that
repeated calls to currentTransaction() for a PersistenceManager instance return the same Transaction

instance.

// assume pmf variable is initialized to a PersistenceManagerFactory
PersistenceManager pm = pmf.getPersistenceManager();
Transaction tx = pm.currentTransaction();
try {
 tx.begin();

 // place application's access of database here

 tx.commit();
} catch (JDOException jdoException) {
 tx.rollback();
 System.err.println("JDOException thrown:");
 jdoException.printStackTrace();
}

// ...

try {
 tx.begin();

 // place application's access of database here

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tx.commit();
} catch (JDOException jdoException) {
 tx.rollback();
 System.err.println("JDOException thrown:");
 jdoException.printStackTrace();
}

// ...

Transaction trans = pm.currentTransaction(); // trans and tx reference same instance [1]
try {
 trans.begin();

 // place application's access of database here

 trans.commit();
} catch (JDOException jdoException) {
 trans.rollback();
 System.err.println("JDOException thrown:");
 jdoException.printStackTrace();
}

We call currentTransaction() on line [1] to get a Transaction instance. We do this here only to point out
that the Transaction instance returned on line [1] is the same instance referenced by the tx variable. All calls
you make to currentTransaction() for a given PersistenceManager return the same Transaction instance.

7.3.6.1 Notification of transaction completion

The javax.transaction package has an interface, called Synchronization , that is used to notify an

application when a transaction-completion process is about to begin. And when the completion process has
finished, it provides a status indicating whether the transaction committed successfully.

The Synchronization interface has the following two methods:

void beforeCompletion();
void afterCompletion(int status);

The beforeCompletion() method is called prior to the start of the transaction-commit process; it is not called
during rollback. The afterCompletion() method is called after the transaction has been committed or rolled
back. The status parameter passed to afterCompletion() indicates whether the transaction committed or
rolled back successfully. Its value is either STATUS_COMMITTED or STATUS_ROLLEDBACK ; these are defined in the
javax.transaction.Status interface. These two methods provide an application with some control over the

environment in which the transaction completion executes (for example, to validate the state of instances in the
cache before transaction completion) and the ability to perform some functionality once the transaction
completes.

JDO supports the Synchronization interface. To use it, you must declare a class that implements it. You can
register one instance of the class with the Transaction instance using the following method:

void setSynchronization(javax.transaction.Synchronization sync);

Calling this method replaces any Synchronization instance already registered. If you need more than one

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instance to receive notification, then your Synchronization class is responsible for managing this, forwarding
callbacks as necessary. If you pass a null to the method, this indicates that no instance should be notified. If
you call setSynchronization() during commit processing (within beforeCompletion() or
afterCompletion()), a JDOUserException is thrown.

You can retrieve the currently registered Synchronization instance by calling the following Transaction

method:

javax.transaction.Synchronization getSynchronization();

7.3.6.2 Commit processing

Transaction.commit() performs the following operations:

It makes a call to beforeCompletion() on the Synchronization instance registered with the
Transaction (if there is one).

It flushes (propagates) modified persistent instances to the datastore.

It notifies the underlying datastore to commit the transaction.

It transitions the states of persistent instances according to the JDO instance lifecycle specification; this is
covered in Chapter 11 and Appendix A .

It makes a call to afterCompletion() for the Synchronization instance registered with the
Transaction (if there is one), passing the results of the datastore commit operation.

Additional steps are taken with optimistic transactions, which are covered in Chapter 15 .

7.3.6.3 Rollback processing

Transaction.rollback() performs the following operations:

It rolls back changes made in this transaction in the datastore.

It transitions the states of persistent instances according to the JDO instance lifecycle specification.

It makes a call to afterCompletion() for the Synchronization instance registered with the
Transaction (if there is one).

7.3.7 Restoring Values on Rollback

The RestoreValues feature controls the behavior that occurs at transaction rollback. If it is true , persistent and
transactional instances are restored to their state as of the beginning of the transaction; if it is false , the state
of instances is not restored. If RestoreValues is true , the values of fields of instances made persistent during
the transaction are restored to their state as of the call to makePersistent() . If RestoreValues is false ,
they keep the values they had when rollback() was called.

You call the following Transaction methods to get and set the RestoreValues flag:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

boolean getRestoreValues();
void setRestoreValues(boolean flag);

The value of the flag parameter replaces the currently active RestoreValues setting. You can call this method
only when the transaction is not active; otherwise, a JDOUserException is thrown.

7.3.8 Determining Whether a Transaction Is Active

Call the following Transaction method to determine whether a transaction is active:

boolean isActive();

It returns true after the transaction has been started and until Synchronization.afterCompletion() has

been called.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.4 Multiple PersistenceManagers

A PersistenceManager supports one transaction and uses one connection to the underlying
datastore at a time. A PersistenceManager might use multiple transactions serially, and it might use

multiple connections in the datastore serially.

But you may want to perform multiple transactions concurrently. You can do this by instantiating
multiple PersistenceManager instances. Each will have its own Transaction instance. Each call to
PersistenceManagerFactory.getPersistenceManager() returns a new PersistenceManager
instance. Each persistent instance in the JVM is associated with a single PersistenceManager.
Multiple PersistenceManager instances may have their own separate copy of the same datastore

instance. A common application-programming technique is to have a separate thread or thread group
for each PersistenceManager that is managing a set of instances.

You can also use multiple PersistenceManager instances from different JDO implementations in the

same JVM. This is how things operate in an application-server environment, where each active
session has its own transaction. Each active session has its own PersistenceManager instance.
Because of JDO's binary compatibility capabilities, these PersistenceManager instances can

manipulate instances of the same persistent classes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

7.5 Multithreading

You may have a simple application that requires only a single transaction at a time. It would use a
single PersistenceManager and may perform successive transactions using the associated
Transaction instance. You may have only a single thread accessing the persistent instances and

instances of the JDO interface, but you may want multiple threads to access instances. In this case,
you need to inform the JDO implementation that multiple threads are accessing the JDO
environment.

A JDO implementation is thread safe, which means that its behavior is predictable in the presence of
multiple application threads. When the application accesses and modifies persistent or transactional
fields of persistent instances, the PersistenceManager performs its operations as if the operations

were serialized. It is free to serialize internal data structures and order multithreaded operations in
any way it chooses. The only application-visible behavior is that operations might block indefinitely
(but not infinitely) while other operations complete.

Synchronizing a PersistenceManager instance is a relatively expensive operation. Many applications
do not need multiple threads using the same PersistenceManager instance. If your application has
multiple threads accessing a PersistenceManager or the instances it manages (e.g., persistent or
transactional instances of persistent classes, instances of Transaction or Query, query results, etc.),
you need to notify the PersistenceManager that multiple threads may access it.

You notify a PersistenceManager that it may be used by multiple application threads by setting the
Multithreaded flag to true. This instructs the PersistenceManager to synchronize internally to

avoid corruption of data structures due to multiple application threads. You call the following methods
to get and set the Multithreaded flag:

boolean getMultithreaded();
void setMultithreaded(boolean flag);

These methods are available in the PersistenceManagerFactory and PersistenceManager
interfaces. You can also set the flag via the javax.jdo.option.Multithreaded property when you
construct the PersistenceManagerFactory. You can also perform your own synchronization. In this
case, you would set the Multithreaded flag to false.

JDO implementations do not use user-visible instances (e.g., instances of
PersistenceManagerFactory, PersistenceManager, Transaction, Query, etc.) as synchronization

objects, with one exception. The implementation must synchronize instances of persistent classes
during a state transition that replaces the StateManager. This occurs if the application attempts to
make the same instance persistent concurrently in multiple PersistenceManager instances.

If your application needs to serialize its own operations, you must implement your own appropriate
synchronizing behavior, using instances visible to the application. This may include JDO interface
instances (e.g., PersistenceManager, Query, etc.) and instances of your persistent classes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 8. Instance Management
Your object model is usually composed of a set of classes with many interrelationships. The graph of
all the related instances of those classes may include the entire contents of the datastore, but
typically your applications deal with only a small number of the persistent instances at a time. JDO
provides the illusion that your application can access the entire graph of connected instances, while in
reality it only instantiates the small subset of instances that the application needs. This concept is
called transparent data access, transparent persistence, or simply transparency.

A PersistenceManager manages the persistent instances accessed from a datastore. It provides

methods to make instances persistent and to delete instances from the datastore. It also provides
factory methods to construct Extent and Query instances, which you use to access instances from

the datastore.

A PersistenceManager can manage any number of persistent instances at a time. Each instance of a
persistent class is associated with one PersistenceManager or zero PersistenceManagers. A
transient instance is not associated with any PersistenceManager instance. As soon as an instance
is made persistent or transactional, it is associated with exactly one PersistenceManager.

You can use a static JDOHelper method to access the PersistenceManager associated with a

persistent instance:

static PersistenceManager getPersistenceManager(Object obj);

It returns null if the obj parameter is null, a transient instance of a persistent class, or an instance

of a transient (nonpersistent) class.

This chapter describes how to make instances persistent, access them via an extent, navigate among
persistent instances, modify their state, and delete instances from the datastore. These are referred
to as the CRUD operations of using a database: Create, Read, Update, and Delete. Chapter 13 covers
advanced operations for managing instances.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.1 Persistence of Instances

A class is persistent if it has been specified in a JDO metadata file and enhanced. An instance of a
persistent class can be either transient or persistent. The JDO specification refers to a persistent class
as persistence-capable to emphasize that while a class provides support for persistence, it allows
instances to be transient or persistent. We just use the phrase persistent class and note that
instances can be either transient or persistent. We refer to classes that are not persistent as transient
classes . All instances of a transient class are transient.

All instances of transient and persistent classes that you construct in your applications are initially
transient. They become persistent explicitly when you pass them to makePersistent() , or implicitly

if they are referenced by a persistent instance at transaction commit.

8.1.1 Explicit Persistence

You can call the following PersistenceManager method to make a transient instance persistent

explicitly:

void makePersistent(Object obj);

You must call it in the context of an active transaction, or a JDOUserException is thrown.

Null Parameters

The PersistenceManager interface has methods that are passed references to one or
more instances; the parameters are defined as one of the following types: Object ,
Object[] , and Collection . You can pass a null value for these parameters. If you pass
a null to a method taking an Object parameter, the method has no effect. If you pass
null as the value for a parameter of the Object[] or Collection type, the method
throws a NullPointerException . If you pass a non-null Object[] or Collection that
contains elements that are null , the operation is applied to the non-null elements and
the null elements are ignored.

The following program creates some Studio instances and makes them persistent with
makePersistent() :

package com.mediamania.content;

import com.mediamania.MediaManiaApp;
import javax.jdo.PersistenceManager;

public class LoadStudios extends MediaManiaApp {
 public static void main(String[] args) {
 LoadStudios studios = new LoadStudios();
 studios.executeTransaction();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public void execute() {
 Studio studio = new Studio("Buena Vista");
 pm.makePersistent(studio);
 studio = new Studio("20th Century Fox");
 pm.makePersistent(studio);
 studio = new Studio("DreamWorks SKG");
 pm.makePersistent(studio);
 }
}

You can also call one of the following PersistenceManager methods to make an array or collection of

instances persistent:

void makePersistentAll(Object[] objs);
void makePersistentAll(Collection objs);

These methods have no effect on any of the parameter instances that are already persistent and
managed by this PersistenceManager . A JDOUserException is thrown if a parameter instance is
managed by a different PersistenceManager .

When One or More Instances Fail an Operation

The PersistenceManager interface has several methods that perform operations on an

array or collection of objects. These methods include:

deletePersistentAll()

evictAll()

makeNontransactionalAll()

makePersistentAll()

makeTransactionalAll()

makeTransientAll()

refreshAll()

retrieveAll()

Some of these methods can be called without any parameter instances, implying the
operation is applied to all instances managed by the PersistenceManager .

The operation is attempted on all of the instances, even if the operation fails for one or
more of them. The succeeding instances transition to a specific lifecycle state based on
their current state and the operation being applied. Chapter 11 covers lifecycle states and
transitions. Instances that fail the operation remain in their current state, and the method
throws a JDOUserException with a nested exception array that contains a nested

exception for each failing instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following program makes an array of RentalCode instances persistent:

package com.mediamania.store;

import com.mediamania.MediaManiaApp;
import javax.jdo.PersistenceManager;
import java.math.BigDecimal;

public class LoadRentalCodes extends MediaManiaApp {
 private static BigDecimal cost6 = new BigDecimal("6.00");
 private static BigDecimal cost5 = new BigDecimal("5.00");
 private static BigDecimal cost4 = new BigDecimal("4.00");
 private static BigDecimal cost2 = new BigDecimal("2.00");
 private static BigDecimal cost1 = new BigDecimal("1.00");

 private static RentalCode[] codes = {
 new RentalCode("Hot", 1, cost6, cost6),
 new RentalCode("New", 2, cost5, cost4),
 new RentalCode("Recent", 4, cost5, cost2),
 new RentalCode("Standard", 5, cost4, cost2),
 new RentalCode("Oldie", 7, cost2, cost1)
 };
 public static void main(String[] args) {
 LoadRentalCodes loadRentalCodes = new LoadRentalCodes();
 loadRentalCodes.executeTransaction();
 }
 public void execute() {
 pm.makePersistentAll(codes);
 }
}

It is a common mistake to pass an array or collection to makePersistent() , which has a single
instance parameter and makes it persistent. In this case, makePersistent() throws an exception

because, although arrays and collections are objects, they cannot be persistent by themselves. So, be
sure that you call makePersistentAll() when making an array or collection of instances persistent.
Each PersistenceManager operation that can accept multiple instances, passed by an array or
collection, has a method name that ends with the word All .

8.1.2 Persistence-by-Reachability

Within application memory, instances of transient classes and the transient and persistent instances
of persistent classes can reference one another. When a persistent instance is committed to the
datastore, transient instances of persistent classes that are referenced by persistent fields of the
flushed instance also become persistent. This behavior propagates to all instances in the closure of
instances reachable through persistent fields. This behavior is called persistence-by-reachability .

Figure 8-1 illustrates persistence-by-reachability in an instance diagram.

Figure 8-1. Persistence-by-reachability

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each rectangle represents an instance, identified by the names i1 through i9. The UML stereotype
notation of «stereotype» is used to indicate whether the class and instance are transient or
persistent. The specific class of each instance is not identified, but the topmost stereotype indicates
whether the class is persistent or transient. Only i4 is an instance of a transient class; all the others
are instances of a persistent class. The stereotype below the instance identifier indicates whether the
specific instance is transient or persistent. In the top half of Figure 8-1 , i1 is persistent and all other
instances are transient. The field c1 is a collection that contains references to i5, i6, and i7. Instance
i2 contains a transient field named f2, and it references i3.

The top half of the diagram indicates the persistence of instances in memory prior to commit; the
bottom half specifies their persistence after commit. The instances identified as transient in the
bottom half of the figure are not in the datastore. Each reference depicted in this model is a persistent
field, except for the f2 field in instance i2. The reachability algorithm does not include transient
instances referenced by a transient fields. As you can see, the reachability algorithm transitively
traverses through references and collections, making all instances of persistent classes persistent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instance i4 is an instance of a transient class, so it does not become persistent. Instance i3,
referenced by the transient field f2, also does not become persistent.

When you explicitly make an instance persistent, any transient instances that are reachable
transitively via persistent fields of this instance become provisionally persistent . The reachability
algorithm runs again at commit. Any instance that was made provisionally persistent during the
transaction, but is no longer reachable from a persistent instance at commit, reverts to a transient
instance.

The following program loads information about new movies into the database, making extensive use
of persistence-by-reachability. In addition, it creates a RentalItem instance for each item that will be

rented to customers. A large percentage of the code deals strictly with parsing the input data. Line
[1] creates a Movie instance, which is then made persistent on line [2] . After reading a line of data

with movie-content data, the program reads some information about the particular formats of the
movie (e.g., DVD and VHS), represented by a MediaItem instance. The parseMediaItemData()
method reads the information required to initialize a MediaItem instance. Line [4] creates the
MediaItem instance. The input data then contains a line for each rental unit that provides its unique
serial number. Line [5] creates RentalItem instances with the provided serial number and line [6]
associates it with the MediaItem instance. When parseMediaItemData() returns the MediaItem
instance, line [3] associates it with the Movie instance.

package com.mediamania.store;

import java.io.FileReader;
import java.io.BufferedReader;
import java.io.IOException;
import java.util.Calendar;
import java.util.Date;
import java.util.StringTokenizer;
import java.math.BigDecimal;
import javax.jdo.PersistenceManager;
import com.mediamania.MediaManiaApp;
import com.mediamania.content.*;

public class LoadNewMovies extends MediaManiaApp {
 private BufferedReader reader;

 public static void main(String[] args) {
 LoadNewMovies loadMovies = new LoadNewMovies(args[0]);
 loadMovies.executeTransaction();
 }
 public LoadNewMovies(String filename) {
 try {
 FileReader fr = new FileReader(filename);
 reader = new BufferedReader(fr);
 } catch (Exception e) {
 System.err.print("Unable to open input file ");
 System.err.println(filename);
 System.exit(-1);
 }
 }
 public void execute() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 while (reader.ready()) {
 String line = reader.readLine();
 parseMovieData(line);
 }
 } catch (IOException e) {
 System.err.println("Exception reading input file");
 System.err.println(e);
 }
 // when execute returns and the transaction commits, each of the
 // transient Studio, MediaPerson, MediaItem, RentalItem instances
 // associated with the Movie instance we explicitly made persistent
 // will become persistent through reachability
 }

 public void parseMovieData(String line) throws IOException {
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String title = tokenizer.nextToken();
 String studioName = tokenizer.nextToken();
 Studio studio = ContentQueries.getStudioByName(pm, studioName);
 if (studio == null)
 studio = new Studio(studioName); // creates a transient Studio
 String dateStr = tokenizer.nextToken();
 Date releaseDate = Movie.parseReleaseDate(dateStr);
 String rating = tokenizer.nextToken();
 String reasons = tokenizer.nextToken();
 String genres = tokenizer.nextToken();
 int runningTime = 0;
 try {
 runningTime = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing running time for ");
 System.err.println(title);
 }
 String directorName = tokenizer.nextToken();
 MediaPerson director = ContentQueries.getMediaPerson(pm, directorName);
 if (director == null) {
 System.err.print("Director named ");
 System.err.print(directorName);
 System.err.print(" for movie ");
 System.err.print(title);
 System.err.println(" not found in the database");
 director = new MediaPerson(directorName); //creates transient MediaPerson
 }
 Movie movie = new Movie(title, studio, releaseDate, rating, reasons, [1]
 genres, runningTime, director); // creates transient Movie
 pm.makePersistent(movie); [2]

 int numFormats = 0;
 try {
 numFormats = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.err.print("Exception parsing number of formats for ");
 System.err.println(title);
 }
 for (int i = 0; i < numFormats; ++i) {
 MediaItem mediaItem = parseMediaItemData(movie);
 movie.addMediaItem(mediaItem); // adds transient MediaItem [3]
 }
 }
// the following method returns a transient MediaItem
// and a set of associated transient RentalItems
 private MediaItem parseMediaItemData(MediaContent content)
 throws IOException {
 String line = reader.readLine();
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 String format = tokenizer.nextToken();
 String priceString = tokenizer.nextToken();
 BigDecimal price = new BigDecimal(priceString);
 String rentalCodeName = tokenizer.nextToken();
 RentalCode rentalCode = StoreQueries.getRentalCode(pm, rentalCodeName);
 int Nrentals = 0;
 try {
 Nrentals = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing # of rentals for ");
 System.err.println(content.getTitle());
 }
 int NforSale = 0;
 try {
 NforSale = Integer.parseInt(tokenizer.nextToken());
 } catch (java.lang.NumberFormatException e) {
 System.err.print("Exception parsing # for sale of ");
 System.err.println(content.getTitle());
 }
 MediaItem mediaItem = new MediaItem(content, format, price, [4]
 rentalCode, NforSale);
 for (int r = 0; r < Nrentals; ++r) {
 String serialNumber = reader.readLine();
 RentalItem rentalItem = new RentalItem(mediaItem, serialNumber); [5]
 mediaItem.addRentalItem(rentalItem); // add transient RentalItem [6]
 }
 return mediaItem;
 }
}

When the Movie instance is made persistent on line [2] , a MediaPerson and Studio instance are
created and referenced by the Movie instance if they are not found in the database. In this case,
when the call is made to makePersistent() on line [2] , the MediaPerson and Studio instances
become provisionally persistent. References are established from the newly persistent Movie instance
to MediaItem instances. References are then established from these MediaItem instances to
RentalItem instances on line [6] . The reachability algorithm runs when the transaction commits. If a
MediaPerson or Studio instance is still associated with the Movie instance at commit, it becomes
persistent. Further, each MediaItem instance associated with the Movie instance and each

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RentalItem instance associated with each such MediaItem instance are reachable from the Movie

instance and become persistent.

A major benefit of persistence-by-reachability is that most of your application can be written entirely
independent of JDO, without making any explicit calls to JDO interfaces. Most of your application can
use standard Java practices to create and associate instances in memory, without knowing that a
datastore or transaction is involved. The JDO implementation automatically handles all the work of
storing new persistent instances and associations that you have established established between
persistent instances.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.2 Extent Access

An extent provides you with access to all the persistent instances of a class and, optionally, its
subclasses. You can iterate over the elements of the extent or perform a query on the extent. The
JDO Extent interface represents the extent of a class. Later in this chapter, we will discuss the
IgnoreCache flag, which controls whether instances made persistent or deleted during the current

transaction are contained in the extent.

You control whether an extent is maintained for a class in the metadata. You use the metadata class
element's requires-extent attribute to indicate whether the persistent class has an extent. It has a
default value of "true".

If your application does not need to iterate over the instances of a class or perform a query on the
extent, you can set the requires-extent attribute to "false" explicitly. Even if a class does not

have an extent, you can still make instances persistent, establish references to them, and navigate to
them in your application and queries.

JDO 1.0.1 requires that if a class has a requires-extent set to "true", none of its subclasses can
set requires-extent to "false". If your application specifies the subclass's parameter to be true
when calling the getExtent() method for a base class, all subclass instances are included in the

iteration of the extent.

8.2.1 Accessing an Extent

You access the Extent associated with a class by calling the following PersistenceManager method:

Extent getExtent(Class persistentClass, boolean subclasses);

It returns an Extent that contains all the instances in the class specified by the persistentClass
parameter and all the instances of its subclasses, if the subclasses parameter is true. If the class
identified by the persistentClass parameter does not have an extent, a JDOUserException is
thrown. This occurs only if the metadata for the class has the requires-extent attribute set to
"false".

The Extent interface has methods you can use to access the components that were used initially to
construct the Extent:

PersistenceManager getPersistenceManager();
Class getCandidateClass();
boolean hasSubclasses();

An Extent is not a Java collection instance that has all the instances of the class populated in
memory. This is a common misunderstanding. Common Collection behaviors are not possible. For
example, you cannot determine whether one Extent contains another, the size of the Extent, or
whether the Extent contains a specific instance. Such operations are performed by executing a query
against the Extent. An Extent instance is logically a holder of the following information:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The class of the instances in the Extent

Whether subclasses are part of the Extent

A collection of active iterators over the Extent

No datastore action is taken when you construct an Extent. The contents of the Extent are accessed
when a query is executed or you use an Iterator to iterate over its elements. An Extent is often
used as a parameter to a Query instance. When you perform a query on an Extent, the Extent is

used only to identify the prospective datastore instances; its elements are typically not instantiated in
the JVM. Chapter 9 covers queries in detail.

8.2.2 Extent Iteration

You call the following Extent method to acquire an Iterator to iterate over all the instances in the
Extent:

Iterator iterator();

You can call iterator() multiple times to construct multiple Iterator instances that can iterate
over the extent independently. Extent does not provide any other Collection methods. If you call
any mutating Iterator method, including remove() , an UnsupportedOperationException is
thrown. If you have already accessed a specific instance in the Extent and it is in memory, it is

returned. This instance also contains any updates you may have made to it.

An Extent can have a very large number of instances. It might be common for you to iterate over
the elements of an Extent. Extents are supposed to be implemented such that you do not get out-

of-memory conditions during iteration. If your application does have limitations on the number of
instances that can reside in memory, Chapter 13 describes the ability to evict instances from the
cache as a means of limiting memory growth.

When you have finished using an extent Iterator, you should close it to free all its associated
resources. You can call the following Extent method to close an Iterator acquired from the Extent:

void close(Iterator iterator);

After this call, the Iterator returns false to hasNext() and throws NoSuchElementException if
next() is called. The Extent itself can still be used to acquire other iterators and perform queries.
You can also call the following Extent method to close all of the iterators acquired from the Extent:

void closeAll();

The following program demonstrates the use of an Extent. It accesses the MediaContent extent on
line [1] and acquires an Iterator on line [2]. It then iterates through the extent, accessing each
MediaContent instance on line [3].

package com.mediamania.store;

import java.util.Iterator;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import com.mediamania.MediaManiaApp;
import com.mediamania.content.MediaContent;

public class GetMediaContent extends MediaManiaApp {
 public static void main(String[] args) {
 GetMediaContent content = new GetMediaContent();
 content.executeTransaction();
 }
 public void execute() {
 Extent mediaExtent = pm.getExtent(MediaContent.class, true); [1]
 Iterator iter = mediaExtent.iterator(); [2]
 while (iter.hasNext()) {
 MediaContent media = (MediaContent) iter.next(); [3]
 System.out.println(media.getDescription());
 }
 }
}

8.2.3 Ignoring the Cache

The IgnoreCache flag in the PersistenceManager controls whether instances made persistent or
deleted in the current transaction are included during Extent iteration or queries. We cover the effect
of IgnoreCache on queries in Chapter 9. If you have set the IgnoreCache flag to false, an

implementation that performs queries in the datastore server will need to flush the instances in the
application cache to the datastore, so their currently cached state can be reflected in the query
result. You can set IgnoreCache to true as a performance-optimizing hint, so the implementation
can avoid flushing the cache when a query is executed or an Extent is iterated.

You can use the following PersistenceManager methods to get and set the IgnoreCache flag
associated with a PersistenceManager:

boolean getIgnoreCache();
void setIgnoreCache(boolean flag);

The IgnoreCache flag affects the extent Iterators for all Extents obtained from the
PersistenceManager.

If you have the IgnoreCache flag set to false in the PersistenceManager when you call iterator(
) to obtain an Iterator instance from an Extent, then:

The Iterator will return instances that were made persistent in the transaction prior to calling
iterator().

The Iterator will not return instances deleted in the transaction prior to the call to iterator(
).

Setting the IgnoreCache flag to true is only a hint that the Extent can return approximate results

by ignoring persistent instances that have been added, modified, or deleted in the current
transaction. If IgnoreCache is set to true in the PersistenceManager when an Iterator is
obtained, new and deleted instances in the current transaction might be ignored by the Iterator,

but it is at the option of the implementation. That is, new instances might not be returned, and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

deleted instances might be returned. Iterating an Extent with IgnoreCache set to true can differ
among implementations. Therefore, to be portable you should set the IgnoreCache flag to false.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.3 Accessing and Updating Instances

Once you have accessed some instances by iterating an Extent or executing a query, you can access

related instances by traversing references and iterating through collections contained in the accessed
instances. The JDO implementation ensures that the related objects are instantiated and read from
the datastore. All classes that can access a field-based on its access modifier (public , private ,

etc.)-can directly access and modify the field, just as they would if the application were not running
in a JDO environment.

The following program accesses a specific Movie instance and determines how many DVD copies of
the Movie are currently available for rent. It accesses a specific Movie instance and then navigates to
related instances. Line [1] accesses the Movie , based on its title. Appendix E contains the
implementation of the StoreQueries class. Line [2] accesses the set of associated MediaItem
instances. We access each MediaItem instance on line [3] and determine if it is a DVD format on line
[4] . If so, line [5] accesses its set of associated RentalItem instances. We acquire a reference to
each RentalItem instance on line [6] . On line [7] , we determine whether the RentalItem is
currently being rented. If it is currently rented to a customer, the value of rental will not be null . If
rental is null , then it should be in stock and available for rent. In this case, we increment the
dvdRentalsInStock counter. Once all the instances have been accessed, we print the value of
dvdRentalsInStock on line [8] .

package com.mediamania.store;

import java.util.Iterator;
import java.util.Set;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;
import com.mediamania.MediaManiaApp;
import com.mediamania.content.Movie;

public class DVDMovieInStock extends MediaManiaApp {
 private String title;

 public DVDMovieInStock(String title) {
 this.title = title;
 }
 public static void main(String[] args) {
 DVDMovieInStock inStock = new DVDMovieInStock(args[0]);
 inStock.executeTransaction();
 }
 public void execute() {
 int dvdRentalsInStock = 0;
 Movie movie = StoreQueries.getMovieByTitle(pm, title); [1]
 Set items = movie.getMediaItems(); [2]
 Iterator iter = items.iterator();
 while (iter.hasNext()) {
 MediaItem item = (MediaItem) iter.next(); [3]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (item.getFormat().equals("DVD")) { [4]
 Set rentals = item.getRentalItems(); [5]
 Iterator rentalIter = rentals.iterator();
 while (rentalIter.hasNext()) {
 RentalItem rentalItem = (RentalItem) rentalIter.next(); [6]
 Rental rental = rentalItem.getCurrentRental();
 if (rental == null) dvdRentalsInStock++; [7]
 }
 }
 }
 System.out.print(dvdRentalsInStock); [8]
 System.out.print(" DVD copies of the movie ");
 System.out.print(title);
 System.out.println(" are in stock");
 }
}

When you modify the field of a persistent instance, the instance is automatically marked as modified.
When you commit the transaction, all of the updates are propagated to the datastore.

The following method is defined in the MediaItem class. It is called whenever one or more copies of a

particular item are sold to a customer. An application calls this method to update the count of the
quantity in stock and the number of items sold year-to-date.

 public void sold(int qty) {
 if (qty > quantityInStockForPurchase) {
 // report error
 }
 quantityInStockForPurchase -= qty;
 soldYTD += qty;
 }

These MediaItem field updates are propagated to the datastore at commit.

8.3.1 Explicit Marking of Modified Instances

Instances are automatically marked as modified when a field is changed, except for array fields. An
array is a Java system object, and there is no means to associate it with a particular persistent
instance that should be notified when it is updated. Some implementations may be able to track
changes to an array in the enhanced code of the persistent class. Furthermore, some may track
changes to an array that is passed as a reference outside the owning class to another class that has
not been enhanced. But these are advanced capabilities that most implementations cannot support,
and they are not required by JDO. Thus, if you change an array field in a persistent instance, the
changes might not be flushed to the datastore. If you would like your applications to be portable and
work correctly across all JDO implementations, you should not depend on the automatic tracking of
array changes.

You can call the following JDOHelper method to mark a specific field as being dirty (modified), so that

its values are propagated to the datastore when the instance is flushed:

static void makeDirty(Object obj, String fieldName);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The fieldName parameter identifies the field to be marked as dirty; it can optionally include the field's
fully qualified package and class name. This method has no effect if the obj parameter is transient,
null , or not a persistent class, or if the field identified by fieldName is not a managed field.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

8.4 Deleting Instances

You can call one of the following PersistenceManager methods to delete one or more persistent

instances from the datastore:

void deletePersistent(Object obj);
void deletePersistentAll(Object[] objs);
void deletePersistentAll(Collection objs);

They must be called in the context of an active transaction, or a JDOUserException is thrown. The

representation of the instance in the datastore is deleted when it is flushed to the datastore (via
commit() or evict()). Chapter 13 covers the evict() method. These methods have no effect on
instance parameters that are already deleted in the transaction. They throw a JDOUserException if a
parameter is transient or managed by a different PersistenceManager .

The following application is used to delete a customer from the datastore. This includes deleting all the
customer's transactions. Line [1] accesses the Customer instance. If line [2] determines that Rental
instances are still associated with the Customer instance, the application prints an error message and
returns without removing any data. Otherwise, it deletes the Customer instance and its associated
Address and Transaction instances.

package com.mediamania.store;

import java.util.Set;
import java.util.List;
import com.mediamania.MediaManiaApp;

public class DeleteCustomer extends MediaManiaApp {
 private String lastName;
 private String firstName;

 public DeleteCustomer(String fname, String lname) {
 lastName = lname;
 firstName = fname;
 }
 public static void main(String[] args) {
 DeleteCustomer deleteCustomer = new DeleteCustomer(args[0], args[1]);
 deleteCustomer.executeTransaction();
 }
 public void execute() {
 Customer customer = StoreQueries.getCustomer(pm, firstName, lastName); [1]
 Set rentals = customer.getRentals();
 if (!rentals.isEmpty()) { [2]
 System.err.print(firstName); System.err.print(" ");
 System.err.print(lastName);
 System.err.print(" cannot be deleted until current rentals ");
 System.err.println("are returned");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return;
 }
 List transactions = customer.getTransactionHistory();
 Address address = customer.getAddress();
 pm.deletePersistent(address);
 pm.deletePersistentAll(transactions);
 pm.deletePersistent(customer);
 }
}

Some datastores and JDO implementations support integrity constraints-similar to referential integrity
constraints-that could prevent the deletion of an instance. If your application uses these non-JDO
facilities, it is implementation-defined whether an exception is thrown at commit or the delete
operation is simply ignored. Explicit support for automatic relationship maintenance, delete
propagation, and referential integrity constraints are being considered as a possible feature in the next
release of JDO.

The behavior of deletePersistent() and deletePersistentAll() is not exactly the inverse of
makePersistent() and makePersistentAll() , due to the transitive nature of persistence-by-
reachability, which is not used when you delete instances. You need to call deletePersistent() or
deletePersistentAll() explicitly for all instances that need to be deleted. Any instances that are
referenced by the deletePersistent() and deletePersistentAll() parameters are not deleted,

unless they are also parameters to these methods.

8.4.1 Delete Propagation

Some implementations support delete propagation. On a persistent class basis, you would indicate
which references and collections should be traversed to establish a set of related instances to be
deleted. When the application deletes an instance of the class, the JDO implementation automatically
deletes the specified set of related instances. This capability is similar to the persistence-by-reachability
algorithm, except it performs the inverse operation.

This relies on implementation-specific facilities that are not covered by the JDO specification. Some
implementations allow you to specify this behavior in the metadata and invoke it automatically when
the application calls deletePersistent() or deletePersistentAll() . If you want your application
to be portable, you should use deletePersistent() or deletePersistentAll() for all deletions

from the datastore, and you should not depend on implementation-specific reachability algorithms that
automatically delete related instances.

A portable approach for delete propagation is to use the jdoPreDelete() callback, defined in the JDO
InstanceCallbacks interface. If your persistent class has declared that it implements
InstanceCallbacks , this method is called during the execution of deletePersistent() :

public void jdoPreDelete();

This method is useful when you have a composite-aggregation association , where the related
instances are considered existence-dependent components of the composite object . The deletion
semantics of the composite aggregate can be defined by deleting the dependent instances in this
method. This method can reference and use any of the fields in the class. But when the method
completes, you cannot access any of the deleted instance's fields, or a JDOUserException is thrown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 9. The JDO Query Language
In Chapter 8 we learned how to access all the instances of a class by using an Extent. Once we have

accessed some instances from the datastore, we can navigate to other related instances in Java by
traversing references and iterating through collections. This allows us to access an application-specific
closure of related instances to perform the functionality provided by the application.

But when you iterate an Extent, you potentially access all the instances of a class. We may only care

about one or a small number of instances of the class that meet certain criteria. Once these initial
instances have been accessed, we typically then navigate to instances related to those initial
instances. However, getting to the first few persistent instances is a bootstrap issue. JDO provides a
query language, called JDO Query Language (JDOQL), that is used to access persistent instances
based on specified search criteria.

You perform queries in JDO by using the Query interface. The PersistenceManager interface is a
factory for creating Query instances, and queries are executed in the context of the
PersistenceManager instance used to create the Query instance. JDO queries allow you to filter out
instances from a set of candidate instances specified by either an Extent or a Collection. A filter

consisting of a Boolean expression is applied to the candidate instances. The query result includes all
of the instances for which the Boolean expression is true.

The JDO query facility was designed with the following goals:

Query language neutrality. The underlying query language might be a relational query
language such as SQL, an object database query language such as the Object Data
Management Group's (ODMG) Object Query Language (OQL), or a specialized API to a
hierarchical database or mainframe EIS system.

Optimization to a specific query language. The query interface must be capable of
optimizations; therefore, enough information should be specified so that the implementation can
exploit datastore-specific query features. In particular, JDO specifies JDOQL so that all queries
can be executed by a standard SQL-92 back-end datastore.

Accommodation of multitier architectures. A query may be executed entirely in application
memory, delegated to a query engine running in a back-end datastore server, or executed
using a combination of processing in the application and datastore server processes.

Large result set support. A query might return a massive number of instances. The query
architecture must be able to process the results within the resource constraints of the execution
environment.

Compiled query support. Parsing a query may be resource intensive. In many applications,
the parsing can be done during application development or deployment prior to execution. The
query interface must allow you to compile queries and bind values to parameters at runtime for
optimal query execution.

The execution of a query might be performed by the PersistenceManager or it might be delegated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the underlying datastore. Thus, the actual underlying datastore query executed might be
implemented in a language very different from Java, and it might be optimized to take advantage of
a particular query-language implementation.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.1 Query Components

The JDO query facility applies a Boolean filter to a collection of candidate instances and returns the
instances that evaluate to true. The collection of candidate instances can be either an Extent or a
Collection. The class of candidate instances is another query component. Instances are returned in

the query result only if they are instances of the candidate class.

Let's begin by examining a method that performs a query that accesses Customer instances in the

Media Mania model. We assume that an application has started a transaction and called
queryCustomers(), passing the PersistenceManager instance and values to filter the Customer

instances to those whose addresses are in a specific city and state.

public static void queryCustomers(PersistenceManager pm,
 String city, String state) {
 Extent customerExtent = pm.getExtent(Customer.class, true); [1]
 String filter = "address.city == city && state == address.state"; [2]
 Query query = pm.newQuery(customerExtent, filter); [3]
 query.declareParameters("String city, String state"); [4]
 query.setOrdering([5]
 "address.zipcode ascending, lastName ascending, firstName ascending");
 Collection result = (Collection) query.execute(city, state); [6]
 Iterator iter = result.iterator();
 while (iter.hasNext()) { [7]
 Customer customer = (Customer) iter.next();
 Address address = customer.getAddress();
 System.out.print(address.getZipcode()); System.out.print(" ");
 System.out.print(customer.getFirstName()); System.out.print(" ");
 System.out.print(customer.getLastName()); System.out.print(" ");
 System.out.println(address.getStreet());
 }
 query.close(result); [8]
}

This code performs a query on the Customer extent, which we access on line [1]. When we create
the Query instance on line [3], we provide the Customer extent as the collection of candidate
instances to be evaluated in the query. When you use an Extent, as we have here, it also identifies

the class of the candidate instances. We use the candidate class to establish the namespace for the
identifiers used in the query filter. Line [2] specifies the filter for the query. It uses the Customer
field address and navigates to the associated Address instance to access the city and state fields.
The city and state identifiers in the filter are query parameters, which are declared on line [4]. We
access all Customer instances that live in a specific city and state. The Java == operator expresses
equality, and the Java operator && performs a conditional AND operation. You will find JDOQL very

easy to learn, because it uses Java operators and syntax. You also express your queries using the
identifiers in your object model. On line [5], we establish an ordering for the instances that are in the
query result. First we order customers based on their ZIP code; we then order all customers in the
same ZIP code by their last name and then first name, all in ascending order. This ordering
specification is similar to SQL's ORDER BY clause.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Line [6] executes the query. We pass the city and state method parameters to execute() as
query parameters, which are also named city and state. It is not necessary for the method

parameters to have the same names as the query parameters, but we do so to make it clear to
anyone reading the code that they are associated. Line [4] declares the query parameters and their
order. The order in this declaration establishes the order that the query parameter values should be
passed to execute() on line [6].

The result of the query must be cast to a Collection in JDO 1.0.1. The execute() method is
defined to return Object, to allow for future extensions that may return a single instance. In general,
you should call iterator() only on the return value of execute(). Once we have an Iterator, we
can iterate through all the returned Customer instances. The code also navigates from the returned
Customer instance to its associated Address instance. Once we are done with the query result, we

close it on line [8].

Every query requires three components:

Class of candidate instances

This specifies the class of the instances that should be included in the query result. All of the
candidate instances should be of this class or one of its subclasses. The class provides a scope
for the names in the query filter, similar to the scope established for field names in a Java class
definition. In the previous example, the Customer extent established the class of candidate
instances when we called newQuery().

Collection of candidate instances

The collection of candidate instances is either a java.util.Collection or an Extent. We used
the Extent for the Customer class in the previous example. We use the Extent when we
intend the query to be filtered by the datastore, not by in-memory processing. The Collection

might be a previous query result, allowing for subqueries. If you do not explicitly provide the
collection of candidate instances but you do provide the class of candidate instances, the
candidate collection defaults to the extent of the class of candidate instances, including
subclass instances.

Any instances in the collection of candidate instances that are not of this class are silently
ignored and are not included in the query result. This can occur when the set of candidate
instances is a Collection containing instances of multiple classes.

Query filter

The query filter is a String that contains a Boolean expression that is evaluated for each

instance in the candidate collection. The query result returns the candidate instances that have
a true result for the query filter. If the query filter is not specified, the filter results in a true

value for all of the candidate instances. The query filter in the previous example is specified on
line [2].

The collection and class of the candidate instances and the query filter can be initialized when a
Query is constructed by calling one of several newQuery() methods defined in the
PersistenceManager interface (as we did on line [3]). Once a Query has been constructed, all of the

query components can be set; each has an associated set method.

A query may also include the following components:

Parameters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A parameter provides a means of passing a value to be used in the query filter expression.
Parameters serve a role similar to formal method parameters in Java. The query in our
example had query parameters named city and state, declared on line [4]. The declaration

of query parameters' name and type has the same syntax as method parameters. You provide
a value for the query parameters when the query is executed.

Variables

A variable is used in a query filter to reference the elements of a collection. The use and
declaration syntax of query variables is similar to the local variables in a method. Our example
did not access elements of a collection, so we did not use a query variable. A variable is bound
to the elements of a collection by a contains() expression (covered later in this chapter).

Some implementations allow a variable that is not bound to a collection to be associated with
an Extent. In this case, the variable is referred to as an unbound variable, and it may

represent any instance in the extent of the class in the datastore.
Import statements

Parameters and variables can be of a class different from the candidate class; an import
statement declares their type names. Types supported by JDO and defined in the java.lang
package do not need to be imported. This includes the String class, the type of the query

parameters in our example, so we did not need to import any types. Examples of import are
provided later in this chapter.

Ordering specification

You can specify the order of the instances returned in the query result by providing an ordering
specification, which is a list of expressions with an indicator to specify whether the values
should be in ascending or descending order. We provided an ordering specification on line [5]
in our example.

You need to create and initialize these query components before you execute a query. Query
components can be initialized when a Query is constructed or via a set method provided for the query
component. The order in which you initialize the query components before the Query is executed

does not matter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.2 Creating and Initializing a Query

The PersistenceManager interface contains a set of Query factory methods used to construct Query
instances. They mainly differ in which query components are initialized. Query instances may be
constructed at any time before a PersistenceManager is closed.

The following PersistenceManager method constructs an empty Query instance with none of the

components initialized:

Query newQuery();

The following PersistenceManager methods construct a Query instance with an Extent as the

collection of candidate instances:

Query newQuery(Extent candidates);
Query newQuery(Extent candidates, String filter);

The candidate class is initialized with the class of the Extent. The second method also initializes the
query filter. We used this second method when we constructed the Query on line [3] in our example.

Alternatively, a collection can serve as the set of candidate instances in a query. The following
PersistenceManager methods construct a Query instance with a Collection as the set of candidate

instances:

Query newQuery(Class candidateClass, Collection candidates);
Query newQuery(Class candidateClass, Collection candidates, String filter);

When performing a query on a collection, it is necessary to specify the class of the candidate
instances explicitly.

The elements in the collection should be persistent instances associated with the same
PersistenceManager as the Query instance. If the collection contains instances associated with
another PersistenceManager, a JDOUserException is thrown during execute(). An

implementation might allow you to perform a query on a collection of transient instances, but this is a
nonportable, implementation-specific capability.

You can also construct a Query instance without initializing the set of candidate instances by calling
one of the following PersistenceManager methods:

Query newQuery(Class candidateClass);
Query newQuery(Class candidateClass, String filter);

Once the Query is constructed, the collection of candidate instances can be set by calling one of its
two setCandidates() methods, or it will default to the extent of the candidate class (including
subclasses) identified by the candidateClass parameter passed to one of these two newQuery()
methods. This allows you to perform a query without having to deal with an Extent.

A Query instance can be serialized. This allows you to create queries, serialize them, store them on

http://lib.ommolketab.ir
http://lib.ommolketab.ir

disk, and later use them in a different execution environment. The serialized fields include the
candidate class, the filter, parameter declarations, variable declarations, imports, the IgnoreCache

setting, and the ordering specification. Of course, the candidate collection is not serialized with the
Query instance. When a serialized Query instance is restored, it is no longer associated with its
former PersistenceManager.

The following PersistenceManager method is used to construct a new Query instance from an
existing or deserialized Query instance:

Query newQuery(Object query);

The query parameter might be a restored Query instance that was serialized from the same JDO

implementation but a different execution environment, or it might be currently bound to a
PersistenceManager from the same implementation. All of the query components from the query
parameter are copied to the new Query instance, except for the candidate Collection or Extent.
You can initialize this query component with a call to setCandidates().

Lastly, you can use the following PersistenceManager method to construct a Query that uses a

query language different than JDOQL:

Query newQuery(String language, Object query);

The Query instance is constructed using the specified language and query parameters. The
language parameter specifies the query language used by the query parameter. The query instance
must be an instance of a class defined by the query language. For JDOQL, the value of the language
parameter is "javax.jdo.query.JDOQL". The JDO specification does not specify other query

languages that can be specified and used by this method; it is implementation-specific.

Once you have constructed a Query, you can access the PersistenceManager instance you originally
used to create the Query instance by calling the following Query method:

PersistenceManager getPersistenceManager();

A null is returned if the Query was restored from a serialized form.

You can have multiple Query instances active simultaneously in the same PersistenceManager

instance. The queries may be executed simultaneously by different threads, but the implementation
may execute them serially. In either case, the execution is thread-safe.

The Query interface provides methods to bind query components before the query is executed. Their

parameters replace the previously set query component (i.e., the methods are not additive). For
example, if a query needs multiple variables, they all must be specified in the same call to
declareVariables().

You can use the following Query methods to set the required components of the query, including the

candidate class, candidate set, and filter:

void setClass(Class candidateClass);
void setCandidates(Collection candidates);
void setCandidates(Extent candidates);
void setFilter(String filter);

If you specify an Extent as the set of candidate instances, the candidate class defaults to the class of
the Extent. When you perform a query on a collection, you need to specify the class of the candidate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instances explicitly. In other words, if you pass a Collection to setCandidates(), you must also
call setClass() before compiling or executing the query.

If you specify the class of candidate instances but do not provide the collection of candidate
instances, the collection defaults to the Extent of the candidate class, with subclass instances
included. Therefore, each of the following approaches produces an equivalent Query initialization:

// Approach 1
Query query = pm.newQuery(MediaContent.class);

// Approach 2
Query query = pm.newQuery();
query.setClass(MediaContent.class);

// Approach 3
Query query = pm.newQuery(pm.getExtent(MediaContent.class, true));

// Approach 4
Query query = pm.newQuery();
query.setCandidates(pm.getExtent(MediaContent.class, true));

If a collection serving as the set of candidates has an element that has been deleted by a call to
deletePersistent(), the element is ignored. If instances are added or removed from the
candidates collection after setCandidates() is called, it is implementation-specific whether those
elements take part in the query or a NoSuchElementException is thrown during execution of the
query. So, you should not alter the collection once it has been passed to setCandidates().

You declare query parameters, variables, and their types after the Query has been constructed by

calling the following methods:

void declareParameters(String parameters);
void declareVariables(String variables);
void declareImports(String imports);

The following method initializes the ordering specification:

void setOrdering(String ordering);

We cover each of these methods and their parameter syntax later in this chapter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.3 Changes in the Cache

When you use an Extent for the set of candidate instances in a query, the instances you retrieve
depend on the setting of the IgnoreCache flag. This flag indicates whether changes you have made

to instances during the transaction should be reflected in the query results.

If IgnoreCache is false, instances that were made persistent in the current transaction are included

in the set of candidate instances; instances deleted in the current transaction are not included in the
set of candidate instances. Furthermore, instances changed in the transaction are evaluated with
their current values.

Setting IgnoreCache to true tells the query engine that you would like queries to be optimized and

to return approximate results by ignoring any changes in the cache. Instances made persistent in the
current transaction might not be considered part of the candidate instances, and instances deleted in
the current transaction might not be considered part of the candidate instances.

For portability, you should set the IgnoreCache flag to false. An implementation may choose to
ignore the setting of the IgnoreCache flag, always returning exact results that reflect current cached
values, just as if the value of the flag were false. The results of iterating Extents and executing
queries may differ among implementations when IgnoreCache is set to true.

The PersistenceManager interface has the following methods to get and set the value of the
IgnoreCache flag for all Query instances created by the PersistenceManager:

boolean getIgnoreCache();
void setIgnoreCache(boolean flag);

The initial value of the IgnoreCache setting in a Query instance is set to the value that the
IgnoreCache flag in the PersistenceManager had when the Query was constructed. It is also
possible to get and set the IgnoreCache option on a specific Query instance by using the following
Query methods:

void setIgnoreCache(boolean flag);
boolean getIgnoreCache();

The IgnoreCache flag is preserved when you construct a query instance from another query

instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.4 Query Namespaces

Two namespaces exist in JDOQL queries; they contain:

The names of types

The names of fields, parameters, and variables

Parameters and variables are given a name and type when they are declared. The types of the
parameters and variables are placed in the first namespace; the parameter and variable names are
placed in the latter namespace.

