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Preface

Performance has been an important issue with Java™ since the first version hit the Web years ago. Making

those first interpreted programs run fast enough was a huge challenge for many developers. Since then,

Java performance has improved enormously, and any Java program can now be made to run fast enough

provided you avoid the main performance pitfalls.

This book provides all the details a developer needs to performance-tune any type of Java program. I give

step-by-step instructions on all aspects of the performance-tuning process, from early considerations such as

setting goals, measuring performance, and choosing a compiler, to detailed examples on using profiling tools

and applying the results to tune the code. This is not an entry-level book about Java, but you do not need

any previous tuning knowledge to benefit from reading it.

Many of the tuning techniques presented in this book lead to an increased maintenance cost, so they should

not be applied arbitrarily. Change your code only when a bottleneck has been identified, and never change

the design of your application for minor performance gains.
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Contents of This Book

Chapter 1 gives general guidelines on how to tune. If you do not yet have a tuning strategy, this chapter

provides a methodical tuning process.

Chapter 2 covers the tools you need to use while tuning. Chapter 3 looks at the SDK, including Virtual

Machines (VMs) and compilers.

Chapter 4 through Chapter 12 cover various techniques you can apply to Java code. Chapter 12 looks at

tuning techniques specific to distributed applications.

Chapter 13 steps back from the low-level code-tuning techniques examined throughout most of the book and

considers tuning at all other stages of the development process.

Chapter 14 is a quick look at some operating system-level tuning techniques.

Chapter 15 through Chapter 18 are new in this edition, providing the information you need to tune J2EE

applications. Chapter 15 describes tuning considerations that are common to all J2EE applications. Chapter

16 looks at specifics for tuning JDBC, including optimizing transactions and SQL, while Chapter 17 provides

important information for speeding up servlets and JSPs. Chapter 18 describes performance considerations

for Enterprise JavaBeans (EJBs).

Finally, Chapter 19 covers a wide range of additional resources where you can learn more about Java

performance tuning.

Substantive chapters include a performance-tuning checklist at the end. Use these lists to ensure that you

have not missed any core tuning techniques while you are tuning.
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New in the Second Edition

All test results have been updated using the latest versions of the VMs available, including the VMs released

with SDK 1.4. The previous edition used Versions 1.1.6, 1.2.0, 1.3.0, and HotSpot 1.0. This edition uses

Versions 1.1.8, 1.2.2, 1.3.1_02, and 1.4.0 (which effectively includes HotSpot Version 3.0).

This edition has been thoroughly updated and expanded. Table P-1 provides an overview of material that is

new or significantly expanded in this edition.

Table P-1. Second edition highlights

Topic Covered in

Analyzing garbage-collection statistics Chapter 2

-Xaprof allocation profiler Chapter 2

Heap tuning Chapter 3

Reference types Chapter 4

SoftReference flushing Chapter 4

WeakHashMap Chapter 4

Regular expression tuning Chapter 5

Assertions Chapter 6

NIO Chapter 8

Atomic access Chapter 10

Optimizing collection queries Chapter 11

LinkedLists versus ArrayLists Chapter 11

RandomAccess interface Chapter 11

Collection classes added in SDK 1.4 Chapter 11

Web services Chapter 12

Performance planning Chapter 13

J2EE performance tuning Chapter 15

JDBC Chapter 16

Servlets and JSPs Chapter 17

Enterprise JavaBeans Chapter 18
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Virtual Machine (VM) Versions

I have focused on the Sun VMs, as there is enough variation within these to show interesting results. I have

shown the time variation across different VMs for many of the tests. However, your main focus should be on

the effects that tuning has on any one VM, as this identifies the usefulness of a tuning technique. Differences

between VMs are interesting, but are only indicative and need to be verified for your specific application.

Where I have shown the results of timed tests, the VM versions I have used are:

1.1.8

Version 1.1.x VMs do less VM-level work than later Java 2 VMs, so I have used a 1.1.x VM that

includes a just-in-time (JIT) compiler. Version 1.1.8 was the most recently updated 1.1 JVM available

for my tests. Version 1.1.8 supports running with and without a JIT. The default is with a JIT, and this

is the mode used for all measurements in the book.

1.2.2

I have used the 1.2.2 JDK for the 1.2 tests. Java 2 VMs have more work to do than prior VMs because

of additional features such as Reference objects, and 1.2.2 was the most recently updated 1.2 JVM

available for my tests. Version 1.2 supports running with and without a JIT. The default is with a JIT,

and this is the mode used for all measurements in the book.

1.3.1_02

I have used the 1.3.1_02 release for the 1.3 tests. Version 1.3 supports running in interpreted mode,

with HotSpot technology for the client (mixed mode) and for the server (server mode). Version 1.3

does not support a pure JIT mode. Tests labeled "1.3.1" use the default client-mode HotSpot

technology, and tests labeled "1.3.1 -server" use the server-mode HotSpot technology. For the

server-mode tests, I recorded the test times after the JIT generated code, i.e., the second run of

tests. These times are more representative of how server-mode JVMs are used.

1.4

I have used the 1.4.0 release for the 1.4 tests. Tests labeled "1.4" use the default client-mode

HotSpot technology, tests labeled "1.4 -server" use the server-mode HotSpot technology, and tests

labeled "1.4 -Xint" use the interpreted mode (i.e., no JIT compilation at all). The 1.4.0 release had a

few performance problems with the server mode, and Sun engineering kindly provided me with a

1.4.1 prerelease version of the server-mode JVM on which to run my tests. In addition, I've used the -
Xbatch option to ensure that all the HotSpot compilation takes place in the first run through any

tests, and I've recorded the second run times. These times are more representative of how server-

mode JVMs are used. I do not recommend using -Xbatch in general, unless you know definitely that

the first runthrough of the application can be much slower without affecting user expectations.
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Conventions Used in This Book

The following font conventions are used in this book:

Italic is used for:

Pathnames, filenames, and program names

Internet addresses, such as domain names and URLs

New terms where they are defined

Constant width is used for:

All Java code

Command lines

Names and keywords in Java programs, including method names, variable names, and class names

Constant width bold is used for:

Emphasis in some code examples

Command lines and options that should be typed verbatim
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Comments and Questions

The information in this book has been tested and verified, but you may find that features have changed (or

even that we have made mistakes!). Please send any errors you find, as well as suggestions for future

editions, to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, and additional information. You can access

this page at:

http://www.oreilly.com/catalog/javapt2/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly

web site at:

http://www.oreilly.com
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Chapter 1. Introduction

The trouble with doing something right the first time is that nobody appreciates how difficult it was.

-Fortune

There is a general perception that Java programs are slow. Part of this perception is pure assumption: many

people assume that if a program is not compiled, it must be slow. Part of this perception is based in reality:

many early applets and applications were slow, because of nonoptimal coding, initially unoptimized Java

Virtual Machines (VMs), and the overhead of the language.

In earlier versions of Java, you had to struggle hard and compromise a lot to make a Java application run

quickly. More recently, there have been fewer reasons why an application should be slow. The VM technology

and Java development tools have progressed to the point where a Java application (or applet, servlet, etc.)

is not particularly handicapped. With good designs and by following good coding practices and avoiding

bottlenecks, applications usually run fast enough. However, the truth is that the first (and even several

subsequent) versions of a program written in any language are often slower than expected, and the reasons

for this lack of performance are not always clear to the developer.

This book shows you why a particular Java application might be running slower than expected, and suggests

ways to avoid or overcome these pitfalls and improve the performance of your application. In this book I've

gathered several years of tuning experiences in one place. I hope you will find it useful in making your Java

application, applet, servlet, and component run as fast as you need.

Throughout the book I use the generic words "application" and "program" to cover Java applications,

applets, servlets, beans, libraries, and really any use of Java code. Where a technique can be applied only to

some subset of these various types of Java programs, I say so. Otherwise, the technique applies across all

types of Java programs.
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1.1 Why Is It Slow?

This question is always asked as soon as the first tests are timed: "Where is the time going? I did not expect

it to take this long." Well, the short answer is that it's slow because it has not been performance-tuned. In

the same way the first version of the code is likely to have bugs that need fixing, it is also rarely as fast as it

can be. Fortunately, performance tuning is usually easier than debugging. When debugging, you have to fix

bugs throughout the code; in performance tuning, you can focus your effort on the few parts of the

application that are the bottlenecks.

The longer answer? Well, it's true that there is overhead in the Java runtime system, mainly due to its virtual

machine layer that abstracts Java away from the underlying hardware. It's also true that there is overhead

from Java's dynamic nature. These overhead s can cause a Java application to run slower than an equivalent

application written in a lower-level language (just as a C program is generally slower than the equivalent

program written in assembler). Java's advantages-namely, its platform-independence, memory

management, powerful exception checking, built-in multithreading, dynamic resource loading, and security

checks-add costs in terms of an interpreter, garbage collector, thread monitors, repeated disk and network

accessing, and extra runtime checks.

For example, hierarchical method invocation requires an extra computation for every method call because

the runtime system has to work out which of the possible methods in the hierarchy is the actual target of the

call. Most modern CPU s are designed to be optimized for fixed call and branch targets and do not perform as

well when a significant percentage of calls need to be computed on the fly. On the other hand, good object-

oriented design actually encourages many small methods and significant polymorphism in the method

hierarchy. Compiler inlining is another frequently used technique that can significantly improve compiled

code. However, this technique cannot be applied when it is too difficult to determine method calls at compile

time, as is the case for many Java methods.

Of course, the same Java language features that cause these overheads may be the features that persuaded

you to use Java in the first place. The important thing is that none of them slows the system down too much.

Naturally, "too much" differs depending on the application, and the users of the application usually make this

choice. But the key point with Java is that a good round of performance tuning normally makes your

application run as fast as you need it to run. There are already plenty of nontrivial Java applications, applets,

and servlets that run fast enough to show that Java itself is not too slow. So if your application is not running

fast enough, chances are that it just needs tuning.
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1.2 The Tuning Game

Performance tuning is similar to playing a strategy game (but happily, you are usually paid to do it!). Your

target is to get a better score (lower time) than the last score after each attempt. You are playing with, not

against, the computer, the programmer, the design and architecture, the compiler, and the flow of control.

Your opponents are time, competing applications, budgetary restrictions, etc. (You can complete this list

better than I can for your particular situation.)

I once worked with a customer who wanted to know if there was a "go faster" switch somewhere that he

could just turn on and make the whole application go faster. Of course, he was not really expecting one, but

checked just in case he had missed a basic option somewhere.

There is no such switch, but very simple techniques sometimes provide the equivalent. Techniques include

switching compilers, turning on optimizations, using a different runtime VM, finding two or three bottlenecks

in the code or architecture that have simple fixes, and so on. I have seen all of these yield huge

improvements to applications, sometimes a 20-fold speedup. Order-of-magnitude speedups are typical for

the first round of performance tuning.
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1.3 System Limitations and What to Tune

Three resources limit all applications:

CPU speed and availability

System memory

Disk (and network) input/output (I/O)

When tuning an application, the first step is to determine which of these is causing your application to run

too slowly.

If your application is CPU-bound, you need to concentrate your efforts on the code, looking for bottlenecks,

inefficient algorithms, too many short-lived objects (object creation and garbage collection are CPU-intensive

operations), and other problems, which I will cover in this book.

If your application is hitting system-memory limits, it may be paging sections in and out of main memory. In

this case, the problem may be caused by too many objects, or even just a few large objects, being

erroneously held in memory; by too many large arrays being allocated (frequently used in buffered

applications); or by the design of the application, which may need to be reexamined to reduce its running

memory footprint.

On the other hand, external data access or writing to the disk can be slowing your application. In this case,

you need to look at exactly what you are doing to the disks that is slowing the application: first identify the

operations, then determine the problems, and finally eliminate or change these to improve the situation.

For example, one program I know of went through web server logs and did reverse lookups on the IP

addresses. The first version of this program was very slow. A simple analysis of the activity being performed

determined that the major time component of the reverse lookup operation was a network query. These

network queries do not have to be done sequentially. Consequently, the second version of the program

simply multithreaded the lookups to work in parallel, making multiple network queries simultaneously, and

was much, much faster.

In this book we look at the causes of bad performance. Identifying the causes of your performance problems

is an essential first step to solving those problems. There is no point in extensively tuning the disk-accessing

component of an application because we all know that "disk access is much slower than memory access"

when, in fact, the application is CPU-bound.

Once you have tuned the application's first bottleneck, there may be (and typically is) another problem,

causing another bottleneck. This process often continues over several tuning iterations. It is not uncommon

for an application to have its initial "memory hog" problems solved, only to become disk-bound, and then in

turn CPU-bound when the disk-access problem is fixed. After all, the application has to be limited by

something, or it would take no time at all to run.

Because this bottleneck-switching sequence is normal-once you've solved the existing bottleneck, a

previously hidden or less important one appears-you should attempt to solve only the main bottlenecks in

an application at any one time. This may seem obvious, but I frequently encounter teams that tackle the
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main identified problem, and then instead of finding the next real problem, start applying the same fix

everywhere they can in the application.

One application I know of had a severe disk I/O problem caused by using unbuffered streams (all disk I/O

was done byte by byte, which led to awful performance). After fixing this, some members of the

programming team decided to start applying buffering everywhere they could, instead of establishing where

the next bottleneck was. In fact, the next bottleneck was in a data-conversion section of the application that

was using inefficient conversion methods, causing too many temporary objects and hogging the CPU. Rather

than addressing and solving this bottleneck, they instead created a large memory-allocation problem by

throwing an excessive number of buffers into the application.
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1.4 A Tuning Strategy

Here's a strategy I have found works well when attacking performance problems:

Identify the main bottlenecks (look for about the top five bottlenecks, but go higher or lower if you

prefer).

1.

Choose the quickest and easiest one to fix, and address it (except for distributed applications where

the top bottleneck is usually the one to attack: see the following paragraph).

2.

Repeat from Step 1.3.

This procedure gets your application tuned the quickest. The advantage of choosing the "quickest to fix" of

the top few bottlenecks rather than the absolute topmost problem is that once a bottleneck has been

eliminated, the characteristics of the application change, and the topmost bottleneck may not need to be

addressed any longer. However, in distributed applications I advise you target the topmost bottleneck. The

characteristics of distributed applications are such that the main bottleneck is almost always the best to fix

and, once fixed, the next main bottleneck is usually in a completely different component of the system.

Although this strategy is simple and actually quite obvious, I nevertheless find that I have to repeat it again

and again: once programmers get the bit between their teeth, they just love to apply themselves to the

interesting parts of the problems. After all, who wants to unroll loop after boring loop when there's a nice

juicy caching technique you're eager to apply?

You should always treat the actual identification of the cause of the performance bottleneck as a science, not

an art. The general procedure is straightforward:

Measure the performance by using profilers and benchmark suites and by instrumenting code.1.

Identify the locations of any bottlenecks.2.

Think of a hypothesis for the cause of the bottleneck.3.

Consider any factors that may refute your hypothesis.4.

Create a test to isolate the factor identified by the hypothesis.5.

Test the hypothesis.6.

Alter the application to reduce the bottleneck.7.

Test that the alteration improves performance, and measure the improvement (include regression-

testing the affected code).

8.

Repeat from Step 1.9.

Here's the procedure for a particular example:

1.

2.
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You run the application through your standard profiler (measurement).1.

You find that the code spends a huge 11% of its time in one method (identification of bottleneck).2.

Looking at the code, you find a complex loop and guess this is the problem (hypothesis).3.

You see that it is not iterating that many times, so possibly the bottleneck could be outside the loop

(confounding factor).

4.

You could vary the loop iteration as a test to see if that identifies the loop as the bottleneck. However,

you instead try to optimize the loop by reducing the number of method calls it makes: this provides a

test to identify the loop as the bottleneck and at the same time provides a possible solution. In doing

this, you are combining two steps, Steps 5 and 7. Although this is frequently the way tuning actually

goes, be aware that this can make the tuning process longer: if there is no speedup, it may be because

your optimization did not actually make things faster, in which case you have neither confirmed nor

eliminated the loop as the cause of the bottleneck.

5.

Rerunning the profile on the altered application finds that this method has shifted its percentage time

down to just 4%. This method may still be a candidate for further optimization, but nevertheless it's

confirmed as the bottleneck and your change has improved performance.

6.

(Already done, combined with Step 5.)7.

(Already done, combined with Step 6.)8.

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

1.5 Perceived Performance

It is important to understand that the user has a particular view of performance that allows you to cut some

corners. The user of an application sees changes as part of the performance. A browser that gives a running

countdown of the amount left to be downloaded from a server is seen to be faster than one that just sits

there, apparently hung, until all the data is downloaded. People expect to see something happening, and a

good rule of thumb is that if an application is unresponsive for more than three seconds, it is seen as slow.

Some Human Computer Interface authorities put the user patience limit at just two seconds; an IBM study

from the early '70s suggested people's attention began to wander after waiting for more than just one

second. For performance improvements, it is also useful to know that users are not generally aware of

response time improvements of less than 20%. This means that when tuning for user perception, you should

not deliver any changes to the users until you have made improvements that add more than a 20%

speedup.

A few long response times make a bigger impression on the memory than many shorter ones. According to

Arnold Allen,[1] the perceived value of the average response time is not the average, but the 90th percentile

value: the value that is greater than 90% of all observed response times. With a typical exponential

distribution, the 90th percentile value is 2.3 times the average value. Consequently, as long as you reduce

the variation in response times so that the 90th percentile value is smaller than before, you can actually

increase the average response time, and the user will still perceive the application as faster. For this reason,

you may want to target variation in response times as a primary goal. Unfortunately, this is one of the more

complex targets in performance tuning: it can be difficult to determine exactly why response times are

varying.

[1] Introduction to Computer Performance Analysis with Mathematica (Academic Press).

If the interface provides feedback and allows the user to carry on other tasks or abort and start another

function (preferably both), the user sees this as a responsive interface and doesn't consider the application

as slow as he might otherwise. If you give users an expectancy of how long a particular task might take and

why, they often accept this and adjust their expectations. Modern web browsers provide an excellent

example of this strategy in practice. People realize that the browser is limited by the bandwidth of their

connection to the Internet and that downloading cannot happen faster than a given speed. Good browsers

always try to show the parts they have already received so that the user is not blocked, and they also allow

the user to terminate downloading or go off to another page at any time, even while a page is partly

downloaded. Generally, it is not the browser that is seen to be slow, but rather the Internet or the server

site. In fact, browser creators have made a number of tradeoffs so that their browsers appear to run faster

in a slow environment. I have measured browser display of identical pages under identical conditions and

found browsers that are actually faster at full page display but seem slower because they do not display

partial pages, download embedded links concurrently, and so on. Modern web browsers provide a good

example of how to manage user expectations and perceptions of performance.

However, one area in which some web browsers have misjudged user expectation is when they give users a

momentary false expectation that operations have finished when in fact another is to start immediately. This

false expectation is perceived as slow performance. For example, when downloading a page with embedded

links such as images, the browser status bar often shows reports like "20% of 34K," which moves up to

"56% of 34K," etc., until it reaches 100% and indicates that the page has finished downloading. However, at

this point, when the user expects that all the downloading has finished, the status bar starts displaying "26%

of 28K" and so on, as the browser reports separately on each embedded graphic as it downloads them. This
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frustrates users who initially expected the completion time from the first download report and had geared

themselves up to do something, only to have to wait again (often repeatedly). A better practice would be to

report on how many elements need to be downloaded as well as the current download status, giving the user

a clearer expectation of the full download time.

Where there are varying possibilities for performance tradeoffs (e.g., resolution versus frame rate for

animation, compression size versus speed of compression for compression utilities, etc.), the best strategy is

to put the user in control. It is better to provide the option to choose between faster performance and better

functionality. When users have made the choice themselves, they are often more willing to put up with

actions taking longer in return for better functionality. When users do not have this control, their response is

usually less tolerant.

This strategy also allows those users who have strong performance requirements to be provided for at their

own cost. But it is always important to provide a reasonable default in the absence of any choice from the

user. Where there are many different parameters, consider providing various levels of user-controlled tuning

parameters, e.g., an easy set of just a few main parameters, a middle level, and an expert level with access

to all parameters. This must, of course, be well documented to be really useful.

1.5.1 Threading to Appear Quicker

A lot of time (in CPU cycles) passes while the user is reacting to the application interface. This time can be

used to anticipate what the user wants to do (using a background low-priority thread), so that precalculated

results are ready to assist the user immediately. This makes an application appear blazingly fast.

Similarly, ensuring that your application remains responsive to the user, even while it is executing some

other function, makes it seem fast and responsive. For example, I always find that when starting up an

application, applications that draw themselves on screen quickly and respond to repaint requests even while

still initializing (you can test this by putting the window in the background and then bringing it to the

foreground) give the impression of being much faster than applications that seem to be chugging away

unresponsively. Starting different word-processing applications with a large file to open can be instructive,

especially if the file is on the network or a slow (removable) disk. Some act very nicely, responding almost

immediately while the file is still loading; others just hang unresponsively with windows only partially

refreshed until the file is loaded; others don't even fully paint themselves until the file has finished loading.

This illustrates what can happen if you do not use threads appropriately.

In Java, the key to making an application responsive is multithreading. Use threads to ensure that any

particular service is available and unblocked when needed. Of course, this can be difficult to program

correctly and manage. Handling interthread communication with maximal responsiveness (and minimal

bugs) is a complex task, but it does tend to make for a very snappily built application.

1.5.2 Streaming to Appear Quicker

When you display the results of some activity on the screen, there is often more information than can fit on a

single screen. For example, a request to list all the details on all the files in a particular large directory may

not fit on one display screen. The usual way to display this is to show as much as will fit on a single screen

and indicate that there are more items available with a scrollbar. Other applications or other information

may use a "more" button or have other ways of indicating how to display or move on to the extra

information.

In these cases, you initially need to display only a partial result of the activity. This tactic can work very
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much in your favor. For activities that take too long and for which some of the results can be returned more

quickly than others, it is certainly possible to show just the first set of results while continuing to compile

more results in the background. This gives the user an apparently much quicker response than if you were to

wait for all the results to be available before displaying them.

This situation is often the case for distributed applications. A well-known example is (again!) found in web

browsers that display the initial screenful of a page as soon as it is available, without waiting for the whole

page to be downloaded. The general case is when you have a long activity that can provide results in a

stream so that the results can be accessed a few at a time. For distributed applications, sending all the data

is often what takes a long time; in this case, you can build streaming into the application by sending one

screenful of data at a time. Also, bear in mind that when there is a really large amount of data to display,

the user often views only some of it and aborts, so be sure to build in the ability to stop the stream and

restore its resources at any time.

1.5.3 Caching to Appear Quicker

This section briefly covers the general principles of caching. Caching is an optimization technique I return to

in several different sections of this book when appropriate to the problem under discussion. For example, in

the area of disk access, there are several caches that apply: from the lowest-level hardware cache up

through the operating-system disk read and write caches, cached filesystems, and file reading and writing

classes that provide buffered I/O. Some caches cannot be tuned at all; others are tuneable at the operating-

system level or in Java. Where it is possible for a developer to take advantage of or tune a particular cache, I

provide suggestions and approaches that cover the caching technique appropriate to that area of the

application. In cases where caches are not directly tuneable, it is still worth knowing the effect of using the

cache in different ways and how this can affect performance. For example, disk hardware caches almost

always apply a read-ahead algorithm: the cache is filled with the next block of data after the one just read.

This means that reading backward through a file (in chunks) is not as fast as reading forward through the

file.

Caches are effective because it is expensive to move data from one place to another or to calculate results.

If you need to do this more than once to the same piece of data, it is best to hang onto it the first time and

refer to the local copy in the future. This applies, for example, to remote access of files such as browser

downloads. The browser caches the downloaded file locally on disk to ensure that a subsequent access does

not have to reach across the network to reread the file, thus making it much quicker to access a second

time. It also applies, in a different way, to reading bytes from the disk. Here, the cost of reading one byte for

operating systems is the same as reading a page (usually 4 or 8 KB), as data is read into memory a page at

a time by the operating system. If you are going to read more than one byte from a particular disk area, it is

better to read in a whole page (or all the data if it fits on one page) and access bytes through your local copy

of the data.

General aspects of caching are covered in more detail in Section 11.7. Caching is an important performance-

tuning technique that trades space for time, and it should be used whenever extra memory space is available

to the application.
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1.6 Starting to Tune

Before diving into the actual tuning, there are a number of considerations that will make your tuning phase

run more smoothly and result in clearly achieved objectives.

1.6.1 User Agreements

Any application must meet the needs and expectations of its users, and a large part of those needs and

expectations is performance. Before you start tuning, it is crucial to identify the target response times for as

much of the system as possible. At the outset, you should agree with your users (directly if you have access

to them, or otherwise through representative user profiles, market information, etc.) what the performance

of the application is expected to be.

The performance should be specified for as many aspects of the system as possible, including:

Multiuser response times depending on the number of users (if applicable)

Systemwide throughput (e.g., number of transactions per minute for the system as a whole, or

response times on a saturated network, again if applicable)

The maximum number of users, data, files, file sizes, objects, etc., the application supports

Any acceptable and expected degradation in performance between minimal, average, and extreme

values of supported resources

Agree on target values and acceptable variances with the customer or potential users of the application (or

whoever is responsible for performance) before starting to tune. Otherwise, you will not know where to

target your effort, how far you need to go, whether particular performance targets are achievable at all, and

how much tuning effort those targets may require. But most importantly, without agreed targets, whatever

you achieve will tend to become the starting point.

The following scenario is not unusual: a manager sees horrendous performance, perhaps a function that was

expected to be quick, but takes 100 seconds. His immediate response is, "Good grief, I expected this to take

no more than 10 seconds." Then, after a quick round of tuning that identifies and removes a huge

bottleneck, function time is down to 10 seconds. The manager's response is now, "Ah, that's more

reasonable, but of course I actually meant to specify 3 seconds-I just never believed you could get down so

far after seeing it take 100 seconds. Now you can start tuning." You do not want your initial achievement to

go unrecognized (especially if money depends on it), and it is better to know at the outset what you need to

reach. Agreeing on targets before tuning makes everything clear to everyone.

1.6.2 Setting Benchmarks

After establishing targets with the users, you need to set benchmarks. These are precise specifications

stating what part of the code needs to run in what amount of time. Without first specifying benchmarks, your

tuning effort is driven only by the target, "It's gotta run faster," which is a recipe for a wasted return. You
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must ask, "How much faster and in which parts, and for how much effort?" Your benchmarks should target a

number of specific functions of the application, preferably from the user perspective (e.g., from the user

pressing a button until the reply is returned or the function being executed is completed).

You must specify target times for each benchmark. You should specify ranges: for example, best times,

acceptable times, etc. These times are often specified in frequencies of achieving the targets. For example,

you might specify that function A take not more than 3 seconds to execute from user click to response

received for 80% of executions, with another 15% of response times allowed to fall in the 3- to 5-second

range, and 5% in the 5- to 10-second range. Note that the earlier section on user perceptions indicates that

the user will see this function as having a 5-second response time (the 90th percentile value) if you achieve

the specified ranges.

You should also have a range of benchmarks that reflect the contributions of different components of the

application. If possible, it is better to start with simple tests so that the system can be understood at its

basic levels, and then work up from these tests. In a complex application, this helps to determine the

relative costs of subsystems and which components are most in need of performance-tuning.

The following point is critical: Without clear performance objectives, tuning will never be completed. This is a

common syndrome on single or small group projects, where code keeps being tweaked as better

implementations or cleverer code is thought up.

Your general benchmark suite should be based on real functions used in the end application, but at the same

time should not rely on user input, as this can make measurements difficult. Any variability in input times or

any other part of the application should either be eliminated from the benchmarks or precisely identified and

specified within the performance targets. There may be variability, but it must be controlled and

reproducible.

1.6.3 The Benchmark Harness

There are tools for testing applications in various ways.[2] These tools focus mostly on testing the

robustness of the application, but as long as they measure and report times, they can also be used for

performance testing. However, because their focus tends to be on robustness testing, many tools interfere

with the application's performance, and you may not find a tool you can use adequately or cost-effectively. If

you cannot find an acceptable tool, the alternative is to build your own harness.

[2] You can search the Web for "java+perf+test" to find performance-testing tools. In addition, some
Java profilers are listed in Chapter 19.

Your benchmark harness can be as simple as a class that sets some values and then starts the main( )

method of your application. A slightly more sophisticated harness might turn on logging and timestamp all

output for later analysis. GUI-run applications need a more complex harness and require either an

alternative way to execute the graphical functionality without going through the GUI (which may depend on

whether your design can support this), or a screen event capture and playback tool (several such tools

exist[3]). In any case, the most important requirement is that your harness correctly reproduce user activity

and data input and output. Normally, whatever regression-testing apparatus you have (and presumably are

already using) can be adapted to form a benchmark harness.

[3] JDK 1.3 introduced a java.awt.Robot class, which provides for generating native system-input

events, primarily to support automated testing of Java GUIs.

The benchmark harness should not test the quality or robustness of the system. Operations should be

normal: startup, shutdown, and uninterrupted functionality. The harness should support the different
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configurations your application operates under, and any randomized inputs should be controlled, but note

that the random sequence used in tests should be reproducible. You should use a realistic amount of

randomized data and input. It is helpful if the benchmark harness includes support for logging statistics and

easily allows new tests to be added. The harness should be able to reproduce and simulate all user input,

including GUI input, and should test the system across all scales of intended use up to the maximum

numbers of users, objects, throughputs, etc. You should also validate your benchmarks, checking some of

the values against actual clock time to ensure that no systematic or random bias has crept into the

benchmark harness.

For the multiuser case, the benchmark harness must be able to simulate multiple users working, including

variations in user access and execution patterns. Without this support for variations in activity, the multiuser

tests inevitably miss many bottlenecks encountered in actual deployment and, conversely, do encounter

artificial bottlenecks that are never encountered in deployment, wasting time and resources. It is critical in

multiuser and distributed applications that the benchmark harness correctly reproduce user-activity

variations, delays, and data flows.

1.6.4 Taking Measurements

Each run of your benchmarks needs to be under conditions that are as identical as possible; otherwise, it

becomes difficult to pinpoint why something is running faster (or slower) than in another test. The

benchmarks should be run multiple times, and the full list of results retained, not just the average and

deviation or the ranged percentages. Also note the time of day that benchmarks are being run and any

special conditions that apply, e.g., weekend or after hours in the office. Sometimes the variation can give

you useful information. It is essential that you always run an initial benchmark to precisely determine the

initial times. This is important because, together with your targets, the initial benchmarks specify how far

you need to go and highlight how much you have achieved when you finish tuning.

It is more important to run all benchmarks under the same conditions than to achieve the end-user

environment for those benchmarks, though you should try to target the expected environment. It is possible

to switch environments by running all benchmarks on an identical implementation of the application in two

environments, thus rebasing your measurements. But this can be problematic: it requires detailed analysis

because different environments usually have different relative performance between functions (thus your

initial benchmarks could be skewed compared with the current measurements).

Each set of changes (and preferably each individual change) should be followed by a run of benchmarks to

precisely identify improvements (or degradations) in the performance across all functions. A particular

optimization may improve the performance of some functions while at the same time degrading the

performance of others, and obviously you need to know this. Each set of changes should be driven by

identifying exactly which bottleneck is to be improved and how much of a speedup is expected. Rigorously

using this methodology provides a precise target for your effort.

You need to verify that any particular change does improve performance. It is tempting to change something

small that you are sure will give an "obvious" improvement, without bothering to measure the performance

change for that modification (because "it's too much trouble to keep running tests"). But you could easily be

wrong. Jon Bentley once discovered that eliminating code from some simple loops can actually slow them

down.[4] If a change does not improve performance, you should revert to the previous version.

[4] Jon Bentley, "Code Tuning in Context," Dr. Dobb's Journal, May 1999. An empty loop in C ran slower
than one that contained an integer increment operation.

The benchmark suite should not interfere with the application. Be on the lookout for artificial performance

problems caused by the benchmarks themselves. This is very common if no thought is given to normal

http://lib.ommolketab.ir
http://lib.ommolketab.ir


variation in usage. A typical situation might be benchmarking multiuser systems with lack of user simulation

(e.g., user delays not simulated, causing much higher throughput than would ever be seen; user data

variation not simulated, causing all tests to try to use the same data at the same time; activities artificially

synchronized, giving bursts of activity and inactivity; etc.). Be careful not to measure artificial situations,

such as full caches with exactly the data needed for the test (e.g., running the test multiple times

sequentially without clearing caches between runs). There is little point in performing tests that hit only the

cache, unless this is the type of work the users will always perform.

When tuning, you need to alter any benchmarks that are quick (under five seconds) so that the code

applicable to the benchmark is tested repeatedly in a loop to get a more consistent measure of where any

problems lie. By comparing timings of the looped version with a single-run test, you can sometimes identify

whether caches and startup effects are altering times in any significant way.

Optimizing code can introduce new bugs, so the application should be tested during the optimization phase.

A particular optimization should not be considered valid until the application using that optimization's code

path has passed quality assessment.

Optimizations should also be completely documented. It is often useful to retain the previous code in

comments for maintenance purposes, especially as some kinds of optimized code can be more difficult to

understand (and therefore to maintain).

It is typically better (and easier) to tune multiuser applications in single-user mode first. Many multiuser

applications can obtain 90% of their final tuned performance if you tune in single-user mode, and then

identify and tune just a few major multiuser bottlenecks (which are typically a sort of give-and-take between

single-user performance and general system throughput). Occasionally, though, there will be serious

conflicts that are revealed only during multiuser testing, such as transaction conflicts that can slow an

application to a crawl. These may require a redesign or rearchitecting of the application. For this reason,

some basic multiuser tests should be run as early as possible to flush out potential multiuser-specific

performance problems.

Tuning distributed applications requires access to the data being transferred across the various parts of the

application. At the lowest level, this can be a packet sniffer on the network or server machine. One step up

from this is to wrap all the external communication points of the application so that you can record all data

transfers. Relay servers are also useful. These are small applications that just reroute data between two

communication points. Most useful of all is a trace or debug mode in the communications layer that allows

you to examine the higher-level calls and communication between distributed parts.
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1.7 What to Measure

The main measurement is always wall-clock time. You should use this measurement to specify almost all

benchmarks, as it's the real-time interval that is most appreciated by the user. (There are certain situations,

however, in which system throughput might be considered more important than the wall-clock time, e.g., for

servers, enterprise transaction systems, and batch or background systems.)

The obvious way to measure wall-clock time is to get a timestamp using System.currentTimeMillis( )

and then subtract this from a later timestamp to determine the elapsed time. This works well for elapsed

time measurements that are not short.[5] Other types of measurements have to be system-specific and

often application-specific. You can measure:

[5] System.currentTimeMillis( ) can take up to half a millisecond to execute. Any measurement

including the two calls needed to measure the time difference should be over an interval greater than
100 milliseconds to ensure that the cost of the System.currentTimeMillis( ) calls are less than

1% of the total measurement. I generally recommend that you do not make more than one time
measurement (i.e., two calls to System.currentTimeMillis( )) per second.

CPU time (the time allocated on the CPU for a particular procedure)

The number of runnable processes waiting for the CPU (this gives you an idea of CPU contention)

Paging of processes

Memory sizes

Disk throughput

Disk scanning times

Network traffic, throughput, and latency

Transaction rates

Other system values

However, Java doesn't provide mechanisms for measuring these values directly, and measuring them

requires at least some system knowledge, and usually some application-specific knowledge (e.g., what is a

transaction for your application?).

You need to be careful when running tests with small differences in timings. The first test is usually slightly

slower than any other tests. Try doubling the test run so that each test is run twice within the VM (e.g.,

rename main( ) to maintest( ), and call maintest( ) twice from a new main( )).

There are almost always small variations between test runs, so always use averages to measure differences

and consider whether those differences are relevant by calculating the variance in the results.

For distributed applications , you need to break down measurements into times spent on each component,

times spent preparing data for transfer and from transfer (e.g., marshalling and unmarshalling objects and

http://lib.ommolketab.ir
http://lib.ommolketab.ir


writing to and reading from a buffer), and times spent in network transfer. Each separate machine used on

the networked system needs to be monitored during the test if any system parameters are to be included in

the measurements. Timestamps must be synchronized across the system (this can be done by measuring

offsets from one reference machine at the beginning of tests). Taking measurements consistently from

distributed systems can be challenging, and it is often easier to focus on one machine, or one communication

layer, at a time. This is usually sufficient for most tuning.
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1.8 Don't Tune What You Don't Need to Tune

The most efficient tuning you can do is not to alter what works well. As they say, "If it ain't broke, don't fix

it." This may seem obvious, but the temptation to tweak something just because you have thought of an

improvement has a tendency to override this obvious statement.

The second most efficient tuning is to discard work that doesn't need doing. It is not at all uncommon for an

application to be started with one set of specifications and to have some of the specifications change over

time. Many times the initial specifications are much more generic than the final product. However, the earlier

generic specifications often still have their stamps in the application. I frequently find routines, variables,

objects, and subsystems that are still being maintained but are never used and never will be used because

some critical aspect is no longer supported. These redundant parts of the application can usually be chopped

without any bad consequences, often resulting in a performance gain.

In general, you need to ask yourself exactly what the application is doing and why. Then question whether it

needs to do it in that way, or even if it needs to do it at all. If you have third-party products and tools being

used by the application, consider exactly what they are doing. Try to be aware of the main resources they

use (from their documentation). For example, a zippy DLL (shared library) that is speeding up all your

network transfers is using some resources to achieve that speedup. You should know that it is allocating

larger and larger buffers before you start trying to hunt down the source of your mysteriously disappearing

memory. Then you can realize that you need to use the more complicated interface to the DLL that restricts

resource usage rather than a simple and convenient interface. And you will have realized this before doing

extensive (and useless) object profiling because you would have been trying to determine why your

application is being a memory hog.

When benchmarking third-party components, you need to apply a good simulation of exactly how you will

use those products. Determine characteristics from your benchmarks and put the numbers into your overall

model to determine if performance can be reached. Be aware that vendor benchmarks are typically useless

for a particular application. Break your application down into a hugely simplified version for a preliminary

benchmark implementation to test third-party components. You should make a strong attempt to include all

the scaling necessary so that you are benchmarking a fully scaled usage of the components, not some

reduced version that reveals little about the components in full use.
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1.9 Performance Checklist

Specify the required performance.

Ensure performance objectives are clear.

Specify target response times for as much of the system as possible.

Specify all variations in benchmarks, including expected response ranges (e.g., 80% of responses

for X must fall within 3 seconds).

Include benchmarks for the full range of scaling expected (e.g., low to high numbers of users,

data, files, file sizes, objects, etc.).

Specify and use a benchmark suite based on real user behavior. This is particularly important for

multiuser benchmarks.

Agree on all target times with users, customers, managers, etc., before tuning.

Make your benchmarks long enough: over five seconds is a good target.

Use elapsed time (wall-clock time) for the primary time measurements.

Ensure the benchmark harness does not interfere with the performance of the application.

Run benchmarks before starting tuning, and again after each tuning exercise.

Take care that you are not measuring artificial situations, such as full caches containing exactly

the data needed for the test.

Break down distributed application measurements into components, transfer layers, and network

transfer times.

Tune systematically: understand what affects the performance; define targets; tune; monitor and

redefine targets when necessary.

Approach tuning scientifically: measure performance; identify bottlenecks; hypothesize on

causes; test hypothesis; make changes; measure improved performance.

Determine which resources are limiting performance: CPU, memory, or I/O.

Accurately identify the causes of the performance problems before trying to tune them.

Use the strategy of identifying the main bottlenecks, fixing the easiest, then repeating.

Don't tune what does not need tuning. Avoid "fixing" nonbottlenecked parts of the application.
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Measure that the tuning exercise has improved speed.

Target one bottleneck at a time. The application running characteristics can change after each

alteration.

Improve a CPU limitation with faster code, better algorithms, and fewer short-lived objects.

Improve a system-memory limitation by using fewer objects or smaller long-lived objects.

Improve I/O limitations by targeted redesigns or speeding up I/O, perhaps by multithreading the

I/O.

Work with user expectations to provide the appearance of better performance.

Hold back releasing tuning improvements until there is at least a 20% improvement in response

times.

Avoid giving users a false expectation that a task will be finished sooner than it will.

Reduce the variation in response times. Bear in mind that users perceive the mean response time

as the actual 90th percentile value of the response times.

Keep the user interface responsive at all times.

Aim to always give user feedback. The interface should not be dead for more than two seconds

when carrying out tasks.

Provide the ability to abort or carry on alternative tasks.

Provide user-selectable tuning parameters where this makes sense.

Use threads to separate potentially blocking functions.

Calculate "look-ahead" possibilities while the user response is awaited.

Provide partial data for viewing as soon as possible, without waiting for all requested data to be

received.

Cache locally items that may be looked at again or recalculated.

Quality-test the application after any optimizations have been made.

Document optimizations fully in the code. Retain old code in comments.

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

Chapter 2. Profiling Tools

If you only have a hammer, you tend to see every problem as a nail.

-Abraham Maslow

Before you can tune your application, you need tools that will help you find the bottlenecks in the code. I

have used many different tools for performance tuning, and so far I have found the commercially available

profilers to be the most useful. You can easily find several of these, together with reviews, by searching the

Web using "java+optimi" and "java+profile" as your search term or by checking various computer

magazines. I also maintain a list at http://www.JavaPerformanceTuning.com/resources.shtml. These tools

are usually available free for an evaluation period, and you can quickly tell which you prefer using. If your

budget covers it, it is worth getting several profilers: they often have complementary features and provide

different details about the running code. I have included a list of profilers in Chapter 19.

All profilers have some weaknesses, especially when you want to customize them to focus on particular

aspects of the application. Another general problem with profilers is that they frequently fail to work in

nonstandard environments. Nonstandard environments should be rare, considering Java's emphasis on

standardization, but most profiling tools work at the VM level, and there is not currently a VM profiling

standard,[1] so incompatibilities do occur. Even if a VM profiling standard is finalized, I expect there will be

some nonstandard VMs you may have to use, possibly a specialized VM of some sort-there are already

many of these.

[1] The Java Virtual Machine Profiler Interface (JVMPI) was introduced in 1.2, but it is only experimental
and subject to change, and looks like it will stay that way officially. There are now two expert groups,
JSR 163 and JSR 174, addressing JVM profiling and monitoring issues, and the results of these two
expert groups should eventually supersede JVMPI.

When tuning, I normally use one of the commercial profiling tools, and on occasion when the tools do not

meet my needs, I fall back on a variation of one of the custom tools and information-extraction methods

presented in this chapter. Where a particular VM offers extra APIs that tell you about some running

characteristics of your application, these custom tools are essential to access those extra APIs. Using a

professional profiler and the proprietary tools covered in this chapter, you will have enough information to

figure out where problems lie and how to resolve them. When necessary, you can successfully tune without a

professional profiler, as the Sun VM contains a basic profiler, which I cover in this chapter. However, this

option is not ideal for the most rapid tuning.

From JDK 1.2, Java specifies a VM-level interface, consisting of C function calls, that

allows some external control over the VM. These calls provide monitoring and control

over events in the VM, allowing an application to query the VM and to be notified

about thread activity, object creation, garbage collection, method call stack, etc.

These are the calls required to create a profiler. The interface is intended to

standardize the calls to the VM made by a profiler, so any profiler works with any VM

that supports the JVMPI standard. However, in JDK 1.2, the JVMPI is experimental

and subject to change.

In addition to Java-specific profilers, there are other more generic tools that can be useful for profiling:
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J2EE server-side monitors, useful to monitor server performance both in development and in

production

Network packet sniffers (both hardware and software types, e.g., netstat)

Process and thread-listing utilities (top and ps on Unix; the task manager and performance monitor on

Windows)

System performance measuring utilities (vmstat, iostat, sar, top on Unix; the task manager and

performance monitor on Windows)

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

2.1 Measurements and Timings

When looking at timings, be aware that different tools affect the performance of applications in different

ways. Any profiler slows down the application it is profiling. The degree of slowdown can vary from a few

percent to a few hundred percent. Using System.currentTimeMillis( ) in the code to get timestamps is

the only reliable way to determine the time taken by each part of the application. In addition,

System.currentTimeMillis( ) is quick and has no effect on application timing (as long as you are not

measuring too many intervals or ridiculously short intervals; see the discussion in Section 1.7).

Another variation on timing the application depends on the underlying operating system . The operating

system can allocate different priorities for different processes, and these priorities determine the importance

the operating system applies to a particular process. This in turn affects the amount of CPU time allocated to

a particular process compared to other processes. Furthermore, these priorities can change over the lifetime

of the process. It is usual for server operating systems to gradually decrease the priority of a process over

that process's lifetime. This means that the process has shorter periods of the CPU allocated to it before it is

put back in the runnable queue. An adaptive VM (like Sun's HotSpot) can give you the reverse situation,

speeding up code shortly after it has started running (see Section 3.7).

Whether or not a process runs in the foreground can also be important. For example, on a machine with the

workstation version of Windows (most varieties including NT, 95, 98, and 2000), foreground processes are

given maximum priority. This ensures that the window currently being worked on is maximally responsive.

However, if you start a test and then put it in the background so that you can do something else while it

runs, the measured times can be very different from the results you would get if you left that test running in

the foreground. This applies even if you do not actually do anything else while the test is running in the

background. Similarly, on server machines, certain processes may be allocated maximum priority (for

example, Windows NT and 2000 server version, as well as most Unix server configured machines, allocate

maximum priority to network I/O processes).

This means that to get pure absolute times, you need to run tests in the foreground on a machine with no

other significant processes running, and use System.currentTimeMillis( ) to measure the elapsed

times. Any other configuration implies some overhead added to timings, and you must be aware of this. As

long as you are aware of any extra overhead, you can usually determine whether a particular measurement

is relevant or not.

Most profiles provide useful relative timings, and you are usually better off ignoring the absolute times when

looking at profile results. Be careful when comparing absolute times run under different conditions, e.g., with

and without a profiler, in the foreground versus in the background, on a very lightly loaded server (for

example, in the evening) compared to a moderately loaded one (during the day). All these types of

comparisons can be misleading.

You also need to take into account cache effects . There will be effects from caches in the hardware, in the

operating system, across various points in a network, and in the application. Starting the application for the

first time on a newly booted system usually gives different timings as compared to starting for the first time

on a system that has been running for a while, and both give different timings compared to an application

that has been run several times previously on the system. All these variations need to be considered, and a

consistent test scenario used. Typically, you need to manage the caches in the application, perhaps explicitly

emptying (or filling) them for each test run to get repeatable results. The other caches are difficult to

manipulate, and you should try to approximate the targeted running environment as closely as possible,

http://lib.ommolketab.ir
http://lib.ommolketab.ir


rather than testing each possible variation in the environment.

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

2.2 Garbage Collection

The Java runtime system normally includes a garbage collector.[2] Some of the commercial profilers provide

statistics showing what the garbage collector is doing. You can also use the -verbosegc option with the VM.

This option prints out time and space values for objects reclaimed and space recycled as the reclamations

occur. The 1.4 VM introduced an additional option to log the output to a file instead of standard error: the -
Xloggc:<file> option. Printing directly to a file is slightly more efficient than redirecting the VM output to

a file because the direct file write buffering is slightly more efficient than the piped redirect buffering. The

printout includes explicit synchronous calls to the garbage collector (using System.gc( ) ) as well as

asynchronous executions of the garbage collector, as occurs in normal operation when free memory available

to the VM gets low.

[2] Some embedded runtimes do not include a garbage collector. All objects may have to fit into
memory without any garbage collection for these runtimes.

System.gc( ) does not necessarily force a synchronous garbage collection. Instead,

the gc( ) call is really a hint to the runtime that now is a good time to run the

garbage collector. The runtime decides whether to execute the garbage collection at

that time and what type of garbage collection to run. In more recent VMs, the effects

of calling System.gc( ) can be completely disabled using the runtime flag

XX:+DisableExplicitGC.

2.2.1 Using -verbosegc to Analyze Garbage Collection

It is worth looking at some output from running with -verbosegc. The following code fragment creates lots

of objects to force the garbage collector to work, and also includes some synchronous calls to the garbage

collector:

package tuning.gc;
public class Test {
  public static void main(String[  ] args)
  {
    int SIZE = 4000;
    StringBuffer s;
    java.util.Vector v;
  
    //Create some objects so that the garbage collector 
    //has something to do
    for (int i = 0; i < SIZE; i++)
    {
      s = new StringBuffer(50);
      v = new java.util.Vector(30);
      s.append(i).append(i+1).append(i+2).append(i+3);
    }
    s = null;
    v = null;
    System.out.println("Starting explicit garbage collection");
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    long time = System.currentTimeMillis(  );
    System.gc(  );
    System.out.println("Garbage collection took " + 
      (System.currentTimeMillis(  )-time) + " millis");
  
    int[  ] arr = new int[SIZE*10];
    //null the variable so that the array can be garbage collected
    time = System.currentTimeMillis(  );
    arr = null;
    System.out.println("Starting explicit garbage collection");
    System.gc(  );
    System.out.println("Garbage collection took " + 
      (System.currentTimeMillis(  )-time) + " millis");
  }
}

When this code is run in Sun JDK 1.2 with the -verbosegc option,[3] you get:

[3] Note that -verbosegc can also work with applets by using this command line:

<GC: need to expand mark bits to cover 16384 bytes>
<GC: managing allocation failure: need 1032 bytes, type=1, action=1>
<GC: 0 milliseconds since last GC>
<GC: freed 18578 objects, 658392 bytes in 26 ms, 78% free (658872/838856)>
  <GC: init&scan: 1 ms, scan handles: 12 ms, sweep: 13 ms, compact: 0 ms>
  <GC: 0 register-marked objects, 1 stack-marked objects>
  <GC: 1 register-marked handles, 31 stack-marked handles>
  <GC: refs: soft 0 (age >= 32), weak 0, final 2, phantom 0>
<GC: managing allocation failure: need 1032 bytes, type=1, action=1>
<GC: 180 milliseconds since last GC>
<GC: compactHeap took 15 ms, swap time = 4 ms, blocks_moved=18838>
<GC: 0 explicitly pinned objects, 2 conservatively pinned objects>
<GC: last free block at 0x01A0889C of length 1888>
<GC: last free block is at end>
<GC: freed 18822 objects, 627504 bytes in 50 ms, 78% free (658920/838856)>
  <GC: init&scan: 2 ms, scan handles: 11 ms, sweep: 16 ms, compact: 21 ms>
  <GC: 0 register-marked objects, 2 stack-marked objects>
  <GC: 0 register-marked handles, 33 stack-marked handles>
  <GC: refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
Starting explicit garbage collection
<GC: compactHeap took 9 ms, swap time = 5 ms, blocks_moved=13453>
<GC: 0 explicitly pinned objects, 5 conservatively pinned objects>
<GC: last free block at 0x019D5534 of length 211656>
<GC: last free block is at end>
<GC: freed 13443 objects, 447752 bytes in 40 ms, 78% free (657752/838856)>
  <GC: init&scan: 1 ms, scan handles: 12 ms, sweep: 12 ms, compact: 15 ms>
  <GC: 0 register-marked objects, 6 stack-marked objects>
  <GC: 0 register-marked handles, 111 stack-marked handles>
  <GC: refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
Garbage collection took 151 millis
...
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The actual details of the output are not standardized, and are likely to change between different VM versions

as well as between VMs from different vendors. As a comparison, this is the output from the later garbage

collector version using Sun JDK 1.3:

[GC 511K->96K(1984K), 0.0281726 secs]
[GC 608K->97K(1984K), 0.0149952 secs]
[GC 609K->97K(1984K), 0.0071464 secs]
[GC 609K->97K(1984K), 0.0093515 secs]
[GC 609K->97K(1984K), 0.0060427 secs]
Starting explicit garbage collection
[Full GC 228K->96K(1984K), 0.0899268 secs]
Garbage collection took 170 millis
Starting explicit garbage collection
[Full GC 253K->96K(1984K), 0.0884710 secs]
Garbage collection took 180 millis

Note the dramatic difference in output from 1.2, stemming from HotSpot technology in 1.3 and later VMs.

As you can see, each time the garbage collector kicks in, it produces a report of its activities. Any one

garbage collection reports on the times taken by the various parts of the garbage collector and specifies

what the garbage collector is doing. Note that the internal times reported by the garbage collector are not

the full time taken for the whole activity. In the examples, you can see the full time for one of the

synchronous garbage collections, which is wrapped by print statements from the code fragment (i.e., those

lines not starting with a < or [ sign). However, these times include the times taken to output the printed

statements from the garbage collector and are therefore higher times than those for the garbage collection

alone. To see the pure synchronous garbage-collection times for this code fragment, you need to run the

program without the -verbosegc option.

In the previous examples, the garbage collector kicks in either because it has been called by the code

fragment or because creating an object from the code fragment (or the runtime initialization) encounters a

lack of free memory from which to allocate space for that object. This is normally reported as "managing

allocation failure."

Some garbage-collector versions appear to execute their garbage collections faster than others. But be

aware that this time difference may be an artifact: it can be caused by the different number of printed

statements when using the -verbosegc option. When run without the -verbosegc option, the times may

be similar. The garbage collector from JDK 1.2 executes a more complex scavenging algorithm than earlier

JDK versions to smooth out the effects of garbage collection running in the background. (The garbage-

collection algorithm is discussed in Chapter 3 along with tuning the heap. The garbage collection algorithm

can be altered a little, and garbage-collection statistics can give you important information about objects

being reclaimed, which helps you tune your application.) From JDK 1.2, the VM also handles many types of

references that never existed in VM versions before 1.2. Overall, Java 2 applications do seem to have faster

object recycling in application contexts than previous JDK versions did.

It is worthwhile running your application using the -verbosegc option to see how often the garbage

collector kicks in. At the same time, you should use all logging and tracing options available with your

application so that the output from the garbage collector is set in the context of your application activities.

Garbage-collection statistics can be collected and summarized in a useful way. The 1.2 output is relatively

easy to understand; the important lines are those summarizing the statistics, e.g.:

<GC: freed 18822 objects, 627504 bytes in 50 ms, 78% free (658920/838856)>

This line shows that 18822 objects were reclaimed during this garbage collection. The reclamation freed up
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627504 bytes, and the time taken to run the garbage collection was 50 milliseconds. After the garbage

collection the heap was 78% free, with 658920 bytes available out of a total heap size of 838856 bytes.

The 1.3 (HotSpot) output is a little more concentrated:

[GC 609K->97K(1984K), 0.0071464 secs]
[Full GC 253K->96K(1984K), 0.0884710 secs]

It consists of two types of output, a "full" or major GC (shown in the second line of the example) that runs

through the whole heap, and a minor GC (shown in the first line) that executed in young space (see Section

3.2). The numbers before and after the arrow show the amount of space taken by objects before and after

the garbage collection. The following number in parentheses is the total available heap space, and the

remaining number shows the time taken to execute the garbage collection.

The important items that all -verbosegc output has in common are:

The size of the heap after the garbage collection

The time taken to run the garbage collection

The number of bytes reclaimed by the garbage collection (either listed directly, or deduced by

subtracting the before and after used values)

Having the number of objects reclaimed would also be nice, but not all output lists that. Still, these three

statistics are extremely useful. First, the heap size gives you a good idea of how much memory the

application needs and helps you to tune the heap. Even more useful are the other two options. By running

the output through a pattern matcher to extract the GC times and amount freed and totalling those values,

you can identify the cost of GC to your application. I like to send some output from the application to

indicate when the application finished the initialization stage and started running; then I can filter lines from

that point until when I terminate my test.

Let's look at an example now of how to calculate the GC impact on an application. After the application

initializes, I start the test running. This particular test is a server application, which I run for 40 minutes,

then stop. Taking the logged -verbosegc output, I eliminate any log statements before and after the test

run (identified by lines emitted by the application). Then I run a pattern matcher against the -verbosegc

logs. The pattern matcher can be Awk, Perl, Java regular expressions, or any pattern matcher you prefer.

The matching is very simple; for example, here is a simple matcher in Perl for the 1.2 output:

if(/freed\s+(\d+)\s+objects\,\s+(\d+)\s+bytes\s+in\s+(\d+)\s+ms\,/)
{
  $objects += $1;
  $bytes += $2;
  $time_ms += $3;
}
sub END {print "freed $objects objects, $bytes bytes in $time_ms ms\n"}

The result from this pattern match shows that over the course of the 40 minutes (or 2400 seconds) of

elapsed time, 5654137008 bytes (5392 megabytes) were freed up by garbage collections, taking a total of

717612 milliseconds (or 718 seconds) of GC thread time. With a few simple calculations, we can see that:

30% of the time was taken by garbage collection (718 seconds divided by 2400 seconds), which looks

excessive. As a guideline, your ultimate target should be under 5% taken by GC, and certainly
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anything over 15% is an urgent problem.

135 megabytes per minute of heap were recycled (5392 megabytes divided by 40 minutes), which for

this application looks excessive.

If you don't know the exact number of objects being churned, you can estimate it using a standard average

object size of 50 bytes. In this case we have an object churn rate of 2.8 million objects per minute.

(5654137008 divided by 50 to get 113 million objects, divided by 40 minutes. For comparison, the actual

recorded number of objects churned was 107 million.)

Of course, these values need to be taken in the context of the application. The primary value is the

percentage of time taken by the GC, which, again, should be below 15% and ideally below 5%. The other

churn values can be considered only in the context of the application, taking into account what you are

doing.

The calculation I just made of GC percentage time is actually only partially complete. To be completely

accurate, you also need to factor in how much load the application and GC put on the CPU, which would

require you to monitor the underlying system for the duration of the test (see Chapter 14 for tools to do

that). In this case, the server ran on a single-processor system. The GC utilized the CPU at 100% when

running (established in a separate test by correlating GC output to per-second CPU utilization monitoring),

and over the course of the 40 minutes of this test, the CPU utilization was 67.5%. Again, a few simple

calculations show exactly what is happening:

The CPU time for the application was 67.5% of 2400 seconds (40 minutes), which makes 1620

seconds.

The CPU time for the GC was 100% of 718 seconds, which makes 718 seconds.

Therefore, garbage collection took 718 out of 1620 seconds, or 44% of the application's processing

time.

These results reveal that GC is taking way too much time, but at least the metric is accurate. Note that if this

were a dual-processor system, GC would probably have utilized the CPU at 50% (i.e., one CPU at 100% and

the other unused), which, if everything else was as reported, would have yielded a GC percentage of 22%

(as it would have been 50% of 718 seconds of GC CPU time).

The calculation outlined here is fairly simple and can be made with a minimum of tools. It is also easily

altered to handle different output formats of -verbosegc.

2.2.2 Tools for Analyzing -verbosegc Output

In addition to performing these calculations yourself, several tools are available to analyze -verbosegc

output:

awk script from Ken Gottry

Ken Gottry's JavaWorld article[4] gives a nice description of the HotSpot generational garbage

collection and includes an awk script for generating an analysis of -verbosegc logs.

[4] Ken Gottry, "Pick up performance with generational garbage collection," JavaWorld, January

2002, http://www.javaworld.com/javaworld/jw-01-2002/jw-0111-hotspotgc.html.
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GC analyzer from Nagendra Nagarajayya and J. Steven Mayer

A Sun Wireless Developer article[5] from Nagarajayya and Mayer provides a very detailed discussion

of fine-tuning a heap. It includes a GC analyzer tool[6] for generating reports from -verbosegc logs.

[5] Nagendra Nagarajayya and J. Steven Mayer, "Improving Java Application Performance and

Scalability by Reducing Garbage Collection Times and Sizing Memory," Sun Wireless Developer,

May 2002, http://wireless.java.sun.com/midp/articles/garbage/.

[6] You can download it directly from

http://wireless.java.sun.com/midp/articles/garbage/gc_analyze.pl.

GCViewer from Hendrik Schreiber

GCViewer is a graphical tool that allows you to visualize GC logging output. GCViewer can also export

data in the proper format for further manipulation in a spreadsheet. GCViewer is available from

http://www.tagtraum.com/.
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2.3 Method Calls

Most profiling tools provide a profile of method calls, showing where the bottlenecks in your code are and

helping you decide where to target your efforts. By showing which methods and lines take the most time, a

good profiling tool can quickly pinpoint bottlenecks.

Most method profilers work by sampling the call stack at regular intervals and recording the methods on the

stack.[7] This regular snapshot identifies the method currently being executed (the method at the top of the

stack) and all the methods below, to the program's entry point. By accumulating the number of hits on each

method, the resulting profile usually identifies where the program is spending most of its time. This profiling

technique assumes that the sampled methods are representative, i.e., if 10% of stacks sampled show

method foo( ) at the top of the stack, then the assumption is that method foo( ) takes 10% of the

running time. However, this is a sampling technique , so it is not foolproof: methods can be missed

altogether or have their weighting misrecorded if some of their execution calls are missed. But usually only

the shortest tests are skewed. Any reasonably long test (i.e., seconds rather than milliseconds) normally

gives correct results.

[7] A variety of profiling metrics, including the way different metrics can be used, are reported in "A
unifying approach to performance analysis in the Java environment" by Alexander, Berry, Levine, and
Urquhart, IBM Systems Journal, Vol. 39, No. 1,
http://www.research.ibm.com/journal/sj/391/alexander.html. Specifically, see Table 2-1 in this paper.

This sampling technique can be difficult to get right. It is not enough to simply

sample the stack. The profiler must also ensure that it has a coherent stack state, so

the call must be synchronized across stack activities, possibly by temporarily

stopping the thread. The profiler also needs to make sure that multiple threads are

treated consistently and that the timing involved in its activities is accounted for

without distorting the regular sample time. Also, too short a sample interval causes

the program to become extremely slow, while too long an interval results in many

method calls being missed and misrepresentative profile results being generated.

The JDK comes with a minimal profiler, obtained by running a program using the java executable with the -
Xrunhprof option (-prof before JDK 1.2, -Xprof with HotSpot). This option produces a profile data file

called java.hprof.txt (java.prof before 1.2). The filename can be specified by using the modified option -
Xrunhprof: file=<filename> (-prof:<filename> before 1.2).

2.3.1 Profiling Methodology

When using a method profiler, the most useful technique is to target the top five to ten methods and choose

the quickest to fix. The reason for this is that once you make one change, the profile tends to be different

the next time, sometimes markedly so. This way, you can get the quickest speedup for a given effort.

However, it is also important to consider what you are changing so you know what your results are. If you

select a method that is taking 10% of the execution time and then halve the time that method takes, you

speed up your application by 5%. On the other hand, targeting a method that takes up only 1% of execution

time gives you a maximum of only 1% speedup to the application, no matter how much effort you put in.
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Similarly, if you have a method that takes 10% of the time but is called a huge number of times, with each

individual method call being quite short, you are less likely to speed up the method. On the other hand, if

you can eliminate some significant fraction of the calling methods (the methods that call the method that

takes 10% of the time), you might gain speed that way.

Let's look at the profile output from a short program that repeatedly converts some numbers to strings and

inserts them into a hash table:

package tuning.profile;
import java.util.*;
  
public class ProfileTest
{
  
  public static void main(String[  ] args)
  {
    //Repeat the loop this many times
    int repeat = 2000;
  
    //Two arrays of numbers, eight doubles and ten longs
    double[  ] ds = {Double.MAX_VALUE, -3.14e-200D,
      Double.NEGATIVE_INFINITY, 567.89023D, 123e199D,
      -0.000456D, -1.234D, 1e55D};
    long[  ] ls = {2283911683699007717L, -8007630872066909262L,
      4536503365853551745L, 548519563869L, 45L,
      Long.MAX_VALUE, 1L, -9999L, 7661314123L, 0L};
  
    //Initializations
    long time;
    StringBuffer s = new StringBuffer(  );
    Hashtable h = new Hashtable(  );
    System.out.println("Starting test");
    time = System.currentTimeMillis(  );
  
    //Repeatedly add all the numbers to a stringbuffer
    //and also put them into a hash table
    for (int i = repeat; i > 0; i--)
    {
        s.setLength(0);
        for (int j = ds.length-1; j >= 0; j--)
        {
            s.append(ds[j]);
            h.put(new Double(ds[j]), Boolean.TRUE);
        }
        for (int j = ls.length-1; j >= 0; j--)
        {
            s.append(ls[j]);
            h.put(new Long(ls[j]), Boolean.FALSE);
        }
    }
    time = System.currentTimeMillis(  ) - time;
    System.out.println("  The test took " + time + " milliseconds");
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  }
}

The relevant output from running this program with the JDK 1.2 method profiling option follows. (See

Section 2.3.2 later in this chapter for a detailed explanation of the 1.2 profiling option and its output.)

CPU SAMPLES BEGIN (total = 15813) Wed Jan 12 11:26:47 2000
rank   self  accum   count trace method
   1 54.79% 54.79%    8664   204 java/lang/FloatingDecimal.dtoa
   2 11.67% 66.46%    1846   215 java/lang/Double.equals
   3 10.18% 76.64%    1609   214 java/lang/FloatingDecimal.dtoa
   4  3.10% 79.74%     490   151 java/lang/FloatingDecimal.dtoa
   5  2.90% 82.63%     458   150 java/lang/FloatingDecimal.<init>
   6  2.11% 84.74%     333   213 java/lang/FloatingDecimal.<init>
   7  1.23% 85.97%     194   216 java/lang/Double.doubleToLongBits
   8  0.97% 86.94%     154   134 sun/io/CharToByteConverter.convertAny
   9  0.94% 87.88%     148   218 java/lang/FloatingDecimal.<init>
  10  0.82% 88.69%     129   198 java/lang/Double.toString
  11  0.78% 89.47%     123   200 java/lang/Double.hashCode
  12  0.70% 90.17%     110   221 java/lang/FloatingDecimal.dtoa
  13  0.66% 90.83%     105   155 java/lang/FloatingDecimal.multPow52
  14  0.62% 91.45%      98   220 java/lang/Double.equals
  15  0.52% 91.97%      83   157 java/lang/FloatingDecimal.big5pow
  16  0.46% 92.44%      73   158 java/lang/FloatingDecimal.constructPow52
  17  0.46% 92.89%      72   133 java/io/OutputStreamWriter.write

In this example, I extracted only the top few lines from the profile summary table. The methods are ranked

according to the percentage of time they take. Note that the trace does not identify actual method

signatures, only method names. The top three methods take, respectively, 54.79%, 11.67%, and 10.18% of

the time taken to run the full program.[8]

[8] The samples that count toward a particular method's execution time are those where the method
itself is executing at the time of the sample. If method foo( ) were calling another method when the

sample was taken, that other method would be at the top of the stack instead of foo( ). So you do

not need to worry about the distinction between foo( )'s execution time and the time spent executing

foo( )'s callees. Only the method at the top of the stack is tallied.

The fourth method in the list takes 3.10% of the time, so clearly you need look no further than the top three

methods to optimize the program. The methods ranked first, third, and fourth are the same method,

possibly called in different ways. Obtaining the traces for these three entries from the relevant section of the

profile output (trace 204 for the first entry, and traces 215 and 151 for the second and fourth entries), you

get:

TRACE 204:
java/lang/FloatingDecimal.dtoa(FloatingDecimal.java:Compiled method)
java/lang/FloatingDecimal.<init>(FloatingDecimal.java:Compiled method)
java/lang/Double.toString(Double.java:Compiled method)
java/lang/String.valueOf(String.java:Compiled method)
TRACE 214:
java/lang/FloatingDecimal.dtoa(FloatingDecimal.java:Compiled method)
TRACE 151:
java/lang/FloatingDecimal.dtoa(FloatingDecimal.java:Compiled method)
java/lang/FloatingDecimal.<init>(FloatingDecimal.java:Compiled method)
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java/lang/Double.toString(Double.java:132)
java/lang/String.valueOf(String.java:2065)

In fact, both traces 204 and 151 are the same stack, but trace 151 provides line numbers for two of the

methods. Trace 214 is a truncated entry, and is probably the same stack as the other two (these differences

highlight the fact that the JDK profiler sometimes loses information).

All three entries refer to the same stack: an inferred call from the StringBuffer to append a double, which

calls String.valueOf( ), which calls Double.toString( ), which in turn creates a FloatingDecimal
object. (<init> is the standard way to write a constructor call; <clinit> is the standard way to show a

class initializer being executed. These are also the actual names for constructors and static initializers in the

class file.) FloatingDecimal is private to the java.lang package, which handles most of the logic

involved in converting floating-point numbers. FloatingDecimal.dtoa( ) is the method called by the

FloatingDecimal constructor that converts the binary floating-point representation of a number into its

various parts of digits before the decimal point, after the decimal point, and the exponent.

FloatingDecimal stores the digits of the floating-point number as an array of chars when the

FloatingDecimal is created; no strings are created until the floating-point number is converted to a string.

Since this stack includes a call to a constructor, it is worth checking the object-creation profile to see

whether you are generating an excessive number of objects; object creation is expensive, and a method that

generates many new objects is often a performance bottleneck. (I show the object-creation profile and how

to generate it later in this chapter under Section 2.4.) The object-creation profile shows that a large number

of extra objects are being created, including a large number of FDBigInt objects that are created by the

new FloatingDecimal objects.

Clearly, FloatingDecimal.dtoa( ) is the primary method to optimize in this case. Almost any

improvement in this one method translates directly to a similar improvement in the overall program.

However, normally only Sun can modify this method, and even if you want to modify it, it is long and

complicated and takes an excessive amount of time to optimize unless you are already familiar with both

floating-point binary representation and converting that representation to a string format.

Normally when tuning, the first alternative to optimizing FloatingDecimal.dtoa( ) is to examine the

other significant bottleneck method, Double.equals( ) , which was second in the summary. Even though

this entry takes up only 11.67% compared to over 68% for the FloatingDecimal.dtoa( ) method, it

may be an easier optimization target. But note that while a small 10% improvement in the

FloatingDecimal.dtoa( ) method translates into a 6% improvement for the program as a whole, the

Double.equals( ) method needs to be speeded up to be more than twice as fast to get a similar 6%

improvement for the full program.

The trace corresponding to this second entry in the summary example turns out to be another truncated

trace, but the example shows the same method in 14th position, and the trace for that entry identifies the

Double.equals( ) call as coming from the Hashtable.put( ) call. Unfortunately for tuning purposes,

the Double.equals( ) method itself is already quite fast and cannot be optimized further.

When methods cannot be directly optimized, the next best choice is to reduce the number of times they are

called or even avoiding the methods altogether. (In fact, eliminating method calls is actually the better

tuning choice, but it is often considerably more difficult to achieve and so is not a first-choice tactic for

optimization.) The object-creation profile and the method profile together point to the FloatingDecimal

class as being a huge bottleneck, so avoiding this class is the obvious tuning tactic here. In Chapter 5, I

employ this technique, avoiding the default call through the FloatingDecimal class for the case of

converting floating-point numbers to Strings, and I obtain an order-of-magnitude improvement. Basically,

the strategy is to create a more efficient routine to run the equivalent conversion functionality and then

replace the calls to the underperforming FloatingDecimal methods with calls to more efficient optimized
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methods.

The 1.1 profiling output is quite different and much less like a standard profiler's

output. Running the 1.1 profiler with this program (details of this output are

described in Section 2.3.4) gives:

count callee caller time
21 java/lang/System.gc(  )V  
    java/lang/FloatingDecimal.dtoa(IJI)V 760
8 java/lang/System.gc(  )V  
    java/lang/Double.equals(Ljava/lang/Object;)Z 295
2 java/lang/Double.doubleToLongBits(D)J 
    java/lang/Double.equals(Ljava/lang/Object;)Z 0

I have shown only the top four lines from the output. This output actually identifies

both the FloatingDecimal.dtoa( ) and the Double.equals( ) methods as

taking the vast majority of the time, and the percentages (given by the reported

times) are listed as around 70% and 25% of the total program time for the two

methods, respectively. Since the "callee" for these methods is listed as System.gc(
), this also indicates that the methods are significantly involved in memory creation,

and suggests that the next tuning step might be to analyze the object-creation

output for this program.

The best way to avoid the Double.equals( ) method is to replace the hash table with another

implementation that stores double primitive data types directly rather than requiring the doubles to be

wrapped in a Double object. This allows the = = operator to make the comparison in the put( ) method,

thus completely avoiding the Double.equals( ) call. This is another standard tuning tactic, replacing a

data structure with one more appropriate and faster for the task.

2.3.2 Java 2 cpu=samples Profile Output

The default profile output gained from executing with -Xrunhprof in Java 2 is not useful for method

profiling. The default output generates object-creation statistics from the heap as the dump (output) occurs.

By default, the dump occurs when the application terminates; you can modify the dump time by typing Ctrl-\

on Solaris and other Unix systems, or Ctrl-Break on Windows. To get a useful method profile, you need to

modify the profiler options to specify method profiling. A typical call to achieve this is:

% java -Xrunhprof:cpu=samples,thread=y <classname>

(Note that in a Windows command-line prompt, you need to surround the options with double quotes

because the equals sign is considered a meta character.) The full list of options available with -Xrunhprof
can be viewed using the -Xrunhprof:help option.

Note that -Xrunhprof has an "h" in it. There seems to be an undocumented feature

of the VM in which the option -Xrun<something> makes the VM try to load a shared

library called <something>, for example, using -Xrunprof results in the VM trying

to load a shared library called prof. This can be quite confusing if you are not

expecting it. In fact, -Xrunhprof loads the hprof shared library.
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The profiling option in JDKs 1.2/1.3/1.4 can be pretty flaky. Several of the options can cause the runtime to

crash (core dump). The output is a large file because huge amounts of trace data are written rather than

summarized. Since the profile option is essentially a Sun engineering tool, it is pretty rough, especially since

Sun has a separate (not free) profile tool for its engineers. Another tool that Sun provides to analyze the

output of the profiler is the Heap Analysis Tool (search http://www.java.sun.com for "HAT"). But this tool

analyzes only the object-creation statistics output gained with the default profile output, so it is not that

useful for method profiling (see Section 2.4 for slightly more about this tool).

Nevertheless, I expect the free profiling option to stabilize and be more useful in future versions. The output

when run with the options already listed (cpu=samples, thread=y) already results in fairly usable

information. This profiling mode operates by periodically sampling the stack. Each unique stack trace

provides a TRACE entry in the second section of the file, describing the method calls on the stack for that

trace. Multiple identical samples are not listed; instead, the number of their "hits" is summarized in the third

section of the file. The profile output file in this mode has three sections:

Section 1

A standard header section describing possible monitored entries in the file. For example:

WARNING!  This file format is under development, and is subject to

change without notice.

  

This file contains the following types of records:

  

THREAD START

THREAD END      mark the lifetime of Java threads

  

TRACE           represents a Java stack trace.  Each trace consists

                of a series of stack frames.  Other records refer to

                TRACEs to identify (1) where object allocations have

                taken place, (2) the frames in which GC roots were

                found, and (3) frequently executed methods.

Section 2

Individual entries describing monitored events, i.e., threads starting and terminating, but mainly

sampled stack traces. For example:

THREAD START (obj=8c2640, id = 6, name="Thread-0", group="main")

THREAD END (id = 6)

TRACE 1:

<empty>

TRACE 964:

java/io/ObjectInputStream.readObject(ObjectInputStream.java:Compiled method)

java/io/ObjectInputStream.inputObject(ObjectInputStream.java:Compiled method)

java/io/ObjectInputStream.readObject(ObjectInputStream.java:Compiled method)

java/io/ObjectInputStream.inputArray(ObjectInputStream.java:Compiled method)

TRACE 1074:

java/io/BufferedInputStream.fill(BufferedInputStream.java:Compiled method)

java/io/BufferedInputStream.read1(BufferedInputStream.java:Compiled method)

java/io/BufferedInputStream.read(BufferedInputStream.java:Compiled method)

java/io/ObjectInputStream.read(ObjectInputStream.java:Compiled method)

Section 3

A summary table of methods ranked by the number of times the unique stack trace for that method
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appears. For example:

CPU SAMPLES BEGIN (total = 512371) Thu Aug 26 18:37:08 1999

rank   self  accum   count trace method

   1 16.09% 16.09%   82426  1121 java/io/FileInputStream.read

   2  6.62% 22.71%   33926   881 java/io/ObjectInputStream.allocateNewObject

   3  5.11% 27.82%   26185   918 java/io/ObjectInputStream.inputClassFields

   4  4.42% 32.24%   22671   887 java/io/ObjectInputStream.inputObject

   5  3.20% 35.44%   16392   922 java/lang/reflect/Field.set

Section 3 is the place to start when analyzing this profile output. It consists of a table with six fields:

rank

This column simply counts the entries in the table, starting with 1 at the top and incrementing by 1 for

each entry.

self

The self field is usually interpreted as a percentage of the total running time spent in this method.

More accurately, this field reports the percentage of samples that have the stack given by the trace

field. Here's a one-line example:

rank   self  accum   count trace method 

   1 11.55% 11.55%   18382   545 java/lang/FloatingDecimal.dtoa

This example shows that stack trace 545 occurred in 18,382 of the sampled stack traces, and this is 11.55%

of the total number of stack trace samples made. It indicates that this method was probably executing for

about 11.55% of the application execution time because the samples are at regular intervals. You can

identify the precise trace from the second section of the profile output by searching for the trace with

identifier 545. For the previous example, this trace was:

TRACE 545: (thread=1)

java/lang/FloatingDecimal.dtoa(FloatingDecimal.java:Compiled method)

java/lang/FloatingDecimal.<init>(FloatingDecimal.java:Compiled method)

java/lang/Double.toString(Double.java:Compiled method)

java/lang/String.valueOf(String.java:Compiled method)

This TRACE entry clearly identifies the exact method and its caller. Note that the stack is reported to a depth

of four methods. This is the default depth; the depth can be changed using the depth parameter to -
Xrunhprof, e.g., -Xrunhprof:depth=6,cpu=samples,....

accum

This field is a running additive total of all the self field percentages as you go down the table. For the

Section 3 example shown previously, the third line lists 27.82% for the accum field, indicating that the

sum total of the first three lines of the self field is 27.82%.

count

This field indicates how many times the unique stack trace that gave rise to this entry was sampled

while the program ran.

trace

This field shows the unique trace identifier from the second section of profile output that generated

this entry. The trace is recorded only once in the second section no matter how many times it is

sampled; the number of times that this trace has been sampled is listed in the count field.
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method

This field shows the method name from the top line of the stack trace referred to from the trace

field, i.e., the method that was running when the stack was sampled.

This summary table lists only the method name and not its argument types. Therefore, it is frequently

necessary to refer to the stack itself to determine the exact method if the method is an overloaded

method with several possible argument types. (The stack is given by the trace identifier in the

trace field, which in turn references the trace from the second section of the profile output.) If a

method is called in different ways, it may also give rise to different stack traces. Sometimes the same

method call can be listed in different stack traces due to lost information. Each of these different stack

traces results in a different entry in the third section of the profiler's output, even though the method

field is the same. For example, it is perfectly possible to see several lines with the same method field,

as in the following table segment:

rank   self  accum   count trace method

  95   1.1% 51.55%    110    699 java/lang/StringBuffer.append

 110   1.0% 67.35%    100    711 java/lang/StringBuffer.append

 128   1.0% 85.35%     99    332 java/lang/StringBuffer.append

When traces 699, 711, and 332 are analyzed, one trace might be StringBuffer.append(boolean), while

the other two traces could both be StringBuffer.append(int), but called from two different methods

(and so giving rise to two different stack traces and consequently two different lines in the summary

example). Note that the trace does not identify actual method signatures, only method names. Line numbers

are given if the class was compiled so that line numbers remain. This ambiguity can be a nuisance at times.

The profiler in this mode (cpu=samples) suffices when you have no better alternative. It does have an

effect on real measured times, slowing down operations by variable amounts even within one application

run. But it normally indicates major bottlenecks, although sometimes a little extra work is necessary to sort

out multiple identical method-name references.

Using the alternative cpu=times mode, the profile output gives a different view of application execution. In

this mode, the method times are measured from method entry to method exit, including the time spent in all

other calls the method makes. This profile of an application provides a tree-like view of where the application

is spending its time. Some developers are more comfortable with this mode for profiling the application, but

I find that it does not directly identify bottlenecks in the code.

2.3.3 HotSpot and 1.3 -Xprof Profile Output

HotSpot does not support the standard Java 2 profiler detailed in the previous section; it supports a separate

profiler using the -Xprof option. JDK 1.3 supports the HotSpot profiler as well as the standard Java 2

profiler. The HotSpot profiler has no further options available to modify its behavior; it works by sampling

the stack every 10 milliseconds.