9.4.1 Type Names

When a type name is used (e.g., in a parameter or variable declaration), it must be one of the
following:

The name of the candidate class

The name of a class or interface declared in the java.lang package

The name of a class or interface imported by a call to declareImports()

The name of a class or interface in the same package as the candidate class

A name imported by a type-import-on-demand declaration, as in "import <package>.*;"

The type namespace automatically includes the name of the candidate class and the names of other
classes in the same package. It also automatically includes the names of the public types declared in
the java.lang package, just as if there had been a type-import-on-demand declaration (import
java.lang.*).

You must include any additional types names necessary for the types of parameters and variables.
You import the types into a Query instance by calling the following Query method:

void declareImports(String imports);

The String parameter imports contains one or more import statements, separated by a semicolon.
The syntax of the parameter is identical to Java's import statements. All imports must be declared in
the same call to declareImports().

For example, we may have a query that accesses the Transaction instances associated with a
Customer, returning those with an acquisitionDate field that is greater than a specific Date value.
This query would have a Transaction variable used to reference the elements of the
transactionHistory collection in Customer. It would also have a query parameter of type Date. We

http://lib.ommolketab.ir
http://lib.ommolketab.ir

would specify the following import declaration:

query.declareImports(
 "import com.mediamania.store.Transaction; import java.util.Date");

The declareImports() method adds the names of the imported class or interface types into the

type namespace. It is valid to specify the same import multiple times. When a query is compiled, an
error occurs if you have more than one type-import-on-demand declaration and the same type name
(excluding the package name) is imported from more than one package. In this case, the specific
type to which a type name refers would be ambiguous. This error is reported when you call compile(
) or execute().

9.4.2 Field, Parameter, and Variable Names

The other query namespace contains the names of fields, parameters, and variables. The names of
the fields in the candidate class are automatically placed in this namespace. The
declareParameters() method introduces the parameter names, and the declareVariables()

method introduces the variable names. The parameter and variable names must be unique, so their
use is not ambiguous in the query filter.

The this keyword can be used in the query filter to denote the current candidate instance being

evaluated. This reference can be used as an operand of the expressions in the query filter. It is
possible to have a parameter or variable name with the same name as a field in the candidate class.
In this case, the candidate class field is hidden. You can use this to access any fields of the

candidate class that may be hidden by a parameter or variable of the same name. The hidden field is
accessed by using the this qualifier: this.fieldName. However, we recommend that you use

parameter and variable names that are unique and distinct from the field names. Your queries will be
shorter and easier for others to understand.

9.4.3 Keywords

JDOQL defines keywords in the following categories:

Primitive type names: boolean, byte, short, int, long, char, float, double

Boolean literals: true, false

Expressions: null, this

Import declarations: import

Ordering specification: ascending, descending

You cannot use these keywords as field names, though most of them are Java keywords anyway. The
exceptions are ascending and descending; you will not be able to use fields with these names in a

query.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.4.4 Literals

Expressions in a query filter can include literals of the following types:

int, long (42, -7, 2048L, 4096l)

float, double (3.14, 3.14f, 3.14F, 0.6180339887d, 1.6180339887D)

boolean (true, false)

char ('J')

String ("JDO is great!")

null

The syntax used for these literals is identical to their syntax in Java, as described in the Java
Language Specification.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.5 Query Execution

When a query executes, the query filter is evaluated for each element of the candidate collection. Those
instances that evaluate to true for the filter are included in the query result, which is a subset of the
instances in the candidate collection. The query result should be cast to a Collection (execute() is
declared to return an Object). You should then aquire an Iterator to access the instances in the result.

9.5.1 Parameter Declarations

When you execute a query, you often need to provide one or more values to be used in the query filter's
expressions. One technique is to generate the query filter string dynamically, providing the necessary
values directly in the filter. But this approach does not allow the same query to be compiled and reused in
subsequent query executions, which are likely to require the same filter expressions but with different
values.

Query parameters allow you to specify such values dynamically when the query is executed. The
parameter names are used in the filter expression to specify constraints. A parameter name can be used
zero, one, or multiple times in the query filter. When you execute the query, each parameter must be
provided a value; these values are substituted for each use of the parameter name in the filter. You can
use parameters to minimize the need to construct a unique query filter dynamically each time you
execute a query.

You need to declare a name and type for each query parameter. In addition, you may need to import the
type of the parameter using declareImports() . The parameter declaration is a String containing one

or more parameter type declarations, separated by commas. This follows the Java syntax for declaring
the parameters of a method. All the query parameters are declared in a single String . The following
Query method binds the parameter declarations to the Query instance:

void declareParameters(String parameters);

Each parameter must be bound to a value when the query is executed. They are passed to the query
execute() methods as Java Object s; these values might be of simple wrapper types or more complex

object types. The first example in this chapter had the following query parameter declaration:

query.declareParameters("String city, String state");

You may want to have a parameter of a primitive type, such as int . You can declare a parameter to
have type int , but the value passed in the call to execute() must be the primitive's wrapper type,
since it is passed as an Object . So, a query parameter declared with type int requires an Integer
value to be passed to execute() . In addition, the parameter value passed to execute() for primitive
type parameters cannot be null , because there would not be a valid value for the parameter in the

query expressions. A query parameter can be used in the filter as an operand of any query operator that
accepts a value of the parameter's type.

You can also have a query parameter that is an instance of a persistent class. Such a parameter and the
fields it references can be used with any of the supported query expressions, including the ability to
navigate to other instances. The instances should be persistent or transactional and be associated with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the same PersistenceManager as the Query instance. If a persistent instance associated with another
PersistenceManager is passed as a parameter, a JDOUserException is thrown during execute() .

Some implementations may support a query parameter that is a transient instance of a persistent class,
but implementations are not required to support this.

9.5.2 Executing a Query

The Query interface provides methods to execute a query with zero or more parameters. The execute()

method has been overloaded so you can pass zero, one, two, or three parameters:

Object execute();
Object execute(Object parameter1);
Object execute(Object parameter1, Object parameter2);
Object execute(Object parameter1, Object parameter2, Object parameter3);

Two other methods, described later in this section, allow you to pass more query parameters using a
different parameter-passing technique. Each query parameter is an Object . As discussed earlier, you
use a wrapper type (Integer) to pass the value for a primitive parameter (int). The parameters
passed to execute() are associated with the declared parameters, based on their order. The

parameters passed to the execute methods are used only for the current execution and are not preserved
for use in subsequent query executions. If the PersistenceManager that constructed a Query is closed
when an execute method is called, a JDOUserException is thrown.

In the following example, we access all the Movie instances with a specific rating, a running time shorter

than a specific duration, and a particular director:

public static void queryMovie1(PersistenceManager pm,
 String rating, int runtime, MediaPerson dir) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter =
 "rating == movieRating && runningTime <= runTime && dir == director";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareParameters("String movieRating, int runTime, MediaPerson dir"); [1]
 Collection result = (Collection)
 query.execute(rating, new Integer(runtime), dir); [2]
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

We declare three parameters on line [1] . The second parameter is of type int , and the third parameter
is of type MediaPerson , one of our persistent classes. Since MediaPerson is in the same package as the
Movie candidate class, we do not need to import MediaPerson explicitly with an import declaration. The
JDOQL implementation will convert the Integer parameter passed on line [2] to the int declared on line
[1] . The query would also have been valid if we had declared the runTime query parameter to be an
Integer . Even though we compare runTime with the int field runningTime , JDOQL handles such

conversions automatically (see the Promotion of Numeric Operands sidebar in this chapter).

The execute() methods execute the query with the supplied parameters and return a result. An

http://lib.ommolketab.ir
http://lib.ommolketab.ir

element of the candidate collection is returned in the result if it is assignment-compatible with the
candidate class of the Query , and for all variables in the query there exists a value for which the query
filter expression evaluates to true . We will cover variables later in this chapter. If the query filter is not
specified when the query is executed, then the filter defaults to true and the input collection is filtered to

include only instances of the candidate class.

The return type of the execute() methods is Object . In JDO 1.0.1, the execute() methods return an
object that supports the operations of an unmodifiable Collection ; the value returned should be cast to
a Collection . A future JDO release may support queries that return a single instance; the method has
been defined to return Object to allow for this future extension. An implementation of a non-JDOQL
query language might return a value of a different type (e.g., java.sql.ResultSet).

You can iterate the unmodifiable Collection returned by the execute() methods to access the query
results. Executing any operation that might change the Collection causes an
UnsupportedOperationException . Although the object returned by execute() is declared to
implement Collection , most implementations do not return a collection that has been fully populated
with the results of the query. The primary use of the returned object is to acquire an Iterator via the
iterator() method defined in the Collection interface. The returned Collection can also serve as

the set of candidate instances for an additional query, supporting a form of subqueries.

The execute() methods described in this section support a maximum of three parameters. It is also
possible to pass parameters via a Map :

Object executeWithMap(Map parameters);

The executeWithMap() method is similar to execute() , but it takes its parameters from a Map
instance. The Map contains key/value pairs, where the key is the parameter's declared name and the
value is the actual value to use for the parameter in the query. Unlike execute() , you can pass an
unlimited number of parameters to executeWithMap() .

The following example extends the previous example to return only Movie instances that were released
after a specified date. This query requires four parameters, so we will use executeWithMap() . At line
[1] , we begin populating a HashMap with the query parameters. The Map entry's key is the parameter
name, as specified in declareParameters() , and its value is the value to use for the parameter.

public static void queryMovie2(PersistenceManager pm,
 String rating, int runtime, MediaPerson dir, Date date) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "rating == movieRating && runningTime <= runTime && " +
 "dir == director && releaseDate >= date";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareImports("import java.util.Date");
 query.declareParameters(
 "String movieRating, int runTime, MediaPerson dir, Date date");
 HashMap parameters = new HashMap();
 parameters.put("movieRating", rating); [1]
 parameters.put("runTime", new Integer(runtime));
 parameters.put("dir", dir);
 parameters.put("date", date);
 Collection result = (Collection) query.executeWithMap(parameters); [2]
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println(movie.getTitle());
 }
 query.close(result);
}

Parameters can also be passed with an array:

Object executeWithArray(Object[] parameters);

The executeWithArray() method is also similar to execute() , but it takes its parameters from an
array instance. The array contains Object s; the position of parameters in the parameter declaration

determines the position of their corresponding values in the array. The number of elements in the array
must be equal to the number of parameters that have been declared. Similar to executeWithMap() ,

the number of parameters is not limited.

The following example performs the same query as the previous one, except this time we use
executeWithArray() . The order in which the parameters are declared on line [1] must correspond

with the order in which the values are populated in the array on line [2] .

public static void queryMovie3(PersistenceManager pm,
 String rating, int runtime, MediaPerson dir,
 Date date) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "rating == movieRating && runningTime <= runTime && " +
 "dir == director && releaseDate >= date";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareImports("import java.util.Date");
 query.declareParameters(
 "String movieRating, int runTime, MediaPerson dir, Date date"); [1]
 Object[] parameters = { rating, new Integer(runtime), dir, date }; [2]
 Collection result = (Collection) query.executeWithArray(parameters);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

The result of a query can be very large, depending on the size of the candidate collection and filter. An
application can iterate through the result or pass it to another Query as its candidate instances. The
size() method defined in Collection might return Integer.MAX_VALUE if the actual size of the result
is not known. A portable application should not use size() .

You can call any of these execute methods repeatedly for the same Query instance. All of the query
components, including the candidate collection, are maintained by the Query instance after execution.

This allows you to reexecute the same query with different query parameter values. You can also change
any of the query components of a Query after it has been executed. The Query will be recompiled before

it is executed.

9.5.3 Compiling a Query

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before you can execute a query, it is compiled to verify its correctness. Compiling a Query validates its
components and reports any inconsistencies by throwing a JDOUserException . When execute() is
called, if the Query has not compiled or if a query component has been changed since the Query was last
compiled, the Query compiles automatically.

You can verify the correctness of a query before executing it by compiling it directly. The following Query

method compiles a query:

void compile();

Calling compile() tells the Query instance to prepare and optimize an execution plan for the query.
Once a Query is compiled, it can be executed repeatedly without incurring the initial parsing and

optimization overhead.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.6 The Query Filter

The query filter is a Boolean expression that is evaluated for each candidate instance; the query result
includes only those instances that are true . The filter contains expressions supported by the JDO Query

Language (JDOQL). Appendix D contains the Backus-Naur Form (BNF) syntax for JDOQL.

The query filter is specified with respect to the object model defined by your persistent classes, using the
field names in your persistent classes. You do not use the names and representation found in the
underlying datastore. You write your applications using the single data model of your persistent classes.

The filter can access the fields in your classes directly, even though they may be declared private .

Some developers say that this breaks encapsulation, but database query languages express constraints
on the values of fields. A JDOQL query will never modify the value of a field, and only the JDO
implementation can access these fields in your application directly, which it needs to do anyway to
manage their state. Those that argue this breaks encapsulation believe that only the methods of a class
should access its fields. JDOQL has been designed so that query execution can take place in either the
application's execution environment or the datastore server. Requiring the use of methods would require
the datastore server to support Java and the loading of your application classes. This would severely limit
the number of datastores that JDO could support. In most cases, the Java field names used in the query
filter get remapped to the names of data constructs in the underlying datastore, which are then accessed
in the datastore server environment.

The names of persistent fields are supported as identifiers in query expressions. You may find some
implementations supporting nonpersistent fields (including final and static fields), but implementations

are not required to support these fields. So, if you want to write queries that will be portable across all
implementations, do not use nonpersistent, final , or static fields in your filter expressions.

You can provide the query filter to a Query when it is constructed, by using one of the newQuery()

methods that takes a filter as a parameter, as we have done in the previous examples. Or, you can set
the filter by calling the following Query method:

void setFilter(String filter);

9.6.1 General Characteristics of Expressions

The identifiers in the filter should be in the namespace of the specified candidate class, with the addition
of declared imports, parameters, and variables. As in the Java language, this is a reserved word that

refers to the current candidate instance being evaluated from the collection or extent.

JDOQL uses operators taken directly from the Java language, so Java developers will be familiar with
them. Parentheses can be used to mark operator precedence explicitly. Whitespace-nonprinting
characters, including space, tab, carriage return, and line-feed-in the filter is a separator and is
otherwise ignored.

Query expressions are nonmutating and have no side effects. The assignment operators (= , += , etc.),

pre- and post-increment, and pre- and post-decrement are not supported. JDOQL defines a few methods
on String and Collection instances. But methods defined by the application, including object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

construction, are not supported. Nonmutating method calls may be supported in an implementation as a
nonstandard extension.

9.6.2 Query Operators

A subset of Java's operators can be used in the filter expression. The operators apply to all the types as
defined in the Java language, except for a few cases that we will note in this section. You can use
operator composition to construct arbitrarily complex expressions. You can use parentheses to control the
precedence of multiple operators and make the expressions easier for others to read and understand.

9.6.2.1 Equality and inequality operators

Table 9-1 specifies the equality operators. These expressions have a Boolean result. We have used these
in our previous query examples.

Table 9-1. Equality operators

Operator Description

== Equal

!= Not-equal

The equal and not-equal operators are valid for all the operand types that are valid in Java. In addition,
you can use them with the following operands:

Primitives and instances of wrapper classes (see the Promotion of Numeric Operands sidebar)

Date values (fields and parameters)

String values (fields, parameters, literals, and results of String expressions)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Promotion of Numeric Operands

Numeric operands are promoted when you use equality, comparison, and arithmetic
operations. The promotion rules follow the rules defined in the Java Language Specification
(see Chapter 5) and have been extended to support BigDecimal , BigInteger , and the

numeric wrapper classes:

If either operand is of type BigDecimal , the other is converted to BigDecimal .

Otherwise, if either operand is a BigInteger and the other is a floating-point type
(float , double) or one of its wrapper classes (Float , Double), both operands are
converted to BigDecimal .

Otherwise, if either operand is a BigInteger , the other is converted to a BigInteger .

Otherwise, if either operand is a double , the other is converted to a double .

Otherwise, if either operand is a float , the other is converted to a float .

Otherwise, if either operand is a long , the other is converted to a long .

Otherwise, both operands are converted to int .

An operand that is one of the numeric wrapper classes is treated as its corresponding
primitive type. If one operand is an instance of a numeric wrapper class and the other
operand has a primitive numeric type, the rules in this sidebar apply and the result type is the
corresponding numeric wrapper class.

In Java, the this.rating == movieRating expression compares the identity (references) of the String
instances. In JDOQL, an expression evaluating the equality of Date and String values does not compare

the object references as in Java. Instead, it tests the equality of their values.

Comparisons between floating-point values are, by nature, inexact. Therefore, you should be cautious
when using equality comparisons (== and !=) with floating-point values. If you need precise
comparisons, use the type BigDecimal instead.

Persistent instances compare equal if they have the same identity (i.e., they are the same instance in the
datastore). Equality of references for nonpersistent types uses the equals() method defined for the

class. A persistent and nonpersistent instance are never considered equal.

If a datastore supports null values for Collection types, it is valid to compare a collection field to null
. If you are using a datastore that does not support a null value for a Collection type, then a
subexpression that compares a collection field to null evaluates false . If the datastore supports null
values for Collection types, the javax.jdo.option.NullCollection option should be included in the

list of supported options.

9.6.2.2 Comparison operators

Table 9-2 lists the comparison operators, which have a Boolean result.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 9-2. Comparison operators

Operator Description

< Less-than

<= Less-than or equal

> Greater-than

>= Greater-than or equal

These comparison operators are valid for all the operand types defined in Java. In addition, they are valid
for the following operands:

Primitives and instances of wrapper classes (see the Promotion of Numeric Operands sidebar)

Date values (fields and parameters)

String values (fields, parameters, literals, and results of String expressions)

The comparison of two Date instances or two String instances compares the values represented by the
instances. The ordering used in String comparisons is not defined in JDO. This allows implementations to

order them according to a datastore-specific ordering, which might be locale-specific.

9.6.2.3 Boolean operators

Table 9-3 lists the supported Boolean operators. These expressions have Boolean operands and compute
a Boolean result.

Table 9-3. Boolean operators

Operator Description

& Boolean logical AND (not bitwise)

&& Conditional AND

| Boolean logical OR (not bitwise)

|| Conditional OR

! Logical complement (negate)

The following example uses these Boolean operators to access all the Movie instances that have a rating

other than G or PG and a running time between an hour and an hour and 45 minutes:

public static void queryMovie4(PersistenceManager pm) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "!(rating == \"G\" || rating == \"PG\") && " +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "(runningTime >= 60 && runningTime <= 105)";
 Query query = pm.newQuery(movieExtent, filter);
 Collection result = (Collection) query.execute();
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

You can use these Boolean operators and parentheses to compose query expressions as nested and
complex as necessary to express your filter.

The previous example also demonstates the use of String and int literals. Since String literals in a
JDOQL filter use Java's syntax of double-quote delimiters, you need to use the backslash character (\)
when specifying your filter with a Java String literal in your application. These back-quotes are not
needed in JDOQL's syntax, and they are not placed in this String filter we have declared. Query filters
are simpler if you use a query parameter instead of a String literal. A parameter also provides more

flexibility than a literal, because it allows you to provide an alternative value in the query.

The operators listed in Table 9-3 lists correspond to Java's Boolean (& , |) and conditional (&& , ||)

operators. In Java, the Boolean operators always evaluate both operands, but the conditional operators
first evaluate the left operand and evaluate the right operand only if necessary to determine the Boolean
result. In Java, && evaluates the right operand only if the value of the left operand is true , and ||
evaluates the right operand only if the value of the left operand is false . This aspect of Java's

conditional operators is not preserved in JDOQL. There are no side effects of operators in JDOQL, which
could be leveraged by such conditional evaluations. JDOQL implementations may or may not evaluate the
right operand based on the evaluation of the left operand; this is purely an optimization decision. Some
underlying datastores, such as those based on SQL, do not have such conditional operators. A SQL
implementation would likely map both & and && to the SQL AND operator.

9.6.2.4 Arithmetic operators

Table 9-4 lists the supported arithmetic operators.

Table 9-4. Arithmetic operators

Operator Description

+ Binary and unary addition

- Binary subtraction or numeric-sign inversion

* Multiplication

/ Division

~ Integral unary-bitwise complement

The result type of these expressions depends on the operand types, as explained in the Promotion of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Numeric Operands sidebar.

Let's examine a query that uses these arithmetic operators:

public static void queryProfits(PersistenceManager pm, BigDecimal value,
 BigDecimal sellCost, BigDecimal rentCost) {
 Query query = pm.newQuery(MediaItem.class); [1]
 query.declareImports("import java.math.BigDecimal");
 query.declareParameters([2]
 "BigDecimal value, BigDecimal sellCost, BigDecimal rentCost");
 query.setFilter("soldYTD * (purchasePrice - sellCost) + " + [3]
 "rentedYTD * (rentalCode.cost - rentCost) > value");
 Collection result = (Collection) query.execute(value, sellCost, rentCost);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 MediaItem item = (MediaItem) iter.next();
 // process MediaItem
 }
 query.close(result);
}

We initialize a Query instance on line [1] , where we set the candidate class. Notice that we do not

explicitly specify the candidate collection. If we specify the candidate class but not the candidate
collection (as we do here), the candidate collection defaults to the Extent of the candidate class, with
subclasses included (the Extent component that indicates subclasses should be included is true). In this
query we retrieve all the MediaItem instances whose profit this year exceeds the value parameter. There

are costs associated with the selling and renting of an item; the values for these costs are passed via the
sellCost and rentCost query parameters, declared on line [2] . These values are subtracted from the

price charged to purchase or rent the item in the filter specified on line [3] . We multiply the per-item
profits by the number of items sold and rented year-to-date. We then determine whether the profits for
an item exceed the threshold specified by the value query parameter. The query returns only those
items whose profits exceed the value parameter.

The precedence of the arithmetic operators in the JDOQL filter is identical to their precedence in Java. We
have used parentheses to override the precedence. We could add additional parentheses to make the
expression more clear for those that are not always certain of the operator precedences.

9.6.2.5 String expressions

Two String methods are defined, startsWith() and endsWith() :

boolean startsWith(String str);
boolean endsWith(String str);

These methods operate on a String within a query. The startsWith() method returns true if the
String begins with the value in the str argument. The endsWith() method returns true if the String
ends with the value in the str argument.

These methods provide support for wild card queries. However, no special semantics are associated with
the str argument; in particular, no specific wild-card characters are supported.

A typical nonstandard implementation based on a SQL datastore would map the JDOQL query expression:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name.startsWith("%Tina")

to the SQL LIKE operation:

NAME LIKE ('%Tina%')

The '% ' wild-card character represents zero or more characters. The startsWith() method adds a '% '

at the end of its parameter's value when it is mapped to SQL.

The + operator can be used to specify String concatenation, but it is supported only for String

operands. Thus, this is supported:

"Movie: " + title

But this expression is not:

title + 5

9.6.3 References

You can use the . (dot) operator to navigate through reference fields, as in Java. You can also use the .
operator to navigate through multiple references in your object model. For example, the following
expression assumes that we have a filter operating on a set of RentalItem candidate instances:

currentRental.customer.address.city

We navigate from the RentalItem to the Rental instance by using the currentRental field, then use the
customer field inherited from Transaction to access the specific Customer that has rented the
RentalItem . We then use the address field to get the customer's address and access the city . This
example also illustrates that your expressions can access inherited fields; we access the customer field in
Transaction , the base class of Rental .

Using such navigations does not change the candidate class; you cannot return the instances accessible
via navigation. If your main goal is to query and return instances of a class accessible via such a
navigation, the class of the instances that you want in your result should be your candidate class and you
should provide a filter that may include a navigation that performs the inverse of your original navigation
expression.

In Java, when you navigate through a null reference, a NullPointerException is thrown. But if a
subexpression in a query traverses through a null reference, the subexpression does not throw an
exception; it evaluates as false . Only the subexpression is false , not the entire filter. Other

subexpressions in the filter or other values for variables may still qualify the candidate instance for
inclusion in the result set.

9.6.3.1 Cast expression

Java and JDO allow a base class reference to contain a reference to an instance of a subclass. In addition,
Java and JDO allow you to declare a reference to an interface and initialize it with a reference to an
instance of any class that has been declared to implement the interface. We have demonstrated that
when you have a reference to a subclass (Rental), you can directly use fields in a base class
(Transaction). But suppose you have a reference to a base class and want to have a query expression

that determines whether the reference is to a particular subclass and, if so, accesses a field of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subclass. Likewise, suppose you have an interface reference. You cannot call the methods of the Java
interface in a query expression, but you may want to determine whether the reference refers to an
instance of a specific class and, if so, have a query expression using a field of that class.

You can express such queries in JDOQL by using a cast expression . The syntax of the cast expression is
identical to its use in Java. Precede the reference expression with a type name, enclosed in parentheses.
If you cast a reference to a specific class, an attempt is made to convert the reference to the class. If the
cast fails (which would throw a ClassCastException in Java), the most-nested Boolean subexpression in
which the cast was performed is false . This behavior also occurs if you navigate through a null

reference in JDOQL. If the cast succeeds, then the reference can be used to access the referenced
instance as an instance of the type used in the cast.

The following example uses the collection of historical transactions associated with a particular Customer

as its candidate set of instances:

public static void queryTransactions(PersistenceManager pm, Customer cust) {
 Query query = pm.newQuery(com.mediamania.store.Rental.class, [1]
 cust.getTransactionHistory());
 String filter = "((Movie)(rentalItem.mediaItem.content)).director." + [2]
 "mediaName == \"James Cameron\"";
 query.declareImports("import com.mediamania.content.Movie"); [3]
 query.setFilter(filter); [4]
 Collection result = (Collection) query.execute();
 Iterator iter = result.iterator();
 while (iter.hasNext()){
 Rental rental = (Rental) iter.next();
 MediaContent content =
 rental.getRentalItem().getMediaItem().getMediaContent();
 System.out.println(content.getTitle());
 }
 query.close(result);
}

The transactionHistory collection in Customer contains Transaction instances, which are either
Rental or Purchase instances. We only want to process the Rental instances in the collection, so we set
the Rental class as the candidate class in the call to newQuery() on line [1] . In the filter, declared on
line [2] , we navigate from the Rental instance to the RentalItem , from the RentalItem to the
MediaItem , and from the MediaItem to the MediaContent instance. The MediaContent instance can be
either a Movie or a Game instance. We want to determine which movies the customer is currently renting
that were directed by James Cameron. So, we cast the MediaContent reference to a Movie instance on
line [2] . This allows us to access the director field defined in the Movie class. We then determine

whether this movie was directed by James Cameron. Line [4] sets the filter for the query. Since our
Rental candidate class is defined in the com.mediamania.store package and we are casting to the
Movie class, which is defined in the com.mediamania.content package, it is necessary to import the
Movie class on line [3] .

In this example, we constrain the transactionHistory collection to Rental instances by specifying
Rental as the candidate class. An alternative, less-elegant approach would be to cast to Rental in the

filter itself. Lines [1] and [2] could be replaced with the following lines:

 Query query = pm.newQuery(com.mediamania.store.Transaction.class,
 cust.getTransactionHistory());
 String filter = "((Movie)(((Rental)this).rentalItem.mediaItem.content))." +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "director.mediaName == \"James Cameron\"";

But the use of multiple casts results in a more-complex filter. The first solution is simpler. As we noted
previously, we could simplify the filter by passing the director's name as a parameter instead of using the
String literal.

9.6.4 Collections

You can also use collections in your query expressions. The isEmpty() and contains() methods are

defined for use with a collection in a query.

The method isEmpty() determines whether a collection is empty:

boolean isEmpty();

Not all datastores allow a null-valued collection to be stored. Portable queries on these collections should
use isEmpty() instead of comparing to null . A null collection field is treated as if it is empty if a
method is called on it. In particular, isEmpty() returns true , and contains() returns false .

You can also have a query expression that examines a collection to determine whether an element exists
in the collection that has a true value for a provided query expression. This allows you to navigate to a
set of related instances in the datastore. You navigate by using the contains() method, which lets you

associate a variable with the elements of a collection. The variable can then be used to express
constraints on the collection elements.

9.6.4.1 Variable declaration

To access the elements of a collection, you must declare the variable with its name and type. Variables
are declared in a String containing one or more variable declarations, separated by a semicolon if there

there is more than one variable declaration. It uses the same syntax you use in Java to declare a
method's local variables.

The following Query method binds a variable declaration to the Query instance:

void declareVariables(String variables);

You will need to import the type using declareImports() if the variable's type is not already in the

query's type namespace.

9.6.4.2 The contains() method

The contains() method is used in conjunction with an AND expression to determine whether an
element of a collection results in a true result for at least one element of the collection. You associate a
variable with the elements of a collection by passing the variable to contains() . The contains()

method must be the left operand of an AND expression in which the variable used is the right operand:

boolean contains(Object o);

The contains() method returns true if at least one collection element results in a true result for the

right operand of its associated AND expression.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A portable query filter must constrain all of its variables that are used in any of its expressions, by
applying the contains() clause to a persistent field of a persistent class. That is, each occurrence of an
expression in the filter using the variable includes a contains() clause ANDed with an expression using

the variable.

The following example finds all Movie instances for which the director also played an acting role in the

movie:

 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "cast.contains(role) && role.actor == director"; [1]
 Query query = pm.newQuery(movieExtent, filter);
 query.declareVariables("Role role"); [2]
 Collection result = (Collection) query.execute();

In this query, we declare a variable, named role , on line [2] to reference the Role instances in the cast
collection. We use the contains() method on line [1] to associate the role variable with the elements
of cast . The contains() expression is the left operand of && , and the right operand has an expression
using the role variable. The right operand's expression checks to see whether the MediaPerson
referenced by the actor field is equal to the director field in the Movie instance.

You use the contains() method to see whether at least one element exists in the collection that is true
for the expression in the right operand. Since only one collection element needs to have a true result for

the right operand, not all of the collection elements need to be processed. Evaluation can stop once the
first collection element is found with a true result for the right operand. The contains() method and its
associated ANDed right operand are considered an expression. Negating this expression with the !
operator asks if it is true that no element exists in the collection that is true for the right operand (i.e.,
that there is no element in the collection for which the right operand is true).

The following example illustrates the use of multiple variables. In fact, it navigates through multiple
collections by using the second variable to access elements of a collection accessed by the first variable.
This query finds all the Movie instances currently being rented by customers that live in a city with a

given name.

public static void queryMoviesSeenInCity(PersistenceManager pm, String city) {
 String filter = "mediaItems.contains(item) &&" + [1]
 "(item.rentalItems.contains(rentalItem) && " + [2]
 "(rentalItem.currentRental.customer.address.city == city))"; [3]
 Extent movieExtent = pm.getExtent(Movie.class, true);
 Query query = pm.newQuery(movieExtent, filter);
 query.declareImports("import com.mediamania.store.MediaItem; " + [4]
 "import com.mediamania.store.RentalItem");
 query.declareVariables("MediaItem item; RentalItem rentalItem"); [5]
 query.declareParameters("String city");
 Collection result = (Collection) query.execute(city);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 System.out.println(movie.getTitle());
 }
 query.close(result);
}

Line [5] declares the variables item and rentalItem . Line [1] associates the item variable with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MediaItem instances of the current Movie candidate instance. The rest of the filter is the right operand of
the associated AND operator. We access the RentalItem instances associated with the MediaItem
instances (referenced by item) by binding the rentalItem variable with the rentalItems collection. We
then use the rentalItem variable to access the current Rental transaction and navigate to access the

city of the customer renting the movie.

For a portable query, the contains() clause must be the left expression of an AND expression in which

the variable is used in the right expression. The filter specified on line [1] illustrates a situation where
you need to use parentheses to override Java's left-associativity rule that applies when there are two or
more operators with the same precedence in a filter expression. If we had declared the filter as:

String filter = "mediaItems.contains(item) &&" +
 "item.rentalItems.contains(rentalItem) && " +
 "(rentalItem.currentRental.customer.address.city == city)";

it would have been evaluated as:

String filter = "(mediaItems.contains(item) &&" +
 "item.rentalItems.contains(rentalItem)) && " +
 "(rentalItem.currentRental.customer.address.city == city)";

which is not valid, because rentalItem on the third line is not the right operand of an AND expression
whose left operand binds rentalItem with a contains() .

A portable query will constrain all of its variables with a contains() method in each OR expression the
filter may have. A variable that is not constrained with an explicit contains() method is constrained by

the extent of the persistent class (including subclasses) in the database, based on the variable's declared
class. Such a variable is referred to as an unbound variable . If the variable's class does not manage an
Extent , then no results will satisfy the query.

For example, the following query returns all movies from the same director that were released after a
particular movie, specified by title:

public static void queryRecentMovies(PersistenceManager pm, String title) {
 Extent movieExtent = pm.getExtent(Movie.class, true);
 String filter = "this.releaseDate > movie.releaseDate && " +
 "this.director == movie.director && movie.title == title";
 Query query = pm.newQuery(movieExtent, filter);
 query.declareParameters("String title");
 query.declareVariables("Movie movie");
 Collection result = (Collection) query.execute(title);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 Movie movie = (Movie) iter.next();
 // process Movie
 }
}

The movie variable of type Movie is unconstrained, so it is evaluated relative to the Movie extent. In this

particular query, the unbound variable accesses the same extent as the query, but this just a
coincidence, as the extent accessed by an unconstrained variable is based on the variable's declared
type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.7 Ordering Query Results

An application can specify an order for the query result by providing an ordering statement, specified
by a String that contains one or more ordering declarations, separated by commas. Each ordering
declaration is a Java expression of an orderable type, followed by either ascending or descending.

Your ordering expression may use the . operator to navigate references.

Each ordering expression must be one of the following types:

Any primitive type except boolean

Any wrapper type except Boolean

BigDecimal

BigInteger

String

Date

We mentioned earlier that JDO does not define the ordering of Strings when you use the comparison
operators (<, <=, >, and >=). This also applies for the ordering of query results.

The following Query method binds the ordering statement to the Query instance:

void setOrdering(String ordering);

The ordering statement may include multiple ordering expressions. The result of the leftmost
expression is used first to order the results. If the leftmost expression evaluates to the same value
for two or more elements, then the second expression is used to order those elements. If the second
expression also evaluates to the same value, then the third expression is used, and so on, until the
last expression is evaluated. If the values of all of the ordering expressions are equal for two or more
elements, then the ordering of those elements is unspecified.

The following example demonstrates the use of ordering:

public static void queryTransactionsInCity(PersistenceManager pm,
 String city, String state, Date acquired) {
 Extent transactionExtent =
 pm.getExtent(com.mediamania.store.Transaction.class, true);
 Query query = pm.newQuery(transactionExtent);
 query.declareParameters("String thecity, String thestate, Date date"); [1]
 query.declareImports("import java.util.Date"); [2]
 String filter = "customer.address.city == thecity && " + [3]
 "customer.address.state == thestate && acquisitionDate >= date";
 query.setFilter(filter);
 String order = "customer.address.zipcode descending, " + [4]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "customer.lastName ascending, " +
 "customer.firstName ascending, acquisitionDate ascending";
 query.setOrdering(order); [5]
 Collection result = (Collection) query.execute(city, state, acquired);
 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 com.mediamania.store.Transaction tx =
 (com.mediamania.store.Transaction) iter.next();

 // process Transactions
 }
 query.close(result);
}

The query returns all Transaction instances that occurred on or after a specified date for customers

in a given city and state. Line [1] declares these necessary parameters. We also need to import the
Date class for the date parameter on line [2]. The filter declared on line [3] uses these parameters
to limit the Transaction instances returned by the query. We specify the ordering expression on line
[4] and set it on line [5]. The Transaction instances are ordered first in descending order, based on

the customer's ZIP code. All instances in the same ZIP code are placed in ascending order, based on
the customer's last and first name. Transaction instances for specific customers with unique last

and first names are placed in ascending order, based on the date they acquired the media content.
The ordering declarations are separated by a comma in the ordering expression.

The ordering of instances is not specified when the fields used in the ordering expression have null
values. Implementations may differ in how they perform the ordering; they may place the instances
containing null-valued fields either before or after instances whose fields contain non-null values.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

9.8 Closing a Query

When you are finished with the result of a query, you can close the results, allowing the release of
resources used in implementing the query (e.g., database cursors or iterators). You can use the
following Query methods to close query results:

void close(Object queryResult);
void closeAll();

The close() method closes the result that was returned by one call to execute(). You use
closeAll() to close all the results from calls to execute() on the Query instance. Both methods

release the query result's resources. After they complete, you cannot use the query result (e.g., to
iterate the returned elements). Closing a query result does not affect the state of its instances. Once
you have closed a result, any Iterator that was acquired returns false to hasNext() and throws
NoSuchElementException if next() is called. But the Query instance is still valid and can be used to

execute more queries. Each query example in this chapter closed its query result.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 10. Identity
Java defines two concepts that determine whether two instances are the same: identity and equality.
Two instances have the same Java identity if and only if they occupy the same memory location
within the Java Virtual Machine (JVM). Java identity is managed entirely by the JVM, whereas Java
equality is determined by the class. Two distinct instances with different identities are equal if they
represent the same value, based on the abstraction being modeled. For example, two distinct
instances of Integer with separate Java identities may have the same integer-abstraction value;
they are considered equal. Or, two distinct HashSet instances may contain the same elements and be

considered equal, even though they may have a completely different organization of their internal
data structures, as a result of the order in which elements were added and removed. If you are a
Java developer, you likely understand the Java concepts of identity and equality already.

JDO has its own requirements for uniquely identifying a persistent instance. The same datastore
instance can be in multiple transactions in the JVM at the same time, so the Java notion of identity
cannot be used. The application doesn't necessarily implement equals(), so it cannot be used.

Therefore, JDO defines its own identity abstraction to identify an instance uniquely in the datastore.
This identity is used in the datastore to establish a reference to an instance. It is also used to
determine if two in-memory instances represent the same object in the datastore. We refer to this
new form of identity as JDO identity, when necessary, to distinguish it from Java identity. JDO
identity is defined differently from both Java identity and Java equality.

The JDO implementation manages a cache of persistent instances for each PersistenceManager,

such that each instance from the datastore is represented by a single instance in the cache of the
PersistenceManager. This cache is not a specific region of memory; it simply consists of the set of
all instances managed by the PersistenceManager. The JDO implementation allows an application to

navigate through persistent references and collections of references accessed from the datastore by
using simple Java references. The JDO identity of the persistent class determines the representation
of these references in the datastore and how the implementation accesses an instance in the
datastore when your application uses a reference.

If the JVM has multiple PersistenceManager instances, each has its own associated cache of
persistent instances. Two or more of these PersistenceManager instances may have their own

distinct copy of the same datastore instance. In this case, each copy of the datastore instance has a
distinct Java identity, but they all have an identical JDO identity.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.1 Overview

JDO has several types of identity. You must select the type of identity to use for each persistent
class. An identity class represents an identity value, and its form depends on the type of identity.
Each persistent class has an associated identity class that represents a unique identity value for each
persistent instance. If you have two instances of identity classes for two persistent instances, they
will compare equal if and only if the persistent instances have the same JDO identity. JDO provides
methods to map between a persistent instance and its associated identity.

10.1.1 JDO Identity Types

JDO defines three types of identity:

Datastore identity

The identity is managed by the JDO implementation or the datastore and is not associated with
the values of any fields in the instance.

Application identity

The identity is managed by the application, and its uniqueness is enforced by the JDO
implementation or datastore. The identity is composed of one or more fields of the class,
referred to as the primary-key fields. The composite value of the primary-key fields must
uniquely identify each persistent instance in the datastore. You must define an application
identity class with fields that correspond, in name and type, to the primary-key fields in the
persistent class.

Nondurable identity

Some datastores do not support a unique identifier for some of their data. For example, a log
file or a table in a relational database may not have a primary-key constraint. For the JDO
implementation to manage instances that do not have a durable identity, nondurable identity
provides a unique identity for each instance while it is in the JVM; but this identity is not
preserved or used in the datastore.

JDO uses these three different types of identity to model existing datastores. Many relational
databases use application-visible primary-key columns in which the values of the columns represent
real-world concepts. For example, a purchase order's line item table contains an purchase-order
number and a line number as a composite primary key, and these columns have significance in the
application domain. Most object databases provide identity for persistent instances that do not
depend on application-visible values. In order to support natural mappings for both of these styles of
identity, JDO provides both application identity and datastore identity.

There are other cases, primarily from the relational-database domain, where there is no identity
associated with a row in a table. For example, there is no natural key for a log-file entry, and
although there may be queryable columns, there is no uniqueness requirement. Support for these
kinds of tables is provided by nondurable identity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Each type of identity is an optional feature in JDO, but a JDO implementation must support either
datastore or application identity and may support both. They have the following property names:

javax.jdo.option.DatastoreIdentity

javax.jdo.option.ApplicationIdentity

javax.jdo.option.NondurableIdentity

You can call supportedOptions(), defined in PersistenceManagerFactory, to determine which

types of identity your implementation supports.

10.1.2 Metadata

You need to select an identity type for each persistent class. You declare the identity type in the
metadata using the identity-type attribute in the class element for the persistent class. It can be

given one of the following values:

"datastore"

"application"

"nondurable"

The application can explicitly specify a value for identity-type or let it have a default value. If you

decide to use application identity for a persistent class, you need to define an application identity
class and specify it in the metadata in the class element's objectid-class attribute. Some
implementations can generate this class for you. Only application identity uses the objectid-class
attribute. So, if you specify the objectid-class attribute for a persistent class, its identity-type
attribute defaults to "application"; otherwise, it defaults to "datastore". Furthermore, the identity

type you select for the least-derived persistent class in an inheritance hierarchy is used as the
identity type for all the persistent classes in the inheritance hierarchy. Once you have enhanced a
persistent class, its identity type is fixed.

Table 10-1 summarizes which type of identity you will get based on the values you provide for these
metadata attributes. The MyApplId class denotes an application identity class that you have defined.

Table 10-1. Identity types, based on value of identity-type and objectid-
class metadata attributes

Value of identity-type Value of objectid-class Identity type used for the class

No value provided No value provided Datastore identity

No value provided "MyApplId" Application identity

"datastore" No value provided Datastore identity

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value of identity-type Value of objectid-class Identity type used for the class

"datastore" "MyApplId" Error

"application" No value provided Error

"application" "MyApplId" Application identity

"nondurable" No value provided Nondurable identity

"nondurable" "MyApplId" Error

If you have a class C that extends class B, where B has a value specified for the objectid-class
attribute, class C must also use application identity and must either use class B's objectid-class (if
the objectid-class is concrete) or define its own objectid-class that extends B's objectid-
class. You never specify the objectid-class attribute for subclasses of concrete classes.

10.1.3 Identity Class

Every persistent class has an associated identity class that is used to represent the unique identity of
each persistent instance. The JDO implementation defines the classes used to represent datastore
and nondurable identity. The implementation may use the same identity class for multiple persistent
classes, or a different identity class for each persistent class. On the other hand, when you use
application identity, you must define an application identity class yourself.

Every persistent instance has a unique identity value, which can be represented by an instance of the
identity class. You can acquire a copy of the identity instance associated with a persistent instance;
you can save it, retrieve it later from durable storage (by serialization or some other technique), and
use it to obtain a reference to the same persistent instance. The JDO implementation does not
necessarily maintain an instantiation of the identity instance in the cache for each persistent instance
in the cache, but it can construct an instance for use by your application.

When you make an instance persistent via makePersistent(), the instance is assigned an identity.

If the metadata states that the instance's class has an identity type that the implementation does not
support, a JDOUserException is thrown for that instance. The enhancer in some implementations

may also produce a warning or error when the class is enhanced if the implementation does not
support the identity type.

The identity of a persistent instance is managed by the JDO implementation. For classes with a
durable identity (datastore or application identity), each PersistenceManager instance manages at

most one instance in the memory cache for a given object in the datastore, regardless of how your
application accessed the persistent instance.

[Team LiB]

"datastore" "MyApplId" Error

"application" No value provided Error

"application" "MyApplId" Application identity

"nondurable" No value provided Nondurable identity

"nondurable" "MyApplId" Error

If you have a class C that extends class B, where B has a value specified for the objectid-class
attribute, class C must also use application identity and must either use class B's objectid-class (if
the objectid-class is concrete) or define its own objectid-class that extends B's objectid-
class. You never specify the objectid-class attribute for subclasses of concrete classes.

10.1.3 Identity Class

Every persistent class has an associated identity class that is used to represent the unique identity of
each persistent instance. The JDO implementation defines the classes used to represent datastore
and nondurable identity. The implementation may use the same identity class for multiple persistent
classes, or a different identity class for each persistent class. On the other hand, when you use
application identity, you must define an application identity class yourself.

Every persistent instance has a unique identity value, which can be represented by an instance of the
identity class. You can acquire a copy of the identity instance associated with a persistent instance;
you can save it, retrieve it later from durable storage (by serialization or some other technique), and
use it to obtain a reference to the same persistent instance. The JDO implementation does not
necessarily maintain an instantiation of the identity instance in the cache for each persistent instance
in the cache, but it can construct an instance for use by your application.

When you make an instance persistent via makePersistent(), the instance is assigned an identity.

If the metadata states that the instance's class has an identity type that the implementation does not
support, a JDOUserException is thrown for that instance. The enhancer in some implementations

may also produce a warning or error when the class is enhanced if the implementation does not
support the identity type.

The identity of a persistent instance is managed by the JDO implementation. For classes with a
durable identity (datastore or application identity), each PersistenceManager instance manages at

most one instance in the memory cache for a given object in the datastore, regardless of how your
application accessed the persistent instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.2 Datastore Identity

Datastore identity can be used with datastores that provide an identifier that does not depend on the
values of fields in an instance. This is the form of identity that object databases have provided for
years. It is also supported in a relational JDO implementation by managing an additional primary-key
column that is distinct from the columns containing field values.

Existing relational schemas often have a primary-key column that contains a value provided by a
sequence or some other facility that can generate unique values for the application. This is especially
useful when the entity being modeled does not have an attribute that is a natural real-world
identifier, or when the number of attributes necessary to identify an instance uniquely becomes
excessive.

The implementation guarantees that the identity value is unique for all instances. You cannot change
the identity of an instance if its class uses datastore identity. Datastore identity is the easiest type of
identity to use, because the implementation and datastore handle everything automatically; it does
not require any additional development on your part.

A JDO implementation's datastore identity class has the following characteristics:

It is public.

It implements Serializable, allowing you to serialize identity instances.

The type of all its nonstatic fields are serializable.

All of its serializable fields are public.

It has a public no-arg constructor.

It overrides toString(), returning a String that can be used as the parameter for the
following String constructor.

It has a constructor with a String parameter that creates an identity instance that compares
equal to any other identity instance whose toString() returns a String that is equal to the
String parameter.

The last two characteristics are necessary to create a String representation of an identity and later
reconstruct an identity instance with the String by using newObjectIdInstance(), covered later in

this chapter. You cannot test the equality of two datastore identity instances if they were acquired
from different JDO implementations.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.3 Application Identity

You can use application identity with a datastore that allows the values in an instance to determine
its identity. The values of one or more persistent fields in the instance form a unique value that is
referred to as the primary key; the fields are referred to as the primary-key fields. The application is
responsible for generating the values of the primary-key fields to ensure they collectively have a
unique value for each instance in the datastore. The primary-key fields must have a unique value for
a given class and its subclasses that use the same application identity class.

10.3.1 Primary-Key Fields

You indicate that a Java field is a component of the primary key in the metadata by setting the
primary-key attribute of the field's associated field element to "true". Each field of the primary
key must have this attribute set to "true"; it has a default value of "false". The primary-key fields
of a persistent class must be persistent. Therefore, the persistence-modifier attribute of the
field metadata element cannot be set to "transactional" or "none". The primary-key fields

become a property of the persistent class that cannot be changed after the class is enhanced. If you
need to change the set of fields in a primary key, you will need to enhance the class again. Read
access to primary-key fields is never mediated.

The type of primary-key fields must be serializable and should be one of the primitive types, String,
Date, Byte, Short, Integer, Long, Float, Double, BigDecimal, or BigInteger. JDO

implementations are required to support these types and might support other reference types.

When a transient instance is made persistent, the implementation uses the values of the primary-key
fields to construct an identity for the instance. A JDOUserException is thrown during
makePersistent() if an instance in the PersistenceManager cache already has the same primary

key, or during the flush of the new instance to the datastore if the datastore already has an instance
with the same primary key.

The primary-key fields of a persistent class uniquely identify an instance in the datastore. Your Java
object model will likely contain references and collections of references to instances of the class. The
declaration and use of these references is performed with standard Java syntax. The JDO
implementation automatically maps the references used at the Java level to primary keys when
things are mapped to the underlying datastore. Your application does not need to know that
application identity is being used, nor does it need to know what the primary-key fields are for a
particular persistent class. You simply use the Java references.

10.3.2 Persistent Class equals() and hashCode() Methods

It is important for you to understand the interaction between JDO identity and equality. The equals(
) method in Object simply uses the Java identity based on the address of the instance in the JVM.
The Java identity of a persistent instance is guaranteed neither between PersistenceManagers, nor
across space and time. You should implement equals() for your persistent classes that use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application identity differently from the default implementation in Object.

If you store persistent instances of classes using application identity in the datastore and query them
using the == query operator, or refer to them by a persistent collection that enforces equality (Set,
Map), then the implementation of equals() should exactly match the JDO implementation of
equality, using the identity value (primary-key fields). To be portable, the equals() and hashCode(
) methods of any persistent class using application identity should depend on all of the primary-key

fields.

This policy is not enforced, but if it is not correctly implemented, the semantics of standard transient
collections and the persistent collections may differ. Specifically, the Set and Map collections call the
equals() and hashCode() methods of their elements to enforce uniqueness constraints and

manage their element look up mechanisms. The identity (represented by the primary-key fields) to
identify an instance uniquely in the datastore must be used in the management of these collections in
the cache.