The output, printed to standard output, consists of a number of sections. Each section lists entries in order of

the number of ticks counted while the method was executed. The various sections include methods executing

in interpreted and compiled modes, and VM runtime costs as well:

Section 1

A one-line header. For example:

Flat profile of 7.55 secs (736 total ticks): main

Section 2
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A list of methods sampled while running in interpreted mode. The methods are listed in order of the

total number of ticks counted while the method was at the top of the stack. For example:

Interpreted + native   Method                        

  3.7%    23  +     4    tuning.profile.ProfileTest.main

  2.4%     4  +    14    java.lang.FloatingDecimal.dtoa

  1.4%     3  +     7    java.lang.FDBigInt.<init>

Section 3

A list of methods sampled while running in compiled mode. The methods are listed in order of the

total number of ticks counted while the method was at the top of the stack. For example:

Compiled + native   Method                        

 13.5%    99  +     0    java.lang.FDBigInt.quoRemIteration

  9.8%    71  +     1    java.lang.FDBigInt.mult

  9.1%    67  +     0    java.lang.FDBigInt.add

Section 4

A list of external (non-Java) method stubs, defined using the native keyword. Listed in order of the

total number of ticks counted while the method was at the top of the stack. For example:

Stub + native   Method                        

  2.6%    11  +     8    java.lang.Double.doubleToLongBits

  0.7%     2  +     3    java.lang.StrictMath.floor

  0.5%     3  +     1    java.lang.Double.longBitsToDouble

Section 5

A list of internal VM function calls. Listed in order of the total number of ticks counted while the

method was at the top of the stack. Not tuneable. For example:

Runtime stub + native  Method                        

  0.1%     1  +     0    interpreter_entries

  0.1%     1  +     0    Total runtime stubs

Section 6

Other miscellaneous entries not included in the previous sections:

Thread-local ticks:

  1.4%    10             classloader

  0.1%     1             Interpreter

 11.7%    86             Unknown code

Section 7

A global summary of ticks recorded. This includes ticks from the garbage collector, thread-locking

overhead, and other miscellaneous entries:

Global summary of 7.57 seconds:

100.0%   754             Received ticks

  1.9%    14             Received GC ticks

  0.3%     2             Other VM operations

The entries at the top of Section 3 are the methods that probably need tuning. Any method listed near the

top of Section 2 should have been targeted by the HotSpot optimizer and may be listed lower down in

Section 3. Such methods may still need to be optimized, but it is more likely that the methods at the top of

Section 3 need optimizing. The ticks for the two sections are the same, so you can easily compare the time

taken up by the top methods in the different sections and decide which to target.
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2.3.4 JDK 1.1.x -prof and Java 2 cpu=old Profile Output

The JDK 1.1.x method-profiling output, obtained by running with the -prof option, is quite different from

the normal 1.2 output. This output format is supported in Java 2, using the cpu=old variation of the -
Xrunhprof option. This output file consists of four sections:

Section 1

The method profile table showing cumulative times spent in each method executed. The table is

sorted on the first count field. For example:

callee caller time

29 java/lang/System.gc(  )V  

        java/io/FileInputStream.read([B)I 10263

1 java/io/FileOutputStream.writeBytes([BII)V 

        java/io/FileOutputStream.write([BII)V 0

Section 2

One line describing high-water gross memory usage. For example:

handles_used: 1174, handles_free: 339046, heap-used: 113960, heap-free: 21794720

The line reports the number of handles and the number of bytes used by the heap memory storage over the

application's lifetime. A handle is an object reference. The number of handles used is the maximum number

of objects that existed at any one time in the application (handles are recycled by the garbage collector, so

over its lifetime the application could have used many more objects than are listed). Heap measurements

are given in bytes.

Section 3

Reports the number of primitive data type arrays left at the end of the process, just before process

termination. For example:

sig  count     bytes  indx

[C     174     19060     5

[B       5     19200     8

This section has four fields. The first field is the primitive data type (array dimensions and data type given by

letter codes listed shortly), the second field is the number of arrays, and the third is the total number of

bytes used by all the arrays. This example shows 174 char arrays with a combined space of 19,060 bytes,

and 5 byte arrays with a combined space of 19,200 bytes.

The reported data does not include any arrays that may have been garbage-collected before the end of the

process. For this reason, the section is of limited use. You could use the -noasyncgc option to try to

eliminate garbage collection (if you have enough memory; you may also need -mx with a large number to

boost the maximum memory available). If you do, also use -verbosegc so that if garbage collection is

forced, you at least know that it has occurred and can get the basic number of objects and bytes reclaimed.

Section 4

The fourth section of the profile output is the per-object memory dump. Again, this includes only

objects left at the end of the process just before termination, not objects that may have been

garbage-collected before the end of the process. For example:

*** tab[267] p=4bba378 cb=1873248 cnt=219 ac=3 al=1103

  Ljava/util/HashtableEntry; 219 3504

  [Ljava/util/HashtableEntry; 3 4412
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This dump is a snapshot of the actual object table. The fields in the first line of an entry are:

***tab[<index>]

The entry location as listed in the object table. The index is of no use for performance tuning.
p=<hex value>

Internal memory locations for the instance and class; of no use for performance tuning.
cb=<hex value>

Internal memory locations for the instance and class; of no use for performance tuning.
cnt=<integer>

The number of instances of the class reported on the next line.
ac=<integer>

The number of instances of arrays of the class reported on the next line.
al=<integer>

The total number of array elements for all the arrays counted in the previous (ac) field.

This first line of the example is followed by lines consisting of three fields: first, the class name prefixed by

the array dimension if the line refers to the array data; next, the number of instances of that class (or array

class); and last, the total amount of space used by all the instances, in bytes. So the example reports that

there are 219 HashtableEntry instances that comprise (collectively) a total of 3504 bytes,[9] and three

HashtableEntry arrays having 1103 array indexes (which amounts to 4412 bytes total, as each entry is a

4-byte object handle).

[9] A HashtableEntry has one int and three object handle instance variables, each of which takes 4

bytes, so each HashtableEntry is 16 bytes.

Sections 3 and 4 give snapshots of the object table memory and can be used in an interesting way: to run a

garbage collection just before termination of your application. That leaves in the object table all the objects

that are rooted[10] by the system and by your application (from static variables). If this snapshot shows

significantly more objects than you expect, you may be referencing more objects than you realized.

[10] Objects rooted by the system are objects that the JVM runtime keeps alive as part of its runtime
system. Rooted objects generally cannot be garbage-collected because they are referenced in some
way from other objects that cannot be garbage-collected. The roots of these non-garbage-collectable
objects are normally objects referenced from the stack, objects referenced from static variables of
classes, and special objects the runtime system ensures are kept alive.

The first section of the profile output is the most useful. It consists of multiple lines, each specifying a

method and its caller, together with the total cumulative time spent in that method and the total number of

times it was called from that caller. The first line of this section specifies the four fields in the profile table in

this section: count, callee, caller, and time. They are detailed here:

count

The total number of times the callee method was called from the caller method, accumulating

multiple executions of the caller method. For example, if foo1( ) calls foo2( ) 10 times every

time foo1( ) is executed, and foo1( ) was itself called three times during the execution of the

program, the count field should hold the value 30 for the callee-caller pair foo2( )-foo1( ). The

line in the table should look like this:

30 x/y/Z.foo2(  )V x/y/Z.foo1(  )V 1263

(assuming the foo*( ) methods are in class x.y.Z and they both have a void return). The actual reported
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numbers may be less than the true number of calls: the profiler can miss calls.

callee

The method that was called count times in total from the caller method. The callee can be listed in

other entries as the callee method for different caller methods.

caller

The method that called the callee method count times in total.

time

The cumulative time (in milliseconds) spent in the callee method, including time when the callee
method was calling other methods (i.e., when the callee method was in the stack but not at the top,

and so was not the currently executing method).

If each of the count calls in one line took exactly the same amount of time, then one call from caller

to callee took time divided by count milliseconds.

This first section is normally sorted into count order. However, for this profiler, the time spent in methods

tends to be more useful. Because the times in the time field include the total time that the callee method

was anywhere on the stack, interpreting the output of complex programs can be difficult without processing

the table to subtract subcall times. This format is different from the 1.2 output with cpu=samples specified,

and is similar to a 1.2 profile with cpu=times specified.

The lines in the profile output are unique for each callee-caller pair, but any one callee method and any

one caller method can (and normally do) appear in multiple lines. This is because any particular method

can call many other methods, and so the method registers as the caller for multiple callee-caller pairs. Any

particular method can also be called by many other methods, and so the method registers as the callee for

multiple callee-caller pairs.

The methods are written out using the internal Java syntax listed in Table 2-1.

Table 2-1. Internal Java syntax for -prof output format
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Internal

symbol
Java meaning

/
Replaces the . character in package names (e.g., java/lang/String stands for

java.lang.String)

B byte

C char

D double

I int

F float

J long

S short

V void

Z boolean

[
One array dimension (e.g., [[B stands for a two-dimensional array of bytes, such as new
byte[3][4])

L<classname>; A class (e.g., Ljava/lang/String; stands for java.lang.String)

There are free viewers, including source code, for viewing this file:

Vladimir Bulatov's HyperProf (search for HyperProf on the Web)

Greg White's ProfileViewer (search for ProfileViewer on the Web)

The biggest drawback to the 1.1 profile output is that threads are not shown at all. This means that it is

possible to get time values for method calls that are longer than the total time spent in running the

application, since all the call times from multiple threads are added together. It also means that you cannot

determine from which thread a particular method call was made. Nevertheless, after re-sorting the section

on the time field rather than the count field, the profile data is useful enough to suffice as a method profiler

when you have no better alternative.

One problem I've encountered is the limited size of the list of methods that can be held by the internal

profiler. Technically, this limitation is 10,001 entries in the profile table, and there is presumably one entry

per method. There are four methods that help you avoid the limitation by profiling only a small section of

your code:

sun.misc.VM.suspendJavaMonitor(  )
sun.misc.VM.resumeJavaMonitor(  )
sun.misc.VM.resetJavaMonitor(  )
sun.misc.VM.writeJavaMonitorReport(  )

These methods also allow you some control over which parts of your application are profiled and when to

dump the results.

2.3.5 Java 2 -Xhprof Option

The -Xhprof option seems to be simply an alternative name for the -Xrunhprof option. I believe that

originally it was called -Xhprof, and then the option was left in although all subsequent documentation used
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-Xrunhprof.

2.3.6 Java 2 -Xaprof option

-Xaprof appears to be a simple allocation profiler. It prints the number and total size of instances allocated

per class, including array classes, accumulating instances across all threads and creation points. In fact, it

seems to be very similar to the tool I describe in the next section. Like other VM profiling tools, it is

unfortunately not 100% stable (for example, it core dumps with my 1.4 Windows VM). Nevertheless, it is

useful when it works, and it was introduced with 1.3.

Using this profiler to monitor the tuning.profile.ProfileTest class used in the example from the

"Profiling Methodology" section results in the following output:

Allocation profile (sizes in bytes, cutoff = 0 bytes):
  
_ _ _ _ _ _Size_ _Instances_ _Average_ _Class_ _ _ _ _ _ _ _ _ _ _ _ _ 
  13491592     186025       73  [I
   5634592      86602       65  [C
   2496352     156022       16  java.lang.FDBigInt
    875112      36463       24  java.lang.String
    768000      16000       48  java.lang.FloatingDecimal
    320000      20000       16  java.lang.Long
    256000      16000       16  java.lang.Double
     29832         14     2131  [B
     14256        594       24  java.util.Hashtable$Entry
      8960          6     1493  [S
      8112         25      324  [Ljava.util.Hashtable$Entry;
      2448        102       24  java.lang.StringBuffer
      2312          3      771  [Ljava.lang.FDBigInt;
      1600         24       67  [Ljava.lang.Object;
       584          9       65  [Ljava.util.HashMap$Entry;
       528         22       24  java.util.Locale
       440         11       40  java.util.Hashtable
       432          9       48  java.util.HashMap
       392          4       98  [D
       376          3      125  [J
       320          7       46  [Ljava.lang.String;
       256          4       64  java.lang.Thread
...
23916904     518123       46  --total--

The listing has been truncated, but a full listing is output down to objects and arrays with only one instance

created. The primitive arrays are listed using the one-character labels from Table 2-1. The listing is fairly

clear. All instances created at any time by the VM are included, whether they have been garbage-collected or

not. The first column is the total size in bytes taken up by all the instances summed together; the second

column provides the number of those instances created; and the third divides the first column by the second

column to give an average size per object in bytes.

The only disadvantage seems to be that you cannot take a snapshot. There seems to be no way of

registering only those objects created between time 1 (e.g., after initialization) and time 2. Otherwise, this is

another useful tool to add to your armory.
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2.4 Object-Creation Profiling

Unfortunately, the SDK provides only very rudimentary object-creation statistics. Most profile tool vendors

provide much better object-creation statistics, determining object numbers and identifying where particular

objects are created in the code. My recommendation is to use a better (probably commercial) tool in place of

the SDK profiler.

The Heap Analysis Tool, which can analyze the default profiling mode with Java 2, provides a little more

information from the profiler output, but if you are relying on this, profiling object creation will require a lot

of effort. To use this tool, you must use the binary output option:

% java -Xrunhprof:format=b <classname>

I have used an alternate trick when a reasonable profiler is unavailable, cannot be used, or does not provide

precisely the detail I need. This technique is to alter the java.lang.Object class to catch most nonarray

object-creation calls. This is not a supported feature, but it does seem to work on most systems because all

constructors chain up to the Object class's constructor, and any explicitly created nonarray object calls the

constructor in Object as its first execution point after the VM allocates the object on the heap. Objects that

are created implicitly with a call to clone( ) or by deserialization do not call the Object class's

constructor, and so are missed when using this technique.

Under the terms of the license granted by Sun, it is not possible to include or list an altered Object class

with this book. But I can show you the simple changes to make to the java.lang.Object class to track

object creation.

The change requires adding a line in the Object constructor to pass this to some object-creation monitor

you are using. java.lang.Object does not have an explicitly defined constructor (it uses the default empty

constructor), so you need to add one to the source and recompile. For any class other than Object, that is

all you need to do. But there is an added problem in that Object does not have a superclass, and the

compiler has a problem with this: the compiler cannot handle an explicit super( ) from the Object class,

nor the use of this, without an explicit super( ) or this( ) call. In order to get around this restriction,

you need to add a second constructor to java.lang.Object: a constructor that does nothing functional but

does seem to satisfy the compiler.

This trick works for the compiler that comes with the JDK; other compilers may be

easier or more difficult to satisfy. It is specifically the compiler that has the problem.

Generating the bytecodes without the extra constructor is perfectly legal.

Recursive calls to the Object constructor present an additional difficulty. You must ensure that when your

monitor is called from the constructor, the Object constructor does not recursively call itself as it creates

objects for your object-creation monitor. It is equally important to avoid recursive calls to the Object

constructor at runtime initialization. The simplest way to handle all this is to have a flag on which objects are

conditionally passed to the monitor from the Object constructor and to have this flag in a simple class with

no superclasses so that classloading does not impose extra calls to superclasses.

Essentially, to change java.lang.Object so that it records object creation for each object, you need to

add something like the following two constructors to java.lang.Object:
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public Object(  )
{
  this(true);
  if (tuning.profile.ObjectCreationMonitoringFlag.monitoring)
    tuning.profile.ObjectCreationMonitoring.monitor(this);
}
public Object(boolean b)
{
}

This code may seem bizarre, but then this technique uses an unsupported hack. You now need to compile

your modified java.lang.Object and any object-monitoring classes (I find that compiling the object-

monitoring classes separately before compiling the Object class makes things much easier). You then need

to run tests with the new Object class first in your (boot) classpath. The modified Object class[11] must

precede the real java.lang.Object in your classpath; otherwise, the real one will be found first and used.

[11] Different versions of the JDK require their Object classes to be recompiled separately; i.e., you

cannot recompile the Object class for JDK 1.1.6 and then run that class with the 1.2 runtime.

Once you have set the tuning.profile.ObjectCreationMonitoringFlag.monitoring variable to

true, each newly created object is passed to the monitor during the creation call. (Actually, the object is

passed immediately after it has been created by the runtime system but before any constructors have been

executed, except for the Object constructor.) You should not set the monitoring variable to true before

the core Java classes have loaded; a good place to set it to true is at the start of the application.

Unfortunately, this technique does not catch any of the arrays that are created: array objects do not chain

through the Object constructor (although Object is their superclass) and so do not get monitored. But you

typically populate arrays with objects (except for data type arrays such as char arrays), and the objects

populating the arrays are caught. In addition, objects that are created implicitly with a call to clone( ) or

by deserialization do not call the Object class's constructor, and so these objects are also missed when

using this technique. Deserialized objects can be included using a similar technique by redefining the

ObjectInputStream class.

When I use this technique, I normally first get a listing of the different object types and how many of each

are created. Then I start to focus on a few objects. If you prefer, you can make the technique more focused

by altering other constructors to target a specific hierarchy below Object. Or you could focus on particular

classes within a more general monitoring class by filtering interesting hierarchies using instanceof. In

addition, you can get the stack of the creation call for any object by creating an exception or filling in the

stack trace of an existing exception (but not throwing the exception). As an example, I define a monitoring

class that provides many of the possibilities you might want to use for analysis. Note that to avoid recursion

during the load, I normally keep my actual ObjectCreationMonitoringFlag class very simple, containing

only the flag variable, and put everything else in another class with the monitor( ) method. The following

code defines the flag class:

package tuning.profile;
public class ObjectCreationMonitoringFlag
{
  public static boolean monitoring = false;
}

The next listed class, ObjectCreationMonitoring, provides some of the features you might need in a

monitoring class, including those features previously mentioned. It includes a main( ) method that starts

up the real application you wish to monitor and three alternative options. These report every object creation
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as it occurs (-v), a tally of object creations (-t), or a tally of object-creation stacks (-s; this option can take

a long time).

If you run JDK 1.2 and have the recompiled Object class in a JAR file with the name hack.jar in the current

directory, and also copy the rt.jar and i18n.jar files from under the JDK1.2/jre/lib (JDK1.2\jre\lib) directory

to the current directory, then as an example you can execute the object-creation monitoring class on

Windows like this (note that this is one long command line):

% java -Xbootclasspath:hack.jar;rt.jar;i18n.jar 
tuning.profile.ObjectCreationMonitoring -t <real class and arguments>

You might also need to add a -cp option to specify the location of the various non-core class files that are

being run or add to the -classpath list for JDK 1.1. The files listed in the -Xbootclasspath option can be

listed with relative or absolute paths; they do not have to be in the current directory.

From JDK 1.3, there is a nicer prepend option to bootclasspath:

% java -Xbootclasspath/p:hack.jar tuning.profile.ObjectCreationMonitoring -t <real 
class and arguments>

For Unix it looks like this (the main difference is the use of ";" for Windows and ":" for Unix):

% java -Xbootclasspath:hack.jar:rt.jar:i18n.jar tuning.profile.
ObjectCreationMonitoring -t <real class and arguments>

For JDK 1.1, the classpath needs to be set instead of the bootclasspath, and the classes.zip file from

JDK1.1.x/lib needs to be used instead, so the command on Windows looks like:

% java -classpath hack.jar;classes.zip tuning.profile.ObjectCreationMonitoring -t 
<real class and arguments>

For Unix it looks like this (again, the main difference is the use of ";" for Windows and ":" for Unix):

% java -classpath hack.jar:classes.zip tuning.profile.ObjectCreationMonitoring -t 
<real class and arguments>

Note that classloaders seem to be changed in almost every version of the SDK. Some

readers have had problems using the tool described here with Version 1.3. The

problems always turned out to be classpath- and classloader-related. If you have

problems, try unpacking everything and putting it all in the bootclasspath, including

the application classes, for the purposes of running this monitoring tool. That way,

there are no issues of classpath or classloading.

Using one of these commands to monitor the tuning.profile.ProfileTest class results in the following

output:

Starting test
  The test took 3425 milliseconds
java.lang.FloatingDecimal       16000
java.lang.Double                16000
java.lang.StringBuffer          2
java.lang.Long                  20000
java.lang.FDBigInt              156022
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java.util.Hashtable             1
java.util.Hashtable$Entry       18
java.lang.String                36002

To recap, that program repeatedly (2000 times) appends 8 doubles and 10 longs to a StringBuffer and

inserts those numbers wrapped as objects into a hash table. The hash table requires 16,000 Doubles and

20,000 Longs, but beyond that, all other objects created are overheads due to the conversion algorithms

used. Even the String objects are overheads: there is no requirement for the numbers to be converted to

Strings before they are appended to the Stringbuffer. In Chapter 5, I show how to convert numbers and

avoid creating all these intermediate objects. The resulting code produces faster conversions in almost every

case.

Implementing the optimizations mentioned at the end of Section 2.3.1 allows the program to avoid the

FloatingDecimal class (and consequently the FDBigInt class too) and also to avoid the object wrappers

for the doubles and longs. This results in a program that avoids all the temporary FloatingDecimal,

Double, Long, FDBigInt, and String objects generated by the original version: over a quarter of a million

objects are eliminated from the object-creation profile, leaving just a few dozen objects! So the order-of-

magnitude improvement in speed attained is now more understandable.

The ObjectCreationMonitoring class is listed here:

package tuning.profile;
import java.util.*;
import java.io.*;
import java.lang.reflect.*;
  
public class ObjectCreationMonitoring
{
  private static int MonitoringMode = 0;
  private static int StackModeCount = -1;
  public static final int VERBOSE_MODE = 1;
  public static final int TALLY_MODE = 2;
  public static final int GET_STACK_MODE = 3;
  
  public static void main(String args[  ])
  {
    try
    {
      //First argument is the option specifying which type of
      //monitoring: verbose; tally; or stack
      if(args[0].startsWith("-v"))
        //verbose - prints every object's class as it's created
        MonitoringMode = VERBOSE_MODE;
      else if(args[0].startsWith("-t"))
        //tally mode. Tally classes and print results at end
        MonitoringMode = TALLY_MODE;
      else if(args[0].startsWith("-s"))
      {
        //stack mode. Print stacks of objects as they are created
        MonitoringMode = GET_STACK_MODE;
        //support a limited number of stacks being generated
        //so that the running time can be shortened
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        if(args[0].length(  ) > 2)
          StackModeCount = Integer.parseInt(args[0].substring(2));
      }
      else
        throw new IllegalArgumentException(
          "First command line argument must be one of -v/-t/-s");
  
      //Remaining arguments are the class with the
      //main(  ) method, and its arguments
      String classname = args[1];
      String[  ] argz = new String[args.length-2];
      System.arraycopy(args, 2, argz, 0, argz.length);
      Class clazz = Class.forName(classname);
  
      //main has one parameter, a String array.
      Class[  ] mainParamType = {args.getClass(  )}; 
      Method main = clazz.getMethod("main", mainParamType);
      Object[  ] mainParams = {argz};
  
      //start monitoring
      ObjectCreationMonitoringFlag.monitoring = true;
      main.invoke(null, mainParams);
      //stop monitoring
      ObjectCreationMonitoringFlag.monitoring = false;
      if (MonitoringMode =  = TALLY_MODE)
        printTally(  );
      else if (MonitoringMode =  = GET_STACK_MODE)
        printStacks(  );
    }
    catch(Exception e)
    {
      e.printStackTrace(  );
    }
  }
  
  public static void monitor(Object o)
  {
    //Disable object creation monitoring while we report
    ObjectCreationMonitoringFlag.monitoring = false;
  
    switch(MonitoringMode)
    {
      case 1: justPrint(o); break;
      case 2: tally(o); break;
      case 3: getStack(o); break;
      default:
        System.out.println(
          "Undefined mode for ObjectCreationMonitoring class");
        break;
    }
  
    //Re-enable object creation monitoring

http://lib.ommolketab.ir
http://lib.ommolketab.ir


    ObjectCreationMonitoringFlag.monitoring = true;
  }
  
  public static void justPrint(Object o)
  {
    System.out.println(o.getClass(  ).getName(  ));
  }
  
  private static Hashtable Hash = new Hashtable(  );
  public static void tally(Object o)
  {
    //You need to print the tally from printTally(  )
    //at the end of the application
    Integer i = (Integer) Hash.get(o.getClass(  ));
    if (i =  = null)
      i = new Integer(1);
    else
      i = new Integer(i.intValue(  ) + 1);
    Hash.put(o.getClass(  ), i);
  }
  public static void printTally(  )
  {
    //should really sort the elements in order of the
    //number of objects created, but I will just print them
    //out in any order here.
    Enumeration e = Hash.keys(  );
    Class c;
    String s;
    while(e.hasMoreElements(  ))
    {
      c = (Class) e.nextElement(  );
      System.out.print(s = c.getName(  ));
      for (int i = 31-s.length(  ); i >= 0; i--)
        System.out.print(' ');
      System.out.print("\t");
      System.out.println(Hash.get(c));
    }
  }
  
  private static Exception Ex = new Exception(  );
  private static ByteArrayOutputStream MyByteStream =
      new ByteArrayOutputStream(  );
  private static PrintStream MyPrintStream =
      new PrintStream(MyByteStream);
  public static void getStack(Object o)
  {
    if (StackModeCount > 0)
StackModeCount--;
    else if (StackModeCount != -1)
        return;
    Ex.fillInStackTrace(  );
    MyPrintStream.flush(  );
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    MyByteStream.reset(  );
    MyPrintStream.print("Creating object of type ");
    MyPrintStream.println(o.getClass(  ).getName(  ));
    //Note that the first two lines of the stack will be
    //getStack(  ) and monitor(  ), and these can be ignored.
    Ex.printStackTrace(MyPrintStream);
    MyPrintStream.flush(  );
    String trace = new String(MyByteStream.toByteArray(  ));
    Integer i = (Integer) Hash.get(trace);
    if (i =  = null)
      i = new Integer(1);
    else
      i = new Integer(i.intValue(  ) + 1);
    Hash.put(trace, i);
  }
  
  public static void printStacks(  )
  {
    Enumeration e = Hash.keys(  );
    String s;
    while(e.hasMoreElements(  ))
    {
      s = (String) e.nextElement(  );
      System.out.print("Following stack contructed ");
      System.out.print(Hash.get(s));
      System.out.println(" times:");
      System.out.println(s);
      System.out.println(  );
    }
  }
  
}
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2.5 Monitoring Gross Memory Usage

The JDK provides two methods for monitoring the amount of memory used by the runtime system:

freeMemory( ) and totalMemory( ) in the java.lang.Runtime class.

totalMemory( ) returns a long, which is the number of bytes currently allocated to the runtime system

for this particular VM process. Within this memory allocation, the VM manages its objects and data. Some of

this allocated memory is held in reserve for creating new objects. When the currently allocated memory gets

filled and the garbage collector cannot allocate sufficiently more memory, the VM requests more memory

from the underlying system. If the underlying system cannot allocate any further memory, an

OutOfMemoryError error is thrown. Total memory can go up and down; some Java runtimes return sections

of unused memory to the underlying system while still running.

freeMemory( ) returns a long, which is the number of bytes available to the VM to create objects from the

section of memory it controls (i.e., memory already allocated to the runtime by the underlying system). The

free memory increases when a garbage collection successfully reclaims space used by dead objects, and also

increases when the Java runtime requests more memory from the underlying operating system. The free

memory reduces each time an object is created and when the runtime returns memory to the underlying

system.

SDK 1.4 added a new method, Runtime.maxMemory( ) . This method simply gives the -Xmx value, and is

of no use to monitor heap usage.

It can be useful to monitor memory usage while an application runs: you can get a good feel for the hotspots

of your application. You may be surprised to see steady decrements in the free memory available to your

application when you were not expecting any change. This can occur when you continuously generate

temporary objects from some routine; manipulating graphical elements frequently shows this behavior.

Monitoring memory with freeMemory( ) and totalMemory( ) is straightforward, and I include a simple

class that does this graphically. It creates three threads: one to periodically sample the memory, one to

maintain a display of the memory usage graph, and one to run the program you are monitoring. Figure 2-1

shows the memory monitor after monitoring a run of the ProfileTest class. The total memory allocation is

flat because the class did not hold on to much memory at any one time. The free memory shows the typical

sawtooth pattern of an application cycling through temporary objects: each upstroke is where the garbage

collector kicked in and freed up the space being taken by the discarded dead objects.

Figure 2-1. Memory monitoring the ProfileTest class
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The monitor was run using the command:

% java tuning.profile.MemoryMonitor tuning.profile.ProfileTest

Here are the classes for the memory monitor, together with comments:

package tuning.profile;
import java.awt.*;
import java.awt.event.*;
import java.lang.reflect.*;
  
/*
 * Internal class to periodically sample memory usage
 */
class MemorySampler
  implements Runnable
{
  long[  ] freeMemory = new long[1000];
  long[  ] totalMemory = new long[1000];
  int sampleSize = 0;
  long max = 0;
  boolean keepGoing = true;
  
  MemorySampler(  )
  {
    //Start the object running in a separate maximum priority thread
    Thread t = new Thread(this);
    t.setDaemon(true);
    t.setPriority(Thread.MAX_PRIORITY);
    t.start(  );
  }
  
  public void stop(  )
  {
    //set to stop the thread when someone tells us
    keepGoing = false;
  }
  
  public void run(  )
  {
    //Just a loop that continues sampling memory values every
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    //30 milliseconds until the stop(  ) method is called.
    Runtime runtime = Runtime.getRuntime(  );
    while(keepGoing)
    {
      try{Thread.sleep(30);}catch(InterruptedException e){  };
      addSample(runtime);
    }
  }
  
  public void addSample(Runtime runtime)
  {
    //Takes the actual samples, recording them in the two arrays.
    //We expand the arrays when they get full up.
    if (sampleSize >= freeMemory.length)
    {
      //just expand the arrays if they are now too small
      long[  ] tmp = new long[2 * freeMemory.length];
      System.arraycopy(freeMemory, 0, tmp, 0, freeMemory.length);
      freeMemory = tmp;
      tmp = new long[2 * totalMemory.length];
      System.arraycopy(totalMemory, 0, tmp, 0, totalMemory.length);
      totalMemory = tmp;
    }
  
    freeMemory[sampleSize] = runtime.freeMemory(  );
    totalMemory[sampleSize] = runtime.totalMemory(  );
  
    //Keep the maximum value of the total memory for convenience.
    if (max < totalMemory[sampleSize])
      max = totalMemory[sampleSize];
    sampleSize++;
  }
}
  
public class MemoryMonitor
  extends Frame
  implements WindowListener,Runnable
{
  //The sampler object
  MemorySampler sampler;
  
  //interval is the delay between calls to repaint the window
  long interval;
  static Color freeColor = Color.red;
  static Color totalColor = Color.blue;
  int[  ] xpoints = new int[2000];
  int[  ] yfrees = new int[2000];
  int[  ] ytotals = new int[2000];
  
  /*
   * Start a monitor and the graph, then start up the real class
   * with any arguments. This is given by the rest of the commmand
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   * line arguments.
   */
  public static void main(String args[  ])
  {
    try
    {
      //Start the grapher with update interval of half a second
      MemoryMonitor m = new MemoryMonitor(500);
  
      //Remaining arguments are the class with
      //the main(  ) method, and its arguments
      String classname = args[0];
      String[  ] argz = new String[args.length-1];
      System.arraycopy(args, 1, argz, 0, argz.length);
      Class clazz = Class.forName(classname);
  
      //main has one parameter, a String array.
      Class[  ] mainParamType = {args.getClass(  )}; 
      Method main = clazz.getMethod("main", mainParamType);
      Object[  ] mainParams = {argz};
  
      //start real class
      main.invoke(null, mainParams);
  
      //Tell the monitor the application finished
      m.testStopped(  );
    }
    catch(Exception e)
    {
      e.printStackTrace(  );
    }
  }
  
  public MemoryMonitor(long updateInterval)
  {
    //Create a graph window and start it in a separate thread
    super("Memory Monitor");
    interval = updateInterval;
  
    this.addWindowListener(this);
    this.setSize(600,200);
    this.show(  );
  
    //Start the sampler (it runs itself in a separate thread)
    sampler = new MemorySampler(  );
  
    //and put myself into a separate thread
    (new Thread(this)).start(  );
  }
  
  public void run(  )
  {
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    //Simple loop, just repaints the screen every 'interval' milliseconds
    int sampleSize = sampler.sampleSize;
    for (;;)
    {
      try{Thread.sleep(interval);}catch(InterruptedException e){  };
      if (sampleSize != sampler.sampleSize)
      {
        //Should just call repaint here
        //this.repaint(  );
        //but it doesn't always work, so I'll repaint in this thread.
        //I'm not doing anything else anyway in this thread.
        try{
          this.update(this.getGraphics(  ));
        }
        catch(Exception e){e.printStackTrace(  );}
        sampleSize = sampler.sampleSize;
      }
    }
  }
  
  public void testStopped(  )
  {
    //just tell the sampler to stop sampling.
    //We won't exit ourselves until the window is explicitly closed
    //so that our user can examine the graph at leisure.
    sampler.stop(  );
  }
  
  public void paint(Graphics g)
  {
    //Straightforward - draw a graph for the latest N points of
    //total and free memory where N is the width of the window.
    try
    {
      java.awt.Dimension d = getSize(  );
      int width = d.width-20;
      int height = d.height - 40;
      long max = sampler.max;
      int sampleSize = sampler.sampleSize;
      if (sampleSize < 20)
        return;
      int free, total, free2, total2;
      int highIdx = width < (sampleSize-1) ? width : sampleSize-1;
      int idx = sampleSize - highIdx - 1;
      for (int x = 0 ; x < highIdx ; x++, idx++)
      {
        xpoints[x] = x+10;
        yfrees[x] = height -
          (int) ((sampler.freeMemory[idx] * height) / max) + 40;
        ytotals[x] = height -
          (int) ((sampler.totalMemory[idx] * height) / max) + 40;
      }
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      g.setColor(freeColor);
      g.drawPolyline(xpoints, yfrees, highIdx);
      g.setColor(totalColor);
      g.drawPolyline(xpoints, ytotals, highIdx);
      g.setColor(Color.black);
      g.drawString("maximum: " + max + 
        " bytes (total memory - blue line  |  free memory - red line)",
        10, 35);
    }
    catch (Exception e) {
      System.out.println("MemoryMonitor: " + e.getMessage(  ));}
  }
  
  public void windowActivated(WindowEvent e){  }
  public void windowClosed(WindowEvent e){  }
  public void windowClosing(WindowEvent e) {System.exit(0);}
  public void windowDeactivated(WindowEvent e){  }
  public void windowDeiconified(WindowEvent e){  }
  public void windowIconified(WindowEvent e){  }
  public void windowOpened(WindowEvent e) {  }
}
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2.6 Client/Server Communications

To tune client/server or distributed applications, you need to identify all communications that occur during

execution. The most important factors to look for are the number of transfers of incoming and outgoing data

and the amount of data transferred. These elements affect performance the most. Generally, if the amount

of data per transfer is less than about one kilobyte, the number of transfers is the factor that limits

performance. If the amount of data being transferred is more than about a third of the network's capacity,

the amount of data is the factor limiting performance. Between these two endpoints, either the amount of

data or the number of transfers can limit performance, although in general, the number of transfers is more

likely to be the problem.

As an example, web surfing with a browser typically hits both problems at different times. A complex page

with elements from multiple sites can take longer to display completely than one simple page with 10 times

more data. Many different sites are involved in displaying the complex page; each site must have its server

name converted to an IP address, which can take many network transfers.[12] Each site then needs to be

connected to and downloaded from. The simple page needs only one name lookup and one connection, and

this can make a huge difference. On the other hand, if the amount of data is large compared to the

connection bandwidth (the speed of the Internet connection at the slowest link between your client and the

server machine), the limiting factor is bandwidth, so the complex page may display more quickly than the

simple page.

[12] The DNS name lookup is often hierarchical, requiring multiple DNS servers to chain a lookup
request to resolve successive parts of the name. Although there is only one request as far as the
browser is concerned, the actual request may require several server-to-server data transfers before
the lookup is resolved.

Several generic tools are available for monitoring communication traffic, all aimed at system and network

administrators (and quite expensive). I know of no general-purpose profiling tool targeted at application-

level communications monitoring; normally, developers put their own monitoring capabilities into the

application or use the trace mode in their third-party communications package, if they use one. (snoop,

netstat, and ndd on Unix are useful communication-monitoring tools. tcpdump and ethereal are freeware

communication-monitoring tools.)

If you are using a third-party communications package, your first step in profiling is to make sure you

understand how to use the full capabilities of its tracing mode. Most communications packages provide a

trace mode to log various levels of communication details. Some let you install your own socket layer

underlying the communications; this feature, though not usually present for logging purposes, can be quite

handy for customizing communications tracing.

For example, RMI (remote method invocation) offers very basic call tracing enabled by setting the java.

rmi.server.logCalls property to true, e.g., by starting the server class with:

% java -Djava.rmi.server.logCalls=true <ServerClass> .. .

The RMI framework also lets you install a custom RMI socket factory. This socket customization support is

provided so that the RMI protocol is abstracted away from actual communication details, and it allows

sockets to be replaced by alternatives such as nonsocket communications or encrypted or compressed data

transfers.
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For example, here is the tracing from a small client/server RMI application. The client simply connects to the

server and sets three attributes of a server object using RMI. The three attributes are a boolean, an

Object, and an int, and the server object defines three remotely callable set( ) methods for setting the

attributes:

Sun Jan 16 15:09:12 GMT+00:00 2000:RMI:RMI TCP Connection(3)-localhost/127.0.0.1: 
[127.0.0.1: tuning.cs.ServerObjectImpl[0]: void setBoolean(boolean)]
Sun Jan 16 15:09:12 GMT+00:00 2000:RMI:RMI TCP Connection(3)-localhost/127.0.0.1: 
[127.0.0.1: tuning.cs.ServerObjectImpl[0]: void setObject(java.lang.Object)]
Sun Jan 16 15:09:12 GMT+00:00 2000:RMI:RMI TCP Connection(3)-localhost/127.0.0.1: 
[127.0.0.1: tuning.cs.ServerObjectImpl[0]: void setNumber(int)]

If you can install your own socket layer, you may also want to install a customized logging layer to provide

details of the communication. An alternative way to trace communications is to replace the sockets (or other

underlying communication classes) directly, providing your own logging. In the next section, I provide details

for replacing socket-level communication for basic Java sockets.

In addition to Java-level logging, you should be familiar with system- and network-level logging facilities.

The most ubiquitous of these is netstat, a command-line utility that is normally executed from a Unix shell or

Windows command prompt. For example, using netstat with the -s option provides a full dump of most

network-related structures (cumulative readings since the machine was started). By filtering this, taking

differences, and plotting various data, you get a good idea of the network traffic background and the extra

load imposed by your application.

Using netstat with this application shows that the connection, the resolution of the server object, and the

three remote method invocations require four TCP sockets and 39 packets of data (frames) to be

transferred. These include a socket pair opened from the client to the registry to determine the server

location, then a second socket pair between the client and the server. The frames include several handshake

packets required as part of the RMI protocol, and other overhead that RMI imposes. The socket pair between

the registry and server are not recorded because the pair lives longer than the interval that measures

differences recorded by netstat. However, some of the frames are probably communication packets between

the registry and the server.

Another useful piece of equipment is a network sniffer. This is a hardware device you plug into the network

line that views (and can save) all network traffic that is passed along that wire. If you absolutely must know

every detail of what is happening on the wire, you may need one of these.

More detailed information on network utilities and tools can be found in system-specific performance tuning

books (see Chapter 14 for more about system-specific tools and tuning tips).

2.6.1 Replacing Sockets

Occasionally, you need to be able to see what is happening to your sockets and to know what information is

passing through them and the size of the packets being transferred. It is usually best to install your own

trace points into the application for all communication external to the application; the extra overhead is

generally small compared to network (or any I/O) overhead and can usually be ignored. The application can

be deployed with these tracers in place but configured so as not to trace (until required).

However, the sockets are often used by third-party classes, and you cannot directly wrap the reads and

writes. You could use a packet sniffer plugged into the network, but this can prove troublesome when used

for application-specific purposes (and can be expensive). A more useful possibility I have employed is to
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wrap the socket I/O with my own classes. You can almost do this generically using the

SocketImplFactory, but if you install your own SocketImplFactory, there is no protocol to allow you to

access the default socket implementation, so another way must be used. (You could add a

SocketImplFactory class into java.net, which then gives you access to the default PlainSocketImpl

class, but this is no more generic than the previous possibility, as it too cannot normally be delivered with an

application.) My preferred solution, which is also not deliverable, is to wrap the sockets by replacing the

java.net.Socket class with my own implementation. This is simpler than the previous alternatives and

can be quite powerful. Only two methods from the core classes need changing, namely those that provide

access to the input stream and output stream. You need to create your own input stream and output stream

wrapper classes to provide logging. The two methods in Socket are getInputStream( ) and

getOutputStream( ), and the new versions of these look as follows:

public InputStream getInputStream(  ) throws IOException {
  return new tuning.socket.SockInStreamLogger(this, impl.getInputStream(  ));
}
public OutputStream getOutputStream(  ) throws IOException {
  return new tuning.socket.SockOutStreamLogger(this, impl.getOutputStream(  ));
}

The required stream classes are listed shortly. Rather than using generic classes, I tend to customize the

logging on a per-application basis. I even tend to vary the logging implementation for different tests, slowly

cutting out more superfluous communications data and headers so that I can focus on a small amount of

detail. Usually I focus on the number of transfers, the amount of data transferred, and the application-

specific type of data being transferred. For a distributed RMI type communication, I want to know the

method calls and argument types and occasionally some of the arguments: the data is serialized and so can

be accessed using the Serializable framework.

As with the customized Object class in Section 2.4, you need to ensure that your customized Socket class

comes first in your (boot) classpath, before the JDK Socket version. The RMI example from the previous

section results in the following trace when run with customized socket tracing. The trace is from the client

only. I have replaced lines of data with my own interpretation (in bold) of the data sent or read:

Message of size 7 written by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
client-registry handshake
Message of size 16 read by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
client-registry handshake
Message of size 15 written by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
client-registry handshake: client identification
Message of size 53 written by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
client-registry query: asking for the location of the Server Object
Message of size 210 read by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
client-registry query: reply giving details of the Server Object
Message of size 7 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server handshake
Message of size 16 read by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]

http://lib.ommolketab.ir
http://lib.ommolketab.ir


client-server handshake
Message of size 15 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server handshake: client identification
Message of size 342 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server handshake: security handshake
Message of size 283 read by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server handshake: security handshake
Message of size 1 written by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
Message of size 1 read by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
Message of size 15 written by Socket 
Socket[addr=jack/127.0.0.1,port=1099,localport=1092]
client-registry handoff
Message of size 1 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
Message of size 1 read by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
Message of size 42 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server rmi: set boolean request
Message of size 22 read by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server rmi: set boolean reply
Message of size 1 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
Message of size 1 read by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
Message of size 120 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server rmi: set Object request
Message of size 22 read by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server rmi: set Object reply
Message of size 45 written by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server rmi: set int request
Message of size 22 read by Socket 
Socket[addr=localhost/127.0.0.1,port=1087,localport=1093]
client-server rmi: set int reply

Here is one possible implementation for the stream classes required by the altered Socket class:

package tuning.socket;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.net.Socket;
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public class SockStreamLogger
{
  public static boolean LOG_SIZE = false;
  public static boolean LOG_MESSAGE = false;
  
  public static void read(Socket so, int sz, byte[  ] buf, int off) {
    log(false, so, sz, buf, off); }
  public static void written(Socket so, int sz, byte[  ] buf, int off) {
    log(true, so, sz, buf, off); }
  public static void log(boolean isWritten, Socket so, 
                         int sz, byte[  ] buf, int off)
  {
    if (LOG_SIZE)
    {
        System.err.print("Message of size ");
        System.err.print(sz);
        System.err.print(isWritten ? " written" : " read");
        System.err.print(" by Socket ");
        System.err.println(so);
    }
    if (LOG_MESSAGE)
      System.err.println(new String(buf, off, sz));
  }
}
  
public class SockInStreamLogger extends InputStream
{
  Socket s;
  InputStream in;
  byte[  ] one_byte = new byte[1];
  public SockInStreamLogger(Socket so, InputStream i){in = i; s = so;}
  public int available(  ) throws IOException {return in.available(  );}
  public void close(  ) throws IOException {in.close(  );}
  public void mark(int readlimit) {in.mark(readlimit);}
  public boolean markSupported(  ) {return in.markSupported(  );}
  public int read(  ) throws IOException {
    int ret = in.read(  );
    one_byte[0] = (byte) ret;
    //SockStreamLogger.read(s, 1, one_byte, 0);
    return ret;
  }
  public int read(byte b[  ]) throws IOException {
    int sz = in.read(b);
    SockStreamLogger.read(s, sz, b, 0);
    return sz;
  }
  public int read(byte b[  ], int off, int len) throws IOException {
    int sz = in.read(b, off, len);
    SockStreamLogger.read(s, sz, b, off);
    return sz;
  }
  public void reset(  ) throws IOException {in.reset(  );}
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  public long skip(long n) throws IOException {return in.skip(n);}
}
  
public class SockOutStreamLogger extends OutputStream
{
  Socket s;
  OutputStream out;
  byte[  ] one_byte = new byte[1];
  public SockOutStreamLogger(Socket so, OutputStream o){out = o; s = so;}
  public void write(int b) throws IOException {
    out.write(b);
    one_byte[0] = (byte) b;
    SockStreamLogger.written(s, 1, one_byte, 0);
  }
  public void write(byte b[  ]) throws IOException {
    out.write(b);
    SockStreamLogger.written(s, b.length, b, 0);
  }
  public void write(byte b[  ], int off, int len) throws IOException {
    out.write(b, off, len);
    SockStreamLogger.written(s, len, b, off);
  }
  public void flush(  ) throws IOException {out.flush(  );}
  public void close(  ) throws IOException {out.close(  );}
}
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2.7 Performance Checklist

Use system- and network-level monitoring utilities to assist when measuring performance.

Run tests on unloaded systems with the test running in the foreground.

Use System.currentTimeMillis( ) to get timestamps if you need to determine absolute

times. Never use the timings obtained from a profiler as absolute times.

Account for performance effects of any caches.

Get better profiling tools. The better your tools, the faster and more effective your tuning.

Pinpoint the bottlenecks in the application: with profilers, by instrumenting code (putting in

explicit timing statements), and by analyzing the code.

Target the top five to ten methods, and choose the quickest to fix.

Speed up the bottleneck methods that can be fixed the quickest.

Improve the method directly when the method takes a significant percentage of time and is not

called too often.

Reduce the number of times a method is called when the method takes a significant percentage

of time and is also called frequently.

Use an object-creation profiler together with garbage-collection statistics to determine which objects

are created in large numbers and which large objects are created.

See if the garbage collector executes more often than you expect.

Determine the percentage of time spent in garbage collection and reduce that if over 15%

(target 5% ideally).

Use the Runtime.totalMemory( ) and Runtime.freeMemory( ) methods to monitor gross

memory usage.

Check whether your communication layer has built-in tracing features.

Check whether your communication layer supports the addition of customized layers.

Identify the number of incoming and outgoing transfers and the amounts of data transferred in

distributed applications.
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Chapter 3. Underlying JDK Improvements

Throughout the progressive versions of Java, improvements have been made at all levels of the runtime

system: in the garbage collector, in the code, in the VM handling of objects and threads, and in compiler

optimizations. It is always worthwhile to check your own application benchmarks against each version (and

each vendor's version) of the Java system you try out. Any differences in performance need to be identified

and explained; if you can determine that a compiler from one version (or vendor) together with the runtime

from another version (or vendor) speeds up your application, you may have the option of choosing the best

of both worlds. Standard Java benchmarks tend to be of limited use in deciding which VMs provide the best

performance for your application. You are always better off creating your own application benchmark suite

for deciding which VM and compiler best suit your application.

The following sections identify some points to consider as you investigate different VMs, compilers, and JDK

classes. If you control the target Java runtime environment, i.e., with servlet and other server applications,

more options are available to you. We will look at these extra options too.
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3.1 Garbage Collection

The effects of the garbage collector can be difficult to determine accurately. It is worth including some tests

in your performance benchmark suite that are specifically arranged to identify these effects. You can do this

only in a general way, since the garbage collector is normally not under your control. (Sun does intend to

introduce an API that will allow a pluggable garbage collector to replace the one delivered with the VM, but

building your own garbage collector is not a realistic tuning option. Using a pluggable third-party garbage

collector doesn't give you control over the garbage collector either.) The basic way to see what the garbage

collector is up to is to run with the -verbosegc option. This prints out time and space values for objects

reclaimed and space recycled. The printout includes explicit synchronous calls to the garbage collector (using

System.gc( )) as well as asynchronous executions of the garbage collector, as occurs in normal operation

when free memory available to the VM gets low. You can try to force the VM to execute only synchronous

garbage collections by using the -noasyncgc option to the Java executable (no longer available from JDK

1.2). The -noasyncgc option does not actually stop the garbage-collector thread from executing; it still

executes if the VM runs out of free memory (as opposed to just getting low on memory). Output from the

garbage collector running with -verbosegc is detailed in Section 2.2.

The garbage collector usually works by freeing the memory that becomes available from objects that are no

longer referenced or, if this does not free sufficient space, expanding the available memory space by asking

the operating system for more memory (up to a maximum specified to the VM with the -Xmx/-mx option).

The garbage collector's space-reclamation algorithm tends to change with each version of the JDK.

Sophisticated generational garbage collectors, which smooth out the impact of garbage collection, are now

being used; HotSpot uses a state-of-the-art generational garbage collector. Analysis of object-oriented

programs has shown that most objects are short-lived, fewer have medium lifespans, and very few objects

are long-lived. Generational garbage collectors move objects through multiple spaces, each time copying live

objects from one space to the next and reclaiming the space used by objects that are no longer alive. By

concentrating on short-lived objects-the early spaces-and spending less time recycling space where older

objects live, the garbage collector frees the maximum amount of space for the lowest impact.[1]

[1] One book giving more details on garbage collection is Inside the Java 2 Virtual Machine by Bill
Venners (McGraw-Hill). The garbage collection chapter is also available online at
http://www.artima.com.

Because the garbage collector is different in different VM versions, the output from the -verbosegc option

is also likely to change across versions, making it difficult to compare the effects of the garbage collectors

across versions (not to mention between different vendors' VMs). But you should still attempt this

comparison, as the effect of the garbage collector can make a difference to the application. Looking at

garbage-collection output can tell you that parts of your application are causing significantly more work for

the garbage collector, suggesting that you may want to alter the flow of objects in those parts. Garbage

collection is also affected by the number of threads and whether objects are shared across threads. Expect

to see improvements in threaded garbage collection over different VM versions.

Garbage-collection times may be affected by the size of the VM memory. A larger memory implies there will

be more objects in the heap space before the garbage collector needs to kick in. This in turn means that the

process of sweeping dead objects takes longer, as does the process of running through a larger object table.

Different VMs have optimal performance at different sizes, and the optimal size for any particular

application-VM pairing must be determined by trial and error.
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3.2 Tuning the Heap

Heap size is important to Java application performance. Tuning the heap is a multistep process. First, we'll

look at the big picture, with gross tuning steps that optimize the size of the heap, followed by advice for fine-

tuning the heap. Next, we'll look at the impact of shared memory on tuning the heap.
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3.3 Gross Tuning

The VMs provided by most vendors include the two main heap tuning parameters: -mx/-Xmx and -ms/-Xms.

Respectively, these parameters set the maximum and starting sizes of the heap in bytes. They are typicallyRespectively, these parameters set the maximum and starting sizes of the heap in bytes. They are typically

available with every VM.

VMs vary as to whether they accept the -mx and -ms parameters or the -Xmx and -
Xms parameters, or both. They also vary about accepting a space between the

number following the parameter and accepting shorthand notations of K and M for

kilobytes and megabytes, e.g., -Xmx32M. Check the documentation or simply try the

various possibilities for your VM).

Tuning the heap with these two parameters requires trial and error, but is relatively simple. You don't need

to consider the exact garbage-collection algorithm or how different parameters might affect each other.

Instead, you can identify the cost of garbage collection to the application using the measurement techniques

covered in Chapter 2. You can then simply alter the two parameters and remeasure using the same

technique. Typically, you might want to use a range of values for the maximum heap size, keeping the

starting heap size either absolutely constant (e.g., 1 megabyte) or relatively constant (e.g., half the

maximum heap), and graph the result, looking for where garbage collection has the minimum cost.

Note that GC activity can take hours to settle into a regular pattern. If you are tuning

a long-lived application, bear this in mind when looking at the GC output.

Gross heap tuning is fairly stable, in that moving to a different VM or tweaking the application usually won't

invalidate the tuning parameters. They may no longer be the most optimal sizes after such changes, but

they should still be reasonable. The following sections describe some considerations for heap parameters.

3.3.1 Problems with a Larger Heap

The heap size should not become so large that physical memory is swamped and the system has to start

paging. So keep the maximum heap size below the size of the physical memory (RAM) on the machine. Also,

subtract from the RAM the amount of memory required for other processes that will be running at the same

time as the Java application, and keep the maximum heap size below that value.

A larger heap allows more objects to exist in memory before garbage collection is required to reclaim space

for new objects. However, a larger heap also makes the garbage collection last longer, as it needs to work

through more objects. In the absence of concurrent garbage collection (see the information about -Xconcgc

in Section 3.4), a larger heap causes longer individual perceptible pauses, which may be undesirable. You

need to balance the pause times against the overall garbage-collection cost. (Using -Xincgc is an

alternative that is also described in the section on fine tuning.)

3.3.2 Starting Versus Maximum Heap Size
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There are many different suggestions about what the starting heap should be compared to the maximum.

The most frequent suggestions include:

Set the starting heap size the same as the maximum heap size.

Set the starting heap size to the size needed by the maximum number of live objects (estimated or

measured in trials), and set the maximum heap size to about four times this amount.

Set the starting heap size to half the maximum heap size.

Set the starting heap size between 1/10 and 1/4 the maximum heap size.

Use the default initial heap size (1 megabyte).

Although there is no conclusive evidence that any of these suggestions represents the best approach in all

situations, each has been shown to be appropriate in different applications. Here are some rationales.

Assuming you've worked out what the maximum heap size should be, then growing the JVM memory can be

considered as pure overhead, requiring multiple system calls and resulting in segmented system memory

allocation. If you figure that you are going to get to the maximum heap anyway, then there is a good

argument for simply starting out at the maximum heap (the first suggestion), thus avoiding the growth

overhead as well as getting a heap that is less segmented. However, this can mean longer pauses when

garbage collection kicks in, so the system load might not be smoothed out as much as you'd want. But a

generational garbage collector will not necessarily suffer from this longer pause problem, as it specifically

smooths out the GC load.

An alternative view is that there is this lovely garbage-collection system in the JVM, which will grow the JVM

to be just as big as needed and no more, so why not let it do its job? This way, despite the overhead in

growing the JVM, you will end up using the minimum resources and the GC should be optimizing what it does

best, i.e., handling and maintaining memory. With this argument, you set the starting heap to 1MB (the last

suggestion) and the maximum as high as reasonable.

A combination of these two rationales might lead you to one of the intermediate recommendations. For

example, assuming that the maximum heap is an overestimate of the ultimate JVM size, then half the

maximum could be a good starting point to minimize memory allocation and memory segmentation

overhead while still giving the GC space to optimize memory usage.

3.3.3 Benchmarking Considerations

When running benchmarks, some engineers try to manipulate the benchmark and heap size so that no

garbage collection needs to occur during the run of the benchmark. This is an idealized situation, but it may

be appropriate if your application is expected to run for only a short period. In any case, be aware that this

may apply to benchmarks presented to you.

The -noclassgc/-Xnoclassgc options prevent classes from being garbage-collected. If you are loading

classes indirectly (e.g., through Class.forName( ) or by J2EE automatic classloading), then classes can be

repeatedly garbage-collected and reloaded. Reloaded classes are also reinitialized, so use the -
noclassgc/-Xnoclassgc parameter to prevent them from being garbage-collected.
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3.4 Fine-Tuning the Heap

In addition to the gross heap-tuning factors, a host of other parameters can be used for fine-tuning the VM

heap. These other factors are usually strongly dependent on the garbage-collection algorithm being used by

the VM, and the parameters vary for different VMs and different versions of VMs. In this section, I'll cover a

few examples to give you an idea of the possibilities. Note that every VM and every version of the VM is

different, and you need to retune the system with any change for this level of fine-tuning. Fine-tuning is

probably worth doing only where every last microsecond is needed or for a really stable deployed system,

i.e., one that needs no more development.

Note that the following sections refer to some of the internal heap areas used by the HotSpot generational

garbage collector. Generally, the total VM heap consists of permanent space (Perm), old space (Old), young

space (Young), and scratch or survivor space (Scratch). Parameters referring to "new" space (New), such as

-XX:NewSize, refer to the combination Young+Scratch. The -Xmx parameter sizes Old+New. The full heap

is Old+New+Perm.

3.4.1 Expanding the Heap

Most garbage-collection algorithms do not immediately expand the heap if they need space to create more

objects, even when the heap has not yet been expanded to the maximum allowable size. Instead, there is

usually a series of attempts to free up space by reclaiming objects, compacting objects, defragmenting the

heap, and so on. If all these attempts are exhausted, then the heap is expanded. Several GC algorithms try

to keep some free space available so that temporary objects can be created and reclaimed without

expanding the heap. For example, the Sun 1.3 VM allows the parameter -XX:MinFreeHeapRatio=num,

where num is 0 to 100, to specify that the heap should be expanded if less than num% of the heap is free.

Similarly, the -XXMaxHeapFreeRatio parameter specifies when the heap should be contracted. The IBM VM

uses -Xminf and -Xmaxf with decimal parameters between 0 and 1 (e.g., 20% is 20 for the Sun VM and 0.2

for the IBM VM). The Sun default is to try to keep the proportion of free space to living objects at each

garbage collection within the 40%-70% range. That is, if less than 40% of the heap is free after a garbage

collection (so more than 60% of the heap is full of objects), then the heap is expanded. Otherwise, the next

garbage collection will likely occur sooner than desired. (IBM defaults are 0.3 min and 0.6 max.)

Once an application reaches a steady state, it has a fairly constant churn of objects (created and released).

If the minimum free heap ratio is a small value (e.g., 10%), then there is not much space for objects to

churn in, and garbage collection occurs frequently. The heap does not expand, because after each garbage

collection the free heap ratio is achieved (e.g., 10% is filled, GC runs, and we have 10% available again so

no heap expansion occurs). On the other hand, if the minimum free heap ratio is a large value (e.g., 60%),

then GC runs much less frequently, but the pause when it runs is longer.

3.4.2 Minimizing Pauses

Garbage collection normally pauses the application. Pauses that last too long create bad user perceptions of

performance. The primary technique to eliminate pauses is to identify which objects are being churned,

causing the GC to activate, and try to minimize those objects. The secondary option is to reduce the heap

size so that garbage collection runs more often, but for shorter periods.
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3.4.2.1 Incremental or "train" GC

As an alternative, -Xincgc changes the garbage-collection algorithm to use an incremental or "train"

garbage-collection algorithm. The intention is to minimize individual pause time at the expense of overall GC

time. The train algorithm clusters objects that reference each other and collects these clusters individually.

The idea is to garbage-collect only a small fraction of the heap at a time, thus causing shorter pauses. But

the algorithm is more costly in CPU time and results in longer total GC time.

3.4.2.2 Concurrent GC

Another alternative is the concurrent garbage collector, -Xconcgc. The concurrent garbage collector tries to

avoid stopping the application threads by asynchronously executing as much of the garbage collection

algorithm as possible. Once again, this has a higher cost on the CPU, and total GC time is increased. The

concurrent garbage collector should be especially effective on multiprocessor machines. Note that the

garbage collector has always run in its own thread, but in order to access memory areas to run the garbage

collection, it pauses application threads. It is this pausing that the concurrent garbage collector aims to

minimize. Note that 1.4.1 provides parameters -XX:+UseParNewGC and -XX:+UseConcMarkSweepGC,

which enable concurrent GC separately in the young and old spaces, respectively.

3.4.2.3 Enlarge the "new" space

Finally, if you need a large heap and want to decrease pause times, you can try altering the size of the "new"

space with generational garbage collectors (all Java 2 VMs). The "new" space (also called "Eden" or "the

young generation") is the heap space where new objects are created. If the objects are short-lived, they are

also garbage-collected rapidly in the new space. The longer pauses are usually caused by the garbage

collections that run across the spaces outside the "new" space, i.e., garbage collection of the full heap, so

the more objects that are churned in the new space, the better. If you need a large heap, try increasing the

new space. For example, in 1.3 and 1.4 VMs, these parameters:

-Xms384m -Xmx384m -XX:NewSize=128m -XX:MaxNewSize=128m

set the full heap to 384 MB, of which one third is used for the new space, instead of SDK 1.3's default new

space of 32 MB on Solaris or 2.5 MB on Windows. SDK 1.4 uses a default dependent on the heap size.

Remember that new space is not one space, but internally consists of heap space plus scratch space

(working areas for the algorithm). The option XX:SurvivorRatio= sets the ratio of sizes between scratch

space and new space (Eden).

1.2 VMs use different parameters. For 1.2, the equivalent parameters would be:

-Xgenconfig:64m,64m,semispaces:256m,256m,markcompact -Xmx384m

which specify that the new space is a semispace collector of 64 MB, with 256 MB for the "old" space, using a

mark-compact GC algorithm. (As you can see, fine-tuning the heap is complex, and changes with every VM.)

Here's the complete list of 1.2 genconfig options:

 -Xgenconfig:<initial young size>,<max young size>,semispaces[,promoteall]:<initial 
old size>,<max old size> [,<collector>]

where collector can be incmarksweep (producing concurrent GC) or markcompact. The promoteall
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option forces the GC to move any object that survives a GC in young space to be immediately moved to old

space; otherwise, the GC may leave the object in young space for longer. Since young-space garbage

collection is faster, you might think that promoteall would decrease performance, but at least one in-depth

test found that using promoteall improved performance (see

http://wireless.java.sun.com/midp/articles/garbage/). In addition, an additional -bestFitFirst option

seems to improve concurrent GC. The "best fit" refers to an internal free-list allocation policy that helps to

reduce heap fragmentation (see http://dcb.sun.com/practices/devnotebook/gc_perspective.jsp).

3.4.3 Disabling System.gc( ) Calls

Prior to Java 2, explicit calls to System.gc( ) could assist an application. Garbage collection was pretty

much an all-or-nothing affair, and often you knew better than the garbage collector when it was a good time

to start garbage collecting. But with the introduction of generational garbage collection, explicit calls to

System.gc( ) become disruptive, possibly forcing a full mark-sweep of the heap when the generational

garbage collector was doing just fine. So Sun has added an option to disable the effect of calling

System.gc( ) explicitly: -XX:+DisableExplicitGC.

3.4.4 Tuning RMI Garbage Collection

The frequency of distributed garbage collections can be set with the properties

sun.rmi.dgc.client.gcInterval and sun.rmi.dgc.server.gcInterval. The default is one collection

per minute (property values of 6000).

3.4.5 Extreme Heap and Intimate Shared Memory

The option -XX:+AggressiveHeap sets the heap to 3850 MB or more, allocates 256K to each thread,

defers garbage collection as long as possible, and tries to run some GC activity in parallel (see the earlier

discussion of concurrent GC options). This may or may not be a good tuning option; it is intended for very

large servers. There is also an option to lock the heap in physical memory (see Section 14.3 and

http://java.sun.com/docs/hotspot/ism.html for further details).

3.4.6 Loading a Huge Number of Classes

HotSpot stores as Java objects some of its own internal data structures, things like the internal

representation of classes, methods, and fields. These are stored in a separate area called the Perm Space. If

you are loading a truly huge number of classes, you may need to enlarge this space by using the -
XX:MaxPermSize parameter.

3.4.7 Per-Thread Stack Size

Setting the JVM stack and native thread stack size (-oss <Java thread stack size>, -ss <native
thread stack size>, -XX:ThreadStackSize=<thread stack size>)  too large (e.g., greater than

2MB) can significantly degrade performance.

3.4.8 Eliminate Finalizers

http://wireless.java.sun.com/midp/articles/garbage/
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Finalizers force objects to be promoted to old space and degrade the performance of the garbage collector.

Finalizers postpone garbage collection until the finalizer is run, adding yet more overhead to the GC

algorithm. There is no way to avoid this overhead apart from minimizing the use of finalization methods in

the application.
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3.5 Sharing Memory

If you are running multiple VMs on the same machine, you have the option of sharing some of the memory

between them. There is a proposal for VMs to share system memory automatically, and this is likely to

happen in the future. But currently (as of the 1.4 release), if you want to share memory between VM

processes, you need to run multiple pseudoprocesses within one VM process. The necessary techniques are

actually quite complicated, as many subtle problems can arise when trying to run several applications in the

same VM while keeping them independent of each other.

Fortunately, there is a free open source library called Echidna (available from

http://www.javagroup.org/echidna/) that takes care of all the subtleties involved in running multiple

applications independently within the same VM system process. The library also provides several

management tools to help use Echidna effectively. If you want to know how Echidna works or need to use

parts of the library within your project, I have written an article that covers the technology in some detail.[2]

[2] "Catching OutOfMemoryErrors to Preserve Monitoring and Server Processes," OnJava magazine,
August 2001, http://www.onjava.com/pub/a/onjava/2001/08/22/optimization.html.

The shared-memory advantages from combining multiple applications into one VM are significant for

applications with small memory requirements where the VM memory overhead is significant by comparison.

But for applications that require large amounts of memory, there may be little benefit.

A shared-memory VM also provides a faster startup time, as the VM can already be running when the

application is started. For example, a VM using the Echidna library can be a running system process with no

Java application running (except for the Echidna library). The Echidna library can start any Java application

in exactly the same way the VM would have started it, but without all the VM startup overhead.
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3.6 Replacing JDK Classes

It is possible for you to replace JDK classes directly. Unfortunately, you can't distribute these altered classes

with any application or applet unless you have complete control of the target environment. Although you

often do have this control with in-house and enterprise-developed applications, most enterprises prefer not

to deploy alterations to externally built classes. The alterations would not be supported by the vendor (Sun

in this case) and may violate the license, so contact the vendor if you need to do this. In addition, altering

classes in this way can be a significant maintenance problem.[3]

[3] If your application has its classes localized in one place on one machine, for example with servlets,
you might consider deploying changes to the core classes.

The upshot is that you can easily alter JDK-supplied classes for development purposes, which can be useful

for various reasons including debugging and tuning. But if you need the functionality in your deployed

application, you need to provide classes that are used instead of the JDK classes by redirecting method calls

to your own classes.

Replacing JDK classes indirectly in this way is a valid tuning technique. Some JDK classes, such as

StreamTokenizer (see Section 5.4), are inefficient and can be replaced quite easily since you normally use

them in small, well-defined parts of a program. Other JDK classes, like Date , BigDecimal, and String, are

used all over the place, and it can take a large effort to replace references with your own versions of these

classes. The best way to replace these classes is to start from the design stage so that you can consistently

use your own versions throughout the application.

In SDK 1.3, many of the java.lang.Math methods were changed from native to

call the corresponding methods in java.lang.StrictMath. StrictMath provides

bitwise consistency across platforms; earlier versions of Math used platform-specific

native functions that were not identical across all platforms. Unfortunately,

StrictMath calculations are somewhat slower than the corresponding native

functions. My colleague Kirk Pepperdine, who first pointed out the performance

problem to me, puts it this way: "I've now got a bitwise-correct but excruciatingly

slow program." The potential workarounds to this performance issue are all ugly:

using an earlier JDK version, replacing the JDK class with an earlier version, or

writing your own class to manage faster alternative floating-point calculations.

For optimal performance, I recommend developing with your own versions of classes rather than the JDK

versions whenever possible. This gives maximum tuning flexibility. However, this recommendation is clearly

impractical in most cases. Given that, perhaps the single most significant class to replace with your own

version is the String class. Most other classes can be replaced inside identified bottlenecks when required

during tuning without affecting other parts of the application. But String is used so extensively that

replacing String references in one location tends to have widespread consequences, requiring extensive

rewriting in many parts of the application. In fact, this observation also applies to other data type classes

you use extensively (Integer, Date, etc.). But the String class tends to be used most often. See Chapter

5 for details on why the String class can be a performance problem and why you might need to replace it.

It is often impractical to replace the String classes where their internationalization capabilities are required.

Because of this, you should logically partition the application's use of Strings to identify those aspects that

require internationalization and those aspects that are really character processing, independent of language
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dependencies. The latter usage of Strings can be replaced more easily than the former.

Internationalization-dependent String manipulation is difficult to tune because you are dependent on

internationalization libraries that are difficult to replace.

Many JDK classes provide generic capabilities (as you would expect from library classes), so they are

frequently more generic than what is required for your particular application. These generic capabilities often

come at the expense of performance. For example, Vector is fine for generic Objects, but if you are using

a Vector for only one type of object, then a custom version with an array and accessors of that type is

faster, as you can avoid all the casts required to convert the generic Object back into your own type. Using

Vector for basic data types (e.g., longs) is even worse, requiring the data type to be wrapped by an object

to get it into the Vector. For example, building and using a LongVector class improves performance and

readability by avoiding casts, Long wrappers, unwrapping, etc.:

public class LongVector
{
  long[  ] internalArray;
  int arraySize
  ...
  public void addElement(long l) {
  ...
  public long elementAt(int i) {
  ...

Note that Generics are due to be introduced in Version 1.5. Generics allow instances

of generic classes like Vector to be specified as aggregate objects that hold only

specified types of objects. However, the implementation of Generics is to insert casts

at all the access points and to analyze the updates to ensure that the update type

matches the cast type. There is no specialized class generation, so there is no

performance benefit, and there may even be a slight performance degradation from

the additional casts.

If you are using your own classes, you can extend them with specific functionality you require, with direct

access to the internals of the class. Using Vector as an example, if you want to iterate over the collection

(e.g., to select a particular subset based on some criteria), you need to access the elements through the

get( ) method for each element, with the significant overhead that implies. If you are using your own

(possibly derived) class, you can implement the specific action you want in the class, allowing your loop to

access the internal array directly with the consequent speedup:

public class QueryVector extends MyVector
{
  public Object[  ] getTheBitsIWant{
    //Access the internal array directly rather than going through
    //the method accessors. This makes the search much faster
    Object[  ] results = new Object[10];
    for(int i = arraySize-1; i >= 0; i--)
      if (internalArray[i] ....

Finally, there are often many places where objects (especially collection objects) are used initially for

convenience (e.g., using a Vector because you did not know the size of the array you would need, etc.). In

a final version of the application, they can be replaced with presized arrays. A known-sized array (not a

collection object) is the fastest way in Java to store and access elements of a collection.
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3.7 Faster VMs

VM runtimes and Java compilers vary enormously over time and across vendors. More and more

optimizations are finding their way into both VMs and compilers. Many possible compiler optimizations are

considered in later sections of this chapter. In this section I focus on VM optimizations.

3.7.1 VM Speed Variations

Different VMs have different running characteristics. Some VMs are intended purely for development and are

highly suboptimal in terms of performance. These VMs may have huge inefficiencies, even in such basic

operations as casting between different numeric types, as was the case with one development VM I used. It

provided the foundation of an excellent development environment (actually my preferred environment) but

was all but useless for performance testing. Any data type manipulation other than with ints or booleans

produced highly varying and misleading times.

It is important to run any tests involving timing or profiling in the same VM that will run the application. You

should test your application in the current "standard" VMs if your target environment is not fully defined.

There is, of course, nothing much you can do about speeding up any one VM (apart from heap tuning or

upgrading the CPUs). But you should be aware of the different VMs available, whether or not you control the

deployment environment of your application. If you control the target environment, you can choose your VM

appropriately. If you do not control the environment on which your application runs, remember that

performance is partly user expectation. If you tell your user that VM "A" gives such and such a performance

for your application, but VM "B" gives much slower performance, then you at least inform your user

community of the implications of their choice of VM. This might also pressure vendors with slower VMs to

improve them.

3.7.2 VMs with JIT Compilers

The basic bytecode interpreter VM executes by decoding and executing bytecode. This is slow and is pure

overhead, adding nothing to the functionality of the application. A just-in-time (JIT) compiler in a virtual

machine eliminates much of this overhead by doing the bytecode fetch and decode just once. The first time

the method is loaded, the decoded instructions are converted into machine code native for the CPU the

system is running on. After that, future invocations of a particular method no longer incur the interpreter

overhead. However, a JIT must be fast at compiling to avoid slowing the runtime, so extensive optimizations

within the compile phase are unlikely. This means that the compiled code is often not as fast as it could be.

A JIT also imposes a significantly larger memory footprint to the process.

Without a JIT, you might have to optimize your bytecodes for a particular platform. Optimizing the bytecode

for one platform can conceivably make that code run slower on another platform (though a speedup is

usually reflected to some extent on all platforms). A JIT compiler can theoretically optimize the same code

differently for different underlying CPUs, thus getting the best of all worlds.

In his tests,[4] Mark Roulo found that a good JIT speeded up the overhead of method calls from a best of

280 CPU clock cycles in the fastest non-JIT VM to just 2 clock cycles in the JIT VM. In a direct comparison of

method call times for this JIT VM compared to a compiled C++ program, the Java method call time was
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found to be just one clock cycle slower than C++: fast enough for almost any application. However, object

creation is not speeded up by anywhere near this amount, which means that with a JIT VM, object creation is

relatively more expensive (and consequently more important when tuning) than with a non-JIT VM.

[4] "Accelerate Your Java Apps," JavaWorld, September 1998, http://www.javaworld.com/javaworld/jw-
09-1998/jw-09-speed.html.

3.7.3 VM Startup Time

The time your application takes to start depends on a number of factors. First, there is the time taken by the

operating system to start the executable process. This time is mostly independent of the VM, though the size

of the executable and the size and number of shared libraries needed to start the VM process have some

effect. But the main time cost is mapping the various elements into system memory. This time can be

shortened by having as much as possible already in system memory. The most obvious way to have the

shared libraries already in system memory is to have recently started a VM. If the VM was recently started,

even for a short time, the operating system is likely to have cached the shared libraries in system memory,

so the next startup is quicker. A better but more complicated way of having the executable elements in

memory is to have the relevant files mapped onto a memory-resident filesystem; see Section 14.1.3 for

more on how to manage this. Yet another option is to use a prestarted VM; see the earlier section Section

3.5. A prestarted VM also partially addresses the startup overhead discussed in the next paragraph.

The second component in the startup time of the VM is the time taken to manage the VM runtime

initializations. This is purely dependent on the VM system implementation. Interpreter VMs generally have

faster startup times than JIT VMs because the JIT VMs need to manage extra compilations during the startup

and initial classloading phases. Starting with SDK 1.3, Sun tried to improve VM startup time. VMs are now

already differentiated by their startup times; for example, the 1.3 VM has a deliberately shortened startup

time compared to 1.2. HotSpot has the more leisurely startup time acceptable for long-running server

processes. In the future you can expect to see VMs differentiated by their startup times even more.

Finally, the application architecture and class file configuration determine the last component of startup time.

The application may require many classes and extensive initializations before the application is started, or it

may be designed to start up as quickly as possible. It is useful to bear in mind the user perception of

application startup when designing the application. For example, if you can create the startup window as

quickly as possible and then run any initializations in the background without blocking windowing activity,

the user sees this as a faster startup than if you waited for initializations to finish before creating the initial

window. This design takes more work but improves startup time.

The number of classes that need to be loaded before the application starts are part of the application

initializations, and again the application design affects this time. In the later section Section 3.12, I discuss

the effects of class file configuration on startup time. Section 13.3 also includes an example of designing an

application to minimize startup time.

3.7.4 Other VM Optimizations

On the VM side, improvements are possible using JIT compilers to compile methods to machine code, using

algorithms for code caching, applying intelligent analyses of runtime code, etc. Some bytecodes allow the

system to bypass table lookups that would otherwise need to be executed. But these bytecodes take extra

effort to apply to the VM. Using these techniques, an intelligent VM could skip some runtime steps after parts

of the application have been resolved.
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Generally, a VM with a JIT compiler gives a huge boost to a Java application and is probably the quickest and

simplest way to improve performance. The most optimistic predictions say that using optimizing compilers to

generate bytecodes, together with VMs with intelligent JIT (re)compilers, puts Java performance on a par

with or even above that of an equivalent natively compiled C++ application. Theoretically, better

performance is possible. Having a runtime environment adapt to the running characteristics of a program

should, in theory at least, provide better performance than a statically compiled application. A similar

argument runs in CPU design circles where dynamic rescheduling of instructions to take pipelining into

account allows CPUs to process instructions out of order. But at the time of writing this book, we are not

particularly close to proving this theory for the average Java application. The time available for a VM to do

something other than the most basic execution and bytecode translation is limited. The following quote

about dynamic scheduling in CPUs also applies to adaptive VMs:

At runtime, the CPU knows almost everything, but it knows everything almost too late to do anything

about it. (Tom R. Halfhill quoting Gerrit A. Slavenburg, "Inside IA-64," Byte, June 1998)

As an example of an "intelligent" VM, Sun's HotSpot VM is targeted precisely to this area of adaptive

optimization. This VM includes some basic improvements (all of which are also present in VMs from other

vendors) such as using direct pointers instead of Java handles (which may be a security issue),[5] improved

thread synchronization, a generational garbage collector, speedups to object allocation, and an improved

startup time (by not JIT-compiling methods initially). In addition to these basic improvements, HotSpot

includes adaptive optimization, which works as follows: HotSpot runs the application initially in interpreted

mode (as if there is no JIT compiler present) while a profiler identifies the bottlenecks in the application.

Then, an optimizing JIT compiler compiles into native machine code only those hotspots in the application

that are causing the bottlenecks. Because only a small part of the application is targeted, the JIT compiler

(which might in this case be more realistically called an "after-a-while" compiler rather than a "just-in-time"

compiler) can spend extra time compiling those targeted parts of the application, thus allowing more than

the most basic compiler optimizations to be applied.

[5] A handle is a pointer to a pointer. Java uses handles to ensure security so that one object cannot
gain direct access to another object without the security capabilities of Java being able to intervene.

Consider the example where 20% of the code accounts for 80% of the running

application time. Here, a classic JIT compiler might improve the whole application by

30%: the application would now take 70% of the time it originally took.

The HotSpot compiler ignores the nonbottlenecked code, instead focusing on getting

the 20% of hotspot code to run twice as fast. The 80% of application time is halved

to just 40% of the original time. Adding in the remaining 20% means that the

application now runs in 60% of the original time. (These statistics are purely for

illustration purposes.)

Note, however, that HotSpot tries too hard sometimes. For example, HotSpot can speculatively optimize on

the basis of guessing the type of particular objects. If that guess turns out to be wrong, HotSpot has to

deoptimize the code, which results in some wildly variable timings.

So far, I have no evidence that optimizations I have applied in the past (and detailed in this book) have

caused any problems after upgrading compilers and VMs. However, it is important to note that the

performance characteristics of your application may change with different VMs and compilers, and not

necessarily always for the better. Be on the lookout for any problems a new compiler and VM may bring. The

technique of loading classes explicitly from a new thread after application startup can conflict with a

particular JIT VM's caching mechanism and actually slow down the startup sequence of your application. I
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have no evidence for this; I am just speculating on possible conflicts.
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3.8 Better Optimizing Compilers

Java code compilers that specifically target performance optimizations are increasingly available. (I maintain

a list at http://www.JavaPerformanceTuning.com/resources.shtml. A list is also included in Chapter 19.) Of

course, all compilers try to optimize code, but some are better than others. Some companies put a great

deal of effort into making their compiler produce the tightest, fastest code, while others tend to be distracted

by other aspects of the Java environment and put less effort into the compile phase.

There are also some experimental compilers around. For example, the JAVAR compiler

(http://www.extreme.indiana.edu/hpjava/) is a prototype compiler that automatically parallelizes parts of a

Java application to improve performance.

It is possible to write preprocessors to automatically achieve many of the optimizations you can get with

optimizing compilers; in fact, you can think of an optimizing compiler as a preprocessor together with a basic

compiler (though in many cases it is better described as a postprocessor and recompiler). However, writing

such a preprocessor is a significant task. Even if you ignore the Java code parsing or bytecode parsing

required,[6] any one preprocessor optimization can take months to create and verify. Getting close to the

full set of optimizations listed in the following sections could take years of development. Fortunately, it is not

necessary for you to make that effort because optimizing-compiler vendors are making the effort for you.

[6] Such parsing is a one-off task that can then be applied to any optimization. There are several free
packages available for parsing class files, including CFParse from the IBM alphaWorks site,
http://www.alphaworks.ibm.com/tech/cfparse.

3.8.1 What Optimizing Compilers Cannot Do

Optimizing compilers cannot change your code to use a better algorithm. If you are using an inefficient

search routine, there may be a vastly better search algorithm that would give an order-of-magnitude

speedup. But the optimizing compiler only tries to speed up the algorithm you are using (probably a small

incremental speedup). It is still important to profile applications to identify bottlenecks even if you intend to

use an optimizing compiler.

It is important to start using an optimizing compiler from the early stages of development in order to tailor

your code to its restrictions. Integrating an optimizing compiler at a late stage of development can mean

restructuring core routines and many disparate method calls, and may even require some redesign to work

around limitations imposed by being unable to correctly handle reflection and runtime class resolution.

Optimizing compilers have difficulty dealing with classes that cannot be identified at compile time (e.g.,

building a string at runtime and loading a class of that name). Basically, using Class.forName( ) is not

(and cannot be) handled in any complete way, though several compilers try to manage as best they can. In

short, managers with projects at a late stage of development are often reluctant to make extensive changes

to either the development environment or the code. While code tuning can be targeted at bottlenecks and so

normally affects only small sections of code, integrating an optimizing compiler can affect the entire project.