10.3.3 The Application-Identity Class

You need to implement an application-identity class for your classes that use application identity. You
can either define it by hand or use a tool some vendors provide to generate the class for you. The
identity class needs to have fields that correspond, in name and type, with the primary-key fields in
the persistent class. It should also have all of the characteristics of an RMI remote object for the class
that will be used as a primary-key class in EJB. Specifically, the application identity class should have
the following characteristics:

It must be public.

It must implement Serializable.

If it is an inner class, it must be static.

It must have nonstatic fields with the same name and type as each of the primary-key fields in
the persistent class.

The type of these fields must be serializable and should be one of the primitive types, String,
Date, Byte, Short, Integer, Long, Float, Double, BigDecimal, or BigInteger. JDO

implementations are required to support these types and might support other reference types.

All of its serializable, nonstatic fields must be public.

Its equals() and hashCode() methods must use the values of all the fields that correspond

to the primary-key fields in the persistent class. The implementation of these methods in the
identity class must match the implementation in the persistent class.

It must have a public no-arg constructor, which may be the default constructor.

It must override toString() , as defined in Object, and return a String that can be used as
the parameter of the following String constructor.

It must provide a String constructor that returns an instance that compares equal to another
instance that returned the String parameter via toString().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These restrictions allow you to construct an instance of the application identity class by providing only
the values for the primary-key fields or, alternatively, by providing the result of toString() from

an existing application identity instance.

The names and types of the primary-key fields in the persistent class must be the same as the fields
in the application identity class, and the fields in the application identity class must have a public

access modifier. But you can choose any access modifier that you want for the primary-key fields in
the persistent class. In particular, we recommend that you declare your primary-key fields private,

since changing them is dependent on the implementation supporting the optional
ChangeApplicationIdentity feature, covered later in this chapter.

You must specify the application identity class in the metadata with the objectid-class attribute
class element of the persistent class. You should use Java's rules for naming when specifying the
objectid-class value: if you do not include a package in the name, it is assumed to be in the same
package as the persistent class. If you use an inner class, use the $ marker before the inner class

name.

An implementation is permitted to extend the application-identity class to include additional fields not
provided by the application, to further identify the instance in the datastore. Thus, the identity
instance returned by an implementation might be a subclass of the user-defined application identity
class. An implementation must be able to use an application identity instance from any other JDO
implementation.

10.3.4 A Single-Field Primary Key

Let's start with a simple example. We'll create a new version of the RentalCode class that we defined
in the com.mediamania.store package and place it in a new package called
com.mediamania.store.appid. The sole reason we place the RentalCode class and its application

identity class in a separate package is to distinguish between the class that uses datastore identity
and the class that uses application identity. Your object model would normally have one class with
one type of identity. The fields and a few of the methods of the new RentalCode class are declared

as follows:

package com.mediamania.store.appid;

import java.math.BigDecimal;

public class RentalCode
{
 private String code; [1]
 private int numberOfDays;
 private BigDecimal cost;
 private BigDecimal lateFeePerDay;

 RentalCode()
 { }

// methods, etc...

 public boolean equals(Object obj) { [2]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return obj instanceof RentalCode &&
 ((RentalCode)obj).code.equals(code);
 }
 public int hashCode() { [3]
 return code.hashCode();
 }
}

The code field declared on line [1] should contain a unique String value for each RentalCode
instance, providing a natural primary-key. We also define equals() and hashCode() in terms of
the primary-key field code on lines [2] and [3].

We specify the following metadata for the class:

 <package name="com.mediamania.store.appid">
 <class name="RentalCode"
 objectid-class="com.mediamania.store.appid.RentalCodeKey" >
 <field name="code" primary-key="true" />
 </class>
 </package>

The metadata specifies the code field as the one primary-key field in RentalCode.

We also specify the RentalCodeKey class as the application identity class for RentalCode. Let's

examine the class in detail:

package com.mediamania.store.appid;

import java.io.Serializable;

public class RentalCodeKey implements Serializable { [1]
 static { [2]
 RentalCode code = new RentalCode();
 }
 public String code; [3]

 public RentalCodeKey(String code) { [4]
 this.code = code;
 }
 public RentalCodeKey() { [5]
 code = new String("");
 }
 public String toString() { [6]
 return code;
 }
 public boolean equals(Object obj) { [7]
 return obj instanceof RentalCodeKey &&
 ((RentalCodeKey)obj).code.equals(code);
 }
 public int hashCode() { [8]
 return code.hashCode();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On line [1], we declare that RentalCodeKey implements Serializable. The application identity class

must have public fields that correspond to the primary-key fields in the persistent class; line [3]
declares the code field. The class needs to have a public, no-arg constructor, which we define on line
[5]. We also define a constructor on line [4], which takes a String argument. In the case of
RentalCodeKey, only a single String field corresponds to the primary-key, so we can just assign the
String argument to the code field. As we will see in the next example, if there are multiple primary-
key fields, you will need to parse the values in the String argument to this constructor. Having the
single code field of type String also makes our required toString() trivial as well. We also define
equals() and hashCode() on lines [7] and [8], respectively. These methods delegate to the code
field and call the corresponding String methods.

Class registration code is placed in the static initialization method that the enhancer adds to your
persistent class. The association between a persistent class and its application identity class is
established when the persistent class is registered in the JDO environment. The JDO implementation
does not know the specific application identity class for a persistent class until the persistent class has
been loaded into the JVM and had this static initialization method executed.

Often, the first time an application accesses a persistent instance via its identity, the application has
not yet used the persistent class. The application creates and initializes an application identity
instance, passing it to getObjectById(). But the persistent class may not be loaded in the JVM yet,

so the registration of the persistent class and its identity class has not occurred. The JDO
implementation may throw an exception, indicating that you have passed an invalid identity value.

To prevent this from happening, we must make sure that the persistent class has been loaded before
we use an instance of the identity class to access an instance. By placing the static initialization block
at line [2] in RentalCodeKey, we force the loading of RentalCode when RentalCodeKey is loaded.
The RentalCode instance created in the static initialization block is garbage-collected once the block
has finished, but this has the effect of loading the RentalCode class when the identity class is loaded.

10.3.5 A Compound Primary Key

The application identity can consist of multiple primary-key fields. Now let's cover another example
that illustrates additional approaches and techniques that can be used when defining an application
identity class.

We will now consider the following persistent Customer class that we have placed in the
com.mediamania.store.appid package. This is a simplied version of the Customer class defined in
the com.mediamania.store package. To provide a unique primary key, we use a combination of the
firstName, lastName, and phone fields.

With this persistent class, we define the application identity class as a static inner class, named Id,

on line [2]. Since there is a tight coupling between an application identity class and its persistent
class, it makes sense to define it as an inner class. But the inner class must be static; you cannot

use a nonstatic inner class for the application identity class. Adopting this approach across all of your
persistent classes simplifies development by instituting a single consistent naming mechanism for all
your application identity classes.

package com.mediamania.store.appid;

import java.io.Serializable;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.StringTokenizer;

public class Customer {
 private String firstName; // primary-key field
 private String lastName; // primary-key field
 private String phone; // primary-key field
 private String email;

// other fields removed for brevity in the example

 Customer()
 { }
 public Customer(String firstName, String lastName,
 String phone, String email) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.phone = phone;
 this.email = email;
 }
 public String getFirstName() {
 return firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public String getPhone() {
 return phone;
 }
 public String getEmail() {
 return email;
 }
 public boolean equals(Object obj) { [1]
 if(!(obj instanceof Customer)) return false;
 Customer c = (Customer)obj;
 Id id1 = new Id(firstName, lastName, phone);
 Id id2 = new Id(c.firstName, c.lastName, c.phone);
 return id1.equals(id2);
 }
 public int hashCode() {
 Id id = new Id(firstName, lastName, phone);
 return id.hashCode();
 }

 public static class Id implements Serializable { [2]
 static {
 Customer customer = new Customer();
 }
 public String firstName;
 public String lastName;
 public String phone;

 public Id(String fname, String lname, String phone) { [3]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 firstName = fname;
 lastName = lname;
 this.phone = phone;
 }
 public Id() { [4]
 firstName = "";
 lastName = "";
 phone = "";
 }
 public Id(String val) { [5]
 StringTokenizer tokenizer = new StringTokenizer(val, "|");
 firstName = tokenizer.nextToken();
 lastName = tokenizer.nextToken();
 phone = tokenizer.nextToken();
 }
 public String toString() { [6]
 StringBuffer buffer = new StringBuffer();
 buffer.append(firstName);
 buffer.append("|");
 buffer.append(lastName);
 buffer.append("|");
 buffer.append(phone);
 return buffer.toString();
 }
 public boolean equals(Object obj) { [7]
 if (!(obj instanceof Id)) return false;
 Id id = (Id) obj;
 if (!phone.equals(id.phone)) return false;
 if (!lastName.equals(id.lastName)) return false;
 return firstName.equals(id.firstName);
 }
 public int hashCode() { [8]
 return toString().hashCode();
 }
 }
}

We need to define equals() and hashCode() in Customer, and they must be based on the values

of the primary-key fields. Line [1] defines these methods. Since the functionality that manages the
composite value of the three primary-key fields is defined in the Id class, equals() and hashCode(
) delegate to temporary Id instances already in Id, instead of duplicating the code. This strategy also

makes sure they implement the same functionality. This may or may not always make sense for your
persistent classes.

The Id class provides three constructors. The constructors defined on lines [4] and [5] are required

of all application identity classes. Since this persistent class has multiple primary-key fields, the
constructor defined on line [5] must parse the String to initialize each component of the primary

key. An application identity class does not require the constructor defined on line [3], but it provides
a useful means of initializing all the primary-key components. We define the required application
identity method toString() on line [6]; its result can be used by the String method on line [5] to
initialize a new Id instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We need to define equals() and hashCode() in our application identity classes, and they should
be based on the values of all the primary-key fields. On line [7], we define equals() for Id. We
define hashCode() on line [8], and it uses Id's toString() method to construct a String
containing all the primary-key field values and then calls String's hashCode() to compute the hash
code for Id.

Let's examine the metadata for Customer:

<package name="com.mediamania.store.appid">
 <class name="Customer" identity-type="application"
 objectid-class="Customer$Id" >
 <field name="firstName" primary-key="true" />
 <field name="lastName" primary-key="true" />
 <field name="phone" primary-key="true" />
 </class>
</package>

We provide field elements to specify each of the primary-key fields. Since we provide a value for
objectid-class, inclusion of the identity-type attribute is optional. We let the package of the
objectid-class attribute value default to the same package as the persistent class, since we do not
include the package name. Since Id is an inner class, we use $ between the class name and inner
class name to denote Id.

10.3.6 A Compound Primary Key That Contains a Foreign Key

It is common in relational schemas to have a compound primary key that includes a foreign key
column. For example, assume you have a table in your relational database, called Order, to
represent an order placed by a customer. The Order table has a primary-key column containing a
unique order number. A separate table, called LineItem, contains the individual items in the
customer's order. There is a one-to-many relationship between Order and LineItem, represented by
the LineItem table having a foreign key reference to a row in the Order table. To identify a particular
LineItem row uniquely, we define a primary key for LineItem that consists of the order number,
which is a foreign key reference to Order, and a line-item number that is unique within the particular
order. A primary key, like the one defined for the LineItem table, is very common in relational

schemas.

Let's examine the Java classes and metadata necessary to represent such a model. An Order class

could be defined as follows:

package com.mediamania.store;

import java.io.Serializable;

public class Order {
 private int orderNumber; // primary-key field
 private Customer customer;

 public Order() {
 orderNumber = 0;
 }
 public Order(Customer cust, int orderNum) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 customer = cust;
 orderNumber = orderNum;
 }
 public boolean equals(Object obj) {
 return obj instanceof Order && ((Order)obj).orderNumber == orderNumber;
 }
 public int hashCode() {
 return orderNumber;
 }

 public static class Id implements Serializable {
 static {
 Order order = new Order();
 }
 public int orderNumber;

 public Id() {
 orderNumber = 0;
 }
 public Id(int orderNum) {
 orderNumber = orderNum;
 }
 public Id(String orderNum) {
 orderNumber = 0;
 try {
 Integer.parseInt(orderNum);
 } catch(NumberFormatException e) { }
 }
 public String toString() {
 return Integer.toString(orderNumber);
 }
 public boolean equals(Object obj) {
 return obj instanceof Id && ((Id)obj).orderNumber == orderNumber;
 }
 public int hashCode() {
 return orderNumber;
 }
 }
}

In a real application, the class would likely have more fields and methods, but we primarily want to
describe the application identity classes that are appropriate for this model. The orderNumber field in
Order has a unique value that uniquely identifies an Order instance. We define the application
identity class for Order as a static inner class named Id. The Id class has a corresponding
orderNumber field. The application needs to have a means of acquiring a unique value for
orderNumber. JDO does not currently provide a facility for generating unique application values, but it

is being considered for a future release. Some JDO implementations provide such a facility now. The
Order.Id class implements all the functionality necessary in an application identity class.

Now let's examine the LineItem class. As in the Order class, we do not provide all the fields and

functionality a real application would have, but we include fields and methods relevant to our
discussion.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package com.mediamania.store;

import java.io.Serializable;
import java.math.BigDecimal;

public class LineItem {
 private int orderNumber; // primary-key field
 private int itemNumber; // primary-key field
 private String description;
 private BigDecimal price;
// other fields

 LineItem() {
 orderNumber = 0;
 itemNumber = 0;
 }
 public LineItem(int orderNum, int itemNum, String desc, BigDecimal price) {
 orderNumber = orderNum;
 itemNumber = itemNum;
 description = desc;
 this.price = price;
 }
 // other methods

 public static class Id implements Serializable {
 static {
 LineItem item = new LineItem();
 }
 public int orderNumber;
 public int itemNumber;

 public Id() {
 orderNumber = 0;
 itemNumber = 0;
 }
 public Id(int orderNum, int itemNum) {
 orderNumber = orderNum;
 itemNumber = itemNum;
 }
 public Id(String val) {
 int separatorIndex = val.indexOf('|');
 orderNumber = 0;
 itemNumber = 0;
 try {
 orderNumber = Integer.parseInt(val.substring(0,separatorIndex));
 } catch (NumberFormatException e) { }
 try {
 itemNumber = Integer.parseInt(val.substring(separatorIndex+1));
 } catch (NumberFormatException e) { }
 }
 public String toString() {
 return Integer.toString(orderNumber) + "|" +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Integer.toString(itemNumber);
 }
 public boolean equals(Object obj) {
 if (!(obj instanceof Id)) return false;
 Id id = (Id) obj;
 return orderNumber == id.orderNumber && itemNumber == id.itemNumber;
 }
 public int hashCode() {
 return orderNumber*1000 + itemNumber;
 }
 }
}

LineItem has two primary-key fields: orderNumber and itemNumber. Again, we define the
application identity class as a static inner class Id. It contains the two fields of the primary key:
orderNumber and itemNumber.

You may consider it more appropriate to declare the primary-key fields as follows:

 private Order order; // primary-key field
 private int itemNumber; // primary-key field

Since the LineItem table in the database has a foreign-key reference to the Order table, this would

seem to be the natural mapping. But the type of primary-key fields in JDO should be one of the
primitive, String, Date, or Number types. The fields in the application identity class and the
application identity class itself must be serializable. But if we use the preceding order field, when the
identity instance is serialized it will also serialize the Order and possibly other persistent instances.

You may still want to have a reference to Order that you can use to navigate to the instance. You
could declare the following fields in the LineItem class:

 private int orderNumber; // primary-key field
 private int itemNumber; // primary-key field
 private Order order;
 private String description;
 private BigDecimal price;

How this gets mapped to the underlying datastore depends on the capabilities of the JDO
implementation you are using. Some implementations would require the underlying datastore to have
a redundant orderNumber field, since the order field declared in this example would be represented
in the datastore by the primary key of Order, declared to be an order number. There are some
implementations that would allow the orderNumber and order fields to be mapped onto the same

column in a relational database. These implementations also ensure that these two fields are always
kept in sync, as a change to one of the fields necessitates a change to the other.

Here is the metadata for the Order and LineItem classes:

<package name="com.mediamania.store" >
 <class name="Order" objectid-class = "Order$Id" >
 <field name="orderNumber" primary-key="true" />
 </class>
 <class name="LineItem" objectid-class="LineItem$Id" >
 <field name="orderNumber" primary-key="true" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <field name="itemNumber" primary-key="true" />
 </class>
</package>

10.3.7 Application Identity in an Inheritance Hierarchy

There are special considerations when using application identity for persistent classes in an
inheritance hierarchy. Only certain persistent classes in the inheritance hierarchy can have primary-
key fields, and there are restrictions on the definition and metadata specification of their associated
application identity classes. Every class in the hierarchy must have exactly one nonabstract
(concrete) application identity class. A least-derived (topmost), concrete persistent class must have
an associated application identity class, specified either in the objectid-class attribute of its own
persistent class's metadata, or in the objectid-class attribute of one of its abstract superclasses.

The persistent class and all its subclasses use this concrete application identity class. The subclasses
must not specify a value for the objectid-class attribute. You can declare primary-key fields only in

abstract superclasses and in the topmost, concrete classes in an inheritance hierarchy. You need to
define an application identity class for each persistent class in the hierarchy that has a primary-key
field. Each of these application identity classes must declare fields that correspond to the primary-key
fields in their respective persistent class. Within an inheritance hierarchy, you can have intermediate
classes between two persistent classes that have primary-key fields, in which the intermediate
classes do not have any primary-key fields.

The simplest design is to define one application identity class for the entire inheritance hierarchy,
specified at the least-derived persistent class in the hierarchy, regardless of whether it is concrete or
abstract. If you require multiple application identity classes for the persistent classes in an
inheritance hierarchy, the application identity classes form an inheritance hierarchy that corresponds
to the inheritance hierarchy of their associated persistent classes.

Let's look at an example, illustrated in Figure 10-1. If a Component abstract class declares a
masterId primary-key field, the ComponentKey application identity class (which should be abstract as

well) must also declare a field of the same name and type.

Figure 10-1. Inheritance of application identity classes in inheritance
hierarchies

The following code declares a subset of the Component class:

package productdesign;

public abstract class Component {
 private String masterId; // primary-key field
 private int x;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private int y;
// other fields

 protected Component()
 { }
 protected Component(String id) {
 masterId = id;
 x = 0;
 y = 0;
 }
// other methods
}

We define the ComponentKey class as follows:

package productdesign;

import java.io.Serializable;

public abstract class ComponentKey implements Serializable {
 static {
 Component comp = new Component();
 }
 public String masterId;

 public ComponentKey() {
 masterId = "";
 }
 public ComponentKey(String id) {
 masterId = id;
 }
 public String toString() {
 return masterId;
 }
 public boolean equals(Object obj) {
 return obj instanceof ComponentKey &&
 ((ComponentKey)obj).masterId.equals(masterId);
 }
 public int hashCode() {
 return masterId.hashCode();
 }
}

A concrete Part class that extends Component must declare a concrete application identity class (for
example, PartKey) that extends ComponentKey. Part might not have its own primary-key fields, as
we illustrate in this example. Persistent subclasses of Part must not have their own application

identity class.

We define the Part class as follows:

package productdesign;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class Part extends Component {
 private String designer;
// other fields

 protected Part()
 { }
 public Part(String assemId, String designer) {
 super(assemId);
 this.designer = designer;
 }
 public String getDesigner() {
 return designer;
 }
// other methods
}

Here is a portion of the associated PartKey class:

package productdesign;

public class PartKey extends ComponentKey {
 static {
 Part part = new Part();
 }
 public PartKey(String id) {
 super(id);
 }
 public PartKey() {

 }
// other identity methods
}

The concrete Assembly class that extends Component must declare a concrete application identity
class (for example, AssemblyKey) that extends ComponentKey. If Assembly has a assemblyId
primary-key field, the assemblyId field must also be declared in AssemblyKey with the same name

and type.

Here is a part of the Assembly class declaration:

package productdesign;

import java.util.HashSet;

public class Assembly extends Component {
 private int assemblyId; // primary-key field
 private HashSet components;

 private Assembly()
 { }
 public Assembly(String componentId, int aid) {
 super(componentId);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 assemblyId = aid;
 components = new HashSet();
 }
 public int getAssemblyId() {
 return assemblyId;
 }
}

We define the AssemblyKey class as follows:

package productdesign;

public class AssemblyKey extends ComponentKey {
 static {
 Assembly assembly = new Assembly();
 }
 public int assemblyId;

 public AssemblyKey() {
 assemblyId = 0;
 }
 public AssemblyKey(String id) {
 super(id.substring(0, id.indexOf('|')));
 assemblyId = 0;
 try {
 assemblyId = Integer.parseInt(id.substring(id.indexOf('|')+1));
 } catch(Exception e) { }
 }
 public AssemblyKey(String master, int id) {
 super(master);
 assemblyId = id;
 }
 public String toString() {
 return super.toString() + "|" + Integer.toString(assemblyId);
 }
 public boolean equals(Object obj) {
 if (!(obj instanceof AssemblyKey)) return false;
 AssemblyKey assemKey = (AssemblyKey) obj;
 if (assemblyId != assemKey.assemblyId) return false;
 return super.equals(assemKey);
 }
 public int hashCode() {
 return assemblyId * super.hashCode();
 }
}

Persistent subclasses of Assembly must not have their own application identity class.

There might be other abstract or nonpersistent classes in the inheritance hierarchy between
Component and Part, or between Component and Assembly. The application identity classes and

primary-key fields ignore these classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is the metadata for these classes:

<jdo>
 <package name="productdesign" >
 <class name="Component" objectid-class="ComponentKey" >
 <field name="masterId" primary-key="true" />
 </class>
 <class name="Part" objectid-class="PartKey"
 persistence-capable-superclass="Component"/>
 <class name="Assembly" objectid-class="AssemblyKey"
 persistence-capable-superclass="Component" >
 <field name="assemblyId" primary-key="true" />
 <field name="components" >
 <collection element-type="Part" /> [1]
 </field>
 </class>
 </package>
</jdo>

There is an interesting modeling issue to consider in the Assembly class. It contains a collection
named components. An Assembly abstraction models a set of components that should be treated as
a single design unit in a product design. On line [1] in the metadata we declare that components
contains Part instances. We may also want to allow an Assembly to contain references to Component
instances, which could include references to other Assembly instances. But in the object model we
have defined here, Component introduces only a partial primary key. Though the Part class is the

first concrete class in its branch of the inheritance hierarchy and it does not add any additional fields
to identify a Part instance, the Assembly class does introduce additional fields that are necessary to
reference an Assembly instance. Many other classes may extend Component and introduce their own

additional primary-key fields. In general, you should not rely on support of partial primary keys to
represent references when using application identity (though some implementations may support it).
If your model needs support of such references, you should either have the persistent class at the
root of the inheritance hierarchy completely define the primary key for its class and all subclasses, or
you should use datastore identity, which does not have this issue.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.4 Nondurable Identity

Some datastores cannot provide a unique identity that can be used to locate a specific piece of data.
This limitation can be common in log files, history files, and similar files, where performance is a
primary concern and there is no need for the overhead associated with managing a durable identity
for each datastore instance. Objects are typically inserted into the datastore with transactional
semantics, but they are not accessed by key. They may have references to instances elsewhere in
the datastore, but often they have no keys or indexes themselves. They might be accessed by other
attributes, and they might be deleted in bulk. JDO defines a nondurable identity type for use when
accessing instances in such datastores.

Multiple objects in the datastore might have the same values; we refer to them as duplicate objects.
An application may want to treat the duplicate objects individually. For example, the application
should be able to count the persistent instances to determine how many have the same values. In
addition, if the application changes a single field of one duplicate instance, exactly one instance has
its field changed in the datastore. If multiple duplicate instances are modified in memory, then
instances in the datastore are modified to correspond with the instances modified in memory.
Similarly, if an application deletes a specific number of duplicate objects, it should delete this same
number of objects in the datastore.

As another example, a single datastore instance using nondurable identity may be loaded twice into
the JVM by the same PersistenceManager. Since there is no durable identity to distinguish instances

from the datastore, two separate instances are instantiated in memory with two different nondurable
identities, even though all of the values in the instances are the same. Only one of these instances
can be updated or deleted. If only one instance is updated or deleted, then the changes made to that
instance are reflected in the datastore at commit by changing the single datastore instance. However,
if both instances are changed, the transaction fails at commit because changes to distinct instances in
memory can be applied only to different datastore instances. In this case, there are multiple
instances in memory and only one instance in the datastore.

Because nondurable identity is not visible in the datastore, it has special behaviors:

After a transaction terminates (via commit or rollback), neither an instance in memory with
nondurable identity nor its identity can be accessed, and any attempt to access them causes a
JDOUserException to be thrown.

A nondurable identity cannot be used in a different PersistenceManager instance than the one
that issued it, and attempts to use it, even indirectly, throw a JDOUserException.

The results of a query in the datastore always create and return new instances that are not
already in the JVM. So, if the results of multiple queries contain the same instances in the
datastore, additional instances of the datastore instances are instantiated in memory with the
same values, but with different identities.

makePersistent() succeeds even if another instance has the same values for all its persistent

fields.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The implementation's class that implements nondurable identity has the following characteristics:

It is public.

All of its fields are public.

The types of all of its fields are serializable.

It has a public no-arg constructor, possibly the default constructor.

You should be aware that, at the time of this writing, there has been very limited support of
nondurable identity (just one vendor supports it). The level of support may improve over time, but it
obviously has not been a vendor priority.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.5 Identity Methods

JDO provides methods to map between identity instances and their associated persistent instances,
and between an identity instance and a String value. You can acquire an identity instance for a
persistent instance by using getObjectId(), and you can access a persistent instance if you have
an identity instance with getObjectById(). Figure 10-2 shows these methods.

Figure 10-2. Methods to map between a persistent instance and its
identity

You can also convert an identity instance to a String by using toString(). You can then use the
returned String to reconstruct a corresponding identity instance with newObjectIdInstance().
These capabilities are the reasons why you need to define toString() and a constructor that
accepts a single String argument. Now let's describe the functionality of these methods in detail.

These methods work for each identity type.

10.5.1 Get the Identity Class

You can access the identity class of a persistent class by calling the following PersistenceManager

method:

Class getObjectIdClass(Class persistentClass);

Passing the Class of a persistent class that uses datastore or nondurable identity returns the
implementation-defined identity class. Passing the Class of a persistent class that uses application
identity returns your application identity class. The method returns null if the parameter is null, the
class referenced by persistentClass is abstract or not persistent, or the metadata specifies that the

persistent class uses application identity and the implementation does not support application
identity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When using the JDO reference implementation, the following lines of code:

Class c1 = pm.getObjectIdClass(com.mediamania.store.Customer.class);
System.out.println(c1.toString());
Class c2 = pm.getObjectIdClass(com.mediamania.store.appid.Customer.class);
System.out.println(c2.toString());

produce the following output:

class com.sun.jdori.fostore.OID
class com.mediamania.store.appid.Customer$Id

10.5.2 Get the Identity of an Instance

JDO provides two methods to access the identity of a persistent instance. You can use either the
PersistenceManager method:

Object getObjectId(Object obj);

or the JDOHelper method:

static Object getObjectId(Object obj);

These methods return null if the obj instance is transient, null, or not of a persistent class.
Otherwise, they return an identity instance for the obj parameter. The identity instance returned is
guaranteed to be unique only in the context of the PersistenceManager that created the identity

and only for datastore and application identity. Within a transaction, the identity returned will be
unique when compared with the identity of all the other persistent instances associated with the
PersistenceManager, regardless of their type of identity.

There are only a small number of RentalCode instances in our example; this is reference data that

rarely changes in the datastore. Suppose a MediaMania store application needs to establish
references to RentalCode instances quickly. Here we deal specifically with the RentalCode class
defined in the com.mediamania.store package. For example, consider the application that creates
new MediaItem instances when the store receives new DVDs. The application wants to reference
them by their code value. Instead of performing a query to access a specific RentalCode instance,
the following utility class maintains a mapping from the code value to the RentalCode instance:

package com.mediamania.store;

import java.util.Iterator;
import java.util.HashMap;
import javax.jdo.PersistenceManager;
import javax.jdo.Extent;

public class RentalCodeAccessor {
 private static HashMap rentalCodes;
 private static PersistenceManager pm;

 public static synchronized void initialize(PersistenceManager thePM) {
 pm = thePM;
 rentalCodes = new HashMap();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Extent rentalCodeExtent = pm.getExtent(RentalCode.class, true);
 Iterator iter = rentalCodeExtent.iterator();
 while (iter.hasNext()) {
 RentalCode rentalCode = (RentalCode) iter.next();
 Object id = pm.getObjectId(rentalCode); [1]
 rentalCodes.put(rentalCode.getCode(), id);
 }
 rentalCodeExtent.close(iter);
 }
 public static Object getId(String code) { [2]
 return rentalCodes.get(code);
 }
}

The class has a static initialize() method that is called to read the RentalCode instances from
the datastore and populate a Map, where the key of an entry is the code value of a RentalCode, and
the entry's value is the identity of the RentalCode instance. We acquire the identity for a RentalCode
instance on line [1] and place an entry into the Map on the next line. On line [2], we define getId(
), which returns the identity instance associated with a particular code value, or null if there is no

entry for the provided code.

The application can then make calls to getId() to access identity instances:

Object id = RentalCodeAccessor.getId("Hot");
System.out.println(id.toString());
id = RentalCodeAccessor.getId("Recent");
System.out.println(id.toString());
id = RentalCodeAccessor.getId("Oldie");
System.out.println(id.toString());

When using the reference implementation, these lines of code produce the following output:

OID: 102-11
OID: 102-13
OID: 102-15

The RentalCode class defined in the com.mediamania.store package uses datastore identity. This

output shows the reference implementation's representation of a datastore identity value. The
String representation of datastore identity is different with each JDO implementation. The value 102
denotes a specific class (RentalCode) and the numbers 11, 13, and 15 identify specific instances.

The identity value returned by getObjectId() is the identity of the instance at the beginning of the

transaction. Later in this chapter, we'll discuss the case where you can change the application identity
of an instance during a transaction. In this situation, you use another method to return the current
identity of an instance.

An identity instance does not necessarily contain any of the internal state of a persistent instance,
nor is it necessarily an instance of the class the implementation uses internally to manage identity.
The returned instance represents the identity for the application to use. Multiple identity instances
obtained from the same PersistenceManager for the same persistent instance have the same
identity value, and a call to equals() on two such instances returns true. The identity instances
used as parameters or returned by getObjectId(), getTransactionalObjectId(), and
getObjectById() are not saved internally; rather, they are copies of the implementation's internal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

representation, or they are used to find instances of the internal representation. Therefore, you can
modify the instance returned by getObjectId(); you will not affect the persistent instance or its

identity.

10.5.3 Getting an Instance via Its Identity

The following PersistenceManager method attempts to find an instance in the cache with the

specified identity:

Object getObjectById(Object oid, boolean validate);

The oid parameter is an identity instance that might have been returned by an earlier call to
getObjectId() or getTransactionalObjectId(), or it might be an application identity instance
constructed by the application. We use the validate flag to tell the implementation whether or not it
should verify that the instance associated with the oid identity parameter currently exists in the

datastore.

We add the following method to the RentalCodeAccessor utility class:

 public static RentalCode getRentalCode(String code) {
 Object id = rentalCodes.get(code); [1]
 if (id == null) return null;
 RentalCode rentalCode = (RentalCode) pm.getObjectById(id, true); [2]
 return rentalCode;
 }

On line [1], we look up the code value in the Map, returning null if it is not found. Otherwise, we call
getObjectById() on line [2] to access the RentalCode instance associated with the identity value.
RentalCodeAccessor provides access to RentalCode instances defined in the
com.mediamania.store package, which use datastore identity. You should declare Object references

to refer to instances of a vendor's datastore identity class.

Now let's look at an example of using getObjectById() to access instances that use application
identity. In the com.mediamania.store.appid package we declared RentalCode and Customer
persistent classes, with RentalCodeKey and Customer.Id identity classes, respectively. The following

lines of code create instances of these application identity classes and access the associated
instances:

 RentalCodeKey key = new RentalCodeKey("High Demand");
 RentalCode code = (RentalCode) pm.getObjectById(key, true);

 Customer.Id id = new Customer.Id("Brian", "Mathie", "330-555-2020");
 Customer cust = (Customer) pm.getObjectById(id, true);

If the PersistenceManager cannot convert the oid parameter passed to getObjectById() to a
valid identity instance, then it throws a JDOUserException. This could occur if the parameter is an

instance of an application identity class and the implementation does not support application identity.
Or, the instance may be of a class that is different from the one specified in the metadata.

If you pass a value of false for the validate parameter, the following behavior occurs:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If there is already an instance in the cache with the same identity as the oid parameter, the

instance is returned. No change is made to the state of the returned instance.

If there is not already an instance in the cache with the same identity as the oid parameter,

then an instance with the specified identity is created and returned.

If the instance does not exist in the datastore, this method may or may not fail. An
implementation may immediately throw a JDODataStoreException, or it may return an

instance. However, if it returns an instance, a subsequent access of its fields causes a
JDODataStoreException to be thrown if the instance does not exist at that time. Further, if a

relationship is established to this instance and the instance does not exist when the instance is
flushed to the datastore, the transaction in which the association was made will fail.

The implementation decides whether to access the datastore, if required to determine the exact class
of the persistent instance. This is the case with inheritance, where multiple persistent classes can
share the same identity class.

If you pass true for the validate parameter, the following behavior occurs:

If a transactional instance is already in the cache with the same identity as the oid parameter,

the instance is returned. The state of the returned instance is not changed.

If a nontransactional instance is in the cache with the same identity as the oid parameter, a

transaction is active, and the instance exists in the datastore, a transactional instance is
returned with a state consistent with the datastore.

If an instance with the same identity as the oid parameter is not in the cache but it does exist

in the datastore, an instance with the specified identity is created and returned.

If an instance is already in the cache with the same identity as the oid parameter, the instance

is not transactional, and the instance does not exist in the datastore, then a
JDOObjectNotFoundException is thrown.

If an instance with the same identity as the oid parameter is not in the cache and it does not
exist in the datastore, then a JDOObjectNotFoundException is thrown.

No change is made to the status of a transaction if JDOObjectNotFoundException is thrown. You will

never get this exception as a result of executing a query. You can retrieve the failed instance by
calling the exception's getFailedObject() method. Of course, the fields of the failed instance will

not be initialized, since the instance does not exist in the datastore. But you can access the identity
of the instance by calling getObjectId(), which may be useful to debug the application.

All calls to getObjectById() with the same identity value and the same PersistenceManager

instance return the same instance with the same Java identity (assuming the instances were not
garbage-collected between calls). So, the following code outputs "same instance" to the output
stream:

 RentalCodeKey key = new RentalCodeKey("High Demand");
 RentalCode code = (RentalCode) pm.getObjectById(key, true);
 RentalCodeKey key2 = new RentalCodeKey("High Demand");
 RentalCode code2 = (RentalCode) pm.getObjectById(key2, true);
 if (code == code2) System.out.println("same instance");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Suppose we use different PersistenceManager instances (from the same
PersistenceManagerFactory) in calls to getObjectById() with the same identity value. The

instances returned will represent the same persistent instance, but they will have a different Java
identity, because each PersistenceManager manages its own copy of persistent instances.

10.5.4 Changing the Application Identity of an Instance

If you change the value of a primary-key field during a transaction, this action constitutes an attempt
to change the identity of the instance. Changing the identity of an instance is supported only for
application identity, and it is an optional JDO feature. The
javax.jdo.option.ChangeApplicationIdentity option property indicates whether an

implementation supports this feature. If it is not supported, the implementation throws a
JDOUnsupportedOptionException whenever you attempt to change a primary-key field. Since this

feature is optional, your application is more portable if it never changes a primary-key field.

For implementations that support the changing of an application identity, the implementation detects
changes to primary-key fields. Changing the value of a primary-key field changes the identity value.
The new identity value is either unique or already in use by another instance. If another persistent
instance already has the identity value, a JDOUserException is thrown and the statement that

attempted to change the field does not complete. If the resulting identity is unique, it is associated
with the instance immediately upon completion of the statement that changed the primary-key field.
If the transaction commits successfully, the existing instance in the datastore is updated with the
values of any primary-key fields that have changed.

You need to take into account the fact that a change to the value of a primary-key field changes the
identity of an instance in the datastore. This might result in a loss of integrity in a production
environment that keeps an audit trail of all changes, as the historical record of all changes would not
reflect the current identity of the instance in the datastore. In these environments it is best if you do
not change the value of a primary-key field.

10.5.5 Get the Current Application Identity of an Instance

The PersistenceManager method getObjectId() returns the identity of an instance as of the

beginning of a transaction. If the application changes the identity of an instance during a transaction,
getObjectId() continues to return the identity as of the beginning of the transaction until
afterCompletion() has been called, at which point it returns a different identity value if the
transaction commits successfully. Chapter 7 describes the afterCompletion() method of the
Synchronization interface.

The PersistenceManager method:

Object getTransactionalObjectId(Object obj);

and the JDOHelper method:

static Object getTransactionalObjectId(Object obj);

return the current identity of an instance, taking into account any changes that may have been made
to primary-key fields. These methods return null if the instance is transient, null, or not of a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

persistent class. If no transaction is in progress or if none of the primary-key fields have been
modified, then these methods have the same behavior as getObjectId().

10.5.6 The String Representation of Identity

The getObjectId() method returns an identity instance, declared to be of type Object. You can
call toString() on the identity instance to obtain a String representation of the identity value.
This String can be written to a file or passed to some other software outside the current JVM
context. If the persistent class has application identity, the toString() you defined for the
application identity class will determine the form of the String's value. If the persistent class uses
datastore or nondurable identity, the String value is implementation-specific.

You can later use the String value to construct an identity instance. The following
PersistenceManager method returns an identity instance, given the Class and String parameters:

Object newObjectIdInstance(Class persistentClass, String str);

The str parameter should be the result of a previous call to toString() on an identity instance.
The persistentClass parameter specifies the class of the instance identified by the str parameter.
The newObjectIdInstance() method calls the identity class's public constructor that takes a
String argument to initialize the identity instance.

In some development projects, we have passed the String representation of identity to an HTML

screen to serve as a handle for referencing a persistent object in the browser's separate process
context. The string representation of the identity value can be kept in a hidden element in the HTML.
Each persistent instance rendered in the user interface can have its associated identity value. Then,
when some user action in the browser requires an action to be performed on the instance in the
cache, you can pass the identity string back to the application and use newObjectIdInstance() and
getObjectById() to access the instance in the cache quickly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

10.6 Advanced Topics

There are a few advanced identity topics, which we will consider in this section.

10.6.1 Choosing an Identity Type

If you are not mapping your JDO object model onto an existing relational schema and you are using
an implementation that supports both datastore and application identity, you frequently have the
freedom to choose the form of identity. Datastore identity is the logical choice if there is not a natural
primary key to identify instances of the class. It is also useful if you prefer to have the JDO
implementation generate a unique identity value. Datastore identity also requires less development
work on your part. But for some entities being modeled, a primary key is the most suitable solution
because of a natural primary-key value that is used to identify the data.

The primary difference between datastore and application identity in your persistent class is the need
to define equals() and hashCode() methods for your persistent classes that use application

identity. The only other difference is the specification of the identity type in your metadata. You can
develop a persistent class and define an application identity class for it, but then in the metadata you
could switch between datastore and application identity. If you do change the identity in the
metadata, you need to enhance your classes again, as the enhanced class contains identity-specific
information.

10.6.2 Using Identity Versus a Query

If you want to have the flexibility of changing the type of identity used for a persistent class, you
should insulate your applications from the particular identity type you choose. When you access an
instance with application identity, you initialize an instance of the application identity class with
values for the primary-key fields and call getObjectById().

As an alternative to getObjectById(), you could execute a Query, where the filter tests the

equality of query parameters with fields in the class. Such a query will work regardless of whether the
class uses datastore or application identity. You could define a method for this purpose, possibly a
static method of your persistent class. It would have a parameter for each field needed to identify an
instance and the PersistenceManager to use. Internally, the method could issue a query, or, if you
eventually decide to use application identity, it could call getObjectById(). Be aware, though, that
calling getObjectById() will likely perform better than a query.

10.6.3 Identity Across PersistenceManagers

Under some circumstances, you can use identity instances across different PersistenceManager

instances from the same or different implementations. For example, when using multiple
PersistenceManager instances retrieved from the same PersistenceManagerFactory, you can use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the following code to get an instance in a PersistenceManager (referenced by the pm variable) with
the same identity as an instance from a different PersistenceManager:

pm.getObjectById(JDOHelper.getObjectId(obj), validate);

If multiple PersistenceManager instances (which have been returned by the same
PersistenceManagerFactory instance) have their own copy of the same persistent instance in their
cache, all the identity instances that are returned by calls to getObjectId() return true to equals(
), since they all refer to the same persistent object, even though the identity instances were acquired

from distinct copies of the same persistent instance.

You can use getObjectById() only for instances of persistent classes using application identity
when you are working with PersistenceManager instances of different JDO implementations. Since

each implementation has its own representation for datastore identity, you cannot pass a datastore
identity value from one implementation to a PersistenceManager of a different implementation in a
call to getObjectById().

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 11. Lifecycle States and
Transitions
An instance of a persistent class has a lifecycle state that the JDO implementation manages. This
lifecycle state is used to determine whether the instance is persistent, loaded, modified, or deleted.
During a persistent instance's lifetime in memory, as operations are performed on it, it transitions
among various lifecycle states, until it is finally garbage-collected by the JVM.

This chapter describes the lifecycle states required in all JDO implementations. We assume that the
RetainValues flag is set to false. Chapter 14 covers the effect of having RetainValues set to true.

We discuss the methods available to determine the lifecycle state of an instance. We conclude by
discussing the various state transitions that occur to instances during a transaction, when a
transaction completes, and between transactions.

As a developer using JDO, you do not really need to understand these lifecycle states and transitions
or directly use their related APIs to write your application. These lifecycle states primarily concern
JDO implementations, to ensure they correctly implement the JDO APIs. You may occasionally want
to determine the state of an instance in more complex usage scenarios; knowing the state of an
instance may be useful during debugging. Being aware of these states will give you a better
understanding of how an implementation manages instances and the in-memory cache. Some of the
early JDO adopters focused considerable attention on these states, giving many the impression that
they were a fundamental aspect of using JDO. In reality, most applications never need to deal with
these states directly.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.1 Lifecycle States

JDO has a total of 10 lifecycle states. The following 7 states are required:

Transient

Persistent-new

Hollow

Persistent-clean

Persistent-dirty

Persistent-deleted

Persistent-new-deleted

There are also three optional states:

Transient-clean

Transient-dirty

Persistent-nontransactional

If a JDO implementation does not support the transaction-related optional features that allow
transient transactional and persistent-nontransactional instances, these three optional states are not
reachable. This chapter focuses on the required states. Chapter 13 and Chapter 14 discuss these
optional features and associated lifecycle states.

11.1.1 Transient

When you call a constructor to create an instance of a class, the instance is placed in the transient
state. Each instance created by the application starts its life as a transient instance. Transient
instances do not have a JDO identity, because identity is only a characteristic of persistent instances.
A transient instance should behave exactly as an instance of the class would if the class were not
persistent. No JDO exceptions are thrown for a transient instance.

Many developers wonder how much overhead is involved when transient instances of an enhanced
class are manipulated. Fields of transient instances have slightly slower access and modification than
they would if the class were not persistent and enhanced. No mediation of access or modification of
fields is performed on instances in the transient state. In particular, a transient instance never makes
a call to a method of the JDO implementation, specifically those defined in the StateManager

interface. To understand the exact overhead involved, read the sidebar Overhead of Accessing a Field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of a Transient Instance.

Overhead of Accessing a Field of a Transient Instance

The enhancer replaces the getfield and putfield instructions that access a field at the

byte-code level with a call to a generated static method. The code generated for these
static methods has different logic, depending on whether the specific field is in the default
fetch group. Chapter 12 discusses field fetch groups and the default fetch group.

For a field in the default fetch group, the first line of the generated static method checks
the jdoFlags field (generated by the enhancer) for equality with the
PersistenceCapable constant READ_WRITE_OK. If they are equal, the field is accessed
and the method returns. A transient instance has its jdoFlags field set to
READ_WRITE_OK, so this one equality comparison with jdoFlags is the only additional

software executed for fields in the default fetch group.

For a field that is not in the default fetch group, the first line of the generated static
method checks to see whether the jdoStateManager field is null; if so, the field access

or modification is performed and the method returns. Transient instances have their
jdoStateManager field set to null, so this one equality comparison with the
jdoStateManager field is the only additional software executed for a field that is not in the

default fetch group.

JDO does not support the demarcation of transaction boundaries for instances in the transient
lifecycle state. Indeed, transient instances have no transactional behavior, unless they are referenced
by persistent instances at commit time. In that case, they transition to the persistent-new state.
Transient-transactional instances are instances that are transient and have transactional behavior.
Chapter 13 covers transient-transactional instances.

11.1.2 Persistent-New

Instances that have been made persistent in the current transaction are placed in the persistent-new
state. This occurs if the application makes an instance persistent explicitly by passing it as a
parameter to makePersistent(), or implicitly through persistence-by-reachability. Thus, instances

that become provisionally persistent via the reachability algorithm also transition to the persistent-
new state. Only transient instances (which include transient, transient-clean, and transient-dirty
instances) can transition to the persistent-new state, and this only occurs as a result of making them
persistent.

During the transition from transient to persistent-new, the following actions are performed:

The associated PersistenceManager becomes responsible for implementing state interrogation
and all further state transitions. This is implemented by setting the jdoStateManager field in
the instance to reference the associated StateManager.

If the RestoreValues flag is true, the values of persistent and transactional nonpersistent

fields are saved in a before image to be used during transaction rollback.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The implementation assigns an identity to the instance. This identity uniquely identifies the
instance inside the PersistenceManager and might uniquely identify the instance in the

datastore. The instance must have a unique identity at transaction commit for classes with a
durable identity.

11.1.3 Hollow

The JDO implementation instantiates every object accessed from the datastore in memory. The
implementation constructs a hollow instance by calling the no-arg constructor. An instance in
memory is in the hollow state if it represents a specific object in the datastore whose values have not
yet been loaded from the datastore into the instance. Instances transition to the hollow state at
transaction commit when RetainValues is false.

An instance can be in the hollow state if it is:

Committed from a previous transaction

Acquired by getObjectById()

Returned by iterating an Extent

Returned in the result of a query

Accessed by navigating a persistent field reference

However, with these operations an implementation may choose to return the instances in a different
state that is reachable from hollow. An implementation can transition an instance from the hollow
state to another state at any time, just as if a field were read. Therefore, the hollow state might not
be visible to the application.

Primary-key fields are always available in an instance, regardless of its state. So, the primary-key
fields of a hollow instance are initialized. Read access of primary-key fields is never mediated. The
JDO implementation is not required to load values into any other field until the application attempts
to read or modify the field.

Once the JDO implementation has initialized a reference or collection of references to persistent
instances in the cache, these references need to refer to actual Java instances in memory. So, the
JDO implementation needs to instantiate instances to refer to; it instantiates instances and places
them in the hollow state. It is important for you to know that these hollow instances exist and that
they consume memory resources in the JVM. If your application never accesses them, their state
may never be initialized from the datastore.

A hollow instance maintains its identity and association with its PersistenceManager instance. A
PersistenceManager must not hold a strong (nonweak) reference to a hollow instance. Thus, if your

application does not hold a strong reference to a hollow instance, it might be garbage-collected
during or between transactions.

Furthermore, instances transition to hollow at transaction commit. If your application still has a
strong reference to a hollow instance after transaction commit, the JVM garbage collector will not free
up its associated memory resources. If the instances your application refers to have their own
references that refer to additional instances in the cache, those instances cannot be freed either. So,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

it is very important that your application does not refer to such instances after transaction commit,
unless you intend to continue using them after commit, between transactions, or in a subsequent
transaction. Chapter 14 covers the access and use of persistent instances after commit.

11.1.4 Persistent-Clean

An instance in the persistent-clean lifecycle state represents a specific instance in the datastore
whose values have not been changed in the current transaction. If any persistent field other than a
primary-key field of a hollow instance is read, the instance transitions to persistent-clean. The field
values of a persistent-clean instance in memory are identical to their values in the datastore.

11.1.5 Persistent-Dirty

When a field is modified, an instance may become inconsistent with the state it had in the datastore
at the beginning of the transaction. This includes instances that have been modified or deleted. These
instances are referred to as dirty.

If the value of a managed field is modified, the instance is marked as dirty and placed in the
persistent-dirty state. If your application does not modify any managed field of an instance, the
instance is not marked as dirty. In one special circumstance, the application modifies a managed
field, but the new value is equal to the old value. If the field is of an array type, the implementation
marks the field as modified and makes the instance dirty. Otherwise, the implementation decides
whether to consider the instance dirty.

During the commit of a transaction in which a dirty instance's values have changed (including a new
persistent instance), the underlying datastore is changed to have the transactionally consistent
values from the instance and the instance transitions to hollow.

A JDO implementation might store the state of persistent instances in the datastore at any time; this
process is called flushing. This does not affect the dirty state of the instances. This flushing behavior
is not visible to the application and does not impact the rollback of a transaction.

11.1.6 Persistent-Deleted

A persistent instance that has been deleted in the current transaction by a call to
deletePersistent() is in the persistent-deleted state. You can read the primary-key fields of a

deleted instance, because the primary-key fields always have their values populated. But accessing
any other persistent field throws a JDOUserException.

11.1.7 Persistent-New-Deleted

An instance that has been made newly persistent and also deleted in the current transaction is placed
in the persistent-new-deleted state. You can read its primary-key fields, but any other persistent field
access throws a JDOUserException.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.2 State Interrogation

The JDOHelper class provides the following methods to interrogate the state of an instance:

static boolean isPersistent(Object obj);
static boolean isTransactional(Object obj);
static boolean isDirty(Object obj);
static boolean isNew(Object obj);
static boolean isDeleted(Object obj);

Each of these methods returns false if the instance is null, transient, or of a class that is not

persistent. Otherwise, these methods return the following:

isPersistent()

Returns true for an instance that represents a persistent object in the datastore
isTransactional()

Returns true for an instance whose state is associated with the current transaction
isDirty()

Returns true for an instance whose state has changed in the current transaction
isNew()

Returns true for an instance made persistent in the current transaction
isDeleted()

Returns true if the instance has been deleted in the current transaction

Table 11-1 specifies the values these methods return for each required lifecycle state. You could write
a method that calls each of these methods and returns a String denoting the instance's lifecycle

state. This can be useful if you are debugging or would like to know the lifecycle state of instances.

Table 11-1. State interrogation method return values

State of Instance isPersistent() isTransactional() isDirty() isNew() isDeleted()

Transient false false false false false

Hollow true false false false false

Persistent-new true true true true false

Persistent-clean true true false false false

Persistent-dirty true true true false false

http://lib.ommolketab.ir
http://lib.ommolketab.ir

State of Instance isPersistent() isTransactional() isDirty() isNew() isDeleted()

Persistent-deleted true true true false true

Persistent-new-
deleted

true true true true true

Table A-1 in Appendix A provides a complete listing of the values these methods return for all the
lifecycle states.

[Team LiB]

Persistent-deleted true true true false true

Persistent-new-
deleted

true true true true true

Table A-1 in Appendix A provides a complete listing of the values these methods return for all the
lifecycle states.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

11.3 State Transitions

An instance transitions from one lifecycle state to another as the application or JDO implementation
performs various operations on it. These state transitions occur during a transaction and at the
completion of a transaction. A transition can occur as a result of the passing of an instance as a
parameter to a method, such as makePersistent(). An instance can also transition from one state

to another without the application performing any direct operations on the instance. For example, an
instance made persistent via reachability changes state without the application directly passing the
instance to a method. An instance in the hollow or persistent-clean state will transition to persistent-
dirty if it contains a collection field and you add or remove an element from the collection.

11.3.1 State Transitions During a Datastore Transaction

Figure 11-1 illustrates the state transitions that occur when you make a call to makePersistent()
or deletePersistent(), or when you access a managed field. In the figure, Start State 1

represents the application calling a constructor to create an instance, and Start State 2 occurs when
the JDO implementation calls the no-arg constructor to instantiate an instance from the datastore.

Figure 11-1. Lifecycle-state transitions

If any persistent field of a hollow instance other than a primary-key field is read, the instance
transitions to persistent-clean. If a managed field of a hollow or persistent-clean instance is modified,
the instance transitions to persistent-dirty. Once an instance enters the persistent-deleted or
persistent-new-deleted state during a transaction, no further state transitions occur until transaction
completion.

11.3.2 State Transitions When a Transaction Completes

When a transaction completes via a call to commit() or rollback(), instances in every lifecycle

state, except hollow and transient, transition to a new lifecycle state; hollow and transient instances

http://lib.ommolketab.ir
http://lib.ommolketab.ir

remain in their current state. Figure 11-2 illustrates the state transitions that occur when you call
commit() or rollback() and the RetainValues flag is set to false. Chapter 14 covers the
behavior that occurs when the RetainValues flag is true.

Figure 11-2. State transitions at transaction completion with
RetainValues = false and RestoreValues = false

As illustrated in Figure 11-2, persistent-clean, persistent-dirty, and persistent-new instances
transition to hollow at commit. In addition, instances that were persistent at the beginning of the
transaction (including those in the hollow, persistent-clean, persistent-dirty, or persistent-deleted
state) transition to hollow at rollback, and they retain their identity and association with their
PersistenceManager instance.

A persistent-deleted instance transitions to transient at commit. Since it has been deleted from the
datastore, it is not associated with a datastore instance. During its transition to the transient state, it
loses its identity and association with its PersistenceManager, and its persistent fields are initialized

with their Java default values.

A persistent-new-deleted instance transitions to transient at commit and rollback. During these
transitions, it also loses its identity and association with its PersistenceManager. When a transaction

commits, its persistent fields are initialized with their Java default values.

All instances that transition to transient lose their identity and association with their
PersistenceManager, whereas all instances transitioning to hollow retain their identity and
association with their PersistenceManager. Primary-key fields are always accessible, regardless of

the state of the instance. Read access to these fields is never mediated.

11.3.3 States Between Transactions

A hollow instance maintains its identity and association with its PersistenceManager instance.

Between transactions, the hollow state guarantees that there is a single, unique copy of a persistent
instance with a specific identity in the cache. Furthermore, if the application makes a request (via
query, navigation, or look up by identity) for the same instance in a subsequent transaction, using
the same PersistenceManager instance, the identical Java instance in memory is returned,

assuming it has not been garbage-collected.

If the instance's class uses application identity, the primary-key fields are maintained. These fields
can be accessed between transactions. If the implementation does not support the
NontransactionalRead or NontransactionalWrite optional features, access of any other fields

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between transactions throws a JDOUserException.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 12. Field Management
JDO provides interfaces that allow you to have some control over the management of the fields in a
persistent class, including their access and storage. In addition, you can specify how a field with a
null value is handled if the underlying datastore does not support null values. JDO metadata

controls many of these field-management capabilities.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.1 Transactional Fields

A JDO implementation manages two kinds of fields: persistent fields that are stored in the datastore
and transactional fields. A transactional field is not persistent, but it participates in a transaction by
having its values restored if a rollback occurs. Persistent and transactional fields are referred to
collectively as managed fields. The state of a transactional field is saved before certain lifecycle-state
transitions, so it can be restored if a transaction rollback occurs. The JDO implementation modifies a
transactional field only during rollback for instances that have been modified by your application.

You specify that a field is transactional by setting its persistence-modifier attribute to
"transactional" in the metadata. A transactional field can be of any type; there are no restrictions.

The JDO implementation mediates the modification of a transactional field, but it does not mediate
field reads.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.2 null Values

A field of an object type can have a null value in Java. The datastore you access may or may not

support null values, and the support may vary depending on the type of the data. Therefore, you
should specify how the JDO implementation should handle a field with a null value when it is written

to a datastore that cannot store a null value.

The field element's null-value attribute in the metadata specifies how this situation should be

handled. This attribute can be given one of the following values:

"none"

Indicates that a Java null value should be stored as a null in the datastore. If the datastore
cannot store a null value, a JDOUserException is thrown.

"exception"

Indicates that a JDOUserException should always be thrown when a field has a null value,

even if the datastore can store a null value for the field.
"default"

Indicates the implementation should convert the Java null value to the datastore's default

value for the field's datatype.

If you do not provide a value for the null-value attribute, it defaults to "none". If you never want to
store a field with a null value, then you should set the null-value attribute to "exception".

If the null-value attribute for a field is set to "default" and the field is null in a transaction, the

datastore's default value is stored, based on the field's datastore datatype. The next transaction that
accesses the instance will obtain this datastore default value. You will have lost the fact that the field
was originally null.

For example, if an Integer field that is null is mapped to the datastore's representation of an

integer value, you may get a value of zero stored in the datastore. The next transaction accessing
the field will also get a zero and it will not know the field was originally null. Similarly, a String field

with a null value could be written as a zero-length string in the datastore. There is no good way to
represent a null collection in a relational database, but a collection field with a null value could be

represented in the datastore as an empty collection. Furthermore, the default value used for a
datatype may vary across datastores.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.3 Retrieval of Fields

You should not be concerned about how and when the JDO implementation accesses fields from the
datastore. When you access a field, the JDO implementation provides the field's value. But some
facilities let you instruct the JDO implementation to load all or a particular subset of fields of an
instance together. You can analyze your application's field-access requirements and optimize the
performance of accessing fields from the datastore.

12.3.1 Default Fetch Group

A fetch group is a group of fields retrieved together from the datastore. JDO implementations usually
can retrieve a group of fields as a unit more efficiently than they can retrieve each field individually.
In addition, you may have a specific subset of fields that your applications always use together; in
this case, accessing these fields as a unit may be more efficient. Conversely, fields that are rarely
accessed could be placed in a separate fetch group that is retrieved only when necessary. When fields
that are not contained in any fetch group are accessed, they can be retrieved from the datastore
individually.

JDO defines one fetch group, called the default fetch group (DFG). A field element's default-
fetch-group attribute specifies whether a field should be in the default fetch group. This attribute
defaults to "true" for nonkey fields of the following types:

Primitive types

java.util.Date

Fields in the java.lang package of the types listed in Table 4-2

java.math.BigDecimal and java.math.BigInteger

An instance in the hollow state does not have its default fetch group fields loaded, but they get
loaded when the instance transitions to persistent-clean or persistent-dirty.

The default fetch group can only contain persistent fields, so you cannot set the default-fetch-
group attribute to "true" for fields whose persistence-modifier is "transactional" or "none". You

cannot place a primary-key field in the default fetch group; a primary-key field is always loaded in an
instance. When an instance is first instantiated from the datastore and placed in the hollow state, the
primary-key fields are set. Since they uniquely identify an instance in the datastore, they are used to
fetch the other field values when they are needed.

In fact, the following field-level metadata declarations are mutually exclusive; only one can be
specified:

default-fetch-group = "true"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

primary-key = "true"

persistence-modifier = "transactional"

persistence-modifier = "none"

An implementation can support other fetch groups in addition to the default fetch group. A class can
have multiple fetch groups, which you must specify in the metadata using vendor-specific metadata
extensions. Such additional fetch groups allow you to partition a class's fields into separate groups
that should be processed as distinct units.

12.3.2 Retrieving All Fields

In some situations, you need to fetch all the field values for one or more instances from the
datastore. For example, when you execute a query, a Collection is returned that you can iterate

through to access each of its elements. The instances in the query result might not be fetched from
the datastore. It will probably be more efficient to access them from the datastore as a group, rather
than individually.

You can call the following PersistenceManager methods to make sure that all of the persistent fields

have been loaded into the parameter instances:

void retrieve(Object obj);
void retrieveAll(Collection objs);
void retrieveAll(Object[] objs);

These methods do not read and set any fields that have been modified in the transaction; any
updates you may have made to fields will not be lost. Furthermore, if an instance in the persistent-
dirty state is passed to retrieve() or retrieveAll(), it will be persistent-dirty upon return.
These retrieve() and retrieveAll() methods load all of the fields that have not been loaded

already.

Suppose you want to load only the fields in the default fetch group. You can do so by calling one of
the following methods, passing true for the DFGonly parameter:

void retrieveAll(Collection objs, boolean DFGonly);
void retrieveAll(Object[] objs, boolean DFGonly);

This tells the JDO implementation that you need to retrieve only the fields in the default fetch group.
After you call this method, if you access any of the default fetch group fields of the parameter
instances, the implementation will not need to access the datastore to retrieve the field value.
Passing a value of false for the DFGonly parameter is equivalent to calling retrieve() or
retrieveAll() without the DFGonly parameter. Since these methods are just a hint, the
implementation may still retrieve all the fields, regardless of the DFGonly parameter value. You may
notice that there is no method named retrieve() that accepts the DFGonly parameter. We omitted

this deliberately, because in most of the cases where you want to retrieve only the fields in the
default fetch group, you have a collection of instances.

Using the retrieveAll() methods with the DFGonly parameter optimizes performance in

applications that need to retrieve a large number of instances in the cache, when you need only the
fields in the default fetch group and do not want to incur the overhead of retrieving all the fields. A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

common example is passing a partial result (e.g., the first 10 instances of the query result) of a
JDOQL query to retrieveAll() with a value of "true" for DFGonly.

Figure 12-1 illustrates the state transitions that occur when you call these methods. In addition,
jdoPostLoad() is called if the instance's class implements the InstanceCallbacks interface. We
cover the InstanceCallbacks interface later in this chapter.

Figure 12-1. State transitions when retrieve methods are called in a
datastore transaction

If you call retrieve() for an instance that contains references to other persistent instances, the

references are initialized to refer to the related instances. The referenced instances must be
instantiated in the cache, if they are not already resident in the cache. They may be in the hollow
state; their fields do not need to be fetched.

Some implementations support a preread policy that you can use to instruct the JDO implementation
to fetch the field values of related instances when an instance is accessed. You usually specify
preread policies with vendor-specific metadata, since JDO 1.0.1 does not specify them. The JDO
expert group is considering this as a possible feature in JDO 2.0.

12.3.3 The Management of Fields

The JDO implementation completely controls whether the fields of a persistent instance are fetched
from the datastore. During enhancement, the jdoFlags field is added to a persistent class to indicate
the state of the default fetch group. The value of the jdoFlags field directly affects the behavior of

default-fetch-group field accesses.

An implementation can choose from a variety of field-management strategies:

Never cache any field values in an instance, but fetch a field's value each time it is accessed by
the application.

Selectively fetch and cache the values of specific fields in the instance.

Fetch the values for all the fields in the default fetch group at one time, taking advantage of this
performance optimization when managing the instance.

Manage updates to fields in the default fetch group individually. This results in the instance
always delegating field changes to the PersistenceManager. With this strategy, the
PersistenceManager can reliably tell when any field changes, and it can optimize the writing of

data to the datastore.

Your application is insulated from the specific techniques an implementation uses to manage fields.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Class enhancement makes your application binary-compatible across all implementations, with an
interface that gives implementations a lot of flexibility in how they manage fields. Be aware that each
implementation employs one or more field-management strategies that can affect the performance of
your application.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.4 Serialization

When an instance is serialized in Java, the graph of instances reachable via non-transient fields is
written to an output stream. In this context, non-transient refers to fields that have not been
declared transient in Java. Java's transient fields and JDO's managed fields are independent
concepts, so any combination of Java's transient or non-transient fields with JDO's persistent,

transactional, or transient fields is possible in your persistent classes.

You can serialize and deserialize instances of your persistent classes. You do not need to do anything
special for serialization to work. In fact, the JDO implementation automatically fetches the graph of
instances, even if they have not yet been loaded into the JVM from the datastore.

However, you should be aware that the instances reachable from the instance being serialized might
include a large number of instances from the datastore. If your persistent classes are highly
interconnected, you may unintentionally serialize a large percentage of your datastore. You can use
Java's transient modifier to prevent the serialization of referenced instances. Chapter 4 showed
how to make Java transient fields persistent in JDO by setting the persistent-modifier attribute
to "persistent". This lets you serialize persistent instances in JDO without extracting and serializing

a large portion of the data from your datastore.

JDO enhancement allows you to serialize transient and persistent instances of persistent classes to a
format that can later be deserialized with an enhanced or unenhanced form of the class. Deserializing
a serialized graph of instances that are persistent in JDO results in a graph of transient instances. So,
no JDO-specific functionality is necessary to deserialize the instances. Subsequently, you can make
these instances persistent, but they will not have any association with the original persistent
instances that were serialized.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.5 Managing Fields During Lifecycle Events

While a persistent instance is in memory, it transitions through certain lifecycle events, as we
described in Chapter 11. You may want to execute some functionality when these events occur. For
example, if you have a persistent class with nonpersistent fields, you may want to initialize the values
of the fields when instances from the datastore are instantiated in memory. This is enabled in JDO by
a mechanism called an instance callback.

JDO defines the InstanceCallbacks interface to support instance callbacks. This interface has four

methods, each of which is called when a particular lifecycle event occurs. If you declare that a
persistent class implements the InstanceCallbacks interface, the following methods must be

defined and are called when their associated lifecyle event occurs:

void jdoPostLoad()

Called for an instance after the values have been loaded into its default fetch group fields. This
occurs when the instances transition from hollow to persistent-clean or persistent-dirty. In this
method, you should initialize nonpersistent fields that depend on fields in the default fetch
group. Another use for this method is to register it with other objects in the runtime
environment.

The enhancer does not add field mediation code to this method; so, you should access only
fields in the default fetch group, since you are not guaranteed that the other fields have been
fetched. The context in which jdoPostLoad() is called does not allow access to other

persistent instances.
void jdoPreStore()

Called before the field values of persistent-new and persistent-dirty instances are flushed to the
datastore during commit or to perform a query in the datastore server. It is not called for
instances being deleted, which are in the persistent-deleted or persistent-new-deleted state. If
you want the stored value for a persistent field to be based on the value of another field that is
not persistent, you should set the persistent field's value in this method. The enhancer modifies
this method so that the changes you make to persistent fields are propagated to the datastore.
You can also access the instance's PersistenceManager and other persistent instances in the

method.
void jdoPreClear()

Called before an instance's persistent fields are cleared (set to their Java default value). This
occurs during commit when persistent-new, persistent-clean, and persistent-dirty instances
transition to the hollow state. In this method, you should clear nonpersistent fields,
nontransactional fields, and associations that exist between the instance and other objects in
the runtime environment. The enhancer does not add the field-mediation code to this method,
and you can access only transient, transactional, and default fetch group fields.

void jdoPreDelete()

Called during the execution of deletePersistent() for an instance, before the state of the

instance transitions to persistent-deleted or persistent-new-deleted. The enhancer adds the
field-mediation code to this method, so you can access all the fields. But once this method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

completes, you can no longer access the fields. In Chapter 8, we described the use of this
method to implement a composite-aggregation association, which would propagate the deletion
to existence-dependent instances. This is also referred to as a cascading delete.

You can use jdoPostLoad() and jdoPreClear() in concert to establish and remove relationships

between your persistent instances and transient instances in the application environment as the
persistent instances enter and leave the cache. The jdoPostLoad() method could initialize a

transient field to some transient instance in the application, which could also reference the persistent
instance. In jdoPreClear(), you could remove the reference to the persistent instance held by the

transient instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

12.6 First- and Second-Class Objects

JDO provides a natural mapping of your object model to an underlying datastore using different
architectures. Most of the differences between datastores are handled for you automatically. In JDO,
you identify the classes of your object model that should be stored in the datastore. Instances of
these classes are stored with unique identifiers and can be queried efficiently using the values of their
fields. Relationships between instances are modeled as references or collections.

In Java, your application classes, such as Movie and Role, and system-defined classes, such as
java.util.Date and java.lang.Integer, are not treated differently. They are all referenceable

objects in memory. However, there is a fundamental difference between these objects from the
standpoint of JDO and most datastores.

The instances of your persistent classes that you would like to be referenced by two or more
instances in the datastore are called first-class objects (FCOs). They each have a unique identity in
the datastore, they can be queried, and they can be deleted under application control. In addition,
the JDO runtime environment guarantees that only a single instance of an FCO with a durable
identity is instantiated in memory for a given PersistenceManager cache.

JDO also supports second-class objects (SCOs), which represent values. They do not represent
entities that you would want to reference in the datastore. A second-class object is associated and
stored as part of a single first-class object. The second-class object is embedded in the first-class
object that references and owns it. The class of a first-class object has a field that references the
second-class object. This field is declared in the metadata as embedded to indicate that it refers to a
second-class object.

An SCO instance represents a value. It may have an object representation in Java, but in the
datastore it is not a distinct, referenceable piece of data. In a relational datastore, an SCO usually is
mapped to one or more columns of a table. These columns are placed in the table in which the
owning FCO is stored. Java types such as int, Integer, String, Date, and BigInteger represent
values. Except for int, these types are all considered objects in Java. They are used as the types of

fields in your persistent classes. In the datastore, they are stored as values with their associated
persistent class instance.

An SCO instance tracks all changes that are made to itself and notifies its owning FCO that it has
been changed. A change to an SCO is reflected as a change to its owning FCO. If an FCO instance is
in the persistent-clean state, when one of its associated SCO instances changes, it transitions to the
persistent-dirty state. When an FCO instance is instantiated in the JVM, fields declared as embedded
are assigned SCO instances that track changes made to themselves and notify their owning FCO that
they have been changed.

If a persistent class has a field of type int and you change the value of this field in an instance, the

JDO implementation automatically marks the instance as dirty. Similarly, if the persistent class has a
Date field that references a Date object, and you change the Date object's value via setTime(), the
Date object notifies the persistent class instance that its value has been changed. In the datastore,
the Date field is stored as a value in the instance (e.g., in a TIMESTAMP column in a relational

datastore). In JDO, an SCO allows specific instances of classes to behave more like primitive values
that are contained in an object, rather than as separate referenceable objects. While they are still

http://lib.ommolketab.ir
http://lib.ommolketab.ir

separate referenceable objects in Java, they are not separate and referenceable in the datastore.

Some of the system-defined classes that are used as field types in your object model are most
naturally modeled as second-class objects when stored in the datastore. Table 12-1 identifies the
system-defined classes that all JDO implementations support as second-class objects. Fields of these
types are embedded by default and many implementations support them only as second-class
objects.

Table 12-1. System-defined types that default to second-class objects

Primitives java.lang java.util java.math

boolean Boolean Date BigInteger

byte Byte Locale BigDecimal

short Short ArrayList

char Character Collection

int Integer HashMap

long Long HashSet

float Float Hashtable

double Double LinkedList

 String List

 Number Map

 TreeMap

 TreeSet

 Set

 Vector

When discussing second-class objects, there are two kinds of classes to consider: mutable and
immutable. A mutable class provides methods to change the value of an instance; an immutable
class maintains a value that cannot be changed. JDO supports the following immutable classes:

java.lang package

Boolean, Character, Byte, Short, Integer, Long, Float, Double, and String
java.util package

Locale
java.math package

BigDecimal and BigInteger

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JDO and Java support and encourage sharing instances for fields of these immutable classes.
However, you should compare the equality of the fields with the equals() method; you should not
compare them by applying the == operator to their references.

Setting or defaulting the embedded attribute to "true" for fields of the system-defined types listed in

Table 12-1 implies containment. You should not delete instances of these classes from the datastore;
the JDO implementation deletes them automatically when the owning instance is deleted. In fact,
passing an instance of one of these types to deletePersistent() causes a JDOUserException to
be thrown. You should only pass instances of your persistent classes to deletePersistent().

Implementations support mutable system-defined classes by defining a new class that extends the
system-defined class. The new class provides its own implementation of each method that alters the
state of the object in the base class. These redefined methods notify the owning FCO instance that
the SCO instance has changed and call the corresponding method in the base class to perform the
state change (e.g., Date.setTime()). Therefore, you should not depend on knowing the exact class

of a system-defined class instance. The JDO implementation may substitute an SCO instance with an
instance of a subclass that has the same value when they are compared by calling equals(). But

you are guaranteed that the actual class of the instance is assignment-compatible with the field's
declared type.

In order to make your application code and persistent classes portable across multiple JDO
implementations, there are a few simple rules to follow:

Do not assign the same instance of a system-defined mutable class to multiple persistent fields.
Instead, make a copy of a mutable instance before assigning it to another persistent field.

Initialize collection fields in a class's constructor and do not assign a new value to the collection
field. To clear the contents of the collection, call the clear() method to remove the elements
instead of assigning an empty collection, or null, to the field.

Do not expose second-class objects as public fields or have a method that returns a reference to
a field, because you cannot control when they may be used, in or out of a transaction.

12.6.1 Specifying a Second-Class Object

An instance becomes a second-class object if it is referenced by a field that you have declared in the
metadata as embedded. You specify whether a field is embedded by using the field element's
embedded attribute. When a reference field has an embedded attribute value of "true", the referenced

object is a second-class object and its state is embedded within the owning object that refers to it.
The embedded attribute defaults to "true" for a field of a type listed in Table 12-1.

Let's consider the following revisions to the metadata for some of the classes in the
com.mediamania.store package, which we illustrated in Figure 4-4:

 <package name="com.mediamania.store" >
 <class name="Customer" >
 <field name="currentRentals">
 <collection element-type="Rental"/>
 </field>
 <field name="transactionHistory">

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <collection element-type="Transaction"/>
 </field>
 <field name="address" embedded="true" /> [1]
 </class>
 <class name="Address" />
 <class name="Rental"
 persistence-capable-superclass="Transaction">
 <field name="rentalCode" embedded="true" /> [2]
 </class>
 <class name="MediaItem" >
 <field name="rentalItems">
 <collection element-type="RentalItem"/>
 </field>
 </class>
 <class name="RentalCode" />
 </package>

Line [1] declares that the address field should be embedded. Both the Rental and MediaItem
classes have a reference to a RentalCode instance. On line [2], we declare that the rentalCode field
in the Rental instance is embedded. However, we do not declare that the rentalCode field is
embedded in MediaItem. The RentalCode instances referenced by MediaItem instances will be found
in the extent maintained for the RentalCode class. A Rental instance will have its own copy of a
RentalCode instance referenced by its rentalCode field; this RentalCode instance does not have an
identity and may have the same value as a RentalCode instance in the extent. Such an approach

may be valuable to this application, because it can preserve for historical record-keeping purposes
the specific RentalCode value used for a Rental, yet have all the MediaItem instances reference the
latest values of a RentalCode instance that is shared by all MediaItem instances in the datastore.

In a relational JDO implementation, an embedded object may be represented by columns for its fields
in the table of the referencing class. For example, the Rental class declares that the rentalCode
field, referring to an instance of RentalCode, should be embedded. The RentalCode class contains
several fields: code, numberOfDays, cost, and lateFeePerDay. The table that contains the fields of
the Rental class would have a column for each of these RentalCode fields.

12.6.2 Embedding Collection Elements

You specify a collection field as embedded by using the embedded attribute in the collection's field

element. You can also specify that the collection's elements should be embedded within the
collection.

The collection and array metadata elements have an embedded-element attribute to specify

whether the collection elements' values should be embedded with the collection instance in the
datastore, instead of as separate FCO instances. This attribute defaults to "false" for persistent
classes and interface types and "true" for other types.

You use the embedded-key and embedded-value attributes in the map metadata element to specify
whether the map's key and value should be embedded. These attributes default to "false" for
persistent classes and interface types and "true" for other types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.6.3 Persistent Classes as Second-Class Objects

Many JDO implementations can support your persistent classes as second-class objects, but this
support is not a required feature in JDO 1.0.1. For implementations that support SCO instances of
your persistent classes, both FCO and SCO instances of a specific persistent class may be possible,
but this depends on the implementation. The persistent classes that you define can be either mutable
or immutable.

The behavior of SCOs for your persistent classes may not be consistent relative to extents and
queries. If the persistent class has a maintained extent, the FCO instances will be in the extent, but
an implementation may or may not place the SCO instances in the extent. Furthermore, if a field of
one of your persistent classes is an SCO instance, an implementation may or may not be able to
access it in a query.

You cannot rely on the automatic deletion of SCO instances for embedded fields of your persistent
classes; some implementations will delete them, while others will not. You can always delete
instances of your persistent classes explicitly, whether or not they are embedded. We recommend
that you delete them explicitly; this will be portable across all JDO implementations.

Using one of your persistent classes as an SCO may offer you some performance and modeling
advantages, but there is a tradeoff: they will lack portability and consistency, relative to extents and
queries. If you intend to use them, you should verify that your JDO implementation supports them.
Here, we describe the behavior of second-class objects with the assumption that the JDO
implementation supports them for your persistent classes. If you do not have a specific need to
define a persistent class and use it as a second-class object and you want to have a portable
application, then you should avoid using instances of your persistent classes as second-class objects,
in which case you can skip the remainder of this chapter.

12.6.4 Sharing of Instances

The most visible difference to your application between a field that is an FCO or an SCO is in sharing.
Multiple FCO instances can have a reference to the same FCO instance and share it. If the referenced
FCO instance changes, its changes are visible to all the FCO instances that refer to it.

For example, consider Figure 12-2. If FCO1 is assigned to a persistent field in FCO2 and FCO3, then
any changes to instance FCO1 will be visible to FCO2 and FCO3. FCO2 and FCO3 will continue to
reference FCO1 in the datastore after the transaction commits and will refer to it when they are
accessed by subsequent transactions (until the reference to FCO1 is changed).

Figure 12-2. Sharing of an FCO instance

The same instance of a mutable class can be assigned to the embedded field of multiple FCO
instances, but this is nonportable and strongly discouraged. If you assign an instance to an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

embedded field of multiple persistent-new, persistent-clean, or persistent-dirty FCO instances, the
Java identity of the referenced SCO instances might change when the transaction commits. If an
assignment is made to an embedded field of a transient instance and the instance subsequently
becomes persistent by being passed to makePersistent() or through persistence-by-reachability,

the embedded field is replaced immediately with a copy of the SCO instance and the instance is no
longer shared. Figure 12-3 illustrates the copying that is performed with SCO instances.

Figure 12-3. SCOs can be shared from assignment only until commit or
makePersistent()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 13. Cache Management
This chapter covers additional operations that you can perform on instances in the cache. In fact, the
operations this chapter describes affect only the cache and the instances in the cache; they do not
affect the datastore.

First, we describe some operations you can perform to explicitly control the management of instances
in the cache. We discuss what occurs when you make a clone of a persistent instance. We introduce
transient-transactional instances, which are transient instances that have transactional behavior. The
chapter concludes by describing how you can convert a persistent instance into a transient instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.1 Explicit Management of Instances in the Cache

Normally, a persistent instance is managed in the cache automatically and this management is
completely transparent to the application. When you query instances, navigate to instances, or
modify instances, the instances are instantiated and their field values are fetched from the datastore.
The implementation determines when to fetch a field's value from the datastore, which can occur at
any time prior to the application's access of the field.

Instances that are no longer referenced in memory are garbage-collected without requiring your
application to perform any explicit action. When you commit a transaction in which persistent
instances were created, deleted, or modified, the transaction-completion mechanisms automatically
handle the eviction of instances from the cache. So, you usually do not need to evict instances
explicitly. By eviction, we mean that the PersistenceManager no longer holds a strong reference to

the instances, allowing them to be garbage-collected. The JVM is still responsible for reclaiming the
memory held by the instances.

13.1.1 Refreshing Instances

JDO provides a means to refresh instances in the cache with their current values in the datastore.
This can be useful outside of a transaction (Chapter 14 covers nontransactional access). It is also
useful when you use optimistic transactions (covered in Chapter 15). Refreshing an instance can also
be used with datastore transactions. If you use a transaction-isolation level of read-committed, the
values in the datastore might change between reads. (If you do not want this behavior, then the JDO
implementation should use a repeatable-read isolation level). If you really want to guarantee that
you have the current state of the object, you can refresh the instance. However, be aware that right
after you refresh the instance, it can be changed in the datastore by another transaction.

You can use the following PersistenceManager methods to refresh the state of instances in memory

with their current state in the datastore:

void refresh(Object obj);
void refreshAll();
void refreshAll(Object[] objs);
void refreshAll(Collection objs);

These methods perform the following actions on each instance:

Load the state of the instance in the datastore into the instance

Call the jdoPostLoad() method if the class implements InstanceCallbacks and the default

fetch group fields have not been loaded yet

Transition persistent-dirty instances to persistent-clean in a datastore transaction or persistent-
nontransactional in an optimistic transaction (Chapter 14 covers the persistent-nontransactional
lifecycle state and Chapter 15 covers optimistic transactions)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since these methods refresh an instance with its current state in the datastore, any changes you may
have made to an instance will be lost. This is different from retrieve(), which does not overwrite

fields that have been modified.

The jdoPostLoad() method is only called after the default fetch group has been loaded. So, if the
default fetch group had already been loaded prior to invoking refresh() or refreshAll(),
jdoPostLoad() is not executed again.

13.1.2 Evicting Instances

Your application may run in a memory-constrained environment. Or, it may access a large number of
instances and need to access them only once in the transaction. In these situations, it could be useful
to evict from the cache instances that you no longer need. Eviction allows the instances to be
subsequently garbage-collected, freeing memory resources.

You can call the following PersistenceManager methods to evict instances from the cache:

void evict(Object obj);
void evictAll();
void evictAll(Object[] objs);
void evictAll(Collection objs);

If you call evictAll() with no parameters, all of the persistent-clean instances in the cache will be
evicted. Calling these methods is only a hint to the PersistenceManager that your application no

longer needs the instances in the cache. The implementation is not required to evict the instances.

The PersistenceManager performs the following actions for each evicted instance:

Calls the jdoPreClear() method if the class implements InstanceCallbacks and the instance

is not in the hollow state

Clears the persistent fields by setting them to their Java default value

Sets the instance's lifecycle state to hollow

An implementation may evict a persistent-dirty instance, but it needs to flush the state to the
datastore. The PersistenceManager needs to keep only a weak reference to the persistent-dirty

instances that have been evicted; it does not need to maintain a reference to any evicted persistent-
clean instances. Once instances have been evicted, they can be garbage-collected.

The values of evicted instances are not retained after transaction completion, regardless of the
setting of the RetainValues and RestoreValues flags. If you want to evict all the transactional
instances at transaction commits, set the RetainValues flag to false (Chapter 14 covers the
RetainValues flag). If you want them to be evicted on rollback, set the RestoreValues flag to false
(Chapter 7 covers the RestoreValues flag). In these cases, you do not need to call the evict()
and evictAll() methods.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.2 Cloning

If you make a clone of a persistent instance, the clone is a separate transient instance. The clone
does not have a JDO identity and it is not associated with the PersistenceManager of the instance

that was cloned. The clone is a shallow copy of the original instance, without regard for the persistent
fields. Therefore, the fields might not have been fetched from the datastore yet, causing you to get a
null for fields that are references, including types like Integer and references to other persistent

instances. Normally, the fields in the default fetch group have been fetched from the datastore, but
not always. You should therefore call retrieve() to make sure the field values have been fetched

from the datastore.

Another issue to consider is that the persistent instance may have references to other persistent
instances. For example, a RentalItem has a reference to a MediaItem. If we retrieve all the fields of
a RentalItem instance and then create a clone of it, the clone will have a reference to the
MediaItem, but this clone is transient and does not really have a relationship with the MediaItem

instance. JDO has a well-defined behavior that allows implementations to create a clone of a
persistent instance properly, but we recommend that you do not clone persistent instances.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.3 Transient-Transactional Instances

You can cause transient instances to observe transaction boundaries, such that their state is
preserved at commit and restored on rollback. A transient instance that observes transaction
boundaries is called a transient-transactional instance. Support for transient-transactional instances
is optional; their use requires support of the optional TransientTransactional feature. If your
implementation does not support TransientTransactional, it will not include the functionality that

causes the state transitions associated with transient-transactional instances.

You can use the following PersistenceManager methods to make transient instances transactional:

void makeTransactional(Object obj);
void makeTransactionalAll(Object[] objs);
void makeTransactionalAll(Collection objs);

After these methods complete, the instances observe transaction boundaries. If the transaction
commits, the transient-transactional instances retain their values. The makeTransactional()
method throws a JDOUnsupportedOptionException if you pass a transient instance as a parameter
and the implementation does not support the optional TransientTransactional feature.

If the call to makeTransactional() is made within the current transaction and the transaction is

rolled back, the fields of the transient-transactional instances are restored to the values they had
when makeTransactional() was called, using their captured before image (discussed in Chapter
14). If the call to makeTransactional() is made before the beginning of the current transaction

and the transaction is rolled back, the fields are restored to their values as of the beginning of the
transaction.

The PersistenceManager also provides makeNontransactional() to make a persistent instance

nontransactional. Chapter 14 covers this in detail.

13.3.1 Transient-Transactional Lifecycle States

Transient-transactional instances are either clean or dirty, based on whether they have been modified
in the current transaction. If a clean instance is not modified, it remains clean. If a clean instance is
modified, its field values are saved. If the transaction rolls back, field values of dirty instances are
restored from the saved field values. If the transaction commits, the saved field values are discarded.
For either commit or rollback, dirty instances become clean.

Managing the behavior of transient-transactional instances requires additional lifecycle states and
state transitions. Similar to persistent instances, transient-transactional instances have the transient-
clean and transient-dirty lifecycle states to indicate their change status. An instance can be in the
transient-clean or transient-dirty state only if the implementation supports the optional
TransientTransactional feature.

13.3.1.1 Transient-clean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A transient-transactional instance that has not been changed in the current transaction is in the
transient-clean state. When a transient instance is passed as a parameter to makeTransactional(
), it transitions to the transient-clean state. You can make changes to a transient-clean instance

outside of a transaction without changing its lifecycle state. Chapter 14 covers nontransactional
access.

13.3.1.2 Transient-dirty

If you change any managed field of a transient-clean instance in a transaction, it transitions to the
transient-dirty state. This is similar to a persistent-clean instance transitioning to persistent-dirty.
When you first modify a managed field of a transient-clean instance, before the field's value is
changed, the PersistenceManager saves the instance's fields in a before image that is used if a

rollback occurs.

13.3.2 State Interrogation

Table 13-1 specifies the values that the JDOHelper lifecycle-state interrogation methods return for

the three transient lifecycle states.

Table 13-1. Values returned by the state interrogation methods for all
the transient states

State of Instance isPersistent() isTransactional() isDirty() isNew() isDeleted()

Transient false false false false false

Transient-clean false true false false false

Transient-dirty false true true false false

13.3.3 State Transitions

Figure 13-1 illustrates the state transitions that occur with transient-transactional instances.

Figure 13-1. State transitions of transient transactional instances

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you pass a transient-clean instance to makeNontransactional(), it transitions to transient; but if
you pass a transient-dirty instance, a JDOUserException is thrown.

At commit, a transient-dirty instance transitions to transient-clean and it retains its values. If a
transaction rollback occurs and the instance was made transactional in the current transaction, the
instance's field values are restored with the before image to the values they had when
makeTransactional() was called.

If an instance was made transactional in a previous transaction and a transaction rollback occurs, the
instance's fields are restored to their values as of the beginning of the current transaction. When
transaction-rollback processing completes, the before images of transient-transactional instances are
discarded and the instances transition to transient-clean.

If you pass a transient-dirty instance to makePersistent(), it transitions to persistent-new. What

happens if a transaction rollback occurs? The before image that was saved when the instance
transitioned to transient-dirty is used to restore the instance. However, as with any persistent-new
instance, the instance reverts to transient at rollback, even if it was previously a transient-
transactional instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

13.4 Making a Persistent Instance Transient

Suppose you have a persistent instance that you want to make accessible to a client application via
Remote Method Invocation (RMI). Suppose your code is executing in a Common Object Request
Broker Architecture (CORBA) or application-server environment, where the transaction context will
no longer exist once your servlet or session bean returns from a client invocation. When RMI
serializes your instance, the transaction is no longer active. You do not want the
PersistenceManager to mediate access to a persistent instance outside of a transaction context. So,

to pass the persistent instance to a remote client, you must convert it into a transient instance. This
is necessary to disassociate the instance with the PersistenceManager, so field access is not

mediated.

You do this by making the persistent instance transient. You can use the following
PersistenceManager methods to make persistent instances transient:

void makeTransient(Object obj);
void makeTransientAll(Object[] objs);
void makeTransientAll(Collection objs);

When the instances transition to transient, they lose their identity and association with the
PersistenceManager. They are no longer associated with their representation in the datastore, so

their in-memory state does not affect the persistent state in the datastore. Even though the instance
in memory is transient, the instance still exists in the datastore. Making a persistent instance
transient is not equivalent to calling deletePersistent(). The effect of these methods is

immediate and permanent; if a transaction rollback occurs, the instances remain transient. If a
parameter is already transient, these methods have no effect.

A persistent-dirty instance has changes to field values that are not committed to the datastore until
transaction commit. You do not want to lose these changes, which occurs when an instance is
disassociated with its PersistenceManager. Therefore, if you pass a persistent-dirty instance to
these methods, a JDOUserException is thrown.

Before calling makeTransient(), you should call retrieve() or retrieveAll() to fetch all the

field's values from the datastore. Otherwise, some of the fields may not be fetched. The
makeTransient() methods do not change the values of the fields in the parameter instances.

Another use for makeTransient() is to copy an instance from one transaction to another that is

running in the same JVM. The following code copies a persistent instance from one
PersistenceManager instance (pm1) to another (pm2):

RentalCodeKey key = new RentalCodeKey("High Demand");
RentalCode code = (RentalCode) pm1.getObjectById(key, true);
pm1.retrieve(code);
pm1.makeTransient(code);
pm2.makePersistent(code);

The PersistenceManager referenced by pm2 might be from the same JDO implementation as pm1 but
a different datastore. Or, pm1 and pm2 could be from different JDO implementations and datastores.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you want the instances to remain transient at transaction commit, you must make sure that all
references to them from other persistent instances in memory are changed; you should also make
the referring persistent instances transient. Otherwise, the persistence-by-reachability algorithm will
cause the instances to become persistent again at commit. Since the original persistent instance still
exists in the datastore, if the instance becomes persistent again as a result of persistence-by-
reachability, there might be two copies of the instance in the datastore. If the class uses datastore
identity, the new transient instance is assigned a new identity value. However, if the class uses
application identity and you did not change the value of the primary key, you get an exception
indicating that you have a duplicate primary-key value.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 14. Nontransactional Access
Transactional management of persistent data is a core feature of JDO. Using transactions helps
guarantee the consistency of data in the datastore. However, there are many cases where
transactional consistency is not important to the application. Data that is known to be relatively static
can be used outside of a transaction without harm. For example, having the most up-to-date
description of movies in the Media Mania datastore isn't critical to the integrity of the database.

Using nontransactional data may make your application perform better, because you don't need to
begin and complete transactions in order to access the persistent data in the datastore. This is
especially noticeable when the application is in one process and the datastore is in a different
process. Beginning and completing transactions often require one or more messages to be passed
from one process to the other, in addition to the messages to retrieve the data itself. Avoiding
transactions in this environment results in fewer messages.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.1 Nontransactional Features

As you have seen earlier, the JDO runtime contains an instance cache managed by the
PersistenceManager, and in the transaction modes we have presented thus far, instances in the

cache have always been transactional. We now introduce the behavior of the cache and the instances
contained in the cache in light of nontransactional behavior. There are five independent flags that
govern this behavior.

NontransactionalRead

This flag enables your application to iterate extents, perform queries, access persistent values
of persistent instances, and navigate the entire graph of persistent instances, without having a
transaction active.

NontransactionalWrite

This flag enables your application to make changes to the cache that will never be committed
to the datastore. Most applications expect that changes made to persistent instances will be
stored in the datastore at some point. NontransactionalWrite caters to applications that

manage a cache of persistent instances where the changes to the datastore are made by a
different application.

Optimistic

This flag enables your application to execute transactions that improve the concurrency of
datastore access, by deferring locking of data until commit. We discuss optimistic transactions
in detail in Chapter 15; we introduce it here because instances used in an optimistic transaction
are read nontransactionally, so they share common characteristics of data that is read with
NontransactionalRead.

RetainValues

This flag enables your application to retain the field values of instances in the cache at the end
of committed transactions, to improve performance. Subsequent nontransactional accesses to
cached values do not need to access the datastore.

RestoreValues

This flag enables your application to retain the field values of instances in the cache at the end
of rolled-back transactions, to improve performance. Subsequent nontransactional accesses to
cached values do not need to access the datastore.

The JDO implementation governs the availability of these features. Except for RestoreValues, the

features are optional, and an implementation might support any or all of them, although if an
implementation supports any of Optimistic, RetainValues, or NontransactionalWrite, it will
logically support NontransactionalRead as well.

Attempts to use an unsupported feature result in the JDO implementation throwing an exception. For
example, if an implementation does not support NontransactionalRead, attempting to set the
NontransactionalRead option to true throws a JDOUnsupportedOptionException.

The runtime behavior of the PersistenceManager depends on the current settings of these flags,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which are accessed via the Transaction instance associated with the PersistenceManager. You can

read the current settings by using the property access method for the flag of interest. This example
shows an application-specific method that returns the current setting for a given
PersistenceManager instance:

boolean retrieveNontransactionalReadSetting(PersistenceManager pm) {
 Transaction tx = pm.currentTransaction();
 return tx.getNontransactionalRead();
}

You can set the property values using the property access methods. Once set, they remain
unchanged until they are set to a different value. This example shows an application-specific method
that changes the NontransactionalRead setting for the given PersistenceManager:

void setNontransactionalReadSetting(PersistenceManager pm, boolean value) {
 Transaction tx = pm.currentTransaction();
 tx.setNontransactionalRead(value);
}

The settings for the flags are initialized from the PersistenceManagerFactory that created the
PersistenceManager. You can read the default settings from the PersistenceManagerFactory. This

example shows an application-specific method that returns the default setting for a given
PersistenceManagerFactory instance:

boolean retrieveNontransactionalReadSetting(PersistenceManagerFactory pmf) {
 return pmf.getNontransactionalRead();
}

The default values for these PersistenceManagerFactory flags are JDO implementation-specific.
You can configure the PersistenceManagerFactory to have specific default values by using the
property access methods with an existing PersistenceManagerFactory, or by including the
appropriate values in the Properties instance used to configure the PersistenceManagerFactory.

For example, to guarantee that the PersistenceManagerFactory used by your application has the
NontransactionalRead property set to true, you can use one of the following techniques:

PersistenceManagerFactory createPMF() {
 PersistenceManagerFactory pmf;
 pmf = new com.sun.jdori.fostore.FOStorePMF();
 // set other required properties
 // the following might throw JDOUnsupportedOptionException
 pmf.setNontransactionalRead(true);
 return pmf;
}

Note that this code refers to a JDO implementation-specific class that is not part of the JDO
specification. The advantage of the following technique is that you can compile this code without
reference to any JDO implementation-specific class:

PersistenceManagerFactory createPMF(Properties props) {
 // other required properties are already in the props instance
 PersistenceManagerFactory pmf;
 props.put("javax.jdo.option.NontransactionalRead", "true");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // the following might throw an Exception
 pmf = JDOHelper.getPersistenceManagerFactory(props);
 return pmf;
}

If your application depends on any of the optional features, you should make sure that the JDO
implementation that you are using supports them, either by constructing the
PersistenceManagerFactory with the property set to true, or by dynamically querying the optional
features of the PersistenceManagerFactory during initialization using supportedOptions(). This

will avoid exceptions in your application logic that might be awkward to handle.

You might execute your application in an environment where a different component constructs the
PersistenceManagerFactory and you must use it. For example, the PersistenceManagerFactory

might be constructed and registered as a named entry in a Java Naming and Directory Interface
(JNDI) context. Your application looks up the entry and verifies that it supports the required feature.

The required feature can be verified by a simple contains() check:

PersistenceManagerFactory pmf;
pmf = (PersistenceManagerFactory)ctx.lookup("MoviePMF");
Collection supportedOptions = pmf.supportedOptions();
if (!supportedOptions.contains("javax.jdo.option.NontransactionalRead")) {
 throw new ApplicationCannotExecuteException
 ("NontransactionalRead is not supported");
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.2 Reading Outside a Transaction

NontransactionalRead allows your application to access the datastore without ever beginning a

transaction; it also allows you to access the datastore and read cached instances and fields between
completing one transaction and beginning the next. This allows read-only applications nearly full
access to the features of JDO, without the overhead of beginning and completing transactions. Access
in the NontransactionalRead case includes iterating extents, querying the datastore, accessing

persistent field values, and navigating among instances using persistent relationships.

Note that you must always have an active transaction in order to insert new persistent instances,
delete existing instances, or change existing data in the datastore.

One use for the NontransactionalRead mode of operation is to access slowly changing information.
For example, access to the MediaContent instances can be nontransactional, because in most cases
the information is static. At times, the datastore might be updated with new MediaContent instances,

but for the most part, the information does not change.

When executing your application outside a transaction, the cache contains persistent instances whose
field values came from the datastore, but there is no guarantee that the field values are consistent
with the current datastore contents, or are even consistent with other field values from the same
persistent instance. This is because field values are retrieved from the datastore on demand.

For example, if you query the datastore and access a field in a persistent instance, the JDO
implementation might retrieve only the field accessed. A subsequent read of a different field might
come from the cache or might result in a datastore access to retrieve the current value from the
datastore. None of the field values retrieved earlier will be refreshed from the datastore, so the
persistent instance might contain fields that represented the datastore at different times.

Therefore, before using this mode, make sure that dirty reads are acceptable for correct operation of
your application.

Another common pattern is to use nontransactional read to navigate an object graph to locate a
particular instance, and then begin a transaction to update the instance. This is possible because the
identity of every instance in the cache is known, even though the field values are nontransactional.

Nontransactional instances in the cache will remain nontransactional even if a transaction is
subsequently begun. If they are not accessed during subsequent transactions, they will remain
nontransactional.

If your application accesses nontransactional instances during a datastore transaction, they become
transactional at the time of the first access in the transaction. When this happens, the JDO
implementation discards the cached field values and, just as for hollow instances, retrieves
transactionally consistent field values from the datastore.

If your application accesses nontransactional instances for read during an optimistic transaction, they
will remain nontransactional and might not be refreshed unless your application explicitly refreshes
them by calling PersistenceManager.refresh().

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.3 Persistent-Nontransactional State

The use of instances outside a transaction introduces another instance lifecycle state: persistent-
nontransactional. From the application program perspective, this state is indistinguishable from the
hollow state. That is, the results of executing the interrogatives in JDOHelper (isNew(), isDirty(
), etc.) are the same for instances in both states. Your application generally should not be aware of

the difference between instances in the hollow and persistent-nontransactional states.

From a performance perspective, your application might run faster, because accessing field values of
instances in the persistent-nontransactional state might be done without a datastore access. Your
application can retrieve field values cached in the instance and navigate the object graph to other
instances, relying only on the cached values. The only time the datastore must be accessed is when a
field that has not yet been loaded from the datastore is read.

With datastore transactions, existing persistent instances begin their lifecycle in the cache as
persistent-clean or persistent-dirty. With the first access to persistent instances outside a transaction,
they begin their lifecycle in the cache in the persistent-nontransactional state. This can be the result
of an Extent iteration, a query execution, or navigation from another persistent-nontransactional

instance.

With NontransactionalRead set to true, outside a transaction:

Your application can read field values, navigate the object graph, execute queries, and iterate
extents. The JDO implementation decides whether the instances returned to your application
are in the hollow or persistent-nontransactional state. Key fields are instantiated regardless of
the instances' states.

The first time your application accesses a managed, nonkey field of a hollow instance, the
instance transitions to persistent-nontransactional. This state transition is shown in Figure 14-1.

Persistent-nontransactional instances remain in this state until they are accessed in a
subsequent transaction.

Figure 14-1. State transitions outside a transaction

With NontransactionalRead set to false, outside a transaction:

If your application attempts to read field values, navigate the object graph, execute queries, or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

iterate extents, the JDO implementation throws a JDOUserException.