If there are too many problems in this integration, most project managers decide that the potential risks

outweigh the possible benefits and prefer to take the safe route of carrying on without the optimizing

compiler.

http://www.JavaPerformanceTuning.com/resources.shtml
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3.8.2 What Optimizing Compilers Can Do

Compilers can apply many "classic" optimizations and a host of newer optimizations that apply specifically to

object-oriented programs and languages with virtual machines. I list many optimizations in the following

sections.

You can apply most classic compiler-optimization techniques by hand directly to the source. But usually you

should not, as it makes the code more complicated to read and maintain. Individually, each of these

optimizations improves performance only by small amounts. Collectively (as applied by a compiler across all

the code), they can make a significant contribution to improving performance. This is important to

remember: as you look at each individual optimization, in many cases you may think, "Well, that isn't going

to make much difference." This is correct. The power of optimizing compilers comes in automatically

applying many small optimizations that would be annoying or confusing to apply by hand. The combination

of all those small optimizations can add up to a big speedup.

Optimizing-compiler vendors claim to see significant speedups: up to 50% for many applications. Most

applications in serious need of optimization are looking for speedups even greater than this, but don't ignore

the optimizing compiler for that reason: it may be doubling the speed of your application for a relatively

cheap investment. As long as you do not need to restructure much code to take advantage of them,

optimizing compilers can give you "the biggest bang for your buck" after JIT VMs in terms of performance

improvements.

The next sections list many of the well-known optimizations these compilers may apply. This list can help

you when selecting optimizing compilers or applying some of these optimizations by hand.

3.8.2.1 Remove unused methods and classes

When all application classes are known at compile time, an optimizing compiler can analyze the full runtime

code-path tree, identifying all classes that can be used and all methods that can be called. Most method calls

in Java necessarily invoke one of a limited set of methods, and by analyzing the runtime path, you can

eliminate all but one of the possibilities. The compiler can then remove unused methods and classes,

including removing superclass methods that have been overridden in a subclass and are never called in the

superclass. The optimization makes for smaller download requirements for programs sent across a network

and, more usefully, reduces the impact of method lookup at runtime by eliminating unused alternative

methods.

3.8.2.2 Increase statically bound calls

An optimizing compiler can determine at compile time whether particular method invocations are necessarily

polymorphic and so must have the actual method target determined at runtime, or whether the target for a

particular method call can be identified at compile time. Many method calls that apparently need to have the

target decided at runtime can, in fact, be uniquely identified (see the previous section). Once identified, the

method invocation can be compiled as a static invocation, which is faster than a dynamic lookup. Static

methods are statically bound in Java. The following example produces "in superclass" if method1( ) and

method2( ) are static, but "in subclass" if method1( ) and method2( ) are not static:

public class Superclass {
  public static void main(String[  ] args) {(new Subclass(  )).method1(  );}
  public static void method1(  ){method2(  );}
  public static void method2(  ){System.out.println("in superclass ");}
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}
class Subclass extends Superclass {
  public static void method2(  ){System.out.println("in subclass ");}
}

3.8.2.3 Cut dead code and unnecessary instructions, including checks for null

Section 14.9 of the Java specification requires compilers to carry out flow analysis on the code to determine

the reachability of any section of code. The only valid unreachable code is the consequence of an if

statement (see the later section Section 3.9.1.4). Invalid unreachable code must be flagged as a compile

error, but the valid code from an if statement is not a compile error and can be eliminated. The if
statement test can also be eliminated if the boolean result is conclusively identified at compile time. In fact,

this is a standard capability of almost all current compilers.

This flow analysis can be extended to determine if other sections and code branches that are syntactically

valid are actually semantically unreachable. A typical example is testing for null. Some null tests can be

eliminated by establishing that the variable has either definitely been assigned to or definitely never been

assigned to before the test is reached. Similarly, some bytecode instructions that can be generated may be

unnecessary after establishing the flow of control, and these can also be eliminated.

3.8.2.4 Use computationally cheaper alternatives (strength reduction)

An optimizing compiler should determine if there is a computationally cheaper alternative to a set of

instructions and replace those slower instructions with the faster alternative.

The classic version of this technique, termed "strength reduction," replaces an operation with an equivalent

but faster operation. Consider the following lines of code:

x = x + 5;
y = x/2;
z = x * 4;

These lines can be replaced by faster operations without altering the meaning of any statements:

x += 5;     //Assignment in place is faster
y = x >> 1; //each right shift by one place is equivalent to dividing by 2
z = x << 2; //each left shift by one place is equivalent to multiplying by 2

These examples are the most common cases of strength reduction. All the shorthand arithmetic operators

(++ , --, +=, -=, *=, /=, |= , &=) are computationally faster than the longer versions and should be used (by

the coder) or replaced (by the compiler) where appropriate.[7]

[7] One of the technical reviewers for this book, Ethan Henry, pointed out to me that there is no actual
guarantee that these strength reductions are more efficient in Java. This is true. However, they seem
to work for at least some VMs. In addition, compilers producing native code (including JIT compilers)
should produce faster code, as these techniques do work at the machine-code level.

3.8.2.5 Replace runtime computations with compiled results

An optimizing compiler can identify code that requires runtime execution if bytecodes are directly generated,

but can be replaced by computing the result of that code during the compilation phase. The result can then
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replace the code.

This technique is applied by most compilers for the simple case of literal folding (see the later sections

Section 3.9.1.1 and Section 3.9.1.2). And it can be extended to other structures by adding some semantic

input to the compiler. A simple example is:

String S_NINETY = "90";
int I_NINETY = Integer.parseInt(S_NINETY);

Although it is unlikely that anyone would do exactly this, similar kinds of initializations are used. An

optimizing compiler that understood what Integer.parseInt( ) did could calculate the resulting int

value and insert that result directly into the compiled file, thus avoiding the runtime calculation.

3.8.2.6 Remove unused fields

Analysis of the application can identify fields of objects that are never used, and these fields can then be

removed. This makes the runtime take less memory and improves the speeds of both the object creation

and the garbage collection of these objects. The type of analysis described in the earlier section Section

3.8.2.1 improves the identification of unused fields.

3.8.2.7 Remove unnecessary parts of compiled files

Removing some unnecessary parts of compiled files is standard with most optimizing compilers. This option

removes line number tables and local variable tables. The Java .class file structure allows extra information

to be inserted, and some optimizing compilers make an effort to remove everything that is not necessary for

runtime execution. This can be useful when it is important to minimize the size of the .class files. Frequently,

compilers with this capability can remove unnecessary parts of files that are already compiled, e.g., from

third-party .class files you do not have the source for.

3.8.2.8 Reduce necessary parts of compiled files

Some optimizing compilers can reduce the necessary parts of compiled files. For example, the .class file

includes a pool of constants, and an optimizing compiler can minimize the size of the constant pool by

combining and reducing entries.

3.8.2.9 Alter access control to speed up invocations

At least one optimizing compiler (the DashO optimizer by PreEmptive) provides the option to alter the access

control to methods. The rationale for this is that any non-public method has access control on that method

since it is access restricted (i.e., the runtime system must verify at some point that the caller to a method

has access to calling that method). However, public methods require no such runtime checks. The thinking

is that any non-public method must have some overhead compared to an identical method declared as

public.

The result is that the compiler supports normal compilation (so that any incorrect accesses are caught at the

compilation stage), and the subsequent compiled class can have all its methods changed to public. This is,

of course, a security risk.
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3.8.2.10 Inline calls

Every optimizing compiler supports inlining. However, the degree of inlining supported can vary enormously,

as different compilers are more or less aggressive about inlining (see the extended discussion in the later

section Section 3.9.2). Inlining is the technique in which a method call is directly replaced with the code for

that method; for example, the code as written may be:

private int method1(  ) { return method2(  ); }
private int method2(  ) { return 5; }

With inlining operating to optimize method1( ), this code is compiled into the equivalent of:

//the call to method2(  ) is replaced with the code in method2(  )
private int method1(  ) { return 5; }
private int method2(  ) { return 5; }

3.8.2.11 Remove dynamic type checks

Every compiler removes dynamic type checks when the compiler can establish they are unnecessary. The

JDK compiler removes casts that are obviously unnecessary. For example, consider the following two lines of

code:

Integer i = new Integer(3);
Integer j = (Integer) i;

The JDK compiler removes the obviously unnecessary cast here, and the code gets compiled as if the source

were:

Integer i = new Integer(3);
Integer j = i;

This is very basic. A more sophisticated optimizing compiler can analyze a program far more intensively and

eliminate further casting operations that the compiler can ascertain are always true. The instanceof
operation is similar to casting (the test applied by instanceof differs from a class cast test in that a cast on

null always succeeds, but null instanceof SomeClass always returns false), and an optimizing

compiler can also remove some tests involving instanceof.

3.8.2.12 Unroll loops

Loop unrolling makes the loop body larger by explicitly repeating the body statements while changing the

amount by which the loop variable increases or decreases. This reduces the number of tests and iterations

the loop requires to be completed. This is extensively covered in Chapter 7.

3.8.2.13 Code motion

Code motion moves calculations out of loops that need calculating only once. Consider the code example:

for (int i = 0; i < z.length; i++)
  z[i] = x * Maths.abs(y);
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The elements of an array are always being assigned the same value, but the assignment expression is still

calculating the value each time. Applying code motion, this code is automatically converted to:

int t1 = x * Maths.abs(y);
for (int i = 0; i < z.length; i++)
  z[i] = t1;

Code motion is also useful in eliminating or reducing redundant tests (though compilers are usually less

effective at this). Consider the following method:

public String aMethod(String first, String passed)
{
  StringBuffer copy = new StringBuffer(passed);
  if (first =  = null || first.length(  ) =  = 0)
   return passed;
  else
  {
    ...//some manipulation of the string buffer to do something
    return copy.toString(  );
  }
}

This method creates an unnecessary new object if the first string is null or zero length. This should be

recoded or bytecodes should be generated so that the new object creation is moved to the else clause:

public String aMethod(String first, String passed)
{
  if (first =  = null || first.length(  ) =  = 0)
   return passed;
  else
  {
    StringBuffer copy = new StringBuffer(passed);
    ...//some manipulation of the string buffer to do something
    return copy.toString(  );
  }
}

It would be nice, but difficult, for a compiler to apply this automatically, but this type of optimization

probably needs to be applied manually. For the compiler to apply this sort of optimization, it needs to know

that creating a new StringBuffer has no side effects so that the creation can reasonably be moved to a

different part of the code.

Both this technique and the next one are good coding practices.

3.8.2.14 Eliminate common subexpressions

Eliminating common subexpressions is similar to code motion. In this case, though, the compiler identifies

an expression that is common to more than one statement and does not need to be calculated more than

once. The following example uses the same calculation twice to map two pairs of variables:

z1 = x * Maths.abs(y) + x;
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z2 = x * Maths.abs(y) + y;

After a compiler has analyzed this code to eliminate the common subexpression, the code becomes:

int t1 = x * Maths.abs(y);
z1 = t1 + x;
z2 = t1 + y;

3.8.2.15 Eliminate unnecessary assignments

An optimizing compiler should eliminate any unnecessary assignments. The following example is very

simplistic:

int x = 1;
x = 2;

This should obviously be converted into one statement:

int x = 2;

Although you won't often see this type of example, it is not unusual for chained constructors to repeatedly

assign to an instance variable in essentially the same way. An optimizing compiler should eliminate all extra

unnecessary assignments.

3.8.2.16 Rename classes, fields, and methods

Some compilers rename classes, fields, and methods for various reasons, such as to obfuscate the code

(making it difficult to understand if it were decompiled). Renaming (especially to one-character names[8])

can make everything compiled much smaller, significantly reducing classloading times and network download

times.

[8] For example, the DashO optimizer renames everything possible to one-character names.

3.8.2.17 Reorder or change bytecodes

An optimizing compiler can reorder or change bytecode instructions to make methods faster. Normally, this

reduces the number of instructions, but sometimes making an activity faster requires increasing the number

of instructions. An example is where a switch statement is used with a list of unordered, nearly consecutive

values for case statements. An optimizing compiler can reorder the case statements so that the values are

in order, insert extra cases to make the values fully consecutive, and then use a faster switch bytecode to

execute the switch statement. The optimization for switch statements is extensively covered in Chapter 7.

3.8.2.18 Generate information to help a VM

The Java bytecode specification provides support for optional extra information to be included with class

files. This information can be VM-specific: any VM that does not understand the codes must ignore them.

Consequently, it is possible that a particular compiler may be optimized (in the future) to generate extra

information that allows particular VMs to run code faster. For example, it would be possible for the compiler

to add extra information that tells the VM the optimal way in which a JIT should compile the code, thus
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removing some of the JIT workload (and overhead).

A more extreme example might be where a compiler generates optimized native code for several CPUs in

addition to the bytecode for methods in the class file. This would allow a VM to execute the native code

immediately if it were running on one of the supported CPUs. Unfortunately, this particular example would

cause a security loophole, as there would be no guarantee to the VM that the natively compiled method was

the equivalent of the bytecode-generated one.

3.8.3 Managing Compilers

All the optimizations previously listed are optimizations that compilers should automatically handle.

Unfortunately, you are not guaranteed that any particular compiler actually applies any single optimization.

The only way I have found to be certain about the optimizations a particular compiler can make is to compile

code with lines such as those shown previously, then decompile the bytecodes to see what comes out. There

are several decompilers available on the Net: a web search for "java+decompile" should fetch a few. My

personal favorite at the time of this writing is jad by Pavel Kouznetsov, which currently resides at

http://kpdus.tripod.com/jad.html.

Several Java compilers are targeted at optimizing bytecode, and several other compilers (including all

mainstream ones) have announced the intention to roll more optimizations into future versions. This

highlights another point: ensure that you use the compiler's latest version. It may be that, for robustness,

you do not want to go into production with the very latest compiler, as that will have been less tested than

an older version, and your own code will have been more thoroughly tested on the classes generated by the

older compiler. Nevertheless, you should at least test whether the latest compiler gives your application a

boost (using whatever standard benchmarks you choose to assess your application's performance).

Finally, the compiler you select to generate bytecode may not be the same compiler you use while

developing code. You may even have different compilers for different parts of development and even for

different optimizations (though this is unlikely). In any case, you need to be sure the deployed application is

using the bytecodes generated by the specific compilers you have chosen for the final version. At times in

large projects, I have seen some classes recompiled with the wrong compiler. This has occasionally resulted

in some of these classes finding their way to the deployed version of the application.

This alternate recompilation does not affect the correctness of the application because all compilers should

be generating correct bytecodes, which means that such a situation allows the application to pass all

regression test suites. But you can end up with the production application not running as fast as you expect

for reasons that are difficult to track down.
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3.9 Sun's Compiler and Runtime Optimizations

As you can see from the previous sections, knowing how the compiler alters your code as it generates

bytecodes is important for performance tuning. Some compiler optimizations can be canceled out if you write

your code so that the compiler cannot apply its optimizations. In this section, I cover what you need to know

to get the most out of the compilation stage if you are using the JDK compiler (javac).

3.9.1 Optimizations You Get for Free

Several optimizations occur at the compilation stage without your needing to specify any compilation

options. These optimizations are not necessarily required because of specifications laid down in Java.

Instead, they have become standard compiler optimizations. The JDK compiler always applies them, and

consequently almost every other compiler applies them as well. You should always determine exactly what

your specific compiler optimizes as standard, from the documentation provided or by decompiling example

code.

3.9.1.1 Literal constants are folded

This optimization is a concrete implementation of the ideas discussed in Section 3.8.2.5 earlier. In this

implementation, multiple literal constants[9] in an expression are "folded" by the compiler. For example, in

the following statement:

[9] Literals are data items that can be identified as numbers, double-quoted strings, and characters, for
example, 3, 44.5e-22F, 0xffee, "h", "hello", etc.

int foo = 9*10;

the 9*10 is evaluated to 90 before compilation is completed. The result is as if the line read:

int foo = 90;

This optimization allows you to make your code more readable without having to worry about avoiding

runtime overhead.

3.9.1.2 String concatenation is sometimes folded

With the Java 2 compiler, string concatenations to literal constants are folded. The line:

String foo = "hi Joe " + (9*10);

is compiled as if it read:

String foo = "hi Joe 90";

This optimization is not applied with JDK compilers prior to JDK 1.2. Some non-Sun compilers apply this
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optimization and some don't. The optimization applies where the statement can be resolved into literal

constants concatenated with a literal string using the + concatenation operator. This optimization also

applies to concatenation of two strings. In this last case, all compilers fold two (or more) strings since that

action is required by the Java specification.

3.9.1.3 Constant fields are inlined

Primitive constant fields (those primitive data type fields defined with the final modifier) are inlined within

a class and across classes, regardless of whether the classes are compiled in the same pass. For example, if

class A has a public static final field, and class B has a reference to this field, the value from class A is

inserted directly into class B, rather than a reference to the field in class A. Strictly speaking, this is not an

optimization, as the Java specification requires constant fields to be inlined. Nevertheless, you can take

advantage of it.

For instance, if class A is defined as:

public class A
{
  public static final int VALUE = 33;
}

and class B is defined as:

public class B
{
  static int VALUE2 = A.VALUE;
}

When class B is compiled, whether or not in a compilation pass of its own, it actually ends up as if it were

defined as:

public class B
{
  static int VALUE2 = 33;
}

with no reference left to class A.

3.9.1.4 Dead code branches are eliminated

Another type of optimization automatically applied at the compilation stage is to cut code that can never be

reached because of a test in an if statement that can be completely resolved at compile time. The

discussion in the earlier section Section 3.8.2.3 is relevant to this section.

As an example, suppose classes A and B are defined (in separate files) as:

public class A
{
  public static final boolean DEBUG = false;
}
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public class B
{
  static int foo(  )
  {
    if (A.DEBUG)
      System.out.println("In B.foo(  )");
    return 55;  
  }
}

Then when class B is compiled, whether or not on a compilation pass of its own, it actually ends up as if it

were defined as:

public class B
{
  static int foo(  )
  {
    return 55;  
  }
}

No reference is left to class A, and no if statement is left. The consequence of this feature is to allow

conditional compilation. Other classes can set a DEBUG constant in their own class the same way, or they can

use a shared constant value (as class B used A.DEBUG in the earlier definition).

A problem is frequently encountered with this kind of code. The constant value is set

when the class with the constant, say class A, is compiled. Any other class referring

to class A's constant takes the value that is currently set when that class is being

compiled, and does not reset the value if A is recompiled. So you can have the

situation where A is compiled with A.DEBUG set to false, then B is compiled and the

compiler inlines A.DEBUG as false, possibly cutting dead code branches. Then if A is

recompiled to set A.DEBUG to true, this does not affect class B; the compiled class B
still has the value false inlined, and any dead code branches stay eliminated until

class B is recompiled. You should be aware of this possible problem if you compile

your classes in more than one pass.

You should use this pattern for debug and trace statements and assertion preconditions, postconditions, and

invariants. There is more detail on this technique in Section 6.1.4 in Chapter 6.

3.9.2 Optimizations Performed When Using the -O Option

The only standard compile-time option that can improve performance with the JDK compiler is the -O option.

Note that -O (for Optimize) is a common option for compilers, and further optimizing options for other

compilers often take the form -O1, -O2, etc. Check your compiler's documentation to find out what other

options are available and what they do. Some compilers allow you to make the tradeoff between optimizing

the compiled code for speed or minimizing the size.

The standard -O option does not currently apply a variety of optimizations in the Sun JDK (up to JDK 1.4). In

future versions it may do more, though the trend has actually been for it to do less. Currently, the option

makes the compiler eliminate optional tables in the class files, such as line number and local variable tables.
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This gives only a small performance improvement by making class files smaller and therefore faster to load.

You should definitely use this option if your class files are sent across a network.

The main performance improvement of using the -O option used to come from the compiler inlining

methods. When using the -O option with javac prior to SDK 1.3, the compiler considered inlining methods

defined with any of the following modifiers: private, static, or final. Some methods, such as those

defined as synchronized, are never inlined. If a method can be inlined, the compiler decides whether or

not to inline it depending on its own unpublished considerations. These considerations seem mainly to be the

simplicity of the method: in JDK 1.2 the compiler inlined only fairly simple methods. For example, one-line

methods with no side effects, such as accessing or updating a variable, are invariably inlined. Methods that

return just a constant are also inlined. Multiline methods are inlined if the compiler determines they are

simple enough (e.g., a System.out.println("blah") followed by a return statement would get inlined).

From 1.3, the -O option does not even inline methods. Instead, inlining is left to the HotSpot compiler, which

can speculatively inline and is far more aggressive. The sidebar Why There Are Limits on Static Inlining

discusses one of the reasons why optimizations such as inlining have been pushed back to the HotSpot

compiler.

Why There Are Limits on Static Inlining

The compiler can inline only those methods that can be statically bound at compile time. To see

why, consider the following example of class A and its subclass B, with two methods defined,

foo1( ) and foo2( ). The foo2( ) method is overridden in the subclass:

class A {
  public int foo1(  ) {return foo2(  );}
  public int foo2(  ) {return 5;}
}
public class B extends A {
  public int foo2(  ) {return 10;}
}

If A.foo2( ) is inlined into A.foo1( ), (new B( )).foo1( ) incorrectly returns 5 instead of

10 because A is compiled incorrectly as if it read:

class A {
  public int foo1(  ) {return 5;}
  public int foo2(  ) {return 5;}
}

Any method that can be overridden at runtime cannot be validly inlined (it is a potential bug if it

is). The Java specification states that final methods can be non-final at runtime. That is, you

can compile a set of classes with one class having a final method, but later recompile that

class without the method as final (thus allowing subclasses to override it), and the other

classes must run correctly. For this reason, not all final methods can be identified as statically

bound at compile time, so not all final methods can be inlined. Some earlier compiler versions

incorrectly inlined some final methods, sometimes causing serious bugs.

Choosing simple methods to inline does have a rationale behind it. The larger the method being inlined, the

more the code gets bloated with copies of the same code inserted in many places. This has runtime costs in

extra code being loaded and extra space taken by the runtime system. A JIT VM would also have the extra

cost of compiling more code. At some point, there is a decrease in performance from inlining too much code.
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In addition, some methods have side effects that can make them quite difficult to inline correctly. All this

also applies to runtime JIT compilation.

The static compiler applies its methodology for selecting methods to inline, irrespective of whether the target

method is in a bottleneck: this is a machine-gun strategy of many little optimizations in the hope that some

inline calls may improve the bottlenecks. A performance tuner applying inlining works the other way around,

first finding the bottlenecks, then selectively inlining methods inside bottlenecks. This latter strategy can

result in good speedups, especially in loop bottlenecks. This is because a loop can be speeded up

significantly by removing the overhead of a repeated method call. If the method to be inlined is complex,

you can often factor out parts of the method so that those parts can be executed outside the loop, gaining

even more speedup. HotSpot applies the latter rationale to inlining code only in bottlenecks.

I have not found any public document that specifies the actual decision-making process that determines

whether or not a method is inlined, whether by static compilation or by the HotSpot compiler. The only

reference given is to Section 13.4.21 of the Java language specification that specifies only that binary

compatibility with preexisting binaries must be maintained. It does specify that the package must be

guaranteed to be kept together for the compiler to allow inlining across classes. The specification also states

that the final keyword does not imply that a method can be inlined since the runtime system may have a

differently implemented method. The HotSpot documentation does state that simple methods are inlined,

but again no real details are provided.

Prior to JDK 1.2, the -O option used with the Sun compiler did inline methods across classes, even if they

were not compiled in the same compilation pass. This behavior led to bugs.[10] From JDK 1.2, the -O option

no longer inlines methods across classes, even if they are compiled in the same compilation pass.

[10] Primarily methods that accessed private or protected variables were incorrectly inlined into other
classes, leading to runtime authorization exceptions.

Unfortunately, there is no way to specify directly which methods should be inlined rather than relying on

some compiler's internal workings. Possibly in the future, some compiler vendors will provide a mechanism

that supports specifying which methods to inline, along with other preprocessor options. In the meantime,

you can implement a preprocessor (or use an existing one) if you require tighter control. Opportunities for

inlining often occur inside bottlenecks (especially in loops), as discussed previously. Selective inlining by

hand can give an order-of-magnitude speedup for some bottlenecks, and no speedup at all in others. Relying

on HotSpot to detect these kinds of situations is an option.

The speedup obtained purely from inlining is usually only a small percentage: 5% is fairly common. Some

static optimizing compilers are very aggressive about inlining code. They apply techniques such as analyzing

the entire program to alter and eliminate method calls in order to identify methods that can be coerced into

being statically bound. Then these identified methods are inlined as much as possible according to the

compiler's analysis. This technique has been shown to give a 50% speedup to some applications.

3.9.3 Performance Effects From Runtime Options

Some runtime options can help your application to run faster. These include:

Options that allow the VM to have a bigger footprint (-Xmx/-mx is the main one, which allows a larger

heap space; but see the comments in the following paragraph).

-noverify, which eliminates the overhead of verifying classes at classload time (not available from

1.2).
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Some options are detrimental to the application performance. These include:

The -Xrunhprof option, which makes applications run 10% to 1000% slower (-prof in 1.1).

Removing the JIT compiler (done with -Djava.compiler=NONE in JDK 1.2 and beyond, and with the

-nojit option in 1.1).

-debug, which runs a slower VM with debugging enabled.

The various alternative garbage-collection strategies like -Xincgc and -Xconcgc are aimed at

minimizing some aspect (pause times for these two), but the consequence is that total GC is slower.

Some options can be both detrimental to performance and help make a faster application, depending on how

they are used. These include:

-Xcomp, which forces HotSpot to compile 100% of the code with maximum optimization. This makes

the first pass through the code very slow indeed, but subsequent passes should be faster.

-Xbatch, which forces HotSpot to compile methods in the foreground. Normally methods are compiled

in the foreground if they compile quickly. Compilation is moved to the background if it is taking too

long (the method carries on executing in interpreted mode until the compilation is finished). This

makes the first execution of methods slower, but subsequent executions can be faster if compilation

would not have otherwise finished.

Increasing the maximum heap size beyond the default usually improves performance for applications that

can use the extra space. However, there is a tradeoff in higher space-management costs to the VM (object

table access, garbage collections, etc.), and at some point there is no longer any benefit in increasing the

maximum heap size. Increasing the heap size actually causes garbage collection to take longer since it needs

to examine more objects and a larger space. Up to now, I have found no better method than trial and error

to determine optimal maximum heap sizes for any particular application. This is covered in more detail

earlier in this chapter.

Beware of accidentally using VM options detrimental to performance. I once had a customer who had a

sudden 40% decrease in performance during tests. Their performance harness had a configuration file that

set up how the VM could be run, and this was accidentally set to include the -prof option on the standard

tests as well as for the profiling tests. That was the cause of the sudden performance decrease, but it was

not discovered until time had been wasted checking software versions, system configurations, and other

things.
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3.10 Compile to Native Machine Code

If you know the target environments of your application, you have the option of taking your Java application

and compiling it to a machine-code executable. A variety of these compilers target various platforms, and

the list continues to grow. (Check the computer magazines or follow the compiler links on good Java web

sites. See also the compilers listed in Chapter 19 and at

http://www.JavaPerformanceTuning.com/resources.shtml.) These compilers often work directly from the

bytecode (i.e., the .class files) without the source code, so any third-party classes and beans you use can

normally be included.

If you use this option, a standard technique to remain multiplatform is to start the application from a batch

file that checks the platform and installs (or even starts) the application binary appropriate for that platform,

falling back to the standard Java runtime if no binary is available. Of course, the batch file also needs to be

multiplatform, but then you could build it in Java.

Prepare to be disappointed with the performance of a natively compiled executable compared to the latest

JIT-enabled runtime VMs. The compiled executable still needs to handle garbage collection, threads,

exceptions, etc., all within the confines of the executable. These runtime features of Java do not necessarily

compile efficiently into an executable. The performance of the executable may well depend on how much

effort the compiler vendor has made in making those Java features run efficiently in the context of a natively

compiled executable. The latest adaptive VMs have been shown to run some applications faster than the

equivalent natively compiled executable.

Advocates of the "compile to native executable" approach feel that the compiler optimizations will improve

with time so that this approach will ultimately deliver the fastest applications. Luckily, this is a win-win

situation for the performance of Java applications: try out both approaches if appropriate to you, and choose

the one that works best.

There are also several translators that convert Java programs into C . I only include a mention of these

translators for completeness, as I have not tried any of them. They presumably enable you to use a standard

C compiler to compile to a variety of target platforms. However, most source code-to-source code

translations between programming languages are suboptimal and do not usually generate fast code.
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3.11 Native Method Calls

For that extra zing in your application (but probably not applet), try out calls to native code. Wave goodbye

to 100% pure Java certification, and say hello to added complexity in your development environment and

deployment procedure. (If you are already in this situation for reasons other than performance tuning, there

is little overhead to taking this route in your project.)

I've seen native method calls used for performance reasons in earlier Java versions when doing intensive

number-crunching for a scientific application and parsing large amounts of data in a restricted time. In these

and other cases, the runtime application environment at the time could not get to the required speed using

Java. I should note that a parsing application would now be able to run fast enough in pure Java, but the

original application was built with quite an early version. In addition, some number crunchers find that the

latest Java runtimes and optimizing compilers give them sufficient performance in Java without resorting to

any native calls.[11]

[11] Serious number crunchers spend a large proportion of their time performance-tuning their code,
whatever language it is written in. To gain sufficient performance in Java, they of course need to tune
the application intensively. But this is also true if the application is written in C or Fortran. The amount
of tuning required is now, apparently, similar for these three languages. Further information can be
found at http://www.javagrande.org.

The JNI interface itself has its own overhead, which means that if a pure Java implementation comes close to

the native call performance, the JNI overhead probably cancels any performance advantages from the native

call. However, on occasion the underlying system can provide an optimized native call that is not available

from Java and cannot be implemented to work as fast in pure Java. In this kind of situation, JNI is useful for

tuning.

Another case in which JNI can be useful is reducing the number of objects created, though this should be

less common: you should normally be able to do this directly in Java. I once encountered a situation where

JNI was needed to avoid excessive objects. This was with an application that originally required the use of a

native DLL service. The vendor of that DLL ported the service to Java, which the application developers

would have preferred using, but unfortunately the vendor neglected to tune the ported code. This resulted in

a native call to a particular set of services producing just a couple dozen objects, but the Java-ported code

producing nearly 10,000 objects. Apart from this difference, the speeds of the two implementations were

similar.[12] However, the overhead in garbage collection caused a significant degradation in performance,

which meant that the native call to the DLL was the preferred option.

[12] This increase in object creation normally results in a much slower implementation. However, in this
particular case, the methods required synchronizing to a degree that gave a larger overhead than the
object creation. Nevertheless, the much larger number of objects created by the untuned Java
implementation needed reclaiming at some point, and this led to greater overhead in the garbage
collection.

If you are following the native function call route, there is little to say. You write your routines in C, plug

them into your application using the native keyword, profile the resultant application, and confirm that it

provides the required speedup. You can also use C (or C++ or whatever) profilers to profile the native code

calls if it is complicated.

Other than this, only a few recommendations apply:
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If you are calling the native routines from loops, you should move the loops down into the native

routines and pass the loop parameters to the routine as arguments. This usually produces faster

implementations.

In a similar but more generic vein, try to avoid crossing the JNI.

Avoid passing objects across JNI if possible. Where necessary, try to pass primitive types. If it is

necessary to pass objects such as arrays, try to do as much data movement as possible in one transfer

to minimize transfer overhead.

From 1.4, native ByteBuffer s (available with the java.nio packages) allow you to pass data to

native libraries without necessarily passing the data through the JNI, which can be a significant gain.

You can allocate a native ByteBuffer in the C code and pass the pointer through the JNI, avoiding the

JNI data transfer overhead. (At least one animation application has actually allocated memory on the

graphics card as a native ByteBuffer, and manipulated that ByteBuffer from the Java side.)

If you use JNI Get calls (e.g., GetStringCritical), you must always use the corresponding

Release call (e.g., ReleaseStringCritical) when you have finished with the data, even if the

isCopy parameter indicates that no copy was taken.

One other recommendation, which is not performance tuning-specific, is that it is usually good practice to

provide a fallback methodology for situations when the native code cannot be loaded. This requires extra

maintenance (two sets of code, extra fallback code) but is often worth the effort. You can manage the

fallback at the time when the DLL library is being loaded by catching the exception when the load fails and

providing an alternative path to the fallback code, either by setting boolean switches or by instantiating

objects of the appropriate fallback classes as required.
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3.12 Uncompressed ZIP/JAR Files

It is better to deliver your classes in a ZIP or JAR file than to deliver them one class at a time over the

network or load them individually from separate files in the filesystem. This packaged delivery provides some

of the benefits of clustering[13] (see Section 14.1.2). The benefits gained from packaging class files come

from reducing I/O overhead such as repeated file opening and closing, and possibly improving seek

times.[14] Within the ZIP or JAR file, the classes should not be compressed unless network download time is

a factor for the application. The best way to deliver local classes for performance reasons is in an

uncompressed ZIP or JAR file. Coincidentally, that's how they're delivered with the SDK.

[13] "Clustering" is an unfortunately overloaded word, and is often used to refer to closely linked groups
of server machines. In the context here, I use "clustering" to mean the close grouping of files.

[14] With operating system-monitoring tools, you can see the system temporarily stalling when the
operating system issues a disk-cache flush if lots of files are closed around the same time. If you use a
single packed file for all classes (and resources), you avoid this potential performance hit.

It is possible to further improve the classloading times by packing the classes into the ZIP/JAR file in the

order in which they are loaded by the application. You can determine the loading order by running the

application with the -verbose option, but note that this ordering is fragile: slight changes in the application

can easily alter the loading order of classes. A further extension to this idea is to include your own

classloader that opens the ZIP/JAR file itself and reads in all files sequentially, loading them into memory

immediately. Perhaps the final version of this performance-improvement route is to dispense with the

ZIP/JAR filesystem: it is quicker to load the files if they are concatenated together in one big file, with a

header at the start of the file giving the offsets and names of the contained files. This is similar to the ZIP

filesystem, but it is better if you read the header in one block, and read in and load the files directly rather

than going through the java.util.zip classes.

One further optimization to this classloading tactic is to start the classloader running in a separate (low-

priority) thread immediately after VM startup.
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3.13 Performance Checklist

Many of these suggestions apply only after a bottleneck has been identified:

Test your benchmarks on each version of Java available to you (classes, compiler, and VM) to identify

any performance improvements.

Test performance using the target VM or "best practice" VMs.

Avoid using VM options that are detrimental to performance.

Include some tests of the garbage collector appropriate to your application, so that you can identify

changes that minimize the cost of garbage collection in your application.

Run your application with both the -verbosegc option and with full application tracing turned on

to see when the garbage collector kicks in and what it is doing.

Vary the -Xmx/-Xms option values to determine the optimal memory sizes for your application.

Fine-tuning the heap is possible, but requires knowledge of the GC algorithm and the many

parameter options available.

Sharing memory between multiple VMs is easy with the Echidna library. This can also provide

prestarted VMs for faster startup.

Use -noclassgc/-Xnoclassgc to avoid having classes repeatedly reloaded.

Replace generic classes with more specific implementations dedicated to the data type being

manipulated, e.g., implement a LongVector to hold longs rather than using a Vector object with

Long wrappers.

Extend collection classes to access internal arrays for queries on the class.

Replace collection objects with arrays where the collection object is a bottleneck.

Try various compilers. Look for compilers targeted at optimizing performance: these provide the

cheapest significant speedup for all runtime environments.

Use the -O option (but always check that it does not produce slower code).

Identify the optimizations a compiler is capable of so that you do not negate the optimizations.

Use a decompiler to determine precisely the optimizations generated by a particular compiler.

Consider using a preprocessor to apply some standard compiler optimizations more precisely.
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Remember that an optimizing compiler can only optimize algorithms, not change them. A better

algorithm is usually faster than an optimized slow algorithm.

Include optimizing compilers from the early stages of development.

Make sure that the deployed classes have been compiled with the correct compilers.

Make sure that any loops using native method calls are converted so that the native call includes the

loop instead of running the loop in Java. Any loop iteration parameters should be passed to the native

call.

Minimize the number of data transfers through the JNI. Native ByteBuffers can help.

Deliver classes in uncompressed format in ZIP or JAR files (unless network download time is significant,

in which case files should be compressed).

Use a customized classloader running in a separate thread to load class files.
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Chapter 4. Object Creation

The biggest difference between time and space is that you can't reuse time.

-Merrick Furst

"I thought that I didn't need to worry about memory allocation. Java is supposed to handle all that for me."

This is a common perception, which is both true and false. Java handles low-level memory allocation and

deallocation and comes with a garbage collector. Further, it prevents access to these low-level memory-

handling routines, making the memory safe. So memory access should not cause corruption of data in other

objects or in the running application, which is potentially the most serious problem that can occur with

memory-access violations. In a C or C++ program, problems of illegal pointer manipulations can be a major

headache (e.g., deleting memory more than once, runaway pointers, bad casts). They are very difficult to

track down and are likely to occur when changes are made to existing code. Java deals with all these

possible problems and, at worst, will throw an exception immediately if memory is incorrectly accessed.

However, Java does not prevent you from using excessive amounts of memory nor from cycling through too

much memory (e.g., creating and dereferencing many objects). Contrary to popular opinion, you can get

memory leaks (or, more accurately, object retention) by holding onto objects without releasing references.

This stops the garbage collector from reclaiming those objects, resulting in increasing amounts of memory

being used.[1] In addition, Java does not provide for large numbers of objects to be created simultaneously

(as you could do in C by allocating a large buffer), which eliminates one powerful technique for optimizing

object creation.

[1] For more information, see Ethan Henry and Ed Lycklama's article "How Do You Plug Memory Leaks?
", Dr. Dobb's Journal, February 2000, http://www.ddj.com/documents/s=888/ddj0002l/0002l.htm.

Creating objects costs time and CPU effort for an application. Garbage collection and memory recycling cost

more time and CPU effort. The difference in object usage between two algorithms can make a huge

difference. In Chapter 5, I cover algorithms for appending basic data types to StringBuffer objects. These

can be an order of magnitude faster than some of the conversions supplied with Java. A significant portion of

the speedup is obtained by avoiding extra temporary objects used and discarded during the data

conversions.[2]

[2] Up to SDK 1.4, data-conversion and object-lifecycle performance has been targeted by Sun. In 1.4,
the core SDK int conversion is faster, but all other data type conversions are still significantly slower.

Here are a few general guidelines for using object memory efficiently:

Avoid creating objects in frequently used routines. Because these routines are called frequently, you

will likely be creating objects frequently, and consequently adding heavily to the overall burden of

object cycling. By rewriting such routines to avoid creating objects, possibly by passing in reusable

objects as parameters, you can decrease object cycling.

Try to presize any collection object to be as big as it will need to be. It is better for the object to be

slightly bigger than necessary than to be smaller than it needs to be. This recommendation really

applies to collections that implement size increases in such a way that objects are discarded. For

example, Vector grows by creating a new larger internal array object, copying all the elements from
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the old array, and discarding it. Most collection implementations have similar implementations for

growing the collection beyond its current capacity, so presizing a collection to its largest potential size

reduces the number of objects discarded.

When multiple instances of a class need access to a particular object in a variable local to those

instances, it is better to make that variable static rather than have each instance hold a separate

reference. This reduces the space taken by each object (one fewer instance variable) and can also

reduce the number of objects created if each instance creates a separate object to populate that

instance variable.

Reuse exception instances when you do not specifically require a stack trace (see Section 6.1).

This chapter presents many other standard techniques to avoid using too many objects and identifies some

known inefficiencies when using some types of objects.

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

4.1 Object-Creation Statistics

Objects need to be created before they can be used, and garbage-collected when they are finished with. The

more objects you use, the heavier this garbage-cycling impact becomes. General object-creation statistics

are actually quite difficult to measure decisively, since you must decide exactly what to measure, what size

to pregrow the heap space to, how much garbage collection impacts the creation process if you let it kick in,

etc.

For example, on a medium Pentium II, with heap space pregrown so that garbage collection does not have

to kick in, you can get around half a million to a million simple objects created per second. If the objects are

very simple, even more can be garbage-collected in one second. On the other hand, if the objects are

complex, with references to other objects, and include arrays (like Vector and StringBuffer) and

nonminimal constructors, the statistics plummet to less than a quarter of a million created per second, and

garbage collection can drop way down to below 100,000 objects per second. Each object creation is roughly

as expensive as a malloc in C, or a new in C++, and there is no easy way of creating many objects together,

so you cannot take advantage of efficiencies you get using bulk allocation.

There are already runtime systems that use generational garbage collection, minimize object-creation

overhead, and optimize native-code compilation. By doing this they reach up to three million objects created

and collected per second (on a Pentium II), and it is likely that the average Java system should improve to

get closer to that kind of performance over time. But these figures are for basic tests, optimized to show the

maximum possible object-creation throughput. In a normal application with varying size objects and

constructor chains, these sorts of figures cannot be obtained or even approached. Also bear in mind that you

are doing nothing else in these tests apart from creating objects. In most applications, you are doing

something with all those objects, making everything much slower but significantly more useful. Avoidable

object creation is definitely a significant overhead for most applications, and you can easily run through

millions of temporary objects using inefficient algorithms that create too many objects. In Chapter 5, we

look at an example that uses the StreamTokenizer class. This class creates and dereferences a huge

number of objects while it parses a stream, and the effect is to slow down processing to a crawl. The

example in Chapter 5 presents a simple alternative to using a StreamTokenizer, which is 100 times faster:

a large percentage of the speedup is gained from avoiding cycling through objects.
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4.2 Object Reuse

As we saw in the last section, objects are expensive to create. Where it is reasonable to reuse the same

object, you should do so. You need to be aware of when not to call new. One fairly obvious situation is when

you have already used an object and can discard it before you are about to create another object of the

same class. You should look at the object and consider whether it is possible to reset the fields and then

reuse the object, rather than throw it away and create another. This can be particularly important for objects

that are constantly used and discarded: for example, in graphics processing, objects such as Rectangles,

Points, Colors, and Fonts are used and discarded all the time. Recycling these types of objects can

certainly improve performance.

Recycling can also apply to the internal elements of structures. For example, a linked list has nodes added to

it as it grows, and as it shrinks, the nodes are discarded. Holding onto the discarded nodes is an obvious way

to recycle these objects and reduce the cost of object creation.

4.2.1 Pool Management

Most container objects (e.g., Vectors, Hashtables) can be reused rather than created and thrown away.

Of course, while you are not using the retained objects, you are holding onto more memory than if you

simply discarded those objects, and this reduces the memory available to create other objects. You need to

balance the need to have some free memory available against the need to improve performance by reusing

objects. But generally, the space taken by retaining objects for later reuse is significant only for very large

collections, and you should certainly know which ones these are in your application.

Note that when recycling container objects, you need to dereference all the elements previously in the

container so that you don't prevent them from being garbage-collected. Because there is this extra overhead

in recycling, it may not always be worth recycling containers. As usual for tuning, this technique is best

applied to ameliorate an object-creation bottleneck that has already been identified.

Pooling objects has become slightly controversial recently. In their HotSpot FAQ, Sun engineering states that

pooling should definitely no longer be used because it actually gives worse performance with the latest

HotSpot engines. This is rather a sweeping statement. Object pools are still useful even with HotSpot, but

presumably not as often as before. Certainly for shared resources pooling will always be an option if the

overhead associated with creating a shareable resource is expensive. Various recent tests have shown that

the efficiency of pooling objects compared to creating and disposing of objects is highly dependent on the

size and complexity of the objects. And in some applications where deterministic behavior is important,

especially J2ME applications, it is worth noting that object pools have deterministic access and reclamation

costs for both CPU and memory, whereas object creation and garbage collection can be less deterministic.

A good strategy for reusing container objects is to use your own container classes, possibly wrapping other

containers. This gives you a high degree of control over each collection object, and you can design them

specifically for reuse. You can still use a pool manager to manage your requirements, even without reuse-

designed classes. Reusing classes requires extra work when you've finished with a collection object, but the

effort is worth it when reuse is possible. The code fragment here shows how you could use a vector pool

manager:

//An instance of the vector pool manager.
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public static VectorPoolManager vectorPoolManager =
    new VectorPoolManager(25);
  
...
  
public void someMethod(  )
{
  //Get a new Vector. We only use the vector to do some stuff
  //within this method, and then we dump the vector (i.e., it
  //is not returned or assigned to a state variable)
  //so this is a perfect candidate for reusing Vectors.
  //Use a factory method instead of 'new Vector(  )'
  Vector v = vectorPoolManager.getVector(  );
  
  ... //do vector manipulation stuff
  
  //and the extra work is that we have to explicitly tell the
  //pool manager that we have finished with the vector
  vectorPoolManager.returnVector(v);
}

Note that nothing stops the application from retaining a handle on a vector after it has been returned to the

pool, and obviously that could lead to a classic "inadvertent reuse of memory" bug . You need to ensure that

handles to vectors are not held anywhere: these Vectors should be used only internally within an

application, not externally in third-party classes where a handle may be retained. The following class

manages a pool of Vectors:

package tuning.reuse;
  
import java.util.Vector;
  
public class VectorPoolManager
{
  
  Vector[  ] pool;
  boolean[  ] inUse;
  public VectorPoolManager(int initialPoolSize)
  {
    pool = new Vector[initialPoolSize];
    inUse = new boolean[initialPoolSize];
    for (int i = pool.length-1; i>=0; i--)
    {
      pool[i] = new Vector(  );
      inUse[i] = false;
    }
  }
  
  public synchronized Vector getVector(  )
  {
    for (int i = inUse.length-1; i >= 0; i--)
      if (!inUse[i])
      {
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        inUse[i] = true;
        return pool[i];
      }
  
    //If we got here, then all the Vectors are in use. We will
    //increase the number in our pool by 10 (arbitrary value for
    //illustration purposes).
    boolean[  ] old_inUse = inUse;
    inUse = new boolean[old_inUse.length+10];
    System.arraycopy(old_inUse, 0, inUse, 0, old_inUse.length);
  
    Vector[  ] old_pool = pool;
    pool = new Vector[old_pool.length+10];
    System.arraycopy(old_pool, 0, pool, 0, old_pool.length);
  
    for (int i = old_pool.length; i < pool.length; i++)
    {
      pool[i] = new Vector(  );
      inUse[i] = false;
    }
  
    //and allocate the last Vector
    inUse[pool.length-1] = true;
    return pool[pool.length-1];
  }
  
  public synchronized void returnVector(Vector v)
  {
    for (int i = inUse.length-1; i >= 0; i--)
      if (pool[i] =  = v)
      {
        inUse[i] = false;
        //Can use clear(  ) for java.util.Collection objects
        //Note that setSize(  ) nulls out all elements
        v.setSize(0);
        return;
      }
    throw new RuntimeException("Vector was not obtained from the pool: " + v);
  }
}

Because you reset the Vector size to 0 when it is returned to the pool, all objects previously referenced

from the vector are no longer referenced (the Vector.setSize( ) method nulls out all internal index

entries beyond the new size to ensure no reference is retained). However, at the same time, you do not

return any memory allocated to the Vector itself, because the Vector's current capacity is retained. A lazily

initialized version of this class simply starts with zero items in the pool and sets the pool to grow by one or

more each time.

(Many JDK collection classes, including java.util.Vector, have both a size and a capacity. The capacity is

the number of elements the collection can hold before that collection needs to resize its internal memory to

be larger. The size is the number of externally accessible elements the collection is actually holding. The

capacity is always greater than or equal to the size. By holding spare capacity, elements can be added to
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collections without having to continually resize the underlying memory. This makes element addition faster

and more efficient.)

4.2.2 ThreadLocals

The previous example of a pool manager can be used by multiple threads in a multithreaded application,

although the getVector( ) and returnVector( ) methods first need to be defined as synchronized.

This may be all you need to ensure that you reuse a set of objects in a multithreaded application.

Sometimes, though, there are objects you need to use in a more complicated way. It may be that the

objects are used in such a way that you can guarantee you need only one object per thread, but any one

thread must consistently use the same object. Singletons (see Section 4.2.4) that maintain some state

information are a prime example of this sort of object.

In this case, you might want to use a ThreadLocal object. ThreadLocals have accessors that return an

object local to the current thread. ThreadLocal use is best illustrated using an example like this, which

produces:

[This is thread 0, This is thread 0, This is thread 0]
[This is thread 1, This is thread 1, This is thread 1]
[This is thread 2, This is thread 2, This is thread 2]
[This is thread 3, This is thread 3, This is thread 3]
[This is thread 4, This is thread 4, This is thread 4]

Each thread uses the same access method to obtain a vector to add some elements. The vector obtained by

each thread is always the same vector for that thread: the ThreadLocal object always returns the thread-

specific vector. As the following code shows, each vector has the same string added to it repeatedly, showing

that it is always obtaining the same thread-specific vector from the vector access method. (Note that

ThreadLocals are only available from Java 2, but it is easy to create the equivalent functionality using a

Hashtable: see the getVectorPriorToJDK12( ) method.)

package tuning.reuse;
  
import java.util.*;
  
public class ThreadedAccess
  implements Runnable
{
  static int ThreadCount = 0;
  
  public void run(  )
  {
    //simple test just accesses the thread local vector, adds the
    //thread specific string to it, and sleeps for two seconds before
    //again accessing the thread local and printing out the value.
    String s = "This is thread " + ThreadCount++;
    Vector v = getVector(  );
    v.addElement(s);
    v = getVector(  );
    v.addElement(s);
    try{Thread.sleep(2000);}catch(Exception e){  }
    v = getVector(  );
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    v.addElement(s);
    System.out.println(v);
  }
  
  public static void main(String[  ] args)
  {
    try
    {
      //Four threads to see the multithreaded nature at work
      for (int i = 0; i < 5; i++)
      {
        (new Thread(new ThreadedAccess(  ))).start(  );
        try{Thread.sleep(200);}catch(Exception e){  }
      }
    }
    catch(Exception e){e.printStackTrace(  );}
  }
  
  private static ThreadLocal vectors = new ThreadLocal(  );
  public static Vector getVector(  )
  {
     //Lazily initialized version. Get the thread local object
     Vector v = (Vector) vectors.get(  );
     if (v =  = null)
     {
       //First time. So create a vector and set the ThreadLocal
       v = new Vector(  );
       vectors.set(v);
     }
     return v;
  }
  
  private static Hashtable hvectors = new Hashtable(  );
  /* This method is equivalent to the getVector(  ) method, 
   * but works prior to JDK 1.2 (as well as after).
   */
  public static Vector getVectorPriorToJDK12(  )
  {
     //Lazily initialized version. Get the thread local object
     Vector v = (Vector) hvectors.get(Thread.currentThread(  ));
     if (v =  = null)
     {
       //First time. So create a vector and set the thread local
       v = new Vector(  );
       hvectors.put(Thread.currentThread(  ), v);
     }
     return v;
  }
}

4.2.3 Reusable Parameters
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Reuse also applies when a constant object is returned for information. For example, the preferredSize( )
of a customized widget returns a Dimension object that is normally one particular dimension. But to ensure

that the stored unchanging Dimension value does not get altered, you need to return a copy of the stored

Dimension. Otherwise, the calling method accesses the original Dimension object and can change the

Dimension values, thus affecting the original Dimension object itself.

Java provides a final modifier to fields that allows you to provide fixed values for the Dimension fields.

Unfortunately, you cannot redefine an already existing class, so Dimension cannot be redefined to have

final fields. The best solution in this case is that a separate class, FixedDimension, be defined with

final fields (this cannot be a subclass of Dimension, as the fields can't be redefined in the subclass). This

extra class allows methods to return the same FixedDimension object if applicable, or a new

FixedDimension is returned (as happens with Dimension) if the method requires different values to be

returned for different states. Of course, it is too late now for java.awt to be changed in this way, but the

principle remains.

Note that making a field final does not make an object unchangeable. It only disallows changes to the

field:

public class FixedDimension {
  final int height;
  final int width;
  ...
}
  
//Both the following fields are defined as final
public static final Dimension dim = new Dimension(3,4);
public static final FixedDimension fixedDim = new FixedDimension(3,4);
  
dim.width = 5;           //reassignment allowed
dim = new Dimension(3,5);//reassignment disallowed
fixedDim.width = 5;      //reassignment disallowed
fixedDim = new FixedDimension(3,5); //reassignment disallowed

An alternative to defining preferredSize( ) to return a fixed object is to provide a method that accepts

an object whose values will be set, e.g., preferredSize(Dimension). The caller can then pass in a

Dimension object, which would have its values filled in by the preferredSize(Dimension) method. The

calling method can then access the values in the Dimension object. This same Dimension object can be

reused for multiple components. This design pattern is beginning to be used extensively within the JDK.

Many methods developed with JDK 1.2 and onward accept a parameter that is filled in, rather than returning

a copy of the master value of some object. If necessary, backward compatibility can be retained by adding

this method as extra, rather than replacing an existing method:

public static final Dimension someSize = new Dimension(10,5);
//original definition returns a new Dimension.
public Dimension someSize(  ) {
  Dimension dim = new Dimension(0,0);
  someSize(dim);
  return dim;
}
//New method which fills in the Dimension details in a passed parameter.
public void someSize(Dimension dim) {
  dim.width = someSize.width;
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  dim.width = someSize.height;
}

4.2.4 Canonicalizing Objects

Wherever possible, you should replace multiple objects with a single object (or just a few). For example, if

you need only one VectorPoolManager object, it makes sense to provide a static variable somewhere that

holds this. You can even enforce this by making the constructor private and holding the singleton in the class

itself; e.g., change the definition of VectorPoolManager to:

public class VectorPoolManager
{
  public static final VectorPoolManager SINGLETON =
    new VectorPoolManager(10);
  Vector[  ] pool;
  boolean[  ] inUse;
  
  //Make the constructor private to enforce that
  //no other objects can be created.
  private VectorPoolManager(int initialPoolSize)
  {
  ...
}

An alternative implementation is to make everything static (all methods and both the instance variables in

the VectorPoolManager class). This also ensures that only one pool manager can be used. My preference

is to have a SINGLETON object for design reasons.[3]

[3] The VectorPoolManager is really an object with behavior and state. It is not just a related group

of functions (which is what class static methods are equivalent to). My colleague Kirk Pepperdine
insists that this choice is more than just a preference. He states that holding onto an object as opposed
to using statics provides more flexibility should you need to alter the use of the VectorPoolManager
or provide multiple pools. I agree.

This activity of replacing multiple copies of an object with just a few objects is often referred to as

canonicalizing objects. The Booleans provide an existing example of objects that should have been

canonicalized in the JDK. They were not, and no longer can be without breaking backward compatibility. For

Booleans, only two objects need to exist, but by allowing a new Boolean object to be created (by

providing public constructors), you lose canonicalization. The JDK should have enforced the existence of only

two objects by keeping the constructors private. Note that canonical objects have another advantage in

addition to reducing the number of objects created: they also allow comparison by identity. For example:

Boolean t1 = new Boolean(true);
System.out.println(t1=  =Boolean.TRUE);
System.out.println(t1.equals(Boolean.TRUE));

produces the output:

false
true

If Booleans had been canonicalized, all Boolean comparisons could be done by identity: comparison by

identity is always faster than comparison by equality, because identity comparisons are simply pointer
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comparisons.[4]

[4] Deserializing Booleans would have required special handling to return the canonical Boolean. All

canonicalized objects similarly require special handling to manage serialization. Java serialization
supports the ability, when deserializing, to return specific objects in place of the object that is normally
created by the default deserialization mechanism.

You are probably better off not canonicalizing all objects that could be canonicalized. For example, the

Integer class can (theoretically) have its instances canonicalized, but you need a map of some sort, and it

is more efficient to allow multiple instances, rather than to manage a potential pool of four billion objects.

However, the situation is different for particular applications. If you use just a few Integer objects in some

defined way, you may find you are repeatedly creating the Integer objects with values 1, 2, 3, etc., and

also have to access the integerValue( ) to compare them. In this case, you can canonicalize a few

integer objects, improving performance in several ways: eliminating the extra Integer creations and the

garbage collections of these objects when they are discarded, and allowing comparison by identity. For

example:

public class IntegerManager
{
  public static final Integer ZERO = new Integer(0);
  public static final Integer ONE = new Integer(1);
  public static final Integer TWO = new Integer(2);
  public static final Integer THREE = new Integer(3);
  public static final Integer FOUR = new Integer(4);
  public static final Integer FIVE = new Integer(5);
  public static final Integer SIX = new Integer(6);
  public static final Integer SEVEN = new Integer(7);
  public static final Integer EIGHT = new Integer(8);
  public static final Integer NINE = new Integer(9);
  public static final Integer TEN = new Integer(10);
}
  
public class SomeClass
{
  public void doSomething(Integer i)
  {
    //Assume that we are passed a canonicalized Integer
    if (i =  = IntegerManager.ONE)
     xxx(  );
   else if(i =  = IntegerManager.FIVE)
     yyy(  );
   else ...
  }
  ...
}

There are various other frequently used objects throughout an application that should be canonicalized. A

few that spring to mind are the empty string, empty arrays of various types, and some dates.

4.2.4.1 String canonicalization

There can be some confusion about whether Strings are already canonicalized. There is no guarantee that
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they are, although the compiler can canonicalize Strings that are equal and are compiled in the same pass.

The String.intern( ) method canonicalizes strings in an internal table. This is supposed to be, and

usually is, the same table used by strings canonicalized at compile time, but in some earlier JDK versions

(e.g., 1.0), it was not the same table. In any case, there is no particular reason to use the internal string

table to canonicalize your strings unless you want to compare Strings by identity (see Section 5.5). Using

your own table gives you more control and allows you to inspect the table when necessary. To see the

difference between identity and equality comparisons for Strings, including the difference that

String.intern( ) makes, you can run the following class:

public class Test
{
  public static void main(String[  ] args)
  {
    System.out.println(args[0]); //see that we have the empty string
  
    //should be true
    System.out.println(args[0].equals(""));
  
    //should be false since they are not identical objects
    System.out.println(args[0] =  = "");
  
    //should be true unless there are two internal string tables
    System.out.println(args[0].intern(  ) =  = ""); 
  }
}

This Test class, when run with the command line:

% java Test ""

gives the output:

true
false
true

4.2.4.2 Changeable objects

Canonicalizing objects is best for read-only objects and can be troublesome for objects that change. If you

canonicalize a changeable object and then change its state, then all objects that have a reference to the

canonicalized object are still pointing to that object, but with the object's new state. For example, suppose

you canonicalize a special Date value. If that object has its date value changed, all objects pointing to that

Date object now see a different date value. This result may be desired, but more often it is a bug.

If you want to canonicalize changeable objects, one technique to make it slightly safer is to wrap the object

with another one, or use your own (sub)class.[5] You then control all accesses and updates. If the object is

not supposed to be changed, you can throw an exception on any update method. Alternatively, if you want

some objects to be canonicalized but with copy-on-write behavior, you can allow the updater to return a

noncanonicalized copy of the canonical object.

[5] Beware that using a subclass may break the superclass semantics.

Note that it makes no sense to build a table of millions or even thousands of strings (or other objects) if the
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time taken to test for, access, and update objects in the table is longer than the time you are saving

canonicalizing them.

4.2.4.3 Weak references

One technique for maintaining collections of objects that can grow too large is the use of WeakReferences

(from the java.lang.ref package in Java 2). If you need to maintain one or more pools of objects with a

large number of objects being held, you may start coming up against memory limits of the VM. In this case,

you should consider using WeakReference objects to hold onto your pool elements. Objects referred to by

WeakReferences can be automatically garbage-collected if memory gets low enough (see Section 4.3 later

in this chapter).

Java 2 comes with a java.util.WeakHashMap class that implements a hash table with keys held by weak

references.

A WeakReference normally maintains references to elements in a table of canonicalized objects. If memory

gets low, any of the objects referred to by the table and not referred to anywhere else in the application

(except by other weak references) are garbage-collected . This does not affect the canonicalization because

only those objects not referenced anywhere else are removed. The canonical object can be re-created when

required, and this new instance is now the new canonical object: remember that no other references to the

object exist, or the original could not have been garbage-collected.

For example, a table of canonical Integer objects can be maintained using WeakReferences. This example

is not particularly useful: unlike the earlier example, in which Integer objects from 1 to 10 can be

referenced directly with no overhead, thus providing a definite speedup for tests, the next example has

overhead that probably overshadows any benefits of having canonical Integers. I present it only as a clear

and simple example to illustrate the use of WeakReferences.

The example has two iterations: one sets an array of canonical Integer objects up to a value set by the

command-line argument; a second loops through to access the first 10 canonical Integers. If the first loop

is large enough (or the VM memory is constrained low enough), the garbage collector kicks in and starts

reclaiming some of the Integer objects that are all being held by WeakReferences. The second loop then

reaccesses the first 10 Integer objects. Earlier, I explicitly held onto five of these Integer objects

(integers 3 to 7 inclusive) in variables so that they could not be garbage-collected and so that the second

loop would reset only the five reclaimed Integers. When running this test with the VM constrained to 4 MB:

% java -Xmx4M  tuning.reuse.Test 100000

you get the following output:

Resetting integer 0
Resetting integer 1
Resetting integer 2
Resetting integer 8
Resetting integer 9

The example is defined here. Note the overhead. Even if the reference has not been garbage-collected, you

have to access the underlying object and cast it to the desired type:

package tuning.reuse;
  
import java.util.*;
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import java.lang.ref.*;
  
public class Test
{
  public static void main(String[  ] args)
  {
    try
    {
      Integer ic = null;
      int REPEAT = args.length > 0 ? Integer.parseInt(args[0]) : 10000000;
  
      //Hang onto the Integer objects from 3 to 7
      //so that they cannot be garbage collected
      Integer i3 = getCanonicalInteger(3);
      Integer i4 = getCanonicalInteger(4);
      Integer i5 = getCanonicalInteger(5);
      Integer i6 = getCanonicalInteger(6);
      Integer i7 = getCanonicalInteger(7);
  
      //Loop through getting canonical integers until there is not
      //enough space, and the garbage collector reclaims some.
      for (int i = 0; i < REPEAT; i++)
        ic = getCanonicalInteger(i);
  
      //Now just re-access the first 10 integers (0 to 9) and
      //the 0, 1, 2, 8, and 9 integers will need to be reset in
      //the access method since they will have been reclaimed
      for (int i = 0; i < 10; i++)
        ic = getCanonicalInteger(i);
      System.out.println(ic);
    }
    catch(Exception e){e.printStackTrace(  );}
  }
  
  private static Vector canonicalIntegers = new Vector(  );
  public static Integer getCanonicalInteger(int i)
  {
    //First make sure our collection is big enough
    if (i >= canonicalIntegers.size(  ))
      canonicalIntegers.setSize(i+1);
  
    //Now access the canonical value.
    //This element contains null if the the value has never been set
    //or a weak reference that may have been garbage collected
    WeakReference ref = (WeakReference) canonicalIntegers.elementAt(i);
    Integer canonical_i;
  
    if (ref =  = null)
    {
      //never been set, so create and set it now
      canonical_i = new Integer(i);
      canonicalIntegers.setElementAt(new WeakReference(canonical_i), i);
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    }
    else if( (canonical_i = (Integer) ref.get(  )) =  = null)
    {
      //has been set, but was garbage collected, so recreate and set it now
      //Include a print to see that we are resetting the Integer
      System.out.println("Resetting integer " + i);
      canonical_i = new Integer(i);
      canonicalIntegers.setElementAt(new WeakReference(canonical_i), i);
    }
    //else clause not needed, since the alternative is that the weak ref was
    //present and not garbage collected, so we now have our canonical integer
    return canonical_i;
  }
  
}

4.2.4.4 Enumerating constants

Another canonicalization technique often used is replacing constant objects with integers. For example,

rather than use the strings "female" and "male", you should use a constant defined in an interface:

public interface GENDER
{
  public static final int FEMALE=1;
  public static final int MALE=2;
}

Used consistently, this enumeration can provide both speed and memory advantages. The enumeration

requires less memory than the equivalent strings and makes network transfers faster. Comparisons are

faster too, as the identity comparison can be used instead of the equality comparison. For example, you can

use:

this.gender =  = FEMALE;

instead of:

this.gender.equals("female");
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[ Team LiB ]  

4.3 Reference Objects

In many ways, you can think of Reference objects as normal objects that have a private Object instance

variable. You can access the private object (termed the referent) using the Reference.get( ) method.

However, Reference objects differ from normal objects in one hugely important way. The garbage collector

may be allowed to clear Reference objects when it decides space is low enough. Clearing the Reference
object sets the referent to null. For example, say you assign an object to a Reference. Later you test to

see if the referent is null. It could be null if, between the assignment and the test, the garbage collector

kicked in and decided to reclaim space:

Reference ref = new WeakReference(someObject);
//ref.get(  ) is someObject at the moment
//Now do something that creates lots of objects, making
//the garbage collector try to find more memory space
doSomething(  );
  
//now test if ref is null
if (ref.get(  ) =  = null)
  System.out.println("The garbage collector deleted my ref");
else
 System.out.println("ref object is still here");

Note that the referent can be garbage-collected at any time, as long as there are no other strong references

referring to it. (In the example, ref.get( ) can become null only if there are no other non-Reference
objects referring to someObject.)

The advantage of References is that you can use them to hang onto objects that you want to reuse but are

not needed immediately. If memory space gets too low, those objects not currently being used are

automatically reclaimed by the garbage collector. This means that you subsequently need to create objects

instead of reusing them, but that is preferable to having the program crash from lack of memory. (To delete

the reference object itself when the referent is nulled, you need to create the reference with a

ReferenceQueue instance. When the reference object is cleared, it is added to the ReferenceQueue

instance and can then be processed by the application, e.g., explicitly deleted from a hash table in which it

may be a key.)

4.3.1 Reference Types

There are three Reference types in Java 2. WeakReferences and SoftReferences differ essentially in the

order in which the garbage collector clears them. Simplistically, the garbage collector does not clear

SoftReference objects until all WeakReferences have been cleared. PhantomReferences (not addressed

here) are not cleared automatically by the garbage collector and are intended for use in a different way.

Sun's documentation suggests that WeakReferences could be used for canonical tables, whereas

SoftReferences would be more useful for caches. In the previous edition, I suggested the converse, giving

the rationale that caches take up more space and so should be the first to be reclaimed. But after a number

of discussions, I have come to realize that both suggestions are simply misleading. What we have are two

reference types, one of which is likely to be reclaimed before the other. So you should use both types of
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Reference objects in a priority system, using the SoftReference objects to hold higher-priority elements

so that they are cleared later than low-priority elements. For both caches and canonical tables, priority

would probably be best assigned according to how expensive it is to recreate the object. In fact, you can also

add PhantomReferences as a third, even higher-priority element. PhantomReferences would be cleared

last of all.

4.3.2 SoftReference Flushing

Prior to Version 1.3.1, SoftReferences and WeakReferences were treated fairly similarly by the VM,

simply being cleared whenever they were no longer strongly (and weakly) reachable, with only a slight

ordering difference. However, from 1.3.1 on, the Sun VM started treating SoftReferences differently. Now,

SoftReferences remain alive for some time after the last time they were referenced. The default length of

time value is one second of lifetime per free megabyte in the heap. This provides more of a differentiation

between SoftReference and WeakReference behavior.

The initial time-to-live values for SoftReferences can be altered using the -
XX:SoftRefLRUPolicyMSPerMB flag, which specifies the lifetime per free megabyte in the heap, in

milliseconds. For example, to change the value to 3 seconds per free heap megabyte, you would use:

% java -XX:SoftRefLRUPolicyMSPerMB=3000 ...

The server mode VM and client mode VM use slightly different methods to calculate the free megabytes in

the heap. The server mode VM assumes that the heap can expand to the -Xmx value and uses that as the

full heap size to calculate the available free space. The client mode VM simply uses the current heap size,

deriving the actual free space in the current heap. This means that the server VM has an increased likelihood

of actually growing the heap space rather than clearing SoftReferences, even where there are

SoftReferences that could otherwise be reclaimed. This behavior is not part of any specification, so it

could change in a future version. But it is likely that some difference in behavior between WeakReferences

and SoftReferences will remain, with SoftReferences being longer lived.

4.3.3 The WeakHashMap Class

To complete our picture on references and how they work, we'll look in detail at the implementation and

performance effects of the WeakHashMap class. WeakHashMap is a type of Map that differs from other Maps

in more than just having a different implementation. WeakHashMap uses weak references to hold its keys,

making it one of the few classes able to respond to the fluctuating memory requirements of the JVM. This

can make WeakHashMap unpredictable at times, unless you know exactly what you are doing with it.

4.3.3.1 How WeakHashMap works

The keys in a WeakHashMap are WeakReference objects. The object passed as the key to a WeakHashMap
is stored as the referent of the WeakReference object, and the value is the standard Map value. (The object

returned by calling Reference.get( ) is termed the referent of the Reference object.) A comparison with

HashMap can help:
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HashMap WeakHashMap

Map h = new HashMap(  );
  
Object key = new Object;
h.put(key, "xyz");
  
key = null;

Map h = new WeakHashMap(  );
  
Object key = new Object;
h.put(key, "xyz");
  
key = null;

The key is referenced directly by the

HashMap.

The key is not referenced directly by the WeakHashMap.

Instead, a WeakReference object is referenced directly by

the WeakHashMap, and the key is referenced weakly from the

WeakReference object.

Conceptually, this is similar to inserting a line before the put(
) call, like this:

key = new WeakReferenkey(key);

The value is referenced directly by the

HashMap.
The value is referenced directly by the HashMap.

The key is not garbage-collectable since the

map contains a strong reference to the key.

The key could be obtained by iterating over

the keys of the HashMap.

The key is garbage-collectable as nothing else in the

application refers to it, and the WeakReference only holds

the key weakly. Iterating over the keys of the WeakHashMap

might obtain the key, but might not if the key has been

garbage-collected.

The value is not garbage-collectable.

The value is not directly garbage-collectable. However, when

the key is collected by the garbage collector, the

WeakReference object is subsequently removed from the

WeakHashMap as a key, thus making the value garbage-

collectable too.

The 1.2 and 1.3 versions of the WeakHashMap implementation wrap a HashMap for its underlying Map
implementation and wrap keys with WeakReferences (actually a WeakReference subclass) before putting

the keys into the underlying HashMap. The 1.4 version implements a hash table directly in the class, for

improved performance. The WeakHashMap uses its own ReferenceQueue object so that it is notified of keys

that have been garbage-collected, thus allowing the timely removal of the WeakReference objects and the

corresponding values. The queue is checked whenever the Map is altered. In the 1.4 version, the queue is

also checked whenever any key is accessed from the WeakHashMap. If you have not worked with

Reference objects and ReferenceQueues before, this can be a little confusing, so I'll work through an

example. The following example adds a key-value pair to the WeakHashMap, assumes that the key is

garbage-collected, and records the subsequent procedure followed by the WeakHashMap:

A key-value pair is added to the Map:1.

aWeakHashMap.put(key, value);

This results in the addition of a WeakReference key added to the WeakHashMap, with the

original key held as the referent of the WeakReference object. You could do the equivalent using

a HashMap like this:

ReferenceQueue Queue = new ReferenceQueue(  );

MyWeakReference RefKey = new MyWeakReference(key, Queue);
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aHashMap.put(RefKey, value);

(For the equivalence code, I've used a subclass of WeakReference, as I'll need to override the

WeakReference.equals( ) for equal key access in the subsequent points to work correctly.)

Note that at this stage the referent of the WeakReference just created is the original key. That

is, the following statement would output true:

System.out.println(RefKey.get(  ) =  = key);

At this point, you could access the value from the WeakHashMap using the original key, or another key

that is equal to the original key. The following statements would now output true:

2.

System.out.println(aWeakHashMap.get(equalKey) =  = value);

System.out.println(aWeakHashMap.get(key) =  = value);

In our equivalent code using the HashMap, the following statements would now output true:

MyWeakReference RefKey2 = new MyWeakReference(equalKey, Queue);

System.out.println(aHashMap.get(RefKey2) =  = value);

System.out.println(aHashMap.get(RefKey) =  = value);

Note that in order to get this equivalence, we need to implement equals( ) and hashcode( )
in the MyWeakReference class so that equal referents make equal MyWeakReference objects.

This is necessary so that the MyWeakReference wrapped keys evaluate as equal keys in Maps.

The equals( ) method returns true if the MyWeakReference objects are identical or if their

referents are equal.

We now null out the reference to the original key:3.

key = null;

After some time, the garbage collector detects that the key is no longer referenced anywhere

else in the application and clears the WeakReference key. In the equivalent code using the

HashMap from this point on, the WeakReference we created has a null referent. The following

statement would now output true:

System.out.println(RefKey.get(  ) =  = null);

Maintaining a reference to the WeakReference object (in the RefKey variable) does not affect

clearing the referent. In the WeakHashMap, the WeakReference object key is also strongly

referenced from the map, but its referent, the original key, is cleared.

The garbage collector adds the WeakReference that it recently cleared into its ReferenceQueue: that

queue is the ReferenceQueue object that was passed in to the constructor of the WeakReference.

4.

Trying to retrieve the value using a key equal to the original key would now return null. (To try this, it

is necessary to use a key equal to the original key since we no longer have access to the original key;

otherwise, it could not have been garbage-collected.) The following statement would now output true:

5.

System.out.println(aWeakHashMap.get(equalKey) =  = null);
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In our equivalent code using the HashMap, the following statements would now output true:

MyWeakReference RefKey3 = new MyWeakReference(equalKey, Queue);

System.out.println(aHashMap.get(RefKey3) =  = null);

However, at the moment the WeakReference and the value objects are still strongly referenced by the

Map. That is where the ReferenceQueue comes in. Recall that when the garbage collector clears the

WeakReference, it adds the WeakReference into the ReferenceQueue. Now that it is in the

ReferenceQueue, we need to have it processed. In the case of the 1.2 and 1.3 versions of

WeakHashMap, the WeakReference stays in the ReferenceQueue until the WeakHashMap is altered

in some way (e.g., by calling put( ), remove( ), or clear( )). Once one of the mutator methods

has been called, the WeakHashMap runs through its ReferenceQueue, removing all WeakReference
objects from the queue and also removing each WeakReference object as a key in its internal map,

thus simultaneously dereferencing the value. From the 1.4 version, accessing any key also causes the

WeakHashMap to run through its ReferenceQueue. In the following example, I use a dummy object to

force queue processing without making any real changes to the WeakHashMap:

6.

aWeakHashMap.put(DUMMY_OBJ, DUMMY_OBJ);

The equivalent code using the HashMap does not need a dummy object, but we need to carry out

the equivalent queue processing:

MyWeakReference aRef;

while ((aRef = (MyWeakReference) Queue.poll(  )) != null)

{

  aHashMap.remove(aRef);

}

As you can see, we take each WeakReference out of the queue and remove it from the Map. This also

releases the corresponding value object, and both the WeakReference object and the value object can now

be garbage-collected if there are no other strong references to them.

Reference Objects with String Literal Referents

Note that if you use a string literal as a key to a WeakHashMap or the referent to a Reference

object, it will not necessarily be garbage-collected when the application no longer references it.

For example, consider the code:

String s = "hello ";
WeakHashMap h = new WeakHashMap(  );
h.put(s,"xyz");
s = null;

You might expect that the string "hello" can now be garbage-collected, since we have nulled the

reference to it. However, a string created as a literal is created at compile time and held in a

string pool in the class file. The JVM normally holds these strings internally in its own string pool

after the class has been loaded. Consequently, the JVM retains a strong reference to the String

object, and it will not be garbage-collected until the JVM releases it from the string pool: that

may be never, or when the class is garbage-collected, or some other time. If you want to use a

String object as a key to a WeakHashMap, ensure that it is created at runtime, e.g.:
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String s1 = new String("hello");
String s2 = (new StringBuffer(  )).append("hello").toString(  );

This is one of the few times when creating extra copies of an object is better for performance!

This string does not get put into the JVM string pool, and so can be garbage-collected when the

application no longer holds strong references to it.

Note that calling String.intern( ) on a string will also put it into the internal JVM string pool,

giving rise to the same issues as literal strings. Similarly, other objects that the JVM could retain

a strong reference to, such as Class objects, may also not be garbage-collected when there are

no longer any strong references to them from the application, and so also should not be used as

Reference object keys.

4.3.3.2 Some consequences of the WeakHashMap implementation

Reference clearing is atomic. Consequently, there is no need to worry about achieving some sort of

corrupt state if you try to access an object and the garbage collector is clearing keys at the same time.

You will either get the object or you won't.

1.

For 1.2 and 1.3, the values are not released until the WeakHashMap is altered. Specifically, one of the

mutator methods, put( ), remove( ), or clear( ), needs to be called directly or indirectly (e.g.,

from putAll( )) for the values to be released by the WeakHashMap. If you do not call any mutator

methods after populating the WeakHashMap, the values and WeakReference objects will never be

dereferenced. This does not apply to 1.4 or, presumably, to later versions. However, even with 1.4, the

WeakReference keys and values are not released in the background. With 1.4, the WeakReference
keys and values are only released when some WeakHashMap method is executed, giving the

WeakHashMap a chance to run through the reference queue.

2.

The 1.2 and 1.3 WeakHashMap implementation wraps an internal HashMap. This means that practically

every call to the WeakHashMap has one extra level of indirection it must go through (e.g.,

WeakHashMap.get( ) calls HashMap.get( )), which can be a significant performance overhead.

This is a specific choice of the implementation. The 1.4 implementation has no such problem.

3.

In the 1.2 and 1.3 implementations, every call to get( ) creates a new WeakReference object to

enable equality testing of keys in the internal HashMap. Although these are small, short-lived objects,

if get( ) is used intensively this could generate a heavy performance overhead. Once again, the 1.4

implementation has no such problem.

4.

Unlike many other collections, WeakHashMap cannot maintain a count of elements, as keys can be cleared at

any time by the garbage collector without immediately notifying the WeakHashMap. This means that

seemingly simple methods such as isEmpty( ) and size( ) have more complicated implementations than

for most collections. Specifically, size( ) in the 1.2 and 1.3 implementations actually iterates through the

keys, counting those that have not been cleared. Consequently, size( ) is an operation that takes time

proportional to the size of the WeakHashMap. In the 1.4 implementation, size( ) processes the reference

queue, then returns the current size. Similarly, in the 1.2 and 1.3 implementations, isEmpty( ) iterates

through the collection looking for a non-null key. This produces the perverse result that a WeakHashMap
that had all its keys cleared and is therefore empty requires more time for isEmpty( ) to return than a

similar WeakHashMap that is not empty. In the 1.4 implementation, isEmpty( ) processes the reference

queue and returns whether the current size is 0, thus providing a more consistent execution time, although

on average the earlier isEmpty( ) implementation would be quicker.
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4.4 Avoiding Garbage Collection

The canonicalization techniques I've discussed are one way to avoid garbage collection: fewer objects means

less to garbage-collect. Similarly, the pooling technique in that section also tends to reduce garbage-

collection requirements, partly because you are creating fewer objects by reusing them, and partly because

you deallocate memory less often by holding onto the objects you have allocated. Of course, this also means

that your memory requirements are higher, but you can't have it both ways.

Another technique for reducing garbage-collection impact is to avoid using objects where they are not

needed. For example, there is no need to create an extra unnecessary Integer to parse a String
containing an int value, as in:

String string = "55";
int theInt = new Integer(string).intValue(  )

Instead, there is a static method available for parsing:

int theInt = Integer.parseInt(string);

Unfortunately, some classes do not provide static methods that avoid the spurious intermediate creation of

objects. Until JDK 1.2, there were no static methods that allowed you to parse strings containing floating-

point numbers to get double s or floats. Instead, you needed to create an intermediate Double object

and extract the value. (Even after JDK 1.2, an intermediate FloatingDecimal is created, but this is

arguably due to good abstraction in the programming design.) When a class does not provide a static

method, you can sometimes use a dummy instance to execute instance methods repeatedly, thus avoiding

the need to create extra objects.

The primitive data types in Java use memory space that also needs reclaiming, but the overhead in

reclaiming data-type storage is smaller: it is reclaimed at the same time as its holding object and so has a

smaller impact. (Temporary primitive data types exist only on the stack and do not need to be garbage-

collected at all; see Section 6.4.) For example, an object with just one instance variable holding an int is

reclaimed in one object reclaim. If it holds an Integer object, the garbage collector needs to reclaim two

objects.

Reducing garbage collection by using primitive data types also applies when you can hold an object in a

primitive data-type format rather than another format. For example, if you have a large number of objects,

each with a String instance variable holding a number (e.g., "1492", "1997"), it is better to make that

instance variable an int data type and store the numbers as ints, provided that conversion overhead does

not swamp the benefits of holding the values in this alternative format.

Similarly, you can use an int (or long) to represent a Date object, providing appropriate calculations to

access and update the values, thus saving an object and the associated garbage overhead. Of course, you

have a different runtime overhead instead, as those conversion calculations may take up more time.

A more extreme version of this technique is to use arrays to map objects: for example, see Section 11.10.