Persistent instances remain in the hollow state until accessed in a transaction.

We will now discuss a more complete example, based on the Media Mania application.
MediaManiaApp declares an abstract method, execute(), which is implemented by a derived class.
In the derived classes, we have seen examples of main(), which calls executeTransaction().
This method then begins a transaction, calls execute(), and commits the transaction.

For this example, we will implement main() to call execute() instead of executeTransaction(),
which will make the program run without a transaction. The program is PrintMovies in the
com.mediamania.nontx package:

package com.mediamania.nontx;
import com.mediamania.MediaManiaApp;
import com.mediamania.content.Movie;
public class PrintMovies {

We don't define a constructor, so the compiler generates a no-arg constructor that calls the
superclass to construct the PersistenceManagerFactory. The superclass constructor calls
getPropertyOverrides(), which is implemented in this class to specify the required
NontransactionalRead property:

 protected static Map getPropertyOverrides() {
 Map overrides = new HashMap();
 overrides.put("javax.jdo.option.NontransactionalRead", "true");
 return overrides;
 }

In this class, main() constructs a new instance of PrintMovies and calls execute():

 public static void main(String[] args) {
 PrintMovies printMovies = new PrintMovies();
 printMovies.execute();
 }

The superclass defines the pmf and pm fields and initializes them in the constructor. The execute()
method gets an Extent of Movie and iterates it, calling Utilities.printMovie() to display the
contents on System.out:

 public void execute() {
 Extent extent = pm.getExtent(Movie.class, true);
 Iterator iter = extent.iterator();
 while (iter.hasNext()){
 Movie movie = (Movie) iter.next();
 Utilities.printMovie(movie, System.out);
 }
 }
}

As an alternative to using getPropertyOverrides(), execute() could be slightly different, setting
the NontransactionalRead property of the Transaction instance to true.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void execute() {
 pm.currentTransaction().setNontransactionalRead(true);
 Extent extent = pm.getExtent(Movie.class, true);
 Iterator iter = extent.iterator();
 while (iter.hasNext()){
 Movie movie = (Movie) iter.next();
 Utilities.printMovie(movie, System.out);
 }
 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.4 Retaining Values at Transaction Commit

We have seen how reading data outside a transaction results in caching nontransactional instances.
Another way for nontransactional instances to exist in the cache is to execute a transaction and then
retain the field values at commit time. You can specify this behavior by setting the RetainValues
property to true. This is shown in Figure 14-2.

Figure 14-2. RetainValues at transaction commit

With RetainValues set to true, persistent transactional instances transition to persistent-
nontransactional at commit. But with RetainValues set to false, fields of persistent transactional

instances are cleared at transaction commit, and the instances transition to hollow.

The result is that your application can use the cached instances between transactions, and the
instances used in the transaction retain their last-committed values. Instances not used in
transactions remain nontransactional.

Since the RetainValues flag only affects the behavior of transaction commit(), your application can
change it at any time, using setRetainValues() in Transaction. Regardless of how many times

the value changes, the value currently in effect at commit is used.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.5 Restoring Values at Transaction Rollback

We have seen how an application can retain persistent field values in cached instances across
transactions by using the RetainValues property. But this property is effective only at commit. If

you want to preserve cached values even if a transaction rolls back, you need to use the
RestoreValues property. Unlike RetainValues, RestoreValues is not an optional feature, and the

property setting affects the treatment of new instances as well as persistent-clean and persistent-
dirty instances.

With RestoreValues set to false, persistent transactional instances have their values cleared at

transaction rollback, and the instances transition to hollow. This is shown in Figure 14-3. Subsequent
reads of fields in these instances require access to the datastore. In order to allow accesses of the
values in the instances without accessing the datastore, the application sets the RestoreValues flag
to true.

Figure 14-3. Rollback with RestoreValues true

Similar to RetainValues, there are several ways to set the RestoreValues property:

Your application can include the javax.jdo.option.RestoreValues property with a value of
true or false in the Properties instance used to construct the PersistenceManagerFactory.

Your application can set the property using setRestoreValues() in
PersistenceManagerFactory.

Your application can set the property using setRestoreValues() in Transaction.

Since this flag affects the way persistent fields are managed during a transaction, the property must
be changed only between transactions. If an attempt is made to execute setRestoreValues()
during an active transaction, a JDOUserException is thrown.

14.5.1 Before Image

With RestoreValues set to true, the JDO implementation must make a before image of instances

that are made persistent and persistent instances that are changed or deleted during the transaction.
The before images contain the state of persistent and transactional fields as of the first access of the
fields in the transaction, and they supply the field values restored during rollback. The before image

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contains a shallow copy of all the fields in the instance as of the call to makePersistent(),
deletePersistent() , or a method that changes a managed field.

A shallow copy means that the field values are copied exactly as they are stored in the instance;
values of primitive fields are copied, and references are copied. There is no copy made of the
contents of reference types.

Making a before image can adversely affect performance, as there is extra work for the JDO
implementation to do when the instance is made persistent, deleted, or made dirty. Therefore,
applications should carefully consider the use of this flag.

With RestoreValues set to false, the JDO implementation does not need to remember the state of

fields of transient instances that are made persistent. If the transaction is rolled back, the instances
revert to transient, and the state of the fields is unchanged. Normally, your application will discard
these instances and allow them to be garbage-collected. Similarly, there is no requirement to
remember the state of instances that are changed or deleted. At transaction rollback, the instances
transition to hollow, and the field contents are cleared.

14.5.2 Restoring Persistent Instances

At rollback, with RestoreValues set to true, persistent-clean, persistent-dirty, and persistent-

deleted instances transition to persistent-nontransactional. Persistent-clean instances retain their
values as of the end of the transaction. Persistent-dirty and persistent-deleted instances are restored
as follows:

Fields of primitive types (int, float, etc.), wrapper types (Integer, Float, etc.), immutable
types (Locale, etc.), and PersistenceCapable types are restored to their values as of the

beginning of the transaction.

Fields of mutable types (Date, Collection, etc.) are marked by the JDO implementation as not

loaded. Subsequent accesses of these fields will cause the JDO implementation to read the
values from the datastore.

14.5.3 Restoring Persistent-New Instances

At rollback, with RestoreValues set to true, persistent-new and persistent-new-deleted instances

transition to transient and all fields are restored to their values in the before image.

The before image allows the JDO implementation to restore the instance to the state it had at the
time the instance was made persistent. But consider that the state of reference type fields is also
part of the state of the instance and cannot necessarily be restored to its state as of the time the
referring instance was made persistent.

For example, consider the following code, which makes an instance of Movie persistent and rolls back

the transaction:

Calendar calendar = Calendar.newInstance();
calendar.set(Calendar.YEAR, 1965);
Date released = calendar.getTime();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Movie movie = new Movie("Sound of Music", released, 174, "G", "musical, biography");
tx.setRestoreValues(true);
tx.begin();
pm.makePersistent(movie); [1]
calendar.set(Calendar.YEAR, 1987);
released.setTime(calendar.getTimeInMillis()); // AVOID [2]
calendar.set(Calendar.YEAR, 1999);
released = calendar.getTime(); [3]
tx.rollback(); // movie.released now is 1987; released is 1999

[1] During makePersistent(), a shallow copy of movie is made and the copy becomes the
before image. The releaseDate field in the persistent movie instance is replaced with a new
instance of a JDO implementation-defined subclass of Date, containing the same millisecond
value of the original released instance. There are now two instances of Date; both represent

the year 1965.

Any change to the Date instance referred to by released after makePersistent() does not

affect the persistent instance, but it changes the instance in the before image.

[2] In the preceding example, the instance referred to by the before image is changed to
represent the year 1987. Similarly, any change to the value of the field in the persistent
instance does not affect the value of released or the before image.

[3] When a new Date is created and assigned to released, there is now a third instance of
Date, which contains a value representing the year 1999.

At rollback, the value of the field releaseDate in instance movie is restored to its original value of
released, but because the released object was modified to represent the year 1987, these
modifications remain. Thus, even though the fields in the movie instance itself were restored, the
releaseDate field contains changes made subsequent to makePersistent().

After rollback, the original instance of released becomes the restored value of releaseDate in the
movie instance; the JDO implementation-defined subclass of Date, representing 1965, is not

referenced and can be garbage-collected; and the third instance, representing 1999, is now the value
of the released variable.

To avoid this situation, you should never modify instances referred by fields of persistent instances
once they are made persistent; instead you should replace the fields or use accessor/mutator
methods defined in the persistent class. Replacing the fields leaves the instance in the before image
as it was, and using mutator methods in the persistent class modifies the copy of the original
instance.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

14.6 Modifying Persistent Instances Outside a
Transaction

JDO manages updates to the datastore by tracking changes made to persistent instances during a
transaction. To avoid losing updates, you should have an active transaction when changing fields of
persistent instances. When the transaction commits, the changes are made in the datastore.

However, you can write applications that manage a cache of nontransactional persistent instances,
where the datastore is updated outside your application. With these applications, the cache becomes
stale relative to the current state in the datastore. But if your application is made aware of these
changes-for example, by receiving a stream of change notifications-your application can update the
cache to reflect the current state of the datastore instances. The stream might consist only of the
keys of the instances, in which case the application can simply invalidate the cached instances by
calling evict() or refresh().

But if the stream contains not only the keys but also the changed values for persistent fields, your
application can use the stream values to update the cached instances to reflect the current contents
of the datastore.

With the NontransactionalWrite property set to false, the only way to update nontransactional

instances is to invalidate them in the cache and then fetch the instances from the datastore when
they are next needed. But with NontransactionalWrite set to true, your application can update the

persistent instances in the cache without beginning a transaction and updating the instances. Your
application can make updates to any values, but the most useful approach updates the values in the
cache to reflect the current values in the datastore.

Note that the values of fields in persistent-nontransactional instances that have been modified
outside a transaction will never be stored in the datastore by the JDO implementation. Any changes
made outside of a transaction are lost.

This is due to the behavior of transactional instances. In a subsequent datastore transaction, if the
instance is accessed (by field access, extent iteration, query, or navigation), a fresh copy of the
instance will be fetched into the cache and the values written outside the transaction will simply be
discarded without notice.

With NontransactionalWrite set to false, if your application attempts to make a change to any
persistent instance outside a transaction, the JDO implementation will throw a JDOUserException.

This includes executing any method that changes a field in the instance and executing
JDOHelper.makeDirty() , referencing a field of any persistent instance.

14.6.1 Hot Cache Example

For example, consider an application that executes in multiple JVMs, each of which manages a hot
cache of Movie instances that track changes to a Movie's web site via a live feed. One of the JVMs
executes MasterDriver, the application responsible for updating the datastore; the others execute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SlaveDriver, an application that updates its copy of the instances in its cache when updates arrive.

Both MasterDriver and SlaveDriver extend AbstractDriver. The constructor of AbstractDriver

connects to the source of cache updates and cache requests. We open the request and update input
streams from a URL, which might be a file, or in a more realistic application, a stream from an
external source. The results of a request are output to System.out, which is not realistic but

demonstrates the concept:

public class AbstractDriver {
 protected BufferedReader requestReader;
 protected BufferedReader updateReader;
 protected CacheAccess cache;
 protected int timeoutMillis;
 protected AbstractDriver(String updateURL, String requestURL,
 String timeout) {
 updateReader = openReader(updateURL);
 requestReader = openReader(requestURL);
 timeoutMillis = Integer.parseInt(timeout);
 }

The BufferedReader allows us to read lines from the input source:

 protected BufferedReader openReader (String urlName) {
 try {
 URL url = new URL(urlName);
 InputStream is = url.openStream();
 Reader r = new InputStreamReader(is);
 return new BufferedReader(r);
 } catch (Exception ex) {
 return null;
 }
 }

ServiceReaders will service the updateReader and requestReader until there is no work to do for a

specified timeout period, or until it is interrupted:

 protected void serviceReaders() {
 boolean done = false;
 boolean lastTime = false;
 try {
 while (!done) {
 if (updateReader.ready()) {
 handleUpdate();
 done = false;
 lastTime = false;
 } else if (requestReader.ready()) {
 handleRequest();
 done = false;
 lastTime = false;
 } else {
 try {
 Thread.sleep (timeoutMillis);
 if (lastTime) done = true;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lastTime = true;
 } catch (InterruptedException ex) {
 done = true;
 }
 }
 }
 } catch (Exception ex) {
 return;
 }
 }

HandleRequest reads a line from the requestReader and prints the title of the movie to
System.out. A more realistic application would return the results to the requester.

 protected void handleRequest() throws IOException {
 String request = requestReader.readLine();
 Movie movie = cache.getMovieByTitle(request);
 System.out.println("Movie: " + movie.getTitle());
 }

HandleUpdate reads a line from the updateReader, parses it into a movie title and a web site, and
then calls updateWebSite.

 protected void handleUpdate() throws IOException {
 String update = updateReader.readLine();
 StringTokenizer tokenizer = new StringTokenizer(update, ";");
 String movieName = tokenizer.nextToken();
 String webSite = tokenizer.nextToken();
 cache.updateWebSite (movieName, webSite);
 }
}

The interface to the cache is defined by com.mediamania.hotcache.CacheAccess. There are two
implementations of this interface: MasterCache and SlaveCache, with a common AbstractCache

implementation.

MasterCache performs the updates to the datastore as well as updating the cache. It will retrieve the
Movie into the cache if it is not already cached. SlaveCache updates the cache only if the Movie is

already cached.

MasterCache needs the NontransactionalRead option set to true because lookups are done outside
a transaction, and the RetainValues option set to true so values are retained in the cache at the
end of an update transaction. SlaveCache needs the NontransactionalRead and
NontransactionalWrite options set to true, because reads and updates are done without a
transaction active. Both classes use getPropertyOverrides() to initialize the
PersistenceManagerFactory with the correct options.

AbstractCache implements the CacheAccess interface:

public interface CacheAccess {
 Movie getMovieByTitle (String title);
 void updateWebSite (String title, String website);
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MasterCache and SlaveCache use the same lookup method implemented in AbstractCache to find a
Movie with a particular title. If the Movie does not exist in the cache, it is loaded (outside a

transaction) into the cache.

public abstract class AbstractCache extends MediaManiaApp
 implements com.mediamania.hotcache.CacheAccess {
 protected Map cache; // key:name value:Movie
 public Movie getMovieByTitle(String title) {
 Movie movie = (Movie)cache.get(title);
 if (movie == null) {
 movie = super.getMovie(title);
 if (movie != null) {
 cache.put(title, movie);
 }
 return movie;
 }
}

The difference between MasterCache and SlaveCache is in how the update is handled. MasterCache
first loads the Movie into the cache if it isn't already there, and then uses a transaction to perform

the update:

public class MasterCache extends AbstractCache
 implements CacheAccess {
 protected static Map getPropertyOverrides() {
 Map overrides = new HashMap();
 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
 overrides.put ("javax.jdo.options.RetainValues", "true");
 return overrides;
 }

 public void updateWebSite(String title, String website) {
 Movie movie = getMovieByTitle(title);
 if (movie != null) {
 tx.begin();
 movie.setWebSite(website);
 tx.commit();
 }
 }
}

SlaveCache locates the movie in the cache. If the Movie is not in the cache, SlaveCache ignores the
message. If the Movie is in the cache, SlaveCache updates it:

public class SlaveCache extends AbstractCache
 implements CacheAccess {

 protected static Map getPropertyOverrides() {
 Map overrides = new HashMap();
 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
 overrides.put ("javax.jdo.options.NontransactionalWrite", "true");
 return overrides;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public void updateWebSite(String title, String website) {
 Movie movie = (Movie)cache.get(title);
 if (movie != null) {
 movie.setWebSite(website);
 }
 }
}

To complete the example, MasterDriver initializes the cache to be a MasterCache:

public class MasterDriver extends AbstractDriver {
 protected MasterDriver(String updateURL, String requestURL,
 String timeout) {
 super(updateURL, requestURL, timeout);
 cache = new MasterCache();
 }

 public static void main(String[] args) {
 MasterDriver master = new MasterDriver(
 args[0], args[1], args[2]);
 master.serviceReaders();
 }
}

SlaveDriver initializes the cache to be a SlaveCache; otherwise, the implementation is the same as
MasterDriver:

public class SlaveDriver extends AbstractDriver {
 protected SlaveDriver(String updateURL, String requestURL,
 String timeout) {
 super(updateURL, requestURL, timeout);
 cache = new SlaveCache();
 }

 public static void main(String[] args) {
 SlaveDriver slave = new SlaveDriver(
 args[0], args[1], args[2]);
 slave.serviceReaders();
 }
}

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 15. Optimistic Transactions
Earlier in this book, we discussed using datastore transactions to guarantee the following properties:
atomicity, consistency, isolation, and durability. All operations between begin() and commit() of a

JDO transaction are performed in the context of an underlying datastore transaction.

The datastore transaction model assumes that the duration of JDO transactions is relatively short.
For longer transactions, JDO defines optimistic transactions, in which some of the transaction
properties are implemented by JDO instead of the datastore.

Optimistic transactions are most useful for long-running transactions that rarely affect the same
instances. These applications exhibit higher performance and better concurrency by deferring
datastore locking on modified instances until commit. Whether you use optimistic or datastore
transactions for your applications is a complex issue, because if there is significant contention for
transactional instances, optimistic transactions can be less efficient than datastore transactions.

For example, JDO transactions performed in an application server with very high throughput and high
concurrency are probably best implemented as datastore transactions. However, if JDO transactions
include user "think time," then optimistic transactions are a good choice. The changes made to the
cache might be made over a long period of time, during which no locks associated with any of the
retrieved instances will be held in the datastore.

In the following summary, "transactional datastore context" refers to the transaction context of the
underlying datastore, while "transaction," "datastore transaction," and "optimistic transaction" refer
to the JDO transaction concepts.

JDO datastore transactions perform all datastore operations using the same transactional datastore
context, which the JDO application delimits using the JDO Transaction methods. Thus, persistent

instances accessed within the scope of an active JDO transaction are guaranteed to be associated
with the transactional datastore context.

Prior to commit, JDO optimistic transactions perform all datastore operations using short
transactional datastore contexts. Thus, persistent instances accessed within the scope of an active
JDO transaction prior to commit are only briefly associated with a transactional datastore context. At
JDO transaction commit, a transactional datastore context is used to perform all datastore
modification operations.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.1 Verification at Commit

With optimistic transactions, instances queried or read from the datastore are not treated as
transactional unless they are modified, deleted, or marked by the application as transactional. At
commit time, the transactional datastore context is used for verification of inserted, deleted, and
updated datastore instances involved in the transaction.

The verification algorithm is not part of the JDO specification, although updates to the same field in
the same instance by different transactions must cause a verification failure. The verification can be
implemented by different strategies, based on the support provided by different datastores:

A JDO implementation might use a special timestamp field in each datastore instance and
compare this field for verification. Some datastores provide a special timestamp type that
automatically updates its value with every transaction that changes any value in the instance. If
such a type is not available, an implementation might simply use an extra field, not visible to
the application, to track these changes and manage the values itself.

An implementation might use an application-specific set of fields whose values are compared.

An implementation might allow your application to aggregate fields into groups and compare all
of the values in each affected group to verify that no field in any group has changed.

An implementation might allow you to choose a different policy for each persistent class in your
model.

Thus, it is possible for different optimistic transactions to perform updates to different fields of the
same instance without resulting in an optimistic conflict. The JDO implementation provides a default
policy for treating this situation and might allow some application control over the policy.

The JDO implementation verifies that the optimistic assumptions are true before permanently making
changes to the datastore. For each transactional instance in the cache, the JDO implementation
verifies that the values of the instances in the datastore match the assumed values of the optimistic
transaction:

Unmodified instances that have been made transactional are verified against the current
contents of the datastore. As noted earlier, the verification might be done by comparing
timestamps or field values.

For application identity, new instances are verified in the datastore to ensure that they do not
have the same identity as existing datastore instances. There is no such checking in the case of
datastore identity, as this situation cannot occur.

Deleted instances are verified to ensure that they have not been deleted or modified by a
concurrent transaction.

Updated instances are verified to ensure that they have not changed since being fetched into

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the cache.

If any instance fails verification, the JDO implementation throws a
JDOOptimisticVerificationException, which contains an array of JDOExceptions, one for each

instance that failed the verification. In this case, the optimistic transaction fails.

15.1.1 Recovery from a Failed Transaction

If an optimistic transaction fails verification at commit time, the transaction rolls back, just as if your
application had called rollback(). The changes made to cached instances revert to their pre-

transaction state. Since the optimistic failure indicates that the cache is inconsistent with the state of
the datastore, you should refresh the failed instances identified in the exception if you intend to
continue to use the cache to retry the failed transaction or to perform new transactions.

After refreshing the cached instances, your application can report the failure to the user or it might
attempt to replay the transaction. Replaying is only possible if your application has maintained a
change list to reapply changes.

In order to replay the transaction, all instances involved in the transaction must be updated. After
beginning a new optimistic transaction, the changes to each instance can be replayed:

Unmodified instances that failed verification can be reloaded from the datastore using
PersistenceManager.refresh().

New instances that failed verification can be loaded from the datastore by performing a query or
by getting the instance by its primary key.

New instances that did not fail verification can be made persistent again.

Deleted instances that failed verification because they were already deleted can simply be
ignored.

Deleted instances that did not fail verification can be deleted again.

Updated instances that failed verification can be loaded from the datastore using
PersistenceManager.refresh().

Updated instances that did not fail verification can be updated again.

Note that you must reapply inserts, updates, and deletes using application-consistency rules;
otherwise, the consistency guarantees of the datastore are meaningless.

15.1.2 Setting Optimistic Transaction Behavior

Optimistic transactions are an optional feature of a JDO implementation. If an implementation does
not support optimistic transactions, it will throw JDOUnsupportedOptionException when you
attempt to set the value of the Optimistic property to true.

The Optimistic flag that activates optimistic transactions is a property of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PersistenceManagerFactory and Transaction. You can set the property in the Properties
instance used to create the PersistenceManagerFactory and access it via getOptimistic() and
setOptimistic(). The setting of the property in PersistenceManagerFactory is used as the
default for all PersistenceManager instances obtained from it.

Setting the Optimistic flag to true changes the lifecycle-state transitions of persistent instances;

therefore you can change the flag only when a transaction is not active. If you attempt to change the
flag while a transaction is active, the implementation will throw JDOUserException.

15.1.3 Optimistic Example

To illustrate the programming techniques used in optimistic transactions, we'll modify the
UpdateWebSite program to use optimistic transactions. First, we need to set the Optimistic
property to true before beginning the transaction. We define executeOptimisticTransaction() to
set the Optimistic property to true before calling execute(). We return a boolean to indicate

whether the transaction commits successfully:

public boolean executeOptimisticTransaction() {
 try {
 tx.setOptimistic(true);
 tx.begin();
 execute();
 tx.commit();
 return true;
 } catch (JDOException exception){
 analyzeJDOException(exception, System.out);
 return false;
 } catch (Throwable throwable) {
 throwable.printStackTrace(System.out);
 return false;
 } finally {
 if (tx.isActive()) {
 try {
 tx.rollback();
 } catch (Exception ex) {
 }
 }
 }
 }

When execute() locates the movie by title, the movie is not transactional. When the movie is
updated in setWebSite(), it transitions to transactional and the JDO implementation saves

information about the movie to be used at commit:

public void execute()
 {
 Movie movie = PrototypeQueries.getMovie(pm, movieTitle);
 if(movie == null){
 System.err.print("Could not access movie with title of ");
 System.err.println(movieTitle);
 return;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 movie.setWebSite(newWebSite);
 }

At commit, the saved information is used to verify that the update did not conflict with a concurrent
transaction; if the verification succeeds, the update is performed and the transaction completes.

Define the analyzeJDOException() method to analyze failed optimistic transactions:

public void analyzeJDOException(JDOException jdoException, PrintStream p) {
 p.println("JDOException thrown:");
 p.println(jdoException.toString());
 Throwable[] nestedExceptions = jdoException.getNestedExceptions();
 int numberOfExceptions = nestedExceptions.length;
 p.println("Number of nested exceptions: " + numberOfExceptions);
 for (int i = 0; i < numberOfExceptions; ++i) {
 Throwable thrown = nestedExceptions[i];
 if (thrown instanceof JDOException) {
 JDOException instanceException = (JDOException)thrown;
 Object instance = instanceException.getFailedObject();
 Object objectId = JDOHelper.getObjectId(instance);
 p.println("Failed instance objectId: " + objectId);
 } else {
 p.println("Nested exception: " + thrown);
 }
 }
 }

We change main() to execute the optimistic transaction and, if it fails, retry once:

public static void main (String[] args) {
 String title = args[0];
 String website = args[1];
 UpdateWebSite update = new UpdateWebSite(title, website);
 if (!update.executeOptimisticTransaction()) {
 System.out.println("Optimistic transaction failed; retrying");
 if (!update.executeOptimisticTransaction()) {
 System.out.println("Failed again.");
 }
 }
 }

Figure 15-1 shows what happens during another example of an optimistic transaction, in which the
application queries for movies, accesses the director of a movie, and then changes the web site of the
movie. There is no datastore transactional context established at optimistic transaction begin(). A

short datastore transactional context is established in order to retrieve information to satisfy
iterator.hasNext().

Figure 15-1. Optimistic transaction time line

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When the name of the director is accessed, another datastore transactional context is established. At
commit time, the final datastore transactional context is extablished, in which the JDO
implementation performs all verification and updates, and commits the changes to the datastore.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.2 Optimistic Transaction State Transitions

With the Optimistic flag set to true, some of the behavior of the cache changes, due to the

requirements of verification at commit time. Primarily, the JDO implementation saves the state of the
instances that are updated or deleted, so it can verify the instances at commit.

If a persistent field other than one of the primary-key fields is read, a hollow instance transitions to
persistent-nontransactional instead of persistent-clean. Subsequent reads of any of these fields in the
same transaction do not cause a transition from persistent-nontransactional.

Note that the fields in persistent-nontransactional instances might be read from the datastore at
different times, either outside transactions or during transactions where the RetainValues property
is set to true.

If the first access to a hollow instance in an optimistic transaction is a write access, the hollow
instance transitions to persistent-dirty. During the transition, the JDO implementation fetches the
instance from the datastore and saves the state of the instance for verification at commit. These
state transitions are shown in Figure 15-2.

Figure 15-2. State transitions during optimistic transactions

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.3 Deleting Instances

A persistent-nontransactional instance transitions to persistent-deleted if it is a parameter of
deletePersistent(). The values of the fields of the instance in memory are unchanged but are

saved for verification during commit. To minimize the possibility of a conflict at commit, you can load
fresh values from the datastore by calling refresh() or refreshAll() with the instance as a

parameter.

A hollow instance transitions to persistent-deleted if it is a parameter of deletePersistent().

Since there is no state loaded into the instance, the instance will not be verified during commit. To
force verification at commit, you should first call refresh() or refreshAll() with the instance as

a parameter.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.4 Making Instances Transactional

When an optimistic transaction is in progress, a persistent-nontransactional instance transitions to
persistent-clean if it is a parameter of makeTransactional(). The values in managed fields of the

instance in memory are unchanged. To minimize the possibility of a verification failure at commit, you
can first call refresh() or refreshAll() with the instance as a parameter before making the

instance transactional.

It does not matter at what time during the transaction the instance is made transactional. If the
verification policy is to compare field values, the values that are compared include at a minimum all
of the fields accessed during the transaction.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.5 Modifying Instances

A persistent-nontransactional instance transitions to persistent-dirty if your application modifies a
managed field while an optimistic transaction is in progress. The JDO implementation saves the
values of the fields of the instance in memory for use during rollback and for verification during
commit. The saved values of fields in the instance in memory are unchanged before the update is
applied. To minimize the possibility of a verification failure at commit, you can call refresh() or
refreshAll() with the instance as a parameter before making the first change to the instance in the

transaction.

If you make changes to instances outside a transaction using the NontransactionalWrite feature,

the changes are assumed to reflect the current state of the field values in the datastore. Therefore,
with a policy that uses field-value verification, if you make changes to the same instances in a
subsequent optimistic transaction, the changes made outside the transaction will be the values used
for comparison. With a policy that depends on a special field in the object, the only way to avoid a
verification failure is to refresh the instance prior to making the changes.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.6 Commit

At commit, persistent-nontransactional instances do not change their state. Once instances have
been read nontransactionally, they remain in the persistent-nontransactional state until they
transition to a transactional or hollow state.

At commit, transactional instances transition to new states, based on the setting of the
RetainValues flag. There is no difference between datastore and optimistic transactions in this

regard.

With RetainValues set to true, persistent-clean and persistent-dirty instances transition to

persistent-nontransactional and the instances retain their values as of the end of the transaction.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

15.7 Rollback

At rollback, persistent-nontransactional instances do not change their state. If instances have been
read nontransactionally, they remain in the persistent-nontransactional state at rollback.

At rollback, persistent transactional instances transition to new states, based on the setting of the
RestoreValues flag. There is no difference between datastore and optimistic transactions in this

regard.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 16. The Web-Server Environment
Up to this point, we have focused on using JDO to write applications in one- and two-tier
environments. We now turn to distributed environments, with an emphasis on writing applications in
which your JDO application code runs in a server.

The two most popular server environments in which Java is the implementation language for
applications are the web server and the application server. A web server provides a web container in
which servlets and JSP pages execute. Typically, a web server also provides support for serving static
web content (HTML, GIF, and JPEG files, etc.) in addition to dynamic content. Both web servers and
application servers support remote clients using a variety of protocols, including HTTP (Hypertext
Transfer Protocol), HTTPS (HyperText Transfer Protocol over SSL), and SOAP (Simple Object Access
Protocol). In addition, application servers support CORBA IIOP/RMI (Common Object Request Broker
Architecture Internet Inter-Orb Protocol/Remote Method Invocation) protocols. We cover application
servers in more detail in Chapter 17.

With either of these types of servers, the implementation of remote services is opaque to the client;
the services could be implemented by any kind of host running any language that supports the
protocols. JDO fits into these environments to provide access to persistent data for applications that
implement dynamic content.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.1 Web Servers

In order to describe where JDO fits into a web server, we start with a brief overview of the web
container and how the container handles requests. The application components that handle the
requests can use JDO to provide access to persistent information used to service the requests.

There is no standard for all the characteristics of web servers and the services they support, but most
implementations support applications written to implement HTTP and HTTPS messages. Since the
details of security and secure access to these services are not important to the implementation using
JDO, we will use HTTP to describe both HTTP and HTTPS protocols. The use of HTTPS is transparent
to the application.

HTTP is a request/response protocol in which a browser sends a request to a server at a specific
Internet address and waits for a response from the server. The server parses the request and
delegates its handling to the responsible component, based on policy files used to configure the
server.

HTTP responses can be static (i.e., their content never changes). Graphics, web-page templates,
banners, and other artifacts of web pages are primarily static, and web servers typically cache these
items and deliver them to users on request.

Other HTTP responses are dynamic. The response is generated only upon receipt of the request and
may depend on current information (time of day, current price of a stock, etc.) or the requester
(contents of a shopper's cart, value of a portfolio, etc.). These requests must be handled by a
program, which in current web servers might be a script-based component like Common Gateway
Interface (CGI) or "PHP: Hypertext Preprocessor," or a programming component.

In a Java-based web server, the programming component that handles the request is either a servlet
or a JSP page. Application developers implement programs that adhere to either the servlet or JSP
programming contracts to handle requests and generate responses to clients.

SOAP is a remote-object protocol that uses HTTP to transmit requests and receive responses. A web
server that supports SOAP provides a layer of processing that interprets SOAP messages, presents
them to servlets for processing, and formats the responses for clients.

A server that supports servlet and JSP pages implements a web container that is responsible for
managing the lifecycle of servlets and JSP pages, receiving and decoding MIME-type HTTP requests,
and formatting MIME-type HTTP responses.

The details of parsing requests and formatting responses will vary based on whether the servlet uses
pure HTTP or SOAP, but these details are beyond the scope of this book. Here, we focus on the
programming interface to the JDO persistence layer.

To implement a servlet that handles HTTP requests, you extend a base class, HttpServlet, provided
by the container implementation. You implement init() and destroy() and override one or more
service methods, typically doGet() and/or doPost(). These methods handle the HTTP-protocol

GET and POST requests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The web container calls init() once per servlet instance it creates, and, upon successful completion

of the method, it places the servlet into service. This is your application's chance to perform any one-
time initialization that is required. You can implement your servlet as a SingleThreadModel, in which
multiple requests are dispatched to multiple servlet instances. The SingleThreadModel should be

avoided, because the servlet container has to create multiple instances for multiple simultaneous
requests.

For SingleThreadModel servlets, if the web container needs to reduce the number of active servlet
instances, it selects a servlet instance for destruction and calls destroy(). This is your last chance

to clean up any resources that might have been allocated to this servlet. After this method
completes, the servlet will no longer be used and might be garbage-collected by the JVM. Figure 16-1
shows the lifecycle of a servlet.

Figure 16-1. Servlet lifecycle

16.1.1 Accessing the PersistenceManagerFactory

The servlet programming model is inherently flexible and, theoretically, servlets could dynamically
determine which JDO resource contains the information needed to service a request. But most
servlets use the same PersistenceManagerFactory instance to service all the user requests, and

this resource does not change during the lifetime of the servlet. Therefore, the best time to acquire
the PersistenceManagerFactory and save it for future use is during the init() call. There are a

number of alternate techniques that you can use to initialize the reference to the
PersistenceManagerFactory, depending on the support for services provided by the web container.

16.1.1.1 Looking up the PersistenceManagerFactory in JNDI

If the web container is part of a J2EE server, or if it supports the JNDI (Java Naming and Directory
Interface) lookup service, you should use the JNDI lookup method and save the result in a servlet
field. The container configures the PersistenceManagerFactory at server startup and stores it by

name in the JNDI namespace.

To use this facility in a J2EE server, you need to define a resource reference in the deployment
descriptor of your web application. This resource reference is part of the servlet specification. The
resource-ref element is one of the elements contained in the web-app element (the root of the

web-application deployment descriptor):

<resource-ref>
<res-ref-name>jdo/MediaManiaPMF</res-ref-name>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<res-type>javax.jdo.PersistenceManagerFactory</res-type>
<res-auth>Container</res-auth>
</resource-ref>

Your application performs the lookup by using the initial context provided by the container. This initial
context is specific to your deployed application, so the name is scoped to your application and you
can locate resources that are bound to your application.

The name you look up uses one level of indirection. At deployment time, the deployer makes the
association between the name you specify in your application - in this case,
java:comp/env/jdo/MediaManiaPMF - and the actual resource that is registered in the server. The

details of this deployment step are not standardized, but the indirection allows you to hardcode the
resource name and allow the server to bind it to a resource dynamically at deployment time.

This indirection allows multiple applications to use the same hardcoded JNDI name to refer to
different resources, as well as multiple applications to use different hardcoded JNDI names to refer to
the same resource:

 PersistenceManagerFactory persistenceManagerFactory;
 String pmfName = "java:comp/env/jdo/MediaManiaPMF";
 public void init(ServletConfig config) throws ServletException {
 try {
 super.init(config);
 Context ic = new InitialContext();
 persistenceManagerFactory = (PersistenceManagerFactory)
 ic.lookup(pmfName);
 } catch (NamingException ex) {
 throw new ServletException("Unable to locate PMF resource: " +
 pmfName);
 }
 }

The server configures the PersistenceManagerFactory at server startup by a server-specific

process. Typically, you configure the URL, username, password, and other properties in an XML-
formatted file, and when you look up the resource by name, you get the configured resource. You
cannot use any of the set() methods of PersistenceManagerFactory to change the properties. If
you need to set specific properties, you use the set() methods of the individual components
(Transaction, Query, or PersistenceManager) after you get the PersistenceManager.

16.1.1.2 Constructing the PersistenceManagerFactory from Properties

If you run your servlet outside a J2EE environment and the web container does not support JNDI,
you construct and initialize a PersistenceManagerFactory much as you would in a two-tier
environment. Instead of hardcoding the properties of the PersistenceManagerFactory, we
recommend that you load a Properties instance identified by a configuration file stored in the WEB-

INF directory in the deployed application. This way, you can change the resource without changing
any code in your servlet. Simply change the properties file packaged in the war file. This example of
initialization is from the servlet named MovieInfo in the com.mediamania.appserver package:

public class MovieInfo extends HttpServlet {
 PersistenceManagerFactory persistenceManagerFactory;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PersistenceManager pm;

 public void init() throws ServletException {
 try {
 ServletContext ctx = getServletContext();
 InputStream in = ctx.getResourceAsStream("WEB-INF/pmf.properties");
 Properties props = new Properties();
 props.load(in);
 persistenceManagerFactory =
 JDOHelper.getPersistenceManagerFactory(props);
 } catch (IOException ex) {
 throw new ServletException("Unable to locate PMF resource.");
 }
 }

The pmf.properties file in this example has the same contents as the properties file used in a two-tier
application:

javax.jdo.PersistenceManagerFactoryClass:com.sun.jdori.fostore.FOStorePMF
javax.jdo.option.ConnectionURL:fostore:/shared/databases/jdo/dbdir
javax.jdo.option.ConnectionUserName:craig
javax.jdo.option.ConnectionPassword:faster
javax.jdo.option.Optimistic:true
javax.jdo.option.NontransactionalRead:true

16.1.2 Servicing Requests

After your servlet has been initialized, the web container sends incoming requests to it. The web
container dispatches each incoming HTTP request to service(), which is implemented by the
HttpServlet base class to call one of the HTTP service methods (doGet() or doPost())
implemented by your servlet class. The following is a typical implementation of doGet() and
doPost(), which both delegate to processRequest(). This implementation is not standard, but it
is a common pattern used by tools that create servlets; it is part of the MovieInfo class.

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 processRequest(request, response);
 }
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 processRequest(request, response);
 }
 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 pm = persistenceManagerFactory.getPersistenceManager();
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 out.println("<html>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 out.println("<head>");
 out.println("<title>Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.print(formatMovieInfo());
 out.println("</body>");
 out.println("</html>");
 out.close();
 pm.close();
 }

16.1.3 PersistenceManager per Request

The following method actually performs the application-specific processing that requires the
PersistenceManager. Implementing JDO datastore access as a method in the servlet is not
recommended; it is presented only as an example. Note that the PersistenceManager is obtained
from the PersistenceManagerFactory at the beginning of the processRequest() method and is

closed at the end of the method. This pattern, known as PersistenceManager per Request, is a typical
use of PersistenceManager in managed environments. If the request contained multiple methods,
they would all use the same PersistenceManager.

 protected String formatMovieInfo() {
 StringBuffer result = new StringBuffer();
 Extent movies = pm.getExtent(Movie.class, true);
 Iterator it = movies.iterator();
 while (it.hasNext()) {
 result.append("<P>");
 Movie movie = (Movie)it.next();
 result.append(movie.getDescription());
 }
 return result.toString();
 }

16.1.4 PersistenceManager per Application

The PersistenceManager per Request pattern is the most common and arguably the most scalable
approach to managing PersistenceManager instances. Another approach, PersistenceManager per

Application, may offer better performance in certain situations.

With this pattern, there is a single PersistenceManager for all servlets and all requests in the

application. This approach might be good for read-only applications that use a relatively small
number of persistent instances and don't need transactions. Since multiple threads can execute
request methods simultaneously, access to the PersistenceManager must be carefully controlled.
Either the application needs to serialize access, or the PersistenceManager needs to have the
Multithreaded property set to true.

You should keep the number of instances small to avoid growing the cache. With the
PersistenceManager per Request pattern, most objects can be garbage-collected as soon as the
request is done. But with a single PersistenceManager, newly instantiated instances in the cache

tend to stay around for a long time. While the JDO implementation holds only a weak reference to
persistent instances in the cache, managing the weak references might be a challenge for the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

garbage collector.

You should avoid transactions, because while one thread is committing a transaction, no other thread
can access the cache. Even with the Multithreaded property set to true, only one thread can access
the PersistenceManager during commit. The benefits of having cached instances can be

overshadowed by poor concurrency during commit.

16.1.5 PersistenceManager per Transactional Request

If most requests are nontransactional, with a small number of transactional requests (insert, delete,
or update), you can consider combining the common PersistenceManager approach with

PersistenceManager per Transactional Request. This allows you to navigate the graph of persistent
instances in the common cache to find the instance that needs to be updated, and then use a new
PersistenceManager obtained from the same PersistenceManagerFactory to perform the

transaction.

16.1.6 PersistenceManager per Session

Another approach for managing the PersistenceManager is to create a PersistenceManager and

store it in a session attribute. While this makes some of the programming easier, it has significant
disadvantages.

Implementations of the PersistenceManager generally do not support serialization, which is the

specified implementation of a persistent session state. Therefore, the application cannot be
distributable; all of the requests that are part of a session must be handled by the same server.
Further, migration of sessions in case of system failure is not possible.

These aspects of the runtime environment reduce the scalability and robustness of your application,
and we recommend that you carefully evaluate your reasons to use this pattern. As an alternative,
you can store the identity instances of persistent instances in session attributes and obtain the
persistent instances by using getObjectById() from the PersistenceManager obtained for the

request. This is a scalable technique that avoids the problems associated with storing the
PersistenceManager itself in the session state.

16.1.7 Transactions

For many requests, transactions are not required. Looking up information, browsing a datastore, or
even displaying certain types of data for particular users does not necessarily require transactional
guarantees. Thus, many requests can simply use the PersistenceManager to perform a query,

navigate to some instances of interest to satisfy the request, retrieve some persistent fields, and
close the PersistenceManager. But to add new instances, update instances in the datastore, or

delete instances, you must begin and commit a transaction.

If you are deploying your servlet outside a J2EE server and don't have access to a UserTransaction,
then you use the JDO Transaction to delimit transactions, using the begin(), commit(), and
rollback() methods discussed in earlier chapters. In this environment, you cannot combine

operations from multiple data sources into a single global transaction.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are deploying your servlet in a J2EE server, there are two mechanisms that you can use for
managing transactions. The first is to use the JDO Transaction discussed previously. Using the JDO
Transaction, your application is responsible for performing all the operations that are part of the
same transaction using the same PersistenceManager. With this approach, you cannot coordinate

transactions that involve multiple resources.

The second mechanism is to use a UserTransaction, available from the server via the JNDI lookup
method. The instance that implements a UserTransaction is created and managed by the server.
With a UserTransaction, you can demarcate J2EE transactions that span multiple data sources, and

any operations done between the beginning and completion of the J2EE transaction will be
coordinated with other operations. This allows you to use multiple resources (more than one JDO
PersistenceManager, JDBC DataSource, EJB bean method, etc.) and combine all of their operations

into one global transaction.

In order for the PersistenceManagerFactory to give you the PersistenceManager associated with
the proper J2EE transaction, you call begin() on the UserTransaction prior to getting the
PersistenceManager from the PersistenceManagerFactory. During the execution of
getPersistenceManager(), the PersistenceManagerFactory discovers that the UserTransaction
is active and automatically begins the JDO transaction for you. The JDO Transaction is marked so

that calling any of the JDO transaction completion methods is a user error. Instead, you must
complete the J2EE transaction via UserTransaction commit() or rollback(). The
PersistenceManager is also marked so that, when it is closed by your application, it waits for the
UserTransaction completion before being reused or discarded.

16.1.8 JavaServer Pages

JavaServer Pages technology provides an easy way to generate dynamic web content by embedding
actions into HTML pages. The actions are either callouts to the Java language or references to library
routines that encapsulate commonly needed functions, such as datastore access.

JSP pages allow construction of dynamic web content by using HTML editors to create prototype web
pages. The dynamic content is interpreted by the HTML editor as just another tag that can be edited
without further interpretation. With this approach, web content designers can use WYSIWYG (what
you see is what you get) web-page editors, in which the dynamic content is displayed as text.

Using JSP pages effectively requires libraries of functions, called tag libraries. There are standard tag
libraries, which include functions to access request parameters, access cookies, create and access
scoped variables, query a JDBC database, iterate collections of transient or persistent instances,
parse and transform XML documents, and display information from beans used in the JSP page.

At the time of this writing, there is no standard tag library to define access to JDO. The effort is
underway, however.

The shape of a standard tag library for JDO can be seen by examining the JDBC tag library. There are
tag elements to establish the factory, query the datastore, and demarcate transactions.

Until a standard tag library is available for JDO, code JSP pages using JDO with native Java code
callouts from the page.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

16.2 Struts with JDO

Struts is a component framework developed as an open source project (under the auspices of the
Jakarta Apache project) to ease development of scalable web-tier applications. Struts defines an
updated Model-View-Controller pattern (called MVC2) for implementing web-based applications. It
also defines servlet and JSP components as either views or controllers, with the model implemented
as business objects accessible to both view and controller components.

Views are either servlets or JSP pages that provide the HTML-generation end of the process.
Controllers are usually servlets and provide the flow control and delegation to the business objects.
Many common patterns for generating web-based forms are implemented in Struts as base classes,
making construction of complex forms-based applications easy.

When using JDO with Struts, the issues are the same as with generic servlet and JSP pages. The
PersistenceManagerFactory (or multiple instances of PersistenceManagerFactory) used with the

application is constructed at server or application startup, and each component that needs JDO
services needs to access the PersistenceManagerFactory in order to get the PersistenceManager

used in the business logic.

Struts 1.1 does not include direct support for JDO, but it provides a flexible way to configure the
controller servlet: by defining PlugIn classes that are initialized when the web container loads the
Struts servlet. You can exploit this Struts feature by writing a JDOPlugIn class for JDO that manages
the PersistenceManagerFactory. A Struts PlugIn class has an init() method invoked at servlet
initialization, a destroy() method invoked at server shutdown, and an arbitrary number of

configuration methods.

At servlet initialization, the Struts framework creates an instance of PlugIn for each plug-in
element found in the struts-config.xml file in the application's war file. For each set-property
element found in the plug-in element, the framework configures the PlugIn by calling the
corresponding PlugIn method, following the JavaBeans get/set pattern. After configuring the PlugIn,
the framework calls init() to have the PlugIn perform the initialization.

The following sample implementation of JDOPlugIn uses three properties: name, path, and
jndiName, corresponding to the methods setName(String), setPath(String), and
setJndiName(String), respectively. name is the name under which the PlugIn registers the
PersistenceManagerFactory; it is required. path is the pathname where the properties file is
located in the war file. jndiName is the JNDI name under which the PersistenceManagerFactory
was registered by a server-specific process at server startup. One of path and jndiName is required.
The following code shows the field declarations and the set() methods:

public class JDOPlugIn implements PlugIn {
 private ServletContext ctx;
 private String name;
 private String path;
 private String jndiName;
 public JDOPlugIn() {
 }
 public void setName(String name) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 this.name = name;
 }
 public void setPath(String path) {
 this.path = path;
 }
 public void setJndiName(String jndiName) {
 this.jndiName = jndiName;
 }

The init() method uses these helper methods to locate or construct the
PersistenceManagerFactory:

 private PersistenceManagerFactory
 getPersistenceManagerFactoryFromPath(String path)
 throws IOException {
 Properties props = new Properties();
 InputStream in = ctx.getResourceAsStream(path);
 props.load(in);
 return JDOHelper.getPersistenceManagerFactory(props);
 }
 private PersistenceManagerFactory
 getPersistenceManagerFactoryFromJndi(String jndiName)
 throws NamingException {
 Context ic = new InitialContext();
 return (PersistenceManagerFactory) ic.lookup(jndiName);
 }

The init() method determines whether to load the PersistenceManagerFactory from a properties
file using the path property or to look up the PersistenceManagerFactory from JNDI. It then puts
the PersistenceManagerFactory into the servlet context using the given name:

 public void init(ActionServlet servlet, ModuleConfig config)
 throws ServletException {
 ctx = servlet.getServletContext();
 if (name == null || name.length() == 0) {
 throw new ServletException
 ("You must specify name.");
 }
 try {
 PersistenceManagerFactory pmf;
 if (path != null) {
 pmf = getPersistenceManagerFactoryFromPath(path);
 } else if (jndiName != null) {
 pmf = getPersistenceManagerFactoryFromJndi(jndiName);
 } else {
 throw new ServletException
 ("You must specify either path or jndiName.");
 }
 ctx.setAttribute(name, pmf);
 } catch (Exception ex) {
 throw new ServletException(
 "Unable to load PMF: name:" + name +

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ", path: " + path +
 ", jndiName: " + jndiName,
 ex);
 }
 }

To use the JDOPlugIn, add elements to the struts-config.xml file. For each
PersistenceManagerFactory you want to use in your Struts application, add a new plug-in
element to the file, with set-property elements:

 <plug-in className="com.mediamania.appserver.JDOPlugIn">
 <set-property property="name" value="jdo.Movies"/>
 <set-property property="path" value="WEB-INF/jdoMovies.properties"/>
 </plug-in>
 <plug-in className="com.mediamania.appserver.JDOPlugIn">
 <set-property property="name" value="jdo.Accounting"/>
 <set-property property="path" value="WEB-INF/jdoAccounting.properties"/>
 </plug-in>

Once the PlugIn has initialized one or more PersistenceManagerFactory instances, any Struts
Action component associated with the ActionServlet can access them by name. Typically, these
will be classes acting as controllers executing business logic. The execute() method in these classes
gets the PersistenceManagerFactory by name from the servlet context, gets the
PersistenceManager, performs whatever business logic is required, commits or rolls back the
transaction, closes the PersistenceManager, and returns control to the Struts framework. For
example, the execute() method might take a Movie name from the context as a movieName
attribute, look up its description, and put the description into the context as a movieDescription

attribute:

public class LookupMovieAction extends Action {
 PersistenceManagerFactory pmf = null;
 PersistenceManager pm = null;
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws Exception {
 try {
 ServletContext ctx = getServlet().getServletContext();
 pmf = (PersistenceManagerFactory)ctx.getAttribute("jdo.Movies");
 pm = pmf.getPersistenceManager();
 Query q = pm.newQuery(Movie.class, "title == param1");
 q.declareParameters ("String param1");
 String movieName = request.getParameter("movieName");
 Collection movies = (Collection)q.execute(movieName);
 Movie movie = (Movie)movies.iterator().next();
 String description = movie.getDescription();
 ctx.setAttribute("movieDescription", description);
 } catch (JDOException e) {
 } finally {
 if (pm != null) {
 pm.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 pm = null;
 }
 return (mapping.findForward("success"));
 }
}

A typical cycle of Struts processing in the web server involves several interactions between the
browser and the web server. In the following sequence, "ACTION" represents a Struts Action

component and "JSP" represents a JSP page:

HTTP request arrives at server.1.

ACTION - initialize session (no JDO access).2.

JSP - display page (includes an input form).3.

HTTP response sent back to user.4.

User fills in form.5.

HTTP request arrives at server.6.

ACTION - update datastore based on the submitted form (transactional update).7.

ACTION - read datastore and set up for next page (possibly nontransactional access).8.

JSP - display page (includes another input form).9.

HTTP response sent back to user.10.

Repeat steps 5 through 10 until the logical conclusion of the interaction ("Thank you for your
order") or the user goes away and the session expires.

11.

User fills in form.12.

HTTP request arrives at server.13.

ACTION - update datastore based on the submitted form (transactional update).14.

JSP - display page (no input form).15.

HTTP response sent back to user.16.

With this pattern, each ACTION gets the configured PersistenceManagerFactory appropriate for the

usage (transactional or nontransactional) and executes the business logic appropriate for that action.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Chapter 17. J2EE Application Servers
Application servers provide a reliable, scalable, and secure environment in which applications
execute. In the Java context, an application server is a platform that implements the J2EE (Java 2
Enterprise Edition) contracts to support applications.

Because of security concerns, many web sites do not allow servers directly facing the Internet to
handle business transactions directly. Instead, web servers delegate the more important transactions
to an application server isolated from the Internet by firewalls and/or additional layers of code. This
architecture minimizes the threat of attacks on the core business infrastructure.

Application servers provide functionality defined strictly by the J2EE platform, typically a superset of
functionality provided by web servers. In addition to supporting applications written to the Servlet
and JSP contracts, application servers support the EJB (Enterprise JavaBeans) architecture, allowing
application-server components to be written as distributed objects. Trusted clients and servlets and
JSP pages running in the same or different servers can access these objects directly.

An application server that implements the J2EE contracts also provides a number of services required
by applications. There are many more services available, but the following are the most important
from the JDO developer's viewpoint:

JDBC

Provides access to datastores via a standard protocol.
JNDI (Java Naming and Directory Interface)

Provides a binding between names of services and the instances that implement those services.
For example, the name of a JDBC DataSource resource might be
java:comp/env/jdbc/HumanResources and its implementation might be a DataSource bound

to the human-resources database.
JTS (Java Transaction Service)

Coordinates local and distributed transactions to guarantee the atomicity of transactions that
span different resources and processes.

JavaMail

Provides a programming interface to create and send email messages.
JMS (Java Message Service)

Offers a means for applications to send and receive asynchronous messages in transactional
contexts.

The EJB architecture is a component architecture for developing and deploying distributed business
applications. In this chapter, we take a look at some common design patterns for implementing
multitier applications. This book is not intended to be a reference for patterns, but the examples
illustrate some popular access methods.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.1 Enterprise JavaBeans Architecture

EJB components are similar to servlets/JSP pages in that remote access is built-in. You don't need to
write any remote infrastructure to implement multitier architecture designs. Declaring a bean to be
remote generates all of the code required to make the bean run remotely. Just as the HTTP protocol
mediates remote access for web-based clients, the SOAP and/or RMI/IIOP protocols enable remote
access for EJB components. Using standard remote protocols allows you to focus development on the
application logic instead of protocol-handling.

But there are two significant differences between servlets/JSP pages and EJB components.

First, declarative transactions and distributed transactions are built into EJB components. As an
application developer, you don't need to code transactions explicitly into your application logic.
Transactions are applied to applications declaratively, not embedded into code. During application
assembly, the assembler specifies the transaction attributes of each method. Assembly combines
application components into larger applications and preserves transaction semantics. Distributed
transactions (transactions that include multiple resource managers) are handled for your application
as transparently as local transactions (those that involve only one resource manager).

Second, security is built into EJB components. You don't need to write security protocols or worry
about credentials. Methods and resources are declared to require security checks; these are
administration issues, not programming concerns. Similar to method-transaction associations,
methods that require a specific security context are identified during application assembly.

The flexibility of transaction and security associations come at a cost. Each time a method is
executed via the local or remote interface, the container checks the transaction and security
requirements of the method against the current thread's transaction and security context.

EJB components come in four flavors:

Stateless session beans

Stateless session beans are the simplest enterprise beans. They have no fixed association with
any particular client. They serve as message endpoints to service clients for execution of
remote or local methods defined in an interface. The interface typically defines a service
contract with clients. Each business method is self-contained and doesn't rely on the results of
any previous method.

Stateful session beans

Stateful session beans are service endpoints created on behalf of specific clients for execution
of remote or local methods defined in an interface. They implement conversational behavior
with clients. Results of business methods can be stored in the bean for use by subsequent
business methods.

Entity beans

Entity beans model a persistent entity, which might be a record or row in an enterprise
information system (EIS) or relational database, or a collection of related records. Entity beans
are identified by a primary key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Message-driven beans

Message-driven beans serve as the endpoint for a queue or topic to a Java Message Service
(JMS) or some other messaging implementation. They implement synchronous or
asynchronous queued service requests.

Your applications can exploit JDO as a component for integration into EJB architecture servers in
conjunction with other components. Servlets, JSP pages, session beans (both stateful and stateless),
and message-driven beans can use JDO persistent classes to implement business objects, either
directly as data-access objects (DAO) or through business delegates.

We start the discussion of high-level architecture by reviewing two aspects of our Media Mania
application: casual browsing of the offerings in the store and business transactions, such as purchase
or rental of media. The front end to both of these is the Web, but for business transactions we
delegate to the EJB tier.

In Chapter 16, we discussed some techniques for accessing persistent data from JDO instances.
Using a combination of servlets and JSP pages, clients can browse the offerings of the store, and the
servlets/JSP pages maintain persistent information about their items while shopping. Once a
collection of items has been selected for purchase or rental, we want to complete the transaction and
we choose to implement the business logic using EJB components.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.2 Stateless Session Beans

For our example, we assume that the web tier of the Media Mania store handles the interactions with
the customer while he is browsing and shopping. The web tier manages the customer's name and
contents of his cart. The web tier might manage the cart using persistent classes or simply maintain
the cart as a session state. When the customer chooses to check out, the web tier delegates this
important function to the EJB tier of the application.

For this purpose, we implement a stateless session bean, called CashierBean, with a checkout()

business method. We use the stateless-session-bean pattern because it best models the semantics of
a store cashier. During the time a customer is checking out, the cashier devotes all of her time to
that customer. Once a customer walks away from the cashier, the cashier forgets all about that
customer in order to help the next one. Any information needed from the transaction must be stored
persistently during the interaction with the customer.

A stateless session bean is the most efficient type of bean for this purpose because there is no client
state that needs to be maintained between business methods. Any currently idle bean can service
any incoming request from any client. Therefore, these beans can be managed by the application
server easily, based on workload. If more requests arrive for a particular type of bean than there are
beans available, the server can create more quickly. Similarly, if there are too many idle beans, they
can quickly be destroyed because there is no persistent state to save.

17.2.1 Configuring the PersistenceManagerFactory

When you develop a session bean that uses JDO, you associate each instance of the bean with an
instance of the PersistenceManagerFactory that you look up when you initialize the session bean
during setSessionContext().

The bean class contains instance variables that hold the associated PersistenceManager and
PersistenceManagerFactory.

public class CashierBean implements javax.ejb.SessionBean {
 private javax.ejb.SessionContext context;
 private PersistenceManagerFactory pmf;
 private PersistenceManager pm;
 private static String pmfName = "java:comp/env/jdo/MediaManiaPMF";

When the container calls setSessionContext() to initialize the bean, we look up the
PersistenceManagerFactory via JNDI. The name of the PersistenceManagerFactory is hardcoded
into the bean, but JNDI uses an indirection to find the actual PersistenceManagerFactory. The
PersistenceManagerFactory represents the same datastore for all beans sharing the same
datastore resource. This allows the PersistenceManagerFactory to manage the association between
the distributed transaction and the PersistenceManager:

 public void setSessionContext(javax.ejb.SessionContext aContext) {
 context = aContext;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 Context ic = new InitialContext();
 pmf = (PersistenceManagerFactory)ic.lookup(pmfName);
 } catch (NamingException ex) {
 throw new EJBException("setSessionContext", ex);
 }
 }

This simple bean uses only one PersistenceManagerFactory. If your application requires more than
one PersistenceManagerFactory, each of them should be looked up during setSessionContext()

and saved into its own field.

During assembly of the application, the assembler defines the resource-ref element in the session
element that describes the CashierBean in the ejb-jar.xml file. The resource-ref identifies the
PersistenceManagerFactory as a resource; the res-ref-name is the JNDI name in the session

bean's JNDI context:

<resource-ref>
 <res-ref-name>jdo/MediaManiaPMF</res-ref-name>
 <res-type>javax.jdo.PersistenceManagerFactory</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

During deployment of the bean, the deployer associates the res-ref-name given in the deployment
descriptor with the actual PersistenceManagerFactory constructed by a server implementation-

specific process. The association is indirect; the name coded into the application is in the session
bean's JNDI context and is mapped to the actual resource name. This allows different applications to
use the same name to refer to different resources or to use different names to refer to the same
resource.

The server-resource configuration process, while not standard, typically requires the deployer to write
a server-resource definition file containing the PersistenceManagerFactory class name, properties,

and JNDI lookup name. For example:

<persistence-manager-factory-resource>
 <jndi-name>jdo/MediaManiaPMF</jndi-name>
 <factory-class-name>com.sun.jdori.FOStorePMF</factory-class-name>
 <property key="ConnectionURL" value="fostore://mmserv/MediaManiaDB"/>
 <property key="ConnectionUserName" value="fortune"/>
 <property key="ConnectionPassword" value="silence"/>
</persistence-manager-factory-resource>

The server typically implements the resource configuration at server initialization by getting the
factory class name as a String and obtaining a corresponding class instance using Class.forName(
). The server turns each property's name in the property list into a method name by using the
JavaBeans pattern of capitalizing the first character of the property name and prepending set to the
name. Then, the server looks up the method using Class.getMethod() and invokes the method

with the property value as a parameter. After the server sets all properties, it binds the configured
object to the name specified in the jndi-name element. This binding allows the bean's
Context.lookup() method in setSessionContext() to find the resource during server operation.

We continue the implementation of our bean with the business method. The signature of the
checkout() method is complex, but it illustrates a best practice for remote methods. Instead of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

decomposing the checkout process into several methods, the single checkout() method takes as

parameters all the information needed to perform the operation. The benefit of this decomposition is
that the transaction and security checks occur only once per checkout, regardless of the number of
items checked out.

The only initialization we assume in Example 17-1 is that the pmf field has the appropriate
PersistenceManagerFactory for this application.

Example 17-1. The CashierBean checkout method

public void checkout(
 java.lang.String lastName,
 java.lang.String firstName,
 java.util.Collection rentals,
 java.util.Collection purchases)
 throws java.rmi.RemoteException {
 PersistenceManager pm = pmf.getPersistenceManager(); [1]
 Customer customer = StoreQueries.getCustomer(pm, firstName, lastName); [2]
 Iterator it = rentals.iterator();
 while (it.hasNext()) {
 RentalValueObject rvo = (RentalValueObject)it.next();
 RentalItem ri = StoreQueries.getRentalItem [3]
 (pm, rvo.serialNumber);
 Rental rental = new Rental(customer, new Date(), ri);
 customer.addTransaction(rental);
 customer.addRental(rental);
 }
 it = purchases.iterator();
 while (it.hasNext()) {
 PurchaseValueObject pvo = (PurchaseValueObject)it.next();
 MediaItem mediaItem = StoreQueries.getMediaItem([4]
 pm, pvo.title, pvo.format);
 Purchase purchase = new Purchase(customer, new Date(), mediaItem);
 customer.addTransaction(purchase);
 }
 pm.close(); [5]
}

We use static methods defined in StoreQueries to find the Customer by first and last name (line
[2]), find a RentalItem by serial number (line [3]), and find a MediaItem by title and format (line

[4]). This static-method pattern allows us to keep the application classes free of any references to
the JDO interfaces. Of course, when you design your persistent classes, you may find it useful to put
these finder methods directly into the persistent classes.

In the checkout() method, the customer is identified uniquely by first name and last name, and the

rentals and purchases are represented by collections of value objects.

A value object is a design pattern for representing complex data that can be serialized and sent by
value from one process to another. In our case, the value objects are used only to hold data values;
all the information needed to identify a specific rental or purchase item is contained in the
corresponding value object. Since the data elements need no abstraction, the value-object classes
are implemented to have no behavior and all their fields are public. The compiler generates a public

http://lib.ommolketab.ir
http://lib.ommolketab.ir

no-arg constructor for each class:

public class MediaValueObject
 implements java.io.Serializable {
 public String title;
}
public class RentalValueObject extends MediaValueObject {
 public String serialNumber;
}
public class PurchaseValueObject extends MediaValueObject {
 public String format;
}

The strings and value objects in the parameter list of the checkout() method can be serialized and

sent by value using any of a number of protocols, including SOAP, RMI, and IIOP. The details of
which protocol is used are not important to the implementation of the business logic.

17.2.2 Stateless Session Beans with Container-Managed Transactions

In the checkout() method, we update the datastore and insert new instances. Therefore, we need

to have an active JDO transaction. The simplest implementation technique is to use container-
managed transactions, in which the container manages the transactions for us. In order for the
container to begin a new transaction for the business method automatically, the deployer must
declare in the deployment descriptor that the business method requires transactions. This descriptor
specifies that checkout() requires an active transaction, and the container will start a transaction if
one is not already active. The container-transaction element is contained in the assembly-
descriptor element of the ejb-jar element in the ejb-jar.xml file:

<container-transaction>
 <method>
 <ejb-name>CashierBean</ejb-name>
 <method-name>checkout</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
</container-transaction>

Because we marked the checkout() method in the deployment descriptor of the CashierBean with
trans-attribute given the value Required, the checkout() method has transactional behavior.
Before the container calls the method, it automatically obtains a UserTransaction and begins a

transaction if one is not already in progress. This gives maximum flexibility for the reuse of
components. If a new component is implemented with a method defined as requiring transactions,
the new method can call the checkout() method and the container will simply verify that there is

already a transaction in progress.

When the checkout() method calls getPersistenceManager() on the
PersistenceManagerFactory (on line [1] of Example 17-1), the JDO implementation determines
the UserTransaction associated with the thread of control of the caller and checks if there is an
active transaction. If there is already a PersistenceManager associated with an active
UserTransaction, the JDO implementation returns it. If not, the JDO implementation constructs a
new PersistenceManager, associates it with the active UserTransaction, and begins the JDO
Transaction in which we perform all of the queries and updates.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When we close the PersistenceManager (on line [5] of Example 17-1), all of the changed and new
instances remain in the PersistenceManager cache. The PersistenceManager will remain active

until the container completes the transaction. In this case, the container completes the transaction as
soon as the checkout() method returns. Since we are using container-managed transactions, we
never use the JDO Transaction methods.

Now, we fill in the required methods according to the EJB specification for stateless session beans.
The ejbActivate() and ejbPassivate() methods are used for stateful session beans, and the
ejbCreate() and ejbRemove() methods are empty since there is no special behavior required

when creating or removing our stateless session bean:

public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}
public void ejbCreate() {
}

Now that we have seen how to implement a simple session bean using JDO, we will describe the
lifecycle and special requirements for all kinds of session beans. Figure 17-1 shows the lifecycle for
stateless session beans.

Figure 17-1. Stateless session bean lifecycle

The fields of a JDO session bean of any type include:

A reference to the PersistenceManagerFactory, which is initialized by the
setSessionContext() method. This method looks up the PersistenceManagerFactory by

JNDI access to the object identified in the deployment descriptor.

A reference to the PersistenceManager, which is acquired by each business method and closed

at the end of the business method.

A reference to the SessionContext, which is initialized by the method setSessionContext().

17.2.3 Stateful Session Beans with Container-Managed Transactions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Stateful session beans are service objects that are created for a particular user, and they may have a
state associated with that user between business methods. A business-method invocation on a
reference to a stateful session bean is dispatched to the specific instance created by the user.

The timeworn example of a stateful session bean is the online shopping cart; the cart that keeps
track of all the items purchased at an online purveyor contains all the information needed when you
go to check out. Every item you have picked from the shelves and all the special discounts you've
chosen are put into the cart. No matter when you stop shopping or when you return, your cart still
contains the items that you put into it.

But the burden of managing the cart belongs to the server. And, since stateful session beans are
created for a specific user, the beans' state takes up precious memory space. If the cart's owner
doesn't use the cart for an extended period of time, the server has to deal with storing the contents
persistently.

There are a number of other implications that you should consider before using stateful session
beans:

The create method for the stateful session bean can take parameters specific to the intended
use, so you can create beans with different behavior based on create parameters. A stateless
session bean has only one create method, and therefore only one type of bean may be created.

The bean is dedicated to the particular user and is therefore bound to a specific server process.
Load-balancing techniques, if implemented by the server at all, are complicated and may
require special deployment descriptors.

If the server needs to manage memory usage in the JVM, it can passivate the bean, but only
after a potentially expensive serialization process to persistent storage (usually a file in a local
directory). Management of this memory and persistent storage can be a significant resource
drain on the server. Because memory and persistent storage are scarce resources, the lifecycle
allows the server to destroy a bean that has not been used for some amount of time, called the
timeout period. After the timeout period expires, your bean might be destroyed without notice.

Implementing the ejbActivate() and ejbPassivate() methods is your responsibility as the
bean developer. Any state that can't simply be serialized must be saved at ejbPassivate()
and restored at ejbActivate(). Although ejbPassivate() will not be called while a

transaction is active, the bean might time out, and your implementation must take this into
account.

You can't preserve a JDO state using serialization, as JDO implementations don't support
serialization for JDO-implementation artifacts such as those that implement
PersistenceManager and Transaction. This means that your bean can save only the object

identities of persistent instances, not object references, and your bean then has to restore them
using getObjectById() in business methods.

Otherwise, the behavior of stateful session beans using container-managed transactions is the same
as for stateless session beans. In particular, all business methods in the bean interface acquire a
PersistenceManager at the beginning of the method and close it at the end of the method.

Figure 17-2 shows the lifecycle of a stateful session bean.

Figure 17-2. The lifecycle of a stateful session bean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.3 Bean-Managed Transactions

Bean-managed transactions offer the stateless session bean developer additional flexibility, but at the
cost of additional complexity.

There are two alternate techniques for demarcating transaction boundaries in your bean code: use
the server's javax.transaction.UserTransaction or use the PersistenceManager's
javax.jdo.Transaction. If you use UserTransaction, you can begin and complete distributed
transactions managed by the server's TransactionManager. If you use JDO's Transaction, you

begin and complete local transactions that are managed completely by the JDO implementation,
without any help (or interference) from the container.

17.3.1 javax.transaction.UserTransaction

To use UserTransaction, you obtain it via getUserTransaction() from the SessionContext
instance, begin the transaction, and then obtain the PersistenceManager from the
PersistenceManagerFactory. During getPersistenceManager(), the
PersistenceManagerFactory will automatically associate the PersistenceManager with the active
UserTransaction.

When your bean invokes methods of beans that use container-managed transactions, the container
automatically associates transactional resources used by the other beans in the current
UserTransaction. The transactional resources can be JDO PersistenceManagers, JDBC
Connections, or connector resources.

If you require nontransactional access to JDO, you must obtain the PersistenceManager when the
UserTransaction is not active. After beginning a UserTransaction, if your application needs a
PersistenceManager for transactional access, a different PersistenceManager must be obtained for
this purpose. Your application must keep track of which PersistenceManager is being used for which
purpose. Once you complete the UserTransaction by calling commit() or rollback(), the
PersistenceManager associated with that transaction can no longer be used.

Consider the following code fragment, in which ctx is the SessionContext instance:

UserTransaction utx = ctx.getUserTransaction();
PersistenceManager pm1 = pmf.getPersistenceManager();
utx.begin();
PersistenceManager pm2 = pmf.getPersistenceManager();
PersistenceManager pm3 = pmf.getPersistenceManager();
utx.commit();
PersistenceManager pm4 = pmf.getPersistenceManager();
PersistenceManager pm5 = pmf.getPersistenceManager();
utx.begin();
PersistenceManager pm6 = pmf.getPersistenceManager();
PersistenceManager pm7 = pmf.getPersistenceManager();
utx.commit();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, pm1, pm4, and pm5 are references to unique instances of PersistenceManager, and
transaction completion is managed independently by each of the associated Transaction instances.
pm2 and pm3 are references to the same instance, and transaction completion is controlled by the utx
instance. pm6 and pm7 are references to the same instance, and transaction completion is controlled
by the utx instance.

17.3.2 javax.jdo.Transaction

As the bean developer, if you choose to use the same PersistenceManager for multiple serial
transactions, you must demarcate transaction boundaries by using the javax.jdo.Transaction
instance associated with the PersistenceManager. Obtaining a PersistenceManager without having
an active UserTransaction results in your being able to manage transaction boundaries via begin(
), commit(), and rollback() of javax.jdo.Transaction. In this mode, the JDO implementation
does not access UserTransaction.

Your bean can invoke methods of beans that use container-managed transactions, but since the
container doesn't know about JDO transactions, it cannot automatically associate transactional
resources used by the other beans in the transaction.

17.3.3 Stateless Session Beans with Bean-Managed Transactions

You establish transaction boundaries using one of the techniques detailed in the previous section, but
the bean's state (including the PersistenceManager) cannot be retained across business-method
boundaries. Therefore, each business method must obtain a PersistenceManager and close it before

it returns.

17.3.4 Stateful Session Beans with Bean-Managed Transactions

The major difference between stateful and stateless session beans with bean-managed transactions
is that with stateful session beans you can save states between method invocations, including
PersistenceManager, and you can even keep transactions active. However, we recommend that you

do not keep transactions open between business methods.

If you use UserTransaction, the server knows that the transaction is open at the end of the

business method and it will leave the bean in a state that cannot be passivated. Since the bean can't
be passivated, it will continue to tie up server resources until the timeout period elapses. If the server
does time out the bean, the server automatically rolls back the transaction and you lose everything in
the current transaction.

If you use JDO Transaction instead, the server might not even be aware of your transaction and
might passivate the bean. In this case, you have to close the PersistenceManager in
ejbPassivate(), since the PersistenceManager cannot be serialized. Again, you lose the current

transaction.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.4 Message-Driven Beans

Message-driven beans are quite similar to stateless session beans. Both are stateless, and with each
method call, the container establishes a transaction context based on the deployment-descriptor
transaction attribute for the message-listener methods.

Message-driven beans implement the MessageDrivenBean interface for lifecycle callbacks and a

message-listener interface for business methods that is specific to the type of message provider with
which the bean is used. Message-driven beans used with the JMS MessageListener interface have
only one business method, onMessage(), that takes one parameter: an instance of
javax.jms.Message. Those that are used with another message provider must implement all of the

methods of the corresponding message-listener interface. The interaction with JDO is the same in all
cases.

The lifecycle of a message-driven bean (shown in Figure 17-3) is as simple as a stateless session
bean. To use JDO with message-driven beans, your application uses the setMessageDrivenContext(
) method to save the context and look up and save the PersistenceManagerFactory.

Figure 17-3. The lifecycle of a message-driven bean

To process the message-listener method, your application code obtains a PersistenceManager from
the PersistenceManagerFactory and handles the message, performing JDO accesses as required.
At the end of the business method, you close the PersistenceManager.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

17.5 Persistent Entities and JDO

In the J2EE environment, you have a choice of using native file I/O, serialization, JDBC, entity beans,
session beans, or JDO persistent classes as the implementation strategy for persistence of your
application object model (persistent entities). In many cases, you can use more than one strategy in
the same application.

File I/O and serialization based on files are not robust or scalable enough for application-server use
beyond trivial storage of a simple class state, and we will not describe these options further. The
choice between the other strategies depends on your requirements for the persistence abstraction.

17.5.1 Local Persistent Storage

Using JDBC or JDO directly allows your application to store entities using a local-persistence interface
with minimum security and transaction-association options. That is, the security context of the caller
of each business method governs access to the resources, and the transaction context of the caller is
the transaction context of all the calls made to the local-persistence interface. In our example
implementation of CashierBean, the transaction and security checks are performed only when the
container receives an invocation on checkout() and calls your application code.

The local-persistence alternatives do not allow transparent execution of the implementation methods
in different tiers of the architecture. All calls are local and use resource managers in the same JVM as
the caller.

17.5.1.1 JDO

We have already seen how using JDO as your implementation strategy allows you to use your
application-domain object model directly, including features such as inheritance, polymorphic
relationships, dynamic queries, and modeling List and Map types. And we have already discussed in

detail the requirements of the EJB components that use JDO directly to implement business methods.

17.5.1.2 JDBC

JDBC gives you the most flexibility to customize database access and the most work to do. With
JDBC, you implement every JDBC call to create, read, update, and delete instances in the datastore.
Thus, you can handcraft the model and the datastore accesses to use all features of the datastore,
including generation of primary keys, extensions to SQL, datastore-specific types, and stored
procedures.

But this flexibility comes at a significant cost. Much of the code you write is repetitive and error-
prone. The server cannot help you by caching data, because it doesn't know the data-access patterns
of your application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You might reasonably choose to use JDBC in some specific part of your application that has
requirements that are not satisfied by other alternatives. For example, JDO doesn't provide for UNION
or GROUP BY functions available in SQL. You can implement queries that need these features by

coding the queries in SQL and using JDBC as the connection vehicle to the database.

To implement our CashierBean using JDBC, the first task is to understand the entity-relationship

model implemented in the relational database. The most interesting part of the model involves the
relationships between the Customer, MediaContent, Movie, Game, RentalItem, Transaction,
Rental, and Purchase entities. Since JDBC does not support inheritance, in order for your application

to access any of the classes modeled as subclasses, you need to code the appropriate joins into the
SQL code used for the queries, deletes, updates, and inserts.

An equally important part of the modeling task involves defining the type mapping between the SQL
types and the Java types. Most primitive types are easy to map, but others are deceptively difficult.
Strings might have as many as four natural mappings in a vendor's implementation of SQL,
depending on the access patterns and the maximum length of the string. For example, CHAR,
VARCHAR, VARCHAR2, or CLOB might be the best column-type representation for a string.

Another task is to map the database accesses into native SQL. The number of SQL statements that
you need to code can be estimated by multiplying the number of persistent classes by four or more,
and adding the number of business queries. Typically, you need at least four SQL statements per
class:

SELECT columns for specific rows from the table.1.

INSERT a row into the table. For subclasses, this might be multiple INSERT statements,

depending on how the inheritance is modeled.

2.

DELETE a row from the table.3.

UPDATE some columns in certain rows.4.

Without going into much more detail, creating the SQL statements and corresponding result analysis
for each class in your application domain is repetitive and error-prone. Many application
programmers faced with a reasonably complex domain model try to write a tool to help with this part
of the programming. Unfortunately, the result of the tool typically must be adjusted and optimized by
hand, and the resulting production classes are not easily reused in different applications.

17.5.2 Remote Persistent Storage

Your domain-model entities may have requirements that cannot be satisfied by direct access to local
persistent classes or JDBC. These requirements include:

Location independence

The location of the datastore might be different from the location of the calling business
method. This might be a factor in the scalability of the system, since adding new server
resources might require splitting the access of some datastores across servers. Defining access
to certain entities as possibly remote gives more flexibility in the system design.

Transaction association per method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When defining the domain model, you might want to define different transaction contexts for
different methods of persistent classes.

Security association per method

When defining the domain model, you might have different security requirements for different
methods of persistent classes.

17.5.2.1 Entity beans

Entity beans are used for modeling large-scale persistent instances that have a natural (intrinsic)
identity and are accessed via business methods. Entity beans have a lifecycle mandated by the EJB
specification. The lifecycle governs whether the bean has a persistent state associated with it and
whether the state might need to be synchronized with the datastore.

Entity beans use a pattern in which information from persistent storage is accessed from the
datastore, cached in the bean, and stored back in the datastore under the direction of the container.
The cached data is identified by a key, and the key can be used to access the bean from local or
remote clients.

In terms of complexity, entity beans present a more difficult challenge to the container than stateless
session beans do, but less difficult than with stateful session beans. Entity beans have a state that
has to be managed, but since the state is not associated with a specific user, the container can use
pooling techniques to maximize reuse of the beans for different transactions. Because of the difficulty
of managing the state efficiently, most container implementations offer a range of tuning options for
entity beans far beyond the options available for session beans.

Implementing the lifecycle of a bean-managed persistence (BMP) entity bean is a complex task for
the bean developer. For each required method, you need to know whether there is an identity
(primary key) associated with the bean, whether there is already a resource manager associated with
the bean, and how to represent relationships to other entity beans. Even though the lifecycle of the
bean is defined elaborately in the EJB specification, container vendors have chosen quite different
strategies to optimize performance, and some of the lifecycle events are implemented differently by
different containers. These differences are important if you want to optimize the performance of your
bean.

For example, the lifecycle defines ejbLoad() to indicate that the state of the bean should be loaded
from persistent storage. And ejbStore() indicates that the state of the bean should be stored into

persistent storage. But there is no lifecycle method to indicate that the transaction context of the
bean is changing. And the container does not indicate whether the bean's state has changed, and
therefore whether the state really needs to be stored.

Additionally, the container doesn't indicate to the bean developer why ejbStore() is called. It might

be to flush the cache so that query results are consistent, or it might be the last flush before
transaction end. The absence of information makes it impossible for the bean developer to implement
load/store optimizations.

Another example is the definition of the bean context for finder methods. In the bean's
implementation of ejbFindByPrimaryKey(), the bean contract requires that the developer establish

whether or not the bean exists in the database, which requires a database query to execute
successfully. An implementation might want to retrieve other information (e.g., state) from the
database as long as a query is required. However, there is no way in the defined lifecycle to cache

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the information retrieved by the existence query. Therefore, it is difficult to eliminate the extra query.

Once you understand the strategy of entity-bean development, the complexity of the code is
somewhat predictable and therefore lends itself to code generation. This is why we recommend that if
you choose to use entity beans to implement your persistent object model, you should use container-
managed persistence (CMP) entity beans instead of writing your own BMP entity beans.

When using CMP beans, you need to implement more methods and deployment descriptors than you
need with session beans, but fewer compared to BMP beans. And while CMP beans offer significant
portability of the code and deployment descriptors you write, there is no standard to describe the
mapping between CMP beans and the corresponding datastore persistent-data description.

To implement our CashierBean using CMP beans as delegates, the first task is to understand the

entity-relationship model implemented in the relational database. As with JDBC, the most interesting
part of the model involves the relationships between the Customer, MediaContent, Movie, Game,
RentalItem, Transaction, Rental, and Purchase entities. Since CMP beans do not directly support

the polymorphic relationships inherent in this object model, you need to change the object model to
remove these relationships.

CMP beans provide for type mapping, so you don't need to hand-code the transformations as you do
in JDBC. The container provides mapping tools that allow you to declare the association between
cmp-fields and database columns. The container handles the type conversions for you.

When using CMP beans with session beans, the application-assembly and deployment processes
become more complex. For each CMP bean used by the session bean, the deployment descriptor
must identify the bean's home and local and/or remote interfaces. The initialization of the session
bean itself in the setSessionContext() method must look up and save references to the home

interfaces for all beans that need to be accessed by finder methods.

17.5.2.2 Session beans as façades

When you have a requirement that cannot be implemented by a local persistent class directly, often
you can model an entity bean's semantics by a stateless session bean façade that itself delegates to
a JDO business delegate or data access object. In this model, each business method in the remote
interface identifies not only the operation to be performed, but also the identity of the object upon
which to perform it.

Using this pattern provides all the benefits of EJB components, with a small amount of extra work
(compared to using JDO directly). You can use this pattern to implement inheritance that maps
directly to JDO inheritance and polymorphism.

To use this pattern, analyze each method in the JDO persistent class and decide the category to
which it belongs:

Private methods

These should not be exposed to outside callers, as they might cause inconsistent state changes
if not performed as part of a larger operation. For example, city, state, and ZIP code should be
updated together in the same business method, although the individual set methods can be
implemented as private methods. The method that updates all three fields can be exposed as a
local or remote instance method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Local instance methods

These change the state of the instance in some trivial way or retrieve some trivial information.
For example, getName() and setName() should be exposed only as local instance methods.

Remote instance methods

These change the state of the instance in a large-scale way or retrieve a substantial amount of
information from the instance. You should use value objects as parameters to these methods.

Local static methods

These usually are defined in the persistent class as static and operate on a number of
instances, instead of just one. For example, query methods that find one or more instances
and return them to the caller operate on the extent of instances in the datastore. Other
methods might take a collection of instances as a parameter and perform a similar operation
on each of them.

Remote static methods

These have characteristics similar to local static methods. They include methods that operate
on multiple instances, but they exclude methods that simply find instances.

Define the remote interface to the session bean façade, if needed, to include all remote instance
methods and remote static methods of the persistent class. Declare each method to throw a
RemoteException. Modify each instance method to add an extra parameter that is the JDO identity

instance of the instance to which it applies.

Define the local interface to the session bean, if needed, to include all local instance methods and
local static methods of the persistent class. Modify each instance method to add an extra parameter
that is the JDO indentity instance of the instance to which it applies.

Implement each session-bean method that models a persistent-class instance method to obtain the
PersistenceManager, obtain the persistent instance via a call to getObjectById(), and delegate to
the persistent-class instance method. Wrap the entire method in a try-catch block. For remote
methods, if an exception is caught, throw a RemoteException with the caught exception as a nested

exception.

Implement each session-bean method that models a persistent-class static method to obtain the
PersistenceManager and delegate to the persistent class method. Wrap the entire method in a try-
catch block. For remote methods, if an exception is caught, throw a RemoteException with the
caught exception's toString() as part of the message text.

Modify methods that return references to persistent instances to return String instead, and in the
session-bean method body, translate the return instance by calling getObjectId().toString().
Similarly, modify methods that take persistent instances as parameters to take String instead, and
look up the persistent instance in the method body by calling newObjectIdInstance() and
getObjectById().

17.5.2.3 JDO or CMP?

Both CMP beans and JDO persistent classes have features that you should consider before
committing your project to use either strategy.

JDO persistent classes are suitable for modeling both coarse-grained and fine-grained persistent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instances and in an application server are typically used behind session beans. CMP beans are
typically used behind session beans; their remote behavior is seldom exploited.

JDO persistent classes can be used without recompilation in any tier of a distributed architecture and
can be debugged in a one- or two-tier environment prior to integration into a web or application
server. CMP beans can be debugged only after deployment into the application server.

Unlike servlets, JSP pages, and EJB components, there is no built-in remote behavior with JDO
classes. All of the distributed, transaction, and security policies are based on the single persistence
manager that manages all of the persistent instances of your model. This means that JDO persistent
classes can be used in any tier of a distributed application and remote behavior is implemented by
the container, not the JDO implementation.

CMP beans give you a high degree of portability across application servers. The bean class and
required deployment descriptor are standard. Most of the incompatibilities between implementations
are found in unspecified areas of mapping beans to the underlying datastore, optional features such
as read-only beans, and extensions in deployment and management of beans. JDO implementations
vary with regard to the optional features that they support.

With CMP, you identify every bean class, persistent field, and persistent relationship in the
deployment descriptor. Using JDO, you identify every persistent class in the metadata, but you can
usually take the default for the persistence of fields, including relationships.

With CMP, relationships are managed; this means that during the transaction a change to one side of
the relationship immediately affects the other side, and the change is visible to the application. JDO
does not support managed relationships, although some vendors offer them as optional features.

Inheritance is a common paradigm for modeling real-world data, but CMP beans do not support
inheritance. CMP makes a distinction between the implementation class and the bean. The abstract
bean-implementation classes and the local and remote interfaces can form inheritance relationships,
but the CMP beans that model the application's persistent classes cannot. Relationships in CMP are
between CMP beans, not implementation classes, and these relationships cannot be polymorphic. In
our example, it would be impossible for a MediaItem CMP bean to have a relationship with a
MediaContent CMP bean, because MediaContent has no instances. In order to implement this kind
of model, you would need to change the MediaItem CMP bean to have two different relationships:
one between MediaItem and Movie, and another between MediaItem and Game. You would need to

treat the relationships separately in every aspect of the bean.

The programming model used to access fields is very different between CMP beans and JDO. With
CMP beans, all persistent fields and relationships are defined by abstract get and set methods in the
abstract bean class, plus a declaration in the deployment descriptor. Access to the field value is the
responsibility of the concrete implementation class generated by the CMP code-generation tool. With
JDO, persistent fields and relationships are declared or defaulted in the metadata, and access to the
field values is provided by the code in the class for transient instances or by the JDO implementation
for persistent instances. The JDO enhancer generates the appropriate field-access code during the
enhancement process.

JDOQL and EJBQL provide similar access to data in the datastore. Both allow you to select persistent
instances from the datastore to use in your programs. Both use the read-modify-write pattern for
updating persistent data. Neither language is a complete data-manipulation language; both are used
only to select instances for manipulation by the programming language.

CMP beans require active transactions for all business methods. Nontransactional access is not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

standard or portable. JDO allows you to choose whether transactions are required. JDO requires
inserts, deletes, and updates to be performed within transactions, but read-only applications,
including caching, can be implemented portably without transactions.

Table 17-1 is a summary comparing CMP beans with JDO persistent classes.

Table 17-1. Comparison of CMP beans and JDO

Characteristic CMP beans JDO persistent classes

Environmental

Portability of applications Few portability unknowns Documented portability rules

Operating environment Application server
One-tier, two-tier, web server,
application server

Independence of
persistent classes from
environment

Low: beans must implement EJB
interfaces and execute in server
container

High: persistent classes are
usable with no special interface
requirements and execute in
many environments

Metadata

Mark persistent classes
Deployment descriptor identifies all
persistent classes

Metadata identifies all persistent
classes

Mark persistent fields
Deployment descriptor identifies all
persistent fields and relationships

Metadata defaults persistent
fields and relationships

Modeling

Domain-class modeling
object

CMP bean (abstract schema) Persistent class

Inheritance of domain-
class modeling objects

Not supported Fully supported

Field access Abstract get/set methods
Any valid field access, including
get/set methods

Collection, Set Supported Supported

List, Array, Map Not supported Optional features

Relationships
Expressed as references to CMP local
interfaces

Expressed as references to JDO
persistent classes or interfaces

Polymorphic references Not supported Supported

Programming

Query language EJBQL modeled after SQL
JDOQL modeled after Java
Boolean expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Characteristic CMP beans JDO persistent classes

Remote method
invocation

Supported Not supported

Required lifecycle
methods

setEntityContext,
unsetEntityContext, ejbActivate,
ejbPassivate, ejbLoad, ejbStore,
ejbRemove

no-arg constructor (may be
private)

Optional lifecycle callback
methods

ejbCreate, ejbPostCreate, ejbFind
jdoPostLoad, jdoPreStore,
jdoPreClear, jdoPreDelete

Mapping to
relationaldatastores

Vendor-specific Vendor-specific

Method security policy Supported Not supported

Method transaction policy Supported Not supported

Nontransactional access Not standard Supported

Required
classes/interfaces

EJBLocalHome, local interface (if local

interface supported);

EJBHome, remote interface (if remote

interface supported);

Abstract beans must implement
EJBEntityBean;

Identity class (if nonprimitiveidentity)

Persistent class;

objectid class (only

forapplication identity)

Transaction
synchronization callbacks

Not supported Supported

[Team LiB]

Remote method
invocation

Supported Not supported

Required lifecycle
methods

setEntityContext,
unsetEntityContext, ejbActivate,
ejbPassivate, ejbLoad, ejbStore,
ejbRemove

no-arg constructor (may be
private)

Optional lifecycle callback
methods

ejbCreate, ejbPostCreate, ejbFind
jdoPostLoad, jdoPreStore,
jdoPreClear, jdoPreDelete

Mapping to
relationaldatastores

Vendor-specific Vendor-specific

Method security policy Supported Not supported

Method transaction policy Supported Not supported

Nontransactional access Not standard Supported

Required
classes/interfaces

EJBLocalHome, local interface (if local

interface supported);

EJBHome, remote interface (if remote

interface supported);

Abstract beans must implement
EJBEntityBean;

Identity class (if nonprimitiveidentity)

Persistent class;

objectid class (only

forapplication identity)

Transaction
synchronization callbacks

Not supported Supported

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix A. Lifecycle States and
Transitions
Table A-1 specifies the values returned by the JDOHelper lifecycle state interrogation methods for all

the JDO lifecycle states.

Table A-1. Lifecycle-state interrogation methods

State of instance
isPersistent(

)
isTransactional(

)
isDirty(

)
isNew(

)
isDeleted(

)

Transient false false false false false

Transient-clean false true false false false

Transient-dirty false true true false false

Hollow true false false false false

Persistent-
nontransactional

true false false false false

Persistent-new true true true true false

Persistent-clean true true false false false

Persistent-dirty true true true false false

Persistent-deleted true true true false true

Persistent-new-deleted true true true true true

Table A-2 and Table A-3 contain the state transitions for every lifecycle state.

Table A-2. Lifecycle-state transitions

 Current state

Method Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged unchanged unchanged unchanged

deletePersistent error P-new-del P-del P-del P-del

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Current state

Method Transient P-new P-clean P-dirty Hollow

makeTransactional T-clean unchanged unchanged unchanged P-clean

makeNontransactional error error P-nontrans error unchanged

makeTransient unchanged error Transient error Transient

commit withRetainValues = false unchanged Hollow Hollow Hollow unchanged

commit withRetainValues = true unchanged P-nontrans P-nontrans P-nontrans unchanged

rollback with RestoreValues = false unchanged Transient Hollow Hollow unchanged

rollback with RestoreValues = true unchanged Transient P-nontrans P-nontrans unchanged

refresh with active datastore
transaction

unchanged unchanged unchanged P-clean unchanged

refresh with active optimistic
transaction

unchanged unchanged unchanged P-nontrans unchanged

evict n/a unchanged Hollow unchanged unchanged

read field outsideof a transaction unchanged impossible impossible impossible P-nontrans

read field with active optimistic
transaction

unchanged unchanged unchanged unchanged P-nontrans

read field with active datastore
transaction

unchanged unchanged unchanged unchanged P-clean

write field or makeDirty outside of a
transaction

unchanged impossible impossible impossible P-nontrans

write field or makeDirty with active
transaction

unchanged unchanged P-dirty unchanged P-dirty

retrieve outside of a transaction or
with active optimistic transaction

unchanged unchanged unchanged unchanged P-nontrans

retrieve with active datastore
transaction

unchanged unchanged unchanged unchanged P-clean

error: a JDOUserException is thrown; the state does not change

Table A-3. Lifecycle-state transitions (continued)

Current state

T-clean T-dirty
P-new-

del
P-del

P-
nontrans

Method

P-new P-new unchanged unchanged unchanged makePersistent

makeTransactional T-clean unchanged unchanged unchanged P-clean

makeNontransactional error error P-nontrans error unchanged

makeTransient unchanged error Transient error Transient

commit withRetainValues = false unchanged Hollow Hollow Hollow unchanged

commit withRetainValues = true unchanged P-nontrans P-nontrans P-nontrans unchanged

rollback with RestoreValues = false unchanged Transient Hollow Hollow unchanged

rollback with RestoreValues = true unchanged Transient P-nontrans P-nontrans unchanged

refresh with active datastore
transaction

unchanged unchanged unchanged P-clean unchanged

refresh with active optimistic
transaction

unchanged unchanged unchanged P-nontrans unchanged

evict n/a unchanged Hollow unchanged unchanged

read field outsideof a transaction unchanged impossible impossible impossible P-nontrans

read field with active optimistic
transaction

unchanged unchanged unchanged unchanged P-nontrans

read field with active datastore
transaction

unchanged unchanged unchanged unchanged P-clean

write field or makeDirty outside of a
transaction

unchanged impossible impossible impossible P-nontrans

write field or makeDirty with active
transaction

unchanged unchanged P-dirty unchanged P-dirty

retrieve outside of a transaction or
with active optimistic transaction

unchanged unchanged unchanged unchanged P-nontrans

retrieve with active datastore
transaction

unchanged unchanged unchanged unchanged P-clean

error: a JDOUserException is thrown; the state does not change

Table A-3. Lifecycle-state transitions (continued)

Current state

T-clean T-dirty
P-new-

del
P-del

P-
nontrans

Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Current state

T-clean T-dirty
P-new-

del
P-del

P-
nontrans

Method

P-new P-new unchanged unchanged unchanged makePersistent

error error unchanged unchanged P-del deletePersistent

unchanged unchanged unchanged unchanged P-clean makeTransactional

Transient error error error unchanged makeNontransactional

unchanged unchanged error error Transient makeTransient

unchanged T-clean Transient Transient unchanged commit withRetainValues = false

unchanged T-clean Transient Transient unchanged commit withRetainValues = true

unchanged T-clean Transient Hollow unchanged rollback withRestoreValues = false

unchanged T-clean Transient P-nontrans unchanged rollback withRestoreValues = true

unchanged unchanged unchanged unchanged unchanged
refresh with active datastore
transaction

unchanged unchanged unchanged unchanged unchanged
refresh with active optimistic
transaction

unchanged unchanged unchanged unchanged Hollow evict

unchanged impossible impossible impossible unchanged read field outsideof a transaction

unchanged unchanged error error unchanged
read field with active optimistic
transaction

unchanged unchanged error error P-clean
read field with active datastore
transaction

unchanged impossible impossible impossible unchanged
write field or makeDirty outside of a
transaction

T-dirty unchanged error error P-dirty
write field or makeDirty with active
transaction

unchanged unchanged unchanged unchanged unchanged
retrieve outside of a transaction or
with active optimistic transaction

unchanged unchanged unchanged unchanged P-clean
retrieve with an active datastore
transaction

unchanged: no state change takes place; no exception is thrown due to the state change

[Team LiB]

P-new P-new unchanged unchanged unchanged makePersistent

error error unchanged unchanged P-del deletePersistent

unchanged unchanged unchanged unchanged P-clean makeTransactional

Transient error error error unchanged makeNontransactional

unchanged unchanged error error Transient makeTransient

unchanged T-clean Transient Transient unchanged commit withRetainValues = false

unchanged T-clean Transient Transient unchanged commit withRetainValues = true

unchanged T-clean Transient Hollow unchanged rollback withRestoreValues = false

unchanged T-clean Transient P-nontrans unchanged rollback withRestoreValues = true

unchanged unchanged unchanged unchanged unchanged
refresh with active datastore
transaction

unchanged unchanged unchanged unchanged unchanged
refresh with active optimistic
transaction

unchanged unchanged unchanged unchanged Hollow evict

unchanged impossible impossible impossible unchanged read field outsideof a transaction

unchanged unchanged error error unchanged
read field with active optimistic
transaction

unchanged unchanged error error P-clean
read field with active datastore
transaction

unchanged impossible impossible impossible unchanged
write field or makeDirty outside of a
transaction

T-dirty unchanged error error P-dirty
write field or makeDirty with active
transaction

unchanged unchanged unchanged unchanged unchanged
retrieve outside of a transaction or
with active optimistic transaction

unchanged unchanged unchanged unchanged P-clean
retrieve with an active datastore
transaction

unchanged: no state change takes place; no exception is thrown due to the state change

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix B. JDO Metadata DTD
The following XML DTD describes the form of JDO metadata.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Copyright (c) 2002 Sun Microsystems, Inc.,
901 San Antonio Road,
Palo Alto, California 94303, U.S.A.
All rights reserved.

This is the DTD defining the Java Data Objects 1.0 metadata.
-->

<!NOTATION JDO.1_0 PUBLIC
 "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN">
<!--
This is the XML DTD for the JDO 1.0 Metadata.
All JDO 1.0 metadata descriptors must include a DOCTYPE of the following form:
 <!DOCTYPE jdo
 PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
-->

<!ELEMENT jdo ((package)+, (extension)*)>

<!ELEMENT package ((class)+, (extension)*)>
<!ATTLIST package name CDATA #REQUIRED>

<!ELEMENT class (field|extension)*>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable) #IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) 'true'>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>

<!ELEMENT field ((collection|map|array)?, (extension)*)?>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transactional|none) #IMPLIED>
<!ATTLIST field primary-key (true|false) 'false'>
<!ATTLIST field null-value (exception|default|none) 'none'>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>

<!ELEMENT collection (extension)*>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>

<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>

<!ELEMENT array (extension)*>
<!ATTLIST array embedded-element (true|false) #IMPLIED>

<!ELEMENT extension (extension)*>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix C. JDO Interfaces and Exception
Classes
This appendix describes the interfaces and exception classes defined in the javax.jdo package. The

name, parameters, and return type of each method is provided here and its description can be found
in one or more chapters of this book. The index contains an entry for each method so you can locate
relevant content.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

C.1 Interfaces

An application uses the following Java interfaces and JDOHelper class in a JDO environment.