Toward the end of that example, one version of the class gets rid of node objects completely, using a large

array to map and maintain all instances and instance variables. This leads to a large improvement in

performance at all stages of the object life cycle. Of course, this technique is a specialized one that should

not be used generically throughout your application, or you will end up with unmaintainable code. It should
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be used only when called for (and when it can be completely encapsulated). A simple example is for the class

defined as:

class MyClass
{
  int x;
  boolean y;
}

This class has an associated collection class that seems to hold an array of MyClass objects, but actually

holds arrays of instance variables of the MyClass class:

class MyClassCollection
{
  int[  ] xs;
  boolean[  ] ys;
  public int getXForElement(int i) {return xs[i];}
  public boolean getYForElement(int i) {return ys[i];}
  //If possible avoid having to declare element access like the
  //following method:
  //public MyClass getElement(int i) {return new MyClass(xs[i], ys[i]);}
}

An extension of this technique flattens objects that have a one-to-one relationship. The classic example is a

Person object that holds a Name object, consisting of first name and last name (and a collection of middle

names), and an Address object, with street, number, etc. This can be collapsed down to just the Person
object, with all the fields moved up to the Person class. For example, the original definition consists of three

classes:

public class Person {
  private Name name;
  private Address address;
}
class Name {
  private String firstName;
  private String lastName;
  private String[  ] otherNames;
}
class Address {
  private int houseNumber;
  private String houseName;
  private String streetName;
  private String town;
  private String area;
  private String greaterArea;
  private String country;
  private String postCode;
}

These three classes collapse into one class:

public class Person {
  private String firstName;
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  private String lastName;
  private String[  ] otherNames;
  private int houseNumber;
  private String houseName;
  private String streetName;
  private String town;
  private String area;
  private String greaterArea;
  private String country;
  private String postCode;
}

This results in the same data and the same functionality (assuming that Addresses and Names are not

referenced by more than one Person). But now you have one object instead of three for each Person. Of

course, this violates the good design of an application and should be used only when absolutely necessary,

not as standard.

Finally, here are some general recommendations that help to reduce the number of unnecessary objects

being generated. These recommendations should be part of your standard coding practice, not just

performance-related:

Reduce the number of temporary objects being used, especially in loops. It is easy to use a method in

a loop that has side effects such as making copies, or an accessor that returns a copy of some object

you need only once.

Use StringBuffer in preference to the String concatenation operator (+). This is really a special

case of the previous point, but needs to be emphasized.

Be aware of which methods alter objects directly without making copies and which ones return a copy

of an object. For example, any String method that changes the string (such as String.trim( ))

returns a new String object, whereas a method like Vector.setSize( ) does not return a copy. If

you do not need a copy, use (or create) methods that do not return a copy of the object being

operated on.

Avoid using generic classes that handle Object types when you are dealing with basic data types. For

example, there is no need to use Vector to store ints by wrapping them in Integers. Instead,

implement an IntVector class that holds the ints directly.
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4.5 Initialization

All chained constructors are automatically called when creating an object with new. Chaining more

constructors for a particular object causes extra overhead at object creation, as does initializing instance

variables more than once. Be aware of the default values that Java initializes variables to:

null for objects

0 for integer types of all lengths (byte, char, short, int, long)

0.0 for float types (float and double)

false for booleans

There is no need to reinitialize these values in the constructor (although an optimizing compiler should be

able to eliminate the redundant statement). Generalizing this point: if you can identify that the creation of a

particular object is a bottleneck, either because it takes too long or because a great many of those objects

are being created, you should check the constructor hierarchy to eliminate any multiple initializations to

instance variables.

You can avoid constructors by unmarshalling objects from a serialized stream because deserialization does

not use constructors. However, serializing and deserializing objects is a CPU-intensive procedure and is

unlikely to speed up your application. There is another way to avoid constructors when creating objects,

namely by creating a clone( ) of an object. You can create new instances of classes that implement the

Cloneable interface using the clone( ) method. These new instances do not call any class constructor,

thus allowing you to avoid the constructor initializations. Cloning does not save a lot of time because the

main overhead in creating an object is in the creation, not the initialization. However, when there are

extensive initializations or many objects generated from a class with some significant initialization, this

technique can help.

If you have followed the factory design pattern,[6] it is relatively simple to reimplement the original factory

method to use a clone.

[6] The factory design pattern recommends that object creation be centralized in a particular factory
method. So instead of directly calling new Something( ) in the code to create an instance of the

Something class, you call a method such as SomethingFactory.getNewSomething( ), which

creates and returns a new instance of the Something class. This is actually detrimental for

performance, as there is the overhead of an extra method call for every object creation, but the
pattern does provide more flexibility when it comes to tuning. My inclination is to use the factory
pattern. If you identify a particular factory method as a bottleneck when performance tuning, you can
relatively easily inline that method using a preprocessor.

For example, the original factory method can be defined similar to:

public static Something getNewSomething(  )
{
  return new Something(  );
}
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The replaced implementation that uses cloning looks like:

private static Something MASTER_Something = new Something(  );
public static Something getNewSomething(  )
{
  return (Something) MASTER_Something.clone(  );
}

If you have not followed the factory design pattern, you may need to track down all calls that create a new

instance of the relevant class and replace those calls. Note that the cloned object is still initialized, but the

initialization is not the constructor initialization. Instead, the initialization consists of assigning exactly once

to each instance variable of the new (cloned) object, using the instance variables of the object being cloned.

Java arrays all support cloning. This allows you to manage a similar trick when it comes to initializing arrays.

But first let's see why you would want to clone an array for performance reasons.

When you create an array in code, using the curly braces to assign a newly created array to an array variable

like this:

int[  ] array1 = {1,2,3,4,5,6,7,8,9};

you might imagine that the compiler creates an array in the compiled file, leaving a nice structure to be

pulled into memory. In fact, this is not what happens. The array is still created at runtime, with all the

elements initialized then. Because of this, you should specify arrays just once, probably as a static, and

assign that array as required. In most cases this is enough, and there is nothing further to improve on

because the array is created just once. But sometimes you have a routine for which you want to create a

new array each time you execute it. In this case, the complexity of the array determines how efficient the

array creation is. If the array is quite complex, it is faster to hold a reference copy and clone that reference

than it is to create a new array. For instance, the array example shown previously as array1 is simple and

therefore faster to create, as shown in that example. But the following more complex array, array2, is

faster to create as a cloned array:

static int[  ] Ref_array1 = {1,2,3,4,5,6,7,8,9};
static int[  ][  ] Ref_array2 = {{1,2},{3,4},{5,6},{7,8}};
  
int[  ] array1 = {1,2,3,4,5,6,7,8,9};         //faster than cloning
int[  ] array1 = (int[  ]) Ref_array1.clone(  );  //slower than initializing
  
int[  ][  ] array2 = {{1,2},{3,4},{5,6},{7,8}}; //slower than cloning
int[  ][  ] array2 = (int[  ][  ]) Ref_array2.clone(  );//faster than initializing
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4.6 Early and Late Initialization

The final two sections of this chapter discuss two seemingly opposing tuning techniques. The first section,

Section 4.6.1, presents the technique of creating objects before they are needed. This technique is useful

when a large number of objects need to be created at a time when CPU power is needed for other routines

and where those objects could feasibly be created earlier, at a time when there is ample spare CPU power.

The second section, Section 4.6.2, presents the technique of delaying object creation until the last possible

moment. This technique is useful for avoiding unnecessary object creation when only a few objects are used

even though many possible objects can be created.

In fact, these techniques represent two sides of the same coin: moving object creation from one time to

another. Preallocating moves object creation to a time earlier than you would normally create those objects;

lazy initialization moves object creation to a later time (or never).

4.6.1 Preallocating Objects

There may be situations in which you cannot avoid creating particular objects in significant amounts:

perhaps they are necessary for the application and no reasonable amount of tuning has managed to reduce

the object-creation overhead for them. If the creation time has been identified as a bottleneck, it is possible

that you can still create the objects, but move the creation time to a part of the application when more spare

cycles are available or there is more flexibility in response times.

The idea here is to choose another time to create some or all of the objects (perhaps in a partially initialized

stage) and store those objects until they are needed. Again, if you have followed the factory design pattern,

it is relatively simple to replace the return new Something( ) statement with an access to the collection

of spare objects (presumably testing for a nonempty collection as well). If you have not followed the factory

design pattern, you may need to track down all calls that create a new instance of the relevant class and

replace them with a call to the factory method. For the real creation, you might want to spawn a background

(low-priority) thread to churn out objects and add them into the storage collection until you run out of time,

space, or necessity.

This is a variation of the "read-ahead" concept, and you can also apply this idea to:

Classloading (obviously not for classes needed as soon as the application starts up); see Section 3.12

in Chapter 3.

Distributed objects; see Chapter 12.

Reading external data files.

4.6.2 Lazy Initialization

Lazy initialization means that you do not initialize objects until the first time they are used. Typically, this

comes about when you are unsure of what initial value an instance variable might have but want to provide a
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default. Rather than initialize explicitly in the constructor (or class static initializer), it is left until access time

for the variable to be initialized, using a test for null to determine if it has been initialized. For example:

public getSomething(  )
{
  if (something =  = null)
    something = defaultSomething(  );
  return something;
}

I find this kind of construct quite often in code (too often, in my opinion). I can only rarely see a justifiable

reason for using lazy initialization. Not deciding where to initialize a variable correctly is more often a result

of lazy design or lazy coding. The result can be many tests for null executing when you access your

variables, and these null tests never go away: they are always performed, even after the variable has been

initialized. In the worst case, this can impact performance badly, although generally the overhead is small

and can be ignored. I always recommend avoiding the use of lazy initialization for general coding.

On the other hand, there are particular design situations in which it is appropriate to use lazy initialization. A

good example is classloading, where classes are loaded dynamically as required. This is a specific design

situation in which it is clear there will be a performance impact on running applications, but the design of the

Java runtime merited this for the features that it brought.

Lazy initialization can be a useful performance-tuning technique. As usual, you should be tuning after

functionality is present in your application, so I am not recommending using lazy initialization before the

tuning stage. But there are places where you can change objects to be lazily initialized and make a large

gain. Specifically, these are objects or variables of objects that may never be used. For example, if you need

to make available a large choice of objects, of which only a few will actually be used in the application (e.g.,

based on a user's choice), then you are better off not instantiating or initializing these objects until they are

actually used. An example is the char-to-byte encoding provided by the JDK. Only a few (usually one) of

these are used, so you do not need to provide every type of encoding, fully initialized, to the application.

Only the required encoding needs to be used.

When you have thousands of objects that need complex initializations but only a few will actually be used,

lazy initialization provides a significant speedup to an application by avoiding exercising code that may never

be run. A related situation in which lazy initialization can be used for performance tuning is when there are

many objects that need to be created and initialized, and most of these objects will be used, but not

immediately. In this case, it can be useful to spread out the load of object initialization so you don't get one

large hit on the application. It may be better to let a background thread initialize all the objects slowly or to

use lazy initialization to take many small or negligible hits, thus spreading the load over time. This is

essentially the same technique as for preallocation of objects (see the previous section).

It is true that many of these kinds of situations should be anticipated at the design stage, in which case you

could build lazy initialization into the application from the beginning. But this is quite an easy change to

make (usually affecting just the accessors of a few classes), and so there is usually little reason to over-

engineer the application prior to tuning.
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4.7 Performance Checklist

Most of these suggestions apply only after a bottleneck has been identified:

Establish whether you have a memory problem.

Reduce the number of temporary objects being used, especially in loops.

Avoid creating temporary objects within frequently called methods.

Presize collection objects.

Reuse objects where possible.

Empty collection objects before reusing them. (Do not shrink them unless they are very large.)

Use custom conversion methods for converting between data types (especially strings and

streams) to reduce the number of temporary objects.

Define methods that accept reusable objects to be filled in with data, rather than methods that

return objects holding that data. (Or you can return immutable objects.)

Canonicalize objects wherever possible. Compare canonicalized objects by identity.

Create only the number of objects a class logically needs (if that is a small number of objects).

Replace strings and other objects with integer constants. Compare these integers by identity.

Use primitive data types instead of objects as instance variables.

Avoid creating an object that is only for accessing a method.

Flatten objects to reduce the number of nested objects.

Preallocate storage for large collections of objects by mapping the instance variables into multiple

arrays.

Use StringBuffer rather than the string concatenation operator (+).

Use methods that alter objects directly without making copies.

Create or use specific classes that handle primitive data types rather than wrapping the primitive

data types.

Consider using a ThreadLocal to provide threaded access to singletons with state.

Use the final modifier on instance-variable definitions to create immutable internally accessible

objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Use WeakReferences to hold elements in large canonical lookup tables. (Use SoftReferences for

cache elements.)

Reduce object-creation bottlenecks by targeting the object-creation process.

Keep constructors simple and inheritance hierarchies shallow.

Avoid initializing instance variables more than once.

Use the clone( ) method to avoid calling any constructors.

Clone arrays if that makes their creation faster.

Create copies of simple arrays faster by initializing them; create copies of complex arrays faster

by cloning them.

Eliminate object-creation bottlenecks by moving object creation to an alternative time.

Create objects early, when there is spare time in the application, and hold those objects until

required.

Use lazy initialization when there are objects or variables that may never be used, or when you

need to distribute the load of creating objects.

Use lazy initialization only when there is a defined merit in the design, or when identifying a

bottleneck that is alleviated using lazy initialization.
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Chapter 5. Strings

Everyone has a logger and most of them are string pigs.

-Kirk Pepperdine

Strings have a special status in Java. They are the only objects with:

Their own operators (+ and +=)

A literal form (characters surrounded by double quotes, e.g., "hello")

Their own externally accessible collection in the VM and class files (i.e., string pools, which provide

uniqueness of String objects if the string sequence can be determined at compile time)

Strings are immutable and have a special relationship with StringBuffer objects. A String cannot be

altered once created. Applying a method that looks like it changes the String (such as String.trim( ))

doesn't actually do so; instead, it returns an altered copy of the String. Strings are also final, and so

cannot be subclassed. These points have advantages and disadvantages so far as performance is concerned.

For fast string manipulation, the inability to subclass String or access the internal char array can be a

serious problem.
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5.1 The Performance Effects of Strings

Let's first look at the advantages of the String implementation:

Compilation creates unique strings. At compile time, strings are resolved as far as possible. This

includes applying the concatenation operator and converting other literals to strings. So "hi7" and

("hi"+7) both get resolved at compile time to the same string, and are identical objects in the class

string pool (see Section 3.9.1.2). Compilers differ in their ability to achieve this resolution. You can

always check your compiler (e.g., by decompiling some statements involving concatenation) and

change it if needed.

Because String objects are immutable, a substring operation doesn't need to copy the entire

underlying sequence of characters. Instead, a substring can use the same char array as the original

string and simply refer to a different start point and endpoint in the char array. This means that

substring operations are efficient, being both fast and conserving of memory; the extra object is just a

wrapper on the same underlying char array with different pointers into that array.[1]

[1] Strings are implemented in the JDK as an internal char array with index offsets (actually a

start offset and a character count). This basic structure is extremely unlikely to be changed in
any version of Java.

Strings have strong support for internationalization. It would take a large effort to reproduce the

internationalization support for an alternative class.

The close relationship with StringBuffers allows Strings to reference the same char array used by

the StringBuffer. This is a double-edged sword. For typical practice, when you use a StringBuffer
to manipulate and append characters and data types, and then convert the final result to a String,

this works just fine. The StringBuffer provides efficient mechanisms for growing, inserting,

appending, altering, and other types of String manipulation. The resulting String then efficiently

references the same char array with no extra character copying. This is very fast and reduces the

number of objects being used to a minimum by avoiding intermediate objects. However, if the

StringBuffer object is subsequently altered, the char array in that StringBuffer is copied into a

new char array that is now referenced by the StringBuffer. The String object retains the

reference to the previously shared char array. This means that copying overhead can occur at

unexpected points in the application. Instead of the copying occurring at the toString( ) method

call, as might be expected, any subsequent alteration of the StringBuffer causes a new char array

to be created and an array copy to be performed. To make the copying overhead occur at predictable

times, you could explicitly execute some method that makes the copying occur, such as

StringBuffer.setLength( ). This allows StringBuffers to be reused with more predictable

performance.

The disadvantages of the String implementation are:

Not being able to subclass String means that it is not possible to add behavior to String for your

own needs.

The previous point means that all access must be through the restricted set of currently available
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String methods, imposing extra overhead.

The only way to increase the number of methods allowing efficient manipulation of String characters

is to copy the characters into your own array and manipulate them directly, in which case String is

imposing an extra step and extra objects you may not need.

char arrays are faster to process directly.

The tight coupling with StringBuffer can lead to unexpectedly high memory usage. When

StringBuffer.toString( ) creates a String, the current underlying array holds the string,

regardless of the size of the array (i.e., the capacity of the StringBuffer). For example, a

StringBuffer with a capacity of 10,000 characters can build a string of 10 characters. However, that

10-character String continues to use a 10,000-char array to store the 10 characters. If the

StringBuffer is now reused to create another 10-character string, the StringBuffer first creates a

new internal 10,000-char array to build the string with; then the new String also uses that 10,000-

char array to store the 10 characters. Obviously, this process can continue indefinitely, using vast

amounts of memory where not expected.

The advantages of Strings can be summed up as ease of use, internationalization support, and

compatibility to existing interfaces. Most methods expect a String object rather than a char array, and

String objects are returned by many methods. The disadvantage of Strings boils down to inflexibility.

With extra work, most things you can do with String objects can be done faster and with less intermediate

object-creation overhead by using your own set of char array manipulation methods.

For most performance tuning, you pinpoint a bottleneck and make localized changes to objects and methods

that speed up that bottleneck. But String tuning often involves converting to char arrays, whereas you

rarely come across public methods or interfaces that deal in char arrays. This makes it difficult to switch

between Strings and char arrays in any localized way. The consequences are that you either have to

switch back and forth between Strings and char arrays, or you have to make extensive modifications that

can reach across many application boundaries. I have no easy solution for this problem. String tuning can

get messy. Sun recognizes that Strings are not the optimal solution in many cases and has added a

CharSequence interface in JDK 1.4 that String and other classes implement. New methods have been

added that operate on CharSequence objects rather than requiring Strings. For example, the regular

expression classes accept CharSequence objects. This doesn't necessarily help your particular bottleneck,

and CharSequences still access the char elements through a charAt( ) method, but it does at least

increase the options available for optimizing applications.

It is difficult to handle String internationalization capabilities using raw char arrays. But in many cases,

internationalized Strings form a specific subset of String usage in an application, mainly in the user

interface, and that subset of Strings rarely causes bottlenecks. You should differentiate between Strings

that need internationalization and those that are simply processing characters, independent of language.

These latter Strings can be replaced for tuning with char arrays.[2] Internationalization-dependent

Strings are more difficult to tune, and I provide some examples of tuning these later in the chapter. Note

also that internationalized Strings can be treated as char arrays for some types of processing without any

problems; see Section 5.4.2 later in this chapter.

[2] My editor Mike Loukides summarized this succinctly with the statement, "Avoid using String
objects if you don't intend to represent text."
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5.2 Compile-Time Versus Runtime Resolution of Strings

For optimized use of Strings, you should know the difference between compile-time resolution of Strings

and runtime creation. At compile time, Strings are resolved to eliminate the concatenation operator if

possible. For example, the line:

String s = "hi " + "Mr. " + " " + "Buddy";

is compiled as if it read:

String s = "hi Mr. Buddy";

However, suppose you defined the String using a StringBuffer:

String s = (new StringBuffer(  )).append("hi ").
          append("Mr. ").append(" ").append("Buddy").toString(  );

Then the compiler cannot resolve the String at compile time. The result is that the String is created at

runtime along with a temporary StringBuffer. The version that can be resolved at compile time is more

efficient. It avoids the overhead of creating a String and an extra temporary StringBuffer, as well as

avoiding the runtime cost of several method calls.

However, when an expression involving String concatenation cannot be resolved at compile time, the

concatenation must execute at runtime. This causes extra objects to be generated. For example, consider

the following method:

public String sayHi(String title, String name)
{
  return "hi " + title + " " + name;
}

The String generated by this method cannot be resolved at compile time because the variables can have

any value. The compiler is free to generate code to optimize the String creation, but it does not have to.

Consequently, the String-creation line could be compiled as:

return (new StringBuffer(  )).append("hi ").
  append(title).append(" ").append(name).toString(  );

This is optimal, creating only two objects. On the other hand, the compiler could also leave the line with the

default implementation of the concatenation operator, which is equivalent to:

return "hi ".concat(title).concat(" ").concat(name);

This last implementation creates two intermediate String objects that are then thrown away, and these are

generated every time the method is called.

So, when the String can be fully resolved at compile time, the concatenation operator is more efficient than

using a StringBuffer. But when the String cannot be resolved at compile time, the concatenation

operator is less efficient than using a StringBuffer.
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One further point is that using the String constructor in a String definition forces a runtime string

creation:

String s = new String("hi " + "Mr. " + " " + "Buddy");

This is compiled as:

String s = new String("hi Mr. Buddy");

This line uses the compile-time resolved string as a parameter for the String constructor to create a new

String object at runtime. The new String object is equal but not identical to the original string:

String s = new String("hi Mr. Buddy");
s =  = "hi Mr. Buddy";      //is false
s.equals("hi Mr. Buddy"); //is true
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5.3 Conversions to Strings

Generally, the JDK methods that convert objects and data types to strings are suboptimal, both in terms of

performance and the number of temporary objects used in the conversion procedure. In this section, we

consider how to optimize these conversions.

5.3.1 Converting longs to Strings

Let's start by looking at conversion of long values. In the JDK, this is achieved with the Long.toString( )
method. Bear in mind that you typically add a converted value to a StringBuffer (explicitly, or implicitly

with the + concatenation operator). So it would be nice to avoid the two intermediate temporary objects

created while converting the long, i.e., the one char array inside the conversion method, and the returned

String object that is used just to copy the chars into the StringBuffer.

Avoiding the temporary char array is difficult to do because most fast methods for converting numbers start

with the low digits in the number, and you cannot add to the StringBuffer from the low to the high digits

unless you want all your numbers coming out backwards.

However, with a little work, you can get to a method that is fast and obtains the digits in order. The

following code works by determining the magnitude of the number first, then successively stripping off the

highest digit, as shown.

//Up to radix 36
private static final char[  ] charForDigit = {
  '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f','g','h',
  'i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'
};
  
public static void append(StringBuffer s, long i)
{
  if (i < 0)
  {
    //convert negative to positive numbers for later algorithm
    if (i =  = Long.MIN_VALUE)
    {
      //cannot make this positive due to integer overflow,
      //so treat it specially
      s.append("-9223372036854775808");
      return;
    }
    //otherwise append the minus sign, and make the number positive
    s.append('-');
    i = -i;
  }
  //Get the magnitude of the int
  long mag = l_magnitude(i);
  long c;
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  while ( mag > 1 )
  {
    //The highest digit
    c = i/mag;
    s.append(charForDigit[(int) c]);
    //remove the highest digit
    c *= mag;
    if ( c <= i)
      i -= c;
    //and go down one magnitude
    mag /= 10;
  }
  //The remaining magnitude is one digit large
  s.append(charForDigit[(int) i]);
}
  
private static long l_magnitude(long i)
{
    if (i < 10L) return 1;
    else if (i < 100L) return 10L;
    else if (i < 1000L) return 100L;
    else if (i < 10000L) return 1000L;
    else if (i < 100000L) return 10000L;
    else if (i < 1000000L) return 100000L;
    else if (i < 10000000L) return 1000000L;
    else if (i < 100000000L) return 10000000L;
    else if (i < 1000000000L) return 100000000L;
    else if (i < 10000000000L) return 1000000000L;
    else if (i < 100000000000L) return 10000000000L;
    else if (i < 1000000000000L) return 100000000000L;
    else if (i < 10000000000000L) return 1000000000000L;
    else if (i < 100000000000000L) return 10000000000000L;
    else if (i < 1000000000000000L) return 100000000000000L;
    else if (i < 10000000000000000L) return 1000000000000000L;
    else if (i < 100000000000000000L) return 10000000000000000L;
    else if (i < 1000000000000000000L) return 100000000000000000L;
    else return  1000000000000000000L;
}

When compared to executing the plain StringBuffer.append(long), the algorithm listed here is

generally quicker (see Table 5-1) and creates two fewer objects. It can be even faster and is quicker for all

VMs with further tuning, but I'll leave the more complicated tuning to the next section.

Table 5-1. Time taken to append a long to a StringBuffer

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

JDK long conversion 104% 100% 116% 157% 116% 100% 306%

Optimized long conversion 115% 89% 121% 107% 115% 95% 310%
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There are several things to note about possible variations of this algorithm. First, although the algorithm

here is specifically radix 10 (decimal), it is easy to change to any radix. To do this, the reduction in

magnitude in the loop has to go down by the radix value, and the l_magnitude( ) method has to be

altered. For example, for radix 16, hexadecimal, the statement mag = mag/10 becomes mag = mag/16 and

the magnitude method for radix 16 looks like:

private static long l_magnitude16(long i)
{
    if (i < 16L) return 1;
    else if (i < 256L) return 16L;
    else if (i < 4096L) return 256L;
    else if (i < 65536L) return 4096L;
    else if (i < 1048576L) return 65536L;
    else if (i < 16777216L) return 1048576L;
    else if (i < 268435456L) return 16777216L;
    else if (i < 4294967296L) return 268435456L;
    else if (i < 68719476736L) return 4294967296L;
    else if (i < 1099511627776L) return 68719476736L;
    else if (i < 17592186044416L) return 1099511627776L;
    else if (i < 281474976710656L) return 17592186044416L;
    else if (i < 4503599627370496L) return 281474976710656L;
    else if (i < 72057594037927936L) return 4503599627370496L;
    else if (i < 1152921504606846976L) return 72057594037927936L;
    else return 1152921504606846976L;
}

Second, because we are working through the digits in written order, this algorithm is suitable for writing

directly to a stream or writer (such as a FileWriter) without the need for any temporary objects. This is

potentially a large gain, enabling writes to files without generating intermediate temporary strings.

Finally, if you want formatting added in, the algorithm is again suitable because you proceed through the

number in written order, and also because you have the magnitude at the start. (You can easily create

another method, similar to magnitude( ), that returns the number of digits in the value.) You can put in a

comma every three digits as the number is being written (or apply whatever internationalized format is

required). This saves you having to write out the number first in a temporary object and then add formatting

to it. For example, if you are using integers to fake fixed-place floating-point numbers, you can insert a point

at the correct position without resorting to temporary objects.

5.3.2 Converting ints to Strings

While the previous append( ) version is suitable to use for ints by overloading, it is much more efficient to

create another version specifically for ints. This is because int arithmetic is optimal and considerably faster

than the long arithmetic being used. Although earlier versions of the JDK (before JDK 1.1.6) used an

inefficient conversion procedure for ints, from 1.1.6 onward Sun targeted the conversion (for radix 10

integers only) and speeded it up by an order of magnitude. To better this already optimized performance,

you need every optimization available.

There are three changes you can make to the long conversion algorithm already presented. First, you can

change everything to use ints. This gives a significant speedup (more than a third faster than the long

conversion). Second, you can inline the "magnitude" method. And finally, you can unroll the loop that

handles the digit-by-digit conversion. In this case, the loop can be completely unrolled since there are at

http://lib.ommolketab.ir
http://lib.ommolketab.ir


most 10 digits in an int.

The resulting method is a little long-winded:

public static void append(StringBuffer s, int i)
{
  if (i < 0)
  {
    if (i =  = Integer.MIN_VALUE)
    {
      //cannot make this positive due to integer overflow
      s.append("-2147483648");
      return this;
    }
    s.append('-');
    i = -i;
  }
  int mag;
  int c;
  if (i < 10)                       //one digit
    s.append(charForDigit[i]);
  else if (i < 100)                 //two digits
    s.append(charForDigit[i/10])
     .append(charForDigit[i%10]);
  else if (i < 1000)                //three digits
    s.append(charForDigit[i/100])
     .append(charForDigit[(c=i%100)/10])
     .append(charForDigit[c%10]);
  else if (i < 10000)               //four digits
    s.append(charForDigit[i/1000])
     .append(charForDigit[(c=i%1000)/100])
     .append(charForDigit[(c%=100)/10])
     .append(charForDigit[c%10]);
  else if (i < 100000)              //five digits
    s.append(charForDigit[i/10000])
     .append(charForDigit[(c=i%10000)/1000])
     .append(charForDigit[(c%=1000)/100])
     .append(charForDigit[(c%=100)/10])
     .append(charForDigit[c%10]);
  else if (i < 1000000)             //six digits
    ... //I'm sure you get the idea
  else if (i < 10000000)            //seven digits
    ... //so just keep doing the same, but more
  else if (i < 100000000)           //eight digits
    ... //because my editor doesn't like wasting all this space
  else if (i < 1000000000)          //nine digits
    ... //on unnecessary repetitions
  else
    {
        //ten digits
        s.append(charForDigit[i/1000000000]);
        s.append(charForDigit[(c=i%1000000000)/100000000]);
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        s.append(charForDigit[(c%=100000000)/10000000]);
        s.append(charForDigit[(c%=10000000)/1000000]);
        s.append(charForDigit[(c%=1000000)/100000]);
        s.append(charForDigit[(c%=100000)/10000]);
        s.append(charForDigit[(c%=10000)/1000]);
        s.append(charForDigit[(c%=1000)/100]);
        s.append(charForDigit[(c%=100)/10]);
        s.append(charForDigit[c%10]);
    }
}

In the first edition of this book, I compared this implementation to executing StringBuffer.append(int)

with earlier VM versions (1.1.6, 1.2.0, 1.3.0, and HotSpot 1.0). The algorithm listed here ran in less time for

all the VMs, and created two fewer objects[3] (see Table 5-2). This algorithm still has a smaller impact on

garbage creation, digits are iterated in order so you can write to a stream, and it is easier to alter for

formatting without using temporary objects. Note that the long conversion method can also be improved

using two of the three techniques we used for the int conversion method: inlining the magnitude method

and unrolling the loop.

[3] If the StringBuffer.append(int) used the algorithm shown here, it would be faster for all JDK

versions measured in this chapter, as the characters could be added directly to the char buffer without

going through the StringBuffer.append(char) method.

However, the comparison against the latest versions of the various VMs now shows a completely different

story (see Table 5-3). Sun has continued to optimize, especially object creation and garbage collection in the

VM, as well as the conversion algorithm. The improvement in garbage collection is obvious if you run the

comparison test with the -verbosegc parameter. With garbage collection being reported, the much larger

volume of garbage slows down the JDK conversion relative to the proprietary algorithm. Without -
verbosegc, the extra temporary objects are still overhead, but not as significant as with earlier VMs.

It is also instructive to see what Sun has done to the algorithm to make the conversion faster. The source of

the 1.3.1/1.4.0 Integer.toString(int) method is almost unrecognizable from earlier implementations.

One optimization is to reduce the number of temporary objects created by using a privileged String
constructor that accepts a passed char array rather than creating a new one. But the major algorithmic

optimization is that multiplications have been changed to bit-shifts. For example, instead of multiplying by

100, three bit-shifts are used:

//These are all equivalent operations
q_times_100 = q * 100;
q_times_100 = (q * 64) + (q * 32) + (q * 4);
q_times_100 = ((q << 6) + (q << 5) + (q << 2));

One operation has been replaced with three, but with optimized generated native code on most modern

CPUs, the bit-shifts would operate in parallel and are significantly faster than the multiplication. The only VM

in Table 5-2 that is slower than the algorithm I presented is the interpreted VM, which supports the analysis

that the bit-shifts are crucial. Whether you can produce an algorithm that is even faster than the latest JDK

one by also using bit-shifting is best left to another time.

Table 5-2. Time taken to append an int to a StringBuffer (from the first edition)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


VM 1.2 1.3 HotSpot 1.0 1.1.6

JDK int conversion 100% 61% 89% 148%

Optimized int conversion 84% 60% 81% 111%

Table 5-3. Time taken to append an int to a StringBuffer (current version)

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

JDK int conversion 148% 100% 51% 45% 58% 40% 498%

Optimized int conversion 172% 107% 96% 122% 94% 83% 402%

5.3.3 Converting bytes, shorts, chars, and booleans to Strings

You can use the int conversion method for bytes and shorts (using overloading). You can make byte
conversion even faster using a String array as a lookup table for the 256 byte values. The conversion of

bytes and shorts to Strings in the JDK appears not to have been tuned to as high a standard as radix 10

ints (up to JDK 1.4). This means that the int conversion algorithm shown previously, when applied to

bytes and shorts, is significantly faster than the JDK conversions and does not produce any temporary

objects.

When it comes to using the other data types, there is no need to handle booleans in any special way: the

Boolean.toString( ) already uses canonical strings. And there is obviously nothing in particular that

needs to be done for chars (apart from making sure you add them to strings as characters, not numbers).

5.3.4 Converting floats to Strings

Converting floating-point numbers to strings turns out to be hideously under-optimized in every version of

the JDK up to 1.4 (and maybe beyond). Looking at the JDK code and comments, it seems that no one has

yet got around to tuning these conversions. Floating-point numbers can be converted using similar

optimizations to the number conversions previously addressed. You need to check for and handle the special

cases separately. You then scale the floats into an integer value and use the previously defined int

conversion algorithm to convert to characters in order, ensuring that you format the decimal point at the

correct position. The case of values between .001 and 10,000,000 are handled differently because they are

printed without exponent values; all other floats are printed with exponents. Finally, it would be possible to

overload the float and double case, but it turns out that if you do this, the float does not convert as well

(in correctness or speed), so it is necessary to duplicate the algorithms for the float and double cases.

Note that the printed values of floats and doubles are, in general, only representative of the underlying

value. This is true both for the JDK algorithms and the conversions here. There are times when the string

representation comes out differently for the two implementations, and neither is actually more accurate. The

algorithm used by the JDK prints the minimum number of digits possible, while maintaining uniqueness of

the printed value with respect to the other floating-point values adjacent to the value being printed. The

algorithm presented here prints the maximum number of digits (not including trailing zeros) regardless of

whether some digits are not needed to distinguish the number from other numbers. For example, the

Float.MIN_VALUE is printed by the JDK as "1.4E-45" whereas the algorithm here prints it as "1.4285714E-

45". Because of the limitations in the accuracy of numbers, neither printed representation is more or less

accurate compared to the underlying floating-point number actually held in Float.MIN_VALUE (e.g.,

assigning both "1.46e-45F" and "1.45e-45F" to a float results in Float.MIN_VALUE being assigned). Note

that the code that follows shortly uses the previously defined append( ) method for appending longs to
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StringBuffers. Also note that the dot character has been hardcoded as the decimal separator character

here for clarity, but it is straightforward to change for internationalization.

This method of converting floats to strings has the same advantages as those mentioned previously for

integral types (i.e., it is printed in digit order, no temporary objects are generated, etc.). The double
conversion (see the next section) is similar to the float conversion, with all the same advantages. In

addition, both algorithms are several times faster than the JDK conversions.

Normally, when you print out floating-point numbers, you print in a defined format with a specified number

of digits. The default floating-point toString( ) methods cannot format floating-point numbers; you must

first create the string, then format it afterwards. The algorithm presented here could easily be altered to

handle formatting floating-point numbers without using any intermediate strings. This algorithm is also easily

adapted to handle rounding up or down; it already detects which side of the "half" value the number is on:

public static final char[  ] NEGATIVE_INFINITY = 
      {'-','I','n','f','i','n','i','t','y'};
public static final char[  ] POSITIVE_INFINITY = 
      {'I','n','f','i','n','i','t','y'};
public static final char[  ] NaN = {'N','a','N'};
private static final int floatSignMask = 0x80000000;
private static final int floatExpMask  = 0x7f800000;
private static final int floatFractMask= ~(floatSignMask|floatExpMask);
private static final int floatExpShift = 23;
private static final int floatExpBias = 127;
//change dot to international character where this is used below
public static final char[  ] DOUBLE_ZERO = {'0','.','0'};
public static final char[  ] DOUBLE_ZERO2 = {'0','.','0','0'};
public static final char[  ] DOUBLE_ZERO0 = {'0','.'};
public static final char[  ] DOT_ZERO = {'.','0'}; 
private static final float[  ] f_magnitudes = {
 1e-44F, 1e-43F, 1e-42F, 1e-41F, 1e-40F,
 1e-39F, 1e-38F, 1e-37F, 1e-36F, 1e-35F, 1e-34F, 1e-33F, 1e-32F, 1e-31F, 1e-30F,
 1e-29F, 1e-28F, 1e-27F, 1e-26F, 1e-25F, 1e-24F, 1e-23F, 1e-22F, 1e-21F, 1e-20F,
 1e-19F, 1e-18F, 1e-17F, 1e-16F, 1e-15F, 1e-14F, 1e-13F, 1e-12F, 1e-11F, 1e-10F,
 1e-9F, 1e-8F, 1e-7F, 1e-6F, 1e-5F, 1e-4F, 1e-3F, 1e-2F, 1e-1F,
 1e0F, 1e1F, 1e2F, 1e3F, 1e4F, 1e5F, 1e6F, 1e7F, 1e8F, 1e9F,
 1e10F, 1e11F, 1e12F, 1e13F, 1e14F, 1e15F, 1e16F, 1e17F, 1e18F, 1e19F,
 1e20F, 1e21F, 1e22F, 1e23F, 1e24F, 1e25F, 1e26F, 1e27F, 1e28F, 1e29F,
 1e30F, 1e31F, 1e32F, 1e33F, 1e34F, 1e35F, 1e36F, 1e37F, 1e38F
};
  
public static void append(StringBuffer s, float d)
{
  //handle the various special cases
  if (d =  = Float.NEGATIVE_INFINITY)
    s.append(NEGATIVE_INFINITY);
  else if (d =  = Float.POSITIVE_INFINITY)
    s.append(POSITIVE_INFINITY);
  else if (d != d)
    s.append(NaN);
  else if (d =  = 0.0)
  {
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    //can be -0.0, which is stored differently
    if ( (Float.floatToIntBits(d) & floatSignMask) != 0)
      s.append('-');
    s.append(DOUBLE_ZERO);
  }
  else
  {
    //convert negative numbers to positive
    if (d < 0)
    {
      s.append('-');
      d = -d;
    }
    //handle 0.001 up to 10000000 separately, without exponents
    if (d >= 0.001F && d < 0.01F)
    {
      long i = (long) (d * 1E12F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      s.append(DOUBLE_ZERO2);
      appendFractDigits(s, i,-1);
    }
    else if (d >= 0.01F && d < 0.1F)
    {
      long i = (long) (d * 1E11F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      s.append(DOUBLE_ZERO);
      appendFractDigits(s, i,-1);
    }
    else if (d >= 0.1F && d < 1F)
    {
      long i = (long) (d * 1E10F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      s.append(DOUBLE_ZERO0);
      appendFractDigits(s, i,-1);
    }
    else if (d >= 1F && d < 10F)
    {
      long i = (long) (d * 1E9F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i,1);
    }
    else if (d >= 10F && d < 100F)
    {
      long i = (long) (d * 1E8F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i,2);
    }
    else if (d >= 100F && d < 1000F)
    {
      long i = (long) (d * 1E7F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i,3);
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    }
    else if (d >= 1000F && d < 10000F)
    {
      long i = (long) (d * 1E6F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i,4);
    }
    else if (d >= 10000F && d < 100000F)
    {
      long i = (long) (d * 1E5F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i,5);
    }
    else if (d >= 100000F && d < 1000000F)
    {
      long i = (long) (d * 1E4F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i,6);
    }
    else if (d >= 1000000F && d < 10000000F)
    {
      long i = (long) (d * 1E3F);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i,7);
    }
    else
    {
      //Otherwise the number has an exponent
      int magnitude = magnitude(d);
      long i;
      if (magnitude < -35)
        i = (long) (d*1E10F / f_magnitudes[magnitude + 45]);
      else
        i = (long) (d / f_magnitudes[magnitude + 44 - 9]);
      i = i%100 >= 50 ? (i/100) + 1 : i/100;
      appendFractDigits(s, i, 1);
      s.append('E');
      append(s,magnitude);
    }
  }
  return this;
}
  
private static int magnitude(float d)
{
  return magnitude(d,Float.floatToIntBits(d));
}
  
private static int magnitude(float d, int floatToIntBits)
{
  int magnitude = 
    (int) ((((floatToIntBits & floatExpMask) >> floatExpShift)
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                 - floatExpBias) * 0.301029995663981);
  
  if (magnitude < -44)
    magnitude = -44;
  else if (magnitude > 38)
    magnitude = 38;
  
  if (d >= f_magnitudes[magnitude+44])
  {
    while(magnitude < 39 && d >= f_magnitudes[magnitude+44])
      magnitude++;
    magnitude--;
    return magnitude;
  }
  else
  {
    while(magnitude > -45 && d < f_magnitudes[magnitude+44])
      magnitude--;
    return magnitude;
  }
}
private static void appendFractDigits(StringBuffer s, long i, int decimalOffset)
{
  long mag = magnitude(i);
  long c;
  while ( i > 0 )
  {
    c = i/mag;
    s.append(charForDigit[(int) c]);
    decimalOffset--;
    if (decimalOffset =  = 0)
      s.append('.'); //change to use international character
    c *= mag;
    if ( c <= i)
      i -= c;
    mag = mag/10;
  }
  if (i != 0)
    s.append(charForDigit[(int) i]);
  else if (decimalOffset > 0)
  {
    s.append(ZEROS[decimalOffset]); //ZEROS[n] is a char array of n 0's
    decimalOffset = 1;
  }
  
  decimalOffset--;
  if (decimalOffset =  = 0)
    s.append(DOT_ZERO);
  else if (decimalOffset =  = -1)
    s.append('0');
}
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The conversion times compared to the JDK conversions are shown in Table 5-4. Note that if you are

formatting floats, the JDK conversion requires additional steps and so takes longer. However, the method

shown here is likely to take even less time, as you normally print fewer digits that require fewer loop

iterations.

Table 5-4. Time taken to append a float to a StringBuffer

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

JDK float conversion 128% 100% 85% 60% 117% 66% 472%

Optimized float conversion 55% 62% 47% 44% 49% 29% 144%

5.3.5 Converting doubles to Strings

The double conversion is almost identical to the float conversion, except that the doubles extend over a

larger range. The differences are the following constants used in place of the corresponding float

constants:

private static final long  doubleSignMask = 0x8000000000000000L;
private static final long  doubleExpMask  = 0x7ff0000000000000L;
private static final long  doubleFractMask= ~(doubleSignMask|doubleExpMask);
private static final int  doubleExpShift = 52;
private static final int  doubleExpBias = 1023;
//private static final double[  ] d_magnitudes = {
  //as f_magnitudes[  ] except doubles extending
  //from 1e-323D to 1e308D inclusive
  ...
}

The last section of the append( ) method is:

      int magnitude = magnitude(d);
      long i;
      if (magnitude < -305)
        i = (long) (d*1E18 / d_magnitudes[magnitude + 324]);
      else
        i = (long) (d / d_magnitudes[magnitude + 323 - 17]);
      i = i%10 >= 5 ? (i/10) + 1 : i/10;
      appendFractDigits(s, i, 1);
      s.append('E');
      append(s,magnitude);

and the magnitude methods are:

private static int magnitude(double d)
{
  return magnitude(d,Double.doubleToLongBits(d));
}
private static int magnitude(double d, long doubleToLongBits)
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir


  int magnitude = 
    (int) ((((doubleToLongBits & doubleExpMask) >> doubleExpShift)
                - doubleExpBias) * 0.301029995663981);
  
  if (magnitude < -323)
    magnitude = -323;
  else if (magnitude > 308)
    magnitude = 308;
  
  if (d >= d_magnitudes[magnitude+323])
  {
    while(magnitude < 309 && d >= d_magnitudes[magnitude+323])
      magnitude++;
    magnitude--;
    return magnitude;
  }
  else
  {
    while(magnitude > -324 && d < d_magnitudes[magnitude+323])
      magnitude--;
    return magnitude;
  }
}

The conversion times compared to the JDK conversions are shown in Table 5-5. As with floats, formatting

doubles with the JDK conversion requires additional steps and would consequently take longer, but the

method shown here takes even less time, as you normally print fewer digits that require fewer loop

iterations.

Table 5-5. Time taken to append a double to a StringBuffer

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

JDK double conversion 117% 100% 94% 76% 95% 87% 761%

Optimized double conversion 22% 17% 19% 17% 20% 14% 64%

5.3.6 Converting Objects to Strings

Converting Objects to Strings is also inefficient in the JDK. For a generic object, the toString( )
method is usually implemented by calling any embedded object's toString( ) method, then combining the

embedded strings in some way. For example, Vector.toString( ) calls toString( ) on all its elements

and combines the generated substrings with the comma character surrounded by opening and closing square

brackets.

Although this conversion is generic, it usually creates a huge number of unnecessary temporary objects. If

the JDK had taken the "printOn: aStream" paradigm from Smalltalk, the temporary objects used would be

significantly reduced. This paradigm basically allows any object to be appended to a stream. In Java, it looks

something like:

public String toString(  )
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{
  StringBuffer s =new  StringBuffer(  );
  appendTo(s);
  return s.toString(  );
}
  
public void appendTo(StringBuffer s)
{
  //The real work of converting to strings. Any embedded
  //objects would have their 'appendTo(  )' methods called,
  //NOT their 'toString(  )' methods.
  ...
}

This implementation allows far fewer objects to be created in converting to strings. In addition, as

StringBuffer is not a stream, this implementation becomes much more useful if you use a

java.io.StringWriter and change the appendTo( ) method to accept any Writer, for example:

public String toString(  )
{
  java.io.StringWriter s =new  java.io.StringWriter(  );
  appendTo(s);
  return s.getBuffer(  ).toString(  );
}
  
public void appendTo(java.io.Writer s)
{
  //The real work of converting to strings. Any embedded
  //objects would have their 'appendTo(  )' methods called,
  //NOT their 'toString(  )' methods.
  ...
}

This implementation allows the one appendTo( ) method to write out any object to any streamed writer

object. Unfortunately, this implementation is not supported by the Object class, so you need to create your

own framework of methods and interfaces to support this implementation. I find that I can use an

Appendable interface with an appendTo( ) method, and then write toString( ) methods that check for

that interface:

public interface Appendable
{
  public void appendTo(java.io.Writer s);
}
  
public class SomeClass
  implements Appendable
{
  Object[  ] embeddedObjects;
  
  ...
  
  public String toString(  )
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  {
    java.io.StringWriter s =new  java.io.StringWriter(  );
    appendTo(s);
    return s.getBuffer(  ).toString(  );
  }
  public void appendTo(java.io.Writer s)
  {
    //The real work of converting to strings. Any embedded
    //objects would have their 'appendTo(  )' methods called,
    //NOT their 'toString(  )' methods.
    for (int i = 0; i<embeddedObjects.length; i++)
      if (embeddedObjects[i] instanceof Appendable)
        ( (Appendable) embeddedObjects[i]).appendTo(s);
      else
        s.write(embeddedObjects[i].toString(  ));
  }
}

In addition, you can extend this framework even further to override the appending of frequently used classes

such as Vector, allowing a more efficient conversion mechanism that uses fewer temporary objects:

public class AppenderHelper
{
  final static String NULL = "null";
  final static String OPEN = "[";
  final static String CLOSE = "]";
  final static String MIDDLE = ", ";
  
  public void appendCheckingAppendable(Object o, java.io.Writer s)
  {
    //Use more efficient Appendable interface if possible,
    //and NULL string if appropriate
    if ((o = v.elementAt(0)) =  = null)
      s.write(NULL);
    else if (o instanceof Appendable)
      ( (Appendable) o).appendTo(s);
    else
      s.write(o.toString(  ));
  }
  
  public void appendVector(java.util.Vector v, java.io.Writer s)
  {
    int size = v.size(  );
    Object o;
  
    //Write the opening bracket
    s.write(OPEN);
  
    if (size != 0)
    {
      //Add the first element
      appendCheckingAppendable(v.elementAt(0), s);

http://lib.ommolketab.ir
http://lib.ommolketab.ir


      //And add in each other element preceded by the MIDDLE separator
      for(int i = 1; i < size; i++)
      {
          s.append(MIDDLE);
          appendCheckingAppendable(v.elementAt(i), s);
      }
    }
  
    //Write the closing bracket
    s.append(CLOSE);
  }
}

If you add this framework to an application, you can support the notion of converting objects to string

representations to a particular depth. For example, a Vector containing another Vector to depth two looks

like this:

[1, 2, [3, 4, 5]]

But to depth one, it looks like this:

[1, 2, Vector@4444]

The default Object.toString( ) implementation in the JDK writes out strings for objects as:

return getClass(  ).getName(  ) + "@" + Integer.toHexString(hashCode(  ));

The JDK implementation is inefficient for two reasons. First, the method creates an unnecessary intermediate

string because it uses the concatenation operator twice. Second, the Class.getName( ) method (which is

a native method) also creates a new string every time it is called: the class name is not cached. It turns

out that if you reimplement this to cache the class name and avoid the extra temporary strings, your

conversion is faster and uses fewer temporary objects. The two are related, of course: using fewer

temporary objects means less object-creation overhead.

You can create a generic framework that converts the basic data types while also supporting the efficient

conversion of JDK classes (such as Vector, as well as Integer, Long, etc.). With this framework in place, I

find that performance is generally improved because the application uses more efficient conversion

algorithms and reduces the number of temporary objects. In almost every respect, this framework is better

than the simpler framework, which supports only the toString( ) method.
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[ Team LiB ]  

5.4 Strings Versus char Arrays

In one of my first programming courses, in the language C, our instructor made an interesting comment. He

said, "C has lightning-fast string handling because it has no string type." He went on to explain this

oxymoron by pointing out that in C, any null-terminated sequence of bytes can be considered a string: this

convention is supported by all string-handling functions. The point is that since the convention is adhered to

fairly rigorously, there is no need to use only the standard string-handling functions. Any string manipulation

you want to do can be executed directly on the byte array, allowing you to bypass or rewrite any string-

handling functions you need to speed up. Because you are not forced to run through a restricted set of

manipulation functions, it is always possible to optimize code using your own hand-crafted functions.

Furthermore, some string-manipulating functions operate directly on the original byte array rather than

creating a copy of this array. This can be a source of bugs, but is another reason speed can be optimized.

In Java, the inability to subclass String or access its internal char array means you cannot use the

techniques applied in C. Even if you could subclass String, this does not avoid the second problem: many

other methods operate on or return copies of a String. Generally, there is no way to avoid using String
objects for code external to your application classes. But internally, you can provide your own char array

type that allows you to manipulate strings according to your needs.

As an example, let's look at a couple of simple text-parsing problems: first, counting the words in a body of

text, and second, using a filter to select lines of a file based on whether they contain a particular string.

5.4.1 Word-Counting Example

Let's look at the typical Java approach to counting words in a text. I use the StreamTokenizer for the word

count, as that class is tailor-made for this kind of problem.

The word count is fairly easy to implement. The only difficulty comes in defining what a word is and coaxing

the StreamTokenizer to agree with that definition. To keep things simple, I define a word as any

contiguous sequence of alphanumeric characters. This means that words with apostrophes and numbers with

decimal points count as two words, but I'm more interested in the performance than the niceties of word

definitions here, and I want to keep the implementation simple. The implementation looks like this:

public static void wordcount(String filename)
  throws IOException
{
  int count = 0;
  //create the tokenizer, and initialize it
  FileReader r = new FileReader(filename);
  StreamTokenizer rdr = new StreamTokenizer(r);
  rdr.resetSyntax(  );
  rdr.wordChars('a', 'z');  //words include any lowercase character
  rdr.wordChars('A', 'Z');  //words include any uppercase character
  rdr.wordChars('0','9');   //words include any digit
  //everything else is whitespace
  rdr.whitespaceChars(0, '0'-1);
  rdr.whitespaceChars('9'+1, 'A'-1);
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  rdr.whitespaceChars('z'+1, '\uffff');
  int token;
  //loop getting each token (word) from the tokenizer
  //until we reach the end of the file
  while( (token = rdr.nextToken(  )) != StreamTokenizer.TT_EOF)
  {
    //If the token is a word, count it, otherwise it is whitespace
    if ( token =  = StreamTokenizer.TT_WORD)
      count++;
  }
  System.out.println(count + " words found.");
  r.close(  );
}

Now, for comparison, implement a more efficient version using char arrays. The word-count algorithm is

relatively straightforward: test for sequences of alphanumerics and skip anything else. The only slight

complication comes when you refill the buffer with the next chunk from the file. You need to avoid counting

one word as two if it falls across the junction of the two reads into the buffer, but this turns out to be easy to

handle. You simply need to remember the last character of the last chunk and skip any alphanumeric

characters at the beginning of the next chunk if that last character was alphanumeric (i.e., continue with the

word until it terminates). The implementation looks like this:

public static void cwordcount(String filename)
  throws IOException
{
  int count = 0;
  FileReader rdr = new FileReader(filename);
  //buffer to hold read in characters
  char[  ] buf = new char[8192];
  int len;
  int idx = 0;
  //initialize so that our 'current' character is in whitespace
  char c = ' ';
  //read in each chunk as much as possible,
  //until there is nothing left to read
  while( (len = rdr.read(buf, 0, buf.length)) != -1)
  {
    idx = 0;
    int start;
    //if we are already in a word, then skip the rest of it
    if (Character.isLetterOrDigit(c))
      while( (idx < len) && Character.isLetterOrDigit(buf[idx]) )
        {idx++;}
    while(idx < len)
    {
      //skip non alphanumeric
      while( (idx < len) && !Character.isLetterOrDigit(buf[idx]) )
        {idx++;}
      //skip word
      start = idx;
      while( (idx < len) && Character.isLetterOrDigit(buf[idx]) )
        {idx++;}
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      if (start < len)
      {
        count++; //count word
      }
    }
    //get last character so we know whether to carry on a word
    c = buf[idx-1];
  }
  System.out.println(count + " words found.");
}

You can compare this implementation with the one using the StreamTokenizer. All tests use the same

large text file for counting the words. I normalize to 100% the time taken by StreamTokenizer using JDK

1.2.2 with the JIT compiler (see Table 5-6). Interestingly, the test takes a similar amount of time when I run

using the StreamTokenizer without the JIT compiler running.

Table 5-6. Word counter timings using wordcount or cwordcount methods

VM 1.1.8 1.2.2 1.3.1 1.3.1 -server 1.4.0 1.4.0-server 1.2 no JIT

wordcount 153% 100% 232% 230% 11% 9.3% 171%

cwordcount 1.7% 1.6% 2.3% 1.9% 2.3% 1.9% 33%

These results are quite curious. I suspect the curious results and huge differences may have something to do

with StreamTokenizer being a severely underoptimized class, as well as being too generic a tool for this

particular test.

Looking at object usage,[4] you find that the StreamTokenizer implementation winds through over 1.5

million temporary objects, whereas the char array implementation uses only around 20 objects. Now the

results are more explicable. Object-creation differences of this order of magnitude impose a huge overhead

on the StreamTokenizer implementation, explaining why the StreamTokenizer is so much slower than

the char array implementation. The object-creation overhead also explains why both the JIT and non-JIT

tests took similar times for the StreamTokenizer. Object creation requires similar amounts of time in the

pre-1.4 VMs, and clearly the performance of the StreamTokenizer is limited by the number of objects it

uses (see Chapter 4 for further details). The times also show that the VMs are getting much much better at

reducing object creation and garbage collection overhead. The 1.4 test has the advantages of the latest

object-creation/garbage-collection techniques, in addition to more optimized byte-to-char conversion from

the 1.4 nio package.

[4] Object monitoring is easily done using the monitoring tools from Chapter 2, both the object-creation
monitor and the -verbosegc option with an explicit System.gc( ) at the end of the test.

5.4.2 Line Filter Example

For the example of a filter to select lines of a file, I'll use the simple BufferedReader.readLine( )
method. This contrasts with the previous methodology using a dedicated class (StreamTokenizer), which

turned out to be extremely inefficient. The readline( ) method should present us with more of a

performance-tuning challenge, as it is relatively much simpler and so should be more efficient. I'll also add

case-independence to the filtering, i.e., the lines will be selected even if the case of the characters in the line

http://lib.ommolketab.ir
http://lib.ommolketab.ir


do not exactly match the case of the characters in the filter.

The filter using BufferedReader and Strings is easily implemented. The search phrase is uppercased at

the beginning, and each line of text is uppercased so that lines are selected independently of case. I include

an option to print only the count of matching lines. The only slightly complex tweak is that I want to avoid

any dependence on I/O in the timings, as this is not an I/O test, so I map the file contents into memory and

use a CharArrayReader rather than a FileReader:

public static void filter1(String filter, String filename, boolean print)
    throws IOException
  {
    count = 0;
//    BufferedReader rdr = new BufferedReader(new FileReader(filename));
    BufferedReader rdr = new BufferedReader(new CharArrayReader(buf));
    String line;
    String ufilter = filter.toUpperCase(  );
    while( (line = rdr.readLine(  )) != null)
    {
      if (line.toUpperCase(  ).indexOf(ufilter) != -1)
      {
        count++;
        if (print)
          System.out.println(line);
      }
    }
    System.out.println(count + " lines matched.");
    rdr.close(  );
  }

Clearly it is not optimal to generate an extra string for every line, as toUpperCase( ) does. String
doesn't provide any simple case-independent search alternatives, though regionMatches( ) can be used

by testing iteratively through each line. For completeness we'll measure that solution too:

public static void filter2(String filter, String filename, boolean print)
    throws IOException
  {
    count = 0;
//    BufferedReader rdr = new BufferedReader(new FileReader(filename));
    BufferedReader rdr = new BufferedReader(new CharArrayReader(buf));
    String line;
    int filterLength = filter.length(  );
    while( (line = rdr.readLine(  )) != null)
    {
      for(int i = 0; i < line.length(  ); i++)
        if (line.regionMatches(true, i, filter, 0, filterLength))
        {
          count++;
          if (print)
            System.out.println(line);
          break;
        }
    }
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    System.out.println(count + " lines matched.");
    rdr.close(  );
  }

Now let's consider how to handle this filter using char arrays. As in the previous example, you read chunks

into your char array. However, this example is a bit more complicated than the word-count example. Here

you need to test for a match against another char array, look for line endings, and handle reforming lines

that are broken between read( ) calls in a more complete manner than for the word count.

Internationalization doesn't change this example in any obvious way. Both the readLine( ) implementation

and the char array implementation stay the same whatever language the text contains.

This statement about internationalization is slightly disingenuous. In fact, searches in

some languages allow words to match even if they are spelled differently. For

example, when searching for a French word that contains an accented letter, the user

might expect a nonaccented spelling to match. This is similar to searching for the

word "color" and expecting to match the British spelling "colour."

Such sophistication depends on how extensively the application supports this

variation in spelling. The java.text.Collator class has four "strength" levels that

support variations in the precision of word comparisons. Both implementations for

the example in this section correspond to matches using the Collator.IDENTICAL
strength together with the Collator.NO_DECOMPOSITION mode.

The full commented listing for the char array implementation is shown shortly. Looking at the code, it is

clearly more complicated than using the BufferedReader.readLine( ) . Obviously you have to work a lot

harder to get the performance you want. The result, though, is that some tests run as much as five times

faster using the char array implementation (see Table 5-7 and Table 5-8). The line lengths of the test files

make a big difference, hence the variation in results. In addition, the char array implementation uses only

1% of the number of objects compared to the BufferedReader.readLine( ) implementation.

Table 5-7. Filter timings using filter or cfilter method on a short-line file

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

filter1 (uppercased) 168% 100% 49% 40% 49% 31% 626%

filter2 (regionMatches) 140% 88% 53% 48% 60% 49% 1137%

cfilter (proprietary) 17% 17% 19% 17% 20% 15% 337%

Table 5-8. Filter timings using filter or cfilter method on a long-line file

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

filter1 (uppercased) 184% 100% 64% 54% 71% 47% 829%

filter2 (regionMatches) 183% 138% 113% 107% 124% 103% 2332%

cfilter (proprietary) 33% 33% 37% 28% 38% 27% 633%
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I have implemented a relatively straightforward class for the char array parsing. If you look in more detail

at what you are doing, you can apply further optimizations and make the routine even faster (see, for

example, Chapter 7 and Chapter 8).

Tuning like this takes effort, but you can see that it is possible to use char arrays to very good effect for

most types of String manipulation. If you are an object purist, you may want to encapsulate the char
array access. Otherwise, you may be content to expose external access through static methods. In any

case, it is worth investing some time and effort in creating a usable char-handling class. Usually this

creation is a single, up-front effort. If the classes are well constructed, you can use them consistently within

your applications, and this effort pays off handsomely when it comes to tuning (or, occasionally, the lack of a

need to tune).

Here is the commented char array implementation that executes a line-by-line string-matching filter on a

file:

/** Note that this implementation may have problems with
    text lines longer than 8192 characters.
*/
class MatchReader
{
  
  public static void filter(String filter, String filename, boolean print)
    throws IOException
  {
//    MatchReader rdr = new MatchReader(new FileReader(filename), filter);
    MatchReader rdr = new MatchReader(new CharArrayReader(FilterComparison.buf), 
filter);
    rdr.filter(print);
  }
  
  static final int BUFFER_SIZE = 8192;
  char[  ] buffer;
  int bufferSize;
  int bufferPos;
  char[  ] matchString;
  Reader reader;
  Writer sysout;
  
  public MatchReader(Reader rdr, String match)
    throws IOException
  {
    reader = rdr;
    matchString = new char[match.length(  )];
    match.toUpperCase(  ).getChars(0, match.length(  ), matchString, 0);
    buffer = new char[BUFFER_SIZE];
    bufferSize = 0;
    bufferPos = 0;
    sysout = new OutputStreamWriter(System.out);
    fillBuffer(  );
  }
  
  /* return true if more characters were read, otherwise false */
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  private boolean fillBuffer(  )
    throws IOException
  {
    int len;
    boolean added = false;
    while(bufferSize < buffer.length)
    {
      len = reader.read(buffer, bufferSize, buffer.length-bufferSize);
      if (len <= 0)
        return added;
      else
        bufferSize += len;
      added = true;
    }
    return added;
  }
  
  public void filter(boolean print)
    throws IOException
  {
    int count = 0;
    while( nextMatchedLine(  ) )
    {
      count++;
      if (print)
        printCurrentLine(  );
      else
        nextLine(  );
    }
    System.out.println(count + " lines matched.");
    close(  );
  }
  
  public void close(  )
    throws IOException
  {
    buffer = null;
    matchString = null;
    reader.close(  );
  }
  
  /* Return true if we matched a line,
   * false if there were no more matches
   */
  public boolean nextMatchedLine(  )
    throws IOException
  {
    while(!scrollToNextMatchInCurrentBuffer(  ))
    {
      if (!refillBuffer(  ))
      {
        //No more characters to read, just make sure
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        //that no more lines are left in the buffer
        return scrollToNextMatchInCurrentBuffer(  );
      }
    }
    return true;
  }
  
  private boolean scrollToNextMatchInCurrentBuffer(  )
  {
    //Simple linear search
    //No need to try to match beyond the end of the buffer
    int highIdx = bufferSize-matchString.length;
    for (; bufferPos <= highIdx; bufferPos++)
    {
      if (matches(  ))
        return true;
    }
    return false;
  }
  
  private boolean matches(  )
  {
    //Assume that this is only called if the match
    //characters can fit into the remaining buffer
    for(int j = 0; j < matchString.length ; j++)
      if(Character.toUpperCase(buffer[bufferPos+j]) != matchString[j])
        return false;
    return true;
  }
  
  private boolean refillBuffer(  )
    throws IOException
  {
    return refillBuffer(bufferSize - 1);
  }
  
  private boolean refillBuffer(int lastIdx)
    throws IOException
  {
    //Find the start of the last line in the buffer,
    //move that to the start of the buffer,
    //then append some more to the buffer.
    while( (lastIdx > 0) && (buffer[lastIdx] != '\n') && (buffer[lastIdx] != '\r') )
      lastIdx--;
    if ( (buffer[lastIdx] =  = '\n') || (buffer[lastIdx] =  = '\r') )
    {
      //Found the most recent newline character
      bufferSize -= lastIdx+1;
      System.arraycopy(buffer, lastIdx+1, buffer, 0, bufferSize);
      bufferPos = 0; //be safe
      return fillBuffer(  );
    }
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    else
    {
      //reached the beginning of the buffer and we still don't have a newline
      return fillBuffer(  );
    }
  }
  
  /* Scroll to just after the next newline character */
  public void nextLine(  )
    throws IOException
  {
    while(!scrollToNextLineInCurrentBuffer(  ))
    {
      if (!refillBuffer(  ))
      {
        //No more characters to read, just make sure
        //that no more lines are left in the buffer
        scrollToNextLineInCurrentBuffer(  );
      }
    }
  }
  
  private boolean scrollToNextLineInCurrentBuffer(  )
  {
    //Simple linear search
    //No need to try to match beyond the end of the buffer
    int highIdx = bufferSize-1;
    for (; bufferPos <= highIdx; bufferPos++)
    {
      if ( (buffer[bufferPos] =  = '\n') || (buffer[bufferPos] =  = '\r') )
      {
        bufferPos++;
        return true;
      }
    }
    return false;
  }
  
  private void printCurrentLine(  )
    throws IOException
  {
    //Move the start of the current line back to beginning of
    //the buffer, fill it up, and find the next line
    refillBuffer(bufferPos);
    scrollToNextLineInCurrentBuffer(  );
    sysout.write(buffer, 0, bufferPos-1);
    sysout.write(FilterComparison.NewLine);
    sysout.flush(  );
  }
}

The individual methods listed here are fairly basic. As with the JDK methods, I assume a line termination is
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indicated by a newline or return character. Otherwise, the main effort comes in writing efficient array-

matching methods. In this example, I did not try hard to look for the very best array-matching algorithms.

Instead, I used straightforward algorithms for clarity, since these are fast enough for the example. There are

many sources describing more sophisticated array-matching algorithms; for example, the University of

Rouen in France has a nice site listing "Exact String Matching Algorithms" at http://www-igm.univ-

mlv.fr/~lecroq/string/.

5.4.3 Line Filtering with Regular Expressions

JDK 1.4 includes native support for regular expressions in one of the core packages, java.util.regex.

String methods were also added as shortcuts to using the regular-expression objects. For example, the

simplest additional new method is String.matches(String regex), which simply returns a boolean if the

string can be matched by the regular-expression argument.

Regular expressions are a pattern-matching language that provides a powerful

mechanism to determine if sequences of characters contain particular patterns and to

extract those patterns. Almost every type of parsing is much easier and more flexible

using regular expressions. For more details about regular expressions, see Mastering

Regular Expressions by Jeffrey Friedl (O'Reilly & Associates).

However, be aware that the methods in the String class are adequate for one-off uses of regular

expressions but are inefficient for repeated application of a regular expression. The String methods both

compile (into a java.util.regex.Pattern object) and apply the regular expression on each execution,

whereas it is more efficient to compile a regular expression once and apply it repeatedly using the same

object. For example, this statement:

boolean result = string.matches(regex);

executes the equivalent of:

Pattern p = Pattern.compile(regex);
Matcher m = p.matcher(string);
boolean result = m.matches(  );

If the regular expression is to be reapplied to multiple strings, the efficient solution would call the

Pattern.compile( ) method only once, but that option is not available if you use the shortcut

String.matches(String regex) method.

The line-filtering example in the previous section is a fairly simple problem and doesn't need the full power

of regular expressions, but since we have already seen the equivalent functionality in alternative

implementations it is worth looking at the cost of using regular expressions to handle the filtering. The

method required is straightforward, but I'll walk through it in case you are unused to regular expressions.

First, the regular-expression pattern needs to be compiled into a Pattern object. The pattern itself needs to

be wrapped with some characters to indicate that we are searching one line at a time: the ^ character

denotes the beginning of a line, and the $ character denotes the end of a line. The .* pattern simply

indicates that anything can match between the beginning and the end of the line as long as the filter
string is included. In addition, the Pattern object needs to know that we are searching line-by-line, as it

also supports searching text while treating line endings simply as any other characters, so we use the

MULTILINE flag. We also need the CASE_INSENSITIVE flag to make the match case-insensitive. Next, we

will use a java.nio.CharBuffer to wrap the characters, a convenient mechanism to present the text to
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the Matcher. We could use a String, but if we were actually reading from a file the most efficient

mechanism would be to use a CharBuffer on a FileChannel, so I'll stay with the CharBuffer.

Finally, we simply loop, repeatedly matching the regular expression against the text using the

Matcher.find( ) method. The Matcher.group( ) method provides us with the previously matched line

of text if we need it for printing:

public static void filter3(String filter, String filename, boolean print)
    throws IOException
  {
    count = 0;
    Pattern p = Pattern.compile("^.*" + filter + ".*$", 
                  Pattern.MULTILINE | Pattern.CASE_INSENSITIVE);
    CharBuffer cbuff = CharBuffer.wrap(buf);
    Matcher m = p.matcher(cbuff);
    while( m.find(  ) )
    {
      count++;
      if (print)
        System.out.println(m.group(  ));
    }
    System.out.println(count + " lines matched.");
  }

The results of testing this method along with the previous methods used to filter lines are shown in Table 5-

9. The results show that for our simple line-filtering problem, using regular expressions is slower than the

other implementations, but not hugely slower. This shows that the regular-expression implementation in JDK

1.4. is pretty efficient, given how much more it is doing (and can do) compared with the other methods. It

certainly looks like you can use regular expressions with some confidence that the implementation is pretty

efficient.

Table 5-9. Filter timings using various filter methods in JDK 1.4

VM 1.4.0 1.4.0 -server 1.4.0 -Xint

filter1 (uppercased) 100% 65% 1320%

filter2 (regionMatches) 128% 104% 2390%

cfilter (proprietary) 42% 31% 707%

filter3 (regular expression) 143% 88% 3666%
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5.5 String Comparisons and Searches

String comparison performance is highly dependent on both the string data and the comparison algorithm

(this is really a truism about collections in general). The methods that come with the String class have a

performance advantage in being able to directly access the underlying char collection. So if you need to

make String comparisons, String methods usually provide better performance than your own methods,

provided that you can make your desired comparison fit in with one of the String methods. Another

necessary consideration is whether comparisons are case-sensitive or -insensitive, and I will consider this in

more detail shortly.

To optimize for string comparisons, you need to look at the source of the comparison methods so you know

exactly how they work. As an example, consider the String.equals( ) and String.equalsIgnoreCase(
) methods from the Java 2 distribution.

String.equals(Object) runs in a fairly straightforward way: it first checks for object identity, then for

null, then for String type, then for same-size strings, and then character by character, running from the

first character to the last. Efficient and complete.

String.equalsIgnoreCase(String) is a little more complex. It checks for null, and then for strings

being the same size (the String type check is not needed, since this method accepts only String objects).

Then, using a case-insensitive comparison, regionMatches( ) is applied. regionMatches( ) runs a

character-by-character test from the first character to the last, converting each character to uppercase

before comparing.

Immediately, you see that the more differences there are between the two strings, the faster these methods

return. This behavior is common for collection comparisons, and the order of the comparison is crucial. In

these two cases, the strings are compared starting with the first character, so the earlier the difference

occurs, the faster the methods return. However, equals( ) returns faster if the two String objects are

identical. It is unusual to check Strings by identity, but there are a number of situations where it is useful

(for example, when you are using a set of canonical Strings; see Chapter 4). Another example is when an

application has enough time during string input to intern( ) [5] the strings, so that later comparisons by

identity are possible.

[5] String.intern( ) returns the String object that is being stored in the internal VM string pool. If

two Strings are equal, then their intern( ) results are identical; for example, if s1.equals(s2) is

true, then s1.intern( ) = = s2.intern(  ) is also true.

In any case, equals( ) returns immediately if the two strings are identical, but equalsIgnoreCase( )
does not even check for identity (which may be reasonable given what it does). This results in equals( )
running an order of magnitude faster than equalsIgnoreCase( ) if the two strings are identical; identical

strings is the fastest test case resolvable for equals( ), but the slowest case for equalsIgnoreCase( ).

On the other hand, if the two strings are different in size, equalsIgnoreCase( ) has only two tests to

make before it returns, whereas equals( ) makes four tests before it returns. This can make

equalsIgnoreCase( ) run 20% faster than equals( ) for what may be the most common difference

between strings.

There are more differences between these two methods. In almost every possible case of string data,
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equals( ) runs faster (often several times faster) than equalsIgnoreCase( ). However, in a test against

the words from a particular dictionary, I found that over 90% of the words were different in size from a

randomly chosen word. When comparing the performance of these two methods for a comparison of a

randomly chosen word against the entire dictionary, the total comparison time taken by each of the two

methods was about the same. The many cases in which strings had different lengths compensated almost

exactly for the slower comparison of equalsIgnoreCase( ) when the strings were similar or equal. This

illustrates how the data and the algorithm interplay with each other to affect performance.

Even though String methods have access to the internal chars, it can be faster to use your own methods if

there are no String methods appropriate for your test. You can build methods that are tailored to the data

you have. One way to optimize an equality test is to look for ways to make the strings identical. An

alternative that can actually be better for performance is to change the search strategy to reduce search

time. For example, a linear search through a large array of Strings is slower than a binary search through

the same size array if the array is sorted. This, in turn, is slower than a straight access to a hashed table.

Note that when you are able and willing to deploy changes to JDK classes (e.g., for servlets), you can add

methods directly to the String class. However, altering JDK classes can lead to maintenance problems.[6]

[6] Several of my colleagues have emphasized their view that changes to the JDK sources lead to
severe maintenance problems.

When case-insensitive searches are required, one standard optimization is to use a second collection

containing all the strings uppercased. This second collection is used for comparisons, obviating the need to

repeatedly uppercase each character in the search methods. For example, if you have a hash table

containing String keys, you need to iterate over all the keys to match keys case-insensitively. But, if you

have a second hash table with all the keys uppercased, retrieving the key simply requires you to uppercase

the element being searched for:

//The slow version, iterating through all the keys ignoring case
//until the key matches. (hash is a Hashtable)
public Object slowlyGet(String key)
{
  Enumeration e = hash.keys(  );
  String hkey;
  while(e.hasMoreElements(  ))
  {
    if (key.equalsIgnoreCase(hkey = (String) e.getNext(  ))
      return hash.get(hkey);
  }
  return null;
}
  
//The fast version assumes that a second hashtable was created
//with all the keys uppercased. Access is straightforward.
public Object quicklyGet(String key)
{
  return uppercasedHash.get(key.toUppercase(  ));
}

However, note that String.toUppercase( ) (and String.toLowercase( )) creates a complete copy of

the String object with a new char array. Unlike String.substring( ) , String.toUppercase( ) has

a processing time that is linearly dependent on the size of the string and also creates an extra object (a new

char array). This means that repeatedly using String.toUppercase( ) (and String.toLowercase( ))

can impose a heavy overhead on an application. For each particular problem, you need to ensure that the
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extra temporary objects created and the extra processing overhead still provide a performance benefit

rather than causing a new bottleneck in the application.
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5.6 Sorting Internationalized Strings

One big advantage with Strings is that they are built (almost) from the ground up to support

internationalization. This means that the Unicode character set is the lingua franca in Java. Unfortunately,

because Unicode uses two-byte characters, many string libraries based on one-byte characters that can be

ported into Java do not work so well. Most string-search optimizations use tables to assist string searches,

but the table size is related to the size of the character set. For example, a traditional Boyer-Moore string

search takes a great deal of memory and a long initialization phase to use with Unicode.

The Boyer-Moore String-Search Algorithm

The Boyer-Moore string search uses a table of characters to skip comparisons. Here's a simple

example with none of the complexities. Assume you are matching "abcd" against a string. The

"abcd" is aligned against the first four characters of the string. The fourth character of the string

is checked first. If that fourth character is none of a, b, c, or d, the "abcd" can be skipped to be

matched against the fifth to eighth characters, and the matching proceeds in the same way. If

instead the fourth character of the string is b, the "abcd" can be skipped to align the b against

the fourth character, and the matching proceeds as before. For optimum speed, this algorithm

requires several arrays giving skip distances for each possible character in the character set. For

more detail, see The Art of Computer Programming by Donald Knuth (Addison-Wesley) or the

paper "Fast Algorithms for Sorting and Searching Strings," by Jon Bentley and Robert Sedgewick,

Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, January 1997.

Furthermore, sorting international Strings requires the ability to handle many kinds of localization issues,

such as the sorted location for accented characters, characters that can be treated as character pairs, and so

on. In these cases, it is difficult (and usually impossible) to handle the general case yourself. It is almost

always easier to use the String helper classes Java provides, for example, the java.text.Collator

class.[7]

[7] The code that handles this type of work didn't really start to get integrated in Java until 1.1 and did
not start to be optimized until JDK 1.2. An article by Laura Werner of IBM in the February 1999 issue of
the Java Report, "Efficient Text Searching in Java," covers the optimizations added to the
java.text.Collator class for JDK 1.2. There is also a useful StringSearch class available at the

IBM alphaWorks site (http://alphaworks.ibm.com/tech/stringsearch).

Using the java.text.CollationKey object to represent each string is a standard optimization for

repeated comparisons of internationalized Strings. You can use this when sorting an array of Strings, for

example. CollationKeys perform more than twice as fast as using java.text.Collator.compare( ) .

It is probably easiest to see how to use collation keys with a particular example. So let's look at tuning an

internationalized String sort.

For this, I use a standard quicksort algorithm (the quicksort implementation can be found in Section 11.9).

The only modification to the standard quicksort is that for each optimization, the quicksort needs to be

adjusted to use the appropriate comparison method and the appropriate data type. For example, the generic

quicksort that sorts an array of Comparable objects has the signature:

public static void quicksort(Comparable[  ] arr, int lo, int hi)
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and uses the Comparable.compareTo(Object) method when comparing two Comparable objects. On the

other hand, a generic quicksort that sorts objects based on a java.util.Comparator has the signature:

public static void quicksort(Object[  ] arr, int lo, int hi, Comparator c)

and uses the java.util.Comparator.compare(Object, Object) method when comparing any two

objects. (See java.util.Arrays.sort( ) for a specific example.) In each case the underlying algorithm

is the same. Only the comparison method changes (and in general the data type too, though not in these

examples where the data type was Object).

The obvious first test, to get a performance baseline, is the straightforward internationalized sort:

public runsort(  ) {
  quicksort(stringArray,0,stringArray.length-1, Collator.getInstance(  ));
}
public static void quicksort(String[  ] arr, int lo, int hi, java.text.Collator c)
{
  ...
  int mid = ( lo + hi ) / 2;
  String middle = arr[ mid ]; //String data type
  ...
  //uses Collator.compare(String, String)
  if( c.compare(arr[ lo ], middle) > 0 )
  ...
}

I use a large dictionary of words for the array of strings, inserted in random order, and I use the same

random order for each of the tests. The first test took longer than expected. Looking at the Collator class,

I can see that it does a huge amount of work, and I cannot possibly bypass its internationalized support if I

want to support internationalized strings.[8]

[8] The kind of investment made in building such global support is beyond most projects; it is almost
always much cheaper to buy the support. In this case, Taligent put a huge number of man years into
the globalization you get for free with the JDK.

However, as previously mentioned, the java.util.CollationKey class is specifically designed to provide

for this type of speedup. It is simple to convert the sort in order to use this. You still need the Collator to

generate the CollationKeys, so add a conversion method. The sort now looks like:

public runsort(  ) {
  quicksort(stringArray,0,stringArray.length-1, Collator.getInstance(  ));
}
public static void quicksort(String[  ] arr, int lo, int hi, Collator c)
{
  //convert to an array of CollationKeys
  CollationKey keys[  ] = new CollationKey[arr.length];
  for (int i = arr.length-1; i >= 0; i--)
    keys[i] = c.getCollationKey(arr[i]);
  
  //Run the sort on the collation keys
  quicksort_collationKey(keys, 0, arr.length-1);
  
  //and unwrap so that we get our Strings in sorted order
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  for (int i = arr.length-1; i >= 0; i--)
    arr[i] = keys[i].getSourceString(  );
}
public static void quicksort_collationKey(CollationKey[  ] arr, int lo, int hi)
{
  ...
  int mid = ( lo + hi ) / 2;
  CollationKey middle = arr[ mid ];  //CollationKey data type
  ...
  //uses CollationKey.compareTo(CollationKey)
  if( arr[ lo ].compareTo(middle) > 0 )
  ...
}

Normalizing the time for the first test to 100%, this test is much faster and takes less than half the time (see

Table 5-10). This is despite the extra cost imposed by a whole new populated array of CollationKey
objects, one for each string. Can it do better? Well, there is nothing further in the java.text package that

suggests so. Instead look at the String class, and consider its implementation of the String.compareTo(
) method. This is a simple lexicographic ordering, basically treating the char array as a sequence of

numbers and ordering sequence pairs as if there is no meaning to the object being Strings. Obviously, this

is useless for internationalized support, but it is much faster. A quick test shows that sorting the test String
array using the String.compareTo( ) method takes just 2% of time of the first test, which seems much

more reasonable.