Extent

An Extent is used to access all of the instances of a particular class and, optionally, its subclasses. An

application can either iterate over all the instances or use the extent as the set of candidates
instances filtered with a Query .

public interface Extent {
 public void close(Iterator it);
 public void closeAll();
 public Class getCandidateClass();
 public PersistenceManager getPersistenceManager();
 public boolean hasSubclasses();
 public Iterator iterator();
}

Returned by

PersistenceManager.getExtent()

Passed to

PersistenceManager.newQuery() , Query.setCandidates()

InstanceCallbacks

A persistent class can implement the InstanceCallbacks interface so that the following callback

methods are called when particular lifecycle events occur:

public interface InstanceCallbacks {
 public void jdoPostLoad();
 public void jdoPreClear();
 public void jdoPreDelete();
 public void jdoPreStore();
}

JDOHelper

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This helper class provides applications with several utility methods. It provides methods to perform
the following functions:

Construct a PersistenceManagerFactory instance via a Properties object

Interrogate the lifecycle state of an instance

Get the object identifier of an instance

Mark a field of an instance as modified

public class JDOHelper {
 public JDOHelper();
 public static Object getObjectId(Object obj);
 public static PersistenceManager
 getPersistenceManager(Object obj);
 public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props);
 public static PersistenceManagerFactory
 getPersistenceManagerFactory(Properties props,
 ClassLoader cl);
 public static Object getTransactionalObjectId(Object obj);
 public static boolean isDeleted(Object obj);
 public static boolean isDirty(Object obj);
 public static boolean isNew(Object obj);
 public static boolean isPersistent(Object obj);
 public static boolean isTransactional(Object obj);
 public static void makeDirty(Object obj, String fieldName);
}

PersistenceManager

The PersistenceManager interface is the primary interface for JDO-aware software. It is the factory
for Query and Transaction instances, and it contains methods to manage the lifecycle of instances.

public interface PersistenceManager {
 public void close();
 public Transaction currentTransaction();
 public void deletePersistent(Object obj);
 public void deletePersistentAll(Object[] objs);
 public void deletePersistentAll(Collection objs);
 public void evict(Object obj);
 public void evictAll(Object[] objs);
 public void evictAll(Collection objs);
 public void evictAll();
 public Extent getExtent(Class persistenceCapableClass,
 boolean subclasses);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public boolean getIgnoreCache();
 public boolean getMultithreaded();
 public Object getObjectById(Object oid, boolean validate);
 public Object getObjectId(Object obj);
 public Class getObjectIdClass(Class cls);
 public PersistenceManagerFactory
 getPersistenceManagerFactory();
 public Object getTransactionalObjectId(Object obj);
 public Object getUserObject();
 public boolean isClosed();
 public void makeNontransactional(Object obj);
 public void makeNontransactionalAll(Object[] objs);
 public void makeNontransactionalAll(Collection objs);
 public void makePersistent(Object obj);
 public void makePersistentAll(Object[] objs);
 public void makePersistentAll(Collection objs);
 public void makeTransactional(Object obj);
 public void makeTransactionalAll(Object[] objs);
 public void makeTransactionalAll(Collection objs);
 public void makeTransient(Object obj);
 public void makeTransientAll(Object[] objs);
 public void makeTransientAll(Collection objs);
 public Object newObjectIdInstance(Class pcClass, String str);
 public Query newQuery();
 public Query newQuery(Object compiled);
 public Query newQuery(String language, Object query);
 public Query newQuery(Class cls);
 public Query newQuery(Extent cln);
 public Query newQuery(Class cls, Collection cln);
 public Query newQuery(Class cls, String filter);
 public Query newQuery(Class cls, Collection cln, String filter);
 public Query newQuery(Extent cln, String filter);
 public void refresh(Object obj);
 public void refreshAll(Object[] objs);
 public void refreshAll(Collection objs);
 public void refreshAll();
 public void retrieve(Object obj);
 public void retrieveAll(Collection objs);
 public void retrieveAll(Collection objs, boolean DFGonly);
 public void retrieveAll(Object[] objs);
 public void retrieveAll(Object[] objs, boolean DFGonly);
 public void setIgnoreCache(boolean flag);
 public void setMultithreaded(boolean flag);
 public void setUserObject(Object o);
}

Returned by:

PersistenceManagerFactory.getPersistenceManager() ,Extent.getPersistenceManager() ,
Query.getPersistenceManager() ,Transaction.getPersistenceManager()
,JDOHelper.getPersistenceManager()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PersistenceManagerFactory

The PersistenceManagerFactory is used to obtain PersistenceManager instances. All
PersistenceManager instances obtained from the same PersistenceManagerFactory will have the

same default properties.

PersistenceManagerFactory instances may be configured and serialized for later use. They may be

stored via JNDI and looked up and used later. Any configured properties will be saved and restored.

If the ConnectionFactory property is set (non-null) then all the other connection properties
(including ConnectionFactoryName) are ignored; otherwise, if ConnectionFactoryName is set (non-
null) then all other connection properties are ignored. Similarly, if the ConnectionFactory2
property is set (non-null), then ConnectionFactory2Name is ignored.

public interface PersistenceManagerFactory implements Serializable {
 public void close();
 public String getConnectionDriverName();
 public Object getConnectionFactory();
 public Object getConnectionFactory2();
 public String getConnectionFactory2Name();
 public String getConnectionFactoryName();
 public String getConnectionURL();
 public String getConnectionUserName();
 public boolean getIgnoreCache();
 public boolean getMultithreaded();
 public boolean getNontransactionalRead();
 public boolean getNontransactionalWrite();
 public boolean getOptimistic();
 public PersistenceManager getPersistenceManager();
 public PersistenceManager getPersistenceManager(String userid, String password);
 public Properties getProperties();
 public boolean getRestoreValues();
 public boolean getRetainValues();
 public void setConnectionDriverName(String driverName);
 public void setConnectionFactory(Object connectionFactory);
 public void setConnectionFactory2(Object connectionFactory);
 public void setConnectionFactory2Name(
 String connectionFactoryName);
 public void setConnectionFactoryName(
 String connectionFactoryName);
 public void setConnectionPassword(String password);
 public void setConnectionURL(String URL);
 public void setConnectionUserName(String userName);
 public void setIgnoreCache(boolean flag);
 public void setMultithreaded(boolean flag);
 public void setNontransactionalRead(boolean flag);
 public void setNontransactionalWrite(boolean flag);
 public void setOptimistic(boolean flag);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void setRestoreValues(boolean restoreValues);
 public void setRetainValues(boolean flag);
 public Collection supportedOptions();
}

Returned by

JDOHelper.getPersistenceManagerFactory()
,PersistenceManager.getPersistenceManagerFactory()

Query

The Query interface allows applications to obtain persistent instances from the datastore. The
PersistenceManager is the factory for Query instances. There may be many Query instances
associated with a PersistenceManager .

public interface Query implements Serializable {
 public void closeAll();
 public void compile();
 public void declareImports(String imports);
 public void declareParameters(String parameters);
 public void declareVariables(String variables);
 public Object execute();
 public Object execute(Object p1);
 public Object execute(Object p1, Object p2);
 public Object execute(Object p1, Object p2, Object p3);
 public Object executeWithArray(Object[] parameters);
 public Object executeWithMap(Map parameters);
 public boolean getIgnoreCache();
 public PersistenceManager getPersistenceManager();
 public void setCandidates(Extent objs);
 public void setCandidates(Collection objs);
 public void setClass(Class cls);
 public void setFilter(String filter);
 public void setIgnoreCache(boolean ignoreCache);
 public void setOrdering(String ordering);
}

Returned by

PersistenceManager.newQuery()

Transaction

The Transaction interface provides for initiation and completion of transactions under user control. It

http://lib.ommolketab.ir
http://lib.ommolketab.ir

also provides methods for setting various options that control transaction behavior during a
transaction and cache behavior after the transaction completes.

public interface Transaction {
 public void begin();
 public void commit();
 public boolean getNontransactionalRead();
 public boolean getNontransactionalWrite();
 public boolean getOptimistic();
 public PersistenceManager getPersistenceManager();
 public boolean getRestoreValues();
 public boolean getRetainValues();
 public Synchronization getSynchronization();
 public boolean isActive();
 public void rollback();
 public void setNontransactionalRead(
 boolean nontransactionalRead);
 public void setNontransactionalWrite(
 boolean nontransactionalWrite);
 public void setOptimistic(boolean optimistic);
 public void setRestoreValues(boolean restoreValues);
 public void setRetainValues(boolean retainValues);
 public void setSynchronization(Synchronization sync);
}

Returned by

PersistenceManager.currentTransaction()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

C.2 Exceptions

JDO has an exception-class hierarchy used to represent the various kinds of exceptions that may
occur. The JDOException class is at the root of the hierarchy and provides all of the methods that an

application calls. All of its subclasses merely provide constructors called strictly by the JDO
implementation to indicate that an error has occurred. Since an application never calls these
constructors, we omit them from the class descriptions.

JDOCanRetryException

This is the base class for errors that can be retried.

public class JDOCanRetryException extends javax.jdo.JDOException {
}

Subclasses

JDOUserException, JDODataStoreException

JDODataStoreException

This class represents datastore exceptions that can be retried.

public class JDODataStoreException extends javax.jdo.JDOCanRetryException {
}

Subclasses

JDOObjectNotFoundException

JDOException

This is the base class for all JDO exceptions. It is a subclass of RuntimeException, and it does not
need to be declared or caught. It includes a descriptive String, an optional nested Exception array,
and an optional failed Object.

This class provides methods to retrieve the nested exception array and failed object. If there are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

multiple nested exceptions, then each might contain one failed object. This will be the case when an
operation requires multiple instances (such as commit(), makePersistentAll(), etc.).

If the JDO PersistenceManager is internationalized, the descriptive string will also be

internationalized.

public class JDOException extends java.lang.RuntimeException {
 public Object getFailedObject();
 public Throwable[] getNestedExceptions();
 public void printStackTrace();
 public void printStackTrace(PrintStream s);
 public void printStackTrace(PrintWriter s);
 public String toString();
}

Subclasses

JDOCanRetryException, JDOFatalException

JDOFatalDataStoreException

This is the base class for fatal datastore errors. It is derived from JDOFatalException. When this

exception is thrown, the transaction has been rolled back without the user asking for it. The cause
may be a connection timeout, an unrecoverable-media error, an unrecoverable-concurrency conflict,
or other causes outside of the application's control.

public class JDOFatalDataStoreException extends javax.jdo.JDOFatalException {
}

Subclasses

JDOOptimisticVerificationException

JDOFatalException

This is the base class for errors that cannot be retried. It is derived from JDOException. This
exception generally means that the transaction associated with the PersistenceManager has been

rolled back, and the transaction should be abandoned.

public class JDOFatalException extends javax.jdo.JDOException {
}

Subclasses

JDOFatalDataStoreException, JDOFatalInternalException, JDOFatalUserException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JDOFatalInternalException

This is the base class for JDO implementation failures. It is a derived class of JDOFatalException.

This exception should be reported to the vendor for corrective action. There is no user action to
recover.

public class JDOFatalInternalException extends javax.jdo.JDOFatalException {
}

JDOFatalUserException

This is the base class for user errors that cannot be retried. It is derived from JDOFatalException.

Reasons for this exception include:

PersistenceManager was closed. This exception is thrown after close() was called, when any
method except isClosed() is executed on the PersistenceManager instance, or when any
method is called on the Transaction instance or any Query instance, Extent instance, or
Iterator instance created by the PersistenceManager.

Metadata is unavailable. This exception is thrown if the implementation cannot locate metadata
for a class, which occurs when the class has not been registered.

public class JDOFatalUserException extends javax.jdo.JDOFatalException {
}

JDOObjectNotFoundException

This exception notifies the application that an object does not exist in the datastore. This exception is
thrown when a hollow instance is used to fetch an object that does not exist in the datastore. This
exception might result from a call to getObjectById() with the validate parameter set to true, or

from navigating to an object that no longer exists in the datastore. You will never get this exception
as a result of executing a query.

Throwing this exception does not change the status of any transaction in progress. The
getFailedObject() method returns a reference to the failed instance. The failed instance is in the
hollow state and has an identity that can be obtained by calling getObjectId() with the instance as

a parameter. This can be used to determine the identity of the instance that could not be found.

public class JDOObjectNotFoundException extends javax.jdo.JDODataStoreException {
}

JDOOptimisticVerificationException

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A verification step (described in Chapter 15) is performed on all instances that are new, modified, or
deleted when you make a call to commit an optimistic transaction. If any instances fail this
verification step, a JDOOptimisticVerificationException is thrown. It contains an array of nested

exceptions; each nested exception contains an instance that failed verification.

public class JDOOptimisticVerificationException
 extends javax.jdo.JDOFatalDataStoreException {
}

JDOUnsupportedOptionException

This class is derived from JDOCanRetryException. This exception is thrown when an implementation

does not implement an optional JDO feature.

public class JDOUnsupportedOptionException extends javax.jdo.JDOUserException {
}

JDOUserException

This is the base class for user errors that can be retried. It is derived from JDOCanRetryException.

Reasons for this exception include:

Instance is not of a persistent class

This exception is thrown when a method requires an instance of a persistent class and the
instance passed to the method does not implement PersistenceCapable. This occurs if the
class of the instance is not persistent and has not been enhanced. getFailedObject()

returns the instance causing the exception.
Extent is not managed

This exception is thrown when you call getExtent() with a class that does not have a

managed extent.
Object exists

For a class using application identity, the combined value of the primary key fields must be
unique. This exception is thrown if the primary key fields are not unique. This can occur when a
new instance, or an existing persistent instance that has had a primary key field changed, is
flushed to the datastore. It might also be thrown during makePersistent() if an instance
with the same primary key is already in the PersistenceManager cache. The failed Object has

the failed instance.
Object is owned by another PersistenceManager

This exception is thrown if you call makePersistent(), makeTransactional(),
makeTransient(), evict(), refresh(), or getObjectId() when the instance is already
persistent or transactional in a different PersistenceManager. The failed Object has the failed

instance.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Nonunique identity is not valid after transaction completion

This exception is thrown if you call getObjectId() on an object after transaction completion

and the identity is not managed by the application or datastore.
Unbound query parameter

This exception is thrown during query compilation or execution if there is an unbound query
parameter.

Query filter cannot be parsed

This exception is thrown during query compilation or execution if the filter cannot be parsed.
Transaction is not active

This exception is thrown if the transaction is not active and you call makePersistent(),
deletePersistent(), commit(), or rollback().

Object deleted

This exception is thrown if you attempt to access any fields of a deleted instance (except to
read a primary key field).

public class JDOUserException extends javax.jdo.JDOCanRetryException {
}

Subclasses

JDOUnsupportedOptionException

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix D. JDO Query Language BNF
The following set of grammars define the syntax of the JDO Query Language. Terminal symbols are
shown in bold. Nonterminal symbols are shown in italic. The name of a nonterminal, followed by a

colon, introduces the definition of the nonterminal. Subsequent lines specify one or more alternatives
for the nonterminal with a level of indentation. A blank line indicates the end of the alternatives. An
optional symbol in the syntax may occur with the nonterminals DeclareParameters,

DeclareVariables, DeclareImports, and SetOrdering.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.1 Parameter Declaration

The following grammar describes the syntax of the Query.declareParameters() argument:

DeclareParameters:

 Parameters ,

 Parameters

Parameters:

 Parameter

 Parameters , Parameter

Parameter:

 Type Identifier

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.2 Variable Declaration

The following grammar describes the syntax of the Query.declareVariables() argument:

DeclareVariables:

 Variables ;

 Variables

Variables:

 Variable

 Variables ; Variable

Variable:

 Type Identifier

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.3 Import Declaration

The following grammar describes the syntax of the Query.declareImports() argument:

DeclareImports:

 ImportDeclarations ;

 ImportDeclarations

ImportDeclarations:

 ImportDeclaration

 ImportDeclarations ; ImportDeclaration

ImportDeclaration:

 import Name

 import Name.*

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.4 Ordering Specification

The following grammar describes the syntax of the Query.setOrdering() argument:

SetOrdering:

 OrderSpecifications ,

 OrderSpecifications

OrderSpecifications:

 OrderSpecification

 OrderSpecifications , OrderSpecification

OrderSpecification:

 Expression ascending

 Expression descending

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.5 Type Specification

The following grammar describes a type specification used in the declaration of a parameter or
variable and in a cast expression:

Type

 PrimitiveType

 Name

PrimitiveType:

 NumericType
 boolean

NumericType:

 IntegralType

 FloatingPointType

IntegralType:
 byte
 short
 int
 long
 char

FloatingPointType:
 float
 double

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.6 Names

A name is an identifier, which can be qualified by another name:

Name:

 Identifier

 QualifiedName

QualifiedName:

 Name . Identifier

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.7 Literal

A literal is the source-code representation of a value of a primitive, String , or null . The Java Language

Specification defines the lexical structure used for IntegerLiterals , FloatingPointLiterals , CharacterLiterals
, and StringLiterals :

IntegerLiteral: see Java Language Specification...

FloatingPointLiteral: see Java Language Specification...

CharacterLiteral: see Java Language Specification...

StringLiteral: see Java Language Specification...

BooleanLiteral:
 true
 false

NullLiteral:
 null

Literal:

 IntegerLiteral

 FloatingPointLiteral

 BooleanLiteral

 CharacterLiteral

 StringLiteral

 NullLiteral

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

D.8 Filter Expressions

The following grammar describes the syntax of a JDOQL filter:

Expression:

 ConditionalOrExpression

ConditionalOrExpression:

 ConditionalAndExpression

 ConditionalOrExpression || ConditionalAndExpression

ConditionalAndExpression:

 InclusiveOrExpression

 ConditionalAndExpression && InclusiveOrExpression

InclusiveOrExpression:

 AndExpression

 InclusiveOrExpression | AndExpression

AndExpression:

 EqualityExpression

 AndExpression & EqualityExpression

EqualityExpression:

 RelationalExpression

 EqualityExpression == RelationalExpression

 EqualityExpression != RelationalExpression

RelationalExpression:

 AdditiveExpression

 RelationalExpression < AdditiveExpression

 RelationalExpression > AdditiveExpression

 RelationalExpression <= AdditiveExpression

 RelationalExpression >= AdditiveExpression

AdditiveExpression:

 MultiplicativeExpression

 AdditiveExpression + MultiplicativeExpression

 AdditiveExpression - MultiplicativeExpression

MultiplicativeExpression:

 UnaryExpression

 MultiplicativeExpression * UnaryExpression

 MultiplicativeExpression / UnaryExpression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UnaryExpression:

 + UnaryExpression

 - UnaryExpression

 UnaryExpressionNotPlusMinus

UnaryExpressionNotPlusMinus:

 PostfixExpression

 ~ UnaryExpression

 ! UnaryExpression

 CastExpression

PostfixExpression:

 Primary

 Name

CastExpression:

 (Type) UnaryExpression

Primary:

 Literal
 this

 (Expression)

 FieldAccess

 MethodInvocation

FieldAccess:

 Primary . Identifier

MethodInvocation:

 Primary . Identifier ()

 Primary . Identifier (ArgumentList)

ArgumentList:

 Expression

 ArgumentList , Expression

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Appendix E. Source Code for Examples
This appendix contains the source code for many of the classes used in the examples of this book.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

E.1 The com.mediamania.appserver package

This package includes classes that are described in Chapter 16 and Chapter 17 for using JDO in an
application server environment.

E.1.1 com.mediamania.appserver.CashierBean

 1 package com.mediamania.appserver;
 2
 3 import javax.ejb.*;
 4
 5 import javax.naming.InitialContext;
 6 import javax.naming.Context;
 7 import javax.naming.NamingException;
 8
 9 import java.util.Iterator;
10 import java.util.Date;
11
12 import com.mediamania.store.StoreQueries;
13 import com.mediamania.store.Customer;
14 import com.mediamania.store.Purchase;
15 import com.mediamania.store.Rental;
16 import com.mediamania.store.RentalItem;
17 import com.mediamania.store.MediaItem;
18
19 import javax.jdo.PersistenceManager;
20 import javax.jdo.PersistenceManagerFactory;
21
22 public class CashierBean implements javax.ejb.SessionBean {
23 private javax.ejb.SessionContext context;
24 private PersistenceManagerFactory pmf;
25 private PersistenceManager pm;
26 private String pmfName = "java:comp/env/jdo/MediaManiaPMF";
27
28 /**
29 * @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext)
30 */
31 public void setSessionContext(javax.ejb.SessionContext aContext) {
32 context = aContext;
33 try {
34 Context ic = new InitialContext();
35 pmf = (PersistenceManagerFactory)ic.lookup(pmfName);
36 } catch (NamingException ex) {
37 throw new EJBException("setSessionContext", ex);
38 }
39 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

40
41 public void ejbActivate() {
42 }
43 public void ejbPassivate() {
44 }
45 public void ejbRemove() {
46 }
47 public void ejbCreate() {
48 }
49
50 public void checkout(
51 final java.lang.String lastName,
52 final java.lang.String firstName,
53 final java.util.Collection rentals,
54 final java.util.Collection purchases)
55 throws java.rmi.RemoteException {
56 PersistenceManager pm = pmf.getPersistenceManager();
57 Customer customer = StoreQueries.getCustomer(pm, firstName, lastName);
58 Iterator it = rentals.iterator();
59 while (it.hasNext()) {
60 RentalValueObject rvo = (RentalValueObject)it.next();
61 RentalItem ri = StoreQueries.getRentalItem
62 (pm, rvo.serialNumber);
63 Rental rental = new Rental(customer, new Date(), ri);
64 customer.addTransaction(rental);
65 customer.addRental(rental);
66 }
67 it = purchases.iterator();
68 while (it.hasNext()) {
69 PurchaseValueObject pvo = (PurchaseValueObject)it.next();
70 MediaItem mediaItem = StoreQueries.getMediaItem(
71 pm, pvo.title, pvo.format);
72 Purchase purchase = new Purchase(customer, new Date(), mediaItem);
73 customer.addTransaction(purchase);
74 }
75 pm.close();
76 }
77 }

E.1.2 com.mediamania.appserver.JDOPlugIn

 1 package com.mediamania.appserver;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5
 6 import javax.jdo.PersistenceManagerFactory;
 7 import javax.jdo.PersistenceManager;
 8 import javax.jdo.JDOHelper;
 9 import javax.jdo.Extent;
10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11 import java.util.Properties;
12 import java.util.Iterator;
13
14 import java.io.InputStream;
15 import java.io.IOException;
16
17 import javax.naming.Context;
18 import javax.naming.InitialContext;
19 import javax.naming.NamingException;
20
21 import org.apache.struts.action.ActionServlet;
22 import org.apache.struts.action.PlugIn;
23 import org.apache.struts.config.ModuleConfig;
24
25 public class JDOPlugIn implements PlugIn {
26 private ServletContext ctx;
27 private String name;
28 private String path;
29 private String jndiName;
30 public JDOPlugIn() {
31 }
32
33 public void setName(String name) {
34 this.name = name;
35 }
36
37 public void setPath(String path) {
38 this.path = path;
39 }
40
41 public void setJndiName(String jndiName) {
42 this.jndiName = jndiName;
43 }
44
45 public void init(ActionServlet servlet, ModuleConfig config)
46 throws ServletException {
47 ctx = servlet.getServletContext();
48 if (name == null || name.length() == 0) {
49 throw new ServletException
50 ("You must specify name.");
51 }
52 try {
53 PersistenceManagerFactory pmf;
54 if (path != null) {
55 pmf = getPersistenceManagerFactoryFromPath(path);
56 } else if (jndiName != null) {
57 pmf = getPersistenceManagerFactoryFromJndi(jndiName);
58 } else {
59 throw new ServletException
60 ("You must specify either path or jndiName.");
61 }
62 ctx.setAttribute(name, pmf);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

63 } catch (Exception ex) {
64 throw new ServletException(
65 "Unable to load PMF: name:" + name +
66 ", path: " + path +
67 ", jndiName: " + jndiName,
68 ex);
69 }
70 }
71
72 private PersistenceManagerFactory
73 getPersistenceManagerFactoryFromPath(String path)
74 throws IOException {
75 Properties props = new Properties();
76 InputStream in = ctx.getResourceAsStream(path);
77 props.load(in);
78 return JDOHelper.getPersistenceManagerFactory(props);
79 }
80
81 private PersistenceManagerFactory
82 getPersistenceManagerFactoryFromJndi(String jndiName)
83 throws NamingException {
84 Context ic = new InitialContext();
85 return (PersistenceManagerFactory) ic.lookup(jndiName);
86 }
87
88 public void destroy() {}
89 }

E.1.3 com.mediamania.appserver.LookupMovieAction

 1 package com.mediamania.appserver;
 2
 3 import javax.servlet.ServletContext;
 4 import javax.servlet.http.HttpServletRequest;
 5 import javax.servlet.http.HttpServletResponse;
 6 import org.apache.struts.action.Action;
 7 import org.apache.struts.action.ActionForm;
 8 import org.apache.struts.action.ActionForward;
 9 import org.apache.struts.action.ActionMapping;
10
11 import javax.jdo.PersistenceManagerFactory;
12 import javax.jdo.PersistenceManager;
13 import javax.jdo.JDOHelper;
14 import javax.jdo.Extent;
15 import javax.jdo.Transaction;
16 import javax.jdo.Query;
17 import javax.jdo.JDOException;
18
19 import java.util.Collection;
20 import java.util.Iterator;
21 import com.mediamania.content.Movie;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22
23 public class LookupMovieAction extends Action {
24 PersistenceManagerFactory pmf = null;
25 PersistenceManager pm = null;
26 public ActionForward execute(ActionMapping mapping,
27 ActionForm form,
28 HttpServletRequest request,
29 HttpServletResponse response)
30 throws Exception {
31 try {
32 ServletContext ctx = getServlet().getServletContext();
33 pmf = (PersistenceManagerFactory)ctx.getAttribute("jdo.Movies");
34 pm = pmf.getPersistenceManager();
35 Query q = pm.newQuery(Movie.class, "title == param1");
36 q.declareParameters ("String param1");
37 String movieName = request.getParameter("movieName");
38 Collection movies = (Collection)q.execute(movieName);
39 Movie movie = (Movie)movies.iterator().next();
40 String description = movie.getDescription();
41 ctx.setAttribute("movieDescription", description);
42 } catch (JDOException e) {
43 } finally {
44 if (pm != null) {
45 pm.close();
46 }
47 pm = null;
48 }
49 return (mapping.findForward("success"));
50 }
51 }

E.1.4 com.mediamania.appserver.MediaValueObject

 1 package com.mediamania.appserver;
 2
 3 import java.io.Serializable;
 4
 5 public class MediaValueObject implements Serializable {
 6 public String title;
 7 }

E.1.5 com.mediamania.appserver.MovieInfo

 1 package com.mediamania.appserver;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5
 6 import javax.jdo.PersistenceManagerFactory;
 7 import javax.jdo.PersistenceManager;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 8 import javax.jdo.JDOHelper;
 9 import javax.jdo.Extent;
10 import javax.jdo.JDOException;
11
12 import java.util.Properties;
13 import java.util.Iterator;
14
15 import java.io.InputStream;
16 import java.io.IOException;
17
18 import javax.naming.Context;
19 import javax.naming.InitialContext;
20 import javax.naming.NamingException;
21
22 import com.mediamania.content.Movie;
23
24 public class MovieInfo extends HttpServlet {
25 PersistenceManagerFactory persistenceManagerFactory;
26 PersistenceManager pm;
27 public void init() throws ServletException {
28 try {
29 ServletContext ctx = getServletContext();
30 InputStream in = ctx.getResourceAsStream("WEB-INF/pmf.properties");
31 Properties props = new Properties();
32 props.load(in);
33 persistenceManagerFactory =
34 JDOHelper.getPersistenceManagerFactory(props);
35 } catch (IOException ex) {
36 throw new ServletException("Unable to load PMF properties.", ex);
37 } catch (JDOException ex) {
38 throw new ServletException("Unable to create PMF resource.", ex);
39 } catch (Exception ex) {
40 throw new ServletException("Unable to initialize.", ex);
41 }
42
43 }
44
45 /**
46 Destroys the servlet.
47 */
48 public void destroy() {
49 }
50
51 /** Processes requests for both HTTP <code>GET</code>
52 * and <code>POST</code> methods.
53 * @param request servlet request
54 * @param response servlet response
55 */
56 protected void processRequest(HttpServletRequest request,
57 HttpServletResponse response)
58 throws ServletException, java.io.IOException {
59 pm = persistenceManagerFactory.getPersistenceManager();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

60 response.setContentType("text/html");
61 java.io.PrintWriter out = response.getWriter();
62 out.println("<html>");
63 out.println("<head>");
64 out.println("<title>Servlet</title>");
65 out.println("</head>");
66 out.println("<body>");
67 out.print(formatMovieInfo());
68 out.println("</body>");
69 out.println("</html>");
70 out.close();
71 pm.close();
72 }
73
74 protected String formatMovieInfo() {
75 StringBuffer result = new StringBuffer();
76 Extent movies = pm.getExtent(Movie.class, true);
77 Iterator it = movies.iterator();
78 while (it.hasNext()) {
79 result.append("<P>");
80 Movie movie = (Movie)it.next();
81 result.append(movie.getDescription());
82 }
83 return result.toString();
84 }
85 /** Handles the HTTP <code>GET</code> method.
86 * @param request servlet request
87 * @param response servlet response
88 */
89 protected void doGet(HttpServletRequest request,
90 HttpServletResponse response)
91 throws ServletException, java.io.IOException {
92 processRequest(request, response);
93 }
94
95 /** Handles the HTTP <code>POST</code> method.
96 * @param request servlet request
97 * @param response servlet response
98 */
99 protected void doPost(HttpServletRequest request,
100 HttpServletResponse response)
101 throws ServletException, java.io.IOException {
102 processRequest(request, response);
103 }
104
105 /** Returns a short description of the servlet.
106 */
107 public String getServletInfo() {
108 return "Movie Information";
109 }
110
111 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

E.1.6 com.mediamania.appserver.PurchaseValueObject

 1 package com.mediamania.appserver;
 2
 3 public class PurchaseValueObject extends MediaValueObject {
 4 public String format;
 5 }

E.1.7 com.mediamania.appserver.RentalValueObject

 1 package com.mediamania.appserver;
 2
 3 public class RentalValueObject extends MediaValueObject {
 4 public String serialNumber;
 5 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

E.2 The com.mediamania.content package

This package includes classes that model information about the media content that is sold or rented at
Media Mania stores.

E.2.1 com.mediamania.content.ContentQueries

 1 package com.mediamania.content;
 2
 3 import java.util.Iterator;
 4 import java.util.Collection;
 5 import javax.jdo.*;
 6
 7 public class ContentQueries {
 8 public static Studio getStudioByName(PersistenceManager pm,
 9 String studioName) {
10 Extent studioExtent = pm.getExtent(com.mediamania.content.Studio.class,
11 false);
12 Query query = pm.newQuery(studioExtent, "name == studioName");
13 query.declareParameters("String studioName");
14 Collection result = (Collection) query.execute(studioName);
15 Iterator iter = result.iterator();
16 Studio studio = (Studio) (iter.hasNext() ? iter.next() : null);
17 query.close(result);
18 return studio;
19 }
20 public static MediaPerson getMediaPerson(PersistenceManager pm,
21 String person) {
22 Extent personExtent = pm.getExtent(
23 com.mediamania.content.MediaPerson.class, false);
24 Query query = pm.newQuery(personExtent, "mediaName == person");
25 query.declareParameters("String person");
26 Collection result = (Collection) query.execute(person);
27 Iterator iter = result.iterator();
28 MediaPerson mediaPerson =
29 (MediaPerson) (iter.hasNext() ? iter.next() : null);
30 query.close(result);
31 return mediaPerson;
32 }
33 }

E.2.2 com.mediamania.content.Game

 1 package com.mediamania.content;
 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 3 import java.util.Date;
 4
 5 public class Game extends MediaContent {
 6 private static String[] allRatings = {"EC","K-A","E","T","M","AO","RP"};
 7
 8 public Game() {
 9 }
10 public Game(String title, Studio studio, Date releaseDate,
11 String rating, String reasons) {
12 super(title, studio, releaseDate, rating, reasons);
13 }
14
15 public boolean validRating(String rating) {
16 for (int i = 0; i < allRatings.length; ++i) {
17 if (rating.equals(allRatings[i])) return true;
18 }
19 return false;
20 }
21 }

E.2.3 com.mediamania.content.MediaContent

 1 package com.mediamania.content;
 2
 3 import java.util.Date;
 4 import java.util.Set;
 5 import java.util.HashSet;
 6 import java.util.Collections;
 7 import java.text.SimpleDateFormat;
 8 import java.lang.StringBuffer;
 9
10 import com.mediamania.store.MediaItem;
11
12 public abstract class MediaContent {
13 private static SimpleDateFormat yearFmt = new SimpleDateFormat("yyyy");
14 private String title;
15 private Studio studio;
16 private Date releaseDate;
17 private String rating;
18 private String ratingReasons;
19 private Set mediaItems; // MediaItem
20
21 protected MediaContent()
22 { }
23 public MediaContent(String title, Studio studio, Date releaseDate,
24 String rating, String reasons) {
25 this.title = title;
26 this.studio = studio;
27 this.releaseDate = releaseDate;
28 this.rating = rating;
29 ratingReasons = reasons;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30 mediaItems = new HashSet();
31 }
32 public String getTitle() {
33 return title;
34 }
35 public Studio getStudio() {
36 return studio;
37 }
38 public Date getReleaseDate() {
39 return releaseDate;
40 }
41 public String getRating() {
42 return rating;
43 }
44 public String getRatingReasons() {
45 return ratingReasons;
46 }
47 public abstract boolean validRating(String rating);
48 public Set getMediaItems() {
49 return Collections.unmodifiableSet(mediaItems);
50 }
51 public void addMediaItem(MediaItem item) {
52 mediaItems.add(item);
53 }
54 public String getDescription() {
55 StringBuffer buffer = new StringBuffer();
56 buffer.append(title);
57 buffer.append(", ");
58 buffer.append(studio.getName());
59 buffer.append(", release date: ");
60 buffer.append(formatReleaseDate());
61 buffer.append(", rating: ");
62 buffer.append(rating);
63 buffer.append(", reasons for rating: ");
64 buffer.append(ratingReasons);
65 return buffer.toString();
66 }
67 public static Date parseReleaseDate(String val) {
68 Date date = null;
69 try {
70 date = yearFmt.parse(val);
71 } catch (java.text.ParseException exc) { }
72 return date;
73 }
74 public String formatReleaseDate() {
75 return yearFmt.format(releaseDate);
76 }
77 }

E.2.4 com.mediamania.content.MediaPerson

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 package com.mediamania.content;
 2
 3 import java.util.Date;
 4 import java.util.Set;
 5 import java.util.HashSet;
 6 import java.util.Collections;
 7
 8 public class MediaPerson {
 9 private String mediaName;
10 private String firstName;
11 private String lastName;
12 private Date birthDate;
13 private Set actingRoles; // Role
14 private Set moviesDirected; // Movie
15
16 private MediaPerson()
17 { }
18 public MediaPerson(String mediaName) {
19 this.mediaName = mediaName;
20 actingRoles = new HashSet();
21 moviesDirected = new HashSet();
22 }
23 public MediaPerson(String mediaName, String firstName, String lastName,
24 Date birthDate) {
25 this.mediaName = mediaName;
26 this.firstName = firstName;
27 this.lastName = lastName;
28 this.birthDate = birthDate;
29 actingRoles = new HashSet();
30 moviesDirected = new HashSet();
31 }
32 public String getName() {
33 return mediaName;
34 }
35 public String getFirstName() {
36 return firstName;
37 }
38 public String getLastName() {
39 return lastName;
40 }
41 public Date getBirthDate() {
42 return birthDate;
43 }
44 public void addRole(Role role) {
45 actingRoles.add(role);
46 }
47 public Set getRoles() {
48 return Collections.unmodifiableSet(actingRoles);
49 }
50 public void addMoviesDirected(Movie movie) {
51 moviesDirected.add(movie);
52 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

53 public Set getMoviesDirected() {
54 return Collections.unmodifiableSet(moviesDirected);
55 }
56 }

E.2.5 com.mediamania.content.Movie

 1 package com.mediamania.content;
 2
 3 import java.util.Date;
 4 import java.util.Set;
 5 import java.util.HashSet;
 6 import java.util.Collections;
 7 import java.lang.StringBuffer;
 8
 9 public class Movie extends MediaContent {
10 private static String[] allRatings = {"G","PG","PG-13","R","NC-17"};
11 private String genres;
12 private Set cast; // Role
13 private MediaPerson director;
14 private int runningTime;
15 private String webSite;
16
17 private Movie()
18 { }
19 public Movie(String title, Studio studio, Date releaseDate,
20 String rating, String reasons, String genres, int runningTime,
21 MediaPerson director) {
22 super(title, studio, releaseDate, rating, reasons);
23 this.runningTime = runningTime;
24 this.genres = genres;
25 cast = new HashSet();
26 this.director = director;
27 if (director != null) director.addMoviesDirected(this);
28 }
29 public boolean validRating(String rating) {
30 for (int i = 0; i < allRatings.length; ++i) {
31 if (rating.equals(allRatings[i])) return true;
32 }
33 return false;
34 }
35 public MediaPerson getDirector()
36 {
37 return director;
38 }
39 public Set getCast() {
40 return Collections.unmodifiableSet(cast);
41 }
42 public void addRole(Role r) {
43 cast.add(r);
44 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

45 public void removeRole(Role r) {
46 cast.remove(r);
47 }
48 public String getDescription() {
49 StringBuffer buffer = new StringBuffer();
50 buffer.append("Movie: ");
51 buffer.append(super.getDescription());
52 buffer.append(", genre: ");
53 buffer.append(genres);
54 buffer.append(" running time: ");
55 buffer.append(runningTime);
56 return buffer.toString();
57 }
58 }

E.2.6 com.mediamania.content.Role

 1 package com.mediamania.content;
 2
 3 public class Role {
 4 private String name;
 5 private MediaPerson actor;
 6 private Movie movie;
 7
 8 private Role()
 9 { }
10 public Role(String name, MediaPerson actor, Movie movie) {
11 this.name = name;
12 this.actor = actor;
13 this.movie = movie;
14 actor.addRole(this);
15 movie.addRole(this);
16 }
17 public String getName() {
18 return name;
19 }
20 public MediaPerson getActor() {
21 return actor;
22 }
23 public Movie getMovie() {
24 return movie;
25 }
26 public void setMovie(Movie theMovie) {
27 movie = theMovie;
28 }
29 }

E.2.7 com.mediamania.content.Studio.java

 1 package com.mediamania.content;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2
 3 import java.util.Set;
 4 import java.util.HashSet;
 5 import java.util.Collections;
 6
 7 public class Studio {
 8 private String name;
 9 private Set content; // MediaContent
10
11 private Studio()
12 { }
13 public Studio(String studioName) {
14 name = studioName;
15 content = new HashSet();
16 }
17 public String getName() {
18 return name;
19 }
20 public Set getContent() {
21 return Collections.unmodifiableSet(content);
22 }
23 public void addContent(MediaContent mc) {
24 content.add(mc);
25 }
26 public void removeContent(MediaContent mc) {
27 content.remove(mc);
28 }
29 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

E.3 The com.mediamania.hotcache package

This package contains the classes that can be used to support a hot cache, as presented in Chapter
14.

E.3.1 com.mediamania.hotcache.AbstractCache

 1 package com.mediamania.hotcache;
 2
 3 import java.util.Map;
 4 import java.util.HashMap;
 5
 6 import com.mediamania.prototype.PrototypeQueries;
 7 import com.mediamania.MediaManiaApp;
 8 import com.mediamania.prototype.Movie;
 9
10 public abstract class AbstractCache extends MediaManiaApp
11 implements com.mediamania.hotcache.CacheAccess {
12
13 protected Map cache = new HashMap();
14
15 /** Creates a new instance of AbstractCache. The AbstractCache is the
16 * base class for MasterCache and SlaveCache.
17 */
18 protected AbstractCache() {
19 }
20
21 /** Get the Movie by title. If the movie is not in the cache, put it in.
22 * @param title the title of the movie
23 * @return the movie instance
24 */
25 public Movie getMovieByTitle(String title) {
26 Movie movie = (Movie) cache.get(title);
27 if (movie == null) {
28 movie = PrototypeQueries.getMovie (pm, title);
29 if (movie != null) {
30 cache.put (title, movie);
31 }
32 }
33 return movie;
34 }
35 }

E.3.2 com.mediamania.hotcache.AbstractDriver

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1 package com.mediamania.hotcache;
 2
 3 import java.io.InputStream;
 4 import java.io.InputStreamReader;
 5 import java.io.IOException;
 6 import java.io.Reader;
 7 import java.io.BufferedReader;
 8
 9 import java.util.StringTokenizer;
10
11 import java.net.URL;
12 import java.net.MalformedURLException;
13
14 import com.mediamania.Utilities;
15
16 import com.mediamania.prototype.Movie;
17
18 public class AbstractDriver {
19 protected BufferedReader requestReader;
20 protected BufferedReader updateReader;
21 protected CacheAccess cache;
22 protected int timeoutMillis;
23 protected AbstractDriver(String updateURL, String requestURL,
24 String timeout) {
25 updateReader = openReader(updateURL);
26 requestReader = openReader(requestURL);
27 timeoutMillis = Integer.parseInt(timeout);
28 }
29
30 protected BufferedReader openReader (String urlName) {
31 try {
32 URL url = new URL(urlName);
33 InputStream is = url.openStream();
34 Reader r = new InputStreamReader(is);
35 return new BufferedReader(r);
36 } catch (Exception ex) {
37 return null;
38 }
39 }
40
41 protected void serviceReaders() {
42 boolean done = false;
43 boolean lastTime = false;
44 try {
45 while (!done) {
46 if (updateReader.ready()) {
47 handleUpdate();
48 done = false;
49 lastTime = false;
50 } else if (requestReader.ready()) {
51 handleRequest();
52 done = false;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

53 lastTime = false;
54 } else {
55 try {
56 Thread.sleep (timeoutMillis);
57 if (lastTime) done = true;
58 lastTime = true;
59 } catch (InterruptedException ex) {
60 done = true;
61 }
62 }
63 }
64 } catch (Exception ex) {
65 return;
66 }
67 }
68
69 protected void handleRequest() throws IOException {
70 String request = requestReader.readLine();
71 Movie movie = cache.getMovieByTitle(request);
72 System.out.println("Movie: " + movie.getTitle());
73 }
74
75 protected void handleUpdate() throws IOException {
76 String update = updateReader.readLine();
77 StringTokenizer tokenizer = new StringTokenizer(update, ";");
78 String movieName = tokenizer.nextToken();
79 String webSite = tokenizer.nextToken();
80 cache.updateWebSite (movieName, webSite);
81 }
82 }

E.3.3 com.mediamania.hotcache.CacheAccess

 1 package com.mediamania.hotcache;
 2
 3 import com.mediamania.prototype.Movie;
 4
 5 /** Manage a cache of persistent Movie instances.
 6 */
 7 public interface CacheAccess {
 8
 9 /** Get the Movie by title.
10 * @param title the title of the movie
11 * @return the movie instance
12 */
13 Movie getMovieByTitle (String title);
14
15 /** Update the Movie website.
16 * @param title the title of the movie
17 * @param website the new website for the movie
18 */

http://lib.ommolketab.ir
http://lib.ommolketab.ir

19 void updateWebSite (String title, String website);
20 }

E.3.4 com.mediamania.hotcache.MasterCache

 1 package com.mediamania.hotcache;
 2
 3 import java.util.Map;
 4 import java.util.HashMap;
 5
 6 import com.mediamania.prototype.PrototypeQueries;
 7 import com.mediamania.prototype.Movie;
 8
 9 public class MasterCache extends AbstractCache
10 implements com.mediamania.hotcache.CacheAccess {
11
12 /** Creates a new instance of MasterCache. The MasterCache performs
13 * updates of the database and manages a cache of Movie.
14 */
15 public MasterCache() {
16 }
17
18 /** Update the Movie website.
19 * @param title the title of the movie
20 * @param website the new website for the movie
21 */
22 public void updateWebSite(String title, String website) {
23 Movie movie = getMovieByTitle (title);
24 if (movie != null) {
25 tx.begin();
26 movie.setWebSite (website);
27 tx.commit();
28 }
29 }
30
31 public void execute() {
32 }
33
34 protected static Map getPropertyOverrides()
35 {
36 Map overrides = new HashMap();
37 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
38 overrides.put ("javax.jdo.options.RetainValues", "true");
39 return overrides;
40 }
41 }

E.3.5 com.mediamania.hotcache.MasterDriver

 1 package com.mediamania.hotcache;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2
 3 public class MasterDriver extends AbstractDriver {
 4 protected MasterDriver(String updateURL, String requestURL,
 5 String timeout) {
 6 super(updateURL, requestURL, timeout);
 7 cache = new MasterCache();
 8 }
 9
10 public static void main(String[] args) {
11 MasterDriver master = new MasterDriver(
12 args[0], args[1], args[2]);
13 master.serviceReaders();
14 }
15 }

E.3.6 com.mediamania.hotcache.SlaveCache

 1 package com.mediamania.hotcache;
 2
 3 import java.util.Map;
 4 import java.util.HashMap;
 5
 6 import com.mediamania.prototype.Movie;
 7
 8 public class SlaveCache extends AbstractCache
 9 implements com.mediamania.hotcache.CacheAccess {
10
11 /** Creates a new instance of SlaveCache. The SlaveCache performs
12 * lookups of the database and manages a cache of Movie.
13 */
14 public SlaveCache() {
15 }
16
17 /** Update the Movie website in the cache, only if it is already there.
18 * The datastore will be updated by the MasterCache.
19 * @param title the title of the movie
20 * @param website the new website for the movie
21 */
22 public void updateWebSite(String title, String website) {
23 Movie movie = (Movie)cache.get (title);
24 if (movie == null)
25 return;
26 movie.setWebSite (website);
27 }
28
29 public void execute() {
30 }
31
32 protected static Map getPropertyOverrides()
33 {
34 Map overrides = new HashMap();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

35 overrides.put ("javax.jdo.options.NontransactionalRead", "true");
36 overrides.put ("javax.jdo.options.NontransactionalWrite", "true");
37 return overrides;
38 }
39 }

E.3.7 com.mediamania.hotcache.SlaveDriver

 1 package com.mediamania.hotcache;
 2
 3 public class SlaveDriver extends AbstractDriver {
 4 protected SlaveDriver(String updateURL, String requestURL,
 5 String timeout) {
 6 super(updateURL, requestURL, timeout);
 7 cache = new SlaveCache();
 8 }
 9
10 public static void main(String[] args) {
11 SlaveDriver slave = new SlaveDriver(
12 args[0], args[1], args[2]);
13 slave.serviceReaders();
14 }
15 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

E.4 The com.mediamania.store package

This package contains classes that model information that is specific to an individual store. It includes objects
representing the media to be sold or rented, and information about the customers and the media items they have
bought or rented.