But is this test incompatible with the desired internationalized sort? Well, maybe not. Sort algorithms usually

execute faster if they operate on a partially sorted array. Perhaps using the String.compareTo( ) sort

first might bring the array considerably closer to the final ordering of the internationalized sort, and at a

fairly low cost. Testing this is straightforward:

public runsort(  ) {
  quicksort(stringArray,0,stringArray.length-1, Collator.getInstance(  ));
}
public static void quicksort(String[  ] arr, int lo, int hi, Collator c)
{
  //simple sort using String.compareTo(  )
  simple_quicksort(arr, lo, hi);
  
  //Full international sort on a hopefully partially sorted array
  intl_quicksort(arr, lo, hi, c);
}
public static void simple_quicksort(String[  ] arr, int lo, int hi)
{
  ...
  int mid = ( lo + hi ) / 2;
  String middle = arr[ mid ];  //uses String data type
  ...
  //uses String.compareTo(String)
  if( arr[ lo ].compareTo(middle) > 0 )
  ...
}
public static void intl_quicksort(String[  ] arr, int lo, int hi, Collator c)
{
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  //convert to an array of CollationKeys
  CollationKey keys[  ] = new CollationKey[arr.length];
  for (int i = arr.length-1; i >= 0; i--)
    keys[i] = c.getCollationKey(arr[i]);
  
  //Run the sort on the collation keys
  quicksort_collationKey(keys, 0, arr.length-1);
  
  //and unwrap so that we get our Strings in sorted order
  for (int i = arr.length-1; i >= 0; i--)
    arr[i] = keys[i].getSourceString(  );
}
public static void quicksort_collationKey(CollationKey[  ] arr, int lo, int hi)
{
  ...
  int mid = ( lo + hi ) / 2;
  CollationKey middle = arr[ mid ]; //CollationKey data type
  ...
  //uses CollationKey.compareTo(CollationKey)
  if( arr[ lo ].compareTo(middle) > 0 )
  ...
}

This double-sorting implementation reduces the international sort time to a quarter of the original test time

(see Table 5-10). Partially sorting the list first using a much simpler (and quicker) comparison test has

doubled the speed of the total sort as compared to using only the CollationKeys optimization.

Table 5-10. Timings using different sorting strategies

Sort using: 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Collator 266% 100% 65% 22% 56% 51% 1235%

CollationKeys 80% 39% 24% 18% 27% 15% 226%

Sorted twice 35% 18% 9.8% 7.9% 12% 8.5% 133%

String.compareTo( ) 2.3% 2.3% 1.8% 1.5% 1.9% 1.4% 23%

Of course, these optimizations have improved the situation only for the particular locale I have tested (my

default locale is set for US English). However, running the test in a sampling of other locales (European and

Asian locales), I find similar relative speedups. Without using locale-specific dictionaries, this locale variation

test may not be fully valid, but the speedup will likely hold across all Latinized alphabets. You can also create

a simple partial-ordering class-specific sort to some locales, which provides a similar speedup. For example,

by duplicating the effect of using String.compareTo( ), you can provide the basis for a customized partial

sorter:

public class PartialSorter {
  String source;
  char[  ] stringArray;
  public Sorting(String s)
  {
    //retain the original string
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    source = s;
    //and get the array of characters for our customized comparison
    stringArray = new char[s.length(  )];
    s.getChars(0, stringArray.length, stringArray, 0);
  }
  /* This compare method should be customized for different locales */
  public static int compare(char[  ] arr1, char[  ] arr2)
  {
    //basically the String.compareTo(  ) algorithm
    int n = Math.min(arr1.length, arr2.length);
    for (int i = 0; i < n; i++)
    {
      if (arr1[i] != arr2[i])
        return arr1[i] - arr2[i];
    }
    return arr1.length - arr2.length;
  }
  public static void quicksort(String[  ] arr, int lo, int hi)
  {
    //convert to an array of PartialSorters
    PartialSorter keys[  ] = new PartialSorter[arr.length];
    for (int i = arr.length-1; i >= 0; i--)
      keys[i] = new PartialSorter(arr[i]);
    quicksort_mysorter(keys, 0, arr.length-1);
    //and unwrap so that we get our Strings in sorted order
    for (int i = arr.length-1; i >= 0; i--)
      arr[i] = keys[i].source;
  }
  public static void quicksort_mysorter(PartialSorter[  ] arr, int lo, int hi)
  {
    ...
    int mid = ( lo + hi ) / 2;
    PartialSorter middle = arr[ mid ]; //PartialSorter data type
    ...
    //Use the PartialSorter.compare(  ) method to compare the char arrays
    if( compare(arr[ lo ].stringArray, middle.stringArray) > 0 ) 
    ...
  }
}

This PartialSorter class works similarly to the CollationKey class, wrapping a string and providing its

own comparison method. The particular comparison method shown here is just an implementation of the

String.compareTo( ) method. It is pointless to use it exactly as defined here because object-creation

overhead means that using the PartialSorter is twice as slow as using the String.compareTo( )
directly. But customizing the PartialSorter.compare( ) method for any particular locale is a reasonable

task: remember, we are interested only in a simple algorithm that handles a partial sort, not the full

intricacies of completely accurate locale-specific comparison.

Generally, you cannot expect to support internationalized strings and retain the performance of simple one-

byte-per-character strings. But, as shown here, you can certainly improve the performance.
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5.7 Performance Checklist

Most of these suggestions apply only after a bottleneck has been identified:

Logically partition your strings into those that require internationalization support (i.e., text) and those

that don't.

Avoid internationalization where the Strings never require it.

Avoid using the StreamTokenizer.

Regular expressions provide acceptable performance compared with using String searching methods

and String character iteration tokenizing techniques.

Create and optimize your own framework to convert objects and primitives to and from strings.

Use efficient methods of String that do not copy the characters of the string, e.g.,

String.substring( ).

Avoid using inefficient methods of String that copy the characters of the string, e.g.,

String.toUppercase( ) and String.toLowercase( ).

Use the string concatenation operator to create Strings at compile time.

Use StringBuffers to create Strings at runtime.

Specify when the underlying char array is copied when reusing StringBuffers.

Improve access to the underlying String char array by copying the chars into your own array.

Manipulate characters in char arrays rather than using String and StringBuffer

manipulation.

Reuse char arrays.

Optimize the string comparison and search algorithm for the data being compared and searched.

Compare strings by identity.

Convert a comparison task to a (hash) table lookup.

Handle case-insensitive comparisons differently from case-sensitive comparisons.

Apply the standard performance optimization for case-insensitive access (maintaining a second

collection with all strings uppercased).

Use java.text.CollationKeys rather than a java.text.Collator object to sort
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international strings.

Use String.compareTo( ) for string comparison where internationalization is unnecessary.

Partially sort (international) strings using a simple comparison algorithm before using the full

(internationalized) comparison.
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Chapter 6. Exceptions, Assertions, Casts, and Variables

For every complex problem, there is a solution that is simple, neat, and wrong.

-H. L. Mencken

This chapter describes the costs of various programmatic elements, including exceptions, assertions (new in

1.4), casts, and variables. It also describes how to optimize your use of these elements.
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6.1 Exceptions

In this section, we examine the cost of exceptions and consider ways to avoid that cost. First, we look at the

costs associated with try-catch blocks, which are the structures you need to handle exceptions. Then, we

go on to optimizing the use of exceptions.

6.1.1 The Cost of try-catch Blocks Without an Exception

try-catch blocks generally use no extra time if no exception is thrown, although some VMs may impose a

slight penalty. The following test determines whether a VM imposes any significant overhead for try-catch

blocks when the catch block is not entered. The test runs the same code twice, once with the try-catch

entered for every loop iteration and again with just one try-catch wrapping the loop. Because we're

testing the VM and not the compiler, you must ensure that your compiler has not optimized the test away;

use an old JDK version to compile it if necessary. To determine that the test has not been optimized away by

the compiler, you need to compile the code, then decompile it:

package tuning.exception;
  
public class TryCatchTimeTest
{
  public static void main(String[  ] args)
  {
    int REPEAT = (args.length =  = 0) ? 10000000 : Integer.parseInt(args[0]);
    Object[  ] xyz = {new Integer(3), new Integer(10101), new Integer(67)};
    boolean res;
    long time = System.currentTimeMillis( );
    res = try_catch_in_loop(REPEAT, xyz);
    System.out.println("try catch in loop took     " + 
      (System.currentTimeMillis( ) - time));
  
    time = System.currentTimeMillis( );
    res = try_catch_not_in_loop(REPEAT, xyz);
    System.out.println("try catch not in loop took " + 
      (System.currentTimeMillis( ) - time));
  
    //Repeat the two tests several more times in this method
    //for consistency checking
    ...
  }
  
  public static boolean try_catch_not_in_loop(int repeat, Object[  ] o)
  {
    Integer i[  ] = new Integer[3];
    try {
      for (int j = repeat; j > 0; j--)
      {
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        i[0] = (Integer) o[(j+1)%2];
        i[1] = (Integer) o[j%2];
        i[2] = (Integer) o[(j+2)%2];
      }
      return false;
    }
    catch (Exception e) {return true;}
  }
  
  public static boolean try_catch_in_loop(int repeat, Object[  ] o)
  {
    Integer i[  ] = new Integer[3];
    for (int j = repeat; j > 0; j--)
    {
      try {
        i[0] = (Integer) o[(j+1)%2];
        i[1] = (Integer) o[j%2];
        i[2] = (Integer) o[(j+2)%2];
      }
      catch (Exception e) {return true;}
    }
    return false;
  }
}

Running this test in various VMs results in increases in the time taken by the looped try-catch test relative

to the nonlooped test for some VMs; however, the latest VMs show no penalty. See Table 6-1.

Table 6-1. Extra cost of the looped try-catch test relative to the nonlooped try-catch test

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0 -xInt

Increase in time ~5% ~10% None None None None ~2%

6.1.2 The Cost of try-catch Blocks with an Exception

Throwing an exception and executing the catch block has a significant overhead. This overhead seems to be

due mainly to the cost of getting a snapshot of the stack when the exception is created (the snapshot allows

the stack trace to be printed). The cost is large: exceptions should not be thrown as part of the normal code

path of your application unless you have factored it in. Generating exceptions is one place where good

design and performance go hand in hand. You should throw an exception only when the condition is truly

exceptional. For example, an end-of-file condition is not an exceptional condition (all files end) unless the

end-of-file occurs when more bytes are expected.[1] Generally, the performance cost of throwing an

exception is equivalent to several hundred lines of simple code executions.

[1] There are exceptions to the rule. For example, in Section 7.3 in Chapter 7, the cost of one exception
thrown is less than the cost of repeatedly making a test in the loop, though this is seen only if the
number of loop iterations is large enough.
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If your application is implemented to throw an exception during the normal flow of

the program, you must not avoid the exception during performance tests. Any time

costs coming from throwing exceptions must be included in performance testing, or

the test results will be skewed from the actual performance of the application after

deployment.

To find the cost of throwing an exception, compare two ways of testing whether an object is a member of a

class: trying a cast and catching the exception if the cast fails, versus using instanceof. In the code that

follows, I have highlighted the lines that run the alternative tests:

package tuning.exception;
  
public class TryCatchCostTest
{
  public static void main(String[  ] args)
  {
    Integer i = new Integer(3);
    Boolean b = new Boolean(true);
    int REPEAT = 5000000;
    int FACTOR = 1000;
    boolean res;
  
    long time = System.currentTimeMillis( );
    for (int j = REPEAT*FACTOR; j > 0 ; j--)
      res = test1(i);
    time = System.currentTimeMillis( ) - time;
    System.out.println("test1(i) took " + time);
  
    time = System.currentTimeMillis( );
    for (int j = REPEAT; j > 0 ; j--)
      res = test1(b);
    time = System.currentTimeMillis( ) - time;
    System.out.println("test1(b) took " + time);
  
    //and the same timed test for test2(i) and test2(b),
    //iterating REPEAT*FACTOR times
    ...
}
  
  public static boolean test1(Object o)
  {
    try {
      Integer i = (Integer) o;
      return false;
    }
    catch (Exception e) {return true;}
  }
  
  public static boolean test2(Object o)
  {
    if (o instanceof Integer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


      return false;
    else
      return true;
  }
}

The results of this comparison show that if test2( ) (using instanceof) takes one time unit, test1( )
with the ClassCastException thrown takes over 100 time units in JDK 1.4 (see the first line in Table 6-2).

The second line in Table 6-2 shows the relative cost of throwing the exception with different parameters

passed to test1( ), and also shows that throwing the exception is very costly. The two lines together show

that using instanceof is fairly efficient.

Table 6-2. Extra cost of try-catch blocks when exceptions are thrown

Relative times for 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server[2] 1.4.0-xInt

test1(b)/test2(b) ~60 ~35 ~90 ~720 ~100 N/A ~30

test1(b)/test1(i) ~160 ~90 ~1000 ~40000 ~1000 N/A ~200

test2(b)/test2(i) 1 1 ~10 ~100 ~10 N/A ~5

[2] The 1.4 JVM JIT compiler in server mode identified that the test was effectively a repeated constant
expression and collapsed the loop to one call, thus eliminating the test. The costs of using exceptions
are still present in 1.4.0 server mode, but this test cannot show those costs.

For VMs not running a JIT, or using HotSpot technology, the relative times for

test2( ) are different depending on the object passed. test2( ) takes one time

unit when returning true but, curiously, two to ten time units when returning false.

This difference for a false result indicates that the instanceof operator is faster

when the instance's class correctly matches the tested class. A negative instanceof

test must also check whether the instance is from a subclass or interface of the

tested type before it can definitely return false. Given this, it is actually quite

interesting that with a simple JIT, there is no difference in times between the two

instanceof tests.

Because it is impossible to add methods to classes that are compiled (as opposed to classes you have the

source for and can recompile), there are necessarily places in Java code where you have to test for the type

of object. Where this type of code is unavoidable, you should use instanceof, as shown in test2( ),

rather than a speculative class cast. There is no maintenance disadvantage in using instanceof, nor is the

code any clearer or easier to alter by avoiding its use. I strongly advise you to avoid the use of the

speculative class cast, however. It is a real performance hog and ugly as well.

6.1.3 Using Exceptions Without the Stack Trace Overhead

You may decide that you definitely require an exception to be thrown, despite the disadvantages. If the

exception is thrown explicitly (i.e., using a throw statement rather than a VM-generated exception such as

the ClassCastException or ArrayIndexOutOfBoundsException), you can reduce the cost by reusing

an exception object rather than creating a new one. Most of the cost of throwing an exception is incurred in

actually creating the new exception, which is when the stack trace is filled in. Reusing an existing exception
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object without resetting the stack trace avoids the exception-creation overhead. Throwing and catching an

existing exception object is two orders of magnitude faster than doing the same with a newly created

exception object:

public static Exception REUSABLE_EXCEPTION = new Exception( );
...
  //Much faster reusing an existing exception
  try {throw REUSABLE_EXCEPTION;}
  catch (Exception e) {...}
  
  //This next try-catch is 50 to 100 times slower than the last
  try {throw new Exception( );}
  catch (Exception e) {...}

The sole disadvantage of reusing an exception instance is that the instance does not have the correct stack

trace, i.e., the stack trace held by the exception object is the one generated when the exception object was

created.[3] This disadvantage can be important for some situations when the trace is important, so be

careful. This technique can easily lead to maintenance problems.

[3] To get the exception object to hold the stack trace that is current when it is thrown, rather than
created, you must use the fillInStackTrace( ) method. Of course, this is what causes the large

overhead that you are trying to avoid.

6.1.4 Conditional Error Checking

During development, you typically write a lot of code that checks the arguments passed into various

methods for validity. This kind of checking is invaluable during development and testing, but it can lead to a

lot of overhead in the finished application. Therefore, you need a technique for implementing error checks

that can optionally be removed during compilation. The most common way to do this is to use an if block:

public class GLOBAL_CONSTANTS {
  public static final boolean ERROR_CHECKING_ON = true;
  ...
}
  
//and code in methods of other classes includes an if block like
if (GLOBAL_CONSTANTS.ERROR_CHECKING_ON)
{
  //error check code of some sort
  ...

This technique allows you to turn off error checking by recompiling the application with the

ERROR_CHECKING_ON variable set to false. Doing this recompilation actually eliminates all if blocks

completely, due to a feature of the compiler (see Section 3.9.1.4 in Chapter 3). Setting the value to false
without recompilation also works, but avoids only the block, not the block entry test. In this case, the if

statement is still executed, but the block is not entered. This still has some performance impact: an extra

test for almost every method call is significant, so it is better to recompile.[4]

[4] However, this technique cannot eliminate all types of code blocks. For example, you cannot use this
technique to eliminate try-catch blocks from the code they surround. You can achieve that level of

control only by using a preprocessor. My thanks to Ethan Henry for pointing this out.
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6.2 Assertions

SDK 1.4 added assertions to the Java specification. Assertions allow you to add statements into your code of

the form:

assert boolean_expression;

where boolean_expression is any valid Java expression that evaluates to produce a boolean result. If the

boolean expression evaluates to false , an AssertionError is thrown. A second form of the assert
statement allows an additional parameter that evaluates to a String :

assert boolean_expression : String_expression;

The second form allows customization of the error message produced when an assertion fails. For example:

assert param1 >= 0 : 
 "Parameter param1 must be non-negative, but was " + param1;

The difference between an assert statement and a normal statement is that the assert statement can be

disabled at runtime. More precisely, assertions can be enabled or disabled at runtime, and you can specify

separately for each class whether its assertions are enabled or disabled using the -ea and -da parameters of

the java command. Assertions can also be enabled and disabled from code using the various

Classloader.set*AssertionStatus( ) methods. The assertion status of a class is fixed once that class

has been loaded. The classloader enables or disables assert statements.

The only limitation of the assert keyword is that it must be used in an executable block. An assertion cannot

be used with class variable declarations, for instance, but can be placed within any method.

Using assertions generally improves the quality of code and assists in diagnosing problems in an application.

Application code should be written so that it is functionally the same when running with assertions disabled.

Assertions that cannot be disabled without altering the functionality of the code should not be defined as

assertions.

The assert keyword is not recognized by compilers prior to 1.4. To use assertions

with 1.4, you need to specify to the compiler that the Java source file is from SDK 1.4,

using the parameters -source 1.4 . Unfortunately, the resulting bytecode can not be

run under pre-1.4 JVMs.

6.2.1 Assertion Overhead

It is useful to understand how the assertion mechanism works to see how assertion statements can affect

performance. When the compiler finds an assertion in a class, it adds a generated static final field named

$assertionsDisabled to the class. The field is left unassigned (this is legal bytecode). The assertion itself is

compiled into a statement of the form:

if ($assertionsDisabled)
  if (!boolean_expression)
    throw new AssertionError(String_expression);
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At classloading time, the classloader determines the assertion status of the class using the various rules listed

in the assertion specification, and sets the $assertionsDisabled field accordingly. This means that without

any further optimizations, every assert imposes a minimum of one runtime boolean test, even if assertions

have been disabled.

There are two potential optimizations that could completely eliminate this assertion overhead. First, the

classloader itself could strip out the assertion status test and the subsequent if statement when assertions

are disabled. As the $assertionsDisabled is a final variable, there is no prospect of the value changing

later, so the test is not actually necessary: when assertions are enabled the boolean expression if statement

would be executed directly with no assertion status test; when assertions are disabled the boolean expression

if statement would be completely eliminated together with the assertion status test. In practice, however,

Sun has not enabled the classloader to strip the assertion status test.

As a result, we must consider an alternative optimization. This one uses exactly the same procedure outlined

for the classloader optimization but, instead of the classloader, the JIT compiler would strip out the

unnecessary statements. In fact, this simply applies the standard compiler optimization of eliminating dead

code. This is the approach taken by Sun, which has left the optimization to the HotSpot JIT compiler. This

means that, at least for the initial 1.4 release, the overhead of assert statements is dependent on whether a

JVM strips those statements. For example, the 1.4 JVM running in client (default) mode is not sufficiently

aggressive in JIT compilation optimizations to eliminate assertion overhead. However, when running the same

JVM in server mode (with the -server parameter), the JIT compiler effectively eliminates disabled assertion

statements.

Table 6-3 and Table 6-4 list the results of testing code with assertion statements compared to using an explicit

and equivalent if...throw test and to the same code with no tests. As the overhead of the assertion

depends on what it is being compared against, I used two separate baselines, comparing assertion cost

against a very quick test, essentially just a return statement, and against a more complex, slower test. The

test class code is listed shortly after the results.

Table 6-3. Overhead from an assertion statement in a very simple method

Simple method test java -client java -server

no check or assert 100% 0%[5]

with assert disabled 235% 57%

with assert enabled 243% 194%

with explicit check 137% 192%

[5] The server mode JIT compiler inlined the quick test into the test loop, resulting in no method call
overhead at all and a legible measurement for test time. Interestingly, the server mode fails to do this
when the assert is disabled.

Table 6-4. Overhead from an assertion statement in a complex method
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Complex method test java -client java -server

no check or assert 100% 95%

with assert disabled 100% 95%

with assert enabled 107% 95%

with explicit check 109% 95%

Clearly, assertions can add significant overhead to short methods. You may want to avoid adding assertions

willy-nilly to setters, getters, and other short, frequently called methods. However, there is no need to become

paranoid about whether or not to add assertions. It is probably better initially to add assertions as desired

irrespective of performance considerations, then catch and eliminate any expensive assertions using a profiler.

For longer methods, assertions can be added without too much concern.

But do note that when enabled, any assertion takes at least as long to run as its boolean_expression

evaluation takes. Consequently, code running with assertions enabled will definitely be slower than code

running with assertions disabled, even if only a few percent slower. If possible, you should run the application

with as many assertions disabled as possible. Similarly, since assertions can be turned off but explicit checks

cannot, you should consider changing all explicit checks for incorrect parameters and state in your code to use

assertions instead of explicitly using if...throw statements. For example, IllegalArgumentException s

often test for documented incorrect conditions, and these tests could be changed to assertions. The decision

about whether any particular test can be changed to an assertion ultimately comes down to whether the test

should always be present (don't make it an assertion), or whether the test is optional and provides extra

robustness, especially during development and testing (definitely an assertion candidate).

Finally, remember to profile the application as it will be run in practice, with the same mixture of assertions

turned on or off. Don't make the mistake of profiling the application with all assertions turned off or turned on

if that is not the way the application will be run when deployed.

package tuning.asserts;
  
public class AssertTest1 {
  
  static int sval;
  static int[  ] some_array = {3,5,9,16,5,18,23,66,28,19};
  
  public static int testWithNoCheck(int val)
  {
//alternative short test
//    return val+2;
    double x = Math.cos(val%Math.PI);
    double y = Math.sin(val%Math.PI);
    double d = x*x + y*y;
    d = Math.sqrt(d);
    return Math.abs(val - some_array[((int) Math.abs(d))%10]);
  }
  
  public static int testWithExplicitCheck(int val)
  {
    if (val < 0)
      throw new IllegalArgumentException("parameter val should be positive, but is " 
+ val);
//alternative short test
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//    return val+2;
    double x = Math.cos(val%Math.PI);
    double y = Math.sin(val%Math.PI);
    double d = x*x + y*y;
    d = Math.sqrt(d);
    return Math.abs(val - some_array[((int) Math.abs(d))%10]);
  }
  
  public static int testWithAssert(int val)
  {
    assert (val >= 0) : "parameter val should be positive, but is " + val;
//alternative short test
//    return val+2;
    double x = Math.cos(val%Math.PI);
    double y = Math.sin(val%Math.PI);
    double d = x*x + y*y;
    d = Math.sqrt(d);
    return Math.abs(val - some_array[((int) Math.abs(d))%10]);
  }
  
  public static void main(String[  ] args)
  {
    test(args);
    test(args);
  }
  public static void test(String[  ] args)
  {
    try
    {
      testWithAssert(-1);
      System.out.println("Asserts off");
    }
    catch(Throwable t)
    {
      System.out.println("Asserts on");
    }
  
    int REPEAT = Integer.parseInt(args[0]);
  
    int v = 0;
    long time = System.currentTimeMillis(  );
    sval = 0;
    for (int i = 0; i < REPEAT/10; i++)
      v = testWithNoCheck(v);
  
    v = 0;
    sval = 0;
    time = System.currentTimeMillis(  );
    for (int i = 0; i < REPEAT; i++)
      v = testWithExplicitCheck(v);
    time = System.currentTimeMillis(  ) - time;
    System.out.println("testWithExplicitCheck took " + time + " millis, val = " + v + 
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" sval = " + sval);
  
    v = 0;
    sval = 0;
    time = System.currentTimeMillis(  );
    for (int i = 0; i < REPEAT; i++)
      v = testWithAssert(v);
    time = System.currentTimeMillis(  ) - time;
    System.out.println("testWithAssert took " + time + " millis, val = " + v + " sval 
= " + sval);
  
    v = 0;
    sval = 0;
    time = System.currentTimeMillis(  );
    for (int i = 0; i < REPEAT; i++)
      v = testWithNoCheck(v);
    time = System.currentTimeMillis(  ) - time;
    System.out.println("testWithNoCheck took " + time + " millis, val = " + v + " 
sval = " + sval);
  
  }
}
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6.3 Casts

Casts also have a cost. Casts that can be resolved at compile time can be eliminated by the compiler (and

are eliminated by the JDK compiler). Consider the two lines:

Integer i = new Integer(3);
Integer j = (Integer) i;

These two lines are compiled as if they were written as:

Integer i = new Integer(3);
Integer j = i;

On the other hand, casts not resolvable at compile time must be executed at runtime. But note that an

instanceof test cannot be fully resolved at compile time:

Integer integer = new Integer(3);
if (integer instanceof Integer)
  Integer j = integer;

The test in the if statement here cannot be resolved by most compilers because instanceof can return

false if the first operand (integer) is null. (A more intelligent compiler might resolve this particular case

by determining that integer was definitely not null for this code fragment, but most compilers are not

that sophisticated.)

Primitive data type casts (ints, bytes, etc.) are quicker than object data type casts because there is no test

involved, only a straightforward data conversion. But a primitive data type cast is still a runtime operation

and has an associated cost.

Object type casts basically confirm that the object is of the required type. It appears that a VM with a JIT

compiler is capable of reducing the cost of some casts to practically nothing. The following test, when run

under JDK 1.2 without a JIT, shows object casts having a small but measurable cost. With the JIT compiler

running, the cast has no measurable effect (see Table 6-5):

package tuning.exception;
  
public class CastTest
{
  public static void main(String[  ] args)
  {
    Integer i = new Integer(3);
    int REPEAT = 500000000;
    Integer res;
  
    long time = System.currentTimeMillis( );
    for (int j = REPEAT; j > 0 ; j--)
      res = test1(i);
    time = System.currentTimeMillis( ) - time;
    System.out.println("test1(i) took " + time);
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    time = System.currentTimeMillis( );
    for (int j = REPEAT; j > 0 ; j--)
      res = test2(i);
    time = System.currentTimeMillis( ) - time;
    System.out.println("test2(i) took " + time);
  
    ... and the same test for test2(i) and test1(i)
  }
  
  public static Integer test1(Object o)
  {
    Integer i = (Integer) o;
    return i;
  }
  
  public static Integer test2(Integer o)
  {
    Integer i = (Integer) o;
    return i;
  }
}

Table 6-5. The extra cost of casts

VM 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0 -xInt

Increase in time None None >20% None >100% None >5%

However, the cost of an object type cast is not constant: it depends on the depth of the hierarchy and

whether the casting type is an interface or a class. Interfaces are generally more expensive to use in casting,

and the further back in the hierarchy (and ordering of interfaces in the class definition), the longer the cast

takes to execute. Remember, though: never change the design of the application for minor performance

gains.

It is best to avoid casts whenever possible; for example, use type-specific collection classes instead of

generic collection classes. Rather than use a standard List to store a list of Strings, you gain better

performance with a StringList class. You should always try to type the variable as precisely as possible. In

Chapter 9, you can see that by rewriting a sort implementation to eliminate casts, the sorting time can be

halved.

If a variable needs casting several times, cast once and save the object into a temporary variable of the cast

type. Use that temporary variable instead of repeatedly casting; avoid the following kind of code:

if (obj instanceof Something)
  return ((Something)obj).x + ((Something)obj).y + ((Something)obj).z;
...

Instead, use a temporary variable:[6]

[6] This is a special case of common subexpression elimination. See Section 3.8.2.14 in Chapter 3.
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if (obj instanceof Something)
{
  Something something = (Something) obj;
  return something.x + something.y + something.z;
}
...

The revised code is also more readable. In tight loops, you may need to evaluate the cost of repeatedly

assigning values to a temporary variable (see Chapter 7).
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6.4 Variables

Local (temporary) variables and method-argument variables are the fastest variables to access and update.

Local variables remain on the stack, so they can be manipulated directly; the manipulation of local variables

depends on both the VM and the underlying machine implementation. Heap variables (static and instance

variables) are manipulated in heap memory through the Java VM-assigned bytecodes that apply to these

variables. There are special bytecodes for accessing the first four local variables and parameters on a

method stack. Arguments are counted first; then, if there are fewer than four passed arguments, local

variables are counted. For nonstatic methods, this always takes the first slot. longs and doubles each

take two slots. Theoretically, this means that methods with no more than three parameters and local

variables combined (four for static methods) should be slightly faster than equivalent methods with a

larger number of parameters and local variables. It also means that any variables allocated the special

bytecodes should be slightly faster to manipulate. In practice, I have found any effect to be small or

negligible, and it is not worth the effort involved to limit the number of arguments and variables.

Instance and static variables can be up to an order of magnitude slower to operate on when compared to

method arguments and local variables. You can see this clearly with a simple test comparing local and static

loop counters:

package tuning.exception;
  
public class VariableTest2
{
  static int cntr;
  public static void main(String[  ] args)
  {
    int REPEAT = 500000000;
  
    int tot = 0;
    long time = System.currentTimeMillis( );
    for (int i = -REPEAT; i < 0; i++)
      tot += i;
    time = System.currentTimeMillis( ) - time;
    System.out.println("Loop local took " + time);
  
    tot = 0;
    time = System.currentTimeMillis( );
    for (cntr = -REPEAT; cntr < 0; cntr++)
      tot += cntr;
    time = System.currentTimeMillis( ) - time;
    System.out.println("Loop static took " + time);
  
  }
}

Running this test results in the second loop taking significantly longer than the first loop (see Chapter 6).
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Table 6-6. The cost of nonlocal loop variables relative to local variables

Times relative to local loop

variables
1.1.8 1.2.2 1.3.1

1.3.1-

server
1.4.0

1.4.0-

server[7]
1.4.0-

xInt

Static variable time/ local variable

time
122% 126% 296% 259% 226% N/A 127%

Static array element/ local variable

time
126% 127% 630% 1034% 315% N/A 211%

[7] The 1.4 JVM JIT compiler in server mode identified that the test was effectively a repeated constant
expression and collapsed the loop to one call, thus eliminating the test. Other tests have shown that
the costs of static and array elements compared to local variables are still present in 1.4.0 server
mode, but this test cannot show those costs.

If you are making many manipulations on an instance or static variable, it is better to execute them on a

temporary variable, then reassign to the instance variable at the end. This is true for instance variables that

hold arrays as well. Arrays also have an overhead, due to the range checking Java provides. So if you are

manipulating an element of an array many times, again you should probably assign it to a temporary

variable for the duration. For example, the following code fragment repeatedly accesses and updates the

same array element:

for(int i = 0; i < Repeat; i++)
  countArr[0]+=i;

You should replace such repeated array element manipulation with a temporary variable:

int count = countArr[0];
for(int i = 0; i < Repeat; i++)
  count+=i;
countArr[0]=count;

This kind of substitution can also apply to an array object:

static int[  ] Static_array = {1,2,3,4,5,6,7,8,9};
  
public static int manipulate_static_array( ) {
  //assign the static variable to a local variable, and use that local
  int[  ] arr = Static_array;
  ...
  
//or even
public static int manipulate_static_array( ) {
  //pass the static variable to another method that manipulates it
  return manipulate_static_array(Static_array);}
public static int manipulate_static_array(int[  ] arr) {
 ...

Array-element access is typically two to three times as expensive as accessing nonarray elements.[8] This

expense is probably due to the range checking and null pointer checking (for the array itself) done by the

VM. The VM JIT compiler manages to eliminate almost all the overhead in the case of large arrays. But in

spite of this, you can assume that array-element access is going to be slower than plain-variable access in

almost every Java environment (this also applies to array-element updates). See Section 4.5 in Chapter 4
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for techniques to improve performance when initializing arrays.

[8] Mark Ruolo, "Accelerate Your Java Apps," JavaWorld, September 1998,
http://www.javaworld.com/javaworld/jw-09-1998/jw-09-speed.html.

ints are normally the fastest variable type to operate on. long s and doubles can take longer to access

and update than other variables because they are twice the basic storage length for Java (which is four

bytes). The Java specification allows longs and doubles to be stored in more than one action. The

specification allows the actual manipulation of longs and doubles to be implementation- and processor-

dependent, so you cannot assume that longs and doubles always take longer. If you have one specific

target environment, you can test it to determine its implementation. Note that because of the specification,

longs and doubles are the only data types that can be corrupted by simultaneous assignment from multiple

threads (see Section 10.6 in Chapter 10 for more details).

When executing arithmetic with the primitive data types, ints are undoubtedly the most efficient. shorts,

bytes, and chars are all widened to ints for almost any type of arithmetic operation. They then require a

cast back if you want to end up with the data type you started with. For example, adding two bytes

produces an int and requires a cast to get back a byte. longs are usually less efficient. Floating-point

arithmetic seems to be the worst.

Note that temporary variables of primitive data types (i.e., not objects) can be allocated on the stack, which

is usually implemented using a faster memory cache local to the CPU. Temporary objects, however, must be

created from the heap (the object reference itself is allocated on the stack, but the object must be in the

heap). This means that operations on any object are invariably slower than on any of the primitive data

types for temporary variables. Also, as soon as variables are discarded at the end of a method call, the

memory from the stack can immediately be reused for other temporaries. But any temporary objects remain

in the heap until garbage collection reallocates the space. The result is that temporary variables using

primitive (nonobject) data types are better for performance.

One other way to speed up applications is to access public instance variables rather than use accessor

methods (getters and setters). Of course, this breaks encapsulation, so it is bad design in most cases. The

JDK uses this technique in a number of places (e.g., Dimension and GridBagConstraints in java.awt
have public instance variables; in the case of Dimension, this is almost certainly for performance

reasons). Generally, you can use this technique without too much worry if you are passing an object that

encapsulates a bunch of parameters (such as GridBagConstraints); in fact, this makes for an extensible

design. If you really want to ensure that the object remains unaltered when passed, you can set the instance

variables to be final (as long as it is one of your application-defined classes).
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6.5 Method Parameters

As I said at the beginning of the last section, method parameters are low-cost, and you normally don't need

to worry about the cost of adding extra method parameters. But it is worth being alert to situations in which

there are parameters that could be added but have not been. This is a simple tuning technique that is rarely

considered. Typically, the parameters that could be added are arrays and array lengths. For example, when

parsing a String object, it is common not to pass the length of the string to methods because each method

can get the length using the String.length( ) method. But parsing tends to be intensive and recursive,

with lots of method calls. Most of those methods need to know the length of the string. Although you can

eliminate multiple calls within one method by assigning the length to a temporary variable, you cannot do

that when many methods need that length. Passing the string length as a parameter is almost certainly

cheaper than repeated calls to String.length( ).

Similarly, you typically access the elements of the string one at a time using String.charAt( ) . But

again, it is better for performance purposes to copy the String object into a char array and pass this array

through your methods (see Chapter 5). To provide a possible performance boost, try passing extra values

and arrays to isolated groups of methods. As usual, you should do this only when a bottleneck has been

identified, not throughout an implementation.

Finally, you can reduce the number of objects used by an application by passing an object into a method,

which then fills in the object's fields. This is almost always more efficient than creating new objects within

the method. See Section 4.2.3 for a more detailed explanation of this technique.
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6.6 Performance Checklist

Most of these suggestions apply only after a bottleneck has been identified:

Include all error-condition checking in blocks guarded by if statements.

Avoid throwing exceptions in the normal code path of your application.

Investigate whether a try-catch in the bottleneck imposes any extra cost.

Use instanceof instead of making speculative class casts in a try-catch block.

Consider throwing exceptions without generating a stack trace by reusing a previously created

instance.

Include any exceptions generated during the normal flow of the program when running performance

tests.

Assertions add overhead even when disabled, though an optimizing JIT compiler can eliminate the

overhead (only HotSpot server mode succeeded in 1.4.0).

Beware of adding assertions to quick, frequently called methods.

Minimize casting.

Avoid casts by creating and using type-specific collection classes.

Use temporary variables of the cast type, instead of repeatedly casting.

Type variables as precisely as possible.

Use local variables rather than instance or static variables for faster manipulation.

Use temporary variables to manipulate instance variables, static variables, and array elements.

Use ints in preference to any other data type.

Avoid long and double instance or static variables.

Use primitive data types instead of objects for temporary variables.

Consider accessing instance variables directly rather than through accessor methods. (But note that

this breaks encapsulation.)

Add extra method parameters when that would allow a method to avoid additional method calls.
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Chapter 7. Loops, Switches, and Recursion

I have made this letter longer than usual because I lack the time to make it shorter.

-Blaise Pascal

This chapter describes performance-tuning a variety of common code structures: loops, switches, and

recursion. Some of the tuning hints here are straightforward (for example, remove code from a loop if it is

executed only once), but many are more esoteric, particularly given the subtleties of optimizations

performed by HotSpot VMs and JIT compilers. Read on for details.
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7.1 Loops

Programs spend most of their time in loops. There are many optimizations that can speed up loops, as

detailed in the following sections.

7.1.1 Move Code Out of the Loop

Take out of the loop any code that does not need to be executed on every pass. This includes assignments,

accesses, tests, and method calls that need to run only once.

Method calls are more costly than the equivalent code without the call, and by repeating method calls again

and again, you just add overhead to your application. Move any method calls out of the loop, even if this

requires rewriting. Inline method calls in loops when possible.

7.1.2 Use Temporary Variables

Array access (and assignment) always has more overhead than temporary variable access because the VM

performs bounds-checking for array-element access. Array access is better done once (and assigned to a

temporary) outside the loop rather than repeated at each iteration. For example, consider this next loop:

for(int i = 0; i < Repeat; i++)
  countArr[0]+=10;

The following loop optimizes the last loop using a temporary variable to execute the addition within the loop.

The array element is updated outside the loop. This optimized loop is significantly better (twice as fast) than

the original loop:

count = countArr[0];
for(int i = 0; i < Repeat; i++)
  count+=10;
countArr[0]=count;

7.1.3 Don't Terminate Loops with Method Calls

Avoid using a method call in a loop termination test; the overhead is significant. I often see loops like this

when iterating through collections such as Vectors and Strings:

for(int i = 0; i < collection.size(  ); i++) //or collection.length(  )

This next loop factors out the maximum iteration value and is faster:

int max = v.size(  ); //or int max = s.length(  );
for(int i = 0; i < max; i++)

7.1.4 Use int for Index Variables
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Using int data types for the index variable is faster than using any other numeric data types. The VM is

optimized to use ints. Operations on bytes, shorts, and chars are normally carried out with implicit casts

to and from ints. The loop:

for(int i = 0; i < Repeat; i++)

is faster than using any of the other numeric data types:

for(long i = 0; i < Repeat; i++)
for(double i = 0; i < Repeat; i++)
for(char i = 0; i < Repeat; i++)

7.1.5 Use System.arraycopy( )

System.arraycopy( ) is faster than using a loop for copying arrays in any destination VM except where

you are guaranteed that the VM has a JIT. In the latter case, using your own for loop may be slightly faster.

I recommend using System.arraycopy( ) in either case, since even when the for loop is executing in a

JIT VM, it is only slightly faster.

7.1.6 Use Efficient Comparisons

Comparison to 0 is faster than comparisons to most other numbers. The VM has optimizations for

comparisons to the integers -1, 0, 1, 2, 3, 4, and 5. So rewriting loops to make the test a comparison

against 0 may be faster.[1]

[1] The latest VMs try to optimize the standard for(int i = 0; i < Repeat; i++) expression, so

rewriting the loop may not produce faster code. Only non-JIT VMs and HotSpot showed improvements
by rewriting the loop. Note that HotSpot does not generate native code for any method executed only
once or twice.

This alteration typically reverses the iteration order of the loop from counting up (0 to max) to counting

down (max to 0). For example, for loops are usually coded:

for(int i = 0; i < Repeat; i++)

Both of these functionally identical for loops are faster:

for(int i = Repeat-1; i >= 0; i--)
for(int i = Repeat; --i >= 0 ; )

When tests need to be made within a loop, try to use the fastest tests. For example, convert equality

comparisons to identity comparisons whenever possible. The following uses an equality comparison:

Integer one = new Integer(1);
  ...
  for (...)
   if (integer.equals(one))

This comparison is better replaced with an identity comparison:

for (...)
   if (integer =  = CANONICALIZED_INTEGER_ONE)
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Clearly, for this substitution to work correctly, the objects being compared must be matched by identity. You

may be able to achieve this by canonicalizing your objects (see Section 4.2.4). You can compare Strings by

identity if you String.intern( ) them to ensure you have a unique String object for every sequence of

characters, but obviously there is no performance gain if you have to do the interning within the loop or in

some other time-critical section of the application. Similarly, the java.util.Comparator and Comparable

interfaces provide a nice generic framework. But they impose a heavy overhead in requiring a method call

for every comparison and may be better avoided in special situations (see Chapter 9). One test I sometimes

see is for a Class:

if (obj.getClass(  ).getName(  ).equals("foo.bar.ClassName"))

It is more efficient to store an instance of the class in a static variable and test directly against that instance

(there is only one instance of any class):

//In class initialization
public static final Class FOO_BAR_CLASSNAME = Class.forName("foo.bar.ClassName");
...
//and in the method
if (obj.getClass(  ) =  = FOO_BAR_CLASSNAME)

Note that foo.bar.ClassName.class is a valid construct to refer to the foo.bar.ClassName class

object. However, the compiler generates a static method that calls Class.forName( ) and replaces the

foo.bar.ClassName.class construct with a call to that static method. So it is better to use the

FOO_BAR_CLASSNAME static variable as suggested, rather than:

if (obj.getClass(  ) =  = foo.bar.ClassName.class)

7.1.7 Put the Most Common Case First

When several boolean tests are made together in one expression in the loop, try to phrase the expression so

that it " short-circuits" as soon as possible by putting the most likely case first (see the sidebar Short-Circuit

Operators). Ensure that by satisfying earlier parts of the expression, you do not cause the later expressions

to be evaluated. For example, the following expression tests whether an integer is in the range 4 to 8 or is

the smallest integer:

if (someInt =  = Integer.MIN_VALUE || (someInt > 3 && someInt < 9))
  ... //condition1
else
  ... //condition2
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Short-Circuit Operators

The || and && boolean operators are "short-circuit" operators. Their left side is evaluated first,

and their right side is not evaluated at all if the result of the left side produces a conclusive result

for the expression. Specifically, the conditional-And operator, &&, evaluates its right side only if

the result of its left operand is true. The conditional-Or operator, ||, evaluates its right side

only if the result of its left operand is false.

These operators differ from the logical And and Or operators, & and |, in that these latter logical

boolean operators always evaluate both of their arguments. The following example illustrates the

differences between these two types of logical operators by testing both boolean And operators:

boolean b, c;
  b = c = true;
  //Left hand side makes the expression true
  if( (b=true) || (c=false) ) //is always true
    System.out.println(b + " " + c);
  b = c = true;
  if( (b=true) | (c=false) ) //is always true
    System.out.println(b + " " + c);

Here is the output this code produces:

true true
true false

The first test evaluates only the left side; the second test evaluates both sides even though the

result of the right side is not needed to determine the result of the full boolean expression.

Suppose that the integers passed to this expression are normally in the range of 4 to 8. Suppose also that if

they are not in that range, the integers passed are most likely to be values larger than 8. In this case, the

given ordering of tests is the worst possible ordering for the expression. As the expression stands, the most

likely result (integer in the 4 to 8 range) and the second most likely result (integer larger than 8) both

require all three boolean tests in the expression to be evaluated. Let's try an alternative phrasing of the test:

if (someInt > 8 || (someInt < 4 && someInt != Integer.MIN_VALUE))
... //condition2
else
... //condition1

This rephrasing is functionally identical to the original. But it requires only two tests to be evaluated to

process the most likely case, where the integer is in the 4 to 8 range, and only one test to be evaluated for

the second most likely case, where the integer is larger than 8.

7.1.8 Avoid Reflection

Avoid the use of reflection within loops (i.e., methods and objects in the java.lang.reflect package).

Using reflection to execute a method is much slower than direct execution (as well as being bad style). When

reflection functionality is necessary within a loop, change any implementation so that you can achieve the

same effect using interfaces and type overloading. For the 1.4 VMs, Sun targeted reflection as one of the
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areas to be speeded up. Some reflection operations are significantly faster than before 1.4, but reflection is

still slower than using an interface to call a method. Note that it is not just the resolution of a method that

causes overhead when using reflection. Invoking method calls using Method.invoke( ) is also more

expensive than using the plain method call. Handling method references can be complicated, especially with

VMs supporting natively compiled code. It can be necessary to manage artificial stack frames that impose

overhead to the method calls.
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7.2 Tuning a Loop

Let's look at an example of tuning a loop. In the java.io package, the Reader (and Writer) classes

provide character-based I/O (as opposed to byte-based I/O). The InputStreamReader provides a bridge

from byte to character streams. It reads bytes and translates them into characters according to a specified

character encoding. If no encoding is specified, a default converter class is provided. For applications that

spend a significant amount of time reading, it is not unusual to see the convert( ) method of this encoding

class high up on a profile of how the application time is spent.

It is instructive to examine how this particular conversion method functions and to see the effect of a tuning

exercise. Examining the bytecodes of the convert( ) method[2] where most of the time is being spent,

you can see that the bytecodes correspond to the following method (the Exception used is different; I have

just used the generic Exception class):

[2] The convert method is a method in one of the sun.* packages, so the source code is not available.

I have chosen the convert method from the default class used in some ASCII environments, the ISO
8859_1 conversion class.

public int convert(byte input[  ], int byteStart, int byteEnd, 
                  char output[  ], int charStart, int charEnd)
  throws Exception
{
  int charOff = charStart;
  for(int byteOff = byteStart; byteOff < byteEnd;)
  {
    if(charOff >= charEnd)
      throw new Exception(  );
    int i1 = input[byteOff++];
    if(i1 >= 0)
      output[charOff++] = (char)i1;
    else
      output[charOff++] = (char)(256 + i1);
  }
  
  return charOff - charStart;
}

Basically, the method takes a byte array (input) and converts the elements from byteStart to byteEnd
of that array into characters. The conversion of bytes to chars is straightforward, consisting of mapping

positive byte values to the same char value, and mapping negative byte values to the char with value

(byte value + 256). These chars are put into the passed char array (output) from indexes charStart to

charEnd.

It doesn't seem that there is too much scope for tuning. There is the obvious first test, which is performed

every time through the loop. You can certainly move that. But let's start by trying to tune the data

conversion itself. First, be sure that casts on data types are efficient. It's only a quick test to find out. Add a

static char array to the class, which contains just char values 0 to 127 at elements 0 to 127 in the array.

Calling this array MAP1, test the following altered method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir


public int convert(byte input[  ], int byteStart, int byteEnd, 
                  char output[  ], int charStart, int charEnd)
  throws Exception
{
  int charOff = charStart;
  for(int byteOff = byteStart; byteOff < byteEnd;)
  {
    if(charOff >= charEnd)
      throw new Exception(  );
    int i1 = input[byteOff++];
    if(i1 >= 0)
      output[charOff++] = MAP1[i1];
    else
      output[charOff++] = (char)(256 + i1);
  }
  
  return charOff - charStart;
}

On the basis of the original method taking a normalized 100.0 seconds in test runs, this alternative takes an

average of 111 seconds over a set of test runs (some VMs, notably the server-mode HotSpot VMs, show

even worse performance). Well, that says that casts are not so slow, but it hasn't helped make this method

any faster. However, the second cast involves an addition as well, and perhaps you can do better here.

Unfortunately, there is no obvious way to use a negative value as an index into the array without executing

some offset operation, so you won't gain time. For completeness, test this (with an index offset given by

i1+128) and find that the average time is at the 110-second mark. This is not significantly better than the

last test, and definitely worse than the original.

Array-lookup speeds are highly dependent on the processor and the memory-access

instructions available from the processor. The lookup speed is also dependent on the

compiler taking advantage of the fastest memory-access instructions available. It is

possible that other processors, VMs, or compilers will produce lookups faster than the

cast.

But we have gained an extra option from these two tests. It is now clear that we can map all the bytes to

chars through an array. Perhaps we can eliminate the test for positiveness applied to the byte (i.e., if(i1
>= 0)) and use a char array to map all the bytes directly. And indeed we can. Use the index conversion

from the second test (an index offset given by i1+128), with a static char array that contains just char
values 128 to 255 at elements 0 to 127 in the array, and char values 0 to 127 at elements 128 to 255 in

the array.

The method now looks like:

public int convert(byte input[  ], int byteStart, int byteEnd, 
                  char output[  ], int charStart, int charEnd)
  throws Exception
{
  int charOff = charStart;
  for(int byteOff = byteStart; byteOff < byteEnd;)
  {
    if(charOff >= charEnd)
      throw new Exception(  );
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    int i1 = input[byteOff++];
    output[charOff++] = MAP3[128 + i1];
  }
  
  return charOff - charStart;
}

We have eliminated one boolean test each time through the loop at the expense of using a slightly more

expensive data-conversion method (array access rather than the cast). The average test result is now

slightly faster than the original method. But different VMs show different speedups at this stage: the VMs of

1.1.6, 1.1.8, 1.2.2, 1.3.1, 1.4.1 server, and 1.4.1 interpreted are 5% to 30% faster, whereas 1.2.0, 1.3.1

server, and 1.4.0 client are 5% to 15% slower.

Cleaning up the method slightly, we can see that the temporary variable, i1, which was previously required

for the test, is no longer needed. Being assiduous tuners and clean coders, we eliminate it and retest so that

we have a new baseline to start from. Astonishingly (to me at least), this speeds up the test measurably in

some VMs. The average test time is now even better, though again, a couple of VMs are still slower than the

original method. Some VMs incurred a definite overhead from the redundant temporary variable in the loop:

a lesson to keep in mind for general tuning.

It may be worth testing to see if an int array performs better than the char array (MAP3) previously used,

since ints are the faster data type. And indeed, changing the type of this array and putting a char cast in

the loop improves times slightly for some but not all VMs, and on average times are worse. More to the

point, after this effort, we have not really managed a speedup consistent enough or good enough to justify

the time spent on this tuning exercise.

Now I'm out of original ideas, but one of my readers, Jesper Larsson from Sweden, has thought of a better

way to map the chars to bytes. Jesper noticed that the conversion corresponds to a simple bitwise

operation, guaranteed by the Java language specification to work. The resulting method uses the following

bitwise operator:

    output[charOff++] = (char)(input[byteOff++] & 0xFF);

instead of the previously used array map:

    output[charOff++] = (char) MAP5[input[byteOff++]+128];

All the VMs except the 1.4.0 server mode show Jesper's optimization to be significantly better. And the 1.4.0

server mode is slower only because it has already done a brilliant job of optimizing the earlier changes: in

absolute time, the 1.4.0 server mode at this stage is nearly twice as fast as any other VM (probably from

loop unrolling; see the later discussion).

Now we will apply the standard optimizations. Start by eliminating expressions from the loop that do not

need to be repeatedly called, and move the other boolean test (the one for the out-of-range Exception)

out of the loop. The method now looks like this:

public int convert(byte input[  ], int byteStart, int byteEnd, 
                  char output[  ], int charStart, int charEnd)
  throws Exception
{
  int max = byteEnd;
  boolean throwException = false;
  if ( byteEnd-byteStart > charEnd-charStart )
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  {
    max = byteStart+(charEnd-charStart);
    throwException = true;
  }
  
  int charOff = charStart;
  for(int byteOff = byteStart; byteOff < max;)
  {
    output[charOff++] = (char)(input[byteOff++] & 0xFF);
  }
  if(throwException)
    throw new Exception(  );
  
  return charOff - charStart;
}

I am taking the trouble to make the method functionally identical to the original. The original version filled in

the array until the actual out-of-range exception is encountered, so I do the same. If you throw the

exception as soon as you establish the index is out of range, the code will be slightly more straightforward.

Other than that, the loop is the same as before, but without the out-of-range test and without the temporary

assignment. The average test result is now the fastest we've obtained on any tests on all VMs. We've shaved

off a third to a half of the time spent in this loop. This is mainly down to eliminating tests that were originally

being run on each loop iteration. This speedup applied to all VMs tested.

Loop unrolling is another standard optimization that eliminates some more tests. Let's partially unroll the

loop and see what sort of a gain we get. In practice, the optimal amount of loop unrolling corresponds to the

way the application uses the convert( ) method, for example, the size of the typical array that is being

converted. But in any case, we use a particular example of 10 loop iterations to see the effect.

Optimal loop unrolling depends on a number of factors, including the underlying

operating system and hardware. Loop unrolling is ideally achieved by way of an

optimizing compiler rather than by hand. HotSpot interacts with manual loop

unrolling in a highly variable way: sometimes HotSpot makes the unoptimized loop

faster, sometimes the manually unrolled loop comes out faster. Table 8-1 and Table

8-2 show HotSpot producing both faster and slower times for the same manually

unrolled loop, depending on the data being processed. These two tables show the

results from the same optimized program being run against files with long lines

(Table 8-1) and files with short lines (Table 8-2). Of all the VMs tested, only the

HotSpot VM produces inconsistent results, with a speedup when processing the long-

line files but a slowdown when processing the short-line files. (The last two lines of

each table show the difference between the original loop and the manually unrolled

loop.)

The method now looks like this:

public int convert(byte input[  ], int byteStart, int byteEnd, 
                  char output[  ], int charStart, int charEnd)
  throws Exception
{
  //Set the maximum index of the input array to wind to
  int max = byteEnd;
  boolean throwException = false;
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  if ( byteEnd-byteStart > charEnd-charStart )
  {
    //If the byte arry length is larger than the char array length
    //then we will throw an exception when we get to the adjusted max
    max = byteStart+(charEnd-charStart);
    throwException = true;
  }
  
  //charOff is the 'current' index into 'output'
  int charOff = charStart;
  
  //Check that we have at least 10 elements for our
  //unrolled part of the loop
  if (max-byteStart > 10)
  {
    //shift max down by 10 so that we have some elements
    //left over before we run out of groups of 10
    max -= 10;
    int byteOff = byteStart;
    //The loop test only tests every 10th test compared
    //to the normal loop. All the increments are done in
    //the loop body. Each line increments the byteoff by 1
    //until it's incremented by 10 after 10 lines. Then the test
    //checks that we are still under max - if so then loop again.
    for(; byteOff < max;)
    {
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
    }
  
    //We exited the loop because the byteoff went over the max.
    //Fortunately we kept back 10 elements so that we didn't go
    //too far past max. Now add the 10 back, and go into the
    //normal loop for the last few elements.
    max += 10;
    for(; byteOff < max;)
    {
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
    }
  }
  else
  {
    //If we're in this conditional, then there aren't even
    //10 elements to process, so obviously we don't want to
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    //do the unrolled part of the method.
    for(int byteOff = byteStart; byteOff < max;)
    {
      output[charOff++] = (char) (input[byteOff++] & 0xFF);
    }
  }
  //Finally if we indicated that the method needed an exception
  //thrown, we do it now.
  if(throwException)
    throw new Exception(  );
  
  return charOff - charStart;  
}

The average test result is now around 50% of the original method time for almost all the VMs. Only the 1.4.0

server-mode VM has a different result. Though still faster than the original method and almost all the other

VMs, the last manual loop unrolling actually slowed down the 1.4.0 VM compared to running it with the

earlier optimized method. This is likely to be caused by the 1.4 server VM doing a far better job of unrolling

the loop than our handcrafted unroll.

It's good news that this kind of optimization is finally being applied efficiently by the VM. But from a

performance-tuning point of view, this means that it is difficult to know whether to unroll the loop manually

or not. Obviously, if you know exactly which VM your application runs on, you can establish whether the

unrolling optimization produces faster code. But if your application could be used under any VM, the decision

is more complex. The slower VMs benefit from manual unrolling, whereas the faster, server-mode VMs still

remain faster in absolute terms even after being slowed down by manual loop unrolling. This suggests that,

at least for the time being, manual loop unrolling is worth considering.

It is worth repeating that the speedup we have obtained is mainly a result of eliminating tests that were

originally run in each loop iteration. For tight loops (i.e., loops that have a small amount of actual work that

needs to be executed on each iteration), the overhead of tests is definitely significant.

It is also important during the tuning exercise to run the various improvements under different VMs and

determine that the improvements are generally applicable. My tests indicate that these improvements are

generally valid for all runtime environments. (One development environment with a very slow VM-an order

of magnitude slower than the Sun VM without JIT-showed only a small improvement. However, it is not

generally a good idea to base performance tests on development environments.)

For a small Java program that does simple filtering or conversion of data from text files, this convert( )

method could take 40% of the total program time. Improving this one method as shown can shave 20%

from the time of the whole program, which is a good gain for a relatively small amount of work (it took me

longer to write this section than to tune the convert( ) method).
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7.3 Exception-Terminated Loops

This is a technique for squeezing out the very last driblet of performance from loops. With this technique,

instead of testing on each loop iteration to see whether the loop has reached its normal termination point,

you use an exception generated at the end of the loop to halt the loop, thus avoiding the extra test on each

run through the loop.

I include this technique here mainly because it is a known performance-tuning technique, but I do not

recommend it as I feel it is bad programming practice (the phrase "enough rope to hang yourself" springs to

mind). I'll illustrate the technique with some straightforward examples. The full class for testing the

examples is listed later, after I discuss the test results. The tests themselves are very simple. Basically, each

test runs two varieties of loops. The first variety runs a standard for loop as you normally write it:

for (int loopvar = 0; loopvar < someMax; loopvar++)

The second variety leaves out the termination test in the for loop, thus making the loop infinite. But these

latter loops are put inside a try-catch block so an exception terminates the loop:

try
{
  for (int loopvar = 0; ; loopvar++)
  ... //exception is thrown when loop needs to terminate
}
catch(Exception e) {  }

The three tests I use are:

A loop that executes integer divisions. The unterminated variety throws an ArithmeticException

when a division by zero occurs to terminate the loop.

A loop that initializes an array of integers. The unterminated variety throws an

ArrayIndexOutOfBoundsException when the index of the array grows too large.

A loop that enumerates a Vector. The unterminated variety throws a NoSuchElementException

when there are no more elements to enumerate.

The results of my test runs (summarized in Table 7-1) were variable due to differences in memory allocation,

disk paging, and garbage collection. The VMs using HotSpot technology could show quite variable behavior.

The plain JDK 1.2 VM had a huge amount of trouble reclaiming memory for the later tests, even when I put

in pauses and ran explicit garbage-collection calls more than once. For each set of tests, I tried to increase

the number of loop iterations until the timings were over one second. For the memory-based tests, it was

not always possible to achieve times of over a second: paging or out-of-memory errors were encountered.

Table 7-1. Speedup using exception-driven loop termination
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Speedups 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4 1.4-server 1.4 -Xint

Integer division ~2% ~2% None ~20% ~2% None ~40%

Assignment to loop None None ~15% None ~20% ~5% ~50%

Vector enumeration ~5% ~7% ~25% ~20% ~25% ~30% ~50%

The 1.3 and 1.4 server-mode VMs were variable, sometimes showing slightly slower times using this

technique. In all test cases, I found that the number of iterations for each test was quite important. When I

could run the test consistently, there was usually a loop iteration value above which the exception-

terminated loop ran faster. One test run output (without JIT) follows:

Division loop with no exceptions took 2714 milliseconds
Division loop with an exception took 2604 milliseconds
Division loop with an exception took 2574 milliseconds
Division loop with no exceptions took 2714 milliseconds
Assignment loop with no exceptions took 1622 milliseconds
Assignment loop with an exception took 1242 milliseconds
Assignment loop with an exception took 1222 milliseconds
Assignment loop with no exceptions took 1622 milliseconds
Enumeration loop with no exceptions took 42632 milliseconds
Enumeration loop with an exception took 32386 milliseconds
Enumeration loop with an exception took 31536 milliseconds
Enumeration loop with no exceptions took 43162 milliseconds

It is completely conceivable (and greatly preferable) that a compiler or runtime system automatically

optimizes loops like this to give the fastest alternative. On some Java systems, try-catch blocks may have

enough extra cost associated with them to make this technique slower. Because of the differences in

systems, and also because I believe exception-terminated code is difficult to read and likely to lead to bugs

and maintenance problems if it proliferates, I prefer to steer clear of this technique.

The actual improvement (if any) in performance depends on the test case that runs in the loop and the code

that is run in the body of the loop. The basic consideration is the ratio of the time taken in the loop test

compared to the time taken in the body of the loop. The simpler the loop-body execution is compared to the

termination test, the more likely that this technique will give a useful effect. This technique works because

the termination test iterated many times can have a higher cost than producing and catching an Exception

once. Here is the class used for testing, with comments. It is very simple, and the exception-terminated loop

technique used is clearly illustrated. Look for the differences between the no_exception methods and the

with_exception methods:

package tuning.loop;
  
public class ExceptionDriven
{
  //Use a default size for the number of iterations
  static int SIZE = 1000000;
  
  public static void main(String args[  ])
  {
    //Allow an argument to set the size of the loop.
    if (args.length != 0)
      SIZE = Integer.parseInt(args[0]);
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    //Run the two tests twice each to ensure there were no
    //initialization effects, reversing the order on the second
    //run to make sure one test does not affect the other.
    no_exception1(  ); with_exception1(  );
    with_exception1(  ); no_exception1(  );
  
    //Execute the array assignment tests only if there is no second
    //argument to allow for large SIZE values on the first test
    //that would give out of memory errors in the second test.
    if (args.length > 1)
      return;
    no_exception2(  ); with_exception2(  );
    with_exception2(  ); no_exception2(  );
    no_exception3(  ); with_exception3(  );
    with_exception3(  ); no_exception3(  );
  }
  public static void no_exception1(  )
  {
    //Standard loop.
    int result;
    long time = System.currentTimeMillis(  );
    for (int i = SIZE; i > 0 ; i--)
      result = SIZE/i;
    System.out.println("Division loop with no exceptions took " + 
      (System.currentTimeMillis(  )-time) + " milliseconds");
  }
  public static void with_exception1(  )
  {
    //Non-standard loop with no test for termination using
    //the ArithmeticException thrown at division by zero to
    //terminate the loop.
    int result;
    long time = System.currentTimeMillis(  );
    try
    {
      for (int i = SIZE; ; i--)
      result = SIZE/i;
    }
    catch (ArithmeticException e) {  }
    System.out.println("Division loop with an exception took " + 
      (System.currentTimeMillis(  )-time) + " milliseconds");
  }
  public static void no_exception2(  )
  {
    //Create the array, get the time, and run the standard loop.
    int array[  ] = new int[SIZE];
    long time = System.currentTimeMillis(  );
    for (int i = 0; i < SIZE ; i++)
      array[i] = 3;
    System.out.println("Assignment loop with no exceptions took " + 
      (System.currentTimeMillis(  )-time) + " milliseconds");
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    //Garbage collect so that we don't run out of memory for
    //the next test. Set the array variable to null to allow
    //the array instance to be garbage collected.
    array = null;
    System.gc(  );
  }
  public static void with_exception2(  )
  {
    //Create the array, get the time, and run a non-standard
    //loop with no test for termination using the
    //ArrayIndexOutOfBoundsException to terminate the loop.
    int array[  ] = new int[SIZE];
    long time = System.currentTimeMillis(  );
    try
    {
    for (int i = 0; ; i++)
      array[i] = 3;
    }
    catch (ArrayIndexOutOfBoundsException e) {  }
    System.out.println("Assignment loop with an exception took " + 
      (System.currentTimeMillis(  )-time) + " milliseconds");
  
    //Garbage collect so that we don't run out of memory for
    //the next test. Set the array variable to null to allow
    //the array instance to be garbage collected.
    array = null;
    System.gc(  );
  }
  public static void no_exception3(  )
  {
    //Create the Vector, get the time, and run the standard loop.
    java.util.Vector vector = new java.util.Vector(SIZE);
    vector.setSize(SIZE);
    java.util.Enumeration enum = vector.elements(  );
    Object nothing;
    long time = System.currentTimeMillis(  );
    for ( ; enum.hasMoreElements(  ); )
      nothing = enum.nextElement(  );
    System.out.println("Enumeration loop with no exceptions took " + 
      (System.currentTimeMillis(  )-time) + " milliseconds");
  
    //Garbage collect so that we don't run out of memory for
    //the next test. We need to set the variables to null to
    //allow the instances to be garbage collectable.
    enum = null;
    vector = null;
    System.gc(  );
  }
  public static void with_exception3(  )
  {
    //Create the Vector, get the time, and run a non-standard
    //loop with no termination test using the
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    //java.util.NoSuchElementException to terminate the loop.
    java.util.Vector vector = new java.util.Vector(SIZE);
    vector.setSize(SIZE);
    java.util.Enumeration enum = vector.elements(  );
    Object nothing;
    long time = System.currentTimeMillis(  );
    try
    {
      for ( ; ; )
        nothing = enum.nextElement(  );
    }
    catch (java.util.NoSuchElementException e) {  }
    System.out.println("Enumeration loop with an exception took " + 
      (System.currentTimeMillis(  )-time) + " milliseconds");
  
    //Garbage collect so that we don't run out of memory for
    //the next test. We need to set the variables to null to
    //allow the instances to be garbage collectable.
    enum = null;
    vector = null;
    System.gc(  );
  }
}
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7.4 Switches

The Java bytecode specification allows a switch statement to be compiled into one of two different

bytecodes. One compiled switch type works as follows:

Given a particular value passed to the switch block to be compared, the passed value is successively

compared against the value associated with each case statement in order. If, after testing all cases,

no statements match, then the default label is matched. When a case statement that matches is

found, the body of that statement and all subsequent case bodies are executed (until one body exits

the switch statement, or the last one is reached).

The operation of this switch statement is equivalent to holding an ordered collection of values that are

compared to the passed value, one after the other in order, until a match is determined. This means that the

time taken for the switch to find the case that matches depends on how many case statements there are

and where in the list the matched case is. If no cases match and the default must be used, that always

takes the longest matching time.

The other switch bytecode works for switch statements where the case values all lie (or can be made to

lie) in a particular range. It works as follows:

Given a particular value passed to the switch block to be compared, the passed value is tested to see

if it lies in the range. If it does not, the default label is matched; otherwise, the offset of the case is

calculated and the corresponding case is matched directly. The body of that matched label and all

subsequent case bodies are executed (until one body exits the switch statement, or the last one is

reached).

For this latter switch bytecode, the time taken for the switch statement to match the case is constant.

The time is not dependent on the number of cases in the switch, and if no cases match, the time to carry

out the matching and go to the default is still the same. This switch statement operates as an ordered

collection with the switch value first being checked to see if it is a valid index into the ordered collection,

and then that value is used as the index to arrive immediately at the matched location.

Clearly, the second type of switch statement is faster than the first. Sometimes compilers can add dummy

cases to a switch statement, converting the first type of switch into the second (faster) kind. (A compiler

is not obliged to use the second type of switch bytecode at all, but generally it does if it can easily be

used.) You can determine which switch a particular statement has been compiled into using javap, the

disassembler available with the JDK. Using the -c option so that the code is disassembled, examine the

method that contains the switch statement. It contains either a "tableswitch" bytecode identifier or a

"lookupswitch" bytecode identifier. The tableswitch keyword is the identifier for the faster (second) type of

switch.

If you identify a bottleneck that involves a switch statement, do not leave the decision to the compiler. You

are better off constructing switch statements that use contiguous ranges of case values, ideally by

inserting dummy case statements to specify all the values in the range, or possibly by breaking up the

switch into multiple switches that each use contiguous ranges. You may need to apply both of these

optimizations as in the next example.

Our tuning.loop.SwitchTest class provides a repeated test on three methods with switch statements

and one other array-access method for comparison. The first method, switch1( ), contains some
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noncontiguous values for the cases, with each returning a particular integer value. The second method,

switch2( ), converts the single switch statement in switch1( ) into four switch statements, with

some of those four switch statements containing extra dummy cases to make each switch statement

contain a contiguous set of cases. This second method, switch2( ), is functionally identical to switch1(
).

The third method, switch3( ), replaces the cases with a contiguous set of cases, integers 1 to 13. This

method is not directly comparable to the first two methods; it is present as a control test. The fourth

method, switch4( ), is functionally identical to switch3( ) but uses an array access instead of the

switch statement, essentially doing in Java code what the compiler implicitly does in bytecodes for

switch3( ). I run two sets of tests. The first set of tests, labeled "varying," passes in a different integer for

each call to the switches. This means that most of the time, the default label is matched. The second set

of tests, labeled "constant," alternates between passing in the integers 7 and 8 to the switches.

Interestingly, my original test passed in only the integer 8, but HotSpot server mode optimized that to call

the method only once and reuse the result, hence the need for the alternation. The results are shown in

Table 7-2 for various VMs.

Table 7-2. Speedup using exception-driven loop termination

    1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

1 switch1 varying 101% 100% 59% 31% 51% 35% 284%

2 switch2 varying 44% 44% 80% 36% 81% 36% 341%

3 switch3 varying 14% 14% 51% 28% 52% 25% 213%

4 switch4 varying 11% 11% 27% 9% 17% 14% 47%

5 switch1 constant 73% 73% 86% 50% 84% 20% 68%

6 switch2 constant 55% 55% 103% 41% 104% 16% 67%

7 switch3 constant 50% 50% 93% 32% 90% 20% 56%

8 switch4 constant 30% 30% 89% 24% 72% 24% 79%

There is a big difference in optimizations gained depending on whether the VM has a plain JIT or uses

HotSpot technology. The times are all relative to the JDK 1.2.2 "switch1 varying" case. From the variation in

timings, it is not clear whether the HotSpot technology fails to compile the handcrafted switch in an optimal

way or whether it does optimally compile all the switch statements but adds overhead that cancels some of

the optimizations. From the first line, it is clear that HotSpot does a great job of compiling the original

unoptimized switch. Comparing the times across the different VMs in the second line, for the optimized

switch, we can see that client-mode HotSpot does really badly. It appears that the way you optimize your

switch statement is heavily dependent on which VM runs your application. This is unfortunate.

For the JIT results, the first and second lines of output show the speedup you can get by recrafting the

switch statements. Here, both switch1( ) and switch2( ) are using the default for most of the tests.

In this situation, switch1( ) requires 13 failed comparisons before executing the default statement.

switch2( ), on the other hand, checks the value against the range of each of its four switch statements,

then immediately executes the default statement.

The first and third lines of output show the worst-case comparison for the two types of switch statements.

In this test, switch1( ) almost always fails all its comparison tests. On the other hand, switch3( ), with

the contiguous range, is much faster than switch1( ) (JIT cases only). This is exactly what is expected, as

the average case for switch1( ) here consists of 13 failed comparisons followed by a return statement.
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The average case for switch3( ) in this test is only a pair of checks followed by a return statement. The

two checks are that the integer is smaller than or equal to 13 and larger than or equal to 1. Both checks fail

in most of the calls for this "varying" case. Again, the HotSpot values are not so good.

Even when the case statement in switch1( ) is always matched, the fifth and sixth lines show that

switch2( ) can be faster (though again, not with HotSpot client mode). In this test, the matched

statement is about halfway down the list of cases in switch1( ), so the seven or so failed comparisons for

switch1( ) compared to two range checks for switch2( ) should translate into switch2( ) being more

than twice as fast as switch1( ).

In each set of tests, switch2( ), which is functionally identical to switch1( ), is faster. The output for

switch4( ) is included for comparison, and it turns out to be faster than the functionally identical

switch3( ), thus indicating that it is worth considering dispensing with the switch tests completely when

you can convert the switch to an array access. In this example, the switch merely returns an integer, so

the conversion to an array access is feasible; in general, it may be difficult to convert a set of body

statements into an array access and subsequent processing:

package tuning.loop;
  
public class SwitchTest
{
  //Use a default size for the loop of 1 million iterations
  static int SIZE = 10000000;
  
  public static void main(String args[  ])
  {
    //Allow an argument to set the size of the loop.
    if (args.length != 0)
      SIZE = Integer.parseInt(args[0]);
    int result = 0;
    //run tests looking mostly for the default (switch
    //test uses many different values passed to it)
    long time = System.currentTimeMillis(  );
    for (int i = SIZE; i >=0 ; i--)
      result += switch1(i);
    System.out.println("Switch1 took " + 
      (System.currentTimeMillis(  )-time) + " millis to get " + result);
  
    //and the same code to test timings on switch2(  ),
    //switch3(  ) and switch4(  )
    ...
  
    //run tests using one particular passed value (8)
    result = 0;
    time = System.currentTimeMillis(  );
    for (int i = SIZE; i >=0 ; i--)
      result += switch1(i%2=  =0 ? 7 : 8);
    System.out.println("Switch1 took " + 
      (System.currentTimeMillis(  )-time) + " millis to get " + result);
  
    //and the same code to test timings on switch2(  ),
    //switch3(  ) and switch4(  )
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    ...
  }
  
  public static int switch1(int i)
  {
    //This is one big switch statement with 13 case statements
    //in no particular order.
    switch(i)
    {
      case 318: return 99;
      case 320: return 55;
      case 323: return -1;
      case 14: return 6;
      case 5: return 8;
      case 123456: return 12;
      case 7: return 15;
      case 8: return 29;
      case 9: return 11111;
      case 123457: return 12345;
      case 112233: return 6666;
      case 112235: return 9876;
      case 112237: return 12;
      default: return -1;
    }
  }
  public static int switch2(int i)
  {
    //In this method we break up the 13 case statements from
    //switch1(  ) into four almost contiguous ranges. Then we
    //add in a few dummy cases so that the four ranges are
    //definitely contiguous. This should ensure that the compiler
    //will generate the more optimal tableswitch bytcodes
    switch(i)
    {
      case 318: return 99;
      case 319: break;      //dummy
      case 320: return 55;
      case 321: break;      //dummy
      case 322: break;      //dummy
      case 323: return -1;
    }
    switch(i)
    {
      case 5: return 8;
      case 6: break;        //dummy
      case 7: return 15;
      case 8: return 29;
      case 9: return 11111;
      case 10: break;       //dummy
      case 11: break;       //dummy
      case 12: break;       //dummy
      case 13: break;       //dummy
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      case 14: return 6;
    }
    switch(i)
    {
      case 112233: return 6666;
      case 112234: break;       //dummy
      case 112235: return 9876;
      case 112236: break;       //dummy
      case 112237: return 12;
    }
    switch(i)
    {
      case 123456: return 12;
      case 123457: return 12345;
      default: return -1;
    }
  }
  public static int switch3(int i)
  {
    switch(i)
    {
      //13 contiguous case statements as a kind of fastest control
      case 1: return 99;
      case 2: return 55;
      case 3: return -1;
      case 4: return 6;
      case 5: return 8;
      case 6: return 12;
      case 7: return 15;
      case 8: return 29;
      case 9: return 11111;
      case 10: return 12345;
      case 11: return 6666;
      case 12: return 9876;
      case 13: return 12;
      default: return -1;
    }
  }
  final static int[  ] RETURNS = {
      99, 55, -1, 6, 8, 12, 15, 29,
      11111, 12345, 6666, 9876, 12
    };
  public static int switch4(int i)
  {
    //equivalent to switch3(  ), but using an array lookup
    //instead of a switch statement.
    if (i < 1 || i > 13)
      return -1;
    else
      return RETURNS[i-1];
  }
}
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7.5 Recursion

Recursive algorithms are used because they're often clearer and more elegant than the alternatives, and

therefore have a lower maintenance cost than the equivalent iterative algorithm. However, recursion often

(but not always) has a cost; recursive algorithms are frequently slower. So it is useful to understand the

costs associated with recursion and how to improve the performance of recursive algorithms when

necessary.

Recursive code can be optimized by a clever compiler (as is done with some C compilers), but only if

presented in the right way (typically, it needs to be tail-recursive: see the sidebar Tail Recursion). For

example, Jon Bentley[3] found that a functionally identical recursive method was optimized by a C compiler

if he did not use the ? : conditional operator (using if statements instead). However, it was not optimized if

he did use the ?: conditional operator. He also found that recursion can be very expensive, taking up to 20

times longer for some operations that are naturally iterative. Bentley's article also looks briefly at optimizing

partial-match searching in ternary search trees by transforming a tail recursion in the search into an

iteration. See Chapter 11 for an example of tuning a ternary search tree, including an example of converting

a recursive algorithm to an iterative one.

[3] "The Cost of Recursion," Dr. Dobb's Journal, June 1998.

Tail Recursion

A tail-recursive function is a recursive function for which each recursive call to itself is a

reduction of the original call. A reduction is the situation where a problem is converted into a

new problem that is simpler, and the solution of that new problem is exactly the solution of the

original problem, with no further computation necessary. This is a subtle concept, best illustrated

with a simple example. I will take the factorial example used in the text. The original recursive

solution is:

public static long factorial1(int n)
{
  if (n < 2) return 1L;
  else return n*factorial1(n-1);
}

This is not tail-recursive because each call to itself does not provide the solution to the original

problem. Instead, the recursive call provides a partial solution that must be multiplied by a

number to get the final result. If you consider the operating stack of the VM, each recursive call

must be kept on the stack because each call is incomplete until the next call above on the stack

is returned. So factorial1(20) goes on the stack and stays there until factorial1(19)
returns. factorial1(19) goes above factorial1(20) on the stack and stays there until

factorial1(18) returns, etc.

The tail-recursive version of this function requires two functions: one to set up the recursive call

(to keep compatibility) and the recursive call itself. This looks like:

public static long factorial1a(int n)
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{
  //NOT recursive. Sets up the tail-recursive call to factorial1b(  )
  if (n < 2) return 1L;
  else return factorial1b(n, 1L);
}
public static long factorial1b(int n, long result)
{
  //No need to consider n < 2, as factorial1a handles that
  if (n =  = 2) return 2L*result;
  else return factorial1b(n-1, result*n);
}

I have changed the recursive call to add an extra parameter, the partial result, built up as you

calculate the answer. The consequence is that each time you return the recursive call, the

answer is the full answer to the function since you are holding the partial answer in a variable.

Considering the VM stack again, the situation is vastly improved. Because the recursive method

returns a call to itself each time, with no further operations needed (i.e., the recursive caller

actually exits with the call to recurse), there is no need to keep any calls on the stack except for

the current one. factorial1b(20,1) is put on the stack, but this exits with a call to

factorial1b(19,20), which replaces the call to factorial1b(20,1) on the stack (since it

has exited). This in turn is replaced by the call to factorial1b(18,380), which in turn is

replaced by the call to factorial1b(17,6840), and so on, until factorial1b(2, ...)

returns just the result.

Generally, the advice for dealing with methods that are naturally recursive (because that is the natural way

to code them for clarity) is to go ahead with the recursive solution. You need to spend time counting the cost

(if any) only when your profiling shows that this particular method call is a bottleneck in the application. At

that stage, it is worth pursuing alternative implementations or avoiding the method call completely with a

different structure.

In case you need to tune a recursive algorithm or convert it into an iterative one, I provide some examples

here. I start with an extremely simple recursive algorithm for calculating factorial numbers, as this illustrates

several tuning points:

public static long factorial1(int n)
{
  if (n < 2) return 1L;
  else return n*factorial1(n-1);
}

I have limited the function to long values, which means that you cannot use the function beyond factorial

20, as that overflows the long data type. This keeps the function simple for this illustration.

Since this function is easily converted to a tail-recursive version, it is natural to test the tail-recursive version

to see if it performs any better. For this particular function, the tail-recursive version does not perform any

better, which is not typical. Here, the factorial function consists of a very simple fast calculation, and the

extra function-call overhead in the tail-recursive version is enough of an overhead that it negates the benefit

that is normally gained.

Let's look at other ways this function can be optimized. Start with the classic conversion for recursive to

iterative and note that the factorial method contains just one value that is successively operated on to give a

new value (the result), along with a parameter specifying how to operate on the partial result (the current

input to the factorial). A standard way to convert this type of recursive method is to replace the parameters
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passed to the method with temporary variables in a loop. In this case, you need two variables, one of which

is passed into the method and can be reused. The converted method looks like:

public static long factorial2(int n)
{
  long result = 1;
  while(n>1)
  {
    result *= n--;
  }
  return result;
}

Measuring the performance, you see that this method calculates the result in 92% of the time taken by the

original recursive factorial1( ) method (using the JDK 1.2.2 results;[4] see Table 7-3.

[4] The 1.4.0 server HotSpot VM optimized the recursive version sufficiently to make it faster than the
iterative version.