E.4.1 com.mediamania.store.Address

 1 package com.mediamania.store;
 2
 3
 4 public class Address {
 5 private String street;
 6 private String city;
 7 private String state;
 8 private String zipcode;
 9
10 private Address()
11 { }
12
13 public Address(String street, String city, String state, String zipcode) {
14 this.street = street;
15 this.city = city;
16 this.state = state;
17 this.zipcode = zipcode;
18 }
19 public String getStreet() {
20 return street;
21 }
22 public String getCity() {
23 return city;
24 }
25 public String getState() {
26 return state;
27 }
28 public String getZipcode() {
29 return zipcode;
30 }
31 }

E.4.2 com.mediamania.store.Customer

 1 package com.mediamania.store;
 2
 3 import java.util.Set;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 import java.util.HashSet;
 5 import java.util.List;
 6 import java.util.ArrayList;
 7 import java.util.Collections;
 8
 9 public class Customer {
10 private String firstName;
11 private String lastName;
12 private Address address;
13 private String phone;
14 private String email;
15 private Set currentRentals; // Rental
16 private List transactionHistory; // Transaction
17
18 private Customer()
19 { }
20 public Customer(String firstName, String lastName, Address addr,
21 String phone, String email) {
22 this.firstName = firstName;
23 this.lastName = lastName;
24 address = addr;
25 this.phone = phone;
26 this.email = email;
27 currentRentals = new HashSet();
28 transactionHistory = new ArrayList();
29 }
30 public String getFirstName() {
31 return firstName;
32 }
33 public String getLastName() {
34 return lastName;
35 }
36 public Address getAddress() {
37 return address;
38 }
39 public String getPhone() {
40 return phone;
41 }
42 public String getEmail() {
43 return email;
44 }
45 public void addRental(Rental rental){
46 currentRentals.add(rental);
47 }
48 public Set getRentals() {
49 return Collections.unmodifiableSet(currentRentals);
50 }
51 public void addTransaction(Transaction trans) {
52 transactionHistory.add(trans);
53 }
54 public List getTransactionHistory() {
55 return Collections.unmodifiableList(transactionHistory);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

56 }
57 }

E.4.3 com.mediamania.store.MediaItem

 1 package com.mediamania.store;
 2
 3 import java.util.Set;
 4 import java.util.HashSet;
 5 import java.util.Collections;
 6 import java.math.BigDecimal;
 7 import com.mediamania.content.MediaContent;
 8
 9 public class MediaItem {
10 private MediaContent content;
11 private String format;
12 private BigDecimal purchasePrice;
13 private RentalCode rentalCode;
14 private Set rentalItems; // RentalItem
15 private int quantityInStockForPurchase;
16 private int soldYTD;
17 private int rentedYTD;
18
19 private MediaItem()
20 { }
21
22 public MediaItem(MediaContent content, String format, BigDecimal price,
23 RentalCode rentalCode, int number4sale) {
24 this.content = content;
25 content.addMediaItem(this);
26 this.format = format;
27 purchasePrice = price;
28 this.rentalCode = rentalCode;
29 rentalItems = new HashSet();
30 quantityInStockForPurchase = number4sale;
31 soldYTD = 0;
32 rentedYTD = 0;
33 }
34 public MediaContent getMediaContent() {
35 return content;
36 }
37 public BigDecimal getPurchasePrice() {
38 return purchasePrice;
39 }
40 public String getFormat() {
41 return format;
42 }
43 public RentalCode getRentalCode() {
44 return rentalCode;
45 }
46 public void setRentalCode(RentalCode code) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

47 rentalCode = code;
48 }
49 public void addRentalItem(RentalItem rentalItem) {
50 rentalItems.add(rentalItem);
51 }
52 public Set getRentalItems() {
53 return Collections.unmodifiableSet(rentalItems);
54 }
55 public void sold(int qty) {
56 if (qty > quantityInStockForPurchase) {
57 // report error
58 }
59 quantityInStockForPurchase -= qty;
60 soldYTD += qty;
61 }
62 }

E.4.4 com.mediamania.store.Purchase

 1 package com.mediamania.store;
 2
 3 import java.math.BigDecimal;
 4 import java.util.Date;
 5
 6 public class Purchase extends Transaction {
 7 private MediaItem mediaItem;
 8
 9 private Purchase()
10 { }
11 public Purchase(Customer cust, Date date, BigDecimal price, MediaItem item){
12 super(cust, date);
13 setPrice(price);
14 mediaItem = item;
15 price = item.getPurchasePrice();
16 }
17 public MediaItem getMediaItem() {
18 return mediaItem;
19 }
20 }

E.4.5 com.mediamania.store.Rental

 1 package com.mediamania.store;
 2
 3 import java.util.Date;
 4 import java.util.Calendar;
 5 import java.util.GregorianCalendar;
 6
 7 public class Rental extends Transaction {
 8 private RentalItem rentalItem;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 9 private RentalCode rentalCode;
10 private Date returnDate;
11 private Date actualReturnDate;
12
13 private Rental()
14 { }
15
16 public Rental(Customer cust, Date date, RentalItem item) {
17 super(cust, date);
18 rentalItem = item;
19 item.setCurrentRental(this);
20 rentalCode = item.getMediaItem().getRentalCode();
21 setPrice(rentalCode.getCost());
22 GregorianCalendar cal = new GregorianCalendar();
23 cal.setTime(date);
24 cal.add(Calendar.DATE, rentalCode.getNumberOfDays());
25 returnDate = cal.getTime();
26 actualReturnDate = null;
27 }
28 public RentalItem getRentalItem() {
29 return rentalItem;
30 }
31 public MediaItem getMediaItem() {
32 return rentalItem.getMediaItem();
33 }
34 public void setDateReturned(Date d) {
35 actualReturnDate = d;
36 }
37 }

E.4.6 com.mediamania.store.RentalCode

 1 package com.mediamania.store;
 2
 3 import java.math.BigDecimal;
 4
 5 public class RentalCode
 6 {
 7 private String code;
 8 private int numberOfDays;
 9 private BigDecimal cost;
10 private BigDecimal lateFeePerDay;
11
12 private RentalCode()
13 { }
14
15 public RentalCode(String code, int days,
16 BigDecimal cost, BigDecimal lateFee) {
17 this.code = code;
18 numberOfDays = days;
19 this.cost = cost;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20 lateFeePerDay = lateFee;
21 }
22 public String getCode() {
23 return code;
24 }
25 public int getNumberOfDays() {
26 return numberOfDays;
27 }
28 public BigDecimal getCost() {
29 return cost;
30 }
31 public BigDecimal getLateFeePerDay() {
32 return lateFeePerDay;
33 }
34 }

E.4.7 com.mediamania.store.RentalItem

 1 package com.mediamania.store;
 2
 3 public class RentalItem
 4 {
 5 private MediaItem mediaItem;
 6 private String serialNumber;
 7 private Rental currentRental;
 8
 9 private RentalItem()
10 { }
11 public RentalItem(MediaItem item, String serialNum) {
12 mediaItem = item;
13 item.addRentalItem(this);
14 serialNumber = serialNum;
15 currentRental = null;
16 }
17 public MediaItem getMediaItem() {
18 return mediaItem;
19 }
20 public Rental getCurrentRental() {
21 return currentRental;
22 }
23 public void setCurrentRental(Rental rental) {
24 currentRental = rental;
25 }
26 }

E.4.8 com.mediamania.store.StoreQueries

 1 package com.mediamania.store;
 2
 3 import java.util.Iterator;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 import java.util.Collection;
 5 import java.util.HashMap;
 6 import java.util.Date;
 7 import java.util.Properties;
 8 import java.io.InputStream;
 9 import java.io.IOException;
10 import java.math.BigDecimal;
11 import javax.jdo.*;
12 import com.mediamania.content.*;
13 import com.mediamania.store.*;
14
15 public class StoreQueries {
16
17 public static RentalCode getRentalCode(PersistenceManager pm,
18 String codeName) {
19 Extent codeExtent = pm.getExtent(RentalCode.class, false);
20 Query query = pm.newQuery(codeExtent, "code == codeName");
21 query.declareParameters("String codeName");
22 Collection result = (Collection) query.execute(codeName);
23 Iterator iter = result.iterator();
24 RentalCode rentalCode =
25 (RentalCode) (iter.hasNext() ? iter.next() : null);
26 query.close(result);
27 return rentalCode;
28 }
29
30 public static Movie getMovieByTitle(PersistenceManager pm,
31 String movieTitle) {
32 Extent movieExtent = pm.getExtent(Movie.class, true);
33 Query query = pm.newQuery(movieExtent, "title == movieTitle");
34 query.declareParameters("String movieTitle");
35 Collection result = (Collection) query.execute(movieTitle);
36 Iterator iter = result.iterator();
37 Movie movie = (Movie) (iter.hasNext() ? iter.next() : null);
38 query.close(result);
39 return movie;
40 }
41
42 public static Customer getCustomer(PersistenceManager pm,
43 String fname, String lname) {
44 Extent customerExtent = pm.getExtent(Customer.class, true);
45 String filter = "fname == firstName && lname == lastName";
46 Query query = pm.newQuery(customerExtent, filter);
47 query.declareParameters("String fname, String lname");
48 Collection result = (Collection) query.execute(fname, lname);
49 Iterator iter = result.iterator();
50 Customer customer = (Customer) (iter.hasNext() ? iter.next() : null);
51 query.close(result);
52 return customer;
53 }
54
55 public static void queryCustomers(PersistenceManager pm,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

56 String city, String state) {
57 Extent customerExtent = pm.getExtent(Customer.class, true);
58 String filter = "address.city == city && address.state == state";
59 Query query = pm.newQuery(customerExtent, filter);
60 query.declareParameters("String city, String state");
61 query.setOrdering(
62 "address.zipcode ascending, lastName ascending, firstName ascending");
63 Collection result = (Collection) query.execute(city, state);
64 Iterator iter = result.iterator();
65 while (iter.hasNext()) {
66 Customer customer = (Customer) iter.next();
67 Address address = customer.getAddress();
68 System.out.print(address.getZipcode()); System.out.print(" ");
69 System.out.print(customer.getFirstName()); System.out.print(" ");
70 System.out.print(customer.getLastName()); System.out.print(" ");
71 System.out.println(address.getStreet());
72 }
73 query.close(result);
74 }
75
76 public static void queryMovie1(PersistenceManager pm,
77 String rating, int runtime, MediaPerson dir) {
78 Extent movieExtent = pm.getExtent(Movie.class, true);
79 String filter =
80 "rating == movieRating && runningTime <= runTime && director == dir";
81 Query query = pm.newQuery(movieExtent, filter);
82 query.declareParameters(
83 "String movieRating, int runTime, MediaPerson dir");
84 Collection result = (Collection)
85 query.execute(rating, new Integer(runtime), dir);
86 Iterator iter = result.iterator();
87 while (iter.hasNext()) {
88 Movie movie = (Movie) iter.next();
89 System.out.println(movie.getTitle());
90 }
91 query.close(result);
92 }
93
94 public static void queryMovie2(PersistenceManager pm,
95 String rating, int runtime, MediaPerson dir,
96 Date date) {
97 Extent movieExtent = pm.getExtent(Movie.class, true);
98 String filter = "rating == movieRating && runningTime <= runTime && " +
99 "director == dir && releaseDate >= date";
100 Query query = pm.newQuery(movieExtent, filter);
101 query.declareImports("import java.util.Date");
102 query.declareParameters(
103 "String movieRating, int runTime, MediaPerson dir, Date date");
104 HashMap parameters = new HashMap();
105 parameters.put("movieRating", rating);
106 parameters.put("runTime", new Integer(runtime));
107 parameters.put("dir", dir);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

108 parameters.put("date", date);
109 Collection result = (Collection) query.executeWithMap(parameters);
110 Iterator iter = result.iterator();
111 while (iter.hasNext()) {
112 Movie movie = (Movie) iter.next();
113 System.out.println(movie.getTitle());
114 }
115 query.close(result);
116 }
117
118 public static void queryMovie3(PersistenceManager pm,
119 String rating, int runtime, MediaPerson dir,
120 Date date) {
121 Extent movieExtent = pm.getExtent(Movie.class, true);
122 String filter = "rating == movieRating && runningTime <= runTime && " +
123 "director == dir && releaseDate >= date";
124 Query query = pm.newQuery(movieExtent, filter);
125 query.declareImports("import java.util.Date");
126 query.declareParameters(
127 "String movieRating, int runTime, MediaPerson dir, Date date");
128 Object[] parameters = { rating, new Integer(runtime), dir, date };
129 Collection result = (Collection) query.executeWithArray(parameters);
130 Iterator iter = result.iterator();
131 while (iter.hasNext()) {
132 Movie movie = (Movie) iter.next();
133 System.out.println(movie.getTitle());
134 }
135 query.close(result);
136 }
137
138 public static void queryMovie4(PersistenceManager pm) {
139 Extent movieExtent = pm.getExtent(Movie.class, true);
140 String filter = "!(rating == \"G\" || rating == \"PG\") && " +
141 "(runningTime >= 60 && runningTime <= 105)";
142 Query query = pm.newQuery(movieExtent, filter);
143 Collection result = (Collection) query.execute();
144 Iterator iter = result.iterator();
145 while (iter.hasNext()) {
146 Movie movie = (Movie) iter.next();
147 System.out.println(movie.getTitle());
148 }
149 query.close(result);
150 }
151
152 public static void getDirectorAlsoActor(PersistenceManager pm) {
153 Extent movieExtent = pm.getExtent(Movie.class, true);
154 String filter = "cast.contains(role) && role.actor == director";
155 Query query = pm.newQuery(movieExtent, filter);
156 query.declareVariables("Role role");
157 Collection result = (Collection) query.execute();
158 Iterator iter = result.iterator();
159 while (iter.hasNext()) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

160 Movie movie = (Movie) iter.next();
161 System.out.print(movie.getTitle());
162 System.out.print(", ");
163 System.out.println(movie.getDirector().getName());
164 }
165 }
166
167 public static void queryTransactions(PersistenceManager pm, Customer cust) {
168 Query query = pm.newQuery(com.mediamania.store.Transaction.class,
169 cust.getTransactionHistory());
170 String filter =
171 "((Movie)(((Rental)this).rentalItem.mediaItem.content)).director." +
172 "mediaName == \"James Cameron\"";
173 query.declareImports("import com.mediamania.content.Movie");
174 query.setFilter(filter);
175 Collection result = (Collection) query.execute();
176 Iterator iter = result.iterator();
177 while (iter.hasNext()){
178 Rental rental = (Rental) iter.next();
179 MediaContent content =
180 rental.getRentalItem().getMediaItem().getMediaContent();
181 System.out.println(content.getTitle());
182 }
183 query.close(result);
184 }
185
186 public static void queryMoviesSeenInCity(PersistenceManager pm,
187 String city) {
188 String filter = "mediaItems.contains(item) &&" +
189 "(item.rentalItems.contains(rentItem) && " +
190 "(rentItem.currentRental.customer.address.city == city))";
191 Extent movieExtent = pm.getExtent(Movie.class, true);
192 Query query = pm.newQuery(movieExtent, filter);
193 query.declareImports("import com.mediamania.store.MediaItem; " +
194 "import com.mediamania.store.RentalItem");
195 query.declareVariables("MediaItem item; RentalItem rentItem");
196 query.declareParameters("String city");
197 Collection result = (Collection) query.execute(city);
198 Iterator iter = result.iterator();
199 while (iter.hasNext()) {
200 Movie movie = (Movie) iter.next();
201 System.out.println(movie.getTitle());
202 }
203 query.close(result);
204 }
205
206 public static void queryTransactionsInCity(PersistenceManager pm,
207 String city, String state, Date acquired) {
208 Extent transactionExtent =
209 pm.getExtent(com.mediamania.store.Transaction.class, true);
210 Query query = pm.newQuery(transactionExtent);
211 query.declareParameters("String thecity, String thestate, Date date");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

212 query.declareImports("import java.util.Date");
213 String filter = "customer.address.city == thecity && " +
214 "customer.address.state == thestate && acquisitionDate >= date";
215 query.setFilter(filter);
216 String order = "customer.address.zipcode descending, " +
217 "customer.lastName ascending, " +
218 "customer.firstName ascending, acquisitionDate ascending";
219 query.setOrdering(order);
220 Collection result = (Collection) query.execute(city, state, acquired);
221 Iterator iter = result.iterator();
222 while (iter.hasNext()) {
223 com.mediamania.store.Transaction tx =
224 (com.mediamania.store.Transaction) iter.next();
225 Customer cust = tx.getCustomer();
226 Address addr = cust.getAddress();
227 System.out.print(addr.getZipcode());
228 System.out.print(cust.getLastName()); System.out.print(" ");
229 System.out.print(cust.getFirstName()); System.out.print(" ");
230 System.out.println(tx.getAcquisitionDate());
231 }
232 query.close(result);
233 }
234
235 public static void queryProfits(PersistenceManager pm, BigDecimal value,
236 BigDecimal sellCost, BigDecimal rentCost) {
237 Query query = pm.newQuery(MediaItem.class);
238 query.declareImports("import java.math.BigDecimal");
239 query.declareParameters(
240 "BigDecimal value, BigDecimal sellCost, BigDecimal rentCost");
241 query.setFilter("soldYTD * (purchasePrice - sellCost) + " +
242 "rentedYTD * (rentalCode.cost - rentCost) > value");
243 Collection result = (Collection)query.execute(value, sellCost,rentCost);
244 Iterator iter = result.iterator();
245 while (iter.hasNext()) {
246 MediaItem item = (MediaItem) iter.next();
247 // process MediaItem
248 }
249 query.close(result);
250 }
251
252 public static RentalItem getRentalItem(
253 PersistenceManager pm, String serialNumber) {
254 Query query = pm.newQuery(RentalItem.class);
255 query.declareParameters("String serialNumber");
256 query.setFilter("this.serialNumber == serialNumber");
257 Collection result = (Collection)query.execute(serialNumber);
258 Iterator iter = result.iterator();
259 RentalItem item = (RentalItem) (iter.hasNext() ? iter.next() : null);
260 query.close(result);
261 return item;
262 }
263

http://lib.ommolketab.ir
http://lib.ommolketab.ir

264 public static MediaItem getMediaItem(
265 PersistenceManager pm, String title, String format) {
266 Query query = pm.newQuery(MediaItem.class);
267 query.declareParameters("String title, String format");
268 query.setFilter("this.format == format && content.title == title");
269 Collection result = (Collection)query.execute(title, format);
270 Iterator iter = result.iterator();
271 MediaItem item = (MediaItem) (iter.hasNext() ? iter.next() : null);
272 query.close(result);
273 return item;
274 }
275
276 public static Query newQuery(PersistenceManager pm, Class cl,InputStream is)
277 throws IOException {
278 Properties props = new Properties();
279 props.load(is);
280 Query q = pm.newQuery(cl);
281 q.setFilter((String)props.get("filter"));
282 q.declareParameters((String)props.get("parameters"));
283 q.declareVariables((String)props.get("variables"));
284 q.setOrdering((String)props.get("ordering"));
285 q.declareImports((String)props.get("imports"));
286 q.setIgnoreCache(Boolean.getBoolean((String)props.get("ignoreCache")));
287 return q;
288 }
289 }

E.4.9 com.mediamania.store.Transaction

 1 package com.mediamania.store;
 2
 3 import java.util.Date;
 4 import java.math.BigDecimal;
 5
 6 public abstract class Transaction
 7 {
 8 protected Customer customer;
 9 protected Date acquisitionDate;
10 protected BigDecimal price;
11
12 protected Transaction()
13 { }
14 protected Transaction(Customer cust, Date date) {
15 customer = cust;
16 acquisitionDate = date;
17 }
18 public abstract MediaItem getMediaItem();
19
20 public Customer getCustomer() {
21 return customer;
22 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23 public Date getAcquisitionDate() {
24 return acquisitionDate;
25 }
26 public BigDecimal getPrice() {
27 return price;
28 }
29 public void setPrice(BigDecimal price) {
30 this.price = price;
31 }
32 }

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Java Data Objects is a bilby (Macrotis lagotis), also known as a ninu,
dalgyte, pinky, or rabbit-eared bandicoot. Bilbies are rabbit-sized marsupials with silky, blue-gray
fur; long, pointed snouts; large, rabbit-like ears; and long, black tails with white tips. This strange
combination of traits may appear awkward, but its delicate and cute features have actually made the
bilby one of Australia's most attractive and celebrated mammals. For many Australians, the Easter
Bilby has even replaced the rabbit as the popular Easter icon.

Bilbies have adapted well to the hot, arid climates they now habitate. Their long, slender tongues
help them eat a diet of seeds, insects, bulbs, fruit, and fungi. Bilbies have well-developed forearms
and long claws, which they use to dig the deep, spiralling burrows in which they live. Bilbies are
strictly nocturnal, and during the day they plug the entrances to their holes with soil to protect them
from extreme temperatures. Because bilbies are solitary animals, burrows usually have a single
opening and a single occupant, though females often live with their young. Like other marsupials,
females have a backward-opening pouch with eight teats, used to carry and protect their young for
about 80 days. Bilbies usually have no more than two young at a time.

Once common throughout Australia, disease, agriculture clearing, spreading of the fox and feral cat,
and the control campaign against the destructive rabbit (which was often unfairly grouped with the
innocent bilby it resembles) have limited bilbies' habitats to isolated populations in Western Australia,
the Northern Territory, and southwestern Queensland. Bilbies are now listed as endandered species
by many Australian and international conservation groups.

Brian Sawyer was the production editor and copyeditor for Java Data Objects. Colleen Gorman was
the proofreader. Genevieve d'Entremont and Claire Cloutier provided quality control. David Jordan
and Craig Russell wrote the index, with the assistance of Reg Aubry.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from Animate Creation, Vol. II. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. Andrew Savikas prepared this book in FrameMaker 5.5.6.
The text font is Linotype Birka, and the heading font is Adobe Myriad Condensed. The code font is a
modified version of LucasFont's TheSans Mono Condensed, designed by Luc(as) de Groot with
modifications suggested by David Jordan. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This
colophon was written by Brian Sawyer.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

!

!=

&

&&

>

>=

<

<=

*

+

-

.

/

== 2nd

|

||

~

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abstract

ACID transaction properties

Action

ActionServlet

addition

afterCompletion() 2nd 3rd 4th 5th

AND query operator 2nd

antlr.jar

Apache

application assembly

application identity 2nd 3rd

 equals()

 hashCode()

 inner class

 String constructor

 toString()

application-identity class 2nd

ApplicationIdentity 2nd

Array 2nd

array

array support

ArrayList 2nd

 default to SCO

ascending

atomic

atomic value

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

bean-managed persistence

before image 2nd 3rd 4th 5th

beforeCompletion() 2nd

begin() 2nd 3rd 4th

BigDecimal

 default to SCO

 mapping to SQL type

 persistent field

BIGINT SQL type 2nd

BigInteger

 default to SCO

 mapping to SQL type

 persistent field

binary addition

binary compatibility

binary large object (BLOB)

binary subtraction

BIT SQL type

bitwise complement

BMP

Boolean

 default to SCO

 mapping to SQL type

boolean

 mapping to SQL type

 persistent field

Boolean

 persistent field

boolean

 SCO

bridge mapping

btree.jar

business delegates

Byte

 default to SCO

 mapping to SQL type

byte

 mapping to SQL type

 persistent field

Byte

 persistent field

byte

 SCO

BYTE SQL type

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

cache 2nd

candidate class

candidate set

cascading delete 2nd

CashierBean

cast expression 2nd

cell

CGI

ChangeApplicationIdentity 2nd

char

 mapping to SQL type

 persistent field

 SCO

CHAR SQL type

Character

 default to SCO

 mapping to SQL type

 persistent field

class 2nd

class metadata

class metadata attributes

 identity-type 2nd 3rd 4th 5th 6th 7th

 name

 objectid-class 2nd 3rd 4th 5th 6th 7th 8th 9th

 persistence-capable-superclass 2nd

 requires-extent 2nd

ClassCastException

client container

CLOB

clone

close()

 Extent 2nd

 PersistenceManager 2nd 3rd 4th

 PersistenceManagerFactory 2nd

 Query 2nd

closeAll()

 Extent 2nd 3rd

 Query

closePersistenceManagerFactory 2nd

CMP

coarse-grained objects

collection

Collection

collection 2nd

Collection

 default to SCO

 persistent field 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 size() 2nd

collection metadata attributes

 element-type 2nd 3rd 4th 5th 6th 7th 8th 9th

 embedded-element

column 2nd

column datatypes 2nd

commit() 2nd 3rd 4th 5th 6th 7th 8th 9th

Common Gateway Interface

Common Object Request Broker Architecture (CORBA)

compile() 2nd

composite object

composite-aggregation association

connection management 2nd

connection-factory property

 DriverName

 LoginTimeout

 LogWriter

 MaxPool

 MinPool

 MsWait

 Password

 PortNumber

 ServerName

 URL

 UserName

ConnectionDriverName 2nd

ConnectionFactory 2nd 3rd

ConnectionFactory2

ConnectionFactory2Name 2nd 3rd

ConnectionFactoryName 2nd 3rd 4th

ConnectionPassword 2nd 3rd

ConnectionURL 2nd 3rd 4th

ConnectionUserName 2nd 3rd

connector

consistent

container-managed persistence 2nd

container-managed transaction 2nd

containment

contains() 2nd 3rd 4th 5th

controller servlet

CRUD operations

currentTransaction() 2nd 3rd 4th 5th 6th

cursor stability

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data-access objects (DAO)

datastore identity 2nd

DatastoreIdentity 2nd

Date

 comparing in JDOQL

 default to SCO

 equality in JDOQL

 mapping to SQL type

 persistent field

DATE SQL type

DATETIME SQL type

DECIMAL SQL type

declareImports() 2nd 3rd 4th 5th

declareParameters() 2nd 3rd 4th 5th

declareVariables() 2nd 3rd 4th

default constructor

default fetch group 2nd

default-fetch-group<Default Para Font> attribute 2nd 3rd

delete propagation

deletePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 jdoPreDelete() 2nd

deletePersistentAll() 2nd 3rd 4th 5th

descending

destroy()

destroy()

different datastores

dirty 2nd

dirty read

distributed transaction 2nd 3rd

division

doGet() 2nd 3rd

doPost() 2nd 3rd

Double

 default to SCO

 mapping to SQL type

double

 mapping to SQL type

 persistent field

Double

 persistent field

double

 SCO

DOUBLE SQL type

DriverName connection-factory property

durable

dynamic content

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

EIS

EJB 2nd

 res-ref-name attribute

 res-type attribute

 resource-ref element

EJB container

EJB Server

ejb-jar element

 assembly-descriptor element

ejb-jar.xml file

ejbActivate()

ejbActivate()

ejbCreate()

ejbFindByPrimaryKey()

ejbLoad()

ejbPassivate() 2nd

ejbPassivate()

EJBQL

ejbRemove()

ejbStore()

element-type attribute 2nd 3rd 4th 5th 6th 7th 8th 9th

embedded attribute 2nd 3rd 4th

embedded-element attribute

embedded-key attribute

embedded-value attribute

endsWith() 2nd

Enterprise Information System

Enterprise JavaBeans 2nd

entity beans

equal (in queries)

equality

equals() 2nd 3rd 4th 5th 6th 7th

 application identity

evict() 2nd 3rd

evictAll() 2nd 3rd 4th 5th 6th

eviction

exceptions

exclusive lock

execute() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

executeWithArray() 2nd

executeWithMap() 2nd

 Query

existence-dependent components

extension

extension metadata attributes

 key

 value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 vendor-name 2nd 3rd 4th 5th

Extent 2nd 3rd

 close() 2nd

 closeAll() 2nd 3rd

 getCandidateClass() 2nd

 getPersistenceManager() 2nd

 hasSubclasses() 2nd

 interface declaration

 iteration 2nd

 iterator() 2nd 3rd 4th 5th 6th

 queries

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

façade

fetch group

field

field mediation

field metadata attributes

 default-fetch-group 2nd 3rd

 embedded 2nd 3rd 4th

 name

 null-value 2nd 3rd

 persistence-modifier 2nd 3rd 4th 5th

 primary-key 2nd

File

file I/O

filter

final field 2nd

final keyword 2nd

fine-grained objects

firewall

first normal form

first-class objects

Float

 default to SCO

 mapping to SQL type

float

 mapping to SQL type

 persistent field

Float

 persistent field

float

 SCO

FLOAT SQL type

flushing

foreign key 2nd 3rd 4th

foreign-key constraint

forward engineering

FOStore

Fostore

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

getCandidateClass() 2nd

getConnectionDriverName() 2nd

getConnectionFactory()

getConnectionFactory2() 2nd

getConnectionFactory2Name() 2nd

getConnectionFactoryName() 2nd

getConnectionURL() 2nd

getConnectionUserName() 2nd

getExtent() 2nd 3rd

getFailedObject() 2nd 3rd 4th

getfield 2nd

getIgnoreCache()

 PersistenceManager 2nd 3rd

 PersistenceManagerFactory

 Query 2nd

getMetadata

getMultithreaded()

 PersistenceManager 2nd

 PersistenceManagerFactory

getNestedExceptions() 2nd

getNontransactionalRead()

 PersistenceManagerFactory 2nd

 Transaction

getNontransactionalWrite()

 PersistenceManagerFactory 2nd

 Transaction

getObjectById() 2nd 3rd 4th

getObjectId()

 JDOHelper 2nd

 PersistenceManager 2nd

getObjectIdClass() 2nd

getOptimistic()

 PersistenceManagerFactory 2nd 3rd 4th

 Transaction 2nd

getPersistenceManager()

 Extent 2nd

 JDOHelper 2nd

 PersistenceManagerFactory 2nd 3rd 4th 5th

 Query 2nd

 Transaction 2nd

getPersistenceManagerFactory()

 JDOHelper 2nd 3rd 4th 5th 6th

 PersistenceManager

getProperties() 2nd 3rd

getRestoreValues()

 PersistenceManagerFactory

 Transaction 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getRetainValues()

 PersistenceManagerFactory 2nd

 Transaction

getSynchronization() 2nd

getTransactionalObjectId()

 JDOHelper 2nd

 PersistenceManager 2nd 3rd 4th

getUserObject() 2nd

getUserTransaction()

greater-than

greater-than or equal

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hashCode() 2nd 3rd 4th 5th

 application identity

HashMap 2nd

 default to SCO

HashSet

 default to SCO

 persistent field 2nd

Hashtable 2nd

 default to SCO

hasNext() 2nd

hasSubclasses() 2nd

hollow state 2nd

HTTP

HTTPS

HttpServlet 2nd

 service()

Hypertext Transfer Protocol

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

identity

identity class 2nd

identity instance

identity-type attribute 2nd 3rd 4th 5th 6th

identity-type<Default Para Font> attribute

IgnoreCache 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

immutable class

index 2nd

inheritance 2nd 3rd

inheritance hierarchy 2nd

inherited fields

init() 2nd

initial context

instance callback

instance of a transient class

InstanceCallbacks 2nd 3rd 4th

 interface declaration

 jdoPostLoad() 2nd 3rd 4th 5th

 jdoPreClear() 2nd 3rd

 jdoPreDelete() 2nd 3rd 4th

 jdoPreStore() 2nd

int

 mapping to SQL type

 persistent field

 SCO

INT2 SQL type

INT4 SQL type

INT8 SQL type

Integer

 default to SCO

 mapping to SQL type

 MAX_VALUE

 persistent field

INTEGER SQL type

inverse member

isActive() 2nd

isClosed() 2nd

isDeleted() 2nd 3rd 4th

isDirty() 2nd 3rd 4th

isEmpty()

isNew() 2nd 3rd 4th

isolated

isomorphic mapping

isPersistent() 2nd 3rd 4th 5th

isTransactional() 2nd 3rd 4th

Iterator

 hasNext() 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 next() 2nd

 remove()

iterator() 2nd 3rd 4th 5th

 Extent

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE 2nd

J2EE client container

J2EE Java Connector Architecture

Jakarta

Java 2 Enterprise Edition

Java Architecture for XML Binding (JAXB)

Java Database Connectivity (JDBC)

Java Message Service

Java Naming and Directory Interface (JNDI) 2nd

Java Native Interface (JNI)

Java security manager

Java Transaction Service

JavaMail

JavaServer Page

javax.jdo package

javax.jdo.option

javax.jdo.option.ApplicationIdentity 2nd

javax.jdo.option.Array

javax.jdo.option.ArrayList 2nd

javax.jdo.option.ChangeApplicationIdentity 2nd

javax.jdo.option.ConnectionDriverName

javax.jdo.option.ConnectionFactory2Name

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionUserName

javax.jdo.option.DatastoreIdentity 2nd

javax.jdo.option.HashMap 2nd

javax.jdo.option.Hashtable 2nd

javax.jdo.option.IgnoreCache 2nd

javax.jdo.option.LinkedList 2nd

javax.jdo.option.List 2nd

javax.jdo.option.Map 2nd

javax.jdo.option.Multithreaded 2nd 3rd

javax.jdo.option.NonDurableIdentity 2nd

javax.jdo.option.NontransactionalRead 2nd 3rd

javax.jdo.option.NontransactionalWrite 2nd 3rd

javax.jdo.option.NullCollection 2nd

javax.jdo.option.Optimistic 2nd 3rd

javax.jdo.option.RestoreValues 2nd

javax.jdo.option.RetainValues 2nd 3rd

javax.jdo.option.TransientTransactional 2nd

javax.jdo.option.TreeMap 2nd

javax.jdo.option.TreeSet 2nd

javax.jdo.option.Vector 2nd

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.spi package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.transaction.Status

javax.transaction.Synchronization 2nd

javax.transaction.UserTransaction

JDBC 2nd 3rd

JDBC driver

jdo

JDO metadata

JDO vendor

jdo.jar 2nd

JDOCanRetryException 2nd

 interface declaration

JDOcentral.com

JDODataStoreException 2nd 3rd 4th

 interface declaration

JDOException 2nd 3rd

 getFailedObject() 2nd 3rd 4th

 getNestedExceptions() 2nd

 interface declaration

 printStackTrace() 2nd 3rd

 toString()

JDOFatalDataStoreException 2nd

 interface declaration

JDOFatalException 2nd

 interface declaration

JDOFatalInternalException 2nd 3rd 4th

 interface declaration

JDOFatalUserException 2nd 3rd 4th 5th 6th

 interface declaration

jdoFieldFlags

jdoFlags 2nd 3rd 4th

JDOHelper 2nd

 constructor

 getObjectId() 2nd

 getPersistenceManager() 2nd

 getPersistenceManagerFactory() 2nd 3rd 4th 5th 6th

 getTransactionalObjectId() 2nd

 interface declaration

 isDeleted() 2nd 3rd 4th

 isDirty() 2nd 3rd 4th

 isNew() 2nd 3rd 4th

 isPersistent() 2nd 3rd 4th 5th

 isTransactional() 2nd 3rd 4th

 makeDirty() 2nd 3rd

JDOImplHelper

JDOObjectNotFoundException 2nd 3rd 4th 5th

 interface declaration

JDOOptimisticVerificationException 2nd 3rd

JDOPermission 2nd 3rd

JDOPermission(ÒclosePersistenceManagerFactoryÓ) 2nd

JDOPermission(ÒgetMetadataÓ)

JDOPermission(ÒsetStateManagerÓ)

JDOPlugIn

http://lib.ommolketab.ir
http://lib.ommolketab.ir

jdoPostLoad() 2nd 3rd 4th 5th

jdoPreClear() 2nd 3rd

jdoPreDelete() 2nd 3rd 4th

jdoPreStore() 2nd

jdori-enhancer.jar

jdori.jar

jdoStateManager 2nd

JDOUnsupportedOptionException 2nd 3rd 4th 5th 6th 7th 8th 9th

 interface declaration

JDOUserException 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st

22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th

 interface declaration

JMS

JNDI 2nd 3rd 4th 5th

join

join condition

join table 2nd

JSP 2nd

jta.jar

JTS

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

key<Default Para Font> attribute

key-type attribute

keyword in JDOQL

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

less-than (in queries)

less-than or equal

lifecycle state

lifecycle-state interrogation

LinkedList 2nd

 default to SCO

List 2nd

 default to SCO

local datastore

local transaction

Locale

 default to SCO

 mapping to SQL type

 persistent field

location transparency

lock instance

lock table

lock-compatibility matrix

locking

logical complement

LoginTimeout connection-factory property

LogWriter connection-factory property

Long

 default to SCO

 mapping to SQL type

long

 mapping to SQL type

 persistent field

Long

 persistent field

long

 SCO

LONGVARCHAR SQL type

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

makeDirty() 2nd 3rd

makeNontransactional()

makeNontransactionalAll() 2nd 3rd

makePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

makePersistentAll() 2nd 3rd

makeTransactional() 2nd 3rd 4th 5th

makeTransactionalAll() 2nd 3rd 4th 5th

makeTransient() 2nd

makeTransientAll() 2nd 3rd 4th

managed environment

managed field 2nd 3rd

managed relationship

many-to-many relationship 2nd 3rd

Map 2nd

map 2nd

Map

 default to SCO

map class to a table

map field to column

map metadata attributes

 embedded-key

 embedded-value

 key-type

 value-type

mark field modified

MaxPool connection-factory property

mediation 2nd 3rd 4th

MessageDrivenBean

metadata element

 array

 class

 collection 2nd

 extension

 jdo

 map 2nd

 package

metadata file name

MinPool connection-factory property

Model-View-Controller

MsWait connection-factory property

multiple PersistenceManagers

multiplication

Multithreaded 2nd 3rd 4th 5th 6th 7th

multithreading

mutable class

MVC2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name attribute

 class element

 package element

name<Default Para Font> attribute

 field element

name-mapping

newObjectIdInstance() 2nd 3rd

newQuery() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

next() 2nd

no-arg constructor 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

non-static inner class

nondurable identity 2nd 3rd

NonDurableIdentity 2nd

nonmanaged environment

NontransactionalRead 2nd 3rd 4th 5th 6th 7th 8th 9th

NontransactionalWrite 2nd 3rd 4th 5th 6th 7th 8th 9th

normalized

NoSuchElementException 2nd 3rd

not equal (in queries)

NOT operator

null collection

null parameters 2nd

null-value attribute 2nd 3rd

NullCollection 2nd

NullPointerException 2nd

Number

 default to SCO

NUMBER SQL type

numeric sign inversion

NUMERIC SQL type

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Object

 persistent field

object database 2nd 3rd

object identity

object-model evolution

objectid-class attribute 2nd 3rd 4th 5th 6th 7th 8th

objectid-class<Default Para Font> attribute

one-to-many relationship

one-to-one relationship

Optimistic 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

OQL

OR query operator 2nd

ORDER BY

ordering column

ordering expression

ordering specification 2nd 3rd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

package

package javax.jdo 2nd

package javax.jdo.spi 2nd

package metadata attribute

 name

parallel transactions

partial primary key

Password connection-factory property

persistence by reachability 2nd

persistence-aware class

persistence-by-reachability 2nd 3rd 4th 5th

persistence-capable

persistence-capable-superclass<Default Para Font> attribute 2nd 3rd

persistence-modifier<Default Para Font> attribute 2nd 3rd 4th 5th

PersistenceCapable 2nd 3rd 4th 5th

PersistenceManager 2nd 3rd

 close() 2nd 3rd 4th

 currentTransaction() 2nd 3rd 4th 5th 6th

 deletePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 jdoPreDelete() 2nd

 deletePersistentAll() 2nd 3rd 4th 5th

 evict() 2nd 3rd

 evictAll() 2nd 3rd 4th 5th 6th

 getExtent() 2nd 3rd

 getIgnoreCache() 2nd 3rd

 getMultithreaded() 2nd

 getObjectById() 2nd 3rd 4th

 getObjectId() 2nd

 getObjectIdClass() 2nd

 getPersistenceManagerFactory()

 getTransactionalObjectId() 2nd 3rd 4th

 getUserObject() 2nd

 interface declaration

 isClosed() 2nd

 makeNontransactional()

 makeNontransactionalAll() 2nd 3rd

 makePersistent() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 makePersistentAll() 2nd 3rd

 makeTransactional() 2nd 3rd 4th 5th

 makeTransactionalAll() 2nd 3rd 4th 5th

 makeTransient() 2nd

 makeTransientAll() 2nd 3rd 4th

 multiple

 newObjectIdInstance() 2nd 3rd

 newQuery() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

 refresh() 2nd 3rd 4th 5th

 refreshAll() 2nd 3rd 4th 5th 6th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 retrieve() 2nd 3rd 4th 5th

 retrieveAll() 2nd 3rd 4th 5th 6th 7th 8th

 setIgnoreCache() 2nd 3rd

 setMultithreaded() 2nd

 setUserObject() 2nd

PersistenceManager per Application pattern

PersistenceManager per Request pattern 2nd

PersistenceManager per Session

PersistenceManager per Transactional Request pattern

PersistenceManagerFactory 2nd

 close() 2nd

 getConnectionDriverName() 2nd

 getConnectionFactory()

 getConnectionFactory2() 2nd

 getConnectionFactory2Name() 2nd

 getConnectionFactoryName() 2nd

 getConnectionURL() 2nd

 getConnectionUserName() 2nd

 getIgnoreCache()

 getMultithreaded()

 getNontransactionalRead() 2nd

 getNontransactionalWrite() 2nd

 getOptimistic() 2nd 3rd 4th

 getPersistenceManager() 2nd 3rd 4th 5th

 getProperties() 2nd 3rd

 getRestoreValues()

 getRetainValues() 2nd

 interface declaration

 setConnectionDriverName()

 setConnectionFactory() 2nd

 setConnectionFactory2() 2nd 3rd

 setConnectionFactory2Name() 2nd

 setConnectionFactoryName() 2nd

 setConnectionPassword() 2nd

 setConnectionURL() 2nd

 setConnectionUserName() 2nd

 setIgnoreCache()

 setMultithreaded()

 setNontransactionalRead() 2nd

 setNontransactionalWrite() 2nd

 setOptimistic() 2nd 3rd

 setRestoreValues()

 setRetainValues() 2nd

 supportedOptions() 2nd 3rd

PersistenceManagerFactoryClass 2nd 3rd 4th

persistent class

persistent instance

persistent-clean state 2nd

persistent-deleted state 2nd

persistent-dirty state 2nd

persistent-new state 2nd

persistent-new-deleted state 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

persistent-nontransactional instance 2nd

persistent-nontransactional state 2nd 3rd

PHP

PlugIn

polymorphism 2nd 3rd 4th 5th

PortNumber connection-factory property

preread policy

primary key 2nd 3rd 4th 5th 6th 7th

primary-key attribute

primary-key field 2nd 3rd

primary-key<Default Para Font> attribute

printStackTrace() 2nd 3rd

private 2nd

processRequest()

Properties 2nd 3rd

protected 2nd

provisionally persistent 2nd 3rd

public 2nd

putfield 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Query 2nd 3rd

 close() 2nd

 closeAll() 2nd

 compile() 2nd

 declareImports() 2nd 3rd 4th 5th

 declareParameters() 2nd 3rd 4th 5th

 declareVariables() 2nd 3rd 4th

 execute() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 executeWithArray() 2nd

 executeWithMap()

 getIgnoreCache() 2nd

 getPersistenceManager() 2nd

 interface declaration

 setCandidates() 2nd 3rd

 setClass() 2nd 3rd

 setFilter() 2nd 3rd

 setIgnoreCache() 2nd

 setOrdering() 2nd 3rd

query compilation

query imports

query namespaces

query operator

 !

 !=

 &

 &&

 >

 >=

 <

 <=

 *

 +

 -

 .

 /

 == 2nd

 |

 ||

 ~

 contains() 2nd 3rd 4th 5th

 endsWith() 2nd

 isEmpty()

 startsWith() 2nd

query parameter

 declaration

query variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

reachability algorithm 2nd

read-committed isolation level 2nd

REAL SQL type

reference enhancer 2nd 3rd

referential integrity

refresh() 2nd 3rd 4th 5th

refreshAll() 2nd 3rd 4th 5th 6th

registry service

relational database 2nd

relational database server

relational query language

Remote Method Invocation (RMI)

remove()

repeatable-read isolation level 2nd

requires-extent attribute

requires-extent<Default Para Font> attribute

resource adapter

resource configuration

resource manager

resource reference

resource-ref

resource-ref servlet element

RestoreValues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

RetainValues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

retrieve() 2nd 3rd 4th 5th

retrieveAll() 2nd 3rd 4th 5th 6th 7th 8th

reverse-engineering

rich client 2nd

rollback

rollback() 2nd 3rd 4th 5th 6th 7th 8th

row 2nd

RuntimeException 2nd 3rd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

schema evolution

second-class objects

security

SecurityException

sequence 2nd

Serializable 2nd

serializable isolation level

serialization 2nd

ServerName connection-factory property

service endpoint

servlet

session bean façade

Set 2nd 3rd

 default to SCO

 persistent field

set Session Context()

setCandidates() 2nd 3rd

setClass() 2nd 3rd

setConnectionDriverName()

setConnectionFactory() 2nd

setConnectionFactory2() 2nd 3rd

setConnectionFactory2Name() 2nd

setConnectionFactoryName() 2nd

setConnectionPassword() 2nd

setConnectionURL() 2nd

setConnectionUserName() 2nd

setFilter() 2nd 3rd

setIgnoreCache()

 PersistenceManager 2nd

 PersistenceManagerFactory

 Query 2nd

setMessageDrivenContext()

setMultithreaded()

 PersistenceManager 2nd

 PersistenceManagerFactory

setNontransactionalRead()

 PersistenceManagerFactory 2nd

 Transaction

setNontransactionalWrite()

 PersistenceManagerFactory 2nd

 Transaction

setOptimistic()

 PersistenceManagerFactory 2nd 3rd

 Transaction

setOrdering() 2nd 3rd

setRestoreValues()

 PersistenceManagerFactory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Transaction 2nd 3rd

setRetainValues()

 PersistenceManagerFactory 2nd

 Transaction

setSessionContext()

setSessionContext() 2nd

setStateManager

setSynchronization() 2nd

setUserObject() 2nd

shallow copy

shared implementation cache

shared lock

sharing (FCO versus SCO)

Short

 default to SCO

 mapping to SQL type

short

 mapping to SQL type

 persistent field

Short

 persistent field

short

 SCO

SingleThreadModel 2nd

size()

 Collection

SMALLINT SQL type

SOAP 2nd

Socket

SQL 2nd 3rd

SQL 99

SQL datastore 2nd

SQL functions

 GROUP BY

 UNION

SQL LIKE

startsWith() 2nd

state transitions

stateful session beans

stateless session bean façade

stateless session beans

StateManager 2nd 3rd 4th

static 2nd

static content

static field

STATUS_COMMITTED

STATUS_ROLLEDBACK

StoreManager

strict isolation

String

 default to SCO

 mapping to SQL type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 persistent field

strong reference

Struts 2nd

struts-config.xml file 2nd

subtable

subtraction

supportedOptions() 2nd 3rd

Synchronization 2nd 3rd

 afterCompletion() 2nd 3rd 4th 5th

 beforeCompletion() 2nd

synchronized

System

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

table 2nd

table inheritance

tag library 2nd

this

 in queries 2nd

Thread

thread safe

TIMESTAMP SQL type

TINYINT SQL type

to-many relationship

toString()

 application identity

 identity

 JDOException

Transaction 2nd

 begin() 2nd 3rd 4th

 commit() 2nd 3rd 4th 5th 6th 7th 8th 9th

 getNontransactionalRead()

 getNontransactionalWrite()

 getOptimistic() 2nd

 getPersistenceManager() 2nd

 getRestoreValues() 2nd

 getRetainValues()

 getSynchronization() 2nd

 interface declaration

 isActive() 2nd

 rollback() 2nd 3rd 4th 5th 6th 7th 8th

 setNontransactionalRead()

 setNontransactionalWrite()

 setOptimistic()

 setRestoreValues() 2nd 3rd

 setRetainValues()

 setSynchronization() 2nd

transaction demarcation

transaction management

transaction-isolation level 2nd

transaction-required

transactional field

transient 2nd

transient class 2nd

transient field 2nd 3rd

transient instance 2nd

transient lifecycle states

transient state 2nd

transient transactional instance 2nd 3rd 4th

transient-clean state 2nd

transient-dirty state 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

transient-transactional instance

TransientTransactional 2nd

transparency

transparent data access

transparent persistence

TreeMap 2nd

 default to SCO

TreeSet 2nd

 default to SCO

type namespace

type-discriminator column 2nd

type-mapping

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

unary addition

unary bitwise complement

unbound variable

UnsupportedOperationException 2nd

URL connection-factory property

User-Defined Type (UDT)

UserName connection-factory property

UserTransaction 2nd 3rd 4th 5th 6th 7th

 begin()

 commit()

 rollback()

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validate

value attribute

value object 2nd

value-type attribute

VARCHAR SQL type 2nd

VARCHAR2 SQL type

Vector 2nd

 default to SCO

vendor-name attribute 2nd 3rd 4th 5th

VendorName

VersionNumber

view servlet

volatile 2nd

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

weak reference 2nd

web server

web services

web services endpoint

web-app servlet element

wild-card query

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

xerces.jar

XML

[Team LiB]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Main Page
	Table of content
	Dedication
	Copyright
	Foreword
	Preface
	Who Should Read This Book?
	Organization
	Software and Versions
	Conventions
	Comments and Questions
	Acknowledgments

	Chapter 1. An Initial Tour
	1.1 Defining a Persistent Object Model
	1.2 Project Build Environment
	1.3 Establish a Datastore Connection and Transaction
	1.4 Operations on Instances
	1.5 Summary

	Chapter 2. An Overview of JDO Interfaces
	2.1 The javax.jdo Package
	2.2 The javax.jdo.spi Package
	2.3 Optional Features

	Chapter 3. JDO Architectures
	3.1 Architecture Within Application JVM
	3.2 Datastore Access
	3.3 System Architectures with a JDO Application

	Chapter 4. Defining Persistent Classes
	4.1 Kinds of Classes and Instances
	4.2 Java Classes and Metadata
	4.3 Fields

	Chapter 5. Datastore Mappings
	5.1 Mapping Approaches
	5.2 Relational Modeling Constructs
	5.3 Modeling Constructs in Java and Relational Models
	5.4 Mapping Classes to Tables
	5.5 Mapping a Single-Valued Field to a Column
	5.6 Identity
	5.7 Inheritance
	5.8 References
	5.9 Collections and Relationships

	Chapter 6. Class Enhancement
	6.1 Enhancement Approaches
	6.2 Binary Compatibility
	6.3 Enhancement Effects on Your Code
	6.4 Changes Made by the Enhancer

	Chapter 7. Establishing a JDO Runtime Environment
	7.1 Configuring a PersistenceManagerFactory
	7.2 Acquiring a PersistenceManager
	7.3 Transactions
	7.4 Multiple PersistenceManagers
	7.5 Multithreading

	Chapter 8. Instance Management
	8.1 Persistence of Instances
	8.2 Extent Access
	8.3 Accessing and Updating Instances
	8.4 Deleting Instances

	Chapter 9. The JDO Query Language
	9.1 Query Components
	9.2 Creating and Initializing a Query
	9.3 Changes in the Cache
	9.4 Query Namespaces
	9.5 Query Execution
	9.6 The Query Filter
	9.7 Ordering Query Results
	9.8 Closing a Query

	Chapter 10. Identity
	10.1 Overview
	10.2 Datastore Identity
	10.3 Application Identity
	10.4 Nondurable Identity
	10.5 Identity Methods
	10.6 Advanced Topics

	Chapter 11. Lifecycle States and Transitions
	11.1 Lifecycle States
	11.2 State Interrogation
	11.3 State Transitions

	Chapter 12. Field Management
	12.1 Transactional Fields
	12.2 null Values
	12.3 Retrieval of Fields
	12.4 Serialization
	12.5 Managing Fields During Lifecycle Events
	12.6 First- and Second-Class Objects

	Chapter 13. Cache Management
	13.1 Explicit Management of Instances in the Cache
	13.2 Cloning
	13.3 Transient-Transactional Instances
	13.4 Making a Persistent Instance Transient

	Chapter 14. Nontransactional Access
	14.1 Nontransactional Features
	14.2 Reading Outside a Transaction
	14.3 Persistent-Nontransactional State
	14.4 Retaining Values at Transaction Commit
	14.5 Restoring Values at Transaction Rollback
	14.6 Modifying Persistent Instances Outside a Transaction

	Chapter 15. Optimistic Transactions
	15.1 Verification at Commit
	15.2 Optimistic Transaction State Transitions
	15.3 Deleting Instances
	15.4 Making Instances Transactional
	15.5 Modifying Instances
	15.6 Commit
	15.7 Rollback

	Chapter 16. The Web-Server Environment
	16.1 Web Servers
	16.2 Struts with JDO

	Chapter 17. J2EE Application Servers
	17.1 Enterprise JavaBeans Architecture
	17.2 Stateless Session Beans
	17.3 Bean-Managed Transactions
	17.4 Message-Driven Beans
	17.5 Persistent Entities and JDO

	Appendix A. Lifecycle States and Transitions
	Appendix B. JDO Metadata DTD
	Appendix C. JDO Interfaces and Exception Classes
	C.1 Interfaces
	C.2 Exceptions

	Appendix D. JDO Query Language BNF
	D.1 Parameter Declaration
	D.2 Variable Declaration
	D.3 Import Declaration
	D.4 Ordering Specification
	D.5 Type Specification
	D.6 Names
	D.7 Literal
	D.8 Filter Expressions

	Appendix E. Source Code for Examples
	E.1 The com.mediamania.appserver package
	E.2 The com.mediamania.content package
	E.3 The com.mediamania.hotcache package
	E.4 The com.mediamania.store package

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X