Table 7-3. Timings of the various factorial implementations

  1.1.8 1.2.2 1.3.1
1.3.1-

server
1.4.0

1.4.0-

server

1.4.0-

Xint

factoral1 (original recursive) 101% 100% 246% 101% 217% 93% 1084%

factoral1a (tail recursive) 102% 102% 262% 108% 218% 100% 1271%

factorial2 (iterative) 86% 92% 180% 83% 190% 97% 624%

factoral3 (dynamically cached) 56% 56% 101% 60% 100% 52% 559%

factoral4 (statically cached) 44% 44% 90% 37% 77% 37% 416%

factoral5 (dynamically cached with cache size

of 21 elements)
8% 8% 12% 13% 86% 13% 130%

The recursion-to-iteration technique as illustrated here is general, and another example in a different domain

may help make this generality clear. Consider a linked list, with singly linked nodes consisting of a next
pointer to the next node, and a value instance variable holding (in this case) just an integer. A simple linear

search method to find the first node holding a particular integer looks like:

Node find_recursive(int i)
{
  if (node.value =  = i)
    return node;
  else if(node.next != null)
    node.next.find_recursive(i);
  else
    return null;
}

To convert this to an iterative method, use a temporary variable to hold the "current" node, and reassign

that variable with the next node in the list at each iteration. The method is clear, and its only drawback

compared to the recursive method is that it violates encapsulation (this one method directly accesses the
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instance variable of each node object):

Node find_iterative(int i)
{
  Node node = this;
  while(node != null)
  {
    if (node.value =  = i)
      return node;
    else
      node = node.next;
  }
  return null;
}

Before looking at general techniques for converting other types of recursive methods to iterative ones, I will

revisit the original factorial method to illustrate some other techniques for improving the performance of

recursive methods.

To test the timing of the factorial method, I put it into a loop to recalculate factorial(20) many times.

Otherwise, the time taken is too short to be reliably measured. When this situation is close to the actual

problem, a good tuning technique is to cache the intermediate results. This technique can be applied when

some recursive function is repeatedly being called and some of the intermediate results are repeatedly being

identified. This technique is simple to illustrate for the factorial method:

public static final int CACHE_SIZE = 15;
public static final long[  ] factorial3Cache = new long[CACHE_SIZE];
  
public static long factorial3(int n)
{
  if (n < 2) return 1L;
  else if (n < CACHE_SIZE)
  {
    if (factorial3Cache[n] =  = 0)
      factorial3Cache[n] = n*factorial3(n-1);
    return factorial3Cache[n];
  }
  else return n*factorial3(n-1);
}

With the choice of 15 elements for the cache, the factorial3( ) method takes 56% of the time taken by

factorial1( ). If you choose a cache with 21 elements, so that all except the first call to

factorial3(20) are simply returning from the cache with no calculations at all, the time taken is just 8%

of the time taken by factorial1( ) (using the JDK 1.2 results; see Table 7-3).

In this particular situation, you can make one further improvement, which is to compile the values at

implementation and hardcode them in:

public static final long[  ] factorial4Cache = {
  1L, 1L, 2L, 6L, 24L, 120L, 720L, 5040L, 40320L, 362880L, 3628800L,
  39916800L, 479001600L, 6227020800L, 87178291200L};
public static final int CACHE_SIZE = factorial4Cache.length;
public static long factorial4(int n)
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{
  if (n < CACHE_SIZE)
    return factorial4Cache[n];
  else return n*factorial4(n-1);
}

This is a valid technique that applies when you can identify and calculate partial solutions that can be

included with the class at compilation time.[5]

[5] My editor Mike Loukides points out that a variation on hardcoded values, used by state-of-the-art
high-performance mathematical functions, is a partial table of values together with an interpolation
method to calculate intermediate values.
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7.6 Recursion and Stacks

The techniques for converting recursive method calls to iterative ones are suitable only for methods that take

a single search path at every decision node when navigating through the solution space. For more complex

recursive methods that evaluate multiple paths from some nodes, you can convert a recursive method into

an iterative method based on a stack. This is best illustrated with an example. I'll use here the problem of

looking for all the files with names ending in some particular string.

The following method runs a recursive search of the filesystem, printing all nondirectory files that end in a

particular string:

public static String FS = System.getProperty("file.separator");
public static void filesearch1(String root, String fileEnding)
{
  File f = new File(root);
  String[  ] filelist = f.list(  );
  if (filelist =  = null)
    return;
  for (int i = filelist.length-1; i >= 0; i--)
  {
    f = new File(root, filelist[i]);
    if (f.isDirectory(  ))
      filesearch1(root+FS+filelist[i], fileEnding);
    else if(filelist[i].toUpperCase(  ).endsWith(fileEnding))
      System.out.println(root+ls+filelist[i]);
  }
}

To convert this into an iterative search, it is not sufficient to use an extra variable to hold the current

directory. At any one directory, there are several possible directories underneath, all of which must be held

onto and searched, and you cannot reference them all from a plain variable. Instead, you can make that

variable into a collection object. The standard object to use is a stack. With this hint in mind, the method

converts quite easily:

public static void filesearch2(String root, String fileEnding)
{
  Stack dirs = new Stack(  );
  dirs.push(root);
  File f;
  int i;
  String[  ] filelist;
  while(!dirs.empty(  ))
  {
    f = new File(root = (String) dirs.pop(  ));
    filelist = f.list(  );
    if (filelist =  = null)
      continue;
    for (i = filelist.length-1; i >= 0; i--)

http://lib.ommolketab.ir
http://lib.ommolketab.ir


    {
      f = new File(root, filelist[i]);
      if (f.isDirectory(  ))
        dirs.push(root+FS+filelist[i]);
      else if(filelist[i].toUpperCase(  ).endsWith(fileEnding))
        System.out.println(root+ls+filelist[i]);
    }
  }
}

In fact, the structures of the two methods are almost the same. This second iterative version has the main

part of the body wrapped in an extra loop that terminates when the extra variable holding the stack becomes

empty. Otherwise, instead of the recursive call, the directory is added to the stack.

In the cases of these particular search methods, the time-measurement comparison shows that the iterative

method actually takes 5% longer than the recursive method. This is due to the iterative method having the

overhead of the extra stack object to manipulate, whereas filesystems are generally not particularly deep

(the ones I tested on were not), so the recursive algorithm is not particularly inefficient. This illustrates that

a recursive method is not always worse than an iterative one.

Note that the methods here were chosen for illustration, using an easily understood

problem that could be managed iteratively and recursively. Since the I/O is actually

the limiting factor for these methods, there would not be much point in actually

making the optimization shown.

For this example, I eliminated the I/O overhead, as it would have swamped the times

and made it difficult to determine the difference between the two implementations.

To do this, I mapped the filesystem into memory using a simple replacement of the

java.io.File class. This stored a snapshot of the filesystem in a hash table.

(Actually, only the full pathnames of directories as keys, and their associated string

array list of files as values, need be stored.)

This kind of trick-replacing classes with another implementation to eliminate

extraneous overhead-is quite useful when you need to identify exactly where times

are going.
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7.7 Performance Checklist

Most of these suggestions apply only after a bottleneck has been identified:

Make the loop do as little as possible.

Remove from the loop any execution code that does not need to be executed on each pass.

Move any code that is repeatedly executed with the same result, and assign that code to a

temporary variable before the loop ("code motion").

Avoid method calls in loops when possible, even if this requires rewriting or inlining.

Multiple access or update to the same array element should be done on a temporary variable and

assigned back to the array element when the loop is finished.

Avoid using a method call in the loop termination test.

Use int data types preferentially, especially for the loop variable.

Use System.arraycopy( ) for copying arrays.

Try to use the fastest tests in loops.

Convert equality comparisons to identity comparisons when possible.

Phrase multiple boolean tests in one expression so that they "short circuit" as soon as possible.

Eliminate unneeded temporary variables from loops.

Try unrolling the loop to various degrees to see if this improves speed.

Rewrite any switch statements to use a contiguous range of case values.

Identify whether a recursive method can be made faster.

Convert recursive methods to use iteration instead.

Convert recursive methods to use tail recursion.

Try caching recursively calculated values to reduce the depth of recursion.

Use temporary variables in place of passed parameters to convert a recursive method using a

single search path into an iterative method.

Use temporary stacks in place of passed parameters to convert a recursive method using multiple

search paths into an iterative method.
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Chapter 8. I/O, Logging, and Console Output

I/O, I/O, it's off to work we go.

-Ava Shirazi

I/O to the disk or the network is hundreds to thousands of times slower than I/O to computer memory. Disk

and network transfers are expensive activities and are two of the most likely candidates for performance

problems. Two standard optimization techniques for reducing I/O overhead are buffering and caching.

For a given amount of data, I/O mechanisms work more efficiently if the data is transferred using a few large

chunks of data, rather than many small chunks. Buffering groups of data into larger chunks improves the

efficiency of the I/O by reducing the number of I/O operations that need to be executed.

Where some objects or data are accessed repeatedly, caching those objects or data can replace an I/O call

with a hugely faster memory access (or replace a slow network I/O call with faster local disk I/O). For every

I/O call that is avoided because an item is accessed from a cache, you save a large chunk of time equivalent

to executing hundreds or thousands of simple operations.[1]

[1] Caching usually requires intercepting a simple attempt to access an object and replacing that simple
access with a more complex routine that accesses the object from the cache. Caching is easier to
implement if the application has been designed with caching in mind from the beginning, by grouping
external data access. If the application is not so designed, you may still be lucky, as there are normally
only a few points of external access from an application that allow you to add caching easily.

There are some other general points about I/O at the system level that are worth knowing. First, I/O buffers

throughout the system typically use a read-ahead algorithm for optimization. This normally means that the

next few chunks are read from disk into a low-level buffer somewhere. Consequently, reading sequentially

forward through a file is usually faster than other orders, such as reading back to front through a file or

random access of file elements.

The next point is that at the system level, most operating systems support mmap( ) , memcntl( ), and

various shared-memory options. Using these can improve I/O performance dramatically, but they also

increase complexity. Portability is also compromised, though not as much as you might think. If you need to

use these sorts of features and also maintain portability, you may want to start with the latest Perl

distribution. Perl has been ported to a large number of systems, and these features are mapped consistently

to system-level features in all ports. Since the Perl source is available, it is possible to extract the relevant

system-independent mappings for portability purposes.

In the same vein, when simultaneously using multiple open filehandles to I/O devices (sockets, files, pipes,

etc.), Java editions prior to the 1.4 release require you to use either polling across the handles, which is

system-intensive; a separate thread per handle, which is also system-intensive; or a combination of these

two, which in any case is bad for performance. However, almost all operating systems support an efficient

multiplexing function call, often called select( ) or sometimes poll( ). This function provides a way to

ask the system in one request if any of the (set of) open handles are ready for reading or writing. SDK 1.4

introduced support for the select( )/poll( ) function under the java.nio package, which I discuss

further in the NIO section later in this chapter. For versions prior to 1.4, you could again use Perl, which

provides a standardized mapping for this function if you need hints on maintaining portability. For efficient

complex I/O performance, select( )/poll( ) functionality was probably the largest single missing piece

http://lib.ommolketab.ir
http://lib.ommolketab.ir


of functionality in Java.

SDKs prior to 1.4 do provide nonblocking I/O by means of polling. Polling means that

every time you want to read or write, you first test whether there are bytes to read

or space to write. If you cannot read or write, you go into a loop, repeatedly testing

until you can perform the desired read/write operation. Polling of this sort is

extremely system-intensive, especially because in order to obtain good performance,

you must normally put I/O into the highest-priority thread. Polling solutions are

usually more system-intensive than multithreaded I/O and do not perform as well.

Multiplexed I/O, as obtained with the select( ) system call, provides far superior

performance to both. Polling does not scale. If you are building a server, you are well

advised to add support for the select( ) system call.

Here are some other general techniques to improve I/O performance:

Execute I/O in the background. Decoupling the application processes from the I/O operations means

that, ideally, your application does not spend time waiting for I/O. In practice, it can be difficult to

completely decouple the I/O, but usually some reads can be anticipated and some writes can be run

asynchronously without the program requiring immediate confirmation of success.

Avoid executing I/O in loops. Try to replace multiple smaller I/O calls with a few larger I/O calls.

Because I/O is a slow operation, executing in a loop means that the loop is normally bottlenecked on

the I/O call.

When actions need to be performed while executing I/O, try to separate the I/O from those actions to

minimize the number of I/O operations that need to be executed. For example, if a file needs to be

parsed, instead of reading a bit, parsing a bit, and repeating until finished, it can be quicker to read in

the whole file and then parse the data in memory.

If you repeatedly access different locations within the same set of files, you can optimize performance

by keeping the files open and navigating around them instead of repeatedly opening and closing the

files. This often requires using random-access classes (e.g., RandomAccessFile) rather than the

easier sequential-access classes (e.g., FileReader).

Preallocate files to avoid the operating-system overhead that comes from allocating files. This can be

done by creating files of the expected size, filled with any character (0 is conventional). The bytes can

then be overwritten (e.g., with the RandomAccessFile class).

Using multiple files simultaneously can improve performance because of disk parallelism and CPU

availability during disk reads and writes. However, this technique needs to be balanced against the cost

of extra opens and closes and the extra resources required by multiple open streams. Sequentially

opening and closing multiple files is usually bad for performance (e.g., when loading unpacked class

files from the filesystem into the Java runtime).
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8.1 Replacing System.out

Typically, an application generates output to System.out or System.err, if only for logging purposes

during development. It is important to realize that this output can affect performance. Any output not

present in the final deployed version of the application should be turned off during performance tests;

otherwise, your performance results can get skewed. This is also true for any other I/O: to disk, pipes, other

processes, or the network.

It is best to include a framework for logging output in your design. You want a framework that centralizes all

your logging operations and lets you enable or disable certain logging features (perhaps by setting a "debug

level"). You may want to implement your own logging class, which decides whether to send output at all and

where to send it. The Unix syslog utility provides a good starting point for designing such a framework. It

has levels of priority (emergency, alert, critical, error, warning, notice, info, debug) and other aspects that

are useful to note. SDK 1.4 introduced a logging API, the java.util.logging package. This includes

logging levels and output redirection, as I show briefly in the next section.

If you are already well into development without this kind of framework but need a quick fix for handling

unnecessary output, it is still possible to replace System.out and System.err.

It is simple to replace the print stream in System.out and System.err. You need an instance of a

java.io.PrintStream or one of its subclasses, and you can use the System.setOut( ) and

System.setErr( ) methods to replace the current PrintStream instances. It is useful to retain a

reference to the original print-stream objects you are replacing, since these retain access to the console. For

example, the following class simply eliminates all output sent to System.out and System.err if TUNING is

true; otherwise, it sends all output to the original destination. This class illustrates how to implement your

own redirection classes:

package tuning.console;
  
public class PrintWrapper
  extends java.io.PrintStream
{
  java.io.PrintStream wrappedOut;
  public static boolean TUNING = false;
  
  public static void install(  )
  {
    System.setOut(new PrintWrapper(System.out));
    System.setErr(new PrintWrapper(System.err));
  }
  
  public PrintWrapper(java.io.PrintStream out)
  {
    super(out);
    wrappedOut = out;
  }
  
  public boolean checkError(  ) {return wrappedOut.checkError(  );}
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  public void close(  ) {wrappedOut.close(  );}
  public void flush(  ) {wrappedOut.flush(  );}
  public void print(boolean x) {if (!TUNING) wrappedOut.print(x);}
  public void print(char x) {if (!TUNING) wrappedOut.print(x);}
  public void print(char[  ] x) {if (!TUNING) wrappedOut.print(x);}
  public void print(double x) {if (!TUNING) wrappedOut.print(x);}
  public void print(float x) {if (!TUNING) wrappedOut.print(x);}
  public void print(int x) {if (!TUNING) wrappedOut.print(x);}
  public void print(long x) {if (!TUNING) wrappedOut.print(x);}
  public void print(Object x) {if (!TUNING) wrappedOut.print(x);}
  public void print(String x) {if (!TUNING) wrappedOut.print(x);}
  public void println(  ) {if (!TUNING) wrappedOut.println(  );}
  public void println(boolean x) {if (!TUNING) wrappedOut.println(x);}
  public void println(char x) {if (!TUNING) wrappedOut.println(x);}
  public void println(char[  ] x) {if (!TUNING) wrappedOut.println(x);}
  public void println(double x) {if (!TUNING) wrappedOut.println(x);}
  public void println(float x) {if (!TUNING) wrappedOut.println(x);}
  public void println(int x) {if (!TUNING) wrappedOut.println(x);}
  public void println(long x) {if (!TUNING) wrappedOut.println(x);}
  public void println(Object x) {if (!TUNING) wrappedOut.println(x);}
  public void println(String x) {if (!TUNING) wrappedOut.println(x);}
  public void write(byte[  ] x, int y, int z) {
    if (!TUNING) wrappedOut.write(x,y,z);}
  public void write(int  x) {if (!TUNING) wrappedOut.write(x);}
}
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8.2 Logging

Logging always degrades performance. The penalty you pay depends to some extent on how logging is done.

One possibility is using a final static variable to enable logging, as in the following code:

public final static boolean LOGGING = true;
...
if (LOGGING)
  System.out.println(...);

This code allows you to remove the logging code during compilation. If the LOGGING flag is set to false

before compilation, the compiler eliminates the debugging code.[2] This approach works well when you need

a lot of debugging code during development but don't want to carry the code into your finished application.

You can use a similar technique for when you do want logging capabilities during deployment, by compiling

with logging features but setting the boolean at runtime.

[2] See Section 6.1.4 and Section 3.9.1.4.

An alternative technique is to use a logging object:

public class LogWriter {
  public static LogWriter TheLogger = sessionLogger(  );
  ...
}
...
LogWriter.TheLogger.log(...)

This technique allows you to specify various LogWriter objects. Examples include a null log writer that has

an empty log( ) method, a file log writer that logs to file, a sysout log writer that logs to System.out, etc.

Using this technique allows logging to be turned on after an application has started. It can even install a new

type of log writer after deployment, which can be useful for some applications. However, be aware that any

deployed logging capabilities should not do too much logging (or even decide whether to log too often), or

performance will suffer. The logging framework introduced in 1.4, java.util.logging, provides most of

the features you should need. There is also an open source implementation of the logging APIs for JDK

Versions 1.2 and 1.3 available from http://javalogging.sourceforge.net/. The following is an example of using

the 1.4 logging framework.

import java.util.logging.*;
  
  ...
  // Get a Logger object. Use a name to distinguish it.
  Logger globalLogger = Logger.getLogger("global");
  // Log an INFO level message
  globalLogger.info("Starting application.");
  try
  {
    ... //do something
  }
  catch(Exception e)
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  {
    //log a level SEVERE message, including the exception
    globalLogger.log(Level.SEVERE, "Oh dear, this is bad.", e);
    //And a level WARNING message
    globalLogger.warning("Exiting");
    return;
  }
  
  //Something went well if we're here, so just send a fairly
  //low level message: level FINE message for debugging
  globalLogger.fine("Bad things didn't happen.");
  ...

The logging API was designed to minimize overhead when using configurable logging. Given that there are

multiple levels of logging, where some levels may be turned off, those logging statements that are turned off

should produce negligible overhead to the application, and those that are turned on should impose as small

an overhead as possible. In addition, the logging API enables the conversion and output of logging

statements to be handled separately, so that overhead from these activities can be minimized. The logging

API is covered in more detail in Learning Java by Pat Niemeyer and Jonathan Knudsen (O'Reilly), and a basic

introduction can be obtained in an OnJava article by Brian Gilstrap.[3]

[3] "An Introduction to the Java Logging API," Brian Gilstrap, OnJava.com, June 2002,
http://www.onjava.com/pub/a/onjava/2002/06/19/log.html.

I recommend deploying applications with a simple set of logging features in place. But first ensure that the

logging features do not slow down the application.
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8.3 From Raw I/O to Smokin' I/O

So far we have looked only at general points about I/O and logging. Now we look at an example of tuning

I/O performance. The example consists of reading lines from a large file. This section was inspired by an

article from Sun Engineering,[4] though I go somewhat further along the tuning cycle.

[4] "Java Performance I/O Tuning," Java Developer's Journal, Volume 2, Issue 11. See
http://www.JavaDevelopersJournal.com.

The initial attempt at file I/O might be to use the FileInputStream to read through a file. Note that

DataInputStream has a readLine( ) method (now deprecated because it is byte-based rather than

char-based, but ignore that for the moment), so you wrap the FileInputStream with the

DataInputStream, and run. The code looks like:

DataInputStream in = new DataInputStream(new FileInputStream(file));
while ( (line = in.readLine(  )) != null)
{
  doSomethingWith(line);
}
in.close(  );

For these timing tests, I use two different files, a 1.8 MB file with about 20,000 lines (long lines), and a one-

third of a megabyte file with about 34,000 lines (short lines). I test using several VMs to show the variations

across VMs and the challenges in improving performance across different runtime environments. To make

comparisons simpler, I report the times as normalized to 100% for the JDK 1.2.2 VM with JIT. The long-line

case and the short-line case are normalized separately. Tests are averages across at least three test runs.

For the baseline test, I have the following chart (see Table 8-1 and Table 8-2 for full results). Note that the

server mode results show the second run of tests, after HotSpot has had a chance to apply its optimizations.

Short lines 1.1.8 1.2.2a 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 86% 100% 109% 98% 103% 115% 146%

Long lines 1.1.8 1.2.2[5] 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 83% 100% 108% 95% 95% 110% 170%

[5] The short-line 1.2 and long-line 1.2 cases have been separately normalized to 100%. All short-line
times are relative to the short-line 1.2, and all long-line times are relative to the long-line 1.2.

The first test in absolute times is really dreadful because you are executing I/O one byte at a time. This

performance is the result of using a plain FileInputStream without buffering the I/O, because the process

is completely I/O-bound. For this reason, I expected the absolute times of the various VMs to be similar,

since the CPU is not the bottleneck. But curiously, they are varied. Possibly the underlying native call

implementation may be different between VM versions, but I am not interested enough to spend time

deciding why there should be differences for the unbuffered case. After all, no one uses unbuffered I/O.

Everyone knows you should buffer your I/O (except when memory is really at a premium, as in an embedded

system).
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So let's immediately move to wrap the FileInputStream with a BufferedInputStream .[6]

[6] Buffering I/O does not require the use of buffered classes. You can buffer I/O directly from the
FileInputStream class and other low-level classes by passing arrays to the read( ) and write( )
methods. This means you need to handle buffer overflows yourself.

The code has only slight changes, in the constructor:

//DataInputStream in = new DataInputStream(new FileInputStream(file)); 
DataInputStream in = new DataInputStream(
    new BufferedInputStream(new FileInputStream(file)));
while ( (line = in.readLine(  )) != null)
{
  doSomethingWith(line);
}
in.close(  );

However, the times are already faster by an order of magnitude, as you can see in the following charts:

Short lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 86% 100% 109% 98% 103% 115% 146%

Buffered input stream 7% 6% 3% 3% 3% 2% 21%

Long lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 83% 100% 108% 95% 95% 110% 170%

Buffered input stream 6% 5% 3% 3% 3% 2% 24%

The lesson is clear, if you haven't already had it drummed home somewhere else: buffered I/O performs

much better than unbuffered I/O. Having established that buffered I/O is better than unbuffered, you

renormalize your times on the buffered I/O case so that you can compare any improvements against the

normal case.

So far, we have used only the default buffer, which is a 2048-byte buffer (contrary to the JDK 1.1.6

documentation, which states it is 512 bytes; always check the source on easily changeable things like this).

Perhaps a larger buffer would be better. Let's try 8192 bytes:

//DataInputStream in = new DataInputStream(new FileInputStream(file)); 
//DataInputStream in = new DataInputStream(
//    new BufferedInputStream(new FileInputStream(file)));
DataInputStream in = new DataInputStream(
    new BufferedInputStream(new FileInputStream(file), 8192));
while ( (line = in.readLine(  )) != null)
{
  doSomethingWith(line);
}
in.close(  );
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Short lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 1551% 1808% 1965% 1764% 1872% 2088% 2646%

Buffered input stream 132% 100% 48% 60% 48% 36% 373%

8K buffered input stream 136% 96% 36% 57% 48% 36% 361%

Long lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 1655% 1992% 2169% 1895% 1895% 2201% 3385%

Buffered input stream 123% 100% 65% 59% 57% 37% 487%

8K buffered input stream 123% 99% 64% 59% 56% 37% 484%

The variations are large, but there is a mostly consistent pattern. The 8K buffer doesn't seem to be

significantly better than the default.

Let's get back to the fact that we are using a deprecated method, readLine( ). You should really be using

Readers instead of InputStreams, according to the Javadoc, for full portability, etc. Let's move to Readers

and ascertain what this change costs us:

//DataInputStream in = new DataInputStream(new FileInputStream(file)); 
//DataInputStream in = new DataInputStream(
//    new BufferedInputStream(new FileInputStream(file)));
//DataInputStream in = new DataInputStream(
//    new BufferedInputStream(new FileInputStream(file), 8192));
BufferedReader in = new BufferedReader(new FileReader(file));
while ( (line = in.readLine(  )) != null)
{
  doSomethingWith(line);
}
in.close(  );

Short lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Buffered input stream 132% 100% 48% 60% 48% 36% 373%

8K buffered input stream 136% 96% 36% 57% 48% 36% 361%

Buffered reader 192% 96% 56% 24% 60% 24% 590%

Long Lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Buffered input stream 123% 100% 65% 59% 57% 37% 487%

8K buffered input stream 123% 99% 64% 59% 56% 37% 484%

Buffered reader 53% 43% 43% 20% 52% 24% 582%

These results tell us that someone at Sun spent time optimizing Readers. You can reasonably use Readers

in most situations where you would have used an InputStream. Some situations can show a performance

decrease, but generally there is a performance increase. Note that if you are running your own versions of

these tests, you need to repeat some measurements within the VM, even in plain JIT VMs, to eliminate the

JIT compiler overhead.

Now let's get down to some real tuning. So far we have just been working from bad coding to good working

practice. The final version so far uses buffered Reader classes for I/O, as recommended by Sun. Can we do

better? Well of course, but now let's get down and dirty. You know from general tuning practices that
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creating objects is overhead you should try to avoid. Up until now, we have used the readLine( ) method,

which returns a string. Suppose you work on that string and then discard it, as is the typical situation. You

would do better to avoid the String creation altogether. Also, if you want to process the String, then for

performance purposes you are better off working directly on the underlying char array. Working on char
arrays is quicker since you can avoid the String method overhead (or, more likely, the need to copy the

String into a char array buffer to work on it). See Chapter 5 for more details on this technique.

Basically, this means that you need to implement the readLine( ) functionality with your own buffer while

passing the buffer to the method that does the string processing. The following implementation uses its own

char array buffer. It reads in characters to fill the buffer, then runs through the buffer looking for ends of

lines. Each time the end of a line is found, the buffer, together with the start and end index of the line in that

buffer, is passed to the doSomething( ) method for processing. This implementation avoids both the

String-creation overhead and the subsequent String-processing overhead, but these are not included in

any timings here. The only complication comes when you reach the end of the buffer and you need to fill it

with the next chunk from the file, but you also need to retain the line fragment from the end of the last

chunk. It is unlikely your 8192-char chunk will end exactly on an end of line, so there are almost always

some characters left to be carried over to the next chunk. To handle this, simply copy the characters to the

beginning of the buffer and read the next chunk into the buffer starting from after those characters. The

commented code looks like this:

public static void myReader(String string)
    throws IOException
  {
    //Do the processing myself, directly from a FileReader
    //But don't create strings for each line, just leave it
    //as a char array
    FileReader in = new FileReader(string);
    int defaultBufferSize = 8192;
    int nextChar = 0;
    char[  ] buffer = new char[defaultBufferSize];
  
    char c;    
    int leftover;
    int length_read;
    int startLineIdx = 0;
  
    //First fill the buffer once before we start
    int nChars = in.read(buffer, 0, defaultBufferSize);
    boolean checkFirstOfChunk = false;
  
    for(;;)
    {
      //Work through the buffer looking for end of line characters.
      //Note that the JDK does the eol search as follows:
      //It hardcodes both of the characters \r and \n as end
      //of line characters, and considers either to signify the
      //end of the line. In addition, if the end of line character
      //is determined to be \r, and the next character is \n,
      //it winds past the \n. This way it allows the reading of
      //lines from files written on any of the three systems
      //currently supported (Unix with \n, Windows with \r\n,
      //and Mac with \r), even if you are not running on any of these.
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      for (; nextChar < nChars; nextChar++)
      {
        if (((c = buffer[nextChar]) =  = '\n') || (c =  = '\r'))
        {
          //We found a line, so pass it for processing
          doSomethingWith(buffer, startLineIdx, nextChar-1);
  
          //And then increment the cursors. nextChar is
          //automatically incremented by the loop,
          //so only need to worry if 'c' is \r
          if (c =  = '\r')
          {
            //need to consider if we are at end of buffer
            if (nextChar =  = (nChars - 1) )
              checkFirstOfChunk = true;
            else if (buffer[nextChar+1] =  = '\n')
              nextChar++;
          }
          startLineIdx = nextChar + 1;
        }
      }
  
      leftover = 0;
      if (startLineIdx < nChars)
      {
        //We have some characters left over at the end of the chunk.
        //So carry them over to the beginning of the next chunk.
        leftover = nChars - startLineIdx;
        System.arraycopy(buffer, startLineIdx, buffer, 0, leftover);
      }
      do
      {
        length_read = in.read(buffer, leftover,
              buffer.length-leftover );
      } while (length_read =  = 0);
      if (length_read > 0)
      {
        nextChar -= nChars;
        nChars = leftover + length_read;
        startLineIdx = nextChar;
        if (checkFirstOfChunk)
        {
          checkFirstOfChunk = false;
          if (buffer[0] =  = '\n')
          {
            nextChar++;
            startLineIdx = nextChar;
          }
        }
      }
      else
      { /* EOF */
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        in.close(  );
        return;
      }
    }
  }

The following chart shows the new times:

Short lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Buffered input stream 132% 100% 48% 60% 48% 36% 373%

Buffered reader 192% 96% 56% 24% 60% 24% 590%

Custom-built reader 28% 24% 36% 164% 34% 24% 420%

Long lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Buffered input stream 123% 100% 65% 59% 57% 37% 487%

Buffered reader 53% 43% 43% 20% 52% 24% 582%

Custom-built reader 28% 28% 38% 37% 37% 22% 547%

The timings are the best so far, with the single exception of the 1.3.1 server mode VM, and most times are

significantly better than before.[7] The 1.3.1 server mode results are quite peculiar and look like a compiler

bug of some sort caused the compiler to generate inefficient code. If you were running this code under a

1.3.1 server VM, you would need to track down what produced the anomalous times by changing a little bit

of the code at a time, until you produced a workaround.

[7] Note that the HotSpot timings are, once again, for the second run of the repeated tests. No other
VMs exhibited consistent variations between the first and second run tests. See Table 8-1 and Table 8-
2 for the full set of results.

You can try one more thing: performing the byte-to-char conversion. The code comes from Chapter 7,

where we looked at this conversion in detail. The changes are straightforward. Change the FileReader to

FileInputStream and add a byte array buffer of the same size as the char array buffer:

//    FileReader in = new FileReader(string);
//this last line becomes
    FileInputStream in = new FileInputStream(string);
    int defaultBufferSize = 8192;
    //and add the byte array buffer
    byte[  ] byte_buffer = new byte[defaultBufferSize];

You also need to change the read( ) calls to read into the byte buffer, adding a convert( ) call after

these. The first read( ) is changed like this:

//First fill the buffer once before we start
//  this next line becomes a byte read followed by convert(  ) call
//  int nChars = in.read(buffer, 0, defaultBufferSize); 
    int nChars = in.read(byte_buffer, 0, defaultBufferSize);
    convert(byte_buffer, 0, nChars, buffer, 0, nChars, MAP3);

The second read( ) in the main loop is also changed, but the conversion isn't done immediately here. It's

done just after the number of characters, nChars, is set, a few lines later:
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//      length_read = in.read(buffer, leftover,
//              buffer.length-leftover );
//becomes
        length_read = in.read(byte_buffer, leftover,
              buffer.length-leftover);
      } while (length_read =  = 0);
      if (length_read > 0)
      {
        nextChar -= nChars;
        nChars = leftover + length_read;
        startLineIdx = nextChar;
        //And add the conversion here
        convert(byte_buffer, leftover, nChars, buffer,
              leftover, nChars, MAP3);

Measuring the performance with these changes, the times are now significantly better in almost every case:

Short lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Buffered input stream 132% 100% 48% 60% 48% 36% 373%

Custom-built reader 28% 24% 36% 164% 34% 24% 420%

Custom reader and converter 12% 12% 20% 12% 20% 12% 120%

Long lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Buffered input stream 123% 100% 65% 59% 57% 37% 487%

Custom-built reader 28% 28% 38% 37% 37% 22% 547%

Custom reader and converter 9% 10% 19% 29% 17% 14% 125%

Once again, all the VMs produce their best time except for the 1.3.1 server mode long-line case (which was

faster with the BufferedReader).[8] All the times are now under one second, even on a slow machine.

Subsecond times are notoriously variable, although in my tests the results were fairly consistent.

[8] This shows that HotSpot is quite variable with its optimizations. HotSpot sometimes makes an
unoptimized loop faster, and sometimes the manually unrolled loop comes out faster. Tables 8-1 and
8-2 show HotSpot producing both faster and slower times for the same manually unrolled loop,
depending on the data being processed (i.e., short lines or long lines).

We have, however, hardcoded in the ISO 8859_1 type of byte-to-char conversion rather than supporting

the generic case (where the conversion type is specified as a property). But this conversion represents a

common class of character-encoding conversions, and you could fall back on the method used in the

previous test where the conversion is specified differently (in the System property file.encoding). Often,

you will read from files you know and whose format you understand and can predict. In those cases, building

in the appropriate encoding is not a problem.

Using a buffered reader is adequate for most purposes. But we have seen that it is possible to speed up I/O

even further if you're willing to spend the effort. Avoiding the creation of intermediate Strings gives you a

good gain. This is true for both reading and writing and allows you to work on the char arrays directly.

Working directly on char arrays is usually better for performance, but also more work. In specialized cases,

you might want to consider taking control of every aspect of the I/O right down to the byte-to-char

encoding, but for this you need to consider how to maintain compatibility with the JDK.
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Tables Table 8-1 and Table 8-2 summarize all the results from these experiments.

Table 8-1. Timings of the long-line tests normalized to the JDK 1.2.2 buffered input stream test

Long lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 1655% 1992% 2169% 1895% 1895% 2201% 3385%

Buffered input stream 123% 100% 65% 59% 57% 37% 487%

8K buffered input stream 123% 99% 64% 59% 56% 37% 484%

Buffered reader 53% 43% 43% 20% 52% 24% 582%

Custom-built reader 28% 28% 38% 37% 37% 22% 547%

Custom reader and converter 9% 10% 19% 29% 17% 14% 125%

Table 8-2. Timings of the short-line tests normalized to the JDK 1.2.2 buffered input stream test

Short lines 1.1.8 1.2.2 1.3.1 1.3.1-server 1.4.0 1.4.0-server 1.4.0-Xint

Unbuffered input stream 1551% 1808% 1965% 1764% 1872% 2088% 2646%

Buffered input stream 132% 100% 48% 60% 48% 36% 373%

8K buffered input stream 136% 96% 36% 57% 48% 36% 361%

Buffered reader 192% 96% 56% 24% 60% 24% 590%

Custom-built reader 28% 24% 36% 164% 34% 24% 420%

Custom reader and converter 12% 12% 20% 12% 20% 12% 120%
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8.4 Serialization

Objects are serialized in a number of situations in Java. The two main reasons to serialize objects are to

transfer objects and to store them.

There are several ways to improve the performance of serialization and deserialization. First, fields that are

transient do not get serialized, saving both space and time. You can consider implementing readObject( )
and writeObject( ) (see java.io.Serializable documentation) to override the default serialization

routine; it may be that you can produce a faster serialization routine for your specific objects. If you need

this degree of control, you are better off using the java.io.Externalizable interface (the reason is

illustrated shortly). Overriding the default serialization routine in this way is generally only worth doing for

large or frequently serialized objects. The tight control this gives you may also be necessary to correctly

handle canonicalized objects (to ensure objects remain canonical when deserializing them).

To transfer objects across networks, it is worth compressing the serialized objects. For large amounts of

data, the transfer overhead tends to swamp the costs of compressing and decompressing the data. For

storing to disk, it is worth serializing multiple objects to different files rather than to one large file. The

granularity of access to individual objects and subsets of objects is often improved as well.

It is also possible to serialize objects in a separate thread for storage and network transfers, letting the

serialization execute in the background. For objects whose state can change between serializations, consider

using transaction logs or change logs (logs of the differences in the objects since they were last fully

serialized) rather than reserializing the whole object. This works much like full and incremental backups. You

need to maintain the changes somewhere, of course, so it makes the objects more complicated, but this

complexity can have a really good payback in terms of performance: consider how much faster an

incremental backup is compared to a full backup.

It is worthwhile to spend some time on a basic serialization tuning exercise. I chose a couple of fairly simple

objects to serialize, but they are representative of the sorts of issues that crop up in serialization.

class Foo1 implements Serializable
{
  int one;
  String two;
  Bar1[  ] four;
  
  public Foo1(  )
  {
    two = new String("START");
    one = two.length(  );
    four = new Bar1[2];
    four[0] = new Bar1(  );
    four[1] = new Bar1(  );
  }
}
  
class Bar1 implements Serializable
{
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  float one;
  String two;
  public Bar1(  )
  {
    two = new String("hello");
    one = 3.14F;
  }
}

Note that I have given the objects default initial values for the tuning tests. The defaults assigned to the

various String variables are forced to be unique for every object by making them new Strings. Without

doing this, the compiler assigns the identical String to every object. That alters the timings: only one

String is written on output, and when created on input, all other String references reference the same

string by identity. (Java serialization can maintain relative identity of objects for objects that are serialized

together.) Using identical Strings would make the serialization tests quicker and would not be

representative of normal serializations.

Test measurements are easily skewed by rewriting previously written objects.

Previously written objects are not converted and written out again; instead, only a

reference to the original object is written. Writing this reference can be faster than

writing out the object again. The speed is even more skewed on reading since only

one object gets created. All the other references refer to the same uniquely created

object.

Early in my career, I was given the task of testing the throughput of an object

database. The first tests registered a fantastically high throughput until we realized

we were storing just a few objects once, and all the other objects we thought we

were storing were only references to those first few.

The Foo objects each contain two Bar objects in an array to make the overall objects slightly more

representative of real-world objects. I'll make a baseline using the standard serialization technique:

    if (toDisk)
      OutputStream ostream = new FileOutputStream("t.tmp");
    else
      OutputStream ostream = new ByteArrayOutputStream(  );
    ObjectOutputStream wrtr = new ObjectOutputStream(ostream);
  
    long time = System.currentTimeMillis(  );
    //write objects: time only the 3 lines for serialization output
    wrtr.writeObject(lotsOfFoos);
    wrtr.flush(  );
    wrtr.close(  );
    System.out.println("Writing time: " + 
            (System.currentTimeMillis(  )-time));
  
    if (toDisk)
      InputStream istream = new FileInputStream("t.tmp");
    else
      InputStream istream = new ByteArrayInputStream(
        ((ByteArrayOutputStream) ostream).toByteArray(  ));
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    ObjectInputStream rdr = new ObjectInputStream(istream);
  
    time = System.currentTimeMillis(  );
    //read objects: time only the 2 lines for serialization input
    Foo1[  ] allFoos = (Foo1[  ]) rdr.readObject(  );
    rdr.close(  );
    System.out.println("Reading time: " + 
            (System.currentTimeMillis(  )-time));

As you can see, I provide for running tests either to disk or purely in memory. This allows you to break down

the cost into separate components. The actual values revealed that 95% of the time is spent in the

serialization. Less than 5% is the actual write to disk (of course, the relative times are system-dependent,

but these results are probably representative).

When measuring, I used a pregrown ByteArrayOutputStream so that there were no effects from allocating

the byte array in memory. Furthermore, to eliminate extra memory copying and garbage-collection effects,

I reused the same ByteArrayOutputStream, and indeed the same byte array from that

ByteArrayOutputStream object for reading. The byte array is accessible by subclassing

ByteArrayOutputStream and providing an accessor to the ByteArrayOutputStream.buf instance

variable.

The results of this first test for JDK 1.2.2[9] are shown in the following chart:

[9] Table 8-3 lists the full results of tests with a variety of VMs. I have used the 1.2 results for
discussion in this section, and the results are generally applicable to the other VMs tested.

  Writing (serializing) Reading (deserializing)

Standard serialization 100% 164%

I have normalized the baseline measurements to 100% for the byte array output (i.e., serializing the

collection of Foos). On this scale, the reading (deserializing) takes 164%. This is not what I expected,

because I am used to the idea that "writing" takes longer than "reading." Thinking about exactly what is

happening, you can see that for the serialization you take the data in some objects and write that data out to

a stream of bytes, which basically accesses and converts objects into bytes. But for the deserializing, you

access elements of a byte array and convert these to other object and data types, including creating any

required objects. Added to the fact that the serializing procedures are much more costly than the actual

(disk) writes and reads, it is now understandable that deserialization is likely to be the more intensive, and

consequently slower, activity.

Considering exactly what the ObjectInputStream and ObjectOutputStream must do, I realize that they

are accessing and updating internal elements of the objects they are serializing, without knowing beforehand

anything about those objects. This means there must be a heavy usage of the java.reflect package,

together with some internal VM access procedures (since the serializing can reach private and protected

fields and methods).[10] All this suggests that you should improve performance by taking explicit control of

the serializing.

[10] The actual code is difficult and time-consuming to work through. It was written in parts as one
huge iterated/recursed switch, probably for performance reasons.

Alert readers might have noticed that Foo and Bar have constructors that initialize the object and may be

wondering if deserializing could be speeded up by changing the constructors to avoid the unnecessary

overhead there. In fact, the deserialization uses internal VM access to create the objects without going
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through the constructor, similar to cloning the objects. Although the Serializable interface requires

serializable objects to have no-arg constructors, deserialized objects do not actually use that (or any)

constructor.

To start with, the Serializable interface supports two methods that allow classes to handle their own

serializing. So the first step is to try these methods. Add the following two methods to Foo:

  private void writeObject(java.io.ObjectOutputStream out)
    throws IOException
  {
    out.writeUTF(two);
    out.writeInt(one);
    out.writeObject(four);
  }
  private void readObject(java.io.ObjectInputStream in)
    throws IOException, ClassNotFoundException
  {
    two = in.readUTF(  );
    one = in.readInt(  );
    four = (Bar2[  ]) in.readObject(  );
  }

Bar needs the equivalent two methods:

  private void writeObject(java.io.ObjectOutputStream out)
    throws IOException
  {
    out.writeUTF(two);
    out.writeFloat(one);
  }
  private void readObject(java.io.ObjectInputStream in)
    throws IOException, ClassNotFoundException
  {
    two = in.readUTF(  );
    one = in.readFloat(  );
  }

The following chart shows the results of running the test with these methods added to the classes:

  Writing (serializing) Reading (deserializing)

Standard serialization 100% 164%

Customized read/writeObject( ) in Foo and Bar 140% 150%

We have improved the reads but made the writes worse. I expected an improvement for both, and I cannot

explain why the writes are worse (other than perhaps that the ObjectOutputStream class may have

suboptimal performance for this method-overriding feature; the 1.4 VM does show a speedup for both the

writes and reads, suggesting that the class has been optimized in that version). Instead of analyzing what

the ObjectOutputStream class may be doing, let's try further optimizations.

Examining and manipulating objects during serialization takes more time than the actual conversion of data

to or from streams. Considering this, and looking at the customized serializing methods, you can see that
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the Foo methods simply pass control back to the default serializing mechanism to handle the embedded Bar

objects. It may be worth handling the serializing more explicitly. For this example, I'll break encapsulation by

accessing the Bar fields directly (although going through accessors and updators or calling serialization

methods in Bar would not make much difference in time here). I redefine the Foo serializing methods as:

private void writeObject(java.io.ObjectOutputStream out)
    throws IOException
  {
    out.writeUTF(two);
    out.writeInt(one);
    out.writeUTF(four[0].two);
    out.writeFloat(four[0].one);
    out.writeUTF(four[1].two);
    out.writeFloat(four[1].one);
  }
  private void readObject(java.io.ObjectInputStream in)
    throws IOException, ClassNotFoundException
  {
    two = in.readUTF(  );
    one = in.readInt(  );
    four = new Bar3[2];
    four[0] = new Bar3(  );
    four[1] = new Bar3(  );
    four[0].two = in.readUTF(  );
    four[0].one = in.readFloat(  );
    four[1].two = in.readUTF(  );
    four[1].one = in.readFloat(  );
  }

The Foo methods now handle serialization for both Foo and the embedded Bar objects, so the equivalent

methods in Bar are now redundant. The following chart illustrates the results of running the test with these

altered methods added to the classes (Table 8-3 lists the full results of tests with a variety of VMs):

  Writing (serializing) Reading (deserializing)

Standard serialization 100% 164%

Customized read/writeObject( ) in Foo and Bar 140% 150%

Customized read/writeObject( ) in Foo handling Bar 38% 58%

Now this gives a clearer feel for the costs of dynamic object examination and manipulation.

Given the overhead the serializing I/O classes incur, it has now become obvious that the more serializing you

handle explicitly, the better off you are. This being the case, the next step is to ask the objects explicitly to

serialize themselves rather than going through the ObjectInputStream and ObjectOutputStream to

have them in turn ask the objects to serialize themselves.

The readObject( ) and writeObject( ) methods must be defined as private according to the

Serializable interface documentation, so they cannot be called directly. You must either wrap them in

another public method or copy the implementation to another method so you can access them directly. But

in fact, java.io provides a third alternative. The Externalizable interface also provides support for

serializing objects using ObjectInputStream and ObjectOutputStream. But Externalizable defines

http://lib.ommolketab.ir
http://lib.ommolketab.ir


two public methods rather than the two private methods required by Serializable. So you can just

change the names of the two methods: readObject(ObjectInputStream) becomes

readExternal(ObjectInput), and writeObject(ObjectOutputStream) becomes

writeExternal(ObjectOutput). You must also redefine Foo as implementing Externalizable instead

of Serializable. All of these are simple changes, but to be sure that nothing untoward has happened as a

consequence, rerun the tests (as good tuners should for any changes, even minor ones). The following chart

shows the new test results:

  Writing (serializing) Reading (deserializing)

Standard serialization 100% 164%

Customized read/writeObject( ) in Foo handling Bar 38% 58%

Foo made Externalizable, using last methods renamed 28% 44%

Remarkably, the times are significantly faster. This probably reflects the improvement you get from being

able to compile and execute a line such as:

((Externalizable) someObject).writeExternal(this)

in the ObjectOutputStream class, rather than having to go through java.reflect and the VM internals

to reach the private writeObject( ) method. This example also shows that you are better off making your

classes Externalizable rather than Serializable if you want to control your own serializing.

The drawback to controlling your own serializing is a significantly higher maintenance

cost, as any change to the class structure also requires changes to the two

Externalizable methods (or the two methods supported by Serializable). In

some cases (as in the example presented in this tuning exercise), changes to the

structure of one class actually require changes to the Externalizable methods of

another class. The example presented here requires that if the structure of Bar is

changed, the Externalizable methods in Foo must also be changed to reflect the

new structure of Bar. Here, you can avoid the dependency between the classes by

having the Foo serialization methods call the Bar serialization methods directly. But

the general fragility of serialization, when individual class structures change, still

remains.

You changed the methods in the first place to provide public access to the methods in order to access them

directly. Let's continue with this task. Now, for the first time, you will change actual test code, rather than

anything in the Foo or Bar classes. The new test looks like:

    if (toDisk)
      OutputStream ostream = new FileOutputStream("t.tmp");
    else
      OutputStream ostream = new ByteArrayOutputStream(  );
    ObjectOutputStream wrtr = new ObjectOutputStream(ostream);
  
    //The old version of the test just ran the next
    //commented line to write the objects
    //wrtr.writeObject(lotsOfFoos);
  
    long time = System.currentTimeMillis(  );
    //This new version writes the size of the array,
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    //then each object explicitly writes itself
    //time these five lines for serialization output
    wrtr.writeInt(lotsOfFoos.length);
    for (int i = 0; i < lotsOfFoos.length ; i++)
      lotsOfFoos[i].writeExternal(wrtr);
    wrtr.flush(  );
    wrtr.close(  );
    System.out.println("Writing time: " + 
        (System.currentTimeMillis(  )-time));
  
    if (toDisk)
      InputStream istream = new FileInputStream("t.tmp");
    else
      InputStream istream = new ByteArrayInputStream(
        ((ByteArrayOutputStream) ostream).toByteArray(  ));
    ObjectInputStream rdr = new ObjectInputStream(istream);
  
    //The old version of the test just ran the next
    //commented line to read the objects
    //Foo1[  ] allFoos = (Foo1[  ]) rdr.readObject(  );
  
    time = System.currentTimeMillis(  );
    //This new version reads the size of the array and creates
    //the array, then each object is explicitly created and
    //reads itself. read objects - time these ten lines to
    //the close(  ) for serialization input
    int len = rdr.readInt(  );
    Foo[  ] allFoos = new Foo[len];
    Foo foo;
    for (int i = 0; i < len ; i++)
    {
      foo = new Foo(  );
      foo.readExternal(rdr);
      allFoos[i] = foo;
    }
    rdr.close(  );
    System.out.println("Reading time: " + 
        (System.currentTimeMillis(  )-time));

This test bypasses the serialization overhead completely. You are still using the ObjectInputStream and

ObjectOutputStream classes, but really only to write out basic data types, not for any of their object-

manipulation capabilities. If you didn't require those specific classes because of the required method

signatures, you could have happily used DataInputStream and DataOutputStream classes for this test.

The following chart shows the test results.

  Writing (serializing) Reading (deserializing)

Standard serialization 100% 164%

Foo made Externalizable, using last methods renamed 28% 44%

Foo as last test, but read/write called directly in test 3.9% 25%
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If you test serializing to and from the disk, you find that the disk I/O now takes nearly one-third of the total

test times. Because disk I/O is now a significant portion of the total time, the CPU is now underworked, and

you can even gain some speedup by serializing in several threads, i.e., you can evenly divide the collection

into two or more subsets and have each subset serialized by a separate thread (I leave that as an exercise

for you).

Note that since you are now explicitly creating objects by calling their constructors, the instance variables in

Bar are being set twice during deserialization, once at the creation of the Bar instance in

Foo.readExternal( ), and again when reading in the instance variable values and assigning those values.

Normally you should move any Bar initialization out of the no-arg constructor to avoid redundant

assignments.

Is there any way of making the deserializing faster? Well, not significantly, if you need to read in all the

objects and use them all immediately. But more typically, you need only some of the objects immediately. In

this case, you can use lazily initialized objects to speed up the deserializing phase (see also Section 4.6.2).

The idea is that instead of combining the read with the object creation in the deserializing phase, you

decouple these two operations. So each object reads in just the bytes it needs, but does not convert those

bytes into objects or data until that object is actually accessed. To test this, add a new instance variable to

Foo to hold the bytes between reading and converting to objects or data. You also need to change the

serialization methods. I will drop support for the Serializable and Externalizable interfaces since we

are now explicitly requiring the Foo objects to serialize and deserialize themselves, and I'll add a second

stream to store the size of the serialized Foo objects. Foo now looks like:

class Foo1 implements Serializable
{
  int one;
  String two;
  Bar1[  ] four;
  byte[  ] buffer;
  
  //empty constructor to optimize deserialization
  public Foo5(  ){  }
  //And constructor that creates initialized objects
  public Foo5(boolean init)
  {
    this(  );
    if (init)
      init(  );
  }
  public void init(  )
  {
    two = new String("START");
    one = two.length(  );
    four = new Bar5[2];
    four[0] = new Bar5(  );
    four[1] = new Bar5(  );
  }
  
  //Serialization method
  public void writeExternal(MyDataOutputStream out, DataOutputStream outSizes)
    throws IOException
  {
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    //Get the amount written so far so that we can determine
    //the extra we write
    int size = out.written(  );
  
    //write out the Foo
    out.writeUTF(two);
    out.writeInt(one);
    out.writeUTF(four[0].two);
    out.writeFloat(four[0].one);
    out.writeUTF(four[1].two);
    out.writeFloat(four[1].one);
  
    //Determine how many bytes I wrote
    size = out.written(  ) - size;
  
    //and write that out to our second stream
    outSizes.writeInt(size);
  }
  public void readExternal(InputStream in, DataInputStream inSizes)
    throws IOException
  {
    //Determine how many bytes I consist of in serialized form
    int size = inSizes.readInt(  );
  
    //And read me into a byte buffer
    buffer = new byte[size];
    int len;
    int readlen = in.read(buffer);
  
    //be robust and handle the general case of partial reads
    //and incomplete streams
    if (readlen =  = -1)
      throw new IOException("expected more bytes");
    else
      while(readlen < buffer.length)
      {
        len = in.read(buffer, readlen, buffer.length-readlen);
        if (len < 1)
          throw new IOException("expected more bytes");
        else
          readlen += len;
      }
  }
  
  //This method does the deserializing of the byte buffer to a 'real' Foo
  public void convert(  )
    throws IOException
  {
    DataInputStream in = new DataInputStream(new ByteArrayInputStream(buffer));
    two = in.readUTF(  );
    one = in.readInt(  );
    four = new Bar5[2];
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    four[0] = new Bar5(  );
    four[1] = new Bar5(  );
    four[0].two = in.readUTF(  );
    four[0].one = in.readFloat(  );
    four[1].two = in.readUTF(  );
    four[1].one = in.readFloat(  );
    buffer = null;
  }
}

As you can see, I have chosen to use DataInputStreams and DataOutputStreams since they are all that's

needed. I also use a subclass of DataOutputStream called MyDataOutputStream. The class adds only one

method, MyDataOutputStream.written( ), to provide access to the DataOutputStream.written

instance variable so that you have access to the number of bytes written. The timing tests are essentially the

same as before, except that you change the stream types and add a second stream for the sizes of the

serialized objects (e.g., to file t2.tmp, or a second pair of byte-array input and output streams). The

following chart shows the new times:

  Writing (serializing) Reading (deserializing)

Standard serialization 100% 164%

Foo as last test, but read/write called directly in test 3.9% 25%

Foo lazily initialized 17% 4%

We have lost out on the writes because of the added complexity, but improved the reads considerably. The

cost of the Foo.convert( ) method has not been factored in, but the strategy illustrated here is for cases

where you need to run only that convert method on a small subset of the deserialized objects, and so the

extra overhead should be small. This technique works well when transferring large groups of objects across a

network.

For the case in which you need only a few objects out of many serialized objects that have been stored on

disk, another strategy is even more efficient. This strategy uses techniques similar to the example just

shown. One file (the data file) holds the serialized objects. A second file (the index file) holds the offset of

the starting byte of each serialized object in the first file. For serializing, the only difference to the example is

that when writing out the objects, the full DataOutputStream.written instance variable is added to the

index file as the writeExternal( ) method is entered, instead of writing the difference between

successive values of DataOutputStream.written. A moment's thought should convince you that this

provides the byte offset into the data file.

With this technique, deserializing is straightforward. You enter the index file and skip to the correct index for

the object you want in the data file (e.g., for the object at array index 54, skip 54 x 4 = 216 bytes from the

start of the index file). The serialized int at that location holds the byte offset into the data file, so you

deserialize that int. Then you enter the data file, skipping to the specified offset, and deserialize the object

there. (This is also the first step in building your own database: the next steps are normally to waste time

and effort before realizing that you can more easily buy a database that does most of what you want.) This

"index file-plus-data file" strategy works best if you leave the two files open and skip around the files, rather

than repeatedly opening and closing the files every time you want to deserialize an object. The strategy

illustrated in this paragraph does not work as well for transferring serialized objects across a network. For

network transfers, a better strategy is to limit the objects being transferred to only those that are

needed.[11] Table 8-3 shows the tunings of the serialization tests, normalized to the JDK 1.2 standard

serialization test. Each entry is a pair giving write/read timings. The test name in parentheses refers to the
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method name executed in the tuning.io.SerializationTest class.

[11] You could transfer index files across the network, then use those index files to precisely identify the
objects required and limit transfers to only those identified objects.

Table 8-3. Timings (in write/read pairs) of the serialization tests with various VMs

  1.1.8 1.2.2 1.3.1
1.3.1-

server
1.4.0 1.4.0-Xint

Standard serialization

(test1a)
929%/1848% 100%/164% 112%/120% 68%/144% 99%/100% 700%/593%

Customized

write/readObject( ) in Foo

and Bar (test2a)

406%/612% 140%/150% 139%/145% 113%/178% 91%/93% 556%/486%

Customized

write/readObject( ) in Foo

handling Bar (test3a)

43%/132% 38%/58% 41%/53% 37%/71% 29%/37% 201%/234%

Foo made Externalizable,

using last methods

renamed (test4a)

28%/92% 28%/44% 25%/40% 32%/57% 29%/39% 187%/222%

Foo as last test, but

write/read called directly in

test (test4c)

2.9%/97% 3.9%/25% 4.9%/19% 19%/30% 7.6%/18% 75%/132%

Foo lazily initialized

(test5a)
16%/3.4% 17%/4% 12%/2.6% 61%/6.7% 13%/2.4% 105%/18%
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[ Team LiB ]  

8.5 Clustering Objects and Counting I/O Operations

Clustering is a technique that takes advantage of locality (usually on the disk) to improve performance. It is

useful when you have objects stored on disk and can arrange where objects are in relation to each other. For

example, suppose you store serialized objects on disk, but need to have fast access to some of these

objects. The most basic example of clustering is arranging the serialization of the objects in such a way as to

selectively deserialize them to get exactly the subset of objects you need, in as few disk accesses, file

openings, and object deserializations as possible.

Suppose you want to serialize a table of objects. Perhaps they cannot all fit into memory at the same time,

or they are persistent, or there are other reasons for serialization. It may be that of the objects in the table,

10% are accessed frequently while the other 90% are only infrequently accessed and the application can

accept slight delays on accessing these less frequently required objects. In this scenario, rather than

serializing the whole table, you may be better off serializing the 10% of frequently used objects into one file

(which can be deserialized in one long call) and the other 90% into one or more other files with an object

table index allowing individual objects to be read in as needed.

Alternatively, it may be that objects are grouped in some way in your application so that whenever one of

the table objects is referenced, this also automatically requires certain other related objects. In this case,

you want to cluster these groups of objects so they are deserialized together.

If you need to manage objects on disk for persistency, sharing, memory, or whatever reason, you should

consider using an object-storage system (such as an object database). The serialization provided with Java

is very basic and provides little in the way of simple systemwide customization. For example, if you have a

collection of objects on disk, typically you want to read into memory the collection down to one or two levels

(i.e., only the collection elements, not any objects held in the instance variables of the collection elements).

With serialization, you get the transitive closure[12] of the collection in general, which is almost certainly

much more than you want. Serialization supports reading to certain levels in only a very rudimentary way:

basically, it says you have to do the reading yourself, but it gives you the hooks that let you customize on a

per-class basis. The ability to tune to this level of granularity is really what you need for any sort of disk-

based object storage beyond the most basic. And you usually do get those extra tuning capabilities in

various object-storage systems.

[12] The transitive closure is the set of all objects reachable from any one object, i.e., an object and its
data variables and their data variables, etc.

At a lower level, you should be aware that the system reads in data from the disk one page at a time (page

size is system-dependent, normally 4 or 8 KB). This means that if you cluster data (of whatever type) on the

disk so that the data that needs to be together is physically close together on disk, then the reading of that

data into memory is also speeded up. Typically, the most control you have over clustering objects is by

putting data into the same file near each other and hoping that the filesystem is not too fragmented.

Defragmenting the disks on occasion can help.

Clustering should reduce the number of disk I/O operations you need to execute. Consequently, measuring

the number of disk I/O operations that are executed is essential to determine if you have clustered

usefully.[13] The simplest technique to measure I/O is to monitor the number of reads, writes, opens, and

closes that are performed. This gets complicated by using different I/O classes wrapped one around the

other. But you can always find the lowest-level class that is actually doing the I/O (usually one of

FileInputStream, FileOutputStream, and RandomAccessFile in the java.io package). You can
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determine all actual methods that execute I/O fairly easily if you have the JDK source: simply find all source

files with the word "native." If you look in java.io for these and look at the actual method names of the

native methods, you will find that in almost every case, the only classes applicable to you are the

FileInputStream, FileOutputStream, and RandomAccessFile classes. Now the difficult part is

wrapping these calls so that you can monitor them. Native methods that are declared private are

straightforward to handle: just redefine the java.io class to count the times they are called internally.

Native methods that are protected or have no access modifier are similarly handled: just ensure you do the

same redefinition for subclasses and package members. But the methods defined with the public modifier

need to be tracked for any classes that call these native methods, which can be difficult and tiresome, but

not impossible.

[13] Ultimately, it is the number of low-level I/O operations that matter. But if you reduce the high-
level I/O operations, the low-level ones are generally reduced by the same proportion. The Java
read/write/open/close operations at the "native" level are also the OS read/write/open/close
operations for all the Java runtimes I've investigated.

The simplest alternative would be to use the debug interface to count the number of hits on the method.

Unfortunately, you cannot set a breakpoint on a native method, so this is not possible.

The result is that it takes some effort to identify every I/O call in an application. If you have consistently

used your own I/O classes, the java.io buffered classes, and the java.io Reader and Writer classes, it

may be enough to wrap the I/O calls to FileOutputStream and FileInputStream from these classes. If

you have done nonstandard things, you need to put in more effort.

One other way to determine how many I/O operations you have used is to execute Runtime.getRuntime(
).traceMethodCalls(true) before the test starts, capture the method trace, and filter out the native

calls you have identified. Unfortunately, this is optional functionality in the JDK (Java specifies that the

traceMethodCalls( ) method must exist in Runtime, but it does not have to do anything), so you are

lucky if you use a system that supports it. The only one I am aware of is the Symantec development

environment, and in that case, you have to be in the IDE and running in debug mode. Running the Symantec

VM outside the IDE does not seem to enable this feature. Some profilers may also help to produce a trace of

all I/O operations.

I would recommend that all basic I/O calls have logging statements next to them, capable of reporting the

amount of I/O performed (both the number of I/O operations and the number of bytes transferred). I/O is

typically so costly that one null call or if statement (when logging is not turned on) is not at all significant

for each I/O performed. On the other hand, it is incredibly useful to be able to determine at any time

whether I/O is causing a performance problem. Typically, I/O performance depends on the configuration of

the system and on resources outside the application. So if an unusual configuration causes I/O to be

dramatically more expensive, this can be easily missed in testing and difficult to determine (especially

remotely) unless you have an I/O-monitoring capability built into your application.
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8.6 Compression

A colleague of mine once installed a compression utility on his desktop machine that compressed the entire

disk. The utility worked as a type of disk driver: accesses to the disk went through the utility, and every read

and write was decompressed or compressed transparently to the rest of the system, and to the user. My

colleague was expecting the system to run slower, but needed the extra disk space and was willing to put up

with a slower system.

What he actually found was that his system ran faster! It turned out that the major bottleneck to his system

was disk throughput, and by making most files smaller (averaging half the previous size), everything was

moving between memory and disk much quicker. The CPU had plenty of spare cycles necessary to handle the

compression-decompression procedures because it was waiting for disk transfers to complete.

This illustrates how the overhead of compression can be outweighed by the benefits of reducing I/O. The

system described obviously had a disk that was relatively too slow in comparison to the CPU processing

power. But this is quite common. Disk throughput has not improved nearly as fast as CPUs have increased in

speed, and this divergent trend is set to continue for some time. The same is true for networks. Although

networks do tend to have a huge jump in throughput with each generation, this jump tends to be offset by

the much larger volumes of data being transferred. Furthermore, network-mounted disks are also

increasingly common, and the double performance hit from accessing a disk over a network is surely a prime

candidate for increasing speed using compression.

On the other hand, if a system has a fully loaded CPU, adding compression can make things worse. This

means that when you control the environment (servers, servlets, etc.), you can probably specify precisely,

by testing, whether or not to use compression in your application to improve performance. When the

environment is unknown, the situation is more complex. One suggestion is to write I/O wrapper classes that

handle compressed and uncompressed I/O automatically on the fly. Your application can then test whether

any particular I/O destination has better performance using compression, and then automatically use

compression when called for.

One final thing to note about compressed data is that it is not always necessary to decompress the data in

order to work with it. As an example, if you are using 2-Ronnies compression,[14] the text "Hello. Have you

any eggs? No, we haven't any eggs" is compressed into "LO. F U NE X? 9, V FN NE X."

[14] "The Two Ronnies" was a British comedy show that featured very inventive comedy sketches, many
based on word play. One such sketch involved a restaurant scene where all the characters spoke only
in letters and numbers, joining the letters up in such a way that they sounded like words. The mapping
for some of the words to letters was as follows: have = F, you = U, any = NE, eggs = X, hello = LO, no
= 9, yes = S, we = V, have = F, haven't = FN, ham = M, and = N

Now, if I want to search the text to see if it includes the phrase "any eggs," I do not actually need to

decompress the compressed text. Instead, I compress the search string "any eggs" using 2-Ronnies

compression into "NE X", and I can now use that compressed search string to search directly on the

compressed text.

When applied to objects or data, this technique requires some effort. You need to ensure that any small data

chunk compresses in the same way both on its own and as part of a larger volume of data containing that

data chunk. If this is not the case, you may need to break objects and searchable data into fields that are

individually compressed.
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There are several advantages to this technique of searching directly against compressed data:

There is no need to decompress a large amount of data.

Searches are actually quicker because the search is against a smaller volume of data.

More data can be held in memory simultaneously (since it is compressed), which can be especially

important for searching through large volumes of disk-stored data.

It is rarely possible to search for compressed substrings directly in compressed data because of the way

most compression algorithms use tables covering the whole dataset. However, this scheme has been used to

selectively query for data locations. For this usage, unique data keys are compressed separately from the

rest of the data. A pointer is stored next to the compressed key. This produces a compressed index table

that can be searched without decompressing the keys. The compression algorithm is separately applicable

for each key. This scheme allows compressed keys to be searched directly to identify the location of the

corresponding data.
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8.7 NIO

SDK 1.4 includes a new set of packages called NIO ( New I/O) in the java.nio package space. The NIO

classes hold I/O functionality that is available from most modern operating systems but that was missing from

Java. Much of the NIO functionality is needed for highly scalable efficient server technology, but some aspects

are useful for many applications, as we'll see in the next few sections. For a good introduction to NIO, consider

Learning Java (O'Reilly) as well as a basic introduction in Michael Nygard's excellent article in JavaWorld .[15]

[15] Michael Nygard, "Master Merlin's new I/O classes," JavaWorld , September 2001,
http://www.javaworld.com/javaworld/jw-09-2001/jw-0907-merlin.html .

8.7.1 Connecting Client Sockets

When you create a client socket to connect to a server, the underlying TCP connection procedure involves a

two-phase acknowledgment. The Socket.connect( ) call invokes a blocking procedure, which normally

stops the thread from proceeding until the connection is complete.

The NIO package allows you to initiate the socket connection procedure and carry on processing in the thread

while the connection is being established. To achieve this, you use a SocketChannel set to nonblocking

mode. Then, a call to SocketChannel.connect( ) returns immediately, with the connection attempted in

the background. You can use the OP_CONNECT flag with the Selector , or more simply call the

SocketChannel.isConnectionPending( ) method at any time to check whether the connection procedure

has completed. When the connection is flagged as ready, the connection is finished by calling

SocketChannel.finishConnect( ) , which essentially tells you either that the connection is established

(by returning normally from the method call), or that the connection attempt failed (by throwing an

exception).

8.7.2 Nondirect Buffers: Fast Casts for Primitive Arrays

The NIO package introduces Buffer objects, which are essentially collections of primitive data types. For

example, FloatBuffer holds a collection of float s. Buffer objects are of two types, direct and nondirect.

Direct Buffer s are objects that directly wrap a section of system memory. Nondirect buffers essentially wrap

a Java array object, e.g., float[ ] arrays for FloatBuffer . Buffer s are an integral part of the NIO

package, and many NIO objects use Buffer s in various ways.

In this section we'll look at an example of using nondirect Buffer s independently from the rest of NIO. An

application I am familiar with needed to send an array of float s across the network to another Java process

and did so by looping through the array of float s, writing each float using DataOutput.writeFloat( )
to the socket and reading each float at the other end. The whole sequence was preceded with the number of

float s in the array, like this:

 dataOut.writeInt(floatArray.length);
 for (int i = 0; i < floatArray.length; i++)
   dataOut.writeFloat(floatArray[i]);
 dataOut.flush(  );
 dataOut.close(  );

The read at the other end was simply the reverse procedure:
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 int len = dataIn.readInt(  );
 float[  ] floatArray = new float[len];
 for (int i = 0; i < len; i++)
   floatArray[i] = dataIn.readFloat(  );
 dataIn.close(  );

Let's examine this technique for inefficiencies. Using what you have learned from the rest of this chapter, you

should immediately see two potential speedups. First, the amount of data written could be compressed.

Second, the number of I/O operations is large; fewer I/O operations should make the procedure faster.

Let's deal with compression first. Applying compression would actually slow down the read and write, though

the overall transfer might be speeded up if the connection was slow with significant fragmentation.

Compression in this situation is heavily network-dependent. I'll assume we are on a LAN, in which case

compression would only slow down the transfer.

Next, we can reduce the number of I/O operations. With the current procedure we have one I/O operation

executed for every float in the array. The underlying network stack might batch some of the I/O calls, but

you cannot rely on that. One obvious way to reduce the number of I/O calls is to treat the array as a single

object and use an ObjectInputStream /ObjectOutputStream pair to make the transfer:

 objectOut.writeObject(floatArray);
 objectOut.flush(  );
 objectOut.close(  );

The read at the other end is simply the reverse procedure:

 float[  ] floatArray = (float[  ]) objectIn.readObject(  );
 objectIn.close(  );

Measuring this new procedure, for very large arrays of float s (hundreds of thousands), I obtain times that

are more than a hundred times faster-a gain of two orders of magnitude. The gain is due to reducing the

number of I/O calls from hundreds of thousands to just one.

Unfortunately for the developers of this application, ObjectStream s cannot be reused. That is, you cannot

reset an ObjectStream and start reusing it because of initialization data it writes and reads on the stream.

ObjectStream s are fine if you are doing all of your stream I/O looped through one ObjectStream . But if

you are using other stream-writing procedures on the same stream as the ObjectStream s, you have to be

extremely careful, or you need to create and release ObjectStream s for each group of objects sent. And,

unfortunately, ObjectStream s have a high creation overhead. The particular application that was

transferring the float arrays could not use ObjectStream s, but needed the speed they could have gained

from them.

Next we consider Buffer s. Buffer objects allow you to treat arrays of one type of primitive data type as an

array of another type. This is equivalent to being able to cast an array of data from one data type to another.

In this case, we would like to treat a float[ ] array as a byte[ ] array because we can read and write

byte[ ] arrays very efficiently in single I/O operations.

Specifically, you can create a ByteBuffer wrapping a byte[ ] array. The byte[ ] array is going to be used

for efficient I/O, using the InputStream.write(byte[ ]) and OutputStream.write(byte[ ]) methods.

ByteBuffer provides methods to access the ByteBuffer as another type of Buffer , in this case as a

FloatBuffer :

 //The byte array for output
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 byte[  ] byteArray = new byte[floatArray.length*4];
 //Create a FloatBuffer 'view' on the ByteBuffer that wraps the byte array
 FloatBuffer outFloatBuffer = ByteBuffer.wrap(byteArray).asfloatBuffer(  );
 //Write the array of floats into the byte array. FloatBuffer does this efficiently
 outFloatBuffer.put(floatArray, 0, floatArray.length);
 //And write the length then the byte array
 dataOut.writeInt(floatArray.length);
 dataOut.write(byteArray, 0, floatArray.length*4);
 dataOut.flush(  );
 dataOut.close(  );

The read is very similar:

 int len = dataIn.readInt(  );
 //The byte array for input
 byte[  ] byteArray = new byte[len*4];
 //Create a FloatBuffer 'view' on the ByteBuffer that wraps the byte array
 FloatBuffer inFloatBuffer = ByteBuffer.wrap(byteArray).asfloatBuffer(  );
 float[  ] floatArray = new float[len];
 //Read the data into the byte array.
 dataIn.readFully(byteArray);
 //And copy the array of floats from the byte array. FloatBuffer does this 
efficiently
 inFloatBuffer.get(floatArray, 0, floatArray.length);
 dataIn.close(  );

As a result, we achieve the same speed as the single I/O object transfer, without the need for ObjectStream

s.

8.7.3 Direct Buffers: Optimized I/O Operations

Direct Buffer s wrap a portion of system memory. They yield optimal I/O efficiency by allowing system I/O

operations to operate directly between system memory and an external medium (e.g., the disk or network). In

contrast, nondirect Buffer s require an extra copy operation to move the data from the Java heap to and

from the external medium. The NIO I/O operations are optimized for dealing with direct Buffer s. However,

note that the "old" I/O (java.io ) classes are also optimized, but for operating on Java arrays. The

InputStream and OutputStream classes that operate directly on external media (for example,

FileInputStream ) also require no extra copy operations to move data to and from Java arrays. So we can

see that nondirect Buffer s are at a disadvantage when compared to both the other options, but it is not

obvious which other combination of data structure and I/O operation is the most efficient.

So let's test out the possibilities. I'll use a simple file-copying operation to test the various options. I've chosen

file copying because NIO includes an extra operation for enabling file copies in the FileChannel class, which

gives us one further optimization option. First, we have the good old java.io technique of reading chunks

from the file into a byte[ ] array buffer and writing those chunks out. You should be fairly familiar with this

by now:

  public static void explicitBufferInputStreamCopy(String f1, String f2)
    throws Exception
  {
    long time = System.currentTimeMillis(  );
    byte[  ] buffer = new byte[1024*16];
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    FileInputStream rdr = new FileInputStream(f1);
    FileOutputStream wrtr = new FileOutputStream(f2);
    int readLen;
    while( (readLen = rdr.read(buffer)) != -1)
    {
      wrtr.write(buffer, 0, readLen);
    }
    rdr.close(  );
    wrtr.close(  );
    time = System.currentTimeMillis(  ) - time;
    System.out.println(" explicitBufferInputStreamCopy time: " + time);
  }

Next, we have the equivalent technique using a direct Buffer and FileChannel s. This technique may be

unfamiliar, but it is straightforward. We allocate a direct Buffer using the ByteBuffer.allocateDirect(
) method, open the file for reading and writing obtaining the FileChannel objects, then simply repeatedly

read into the Buffer and write out the Buffer until the file has been copied. Conceptually, this is exactly the

same series of operations as the last method we defined, explicitBufferInputStreamCopy( ) .

  public static void directBufferCopy(String f1, String f2)
    throws Exception
  {
    long time = System.currentTimeMillis(  );
    ByteBuffer buffer = ByteBuffer.allocateDirect(16*1024);
    FileChannel rdr = (new FileInputStream(f1)).getChannel(  );
    FileChannel wrtr = (new FileOutputStream(f2)).getChannel(  );
    while( rdr.read(buffer) > 0)
    {
      buffer.flip(  );
      wrtr.write(buffer);
      buffer.clear(  );
    }
    rdr.close(  );
    wrtr.close(  );
    time = System.currentTimeMillis(  ) - time;
    System.out.println(" directBufferCopy time: " + time);
  }

For completeness, I also test using a nondirect Buffer . To use a nondirect Buffer , the only difference from

the last method is that ByteBuffer.allocate( ) is used instead of ByteBuffer.allocateDirect( ) .

The directBufferCopy( ) method we just defined uses ByteBuffer.allocateDirect( ) to obtain a

direct Buffer , but NIO gives us another option to get a direct Buffer . NIO supports the memory mapping of

files. The FileChannel.map( ) operation uses the operating system to map a portion of a file or the whole

file into system memory. Using this method we can obtain a direct Buffer containing the entire file. In "old"

I/O terms, this is equivalent to creating a byte[ ] array buffer the same size as the file, reading the entire

file into that byte[ ] array, then writing it out to the new file copy. For "old" I/O, this procedure would

normally be less efficient than using a smaller byte[ ] buffer as we did in the

explicitBufferInputStreamCopy( ) method, but here we are using operating-system memory mapping,

which may make a difference.

  public static void mappedBufferCopy(String f1, String f2)
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    throws Exception
  {
    long time = System.currentTimeMillis(  );
    FileChannel rdr = (new FileInputStream(f1)).getChannel(  );
    FileChannel wrtr = (new FileOutputStream(f2)).getChannel(  );
    ByteBuffer buffer = rdr.map(FileChannel.MapMode.READ_ONLY, 0, (int) rdr.size(  ));
    wrtr.write(buffer);
    rdr.close(  );
    wrtr.close(  );
    time = System.currentTimeMillis(  ) - time;
    System.out.println(" mappedBufferCopy time: " + time);
  }

Note that the FileChannel API documentation indicates that the procedure and efficiency of memory-

mapping files is highly system-dependent. The API also states:

"For most operating systems, mapping a file into memory is more expensive than reading or writing a

few tens of kilobytes of data via the usual read and write methods. From the standpoint of performance

it is generally only worth mapping relatively large files into memory."

Finally, as I said earlier, FileChannel also provides transferTo( ) and transferFrom( ) methods. Once

again, these methods are intended for maximal efficiency in transferring bytes between FileChannel s and

other Channel s, by using the underlying operating system's filesystem cache. The API states that:

"Bytes can be transferred from a file to some other channel in a way that can be optimized by many

operating systems into a very fast transfer directly to or from the filesystem cache."

Using FileChannel.transferTo( ) is relatively simpler than any of the previous methods: you obtain the

two FileChannel s and then execute transferTo( ) . No need for looping, or even reading or writing!

  public static void directTransferCopy(String f1, String f2)
    throws Exception
  {
    long time = System.currentTimeMillis(  );
    FileChannel rdr = (new FileInputStream(f1)).getChannel(  );
    FileChannel wrtr = (new FileOutputStream(f2)).getChannel(  );
    rdr.transferTo(0, (int) rdr.size(  ), wrtr);
    rdr.close(  );
    wrtr.close(  );
    time = System.currentTimeMillis(  ) - time;
    System.out.println(" directTransferCopy time: " + time);
  }

This series of tests is hugely system-dependent. Because NIO operations are much closer to, and more reliant

on, the operating system than most other Java classes, we have not only the usual VM variability but also

operating-system differences to take into account. Additionally, since we are testing file copying, disk

efficiencies also affect these tests. Table 8-4 shows the results of running under one brand of Windows (NT 4),

using the 1.4 VM in various modes with various repetitions. I also tested these methods under Windows 98

and Solaris 8. Generally, the NIO results were much more variable than the "old" I/O results. It seems that on

average the direct-Buffer copy (directBufferCopy( ) ) was the fastest operation for the Windows test

machines, followed closely by the Stream+byte[ ] copy (explicitBufferInputStreamCopy( ) ). On

Solaris, the FileChannel transfer (directTransferCopy( ) ) seemed to be the fastest, again followed

closely by the Stream+byte[ ] copy (explicitBufferInputStreamCopy( ) ).
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Table 8-4. Time ranges for various file copying techniques

Copy method Normalized time range

explicitBufferInputStreamCopy 100%-145%

nonDirectBufferCopy 454%-674%

directBufferCopy 67%-241%

MappedBufferCopy 240%-916%

directTransferCopy 238%-514%

Clearly, though, there is no huge advantage to NIO in this situation compared with using the "old" I/O. But

bear in mind that the NIO Buffer s are not specifically designed to replace the old I/O classes. NIO provides

additional capabilities. So, for example, we haven't tested Buffer classes with scatter-gather operations,

which work on multiple Buffer s simultaneously. For example the

ScatteringByteChannel.read(ByteBuffer[ ] , int , int) method reads from a Channel directly into

multiple Buffer s in one I/O operation. Similarly, GatheringByteChannel.write( ) writes the contents of

multiple Buffer s in one I/O operation. When is this useful? A common example is an HTTP server. When an

HTTP server downloads a page (file) to a browser, it writes out a header and then the page. The header itself

consists of several different sections that need to be amalgamated. It is efficient to write the parts of the

headers to the stream in multiple separate I/O operations, followed by the page body, allowing the network to

buffer the response. Unfortunately, this turns out to be suboptimal because you are increasing the I/O

operations and allowing the network stack to set the pace. Acme's THTTPD developers ran a series of

performance tests of various HTTP servers, and identified that the amount of data sent in the first network

packet was crucial to optimal performance:

"Turns out the change that made the difference was sending the response headers and the first load of

data as a single packet, instead of as two separate packets. Apparently this avoids triggering TCP's

"delayed ACK," a 1/5th second wait to see if more packets are coming in."[16]

[16] This quotation can be found at http://www.acme.com/software/thttpd/benchmarks.html .

GatheringByteChannel.write( ) is not the only way to optimize this situation, but it is efficient and

avoids the requirement for intermediate buffers that would be necessary with stream I/O.

8.7.4 Multiplexing

Possibly the most important features of NIO from a performance standpoint are the nonblocking channels and

the ability to multiplex channels. Multiplexing I/O allows you to handle multiple I/O channels from one thread

without having the thread block on any one channel. Without NIO, you have no certain way to know that a

read or write will block the thread. The InputStream.available( ) method is the only stream method for

determining if a read will not block, and it is not reliable; there is no method at all to determine if stream write

would not block. NIO provides the Selector class to reliably determine which I/O channels are ready to

operate nonblocking I/O. Currently, NIO does not support the multiplexing of FileChannel s (though most

operating systems do), so multiplexing with JDK 1.4 is primarily for socket communications.

It is useful to understand nonblocking mode in a little more detail. OutputStream.write( ) has a return

signature of void . But at the operating-system level, I/O write operations do return a value, normally the

number of bytes that were written by the write call. This is efficient: most calls to an operating-system write

send data to some buffer (disk buffer, network stack buffer, filesystem cache, etc.). So any call to write

normally fills a buffer. If there are too many bytes being written by the call, then the buffer is filled with those
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bytes it can take, the remaining bytes are not written, and the number of bytes written is returned. The buffer

is then emptied by sending on the data, and it is ready for the next chunk of bytes. The buffer emptying is

done at I/O speeds, which is typically several orders of magnitude slower than the write to the in-memory

buffer.

Consequently, the Java OutputStream.write( ) doesn't just fill the buffer and return, as it would need to

return the number of bytes written. Instead, the buffer is filled, emptied, and so on, until all the bytes have

been written. OutputStream.write( ) is actually a looped call to the underlying operating-system write

call. Usually this is very convenient. But because the write can block for so long, you need to give it a separate

thread of its own until it completes. You are probably familiar with doing this for reads, but it may not have

occurred to you that Java writes were in the same category.

NIO writes are much closer to operating-system writes. For example, in all cases, where the data fits into the

network buffer, a write to the socket should return immediately. And where there are too many bytes for the

buffer, SocketChannel.write( ) still returns immediately if the SocketChannel is in nonblocking mode,

returning the number of bytes written to the buffer. The actual network I/O proceeds asynchronously, leaving

the Java thread to do other operations. In fact, typically the thread has time for thousands more operations

before the buffer is ready to accept more data (i.e., the next write can succeed without blocking). So

nonblocking mode gives you asynchronous I/O, and because the thread can execute thousands of operations

for each I/O call, this means that one thread can effectively handle thousands of I/O channels simultaneously

(in other words, multiplexing). But for effective multiplexing, you also need to know which Channel s are

ready to be written to or read from. And it is the Selector class that will reliably tell you when any channel is

ready to perform its next I/O operation. The Selector class determines from the operating system which

subset, from a set of Channel s, is ready to perform I/O.

The Selector class differentiates between different types of I/O: there are currently four types. The first two

types are where Selector can inform you when any Channel is ready to be read or written to. In addition,

client sockets can be trying to connect to a server socket: the Selector can tell you when the connection

attempt has completed. And lastly, server sockets can accept new connections: the Selector can tell you

when there is a connection pending that will allow the server socket to execute an accept( ) call without

blocking.

Note that multiplexed asynchronous I/O does not necessarily make I/O any faster. What you get is the ability

to handle many I/O channels in one thread. For most Java applications, which have only a few open I/O

streams at one time, there is no need to multiplex because a few extra blocked threads are easily managed by

the VM. If you have many threads blocked on I/O, then multiplexing your I/O can significantly reduce your

resource requirements. Ten I/O threads are probably okay; a hundred is too many. Multiplexed I/O is a

definite requirement for scalable high-performance server applications, but most other applications do not

need it.

Working with NIO multiplexing takes a little getting used to. You obtain a Selector using Selector.open(
) , and the equivalent of new ServerSocket(int port) is to obtain an unbound ServerSocketChannel
using ServerSocketChannel.open( ) , and then bind it using ServerSocket.bind( ) :

Selector mySelector = Selector.open(  );
ServerSocketChannel serverChannel = ServerSocketChannel.open(  );
serverChannel.socket(  ).bind(new InetSocketAddress(port));

Client SocketChannel s are obtained from ServerSocketChannel.accept( ) . It is perfectly possible to

multiplex on all client sockets as well as the accept calls of the server socket, but it is also fairly common to

have one extra thread dedicated to accepting connections:

while(true)
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{
  try
  {
    //This is a blocking call, we operate the accepts in its own
    //separate thread to keep the code a bit cleaner.
    SocketChannel client = ServerSocketChannel.accept(  );
    addToClientList(client);
  }
  catch (Exception e)
  {
    //If it is a problem with the ServerSocketChannel, we
    //may need to close it and restart the ServerSocketChannel
    //Otherwise we should simply log and ignore the error
    ...
  }
}

If you wanted to multiplex the ServerSocketChannel too, it would be:

ServerSocketChannel serverChannel = ServerSocketChannel.open(  );
serverChannel.configureBlocking(false);
serverChannel.socket(  ).bind(new InetSocketAddress(port));
SelectionKey serverChannelAcceptKey = 
  serverChannel.register(mySelector, SelectionKey.OP_ACCEPT);

And you could accept connections by querying the Selector using Selector.selectedKeys( ) to see

when the serverChannelAcceptKey was ready. If the key was in the set returned, the

ServerSocketChannel could accept a new connection immediately without blocking. Similarly, the client

SocketChannel s that were created from the ServerSocketChannel.accept( ) call should be registered

with a Selector (it doesn't have to be the same selector; you could use one for reads, one for writes, and

one for accepts if you prefer). The Selector is then queried for Channel s ready to perform I/O.

Links to detailed examples, including full code for a high-performance NIO-based HTTP server, can be found at

http://www.JavaPerformanceTuning.com/tips/nio.shtml .
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8.8 Performance Checklist

Most of these suggestions apply only after a bottleneck has been identified:

Ensure that performance tests are run with the same amount of I/O as the expected finished

application. Specifically, turn off any extra logging, tracing, and debugging I/O.

Use Runtime.traceMethodCalls( ), when supported, to count I/O calls.

Redefine the I/O classes to count I/O calls if necessary.

Include logging statements next to all basic I/O calls in the application.

Parallelize I/O by splitting data into multiple files.

Execute I/O in a background thread.

Avoid the filesystem file-growing overhead by preallocating files.

Try to minimize the number of I/O calls.

Buffer to reduce the number of I/O operations by increasing the amount of data transfer each I/O

operation executes.

Cache to replace repeated I/O operations with much faster memory or local disk access.

Avoid or reduce I/O calls in loops.

Replace System.out and System.err with customized PrintStream classes to control console

output.

Use logger objects for tight control in specifying logging destinations.

Try to eliminate duplicate and unproductive I/O statements.

Keep files open and navigate around them rather than repeatedly opening and closing the files.

Consider optimizing the Java byte-to-char (and char-to-byte) conversion.

Handle serializing explicitly, rather than using default serialization mechanisms.

Use transient fields to avoid serialization.

Use the java.io.Externalizable interface if overriding the default serialization routines.

Use change logs for small changes, rather than reserializing the whole object.
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Minimize the work done in the no-arg constructor.

Consider partitioning objects into multiple sets and serializing each set concurrently in different

threads.

Use lazy initialization to move or spread the deserialization overhead to other times.

Consider indexing an object table for selective access to stored serialized objects.

Optimize network transfers by transferring only the data and objects needed, and no more.

Cluster serialized objects that are used together by putting them into the same file.

Put objects next to each other if they are required together.

Consider using an object-storage system (such as an object database) if your object-storage

requirements are at all sophisticated.

Use compression when the overhead of compression is outweighed by the benefit of reducing I/O.

Avoid compression when the system has a heavily loaded CPU.

Consider using "intelligent" I/O classes that can decide to use compression on the fly.

Consider searching directly against compressed data without decompressing.

NIO provides I/O mechanisms mainly targeted at high-performance servers, but is also of use in other

situations.

Use nonblocking SocketChannels to connect asynchronously to servers.

Nondirect Buffers provide an efficient mechanism for converting arrays of one primitive data

type to another primitive data type.

Direct Buffers provide options for optimizing I/O, especially when using multiple Buffers with

scatter-gather I/O operations.

High-performance scalable servers should use NIO multiplexing and asynchronous I/O.
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Chapter 9. Sorting

Section 9.1.  Avoiding Unnecessary Sorting Overhead

Section 9.2.  An Efficient Sorting Framework

Section 9.3.  Better Than O(nlogn) Sorting

Section 9.4.  Performance Checklist
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9.1 Avoiding Unnecessary Sorting Overhead

The JDK system provides sorting methods in java.util.Arrays (for arrays of objects) and in

java.util.Collections (for objects implementing the Collection interfaces). These sorts are usually

adequate for all but the most specialized applications. To optimize a sort, you can normally get enough

improvement by reimplementing a standard sort (such as quicksort) as a method in the class being sorted.

Comparisons of elements can then be made directly, without calling generic comparison methods. Only the

most specialized applications usually need to search for specialized sorting algorithms.

As an example, here is a simple class with just an int instance variable, on which you need to sort:

public class Sortable
  implements Comparable
{
  int order;
  public Sortable(int i){order = i;}
  public int compareTo(Object o){return order - ((Sortable) o).order;}
  public int compareToSortable(Sortable o){return order - o.order;}
}

I can use the Arrays.sort( ) to sort this, but as I want to make a direct comparison with exactly the

same sorting algorithm as I tune, I use an implementation of a standard quicksort. (This implementation is

not shown here; for an example, see the quicksort implementation in Section 11.9.) The only modification to

the standard quicksort will be that for each optimization, the quicksort is adjusted to use the appropriate

comparison method and data type. For example, a generic quicksort that sorts an array of Comparable

objects is implemented as:

public static void quicksort(Comparable[  ] arr, int lo, int hi)
{
  ...
  int mid = ( lo + hi ) / 2;
  Comparable middle = arr[ mid ]; //Comparable data type
  ...
  //uses Comparable.compareTo(Object)
  if(arr[ lo ].compareTo(middle) > 0 )
  ...
}

To start with, I use a quicksort that takes an array of Objects. The comparisons are made using the

Comparator.compareTo( ) method, so every Object in the array must implement the Comparable
interface. Since every object is a Comparable, why don't I specify a Comparable[ ] instead of an Object[
] in the quicksort signature? I use an Object[ ] signature initially to illustrate why it is faster to use a

Comparable[ ] signature. java.util.Arrays.sort( ) has an Object[ ] as its argument rather than a

Comparable[ ] because it needs to support any array type, and Java doesn't let you cast a generic array to

a more specific array type. That is, you cannot use:

Object[  ] arr = new Object[10];
... //fill the array with Comparable objects
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//The following line does not compile
Arrays.sort( (Comparable[  ]) arr); //NOT valid Java code, invalid cast

This means that if you specify a sort with the signature that accepts only a Comparable[ ] object array,

then you actually have to create a new Comparable array and copy all your objects to that array. And it is

often the case that your array is already in an Object array, hence the more generic (but slower) support in

the JDK. Another option for the JDK would be to have a second copy of the identical sort method in

java.util.Arrays, except that the second sort would specify Comparable[ ] in the signature and have

no casts in the implementation. This has not been done in java.util.Arrays up to JDK 1.4, but may be in

the future.

Back to the example. The first quicksort with the Object[ ] signature gives a baseline at 100%. I am

sorting a randomized array of Sortable objects, using the same randomized order for each test. Switching

to a quicksort that specifies an array of Comparable objects (which means you avoid casting every object

for each comparison) is faster for every VM I tested (see Table 9-1). You can modify the quicksort even

further to cater specifically to Sortable objects, so that you call the Sortable.compareToSortable( )
method directly. This avoids yet another cast, the cast in the Sortable.compareTo( ) method, and

therefore reduces the time even further.

Table 9-1. Timings of the various sorting tests normalized to the initial JDK 1.2 test

  1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

Quicksort(Object[ ]) 100% 52% 53% 49% 50% 356%

Quicksort(Comparable[ ]) 66% 48% 44% 45% 42% 319%

Quicksort(Sortable[ ]) 47% 45% 30% 37% 30% 277%

Quicksort(Sortable[ ]) using field access 43% 32% 30% 31% 30% 111%

Arrays.sort( ) 152% 63% 62% 59% 56% 267%

The last quicksort accepting a Sortable[ ] array looks like:

public static void quicksort(Sortable[  ] arr, int lo, int hi)
{
  ...
  int mid = ( lo + hi ) / 2;
  Sortable middle = arr[ mid ]; //Sortable data type
  ...
  //uses Sortable.compareToSortable(Sortable)
  if(arr[ lo ].compareToSortable(middle) > 0 )
  ...

You can make one further improvement, which is to access the Sortable.order fields directly from the

quicksort. The final modified quicksort looks like:

public static void quicksort(Sortable[  ] arr, int lo, int hi)
{
  ...
  int mid = ( lo + hi ) / 2;
  Sortable middle = arr[ mid ]; //Sortable data type
  ...
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  //uses Sortable.order field for direct comparison
  //if(arr[ lo ].order - middle.order > 0 ) -- same as next line
  if(arr[ lo ].order > middle.order )
  ...

This last quicksort gives a further improvement in time (see Table 9-1), though clearly the HotSpot server

mode inlines the method call, enabling it to achieve the same speed for both the method and field access.

Overall, this tuning example shows that by avoiding the casts by implementing a standard sort algorithm and

comparison method specifically for a particular class, you can significantly speed up the sort with little effort.

For comparison, I have included in Table 9-1 the timings for using the Arrays.sort( ) method, applied to

the same randomized list of Sortable objects used in the example. The Arrays.sort( ) method uses a

merge sort that performs better on a partially sorted list. Merge sort was chosen for Arrays.sort( )

because, although quicksort provides better performance on average, the merge sort provides sort stability.

A stable sort does not alter the order of elements that are equal based on the comparison method used.[1]

[1] The standard quicksort algorithm also has very bad worst-case performance. There are quicksort
variations that improve the worst-case performance.

For more specialized and optimized sorts, there are books (including Java-specific ones) covering various

sort algorithms, and a variety of sort implementations are available on the Web. The computer literature is

full of articles providing improved sorting algorithms for specific types of data, and you may need to run a

search to find specialized sorts for your particular application. A good place to start is the classic reference

The Art of Computer Programming by Donald Knuth (Addison-Wesley).

In the case of nonarray elements such as linked-list structures, a recursive merge sort is the best sorting

algorithm and can be faster than a quicksort on arrays with the same dataset. Note that the JDK

Collections.sort( ) methods are suboptimal for linked lists. The Collections.sort(List) method

converts the list into an array before sorting it, which is the wrong strategy to sort linked lists, as shown in

an article by John Boyer.[2] Boyer also shows that a binary search on a linked list is significantly better than

a linear search if the cost of comparisons is more than about two or three node traversals, as is typically the

case.

[2] "Sorting and Searching Linked Lists in Java," Dr. Dobb's Journal, May 1998.

If you need your sort algorithm to run faster, optimizing the comparisons in the sort method is a good place

to start. This can be done in several ways:

Eliminating casts by specifying data types more precisely.

Modifying the comparison algorithm to be quicker.

Replacing the objects with wrappers that compare faster (e.g., java.text.CollationKeys). These

are best used when the comparison method requires a calculation for each object being compared, and

that calculation can be cached.

Eliminating methods by accessing fields directly.

Partially presorting the array with a faster partial sort, followed by the full sort.

Only when the performance is still short of your target do you need to start looking for alternatives. Several

of the techniques listed here have been applied in the earlier example and also in Section 5.6 in Chapter 5.
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9.2 An Efficient Sorting Framework

The sorting methods provided by the JDK are perfectly adequate for most situations. When they fall short,

the techniques illustrated in the previous section often speed things up as much as is required. However, if

you work on a project where varied and flexible sorting capabilities are needed, sorting is one area of

performance tuning where it is sensible to create a framework early in the development cycle. A good sorting

framework should allow you to change sorting-algorithm and comparison-ordering methods in a generic way,

without having to change too much in the application.

Providing support for arbitrary sorting algorithms is straightforward: just use sorting interfaces. There needs

to be a sorting interface for each type of object that can be sorted. Arrays and collection objects should be

supported by any sorting framework, along with any other objects that are specific to your application. Here

are two interfaces that define sorting objects for arrays and collections:

import java.util.Comparator;
import java.util.Collection;
   
public interface ArraySorter
{
  public void sort(Comparator comparator, Object[  ] arr);
  public void sort(Comparator comparator, Object[  ] arr, 
       int startIndex, int length);
  public void sortInto(Comparator comparator, Object[  ] source,
       int sourceStartIndex, int length,
       Object[  ] target, int targetStartIndex);
}
   
public interface CollectionSorter
{
  public Object[  ] sort(Comparator comparator, Collection c);
  public void sortInto(Comparator comparator, Collection c,
       Object[  ] target, int targetStartIndex);
}

Individual classes that implement the interfaces are normally stateless and hence implicitly thread-safe. This

allows you to specify singleton sorting objects for use by other objects. For example:

public class ArrayQuickSorter
  implements ArraySorter
{
  public static final ArrayQuickSorter SINGLETON = new ArrayQuickSorter(  );
   
  //protect the constructor so that external classes are
  //forced to use the singleton
  protected ArrayQuickSorter(  ){  }
   
  public void sortInto(Comparator comparator, Object[  ] source,
    int sourceStartIndex, int length, Object[  ] target, int targetStartIndex)
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  {
    //Only need the target - quicksort sorts in place.
    if ( !(source =  = target && sourceStartIndex =  = targetStartIndex) )
      System.arraycopy(source, sourceStartIndex, target,
          targetStartIndex, length);
    this.sort(comparator, target, targetStartIndex, length);
  }
   
  public void sort(Comparator comparator, Object[  ] arr)
  {
    this.sort(comparator, arr, 0, arr.length);
  }
   
  public void sort(Comparator comparator, Object[  ] arr,
       int startIndex, int length)
  {
    //quicksort algorithm implementation using Comparator.compare(Object, Object)
    ...
  }

This framework allows you to change the sort algorithm simply by changing the sort object you use. For

example, if you use a quicksort but realize that your array is already partially sorted, simply change the

sorter instance from ArrayQuickSorter.SINGLETON to ArrayInsertionSorter.SINGLETON.

However, we are only halfway to an efficient framework. Although the overall sorting structure is here, you

have not supported generic optimizations such as optimized comparison wrappers (e.g., as with

java.text.CollationKey). For generic support, you need the Comparator interface to have an additional

method that checks whether it supports optimized comparison wrappers (which I will now call

ComparisonKeys). Unfortunately, you cannot add a method to the Comparator interface, so you have to

use the following subinterface:

public interface KeyedComparator
  extends Comparator
{
  public boolean hasComparisonKeys(  );
  public ComparisonKey getComparisonKey(Object o);
}
   
public interface ComparisonKey
{
  public int compareTo(ComparisonKey target);
  public Object getSource(  );
}

Now you need to support this addition to the framework in each sorter object. Since you don't want to

change all your sorter-object implementations again and again, it's better to find any further optimizations

now. One optimization is a sort that avoids a call to any method comparison. You can support that with a

specific ComparisonKey class:

public class IntegerComparisonKey
  implements ComparisonKey
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir


  public Object source;
  public int order;
  public IntegerComparisonKey(Object source, int order) {
     this.source = source;
     this.order = order;
  }
  public int compareTo(ComparisonKey target){
    return order - ((IntegerComparisonKey) target).order;
  }
  public Object getSource(  ) {return source;}
}

Now you can reimplement your sorter class to handle these special optimized cases. Only the method that

actually implemented the sort needs to change:

public class ArrayQuickSorter
  implements ArraySorter
{
  //everything else as previously
  ...
   
  public void sort(Comparator comparator, Object[  ] arr, 
                   int startIndex, int length)
  {
    //If the comparator is part of the extended framework, handle
    //the special case where it recommends using comparison keys
    if (comparator instanceof KeyedComparator && 
          ((KeyedComparator) comparator).hasComparisonKeys(  ))
    {
      //wrap the objects in the ComparisonKeys
      //but if the ComparisonKey is the special case of
      //IntegerComparisonKey, handle that specially
      KeyedComparator comparer = (KeyedComparator) comparator;
      ComparisonKey first = comparer.getComparisonKey(arr[startIndex]);
      if (first instanceof IntegerComparisonKey)
      {
        //wrap in IntegerComparisonKeys
        IntegerComparisonKey[  ] iarr = new IntegerComparisonKey[length];
        iarr[startIndex] = (IntegerComparisonKey) first;
        for(int j = length-1, i = startIndex+length-1; j > 0; i--, j--)
          iarr[j] = comparer.getComparisonKey(arr[i]);
   
        //sort using the optimized sort for IntegerComparisonKeys
        sort_intkeys(iarr, 0, length);
   
        //and unwrap
        for(int j = length-1, i = startIndex+length-1; j >= 0; i--, j--)
          arr[i] = iarr[j].source;
      }
      else
      {
        //wrap in IntegerComparisonKeys
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        ComparisonKey[  ] karr = new ComparisonKey[length];
        karr[startIndex] = first; 
        for(int j = length-1, i = startIndex+length-1; j > 0; i--, j--)
          karr[i] = comparer.getComparisonKey(arr[i]);
   
        //sort using the optimized sort for ComparisonKeys
        sort_keys(karr, 0, length);
   
        //and unwrap
        for(int j = length-1, i = startIndex+length-1; j >= 0; i--, j--)
          arr[i] = karr[i].getSource(  );
      }
    }
    else
      //just use the original algorithm
      sort_comparator(comparator, arr, startIndex, length);
  }
  public void sort_comparator(Comparator comparator, Object[  ] arr,
            int startIndex, int length)
  {
    //quicksort algorithm implementation using Comparator.compare(Object, Object)
    ...
  }
  public void sort_keys(ComparisonKey[  ] arr, int startIndex, int length)
  {
    //quicksort algorithm implementation using 
    //ComparisonKey.compare(ComparisonKey)
    ...
  }
  public void sort_intkeys(IntegerComparisonKey[  ] arr,
            int startIndex, int length)
  {
    //quicksort algorithm implementation comparing key order directly
    //using access to the IntegerComparisonKey.order field
    //i.e if (arr[i].order > arr[j].order)
    ...
  }
}

Although the special cases mean that you have to implement the same algorithm three times (with slight

changes to data type and comparison method), this is the kind of tradeoff you often have to make for

performance optimizations. The maintenance impact is limited by having all implementations in one class,

and once you've debugged the sort algorithm, you are unlikely to need to change it.

This framework now supports:

An easy way to change the sorting algorithm being used at any specific point of the application.

An easy way to change the pair-wise comparison method, by changing the Comparator object.

Automatic support for comparison key objects. Comparison keys are optimal to use in sorts where the

comparison method requires a calculation for each object being compared, and that calculation could
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be cached.

An optimized integer key comparison class, which doesn't require method calls when used for sorting.

This outline should provide a good start to building an efficient sorting framework. Many further generic

optimizations are possible, such as supporting a LongComparisonKey class and other special classes

appropriate to your application. The point is that the framework should handle optimizations automatically.

The most the application builder should do is decide on the appropriate Comparator or ComparisonKey

class to build for the object to be sorted.

The last version of our framework supports the fastest sorting implementation from the previous section (the

last implementation with no casts and direct access to the ordering field). Unfortunately, the cost of creating

an IntegerComparisonKey object for each object being sorted is significant enough to eliminate the

speedup from getting rid of the casts. It's worth looking at ways to reduce the cost of object creations for

comparison keys. This cost can be reduced using the object-to-array mapping technique from Chapter 4: the

array of IntegerComparisonKeys is changed to a pair of Object and int arrays. By adding another

interface, you can support the needed mapping:

interface RawIntComparator
  //extends not actually necessary, but logically applies
  extends KeyedComparator
{
  public void getComparisonKey(Object o, int[  ] orders, int idx);
}

For the example Sortable class that was defined earlier, you can implement a Comparator class:

public class SortableComparator
 implements RawIntComparator
{
  //Required for Comparator interface
  public int compare(Object o1, Object o2){
    return ((Sortable) o1).order -((Sortable) o2).order;} 
  //Required for Comparator interface
  public boolean hasComparisonKeys(  ){return true;}
  public ComparisonKey getComparisonKey(Object o){
    return new IntegerComparisonKey(o, ((Sortable) o).order);}
  //Required for RawIntComparator interface
  public void getComparisonKey(Object s, int[  ] orders, int index){
    orders[index] = ((Sortable) s).order;}
}

Then the logic to support the RawIntComparator in the sorting class is:

public class ArrayQuickSorter
  implements ArraySorter
{
  //everything else as previously except rename the
  //previously defined sort(Comparator, Object[  ], int, int)
  //method as previous_sort
  ...
   
  public void sort(Comparator comparator, Object[  ] arr, 
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                   int startIndex, int length)
  {
    //support RawIntComparator types
    if (comparator instanceof RawIntComparator)
    {
      RawIntComparator comparer = (RawIntComparator) comparator;
      Object[  ] sources = new Object[length];
      int[  ] orders = new int[length];
   
      for(int j = length-1, i = startIndex+length-1; j >= 0; i--, j--)
      {
          comparer.getComparisonKey(arr[i], orders, j);
          sources[j] = arr[i];
      }
   
      //sort using the optimized sort with no casts
      sort_intkeys(sources, orders, 0, length);
   
      //and unwrap
      for(int j = length-1, i = startIndex+length-1; j >= 0; i--, j--)
        arr[i] = sources[j];
    }
    else
      previous_ sort(comparator, arr, startIndex, length);
  }
   
  public void sort_intkeys(Object[  ] sources, int[  ] orders,
             int startIndex, int length)
  {
    quicksort(sources, orders, startIndex, startIndex+length-1);
  }
   
  public static void quicksort(Object[  ] sources, int[  ] orders, int lo, int hi)
  {
    //quicksort algorithm implementation with a pair of
    //synchronized arrays. 'orders' is the array used to
    //compare ordering. 'sources' is the array holding the
    //source objects whicn needs to be altered in synchrony
    //with 'orders'
    if( lo >= hi ) 
      return;
   
    int mid = ( lo + hi ) / 2;
    Object tmp_o;
    int tmp_i;
    int middle = orders[ mid ];
   
    if( orders[ lo ] > middle )
    {
      orders[ mid ] = orders[ lo ];
      orders[ lo ] = middle;
      middle = orders[ mid ];
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      tmp_o = sources[mid];
      sources[ mid ] = sources[ lo ];
      sources[ lo ] = tmp_o;
    }
    
    if( middle > orders[ hi ])
    {
      orders[ mid ] = orders[ hi ];
      orders[ hi ] = middle;
      middle = orders[ mid ];
      tmp_o = sources[mid];
      sources[ mid ] = sources[ hi ];
      sources[ hi ] = tmp_o;
   
      if( orders[ lo ] > middle)
      {
        orders[ mid ] = orders[ lo ];
        orders[ lo ] = middle;
        middle = orders[ mid ];
        tmp_o = sources[mid];
        sources[ mid ] = sources[ lo ];
        sources[ lo ] = tmp_o;
      }
    }
   
    int left = lo + 1;
    int right = hi - 1;
   
    if( left >= right ) 
      return;
   
    for( ;; ) 
    {
      while( orders[ right ] > middle)
      {
        right--;
      }
   
      while( left < right && orders[ left ] <= middle )
      {
        left++;
      }
   
      if( left < right )
      {
        tmp_i = orders[ left ];
        orders[ left ] = orders[ right ];
        orders[ right ] = tmp_i;
        tmp_o = sources[ left ];
        sources[ left ] = sources[ right ];
        sources[ right ] = tmp_o;
        right--;
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      }
      else
      {
        break;
      }
    }
   
    quicksort(sources, orders, lo, left);
    quicksort(sources, orders, left + 1, hi);
  }
}

With this optimization, the framework quicksort is now as fast as the fastest handcrafted quicksort from the

previous section for some VMs (see Table 9-2).

Table 9-2. Timings of the various sorting tests normalized to the initial JDK 1.2 test of Table 9-1

  1.2.2 1.3.1_02
1.3.1_02-

server
1.4.0

1.4.0-

server

1.4.0-

Xint

Quicksort(Object[ ]) from Table 9-1 100% 52% 53% 49% 50% 356%

Quicksort(Sortable[ ]) using field access from

Table 9-1
43% 32% 30% 31% 30% 111%

ArrayQuickSorter using Sortable.field[3] 39% 53% 47% 34% 60% 111%

Arrays.sort( ) from Table 9-1 152% 63% 62% 59% 56% 267%

[3] HotSpot is variable in how well it manages to optimize the framework sort. The 1.4.0 client is
almost as fast as the direct field access sort. This indicates that HotSpot technology is theoretically
capable of similarly optimizing the framework sort. That it hasn't managed to in some modes of JDK
1.3 and 1.4 indicates that the VM can be improved further.
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9.3 Better Than O(nlogn) Sorting

Computer-science analysis of sorting algorithms show that, on average, no generic sorting algorithm can

scale faster than O(nlogn) (see the sidebar Orders of Magnitude). However, many applications don't require

a "general" sort. You often have additional information that can help you to improve the speed of a particular

sort.

Orders of Magnitude

When discussing the time taken for particular algorithms to execute, it is important to know not

just how long the algorithm takes for a particular dataset, but also how long it takes for

different-sized datasets, i.e., how it scales. For applications, the problems of handling 10 objects

and handling 10 million objects are often completely different problems, not just different-sized

versions of the same problem.

One common way to indicate the behavior of algorithms across different scales of datasets is to

describe the algorithm's scaling characteristics by the dominant numerical function relating to

the scaling behavior. The notation used is "O(function)," where function is replaced by the

dominant numerical scaling function. It is common to use the letter "n" to indicate the number of

data items being considered in the function. For example, O(n) indicates that the algorithm

under consideration increases in time linearly with the size of the dataset. O(n2) indicates that

the time taken increases according to the square of the size of the dataset.

These orders of magnitude do not indicate absolute times taken by the algorithm. Instead, they

indicate how much longer the algorithm takes when the dataset increases in size. If an O(n)

algorithm takes 200 seconds for n=10, it will take about 2000 seconds for n=100, i.e., a tenfold

increase in the dataset size implies a tenfold increase in the amount of time taken by the

algorithm. An O(n2) algorithm might take 5 seconds for n=10, and about 500 seconds for

n=100, i.e., a tenfold increase in the dataset size implies a hundredfold increase in the time

taken by the algorithm. Note that the scaled times are approximate; order-of-magnitude

statistics include only the dominant scaling function, and there may be other, smaller terms that

adjust the actual time taken.

The order of magnitude does not indicate the relative speeds of two different algorithms for any

specific dataset size. Instead, order-of-magnitude statistics indicate how expensive one

particular algorithm may be as your dataset grows. In the examples of the last paragraph, the

time taken for the second O(n2) algorithm increases much faster than the first O(n) algorithm,

but the O(n2) algorithm is still faster at n=100. However, by n=1000, it would be the slower of

the two algorithms (50,000 seconds, compared to 20,000 seconds for the O(n) algorithm).

To take a concrete example, hash tables have an O(1) order of magnitude for accessing

elements. This means that the time taken to access elements in a hash table is mostly

independent of the size of the hash table. Accessing elements in an array by linearly searching

through that array takes O(n). In absolute times, it might be quicker to execute the linear array

search on a small array than to access from a hash table. But as the number of elements

becomes larger, at some point the hash table will always become quicker.
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For example, if you have 1000 items to sort and each item can be given a unique ordering value that

corresponds to a unique integer between 1 and 1000, the best sort is simply to slot the items directly into

their correct locations in an array. No comparisons between the items are necessary.

Of course, typically you can't map your elements so neatly. But if you can map items to integer keys that are

more or less evenly distributed, you can still take advantage of improved sorting characteristics. Bear in

mind that an array of partially sorted items can be sorted faster than a typical unsorted array.

When you can guess the approximate final position of the items in the collection to be sorted, you can use

this knowledge to improve sorting speed. You should specifically look out for sorts where:

Items can be given an ordering value that can be mapped to integer keys.

The distribution of the keys is regular, or any one of the following is true:

The distribution of the keys is fairly even, so that when mapped into array indexes, ordering is

approximately kept.

The keys have evenly distributed clusters.

The distribution of the keys has a mapping into one of these other distributions.

The distribution of the keys is fairly critical. A regular distribution allows them to be mapped

straightforwardly into array indexes. An uneven distribution is difficult to map. But if you have an uneven

distribution and can specify a mapping that allows you to flatten out the keys in some way, it may still be

possible to apply this methodology. For example, if you know that your keys will have a normal (bell-curve)

distribution, you can apply an inverse bell-curve function to the keys to flatten them out to array indexes.

For this technique to work, the mapped keys do not need to be unique. Several keys or groups of keys can

map to the same value or values. Indeed, it is quite difficult to make the index mapping unique. You need to

be aware of this and handle the resulting collisions. Normally, you can map clusters of keys into subsections

of the sorted array. These subsections are probably not internally sorted, but they may be correctly sorted

against each other (i.e., all elements in subsection 1 are ordered below all elements in subsection 2, all

elements in subsection 2 are ordered below all elements in subsection 3, etc.). This way, the problem has

been modified to sort multiple smaller subsections (which is faster than sorting the whole array), and hence

the array is sorted more quickly.

Note that Object.hashCode( ) provides a mechanism for generating an integer for any object. However,

the resulting hash code is not guaranteed to be evenly distributed or even unique, nor is it at all guaranteed

to be consistent across different VMs or even over multiple runs of one VM. Consequently, the hash code is

of little use for any kind of mapping.

Karl-Dietrich Neubert[4] gives a detailed implementation of this approach, where the algorithm provides

O(n) sorting behavior and also minimizes the extra memory needed to manage the sort.

[4] Algorithm Alley, Dr. Dobb's Journal, February 1998.
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I also implemented Neubert's sort for a plain int array rather than for an array of

objects. The results were the same as for the object array when the JIT was turned

off. But with any type of JIT turned on, the two simpler reference-sort algorithms

were optimized much better by the native code compiler and were faster for all sizes

of arrays I tested (up to several million elements). Their absolute sort times were

sufficiently fast that their bad scaling behavior didn't matter. This curious difference

in relative speeds applied only to sorting int[ ] arrays, not arrays of objects. For

arrays of objects, Neubert's sort seems to be faster both with and without a JIT.

I include here a Java implementation of Neubert's algorithm with comments in the code. I have applied the

implementation to an array of objects that have an integer field to specify the sort order, but of course the

algorithm can be easily generalized to other cases where object ordering can be mapped to numbers. For a

more detailed discussion of the algorithm, refer to Neubert's article. The implementation given here sorts

significantly faster than either the sort in java.util.Arrays (in Java 2) or a handcrafted quicksort (the

most optimized final version with no casts from the first section of this chapter); see Table 9-3. Note also

that this sort is O(n) and thus increases linearly in time, whereas the other sorts are O(nlogn) and so have a

superlinear speedup. Notice how the interpreted mode Flashsort time approaches the timings of the

compiled JVMs and is actually faster than the pure JIT of 1.2.2 running Arrays.sort( ). That's a

significant speedup.

Table 9-3. Timings of the various sorting tests normalized to the Flashsort JDK 1.2 test

  1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

Neubert's Flashsort 100% 94% 155% 74% 79% 294%

Handcrafted quicksort 250% 178% 130% 149% 132% 921%

Arrays.sort( ) 476% 181% 183% 174% 164% 906%

Note that the sort at the end of the Neubert algorithm is an insertion sort running over the entire array.

Insertion sorts provide better performance than quicksorts for partially ordered arrays. This final insertion

sort ensures that keys incorrectly classified by the group distribution end up in the right location:

public interface FlashSortable{
  public int sortOrder(  );
}
   
public static void flashsort(FlashSortable[  ] arr)
{
  //Number of groups into which the elements are classified
  //Neubert suggests 0.2 to 0.5 times the number of elements in the array.
  int num_groups = (int) (0.4 * arr.length);
   
  //Count the number of elements in each group
  int[  ] groups = new int[num_groups];
    
  flashsort(arr, num_groups, groups);
}
   
public static void flashsort(FlashSortable[  ] arr, int num_groups, int[  ] groups)
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{
  //First get the minimum and maximum values
  int min = arr[0].sortOrder(  );
  int max_idx = 0;
  int i;
  for (i = arr.length-1; i > 0; i--)
  {
    if (arr[i].sortOrder(  ) < min)
      min = arr[i].sortOrder(  );
    if (arr[i].sortOrder(  ) > arr[max_idx].sortOrder(  ))
      max_idx = i;
  }
  //If they are the same, all elements are identical
  //so the array is already sorted.
  if (min =  = arr[max_idx].sortOrder(  ))
    return;
  
  //Count the number of elements in each group.
  //Take care to handle possible integer overflow by
  //casting to larger datatypes where this might occur.
  double scaling_constant = (num_groups - 1) /
         ( ((double) arr[max_idx].sortOrder(  )) - min);
  int group;
  for (i = arr.length-1; i >= 0; i--)
  {
    group = (int) (scaling_constant * (((long) arr[i].sortOrder(  )) - min));
    groups[group]++;
  }
  
  //Set the groups to point to the indexes in the array
  //that are the last index for each group.
  groups[0]--;
  for (i = 1; i < groups.length; i++)
  {
    groups[i] += groups[i-1];
  }
  
  //Put the biggest element at index 0 so that the swapping
  //algorithm below starts on the largest element & max group.
  FlashSortable old_value = arr[max_idx];
  arr[max_idx] = arr[0];
  arr[0] = old_value;
  
  //start with element at index 0
  int idx = 0;
  //and the maximum group
  group = num_groups - 1;
   
  //Start moving elements into their groups.
  //We need to make 'arr.length' moves at most,
  //but if we have one move left in the outer loop
  //then the remaining element is already in the right place,
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  //so we need test for only 'arr.length-1' moves.
  int number_of_moves_left = arr.length - 1;
  
  FlashSortable new_value;
  while(number_of_moves_left > 0)
  {
    //When the first group fills up, we start scanning
    //for elements left in the wrong groups, and move them.
   
    //Note that we scan through the whole object array only once.
    while(idx > groups[group])
    {
      idx++;
      group = (int) (scaling_constant * (((long) arr[idx].sortOrder(  )) - min));
    }
    
    new_value = arr[idx];
    //We run this loop until the first group fills up.
    //Then we run the previous scan loop to get back into this loop.
    while( idx != (groups[group]+1) )
    {
      group = (int) (scaling_constant * (((long) new_value.sortOrder(  )) - min));
      old_value = arr[groups[group]];
      arr[groups[group]] = new_value;
      new_value = old_value;
      groups[group]--; //decrement the pointer to the next index
      number_of_moves_left--;
    }
  }
  
  //Now we have our partially ordered array,
  //we do an insertion sort to order the remainder.
  for (i = arr.length - 3; i >= 0; i--)
  {
    if (arr[i+1].sortOrder(  ) < arr[i].sortOrder(  ))
    {
      old_value = arr[i];
      idx = i;
      while(arr[idx+1].sortOrder(  ) < old_value.sortOrder(  ))
      {
        arr[idx] = arr[idx+1];
        idx++;
      }
      arr[idx] = old_value;
    }
  }
}
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9.4 Performance Checklist

Most of these suggestions apply only after a bottleneck has been identified:

Eliminate casts in the sorting method.

Reimplement a standard sort (such as quicksort) directly in the class being sorted.

Make the comparison method faster.

Directly access fields rather than calling methods.

Sort linked lists with a merge sort.

Use comparison keys to replace objects where the comparison method requires a calculation for each

object being compared, and that calculation could be cached.

Partially presort the array with a faster partial sort; then re-sort using the full comparison method.

Use sorting interfaces to support different sorting algorithms.

Support generic optimizations within a sorting framework. These optimizations include:

Comparison key objects that cache calculations that would otherwise need to be repeatedly

executed

Comparison key objects that hold the ordering value in a directly accessible public field

Improved object creation by mapping arrays of comparison key objects into multiple arrays

Use specialized sorting algorithms for faster times and better scaling behavior.

Use specialized sorting algorithms when the sorting order of objects can be mapped directly to integer

keys.
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Chapter 10. Threading

Minor Premise: One man can dig a posthole in sixty seconds.

Conclusion: Sixty men can dig a posthole in one second.

-Ambrose Bierce, The Devil's Dictionary

Multithreading allows an application to do multiple things at the same time. While it is often possible to get

the same effect with clever programming in a single thread, Java's extensive support of threads makes it

easier to use multiple threads. In addition, single-threaded applications cannot take advantage of

multiprocessor machines.

However, multithreading can be difficult to implement effectively. Multithreading improves performance in

many cases, but it also has drawbacks if the default mechanisms for cooperation between threads are used

simplistically. In this chapter, we look at the benefits and the disadvantages threads offer to performance.

We examine the likely problems that may be encountered and discuss how to minimize the performance

downside while still gaining the benefits of multiple threads.

Synchronization and Monitors

Synchronization can be confusing, so I felt it was worth including a short reminder of its

subtleties here.

Two or more threads accessing and updating the same data variables have no way of knowing

when a particular accessor update will occur relative to any other thread accesses.

Synchronization ensures that a group of statements (a synchronized block) will execute

atomically as far as all synchronized threads are concerned. Synchronization does not address

the problem of which thread executes the statements first: it is first come, first served.

Synchronization is achieved using monitors. Every object can have a monitor associated with it,

so any object can synchronize blocks. Before a synchronized block can be entered, a thread

needs to gain ownership of the monitor for that block. Once the thread has gained ownership of

the monitor, no other thread synchronized on the same monitor can gain entry to that block (or

any other block or method synchronized on the same monitor). The thread owning the monitor

gets to execute all the statements in the block, and then automatically releases ownership of the

monitor on exiting the block. At that point, another thread waiting to enter the block can acquire

ownership of the monitor.

Note, however, that threads synchronized on different monitors can gain entry to the same block

at any time. For example, a block defined with a synchronized(this) expression is

synchronized on the monitor of the this object. If this is an object that is different for two

different threads, both threads can gain ownership of their own monitor for that block, and both

can execute the block at the same time. This won't matter if the block affects only variables

specific to its thread (such as instance variables of this), but can lead to corrupt states if the

block alters variables that are shared between the threads, such as static variables.
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Multithreading needs more care in coding than single threading. When tuning threads, it is easy to make a

little change here, and a little change there, and end up with total confusion, race conditions, and deadlock.

Before you start tuning threads, it is important to have a good understanding of how they interact and how

to make them cooperate and control each other. This book is not a tutorial on threads, so I don't intend to

cover the subject from a non-performance-tuning standpoint in any great detail. Two excellent books on

Java threads are Java Threads by Scott Oaks and Henry Wong (O'Reilly) and Concurrent Programming in

Java by Doug Lea (Addison Wesley).

If you are not comfortable with Java synchronization and how it works, I strongly advise you to spend some

time studying how to use threads and synchronization. Be sure you understand how race conditions and

deadlocks occur (many articles and books on Java go into this in detail, and there are brief examples in the

later sections of this chapter). Be sure you know how to correctly use the various wait( ) and notify( )
methods in the Object class as well as the synchronized keyword, and understand which monitor objects

are used and how they are used when execution reaches a synchronized block or method.
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10.1 User-Interface Thread and Other Threads

The user's impression of the performance of an application is greatly affected by its responsiveness. Putting

the user interface into a separate thread from any other work makes the application feel far more responsive

to the user and ensures that an unexpectedly long operation doesn't freeze the application's screen.

This user-interface thread is quite important in applets, where it is simple to use the screen-update thread to

execute other tasks because you can easily call code from the paint( ) method. Although more effort is

required to spawn a thread to execute other tasks, it is much better to do so, as otherwise you can easily

block repainting the screen or other GUI responses. In Figure 10-1, the clock on the left has been resized to

a quarter of its original size, but the paint( ) method has been unable to resize the clock drawing, as the

paint( ) method is busy keeping the correct time. The clock on the right has been resized to a wide

rectangular shape, and it keeps perfect time while also responding to the resize request because its paint(
) method always completes quickly.

Figure 10-1. The effect of timing on redrawing

If you are able to separate operations that slow processing (such as I/O) into specialized threads, your

application will run more smoothly. It can carry on its main work while another thread anticipates the need

for data, saves data to disk, etc. However, you should not pass work to another thread while your main

thread just sits and waits until that other thread completes. In fact, doing this is likely to hurt performance

rather than improve it. You should not use extra threads unless you have good design or performance

reasons for doing so.

One useful technique is to use a separate thread to monitor the rest of the application and, when necessary,

interrupt threads that are running beyond their expected execution time. This is more often a technique that

ensures robustness, but it can apply to performance, too, when a calculation provides successively better

approximations to the required result. It may be reasonable to interrupt the calculation after a certain length

of time, assuming you have a good approximation calculated. This technique does not specifically require a

supervising thread, as the timeout checking could be done within the calculation. It is often used in

animation; the frame-display rate can be adjusted according to the time taken to display the frames, which

in turn depends on picture resolution and the system environment.

All in all, using multiple threads needs careful consideration, and should be planned for in the design stage.

Retrofitting an application to use threads at an intermediate or advanced stage can sometimes be done quite

simply in some sections of the application, but is not usually possible throughout the application. In any
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case, care should be taken when changing the design to use more threads so that the problems illustrated in

the next sections are avoided.
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10.2 Race Conditions

A race condition occurs when two threads attempt to use the same resource at the same time. The following

class demonstrates a simple race condition. Two threads simultaneously try to increment a counter. If each

thread can complete the increment( ) method in its entirety without the other thread executing, then all is

fine, and the counter monotonically increases. Otherwise, the thread context switcher has the opportunity to

interrupt one thread in the middle of executing the increment( ) method and let the other thread run

through this method. Note that the thread can actually be interrupted anywhere, not necessarily in the middle

of the increment( ) method, but I've greatly increased the likelihood of an interruption in the increment(
) method by including a print statement there:

package tuning.threads;
   
public class ThreadRace
  implements Runnable
{
  //global counter
  static int num=0;
   
  public static void increment(  )
  {
    int n = num;
    //This next line gives the context switcher an ideal
    //place to switch context.
    System.out.print(num+" ");
    //And when it switches back, n will still be the old
    //value from the old thread.
    num = n + 1;
  }
   
  public static void main(String args[  ])
  {
    ThreadRace d1 = new ThreadRace(  );
    ThreadRace d2 = new ThreadRace(  );
   
    Thread d1Thread = new Thread(d1);
    Thread d2Thread = new Thread(d2);
   
    d1Thread.start(  );
    d2Thread.start(  );
  }
   
  public void run(  )
  {
    for (int i = 200; i >= 0 ; i--)
    {
      increment(  );
    }
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  }
}

The output from executing this class on a single-processor test machine is:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
31 32 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37 38 39 40 41 
42 43 44 45 46 47 48 49 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

You see that after 16, the next number is 16 again, and after the first 32, the next number is 17, as the

threads switch back and forth in the middle of the increment( ) method. On a multiprocessor machine, the

situation is even more confused.

Synchronizing the increment( ) method ensures the correct behavior of a monotonically increasing counter,

as this gives exactly the desired behavior: the method is forced to complete before another call to it from any

thread can be started.

In this test, because the counter is static , the increment( ) method needs to be

static for synchronization to work correctly. If the increment( ) method is not

static , synchronizing it locks the monitor for each this object rather than for the

class. In the example I used a different object in each thread. A non-static
increment( ) method is synchronized separately on each this object, so the

updates remain unsynchronized across the two threads.

It is not simply that the num variable is static (though it needs to be for this

particular example to work). The critical point is that the monitor that locks the

method must be the same monitor for the two threads; otherwise, each thread gains

its own separate lock with no synchronization occurring. Generally, deciding what to

synchronize can be quite subtle, and you need to keep in mind which monitor is going

to be locked by any particular thread.
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10.3 Deadlocks

Ensuring that resources are used correctly between threads is easy in Java. Usually, it just takes the use of

the synchronized keyword before a method. Because Java makes it seem so easy and painless to

coordinate thread access to resources, the synchronized keyword tends to get used liberally. Up to and

including Java 1.1, this was the approach taken even by Sun. You can still see in the earlier defined classes

(e.g., java.util.Vector) that all methods that update instance variables are synchronized. From JDK 1.2,

the engineers at Sun became more aware of performance and are now careful to avoid synchronizing willy-

nilly. Instead, many classes are built unsynchronized but are provided with synchronized wrappers (see the

later section Section 10.4.1).

Synchronizing methods liberally may seem like good safe programming, but it is a sure recipe for reducing

performance at best, and creating deadlocks at worst. The following Deadlock class illustrates the simplest

form of a race condition leading to deadlock. Here, the class Deadlock is Runnable. The run( ) method

just has a short half-second delay and then calls hello( ) on another Deadlock object. The problem

comes from the combination of the following three factors:

Both run( ) and hello( ) are synchronized

There is more than one thread

The sequence of execution does not guarantee that monitors are locked and unlocked in correct order

The main( ) method accepts one optional parameter to set the delay in milliseconds between starting the

two threads. With a parameter of 1000 (one second), there should be no deadlock. Table 10-1 summarizes

what happens when the program runs without deadlock.

Table 10-1. Example not deadlocked
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d1Thread activity
d1 monitor

owned by

d2 monitor

owned by
d2Thread activity

Acquire d1 monitor and

execute d1.run( )

d1Thread [in

d1.run( )]
None  

Sleeping in d1.run( ) for

500 milliseconds

d1Thread [in

d1.run( )]
None  

Acquire d2 monitor and

execute d2.hello( )

d1Thread [in

d1.run( )]

d1Thread [in

d2.hello( )]
 

Sleeping in d2.hello( ) for

1000 milliseconds

d1Thread [in

d1.run( )]

d1Thread [in

d2.hello( )]
 

Sleeping in d2.hello( ) for

1000 milliseconds

d1Thread [in

d1.run( )]

d1Thread [in

d2.hello( )]

Try to acquire d2 monitor to execute d2.run( ),

but block as d2 monitor is owned by d1Thread

Exit d2.hello( ) and

release d2 monitor

d1Thread [in

d1.run( )]
None Blocked until d2 monitor is released

Running final statements

in d1.run( )

d1Thread [in

d1.run( )]

d2Thread [in

d2.run( )]

Finally acquire d2 monitor and execute d2.run(

)

Exit d1.run( ) and release

d1 monitor
None

d2Thread [in

d2.run( )]
Sleeping in d2.run( ) for 500 milliseconds

 
d2Thread [in

d1.hello( )]

d2Thread [in

d2.run( )]
Acquire d1 monitor and execute d1.hello( )

 
d2Thread [in

d1.hello( )]

d2Thread [in

d2.run( )]
Sleeping in d1.hello( ) for 1000 milliseconds

  None
d2Thread [in

d2.run( )]
Exit d1.hello( ) and release d1 monitor

  None None Exit d2.run( ) and release d2 monitor

With a parameter of 0 (no delay between starting threads), there should be deadlock on all but the most

heavily loaded systems. The calling sequence is shown in Table 10-2; Figure 10-2 summarizes the difference

between the two cases. The critical difference between the deadlocked and nondeadlocked cases is whether

d1Thread can acquire a lock on the d2 monitor before d2Thread manages to acquire a lock on d2 monitor.

Table 10-2. Example deadlocked
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d1Thread activity
d1 monitor

owned by

d2 monitor

owned by
d2Thread activity

Acquire d1 monitor and execute

d1.run( )

d1Thread [in

d1.run( )]
None  

Sleeping in d1.run( ) for 500

milliseconds

d1Thread [in

d1.run( )]

d2Thread [in

d2.run( )]

Acquire d2 monitor and execute d2.run(

)

Blocked trying to acquire d2 monitor

while starting d2.hello( ), as

d2Thread owns d2 monitor

d1Thread [in

d1.run( )]

d2Thread [in

d2.run( )]

Sleeping in d2.run( ) for 500

milliseconds

Blocked until d2 monitor is released
d1Thread [in

d1.run( )]

d2Thread [in

d2.run( )]

Blocked trying to acquire d1 monitor

while startingd1.hello( ), as d1Thread

owns d1 monitor

Blocked until d2 monitor is released
d1Thread [in

d1.run( )]

d2Thread [in

d2.run( )]
Blocked until d1 monitor is released

A heavily loaded system can delay the startup of d2Thread enough that the behavior executes in the same

way as the first sequence. This illustrates an important issue when dealing with threads: different system

loads can expose problems in the application and also generate different performance profiles. The situation

is typically the reverse of this example, with a race condition not showing deadlocks on lightly loaded

systems, while a heavily loaded system alters the application behavior sufficiently to change thread

interaction and cause deadlock. Bugs like this are extremely difficult to track down.

The Deadlock class is defined as follows:

package tuning.threads;
   
public class Deadlock implements Runnable
{
  String me;
  Deadlock other;
   
  public synchronized void hello(  )
  {
    //print out hello from this thread then sleep one second.
    System.out.println(me + " says hello");
    try {Thread.sleep(1000);}
    catch (InterruptedException e) {  }
  }
   
  public void init(String name, Deadlock friend)
  {
    //We have a name, and a reference to the other Deadlock object
    //so that we can call each other
    me = name;
    other = friend;
  }
   
  public static void main(String args[  ])
  {
    //wait as long as the argument suggests (or use 20 ms as default)
    int wait = args.length =  = 0 ? 20 : Integer.parseInt(args[0]);
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    Deadlock d1 = new Deadlock(  );
    Deadlock d2 = new Deadlock(  );
   
    //make sure the Deadlock objects know each other
    d1.init("d1", d2);
    d2.init("d2", d1);
   
    Thread d1Thread = new Thread(d1);
    Thread d2Thread = new Thread(d2);
   
    //Start the first thread, then wait as long as
    //instructed before starting the other
    d1Thread.start(  );
    try {Thread.sleep(wait);}
    catch (InterruptedException e) {  }
    d2Thread.start(  );
  }
   
  public synchronized void run(  )
  {
    //We say we're starting, then sleep half a second.
    System.out.println("Starting thread " + me);
    try {Thread.sleep(500);}
    catch (InterruptedException e) {  }
   
    //Then we say we're calling the other guy's hello(  ), and do so
    System.out.println("Calling hello from " + me + " to " + other.me);
    other.hello(  );
    System.out.println("Ending thread " + me);
  }
}

Figure 10-2. The difference between nondeadlocked and deadlocked execution

http://lib.ommolketab.ir
http://lib.ommolketab.ir


 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

10.4 Synchronization Overhead

There are two separate costs of synchronization. First, there is the operational cost of managing the

monitors. This overhead can be significant: acquiring and testing for locks on the monitor for every

synchronized method and block can impose a lot of overhead. Attempting to acquire a lock must itself be a

synchronized activity within the VM; otherwise, two threads can simultaneously execute the lock-acquisition

code. This overhead can be reduced by clever techniques in the VM, but never completely eliminated. The

next section addresses this overhead and looks at ways to avoid it whenever possible.

Attempts to lock on different objects in two threads must still be synchronized to ensure that the object

identity check and granting of the lock are handled atomically. This means that even attempting to get a lock

on any object by two or more threads at the same time can still cause a performance degradation, as the VM

grants only one thread at a time access to the lock-acquisition routine.

In some VMs, synchronizing static methods takes significantly longer than synchronizing nonstatic methods,

suggesting that code is global in these VMs for the static synchronizations. (This is not strictly speaking a

bug, but certainly not optimal for performance.)

The second cost of synchronization is in what it actually does. Synchronization serializes execution of a set of

statements so that only one thread at a time executes that set. Whenever multiple threads simultaneously

try to execute the same synchronized block, those threads are effectively run together as one single thread.

This completely negates the purpose of having multiple threads and is potentially a huge bottleneck in any

program. On machines with multiple CPUs, you can leave all but one CPU idle when serialized execution

occurs. The later section "Avoiding Serialized Execution" addresses techniques for avoiding serialized

execution where possible.

10.4.1 Desynchronization and Synchronized Wrappers

As we just noted, synchronized methods have performance costs. In fact, for short methods, using a

synchronized method can mean that the basic time involved in calling the method is significantly larger than

the time for actually running it. The overhead of calling an unsynchronized method can be much smaller than

that of calling a synchronized method.

You should be aware of when you do not need to synchronize. Read-only objects never need

synchronization. Stateless objects (including no-static state) almost never need synchronization on their

methods. (There are certain unusual implementations when methods may be altering state directly in

another shared object, where synchronization would be required.) Some objects with state may have no

need for synchronization because access to the object is highly restricted, and the synchronization is handled

by other objects. Some objects can implement a copy-on-write mechanism (StringBuffer uses this; see

Chapter 5). You can define copy-on-write in such a way to allow multithreaded updates of that object.

Many multithreaded applications actually use most of their objects in a single-threaded manner. Each

individual thread maintains its own references to most objects, with just a few data or utility objects actually

being used by multiple threads. From a performance standpoint, it seems a shame to have the overhead of

synchronized objects on many classes where synchronization is not needed or used. On the other hand,

when you design and build a particular class, it is seldom possible to anticipate that it will never be shared

among several threads, so to be on the safe side, typically the class is built with synchronization.
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When you have identified a bottleneck that uses synchronized objects, you can sometimes remove

synchronization on those objects by giving different threads their own unsynchronized copies of those

objects. This is especially easy to achieve when you use objects that have an unsynchronized

implementation held in a synchronized wrapper.

The idea behind synchronized wrappers is that you build your class completely unsynchronized, as if it is to

be used single-threaded. But you also provide a wrapper class with exactly the same interface. The

difference in the wrapper class is that all methods that require synchronization are defined with the

synchronized modifier. The wrapper could be a subclass with methods reimplemented, but more typically,

it is a separate class that holds an internal reference to an instance of the unsynchronized class and wraps all

the methods to call that internal object. Using synchronized wrappers allows you the benefits of thread-safe

objects by default, while still retaining the capability to selectively use unsynchronized versions of those

classes in bottlenecks.

From Java 2, the framework of using synchronized wrappers has become standard. All the new collection

classes in java.util are now defined unsynchronized, with synchronized wrappers available. Old collection

classes (e.g., Hashtable, Vector) that are already synchronized remain so for backward compatibility. The

wrappers are usually generic, so you can actually create wrapped synchronized objects from any object of

the right type.

I include a short example of the synchronized-wrapper framework here for clarity. If class UnsyncedAdder

is defined as follows:

public interface Adder {
  public void add(int aNumber);
}
   
public class UnsyncedAdder
  implements Adder
{
  int total;
  int numAdditions;
  public void add(int aNumber) {total += aNumber; numAdditions++;}
}

Then the synchronized wrapper for this class can be:

public class SyncedAdder
  implements Adder
{
  Adder adder;
  public SyncedAdder(Adder a) {adder = a;}
  public synchronized void add(int aNumber) { adder.add(aNumber);}
}

Obviously, you refer to Adder objects in your code; don't refer explicitly to concrete implementations of

Adder classes (such as UnsyncedAdder and SyncedAdder) except in the constructor or factory classes.

Note that the synchronized wrapper is completely generic. It wraps any implementation of Adder, providing

synchronization on the add( ) method irrespective of the underlying concrete implementation of the Adder

class.

Using unsynchronized classes gives a performance advantage, but it is a maintenance drawback. There is

every likelihood that initial implementation of any application will use the unsynchronized classes by default,
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leading to many subtle threading bugs that can be a debugging and maintenance nightmare. Typical

development scenarios then try to identify which objects need to be synchronized for the application, and

then wrap those objects in their synchronized wrappers.

Under the stress of project milestones, I know of one project where the developers went through all their

code with a recursive routine, chopping out every synchronized keyword in method declarations. This

seemed quicker than carefully tuning the code, and did in fact give a performance improvement. They put a

few synchronized keywords back in after the regression tests. This type of tuning is exactly the opposite of

what I recommend.

Instead, you should use synchronized wrapped objects throughout the application by default, but ensure that

you have the capability to easily replace these with the unsynchronized underlying objects. (Remember,

tuning is better done after the application works correctly, not at the beginning.) When you come to tune the

application, identify the bottlenecks. Then, when you find that a particular class needs to be speeded up,

determine whether that class can be used unsynchronized. If so, replace it with its unsynchronized

underlying object, and document this thoroughly. Any changes in the application must reexamine these

particular tuning changes to ensure that these objects do not subsequently need to become synchronized.[1]

[1] When the design indicates that a class or a set of methods should definitely be synchronized or
definitely does not need synchronization, then of course you should apply that design decision. For
example, stateless objects can often be specified with no synchronization. However, there are many
classes and methods where this decision is uncertain, and this is where my recommendation applies.

Be aware, though, that there is no win-win situation here. If you tend toward unsynchronized classes by

default, you leave your application open to corruption. If you prefer my recommended "synchronized by

default" approach, your application has an increased chance of encountering deadlocks. On the basis that

deadlocks are both more obvious and easier to fix than corrupt objects, I prefer the "synchronized by

default" option. Implementing with interfaces and synchronized wrappers gives you an easy way to

selectively back out of synchronization problems.

The next test gives you an idea of the relative performance of synchronized and unsynchronized methods,

and of synchronized wrappers. The test compares synchronized (Vector ), unsynchronized (ArrayList),

and synchronized wrapper (ArrayList wrapped) classes.

package tuning.threads;
   
import java.util.*;
   
public class ListTesting
{
  public static final int CAPACITY = 100000;
  public static void main(String args[  ])
  {
    //In order to isolate the effects of synchronization, we make sure
    //that the garbage collector doesn't interfere with the test. So
    //we use a bunch of pre-allocated, pre-sized collections, and
    //populate those collections with pre-existing objects. No objects
    //will be created or released during the timing phase of the tests.
    List[  ] l = {new Vector(CAPACITY), new Vector(CAPACITY),
      new Vector(CAPACITY), new ArrayList(CAPACITY),
      new ArrayList(CAPACITY), new ArrayList(CAPACITY),
      Collections.synchronizedList(new ArrayList(CAPACITY)),
      Collections.synchronizedList(new ArrayList(CAPACITY)),
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      Collections.synchronizedList(new ArrayList(CAPACITY))};
    int REPEAT = (args.length > 0) ? Integer.parseInt(args[0]) : 100;
   
    //Vary the order.
    test(l[0], REPEAT, "Vector");
    test(l[6], REPEAT, "sync ArrayList" );
    test(l[3], REPEAT, "ArrayList");
    test(l[1], REPEAT, "Vector");
    test(l[4], REPEAT, "ArrayList");
    test(l[7], REPEAT, "sync ArrayList" );
    test(l[2], REPEAT, "Vector");
    test(l[5], REPEAT, "ArrayList");
    test(l[8], REPEAT, "sync ArrayList" );
  }
   
  public static void test(List l, int REPEAT, String ltype)
  {
    //need to initialize for set(  ) to work. Don't measure this time
    for (int j = 0; j < CAPACITY; j++)
      l.add(Boolean.FALSE);
   
    long time = System.currentTimeMillis(  );
    //The test sets elements repeatedly. The set methods are
    //very similar. Apart from synchronization, the Vector.set(  )
    //is slightly more efficient than the ArrayList.set(  ), which
    //is in turn more efficient than the wrapped ArrayList because
    //there is one extra layer of method calls for the wrapped object.
    for (int i = REPEAT; i > 0; i--)
      for (int j = 0; j < CAPACITY; j++)
        l.set(j, Boolean.TRUE);
    System.out.println(ltype + " took " +
        (System.currentTimeMillis(  )-time));
  }
}

The normalized results from running this test are shown in Table 10-3.

Table 10-3. Timings of the various array-manipulation tests, normalized to the JDK 1.2 Vector
test

  1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

Vector 100% 16% 15% 20% 12% 134%

ArrayList 15% 14% 9% 14% 13%[2] 166%

Wrapped ArrayList 131% 23% 18% 26% 19% 231%

[2] Note that the Vector.set( ) method implementation is slightly more efficient (faster) than the

ArrayList.set( ) implementation, so if there were no effect from the synchronization, the Vector
test could be slightly faster than the ArrayList test.
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There are some reports that the latest VMs have negligible overhead for synchronized methods; however,

my own tests show that synchronized methods continue to incur some overhead (VMs up to and including

JDK 1.4). The 1.4 server-mode test is the only VM that shows negligible overhead from synchronized

methods. This comes from server mode's aggressive inlining together with being able to analyze the

requirement for acquiring the lock. In this case, the test is fairly simple, and it looks like the 1.4 server mode

is able to establish that the lock does not need acquiring on each pass of the loop and to correctly optimize

the situation. In more complex real-world situations, server mode is not always able to optimize away the

lock acquisition so well. On the other hand, I shouldn't underplay the fact that the latest 1.3 and 1.4 VMs all

do very well in minimizing the synchronization overhead (especially the 1.4 server mode), so much so that

synchronization overhead should not be an issue for most applications.

10.4.2 Avoiding Serialized Execution

One way of completely avoiding the requirement to synchronize methods is to use separate objects and

storage structures for different threads. Care must be taken to avoid calling synchronized methods from

your own methods, or you will lose all your carefully built benefits. For example, Hashtable access and

update methods are synchronized, so using one in your storage structure can eliminate any desired

benefit. Prior to JDK 1.2, there is no unsynchronized hash table in the JDK, and you have to build or buy your

own unsynchronized version. From JDK 1.2, unsynchronized collection classes are available, including Map

classes.

As an example of implementing this framework, I look at a simple set of global counters, keyed on a numeric

identifier. Basically, the concept is a global counter to which any thread can add a number. This concept is

extended slightly to allow for multiple counters, each counter having a different key. String keys are more

useful, but for simplicity I use integer keys in this example. To use String keys, an unsynchronized Map

replaces the arrays.

The simple, straightforward version of the class looks like this:

package tuning.threads;
   
public class Counter1
{
  //For simplicity make just 10 counters
  static long[  ] vec = new long[10]; 
   
  public static void initialize(int key)
  {
    vec[key] = 0;
  }
   
  //And also just make key the index into the array
  public static void addAmount(int key, long amount)
  {
    //This is not atomically synchronized since we do an array
    //access together with an update, which are two operations.
    vec[key] += amount;
  }
   
  public static long getAmount(int key)
  {
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    return vec[key];
  }
}

This class is basic and easy to understand. Unfortunately, it is not thread-safe and leads to corrupt counter

values when used. A test run on a particular single-processor system with four threads running

simultaneously, each adding the number 1 to the same key 10 million times, gives a final counter value of

around 26 million instead of the correct 40 million.[3] On the positive side, the test is blazingly fast, taking

very little time to complete and get the wrong answer.

[3] The results discussed are for one particular test run. On other test runs, the final value is different,
but it is almost never the correct value (40 million). If I use a faster CPU or a lower total count, the
threads can get serialized by the operating system (by finishing quickly enough), leading to
consistently correct results for the total count. But those correct results are an artifact of the
environment and are not guaranteed. Other system loads and environments generate corrupt values.

To get the correct behavior, you need to synchronize the update methods in the class. Here is Counter2,

which is just Counter1 with the methods synchronized:

package tuning.threads;
   
public class Counter2
{
  //For simplicity make just 10 counters
  static long[  ] vec = new long[10]; 
   
  public static synchronized void initialize(int key)
  {
    vec[key] = 0;
  }
   
  //And also make the just make key the index into the array
  public static synchronized void addAmount(int key, long amount)
  {
    //Now the method is synchronized, so we will always
    //complete any particular update
    vec[key] += amount;
  }
  public static synchronized long getAmount(int key)
  {
    return vec[key];
  }
}

Now you get the correct answer of 40 million. Unfortunately, the test takes 20 times longer to execute (see

Table 10-4). Avoiding the synchronization is going to be more work. To do this, create a set of counters, one

for each thread, and update each thread's counter separately.[4] When you want to see the global total, you

need to sum the counters across the threads.

[4] ThreadLocal variables might be appropriate here, but not in JDK 1.2, which used an underlying

implementation of a synchronized map to allocate pre-thread objects. That implementation would
defeat our intention to avoid synchronization completely. JDK 1.3 uses an instance variable in the
Thread object to hold an unsynchronized map and would work.
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The class definition follows:

package tuning.threads;
   
public class Counter3
{
  //support up to 10 threads of 10 counters
  static long vec[  ][  ] = new long[10][  ];
   
  public static synchronized void initialize(CounterTest t)
  {
    //For simplicity make just 10 counters per thread
    vec[t.num] = new long[10];
  }
   
  public static void addAmount(int key, long amount)
  {
    //Use our own threads to make the mapping easier,
    //and to illustrate the technique of customizing threads.
    //For generic Thread objects, could use an unsynchronized 
    //HashMap or other Map,
    //Or use ThreadLocal if JDK 1.2 is available
   
    //We use the num instance variable of the CounterTest
    //object to determine which array we are going to increment.
    //Since each thread is different, here is no conflict.
    //Each thread updates its own counter.
    long[  ] arr =  vec[((CounterTest) Thread.currentThread(  )).num];
    arr[key] += amount;
  }
  public static synchronized long getAmount(int key)
  {
    //The current amount must be aggregated across the thread
    //storage arrays. This needs to be synchronized, but
    //does not matter here as I just call it at the end.
    long amount = 0;
    for (int threadnum = vec.length-1; threadnum >= 0 ; threadnum--)
    {
      long[  ] arr = vec[threadnum];
      if (arr != null)
        amount += arr[key];
    }
    return amount;
  }
}

Using Counter3, you get the correct answer for the global counter, and the test is quicker than Counter2.

The relative timings for a range of VMs are listed in Table 10-4.

Table 10-4. Timings of the various counter tests, normalized to the JDK 1.2 Counter2 test
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  1.1.8 1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

Counter2 24.8% 100% 124% 130% 123% 131% 131%

Counter3 1.5% 1.7% 2.2% 2% 2.4% 0.01% 5.7%

Counter1 (incorrect result) 0.2% 0.2% 0.2% 0.01% 0.1% 0.01% 1.9%

The serialized execution avoidance class is a significant improvement on the synchronized case. The

Counter2 timings can be extremely variable. This variation is generated from the nature of multithreaded

context switching, together with the fact that the activity taking much of the time in this test is lock

management. Switching is essentially unpredictable, and the amount of switching and where it occurs affects

how often the VM has to release and reacquire locks in different threads. Nevertheless, across a number of

measurements, Counter3 was always faster than Counter2, normally orders of magnitude faster.

The listed times were measured on a single-processor machine. Consider what happens on a multiprocessor

machine where the threads can run on different CPUs (i.e., where the Java runtime and operating system

support preemptive thread scheduling on separate CPUs). Counter3 (the serialized execution avoidance

class) is parallelized automatically and scales very nicely. This same test with Counter3 running on a four-

CPU machine tends towards one-quarter of the single-CPU time, assuming that the four CPUs have the same

power as the single CPU we tested earlier. On the other hand, the synchronized version of the counter,

Counter2, always has serialized execution (that's what synchronized does). Consequently, it does not

scale and generally performs no better than in the single-CPU test (except for the advantage of running the

OS on another CPU).
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10.5 Timing Multithreaded Tests

I measured timings of the three Counter classes in the previous section using another class, CounterTest.

This timing class illustrates some pitfalls you need to avoid when timing multithreaded applications, so I'll go

into a little detail about the CounterTest definition.

The first naive implementation of CounterTest is quite simple. Just create a Thread subclass with the run(
) method running timed tests of the classes you are measuring. You need an extra instance variable for the

Counter3 class, so the class can be defined as:

package tuning.threads;
   
public class CounterTest
  extends Thread
{
  //instance variable to specify which thread we are.
  int num;
   
  public CounterTest(int threadnum)
  {
    super(  );
    num = threadnum;
  }
   
  // main forks four threads
  public static void main(String[  ] args)
  {
    int REPEAT = (args.length > 0) ? Integer.parseInt(args[0]) : 10000000;
    for (int i = 0; i < 4; i++)
      (new CounterTest(i)).start(  );
  }
   
  public void run(  )
  {
    Counter1.initialize(0);
    long time = System.currentTimeMillis(  );
    for (int i = REPEAT; i > 0; i--)
      Counter1.addAmount(0, 1);
    System.out.println("Counter1 count: " + Counter1.getAmount(0)
      + " time: " + (System.currentTimeMillis(  )-time));
   
    Counter2.initialize(0);
    time = System.currentTimeMillis(  );
    for (int i = REPEAT; i > 0; i--)
      Counter2.addAmount(0, 1);
    System.out.println("Counter2 count: " + Counter2.getAmount(0)
      + " time: " + (System.currentTimeMillis(  )-time));
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    Counter3.initialize(this);
    time = System.currentTimeMillis(  );
    for (int i = REPEAT; i > 0; i--)
      Counter3.addAmount(0, 1);
    System.out.println("Counter3 count: " + Counter3.getAmount(0)
      + " time: " + (System.currentTimeMillis(  )-time));
  }
}

Unfortunately, this class has two big problems. First, there is no way of knowing that the four threads are

running the same test at the same time. With this implementation, it is perfectly possible that one thread is

running the Counter1 test while another has already finished that test and is now running the Counter2

test concurrently. This gives incorrect times for both tests because the CPU is being used by another test

while you measure the first test. And the synchronization costs are not measured properly because the

intention is to test the synchronization costs of running four threads using the same methods at the same

time.

The second problem is with the times being measured. The timings are for each thread running its own

threaded update to the Counter class. But we should be measuring the time from the first update in any

thread to the last update in any thread.

One way to avoid the first pitfall is to synchronize the tests so that they are not started until all the threads

are ready. Then all threads can be started at the same time. The second pitfall can be avoided by setting a

global time at the start of the first update, then printing the time difference when the last thread finishes.

The full tuning.threads.CounterTest implementation with the correct handling for measurements can

be found, along with all the other classes from this book, at http://www.oreilly.com/catalog/javapt2/.
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10.6 Atomic Access and Assignment

Variables shared between multiple threads (e.g., instance variables of objects) have atomic assignment

guaranteed by the Java language specification for all data types except longs and doubles. Actually, the

storing of a value into a variable takes two primitive operations, a store and a write. However, the language

specification also states that once a store operation occurs on a particular variable, no other store operation

is allowed on that variable until the write operation has occurred. The (original[5]) specification allows longs

and doubles to be stored in two separate sets of store+write operations, hence their exception to atomicity.

A similar atomic specification applies for reading variables.

[5] The Java memory model specification is being changed. Java Specification Request 133, "Java
Memory Model and Thread Specification Revision," addresses the various problems in the existing
specification. Chapter 17 of the Java language specification and Chapter 8 of the Java Virtual Machine
specification are proposed to be revised substantially. I'm very grateful to Brian Goetz for clarifying
several points in this section.

This means that access and update of individual variables does not need to be synchronized simply to avoid

corruption (as long as they are not longs or doubles). If a method consists solely of a single variable

access or assignment, there is no need to make it synchronized for thread-safety, and every reason not to

do so for performance.

Note that I'm talking about using synchronization for thread-safety here, not synchronization for visibility of

updates and accesses of variables. First, read the later Synchronization Ordering sidebar to ensure that you

understand that synchronization provides no guarantees about the ordering of execution among different

threads. Bearing that in mind, atomic access and update once again do not provide any guarantees about

ordering of variables. Furthermore, unlike synchronization, atomic access and update do not provide any

guarantee about timely synchronization between values of a variable held in different threads. When a

synchronized block is passed, all the variables in a thread have been updated to the values in the "master"

memory: they are synchronized. However, that synchronization does not occur with a simple atomic access

or update. This means that for a variable that is atomically assigned to outside of a synchronized block,

theoretically a thread could see a different value from the "master" memory for that variable for an extended

period of time. Some other Java authors have suggested that this is dangerous. And while this book is full of

dangerous advice, I don't believe this particular performance-tuning technique is any more dangerous than

many other techniques. Specifically, if two or more variables don't need to be consistent with each other or

vary consistently among themselves over time, you can trade some delay in propagation between threads

for some extra performance. If you have two variables that have to be consistent with each other at all times

across threads, such as the X and Y values of a shared point or a variable that has to vary consistently over

time between multiple threads, then you need to synchronize. And in the case of variables needing to remain

consistent with each other, atomic assignment is still fine for the individual variables, but the combined

assignment needs to be synchronized (see the examples discussed shortly).

The concern here is primarily that you might read a variable in one thread, thread1, but meanwhile that

variable has been updated in another thread, thread2, and the value has not propagated to thread1. The

lack of guarantee of any ordering between threads means that this can occur even with synchronized

variables because the read can occur prior to the update. But the difference is that with atomic access, even

after thread2 updates its variable, thread1 doesn't necessarily see that updated value until a

synchronization takes place. But note that the synchronization does take place as soon as any synchronized

block is passed in thread1. For the vast majority of programs, there is no issue with using atomic access

and update. The only place I have found where atomic access and update might easily be used but could
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cause a problem is where a Runnable thread has a stopping condition dependent on a variable being set

from another thread, and the thread never enters a synchronized block. For example:

class SomeClass implements Runnable
{
  boolean dontStop = true;
  public void run(  )
  {
    //dontStop is set to false from another thread
    //when it wants this thread to terminate.
    while(dontStop)
    {
      //Loop body NEVER enters ANY synchronized blocks
      //which is pretty unusual except for animations
    }
  }

In this situation, you are actually better off declaring the dontStop variable as volatile rather than

changing the test to access a synchronized dontStop( ) method because that is precisely the

appropriate usage for volatile, and you don't incur synchronization overhead.

The volatile keyword specifies that the variable declared volatile must always

have its value updated to the "main" memory value. So threads are not allowed to

have a value for that variable that is different from the main memory value at any

time. As a consequence, volatile variables can be slower than non-volatile

variables because of the extra requirement to always synchronize the variable, but

faster than synchronized access and updates because volatile synchronizes only

one variable whereas synchronization synchronizes all variables.

The thread-safety of atomic accesses and updates extends further to any set of statements that are

accessing or assigning to a variable independently of any other variable values. The exclusion here precludes

setting a variable that depends on the value of another variable being thread-safe; this would be two

separate operations, which is inherently not thread-safe. For example, these methods:

public void setMe(Object o) {me = o;}
public Object getMe(  ) {return me;}

are individually thread-safe, with no need for synchronized modifiers to be added to the method declaration.

On the other hand, this method:

public void setMe(Object o) {if(overwrite) me = o;}

is not thread-safe: overwrite may be true at the time of checking in the if statement, but false by the

time of the subsequent assignment statement. Anything more complex than simple assignments and

accesses is probably not thread-safe: it depends on whether any particular intermediate state that can be

accessed is considered corrupt by the application. Consider the code being halted before or after any

particular atomic statement, and decide whether or not another thread could now access a corrupt

application state.

Combining several calls to methods that atomically assign variables is the same problem as combining

several calls to synchronized methods. The individual calls are executed atomically, but the combination is

not necessarily atomic:
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public void setMe1(Object o) {me = o;}
public void setMe2(Object o) {me = o;}
public void setBoth(Object o1, Object o2) {setMe1(o1);setMe2(o2);}

For these three methods, it does not matter whether setMe1( ) and setMe2( ) are synchronized.

setBoth( ) is not synchronized, so it can be interrupted between the calls to setMe1( ) and setMe2( ),

allowing another thread to update one of the instance variables. This can leave the object in a potentially

corrupt application state if both instance variables are always supposed to be updated together. Specifically,

if two threads call the setBoth( ) method simultaneously, the outcome is not predictable unless setBoth(
) is synchronized. Even the simple example of setInt(getInt( )+1) is not thread-safe; without

synchronizing the whole statement you could lose the increment.

Synchronization Ordering

It is easy to misunderstand exactly what synchronization does. Synchronization ensures that a

set of statements executes exclusively for a particular monitor. Synchronization does not

guarantee the relative order of execution of synchronized blocks between threads. If two threads

try to execute a synchronized block simultaneously, one succeeds first, but there is no guarantee

about which one that is.

Atomic assignment is similar to the case where the set of synchronized statements is one

statement, and the synchronization is set by the VM. When considering atomic assignment, you

might ask the question, "What if a context switch occurs during the method call setup or tear

down? When does the synchronization happen, and what happens with the context switch?" The

actual moment when the synchronization occurs does not matter. It does not matter if a context

switch happens at any time before or after a set of synchronized statements. Either the

synchronized set has not been entered, or it has been completed. Only the actual granting of the

lock matters, and that is atomic with respect to all interested threads.

Until you reach an atomic assignment statement, it makes no difference whether another atomic

assignment on the same variable occurs. This is purely the ordering of assignments, which is not

guaranteed with synchronization anyway. After the atomic assignment is finished, it is complete.

A context switch hitting the method tear down does not matter. The usual reason to synchronize

a simple updator is to avoid a corrupt assignment (two threads simultaneously updating the

same variable, and the resulting value being neither of the updated values). This can indeed

occur for doubles and longs, but not for other data types.

For serious number crunching involving doubles and longs, I recommend using separate data

structures for each thread or using a VM that guarantees atomic assignment for doubles and

longs.

A longer discussion about Java's atomicity can be found in an article by Art Jolin,[6] where he discusses

unsynchronized thread-safe data structures, including why a binary tree (specifically the

AWTEventMulticaster class) can be thread-safe without any synchronized methods.

[6] "Java's Atomic Assignment," Java Report, August 1998.
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10.7 Thread Pools

The VM is optimized for creating threads, so you can usually create a new thread when you need to without

having to worry about performance. But in some circumstances, maintaining a pool of threads can improve

performance. For example, in a case where you would otherwise create and destroy many short-lived

threads, you are far better off holding onto a (variable-sized) pool of threads. Here, the tasks are assigned

to an already created thread, and when a thread completes its task, it is returned to the pool, ready for the

next task. This improves performance because thread creation (and, to some extent, destruction) does have

a significant overhead that is better avoided for short-lived threads.

A second situation is where you want to limit the number of threads in your application. In this case, your

application needs to make all thread requests through a centralized pool manager. Although a pool manager

does not prevent other threads from being started, it is a big step toward that goal. (Strictly speaking,

limiting threads does not require a pool of threads, just a centralized pool manager, but the two usually

come together.) Every system has a response curve with diminishing returns after a certain number of

threads are running on it. This response curve is different for different systems, and you need to identify

values for your particular setup. A heavy-duty server needs to show good behavior across a spectrum of

loads, and at the high end, you don't want your server crashing when 10,000 requests try to spawn 10,000

threads; instead, you want the server response to degrade (e.g., by queuing requests) and maintain

whatever maximum number of threads is optimal for the server system.

When deciding which thread to run next, there may be a slight gain by choosing the available thread that ran

most recently. This thread is most likely to have its working set still fully in memory: the longer it has been

since a thread was last used, the more likely it is that the thread has been paged or swapped out. Also, any

caches (at any level of the system and application) that may apply are more likely to contain elements from

the most recently used thread. By choosing the most recently used thread, paging and cache overhead may

be minimized.

Thread pools can be completely generic if necessary. By using the java.lang.reflect package, you can

execute any (public) methods from your threads, thus allowing you to implement a thread pool that can

handle general requests that have not been anticipated or specified at implementation time.
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10.8 Load Balancing

Load balancing is a technique for improving performance when many activities are processed concurrently.

These activities could be in separate processes on different machines, in separate processes on the same

machine, or in separate threads within the same process. The architecture makes no difference to the basic

guidelines.

To support load balancing, a standard design is to have:

One point of entry for all requests (the request queue)

One or more request-processor objects behind the queue

A mechanism for the queue to decide which processor to hand a particular request to

You also need communication lines between the queue and processors and a way to internally identify

requests, but this is an obvious part of the infrastructure. The decision mechanism is typically a simple load-

balancing system that distributes requests to those available processors. The request processors specify

when they are available or busy. When the queue has a request to process, it chooses the first available

request processor. Some applications need more complex decision-making, and use a decision mechanism

that allocates requests depending on the type of request.

Our main concern with this architecture is that the queue is a potential bottleneck, so it must pass on

requests quickly and be ready fairly continually.[7] The pool of request processors behind the queue can be

running in one or more threads or processes, usually one request processor per thread. The pool of threaded

request processors can be prestarted or started on demand, or you can have a combination of these.

Typically for this kind of setup, there are configuration options that specify how many prestarted request

processors there should be, the maximum number of request processors to have running simultaneously,

and how long to wait before terminating a request processor since it last processed a request.

[7] The queue is also a single point of failure. For this reason, an advanced load-balancing design does
not rely on a single queue. Instead, any queues in the application are distributed, redundantly copied,
and monitored so that any queue failure results in only a small performance degradation at worst.
Some designs use persistent queue elements so that a critical failure does not lose queued elements.
The Java Messaging Service supports persistent queue elements.

Note that there is always a point of diminishing returns on response time versus the number of threads in a

system. If you have too many threads running concurrently, the system's overall response time gets worse.

The operating-system thread scheduler (or Java-system thread scheduler, if you're not using OS threads)

spends more and more time managing threads, and this overhead takes up the CPU time rather than

allowing the threads to run.

You also need to consider whether the queue object handles the responses (collecting them from the request

processes and handing them back to the clients) or whether the request-processor objects can hand the

responses back directly. The former design has the advantage that the client cannot get any direct access to

the request-processor objects, but the disadvantage that you are introducing an unnecessary bottleneck in

processing terms. The latter option (handing responses back directly), of course, has the opposite

characteristics: no extra bottleneck, but access to client objects is enabled.
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10.8.1 Free Load Balancing from TCP/IP

If you use sockets to handle incoming requests within one process, the operating system provides some

load-balancing support. If you want, the operating system will provide the queue for free. TCP sockets can

have multiple threads reading or accepting on them. A connectionless TCP server (such as a web server)

performs the following process:

Opens a server socket.1.

Starts however many threads you want.2.

Each thread sits on a ServerSocket.accept( ) call, waiting for the call to return (all threads call

accept( ) on the identical ServerSocket object).

3.

Whenever a client connects to the server socket, the operating-system TCP stack hands the connection

off to only one thread that is blocked on the accept( ) call. This is guaranteed behavior for TCP.

4.

The thread that returns from the accept( ) call gets the client connection (Socket object), reads the

request, processes it, and writes the request back (directly to the client).

5.

The thread goes back into the accept( ) call, waiting for the next connection.6.

At any time, you can start further threads to scale up the server as long as each thread has access to the

previously created ServerSocket object. TCP does not allow more than one ServerSocket object to be

bound to the same port on any machine (actually, any one network interface). It is therefore not possible to

have multiple separate processes (i.e., independent operating-system processes, rather than threads within

one operating-system process) serving on the same server socket. (Strictly speaking, it is possible to fork a

process into multiple system processes after the socket has been opened. This is a standard practice on Unix

servers. Multiprocess TCP servers have some small disadvantages over multithreaded TCP servers, mainly

when they need to communicate between themselves or use other expensive resources. However,

multiprocess TCP servers do have one big advantage over multithreaded servers, which is that if one server

process crashes, the others can continue running independently, unaffected by the crash. Win32 does not

support a fork procedure.)

With UDP sockets, the architecture can be slightly different, as you can open a UDP server socket on a port

that already has a server socket bound to it. A UDP socket is not connection-oriented but packet-oriented, so

there is no accept( ) call to wait on. Instead, all the threads (from potentially multiple system processes)

sit on a read( ) call on the UDP socket, and the UDP stack hands off each incoming packet to just one of

the threads that are waiting on the read( ). The server then has to use the information from the packet

(either at the application level or the protocol level) to determine the return address to send the result of the

processed request (again, directly back to the client).

10.8.2 Load-Balancing Classes

If you need to implement your own queuing system, you have to consider whether the queue controls the

request processors, or whether the processors access the queue. The latter model is how the socket model

works: each request processor sits on the queue and waits for it to pass a request. This looks rather like the

following class:

public class PassiveRequestQueue
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{
  //The queue of requests
  FIFO_Queue queue = new FIFO_Queue(  );
   
  public synchronized void acceptRequest(Request r)
  {
    //Add to the queue, then notify all processors waiting
    //on the releaseRequest(  ) method
    queue.add(r);
    notify(  );
  }
   
  public synchronized Request releaseRequest(  )
  {
    for(;;)
    {
      //if the queue is empty, just go back into the wait call
      if (queue.isEmpty(  ))
        try {wait(  );} catch (InterruptedException e){  }
      //Need to check again if the queue is empty, in case
      //we were interrupted
      if (!queue.isEmpty(  ))
        return (Request) queue.pop(  );
    }
  }
}

The former model, in which the request processors are passive and the queue actively manages them, looks

more like the following class:

public class ActiveRequestQueue
  //subclass the passive queue that holds the behavior
  //needed for managing the queue of requests
  extends PassiveRequestQueue
  //and make us able to run in our own thread
  implements Runnable
{
  int MAXIMUM_NUM_SERVERS=3;
   
  //Data for the public queue - a list of private servers
  ActiveRequestQueue[  ] servers;
   
  //Data for the private (internal) queues
  //the RequestProcessor
  RequestProcessor requestProcessor;
  //Retain a handle on my thread so that we can easily access
  //it if we need control
  Thread myThread;
  //Keep a handle on the 'public' queue - the one that
  //actually holds the objects
  ActiveRequestQueue queueServer;
  //Availability
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  boolean isAvailable = true;
   
  //Internal queue object - processes requests
  private ActiveRequestQueue(ActiveRequestQueue q)
  {
    queueServer = q;
    requestProcessor=new RequestProcessor(  );
  }
   
  //External queue object - accepts requests and manages a queue of them
  public ActiveRequestQueue(int num_servers)
  {
    //Create a pool of queue servers and start them in their own threads
    servers = new ActiveRequestQueue[num_servers];
    Thread t;
    for (int i = servers.length-1; i>=0 ; i--)
    {
      servers[i] = new ActiveRequestQueue(this);
      (t = new Thread(servers[i])).start(  );
      servers[i].myThread = t;
    }
  }
   
  public synchronized void acceptRequest(Request r)
  {
    //Override the super class accept to increase the number
    //of servers if they are all busy
   
    //If we already have the maximum number of threads,
    //just queue the request
    if (servers.length >= MAXIMUM_NUM_SERVERS)
    {
        super.acceptRequest(r);
        return;
    }
   
    //otherwise, if one of the servers is available, just queue
    //the request
    for (int i = servers.length-1; i>=0 ; i--)
    {
      if (servers[i].isAvailable(  ))
      {
        super.acceptRequest(r);
        return;
      }
    }
   
    //otherwise, increase the server pool by one, then queue the request
    Thread t;
    ActiveRequestQueue[  ] tmp_servers = servers;
    servers = new ActiveRequestQueue[tmp_servers.length+1];
    System.arraycopy(tmp_servers, 0, servers, 0, tmp_servers.length);
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    servers[tmp_servers.length] = new ActiveRequestQueue(this);
    (t = new Thread(servers[tmp_servers.length])).start(  );
    servers[tmp_servers.length].myThread = t;
    super.acceptRequest(r);
  }
   
  public void run(  )
  {
    Request request;
    RequestResult result;
   
    //Private queues use this method.
   
    //Basically, we just ask the public server for a request.
    //The releaseRequest(  ) method blocks until one is available.
    //Then we process it and start again.
    for(;;)
    {
      request = queueServer.releaseRequest(  );
      isAvailable = false;
      result = requestProcessor.processRequest(request);
      returnResult(result);
      isAvailable = true;
    }
  }
   
  public boolean isAvailable(  ) { return isAvailable;}
  public void returnResult(RequestResult r) {  }
}

Note that the server classes as they stand can be tested with the following minimal implementations for

support classes:

class FIFO_Queue {
  java.util.Stack v = new java.util.Stack(  );
  public void add(Object o){v.push(o);}
  public Object pop(  ){return v.pop(  );}
  public boolean isEmpty(  ){return v.isEmpty(  );}
}
   
class RequestProcessor {
  public RequestResult processRequest(Request r)
  {
    System.out.println("Processing request: " + r);
    try{Thread.sleep(2000);}catch(InterruptedException e){  }
    return new RequestResult(  );
  }
}
   
class RequestResult {  }
   
class Request {  }
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10.8.3 A Load-Balancing Example

It may help to look at a concrete implementation of load balancing. I'll consider the task of downloading

many pages from a web server as quickly as possible.

It is impolite to batch-download at high speeds from a single web server. Automated

programs that download multiple pages from web servers have a voluntary protocol

they should adhere to. More information can be found at

http://www.robotstxt.org/wc/robots.html. One point of the protocol is to avoid

overloading web servers by downloading many pages at a high access rate.

Automated download programs that are polite specifically stagger downloads over a

long period in order to minimize the load on the web server.

The individual page download code is quite simple. Open a URL, read the data, and dump it into a local file:

  /* Two args, the local file to put the downloaded page into,
   * and the URL where the page to download is.
   */
  public static void dowload(String file, String url)
    throws IOException
  {
    URL u = new URL(url);
    InputStream in = null;
    //Try repeatedly to get the page opened. Note that catching
    //all exceptions is not such a good idea here. It would be
    //much better to catch individual execption types and handle
    //them separately. Some exceptions should not lead to a repeated
    //attempt to access the page. But this definition is okay for testing.
    while(in =  = null)
      try{in = u.openStream(  );}
      catch(Exception e){try {Thread.sleep(500);}catch(Exception e2){  }}
    FileOutputStream out = new FileOutputStream(file);
    byte[  ] buffer = new byte[8192];
   
    //read until the connection terminates (this is not a
    //keep-alive connection), and write to the file.
    int len = in.read(buffer);
    while(len != -1)
    {
      out.write(buffer, 0, len);
      len = in.read(buffer);
    }
    out.close(  );
    in.close(  );
  }

All our tests use this same download( ) method. The most straightforward test implementation is

extremely simple. Simply take a list of URLs and corresponding data files, and loop calling download( ) for

each URL/file pair:

  //Use one array to hold alternate file and URL elements
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  public static void iterativeTest(String[  ] files)
    throws IOException
  {
    for (int i = 0; i < files.length; i+=2)
      download(files[i], files[i+1]);
  }

The opposite to downloading pages one by one is to try to download everything at the same time. Once

again, the code is quite straightforward (apart from timing issues: see the earlier section Section 10.5). You

simply define a Runnable class and loop, starting a thread for every download:

public class LoadBalancing
  implements Runnable
{
  String url;
  String localfilename;
   
  public static void massivelyParallelTest(String[  ] files)
    throws IOException
  {
    for (int i = 0; i < files.length; i+=2)
      (new Thread(new LoadBalancing(files[i], files[i+1]))).start(  );
  }
   
  public LoadBalancing(String f, String u)
  {
    localfilename = f;
    url = s;
  }
   
  public void run(  )
  {
      try
      {
        download(localfilename, filename);
      }
      catch(Exception e) {e.printStackTrace(  );}
  }

The earlier iterative test takes seven times longer than the latter multithreaded test.[8] However, the latter

test suffers from significant resource problems. Creating so many threads simultaneously can seriously strain

a system. In fact, every system has a limit to the number of threads it can create. If the download requires

more threads than the system is capable of supporting, this multithreaded test fails to download many

pages. In addition, with so many threads running simultaneously, you are using more of the system's

resources than is optimal.

[8] For my tests, I downloaded a large number of pages. I validated the tests over the Internet, but not
surprisingly, Internet access times are extremely variable. For detailed repeatable tests, I used a small
local HTTP server that allowed me to control all the parameters to the tests very precisely. The full test
class, tuning.threads.LoadBalancing, is available with the other classes from this book.

Let's look at a more balanced approach. In fact, you can create a very simple load-balanced test with one

small variation to the last test. Simply add a delay between each thread creation to stagger the system load
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from threads and downloading. This new version of the massivelyParallelTest( ) method is simple:

  public static void roughlyParallelTest(String[  ] files, int delay)
    throws IOException
  {
    for (int i = 0; i < files.length; i+=2)
    {
      (new Thread(new LoadBalancing(files[i], files[i+1]))).start(  );
      try{Thread.sleep(delay);}catch(InterruptedException e){  }
    }
  }

Now you have a tuning parameter that needs to be optimized. Obviously, a delay of zero is the same test as

the previous test, and a very large delay means that the test is spending most of its time simply waiting to

create the next thread. Somewhere in between is an optimal range that creates threads fast enough to fully

use the system resources, but not so fast that the system is overloaded.

This range is different depending on the full environment, and probably needs to be experimentally

determined. But you can make a decent first guess by considering the bottlenecks of the system. In this

case, the bottlenecks are CPU, system memory, disk throughput, network-connection latency, server-

download rates, and network throughput. In my tests, system memory and CPU limit the number of threads

and download speed for the massively parallel case, but you are using a delay specifically to reduce the load

on those resources. System memory constrains the number of threads you can use, but again, the delay

avoids overloading this resource (provided that the delay is not too short). Disk throughput can be

significant, but network and server throughput are far more likely to limit data-transfer rates. So we are left

with network-transfer rates and network-connection latency to consider.

Now you can make a good guess as to a starting point for the delay. You can evaluate the average number

of bytes to transfer for each download, and work out the amount of time this takes based on the available

network throughput. You can also estimate the average time taken to make a connection (by measuring

some real connections). A straightforward guess is to set the delay at a value below the higher of these two

averages. In my tests, the files being downloaded are not large, and the average connection time is the

larger time. I started with a delay of about half the average connection time and ran tests increasing and

decreasing the delay in steps of about 10% at a time. Figure 10-3 shows the results of varying the delay

times. An optimum choice for the delay in this particular test environment is approximately 70% of the

average connection time. The flat line in the middle of the graph shows the relative time taken for the

massively parallel test.

Figure 10-3. The results of varying the delay
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The results show that for this environment there are several advantages to running with a delay. A decisive

advantage is that you never run out of system resources. There are never so many threads running

simultaneously that you run out of memory and completely lose URLs, as occurred with the massively

parallel test. In fact, the system doesn't even need to run to full capacity for most of the test.

Another significant advantage is that by tuning the delay, you can run the test faster. The optimum value for

the delay, at 70% of the average connection time, executes the full test in 90% of the massively parallel

time.

What about our nice load-balancing architecture classes? Let's test these to see how they compare to the

last simple optimization you made. You need to add a few support classes so that your load-balancing

architecture is running the same download test. Basically, there are three classes to define: Request,

RequestProcessor, and RequestResult. They are fairly simple to implement. Request needs to hold

only a URL and a local file for storing the downloaded page. RequestProcessor simply needs to call the

download( ) method. RequestResult does not need any extra behavior for the test.[9]

[9] RequestResult does need extra state and behavior in order to make timing measurements, and

RequestProcessor is similarly a bit more complicated for timing purposes. For full details, see the

test class, tuning.threads.LoadBalancing, which is available with the other classes from this

book.

The classes are as follows:

class RequestProcessor {
  public RequestResult processRequest(Request r)
  {
    try
    {
      LoadBalancing.dowload(r.localfilename, r.url);
    }
    catch(Exception e) {e.printStackTrace(  );}
    return new RequestResult(  );
  }
}
   
class Request
{
  String localfilename;
  String url;
  public Request(String f, String u)
  {
    localfilename = f;
    url = u;
  }
}
   
class RequestResult {  }

In addition, of course, you need to define the method that kicks off the test itself:

  public static void loadBalancedTest(String[  ] files, int numThreads)
    throws IOException
  {
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    ActiveRequestQueue server = new ActiveRequestQueue(numThreads);
    for (int i = 0; i < files.length; i+=2)
      server.acceptRequest(new Request(files[i], files[i+1]));
  }

I have included a variable to determine the optimum number of threads. As with the earlier test that used a

variable delay, the optimum number of threads for this test needs to be experimentally determined. For my

test environment, the bottleneck is likely to be my small network throughput. This is easy to see: each

thread corresponds to one download. So for n threads to be working at full capacity, they need to be

downloading n files, which amounts to a throughput of n times the average file size. This means that for my

test environment, about 10 threads reach capacity. In fact, since files are not all the same size and there are

some overheads in the architecture, I would expect the optimum number of threads to be slightly larger than

10.

Running the test with different numbers of threads shows that for 12 or more threads, the time taken is

essentially the same (see Figure 10-4). This time is also the same as that achieved with the previous most

optimal test. This is not surprising. Both tests optimized the downloads enough that they have reached the

same network-throughput bottleneck. This bottleneck cannot be optimized any further by either test.

Figure 10-4. Time taken for the load-balanced download versus number of threads

The load-balancing architecture is more complex than adding a delay between threads, but it is much more

flexible and far more controlled. If you want to vary your download in a number of ways, such as prioritizing

URLs or repeating certain failed ones, it is much easier to do so with the load-balancing architecture. By

looking at the CPU utilization graphs for the load-balancing architecture compared to the other tests in

Figure 10-5, you can easily see how much more controlled it is and how it uses resources in a far more

consistent manner.

Figure 10-5. CPU utilization for various download tests
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10.9 Threaded Problem-Solving Strategies

There are many techniques that reduce the time taken to solve intensive problems by using multiple threads

to farm out parts of the problem. Here are a few strategies:

Start multiple threads running to solve the whole of a particular problem, each starting from a different

point in the solution space. The first to finish is the winner. This technique has, for instance, been used

to speed up a graph-coloring problem. The specific strategy followed[10] was to run several problem

solvers at the same time, one at a higher priority than the others (the main thread). Normally the main

thread would win, but on occasion, one of the background threads was lucky due to its starting point

and finished quickly. By stopping the main thread if it looked to be far behind in the solution, the

problem was solved in one-tenth of the time, on average, compared to the time taken when the main

thread was not terminated. This improvement occurred in spite of the fact that this was a single-

processor machine. The improvement comes about because the problem can be solved much quicker

from some starting points than from others. There would be similar improvements if you also used

several different problem-solving strategies in the various threads, where some of the strategies are

sometimes quicker than others.

[10] Charles Seife, "A Snail's Pace," New Scientist, 21 February 1998. This article reports on the
technique used by Bernardo Huberman of Xerox Parc.

In the same article, a variation of this strategy was applied to network connections for bypassing

congestion. By opening multiple connections to download the same large data source on a highly

congested network (the Internet), some connections were less likely than others to be slowed

significantly or broken. This resulted in the data being downloaded faster. Of course, if everyone on the

network used this technique, downloads would be slower for everyone.

Break up the search space into logically parallelized search spaces. This does not work too well if the

problem is entirely CPU-bound, but if there is any significant I/O or if multiple processors are available,

this technique works nicely. An example would be searching a disk-based database for items. If the

database is partitioned into multiple segments, then having one thread searching per segment makes

the search faster (both on average and in the worst case).

The classic blackboard architecture approach, in which multiple different solvers work on the parts of a

problem in which they have expertise, independently of other solver threads. The threads use a

"blackboard" (a sort of globally accessible hash table with published keys) to communicate. The

blackboard posts both intermediate and full results. This allows a thread to pick up any (intermediate

or full) results other threads may publish that help that particular thread with its own problem-solving

routines. JavaSpaces is an implementation of blackboards.
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10.10 Performance Checklist

Many of these suggestions apply only after a bottleneck has been identified:

Include multithreading at the design stage.

Parallelize tasks with threads to speed up calculations.

Run slow operations in their own threads to avoid slowing down the main thread.

Keep the interface in a separate thread from other work so that the application feels more

responsive.

Avoid designs and implementations that force points of serialized execution.

Use multiple resolution strategies racing in different threads to get quicker answers.

Avoid locking more resources than necessary.

Avoid synchronizing methods of stateless objects.

Build classes with synchronized wrappers, and use synchronized versions except when

unsynchronized versions are definitely sufficient.

Selectively unwrap synchronized wrapped classes to eliminate identified bottlenecks.

Avoid synchronized blocks by using thread-specific data structures, combining data only when

necessary.

Use atomic assignment where applicable.

Load-balance the application by distributing tasks among multiple threads, using a queue and thread-

balancing mechanism for distributing tasks among task-processing threads.

Use thread pools to reuse threads if many threads are needed or if threads are needed for very

short tasks.

Use a thread pool manager to limit the number of concurrent threads used.
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Chapter 11. Appropriate Data Structures and Algorithms

And this is a table ma'am. What in essence it consists of is a horizontal rectilinear plane surface

maintained by four vertical columnar supports, which we call legs. The tables in this laboratory, ma'am,

are as advanced in design as one will find anywhere in the world.

-Michael Frayn, The Tin Men

In this chapter, we look at the performance problems that can stem from using an inappropriate or

nonoptimal data structure. Of course, I cannot cover every possible structure. Instead, my focus is on how to

performance-tune structures and associated algorithms. Those structures I do cover are provided as

examples to give you an idea of how the tuning procedure looks.

For performance-tuning purposes, be aware of alternative structures and algorithms, and always consider

the possibility of switching to one of these alternatives rather than tuning the structure and algorithm that is

already being used. Being aware of alternative data structures requires extensive reading of computer

literature.[1] One place to start is with the JDK code. Look at the structures that are provided and make sure

that you know all about the available classes. There are already several good books on data structures and

algorithms in Java, as well as many packages available from the Web with extensive documentation and

often source code too. Some popular computer magazines include articles about structures and algorithms

(see Chapter 19).[2]

[1] An interesting analysis of performance-tuning a "traveling salesman" problem is made by Jon
Bentley in his article "Analysis of Algorithms," Dr. Dobb's Journal, April 1999.

[2] The classic reference is The Art of Computer Programming by Donald Knuth (Addison Wesley). A
more Java-specific book is Data Structures and Algorithm Analysis in Java by Mark Weiss (Peachpit
Press).

When tuning, you often need to switch one implementation of a class with a more optimal implementation.

Switching data structures is easier because you are in an object-oriented environment, so you can usually

replace one or a few classes with different implementations while keeping all the interfaces and signatures

the same.

When tuning algorithms, one factor that should pop to the front of your mind concerns the scaling

characteristics of the algorithms you use. For example, bubblesort is an O(n2) algorithm while quicksort is

O(nlogn). (The concept of "order of magnitude" statistics is described in Section 9.3 in Chapter 9.) This tells

you nothing about absolute times for using either of these algorithms for sorting elements, but it does

clearly tell you that quicksort has better scaling characteristics, and so is likely to be a better candidate as

your collections increase in size. Similarly, hash tables have an O(1) searching algorithm where an array

requires O(n) searching.
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11.1 Collections

Collections are the data structures that are most easily altered for performance-tuning purposes. Using the

correct or most appropriate collection class can improve performance with little change to code. For

example, if a large ordered collection has elements frequently deleted or inserted throughout it, it usually

can provide better performance if based on a linked list rather than an array. On the other hand, a static

(unchanging) collection that needs to be accessed by index performs better with an underlying

implementation that is an array.

If the data is large and insertions are allowed (for example, a text buffer), then a common halfway measure

is to use a linked list of arrays . This structure copies data within a single array when data is inserted or

deleted. When an array gets filled, the collection inserts a new empty array immediately after the full array

and moves some data from the full to the empty array so that both old and new arrays have space. A

converse structure provides optimized indexed access to a linked-list structure by holding an array of a

subset of the link nodes (e.g., every 20th node). This structure allows for quick navigation to the indexed

nodes, and then slower nodal access to nodes in between.[3] The result is a linked-list implementation that

is much faster at index access, though it occupies more space.

[3] Skip lists are an implementation of this concept. See "The Elegant (and Fast) Skip List" by T.
Wenger, Java Pro, April-May 1998.

It is sometimes useful to provide two collections holding the same data so that the data can be accessed

using the most appropriate (and fastest) procedure. This is common for indexed data (database-type

indexes as opposed to array indexes), but entails extra overhead at the build stage. In a similar way, it may

be that a particular data set is best held in two (or more) different collections over its lifetime, but with only

one collection being used at any one time. For example, you may use a linked-list implementation of a

vector type collection during building because your collection requires many insertions while it is being built.

However, this provides suboptimal random access. After the build is completed, the collection can be

converted into one based on an array, thus speeding up access.

It can be difficult to identify optimal algorithms for particular data structures. For example, in the Java 2

java.util.Collections.sort( ) method, a linked list is first converted to an array in order to sort it.

This is detrimental to performance, and it would be significantly faster to sort a linked list directly using a

merge sort.[4] In any case, frequently converting between collections and arrays is likely to cause

performance problems.

[4] See "Sorting and Searching Linked Lists in Java" by John Boyer, Dr. Dobb's Journal, May 1998.

The fastest ordered collections available in Java are plain arrays (e.g., int[ ], Object[ ], etc.). The

drawback to using these directly is the lack of object-oriented methodology you can apply. Arrays are not

proper classes that can be extended. However, I occasionally find that there are situations when I want to

pass these raw arrays directly between several classes rather than wrap the arrays in a class with the

behavior required. This is unfortunate in design terms, but does provide speed. An example would be in

some communications layers. Here, there are several layers of protocols you need to pass your message

through before it is transmitted, for example, a compression layer and an encryption layer. If you use an

object as a message being passed through these layers, each layer has to request the message contents

(copying it), change the contents, and then assign back the new contents (copying again). An alternative is

to implement the content-manipulation methods in the message object itself, which is not a very extensible

architecture. Assuming that you use an array to hold the contents, you can allow the message-contents
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array itself to be passed directly to the other compression and encryption layer objects. This provides a big

speedup, avoiding several copies. String objects also illustrate the point. If you want to iterate over the

characters in a String, you must either repeatedly call String.charAt( ) or copy the characters into

your own array using String.getChars( ), and then iterate over them. Depending on the size of the

String and how many times you iterate through the characters, one or the other of these methods is

quicker, but if you could iterate directly on the underlying char array, you would avoid the repeated method

calls and the copy (see Chapter 5).

A final point is that the collections that come with Java and other packages are usually not type-specific. This

generality comes at the cost of performance. For example, if you are using java.util.Vector to hold only

String objects, then you have to keep casting to String each time you access elements. If you

reimplement the Vector class yourself using an underlying String[ ] array, and then change signature

parameters and return types of methods from Object to String, the reimplemented class is faster. It is

also clearer to use: you get rid of all those casts from your code. The cost is that you lose the general

collection interface (see Section 3.6 in Chapter 3 for an example).

It is straightforward to test the performance costs of generalized collections compared to specialized

collections. Access that does not involve a cast takes place at essentially the same speed. All the following

accesses take the same time:

int i =   integerArrayList.get(someIndex);
String s = stringArrayList.get(someIndex);
Object o = objectArrayList.get(someIndex);

But the cost of a cast can make the access take 50% longer:

//It can take 50% longer to access the string because of the cast
String s = (String) objectArrayList.get(someIndex);

Update time can also be significantly faster. Updates to underlying arrays of primitive data types can be 40%

faster than updates to object arrays.[5] The biggest difference is when a primitive data type needs to be

wrapped and unwrapped in order to store into an array:

[5] Even updating a typed object array with objects of the given type (e.g., Strings into an underlying

String[ ] array of an array list) seems to be faster by about 10%. The only reason I can think of for

this is that the JIT compiler manages to optimize the update to the specialized array.

//Simpler and much faster using a specialized IntArrayList
integerArrayList.set(someIndex, someNum);
int num = integerArrayList.get(someIndex);
   
//Using a generalized ArrayList requires wrapping, casting & unwrapping
integerArrayList.set(someIndex, new Integer(someNum));
int num = ((Integer) integerArrayList.get(someIndex, someNum)).intValue(  );

For this example, the cost of creating a new Integer object to wrap the int makes setting values take

more than ten times longer when using the generalized array. Accessing is not as bad, taking only twice as

long after including the extra cast and method access to get to the int.
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Note that Generics are due to be introduced in SDK 1.5. Generics allow instances

of generic classes like Vector to be specified as aggregate objects that hold only

specified types of objects. However, the implementation of Generics is to insert

casts at all the access points and to analyze the updates to ensure that the update

type matches the cast type. There is no specialized class generation, so there is no

performance benefit, and there may even be a slight performance degradation from

the additional casts.
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11.2 Java 2 Collections

The Java 2 Collections framework provides a set of collection classes. Each class has its own performance

strengths and weaknesses, which I cover here. The collection implementations use the synchronized-wrapper

framework to provide synchronized classes; otherwise, the implementations are unsynchronized (except for

two exceptions noted shortly). Collection classes wrapped in synchronized wrappers are always slower than

unwrapped, unsynchronized classes. Nevertheless, my recommendation is generally to use objects within

synchronized wrappers. You can selectively "unwrap" objects when they have been identified as part of a

bottleneck and when the synchronization is not necessary. (The performance aspects of thread-safe

collections are discussed in detail in Chapter 10. Synchronized wrappers are also discussed in that chapter in

Section 10.4.1.)

Table 11-1 summarizes the performance attributes of the collection classes.

Table 11-1. Performance attributes of Java 2 collection classes

Interface Class Synchronized? Performance attributes

Set HashSet No
Fastest Set; slower than HashMap but implements the Set

interface (HashMap does not).

  LinkedHashSet No

Available from 1.4. Based on a LinkedHashMap, so provides

iteration of elements according to insertion order. Faster than

a TreeSet.

  TreeSet No Slower than HashSet; provides iteration of keys in order.

Map IdentityHashMap No

Available from 1.4. Special-purpose HashMap based on

identity (= =) instead of equality (.equals). Faster than

HashMap for high-performance mapping where the identity

semantics are acceptable.

  HashMap No Fastest general Map.

  Hashtable Yes Slower than HashMap, but faster than synchronized HashMap.

  LinkedHashMap No

Available from 1.4. A hash map implementation that also

maintains an ordered linked list of entries. Provides iteration of

keys in entry order. Faster than TreeMap but slower than other

Maps.

  TreeMap No
Slower than Hashtable and HashMap; provides iteration of

keys in order.

List ArrayList No Fastest List.

  Vector Yes Slower than ArrayList, but faster than synchronized ArrayList.

  Stack Yes Same speed as Vector; provides LIFO queue functionality.

  LinkedList No
Slower than other Lists, but may be faster for some types of

queues.

Implementations of Set are slower to update than most other collection objects and should be avoided
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unless you need Set functionality. Of the three available Set implementations, HashSet is definitely faster

than TreeSet, with LinkedHashSet, available from SDK 1.4, somewhere in between. HashSet uses an

underlying HashMap, so the way HashSet maintains uniqueness is straightforward. Objects are added to the

set as the keys to the HashMap, so there is no need to search the set for the elements. This optimizes

unique element addition. If you need Set functionality but not specifically a Set implementation, it is faster

to use a HashMap directly.

Map has four general-purpose implementations: Hashtable , HashMap, TreeMap, and, added in SDK 1.4,

LinkedHashMap. In addition, there are several specialized implementations that provide few performance

improvements,[6] except for IdentityHashMap , added in 1.4. IdentityHashMap is based on identity

comparisons rather than equality comparisons (equality comparisons form the basis for all general-purpose

maps), making it the fastest useful Map. IdentityHashMap has one tuning parameter, the expected

maximum size, which can help avoid rehashing by setting the number of buckets in the initial map.

[6] Attributes simply wraps a HashMap, and restricts the keys to be ASCII-character alphanumeric

Strings, and values to be Strings. WeakHashMap can maintain a cache of elements that are

automatically garbage-collected when memory gets low. RenderingHints is specialized for use within

the AWT packages. Properties is a Hashtable subclass specialized for maintaining key-value string

pairs in files. UIDefaults is specialized for use within the Swing packages.

In the case of the general-purpose Maps, TreeMap is significantly slower than the other Maps and should not

be used unless you need the extra functionality of iterating ordered keys. LinkedHashMap also provides the

ability to iterate its keys in order, with the default order being key-insertion order. LinkedHashMap should

normally be faster than TreeMap, but slower than HashMap. Hashtable is a synchronized Map, and

HashMap is an unsynchronized Map. Hashtable is present for backward compatibility with earlier versions of

the JDK. Nevertheless, if you need to use a synchronized Map, a Hashtable is faster than using a HashMap

in a synchronized wrapper.

Hashtable, HashMap, and HashSet are all O(1) for access and update, so they should scale nicely if you

have the available memory space. LinkedHashMap is based on a hash table but also maintains a linked list

of entries so it can use the linked list to iterate through the entries in a particular order: the default order is

the insertion order of keys. LinkedHashMap can be configured to order its entries from most-recently-

accessed to least-recently-accessed by passing true as the third argument to the constructor. This mode is

specifically provided so that the Map can be used as a least-recently-used (LRU) cache. The class provides a

method called removeEldestEntry( ) that is intended to be overriden in a subclass to provide a policy for

automatically removing stale mappings when new mappings are added to the Map. The default action is to

never remove any entries automatically (removeEldestEntry( ) always returns false). An example

implementation for an LRU cache of 100 elements would simply subclass the LinkedHashMap and

implement the removeEldestEntry( ) as return size( ) > 100, which would automatically remove

entries whenever the collection exceeded 100 elements.

List has four general-purpose implementations: Vector , Stack, ArrayList, and LinkedList. Vector,

Stack, and ArrayList have underlying implementations based on arrays. LinkedList has an underlying

implementation consisting of a doubly linked list. As such, LinkedList's performance is worse than any of

the other three Lists for most operations. For very large collections that you cannot presize to be large

enough, LinkedList provides better performance when adding or deleting elements toward the middle of

the list, if the array-copying overhead of the other Lists is higher than the linear access time of the

LinkedList. Otherwise, LinkedList's only likely performance advantage is as a first-in-first-out queue or

double-ended queue. (A circular array-list implementation provides better performance for a FIFO queue.) I

discuss the performance differences between LinkedLists and ArrayLists in much more detail later in

this chapter. Vector is a synchronized List, and ArrayList is an unsynchronized List. Vector is present
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for backward compatibility with earlier versions of the JDK. Nevertheless, if you need to use a synchronized

List, a Vector is faster than using an ArrayList in a synchronized wrapper. (See the comparison test at

the end of Section 10.4.1 in Chapter 10.) Stack is a subclass of Vector with the same performance

characteristics, but with additional functionality as a last-in-first-out queue.
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11.3 Hashtables and HashMaps

Because Hashtables and HashMaps are the most commonly used nonlist structures, I will spend a little

extra time discussing them. Hashtables and HashMaps are pretty fast and provide adequate performance

for most purposes. I rarely find that I have a performance problem using Hashtables or HashMaps, but

here are some points that will help you tune them or, if necessary, replace them:

Hashtable is synchronized. That's fine if you are using it to share data across threads, but if you are

using it single-threaded, you can replace it with an unsynchronized version to get a small boost in

performance. HashMap is an unsynchronized version available from JDK 1.2.

Hashtables and HashMaps are resized whenever the number of elements reaches the [capacity x

loadFactor]. This requires reassigning every element to a new array using the rehashed values. This

is not simply an array copy; every element needs to have its internal table position recalculated using

the new table size for the hash function. You are usually better off setting an initial capacity that

handles all the elements you want to add. This initial capacity should be the number of elements

divided by the loadFactor (the default load factor is 0.75).

Hashtables and HashMaps are faster with a smaller loadFactor, but take up more space. You have

to decide how this tradeoff works best for you.

The hashing function for most implementations should work better with a capacity that is a prime

number. However, the 1.4 HashMap implementation (but not the Hashtable implementation) uses a

different implementation that requires a power-of-two capacity so that it can use bit shifting and

masking instead of the % operator. If you specify a non-power-of-two capacity, the HashMap will

automatically find the nearest power-of-two value higher than the specified capacity. For other hash

maps, always use a prime (preferably) or odd number capacity. A useful prime number to remember is

89. The sequence of numbers generated by successively multiplying by two and adding one includes

several primes when the sequence starts with 89. But note also that speedups from prime number

capacities are small at best.

Access to the Map requires asking the key for its hashCode( ) and also testing that the key equals(
) the key you are retrieving. You can create a specialized Map class that bypasses these calls if

appropriate. Alternatively, you can use specialized key classes that have very fast method calls for

these two methods. Note, for example, that Java String objects have hashCode( ) methods that

iterate and execute arithmetic over a number of characters to determine the value, and the

String.equals( ) method checks that every character is identical for the two strings being

compared. Considering that strings are used as the most common keys in Hashtables, I'm often

surprised to find that I don't have a performance problem with them, even for largish tables. From JDK

1.3, Strings cache their hash code in an instance variable, making them faster and more suited as

Map keys.

If you are building a specialized Hashtable, you can map objects to array elements to preallocate

HashtableEntry objects and speed up access as well. The technique is illustrated in the "Search

Trees" section later in this chapter.

The hash function maps the entries to table elements. The fewer entries that map to the same internal
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table entry, the more efficient the map. There are techniques for creating more efficient hash maps, for

instance, those discussed in my article "Optimizing Hash Functions For a Perfect Map" (see

http://www.onjava.com/pub/a/onjava/2001/01/25/hash_functions.html).

Here is a specialized class to use for keys in a Hashtable. This example assumes that I am using String
keys, but all my String objects are nonequal, and I can reference keys by identity. I use a utility class,

tuning.dict.Dict, which holds a large array of nonequal words taken from an English dictionary. I

compare the access times against all the keys using two different Hashtables, one using the plain String
objects as keys, the other using my own StringWrapper objects as keys. The StringWrapper objects

cache the hash value of the string and assume that equality comparison is the same as identity comparison.

These are the fastest possible equals( ) and hashCode( ) methods. The access speedups are illustrated

in the following table of measurements (times normalized to the JDK 1.2 case):

  1.1.8 1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

String keys[7] 112% 100% 40.8% 65.4% 41.2% 60.1% 181%

String-wrapped keys 87.4% 71.1% 40.3% 57.6% 38.4% 58.6% 159%

[7] The limited speedup from JDK 1.3 reflects the improved performance of Strings having their hash

code cached in the String instance.

If you create a hash-table implementation specialized for the StringWrapper class, you avoid calling the

hashCode( ) and equals( ) methods completely. Instead, the specialized hash table can access the hash-

instance variable directly and use identity comparison of the elements. The speedup is considerably larger,

and for specialized purposes, this is the route to follow:

package tuning.hash;
   
import java.util.Hashtable;
import tuning.dict.Dict;
   
public class SpecialKeyClass
{
   
  public static void main(String[  ] args)
  {
    //Initialize the dictionary
    try{Dict.initialize(true);}catch(Exception e){  }
    System.out.println("Started Test");
   
    //Build the two hash tables. Keep references to the
    //StringWrapper objects for later use as accessors.
    Hashtable h1 = new Hashtable(  );
    Hashtable h2 = new Hashtable(  );
    StringWrapper[  ] dict = new StringWrapper[Dict.DICT.length];
    for (int i = 0; i < Dict.DICT.length; i++)
    {
      h1.put(Dict.DICT[i], Boolean.TRUE);
      h2.put(dict[i] = new StringWrapper(Dict.DICT[i]), Boolean.TRUE);
    }
    System.out.println("Finished building");
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    Object o;
   
    //Time the access for normal String keys
    long time1 = System.currentTimeMillis(  );
    for (int i = 0; i < Dict.DICT.length; i++)
      o = h1.get(Dict.DICT[i]);
    time1 = System.currentTimeMillis(  ) - time1;
    System.out.println("Time1 = " + time1);
   
    //Time the access for StringWrapper keys
    long time2 = System.currentTimeMillis(  );
    for (int i = 0; i < Dict.DICT.length; i++)
      o = h2.get(dict[i]);
    time2 = System.currentTimeMillis(  ) - time2;
    System.out.println("Time2 = " + time2);
   
  }
}
   
final class StringWrapper
{
  //cached hash code
  private int hash;
  private String string;
  public StringWrapper(String str)
  {
    string = str;
    hash = str.hashCode(  );
  }
  public final int hashCode(  )
  {
    return hash;
  }
  public final boolean equals(Object o)
  {
    //The fastest possible equality check
    return o =  = this;
   
/*
    //This would be the more generic equality check if we allowed
    //access of the same String value from different StringWrapper objects.
    //This is still faster than the plain Strings as keys.
    if(o instanceof StringWrapper)
    {
       StringWrapper s = (StringWrapper) o;
       return s.hash =  = hash && string.equals(s.string);
    }
    else
      return false;
*/
  }
}
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11.4 Optimizing Queries

Other than accessing and updating elements of collections, the most common thing you want to do is query

the collection. Let's look at some examples of tuning collection queries.

11.4.1 The Query Problem

First, we'll start with a problem. I'll use a list (indexable collection) of strings as my collection. For the query

I'll use a simple test that checks whether any particular string includes one of a set of specified substrings,

and the query will simply return the count of how many strings include those substrings. For example, the

list might be:

"code"
"rode"
"load"
"toad"
"road"

and the query might be, "How many strings in the list contain the substrings "od" or "lo"?" (The answer for

that particular query would be 3 for this example list.)

For my actual collection, I'll generate multicharacter strings using the lowercase characters of the Latin

alphabet (a to z). For example, a collection of all four-character strings generated in this way would produce

a collection of 26 x 26 x 26 x 26 = 456,976 four-character strings. I'll simply query this collection for the

count of strings that contain any of the substrings "ie" or "xy" or "pq". I've elected to use a Vector object

to hold the collection for the start of the tests; I've also chosen to use an easily generated collection for the

data and a straightforward query to avoid any application-specific distractions. I want to focus on tuning. The

query is representative of the types I've seen in applications.

The simple, straightforward version of the query is:

    int count = 0;
    for(int i = 0; i < collection.size(  ); i++)
    {
      if(    ( ((String) collection.get(i)).indexOf("ie") != -1 )
           | ( ((String) collection.get(i)).indexOf("xy") != -1 )
           | ( ((String) collection.get(i)).indexOf("pq") != -1 ) )
        count++;
    }
    return count;

Several standard optimizations immediately leap out at me. There's the unnecessarily repeated method call

in the loop test (collection.size( )); the use of the normal boolean-OR operator (|) rather than the

shortcircuit boolean-OR operator (||); and the repeated String cast in the query. All of these are standard

targets for optimization in loops (see Chapter 7). However, just because they are "standard" optimizations

doesn't mean we should apply them all immediately without testing their effects. So let's test them.
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11.4.1.1 Applying the Boolean-OR operator optimization

Shortcircuit boolean operators are discussed in more detail in Chapter 7. Basically, these operators avoid

evaluating their right-hand side if their left-hand side provides a conclusive result. I change the query block

to use the shortcut operator:

      if(     ( ((String) collection.get(i)).indexOf("ie") != -1 )
           || ( ((String) collection.get(i)).indexOf("xy") != -1 )
           || ( ((String) collection.get(i)).indexOf("pq") != -1 ) )

The shortcircuit booleans speed up the test slightly in most cases (see test2 in Table 11-2).

11.4.1.2 Eliminating the unnecessarily repeated method call

To avoid repeating the method call in the loop test, we can simply replace:

    for(int i = 0; i < collection.size(  ); i++)

with:

    int max = collection.size(  );
    for(int i = 0; i < max; i++)

Again, this optimization speeds up the test slightly in most cases (see test3 in Table 11-2). Combining the

two optimizations gives the best results for most of the VMs (see test4 in Table 11-2).

11.4.1.3 Eliminating casts and extra access calls

Let's push on and try eliminating the unnecessary String casts. This is done simply by holding the first

casted object in a variable of the appropriate type:

    String s;
    for(int i = 0; i < max; i++)
    {
      if(     ( (s = (String) collection.get(i)).indexOf("ie") != -1 )
           || (                                s.indexOf("xy") != -1 )
           || (                                s.indexOf("pq") != -1 ) )

Eliminating the cast also naturally eliminates the associated get( ) access call, as the object is held in the

extra variable. With this change, all the VMs show their best times yet with significant speedups. I've

included the results of testing with all the optimizations together (test5 of Table 11-2) and also without the

size( ) call elimination (test6), as that optimization proved ineffective for the 1.2.2 VM.

11.4.1.4 Avoiding synchronization

We have been using a Vector object to hold the collection so far. In most applications, bottleneck queries

tend to be read-only or single-threaded. In either case, you can normally use a nonsynchronized object to

hold the collection. To do so here requires using an ArrayList object instead of the Vector object we

initially used. The code does not otherwise change. The results of testing the optimizations so far, together
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with the change to an ArrayList collection object, are listed in test7 of Table 11-2. Once again, we see

the best times yet for all the VMs.

11.4.1.5 Avoiding the method accessor

Another standard optimization is to avoid repeatedly using a method accessor to access elements of a

collection if it is possible to access the elements directly in some way. For collection queries, this can be

achieved simply by implementing the query in the collection class. For the example here, we could manage

this by implementing our own java.util.List class and implementing the query in that class, thus

gaining access to the internal collection. There is, however, a quicker possibility. Vector is implemented

with its internal element collection defined as protected, so we can subclass Vector to gain access to the

internal element collection and implement the query in our subclass as in the following code.

class TestList
  extends Vector
{
  public int customQuery(  )
  {
    int count = 0;
    String s;
    for(int i = 0; i < elementCount; i++)
    {
      if(     ( (s = (String) elementData[i]).indexOf("ie") != -1 )
           || (                       s.indexOf("xy") != -1 )
           || (                       s.indexOf("pq") != -1 ) )
        count++;
    }
    return count;
  }
}

The equivalent of the original test is now:

    return collection.customQuery(  );

The results of this test are shown in test9 of Table 11-2. Almost all the VMs show this is now the fastest

test.

11.4.1.6 Tighter typing of the collection elements

Another fairly obvious optimization is to reimplement the collection using an underlying String[ ] array to

hold the elements (see the Section 6.4 in Chapter 6 and the Section 11.1 earlier in this chapter). The results

for this are listed in test12 of Table 11-2, showing the fastest query times for all the VMs.

11.4.1.7 Optimizing map queries

I've performed a similar optimization exercise for Maps (see http://www.javaworld.com/javaworld/jw-11-

2000/jw-1117-optimize.html). The results were very similar. Perhaps the only surprise was that the

Enumeration implementation for Hashtable was more efficient than the Iterator implementation.
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Remember, also, that you can iterate the elements just as in this exercise by using a counter loop instead of

asking the Enumeration/Iterator whether there are more elements on each loop iteration:

  Enumeration enumeration = map.keys(  );
  Object o;
  //no need to call Enumeration.hasMoreElements(  ) in each iteration
  //since we can get the size of the map and use that value to count.
  for (int size = map.size(  ); size > 0; size--)
  {
      o = enumeration.nextElement(  );
      ...
  }

Table 11-2. Optimizing a collection query

  1.2.2[8] 1.3.1_02
1.3.1_02-

server
1.4.0

1.4.0-

server

1.4.0-

Xint

test1:original test 100% 51% 40% 61% 49% 569%

test2:use shortcircuit booleans 99% 50% 39% 73% 48% 565%

test3:replace size( ) call 103% 50% 40% 56% 46% 534%

test4:both test2 and test3

optimizations
102% 48% 39% 55% 47% 531%

test5:test4+eliminate two casts 50% 38% 33% 43% 38% 451%

test6:test2+eliminate two casts 65% 40% 34% 47% 41% 464%

test7:test5 +ArrayList.get( ) 25% 35% 32% 39% 36% 423%

test9:query in collection class 24% 34% 31% 37% 37% 397%

test12:query in String collection 24% 33% 31% 36% 36% 362%

[8] Note that some intermediate tests (test8, test10, and test11) are included in the example code but
not included in this table.
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11.5 Comparing LinkedLists and ArrayLists

I'm frequently asked about how LinkedLists compare in performance to ArrayLists. To fully consider the

performance ramifications of these two classes, we need to know how they are implemented. So I'll start

with brief descriptions of the most important aspects of their implementations from the point of view of

performance.

11.5.1 The Vector and ArrayList Implementations

Vector and ArrayList are both implemented with an underlying Object[ ] array that stores the

elements. We access the elements in the internal array by index:

public Object get(int index) {
  //check the index is valid first .. code not shown here
  return elementData[index];
}

The internal array can be bigger than the number of elements held by the Vector/ArrayList object: the

difference is kept as extra capacity for efficiently adding further elements. Adding elements is then very

simply achieved by assigning the element to the first empty location in the internal array and incrementing

the index (size) for the new empty location.

public boolean add(Object o) {
  ensureCapacity(size + 1); //explained soon
  elementData[size++] = o;
  return true;  //List.add(Object) signature support
}

Inserting elements into the collection at any location other than the end is slightly more tricky. The array

elements above the insertion point must all be moved up by one, then the assignment can occur:

public void add(int index, Object element) {
  //check the index is valid first .. code not shown here
  ensureCapacity(size+1); //explained soon
  System.arraycopy(elementData, index, elementData, index + 1, 
        size - index);
  elementData[index] = element;
  size++;
}

When the spare capacity is used up, the Vector/ArrayList object must replace its internal Object[ ]

array with a new larger array when more elements need to be added, copying all the elements to the new

array. The new array is 50% to 100% bigger than the old one, depending on the SDK version (the code

shown here makes it 100% bigger):

public void ensureCapacity(int minCapacity) {
  int oldCapacity = elementData.length;
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  if (minCapacity > oldCapacity) {
    Object oldData[  ] = elementData;
    int newCapacity = Math.max(oldCapacity * 2, minCapacity);
    elementData = new Object[newCapacity];
    System.arraycopy(oldData, 0, elementData, 0, size);
  }
}

The main difference between the Vector class and the ArrayList class is the use of synchronization. Apart

from two methods used only during serialization, none of the ArrayList methods are synchronized; in

contrast, most of the Vector methods are synchronized directly or indirectly. Consequently, Vector is

thread-safe, while ArrayList is not. This makes ArrayList faster than Vector, though for the latest VMs

the difference in speed between the two classes is small.

The Vector and ArrayList implementations have excellent performance for indexed access and update of

elements because there is no overhead beyond range checking. Adding elements to or deleting elements

from the end of the list also gives excellent performance, except when the capacity is exhausted and the

internal array has to be expanded. Inserting and deleting elements always requires an array copy (two

copies when the internal array must be grown first). The number of elements to be copied is proportional to

[size - index], i.e., to the distance between the insertion/deletion index and the last index in the collection.

For insertions, inserting at the front of the collection (index 0) yields the worst performance, and inserting at

the end of the collection (after the last element) yields the best performance. The array-copying overhead

grows significantly as the size of the collection increases, because the number of elements that need to be

copied with each insertion increases.

11.5.2 The LinkedList Implementation

LinkedList is implemented using a list of doubly linked nodes. To access elements by index, you need to

traverse all the nodes until the indexed node is reached:

public Object get(int index) {
  //check the index is valid first .. code not shown here
  Entry e = header;  //starting node
  //go forwards or backwards depending on which is closer
  if (index < size/2) {
    for (int i = 0; i <= index; i++)
      e = e.next;
  } else {
    for (int i = size; i > index; i--)
      e = e.previous;
  }
  return e;
}

Inserting elements into the list is straightforward: traverse to the node at the index and insert a node

immediately before that node:

public void add(int index, Object element) {
  //check the index is valid first .. code not shown here
  Entry e = header;  //starting node
  //go forwards or backwards depending on which is closer
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  if (index < size/2) {
    for (int i = 0; i <= index; i++)
      e = e.next;
  } else {
    for (int i = size; i > index; i--)
      e = e.previous;
  }
   
  Entry newEntry = new Entry(element, e, e.previous);
  newEntry.previous.next = newEntry;
  newEntry.next.previous = newEntry;
  size++;
}

The LinkedList implementation has a performance overhead for indexed access and update of elements,

as access to any index requires you to traverse multiple nodes. Adding elements to the collection suffers

from the index traversal access performance drawback and has a further overhead in requiring the creation

of a node object. On the plus side, there is no further overhead to insertions and deletions, so

insertion/deletion overhead is really mostly dependent on how far away the insertion/deletion index is from

the ends of the collection.

11.5.3 Performance Tests

There are many different functions of the classes that could be tested. LinkedLists are frequently used

because of their supposedly better performance for random index insertion and deletion, so I decided to

focus on insertion performance, i.e., building collections. I've tested LinkedList against ArrayList since

both are unsynchronized.

The insertion speed is critically dependent on the size of the collection and the position where the element is

to be inserted. All the best- and worst-case performances arise when inserting either at one of the ends or at

the exact middle point of the collection. Consequently, I've chosen three insertion locations (start, middle,

and end of the collection) and three representative collection sizes of medium (100 elements), large (10,000

elements), and very large (1,000,000 elements).

Table 11-3 shows the results for a medium collection.

Table 11-3. Building a medium-sized collection (100 elements)

Insertion point 1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

Start of the ArrayList 100% 115% 96.4% 129% 104% 899%

Start of the LinkedList 100% 82.6% 64.2% 84% 58.7% 548%

Midpoint of the ArrayList 69.2% 101% 67% 114.4% 80.1% 934%

Midpoint of the LinkedList 131% 105% 80.8% 116% 72.2% 872%

End of the ArrayList 45.3% 43.5% 40.8% 47.9% 47.9% 312%

End of the LinkedList 96.2% 65.6% 61.8% 71.2% 60.7% 334%

Table 11-3 shows that for short collections, ArrayList and LinkedList are performance rivals.
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ArrayLists have the edge when inserting at the end of the collection (appending elements). But then

appending elements is the operation that ArrayList is optimized for: if you just want a statically sized

collection, a Java array (e.g., Object[ ]) gives better performance than any collection object. Beyond the

append operation, measured timings are mixed and reflect various VM optimization capabilities more than

anything else.

What I have not measured here are other advantages that ArrayList has over LinkedList, namely the

ability to presize collections and the reduced garbage-collection overhead. Specifically, ArrayLists can be

created with a particular size (e.g., in this test the ArrayList could be created with a capacity of 100

elements), thus avoiding all the growth overhead. When running this same test with presized ArrayLists,

the ArrayLists times are roughly twice as fast as those recorded in the table! LinkedLists (up to SDK

1.4) cannot be presized.

Additionally, the ArrayList generates only a few extra objects for garbage collection, i.e., the internal

array object that holds the elements and one extra internal array object each time the ArrayList capacity

is exhausted and the ArrayList needs to be grown. The LinkedList generates one node object for every

insertion, irrespective of any deletions that might take place. Consequently, LinkedLists can give

considerably more work to the garbage collector (many more objects to collect). Taking these added factors

into account, my inclination would be to use an ArrayList rather than a LinkedList for any small- to

medium-sized collection.

Table 11-4 shows the results for a large collection.

Table 11-4. Building a large collection (10,000 elements)

Insertion point 1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

Start of the ArrayList 6768% 7052% 6612% 7101% 7015% 8125%

Start of the LinkedList 100% 94.2% 52.9% 71.6% 41.2% 682%

Midpoint of the ArrayList 2485% 2923% 2173% 2962% 2882% 3836%

Midpoint of the LinkedList 24152% 14168% 14168% 14064% 14203% 42360%

End of the ArrayList 62.3% 32.4% 34.0% 34.2% 28.5% 254%

End of the LinkedList 84.1% 68.5% 51.4% 56.8% 35.8% 471%

We can see from Table 11-4 that we begin to get a severe performance penalty when we encounter large

insertion overhead. The worst case for LinkedList is, as predicted, inserting in the middle of the collection.

We can also see that this has worse performance than the ArrayList worst case of insertion at the start of

the collection. Insertion at the middle of the ArrayList has significantly better performance than those two

worst cases.

Overall, ArrayList again gives better performance for most cases, including index insertion to random

locations. If you always need to insert toward the beginning of the collection, LinkedList is a good choice,

but you can achieve even better performance using a reversed ArrayList, i.e., either with a dedicated

implementation or by flipping indexes using a [size-index] mapping.

The results for very large collections (not shown), indicates very similar conclusions to those of Table 11-4.

However, times are so long that they emphasize that very large collections need particularly close matches

between data, collection types, and data-manipulation algorithms. Otherwise, you can end up with

performance that is essentially unusable. For optimum performance, you should build a dedicated collection

class implementation specific to the problem. This is often a necessary step for very large collections.
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11.5.4 Querying Performance

Querying is most efficiently achieved by implementing the query inside the class (see Section 11.4). The

time needed to iterate over all the elements is the limiting factor for queries on these lists. A query

implemented in the ArrayList/Vector classes iterates over the array elements. The following example

counts the number of null elements:

int count = 0;
for (int i = 0; i < size; i++)
  if(elementData[i] =  = null)
    count++;

A query implemented in the LinkedList class traverses all the nodes. The following example counts the

number of null elements:

node = header.next;
count = 0;
for (int i = 0; i < repeat; i++, node = node.next)
  if (node.element =  = null)
    count++;

Table 11-5 shows the ArrayList providing significantly superior performance to that of the LinkedList,

once again indicating that ArrayList is the class to use. Table 11-6 shows the time taken to iterate over all

the elements using a ListIterator object obtained from the List.listIterator(int) method. These

iterators would be necessary if the query could not be implemented in the List class. Once again,

ArrayList shows superior performance, though not as dramatically as with Table 11-5. Note that the

absolute times in Table 11-6 are about ten times longer than those in Table 11-5; ArrayList internal

traversal is about ten times faster than ArrayList iteration using a ListIterator.

Table 11-5. Iterating through all the elements of the collection using internal access

  1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

ArrayList internal traversal 100% 121% 85.9% 159% 86% 962%

LinkedList internal traversal 533% 557% 1576% 565% 436% 1700%

Table 11-6. Iterating through all the elements of the collection using a ListIterator

  1.2.2 1.3.1_02 1.3.1_02-server 1.4.0 1.4.0-server 1.4.0-Xint

ArrayList iteration using ListIterator 100% 119% 63% 101% 72.2% 2021%

LinkedList iteration using ListIterator 112% 189% 159% 167% 144% 1656%

The measurements and the other factors we've considered clearly indicate that ArrayLists and Vectors

usually provide better performance than LinkedLists and synchronized wrapped LinkedLists. Even in

cases where you might have thought that the LinkedList would provide better performance, you may be

able to coax superior performance from ArrayList by altering how elements are added, for example by
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reversing the collection order.

There are situations where LinkedLists provide better performance, for example with very large collections

where many elements need to be added to both the beginning and end of the collection. But in general, I

recommend using ArrayList/Vector as the default and using LinkedList only where there is an

identified performance problem that a LinkedList improves.
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11.6 The RandomAccess Interface

SDK 1.4 introduced a java.util.RandomAccess interface for optimizing List performance, but it has no

methods. What is the purpose of this interface?

11.6.1 What Does RandomAccess Mean?

RandomAccess is a marker interface, like the Serializable and Cloneable interfaces. All these marker

interfaces do not define methods. Instead, they identify a class as having a particular capability. In the case

of Serializable, the interface specifies that if the class is serialized using the serialization I/O classes, a

NotSerializableException will not be thrown (unless the object contains some other class that cannot

be serialized). Cloneable similarly indicates that the use of the Object.clone( ) method for a

Cloneable class will not throw a CloneNotSupportedException.

The RandomAccess interface identifies that a particular java.util.List implementation has fast random

access. (A more accurate name for the interface would have been "FastRandomAccess.") This interface

tries to define an imprecise concept: what exactly is fast? The documentation provides a simple guide: if

repeated access using the List.get( ) method is faster than repeated access using the Iterator.next(
) method, then the List has fast random access. The two types of access are shown in the following code

examples.

Repeated access using List.get( ):

Object o;
for (int i=0, n=list.size(  ); i < n; i++)
  o = list.get(i);

Repeated access using Iterator.next( ):

Object o;
for (Iterator itr=list.iterator(  ); itr.hasNext(  ); )
  o = itr.next(  );

A third loop combines the previous two loops to avoid the repeated Iterator.hasNext( ) test on each

loop iteration:

Object o;
Iterator itr=list.iterator(  );
for (int i=0, n=list.size(  ); i < n; i++)
  o = itr.next(  );

This last loop relies on the normal situation where List objects cannot change in size while they are being

iterated through without an exception of some sort occurring. So, because the loop size remains the same,

you can simply count the accessed elements without testing at each iteration whether the end of the list has

been reached. This last loop is generally faster than the previous loop with the Iterator.hasNext( ) test.

In the context of the RandomAccess interface, the first loop using List.get( ) should be faster than both

the other loops that use Iterator.next( ) for a list to implement RandomAccess.
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11.6.2 How Is RandomAccess Used?

So now that we know what RandomAccess means, how do we use it? There are two aspects to using the

other marker interfaces, Serializable and Cloneable: defining classes that implement them and using

their capabilities via ObjectInput /ObjectOutput and Object.clone( ), respectively. RandomAccess is

a little different. Of course, we still need to decide whether any particular class implements it, but the

possible classes are severely restricted: RandomAccess should be implemented only in java.util.List

classes. And most such classes are created outside of projects. The SDK provides the most frequently used

implementations, and subclasses of the SDK classes do not need to implement RandomAccess because they

automatically inherit the capability where appropriate.

The second aspect, using the RandomAccess capability, is also different. Whether a class is Serializable
or Cloneable is automatically detected when you use ObjectInput/ObjectOutput and Object.clone(
). But RandomAccess has no such automatic support. Instead, you need to explicitly check whether a class

implements RandomAccess using the instanceof operator:

if (listObject instanceof RandomAccess)
  ...

You must then explicitly choose the appropriate access method, List.get( ) or Iterator.next( ).

Clearly, if we test for RandomAccess on every loop iteration, we would be making a lot of redundant calls

and probably losing the benefit of RandomAccess as well. So the pattern to follow in using RandomAccess

makes the test outside the loop. The canonical pattern looks like this:

Object o;
if (listObject instanceof RandomAccess)
{
  for (int i=0, n=list.size(  ); i < n; i++)
  {
    o = list.get(i);
    //do something with object o
  }
   
}
else
{
  Iterator itr = list.iterator(  );
  for (int i=0, n=list.size(  ); i < n; i++)
  {
    o = itr.next(  );
    //do something with object o
   
  }
}

11.6.3 Speedup from RandomAccess

I tested the four code loops shown in this section, using the 1.4 release, separately testing the -client
(default) and -server options. To test the effect of the RandomAccess interface, I used the

java.util.ArrayList and java.util.LinkedList classes. ArrayList implements RandomAccess,

http://lib.ommolketab.ir
http://lib.ommolketab.ir


while LinkedList does not. ArrayList has an underlying implementation consisting of an array with

constant access time for any element, so using the ArrayList iterator is equivalent to using the

ArrayList.get( ) method but with some additional overhead. LinkedList has an underlying

implementation consisting of linked node objects with access time proportional to the shortest distance of

the element from either end of the list, whereas iterating sequentially through the list can shortcut the

access time by traversing one node after another.

Times shown are the average of three runs, and all times have been normalized to the first table cell, i.e.,

the time taken by the ArrayList to iterate the list using the List.get( ) method in client mode.

Loop type (loop test) and

access method

ArrayList java

-client

LinkedList java

-client

ArrayList java -

server

LinkedList java -

server

loop counter (i<n) and List.get( ) 100% too long 77.5% too long

iterator (Iterator.hasNext( )) and

Iterator.next( )
141% 219% 109% 213%

iterator (i<n) and Iterator.next( ) 121% 205% 98% 193%

RandomAccess test with loop

from row 1 or 3
100% 205% 77.5% 193%

The most important results are in the last two rows. The last line shows the times obtained by making full

use of the RandomAccess interface, and the line before that shows the most optimal general technique for

iterating lists if RandomAccess is not available. The size of the lists I used for the test (and consequently the

number of loop iterations required to access every element) was sufficiently large that the instanceof test

had no measurable cost in comparison to the time taken to run the loop. Consequently, we can see that

there was no cost (but also no benefit) in adding the instanceof RandomAccess test when iterating the

LinkedList, whereas the ArrayList was iterated more than 20% quicker when the instanceof test was

included.

11.6.4 Forward and Backward Compatibility

Can you use RandomAccess and maintain backward compatibility with VM versions prior to 1.4? There are

three aspects to using RandomAccess:

You may want to include code referencing RandomAccess without moving to 1.4.

Many projects need their code to be able to run in any VM, so the code needs to be backward-

compatible to run in VMs using releases earlier than 1.4, where RandomAccess does not exist.

You will want to make your code forward-compatible so that it automatically takes advantage of

RandomAccess when running in a 1.4+ JVM.

Making RandomAccess available to your development environment is the first issue, and if you are using an

environment prior to 1.4, this can be as simple as adding the RandomAccess interface to your classpath.

Any version of the SDK can create the RandomAccess interface. The definition for RandomAccess is:

package java.util;
public interface RandomAccess {  }

We also need to handle RandomAccess in the runtime environment. For pre-1.4 environments, the test:
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if (listObject instanceof RandomAccess)

generates a NoClassDefFoundError at runtime when the JVM tries to load the RandomAccess class (for

the instanceof test to be evaluated, the class has to be loaded). However, we can guard the test so that it

is executed only if RandomAccess is available. The simplest way to do this is to check whether

RandomAccess exists, setting a boolean guard as the outcome of that test:

static boolean RandomAccessExists;
...
   
  //execute this as early as possible after the application starts
  try
  {
    Class c =  Class.forName("java.util.RandomAccess");
    RandomAccessExists = true;
  }
  catch (ClassNotFoundException e)
  {
    RandomAccessExists = false;
  }

Finally, we need to change our instanceof tests to use the RandomAccessExists variable as a guard:

if (RandomAccessExists && (listObject instanceof RandomAccess) )

With the guarded instanceof test, the code automatically reverts to the Iterator loop if RandomAccess
does not exist and should avoid throwing a NoClassDefFoundError in pre-1.4 JVMs. And, of course, the

guarded instanceof test also automatically uses the faster loop branch when RandomAccess does exist

and the list object implements it.
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11.7 Cached Access

Caches use local data when present and thus don't need to access nonlocal data. If the data is not present

locally, the nonlocal data must be accessed or calculated; it is then stored locally as well as being returned.

After the first access, the data is available locally, and access is quicker. How much quicker depends on the

type of cache.

Most caches have to maintain the consistency of the data held in the cache: it is usually important for the

data in the cache to be up to date. When considering the use of a cache, bear in mind the expected lifetime

of the data and any refresh rate or time-to-live values associated with the data. Similarly, for output data,

consider how long to keep data in the cache before it must be written out. You may have differing levels of

priority for writing out different types of data. For example, some filesystems keep general written data in a

write cache, but immediately write critical system data that ensures system consistency in case of crashes.

Also, as caches cannot usually hold all the data you would like, a strategy for swapping data out of the cache

to overcome cache space limitations is usually necessary. The memory used by the cache is often significant,

and it is always better to release the resources used by it explicitly when it is no longer needed, or reduce

resources being used by the cache when possible, even if the cache itself is still required.

Caching can apply to data held in single objects or groups of objects. For single objects, it is usual to

maintain a structure or instance variable that holds cached values. For groups of objects, there is usually a

structure maintained at the point of access to the elements of the group. In addition, caching applies

generally to two types of locality of access, usually referred to as spatial and temporal. Spatial locality refers

to the idea that if something is accessed, it is likely that something else nearby will be accessed soon. This is

one of the reasons buffering I/O streams works so well. If every subsequent byte read from disk were in a

completely different part of the disk, I/O buffering would be no help at all. Temporal locality refers to the

idea that if you access something, you are likely to access it again in the near future. This is the principle

behind browsers holding files locally once downloaded.

There is a lot of research into the use of caches, but most of it is related to CPU or disk hardware caches.

Nevertheless, any good article or book chapter on caches should cover the basics and the pitfalls, and these

are normally applicable (with some extra thought) to caches in applications. One thing you should do is

monitor cache-hit rates, i.e., the number of times that accessing data retrieves data from the cache,

compared to the total number of data accesses. This is important because if the cache-hit rate is too low, the

overhead of having a cache may be more than any actual gain in performance. In this case, tune or disable

the cache. It is frequently useful to build-in the option of disabling and emptying the cache. This can be very

helpful for two reasons. First, you can make direct comparisons of operations with and without the cache,

and second, there are times when you want to measure the overhead in filling an empty cache. In this case,

you may need to repeatedly fill an empty cache to get a good measurement.
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11.8 Caching Examples

When accessing elements from sets of data, some elements are accessed much more frequently than others.

In these cases, it is possible to apply caching techniques to speed up access to frequently accessed

elements. This is best demonstrated with the following example.

Consider a CacheTest class that consists mainly of a Map populated with Integer objects. I use Integer
objects for convenience to populate the Map with many elements, but the actual object type is of no

significance because you use only the hashCode( ) and equals( ) methods, just as the Map does.

Basically, you provide two ways to access the elements of the Map. The first, plain_access( ), just calls

the Map.get( ) method as usual. The second method, cached_access( ), uses the lower bits of the hash

code of the object to obtain an index value into an array. This index is then checked to see whether the

object is there. If it is, the corresponding value in a parallel value array is returned. If it's not, the object is

placed there with the value in the corresponding value array.

This is about the simplest example of general cached access. It demonstrates the advantages and pitfalls of

cached access. I have selected 10 integers that do not map to the same indexes for the example. Running

the class gives a straightforward comparison between the two access methods, and I get the result that the

cached access varies significantly depending on the VM used. The access speedups are illustrated in the

following table of measurements. Times have been normalized to the JDK 1.2.2 case for using a HashMap.

The first time of each entry is the measurement using a HashMap, and the second is the measurement using

a Hashtable. For any one VM, cached access is significantly faster.

  1.2.2 1.3.1_02
1.3.1_02-

server
1.4.0 1.4.0-server 1.4.0-Xint

Plain access

(HashMap/

Hashtable)

100%/320% 109%/138% 112%/152% 82.6%/155% 93.2%/89.3% 1964%/1596%

Cached access

(HashMap/

Hashtable)

29.3%/29.2% 57.2%/57% 36.5%/42.3% 60.4%/60.2% 38.5%/48.1% 1218%/1294%

This test is artificial, in that I chose integers where no two map to the same index. If there is more than one

integer that maps to the same cache array index, this is called a collision. Clearly, with collisions,

performance is not as good because you are constantly entering the code that puts the objects into the

cache. Collisions are a general problem with cached data, and you need to minimize them for optimal

performance. This can be done by choosing an appropriate mapping function to generate indexes that

minimize collisions:

package tuning.cache;
   
import java.util.HashMap;
import java.util.Hashtable;
import java.lang.Math;
   
public class CacheTest
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{
  //The cache array for the keys
  static Object[  ] cache_keys = new Object[128];
  //The array for the values corresponding to cached keys
  static Object[  ] cache_values = new Object[128];
  //static Hashtable hash = new Hashtable(  );
  static HashMap hash = new HashMap(  );
   
  public static void main(String[  ] args)
  {
    try
    {
      System.out.println("started populating");
      populate(  );
      System.out.println("started accessing");
      access_test(  );
    }
    catch(Exception e){e.printStackTrace(  );}
  }
   
  public static void populate(  )
  {
    for (int i = 0; i < 100000; i++)
      hash.put(new Integer(i), new Integer(i+5));
  }
   
  public static Object plain_access(Integer i)
  {
    //simple get(  ) call to the hash table
    return hash.get(i);
  }
   
  public static Object cached_access(Integer i)
  {
    //First get access index
    int access = Math.abs(i.hashCode(  )) & 127;
    Object o;
    //if the access index has an object, and that object is equal to key
    //then return the corresponding value in the parallel values array.
    if ( (o = cache_keys[access]) =  = null || !o.equals(i))
    {
      //otherwise, we got a collision. We need to replace the
      //object at that access index with the new one that we
      //get from the hash table using normal Hashtable.get(  ),
      //and then return the value retrieved this way
      if (o != null)
        System.out.println("Collsion between " + o + " and " + i);
      o = hash.get(i);
      cache_keys[access] = i;
      cache_values[access] = o;
      return o;
    }
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    else
    {
      return cache_values[access];
    }
  }
   
  public static void access_test(  )
  {
    //Ten integers that do not collide under the mapping scheme
    //This gives best performance behavior for illustration purposes
    Integer a0 = new Integer(6767676);
    Integer a1 = new Integer(33);
    Integer a2 = new Integer(998);
    Integer a3 = new Integer(3333);
    Integer a4 = new Integer(12348765);
    Integer a5 = new Integer(9999);
    Integer a6 = new Integer(66665);
    Integer a7 = new Integer(1234);
    Integer a8 = new Integer(987654);
    Integer a9 = new Integer(3121219);
    Object o1,o2,o3,o4,o5,o6,o7,o8,o9,o0;
    long time = System.currentTimeMillis(  );
    for (int i = 0; i < 1000000; i++)
    {
       o1 = plain_access(a0);
       o2 = plain_access(a1);
       o3 = plain_access(a2);
       o4 = plain_access(a3);
       o5 = plain_access(a4);
       o6 = plain_access(a5);
       o7 = plain_access(a6);
       o8 = plain_access(a7);
       o9 = plain_access(a8);
       o0 = plain_access(a9);
    }
    System.out.println("plain access took " +
        (System.currentTimeMillis(  )-time));
   
    time = System.currentTimeMillis(  );
    for (int i = 0; i < 1000000; i++)
    {
       o1 = cached_access(a0);
       o2 = cached_access(a1);
       o3 = cached_access(a2);
       o4 = cached_access(a3);
       o5 = cached_access(a4);
       o6 = cached_access(a5);
       o7 = cached_access(a6);
       o8 = cached_access(a7);
       o9 = cached_access(a8);
       o0 = cached_access(a9);
    }
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    System.out.println("cached access took " +
        (System.currentTimeMillis(  )-time));
   
  }
}

In this example, we add an instance variable to the keys to provide the mapping into the cache. This

example uses a circular cache that holds just the most recent 128 keys accessed. Because of more optimal

cache access, this has an even larger speedup than the previous example:

package tuning.cache;
   
import java.util.Hashtable;
import java.lang.Math;
   
public class Test2
{
  //The cache array for the keys
  static Test2[  ] cache_keys = new Test2[128];
  //The array for the values corresponding to cached keys
  static Object[  ] cache_values = new Object[128];
  static Hashtable hash = new Hashtable(  );
   
  //The index to use for the next object added to the cache
  static int freeIndex = 0;
   
  //The current index in the cache referenced by this object
  int cacheRef = -1;
  //Unique integer for each object, can be used as hash code
  int value;
   
  public static void main(String[  ] args)
  {
    try
    {
      System.out.println("started populating");
      populate(  );
      System.out.println("started accessing");
      access_test(  );
    }
    catch(Exception e){e.printStackTrace(  );}
  }
   
  public Test2(int i)
  {
    value = i;
  }
   
  public int hashCode(  )
  {
    return value;
  }
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  public boolean equals(Object obj)
  {
    //Equality test requires null check, type check, and value check
    if ((obj != null) && (obj instanceof Test2))
      return value =  = ((Test2) obj).value;
    else
      return false;
  }
   
  public static void populate(  )
  {
    for (int i = 0; i < 100000; i++)
      hash.put(new Test2(i), new Integer(i+5));
  }
   
  public static Object plain_access(Test2 i)
  {
    return hash.get(i);
  }
   
  public static Object cached_access(Test2 i)
  {
    //Access index into the cache is quick and easy to get
    int access = i.cacheRef;
    Object o;
   
    //If it is -1 then it is not in the cache
    if (access =  = -1)
    {
      //get the object using the hash table
      o = hash.get(i);
      //Get the next available index in the cache.
      //Wind round to the start of the cache if it is off the end
      if (freeIndex >= cache_keys.length)
        freeIndex = 0;
      //set the cache index; increment the next cache index too
      access = i.cacheRef = freeIndex++;
      //If there was already something in the cache at that location,
      //uncache it
      if (cache_keys[access] != null)
      {
        System.out.println("Collsion between " + cache_keys[access] +
                " and " + i);
        cache_keys[access].cacheRef = -1;
      }
      //And cache our new value.
      cache_keys[access] = i;
      cache_values[access] = o;
      return o;
    }
    else
    {
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      return cache_values[access];
    }
  }
   
  public static void access_test(  )
  {
    Test2 a0 = new Test2(6767676);
    Test2 a1 = new Test2(33);
    Test2 a2 = new Test2(998);
    Test2 a3 = new Test2(3333);
    Test2 a4 = new Test2(12348765);
    Test2 a5 = new Test2(9999);
    Test2 a6 = new Test2(66665);
    Test2 a7 = new Test2(1234);
    Test2 a8 = new Test2(987654);
    Test2 a9 = new Test2(3121219);
    Object o1,o2,o3,o4,o5,o6,o7,o8,o9,o0;
    long time = System.currentTimeMillis(  );
    for (int i = 0; i < 1000000; i++)
    {
       o1 = plain_access(a0);
       o2 = plain_access(a1);
       o3 = plain_access(a2);
       o4 = plain_access(a3);
       o5 = plain_access(a4);
       o6 = plain_access(a5);
       o7 = plain_access(a6);
       o8 = plain_access(a7);
       o9 = plain_access(a8);
       o0 = plain_access(a9);
    }
    System.out.println("plain access took " + 
        (System.currentTimeMillis(  )-time));
   
    time = System.currentTimeMillis(  );
    for (int i = 0; i < 1000000; i++)
    {
       o1 = cached_access(a0);
       o2 = cached_access(a1);
       o3 = cached_access(a2);
       o4 = cached_access(a3);
       o5 = cached_access(a4);
       o6 = cached_access(a5);
       o7 = cached_access(a6);
       o8 = cached_access(a7);
       o9 = cached_access(a8);
       o0 = cached_access(a9);
    }
    System.out.println("cached access took " + 
        (System.currentTimeMillis(  )-time));
   
  }
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}

These are examples of general data caching. Sometimes you will know beforehand exactly which objects will

be frequently accessed. In this case, you can create a specialized class that provides an accessor that

optimizes access for just these objects. This can be as simple as a switch statement or multiple if

statements. For example:

public Object get(Object key)
{
  if (key =  = FAST_KEY1)
    return value1;
  else if (key.equals(FASTISH_KEY2))
    return value2;
  else if (key.equals(possibly_fast_key_assigned_at_runtime))
    return value3;
  else
    return hash.get(key);
}
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11.9 Finding the Index for Partially Matched Strings

The problem considered here concerns a large number of string keys that need to be accessed by full or

partial match. Each string is unique, so the full-match access can easily be handled by a standard hash-table

structure (e.g., java.util.HashMap). The partial-match access needs to collect all objects that have string

keys starting with a particular substring.

Consider this hash table consisting of keys and values:

"hello"          1
"bye"            2
"hi"             3

The full match for key "hi" retrieves 3, and the partial match against strings starting with "h" retrieves the

collection {1,3}. Using a hash-table structure for the partial-match access is expensive because it requires

that all keys be iterated over, and then each key matching the corresponding object needs to be collated.

Of course, I am considering here a large collection of strings. Alternatives are not usually necessary for a few

(or even a few thousand) strings. But for large collections, performance-tuning techniques become

necessary.

To tune, look for data structures that quickly match any partial string. The task is somewhat simpler than the

most generic version of this type of problem because you need to match only the first few consecutive

characters. This means that some sort of tree structure is probably ideal. Of the structures available from the

JDK, TreeMap looks like it can provide exactly the required functionality; it gives a minimal baseline and, if

the performance is adequate, there is no more tuning to do. But TreeMap is 5 to 10 times slower than

HashMap for access and update. The target is to obtain HashMap access speed for single-key access.

Don't get carried away searching for the perfect data structure. Thinking laterally, you can consider other

possibilities. If you have the strings in a sorted collection, you can apply a binary search to find the index of

the string that is greater than or less than the partial string, and then obtain all the strings (and hence

corresponding objects) in between.

More specifically, you can construct a sorted array of keys from the hash table. Then, if you want to find all

strings starting with "h", you can run a binary search for the strings "h" and "h\uFFFF". This gives all the

indexes of the band for all the keys that start with "h". Note that a binary search can return the index where

the string would be even if it is not actually in the array. (The correct solution actually goes from "h"

inclusive to "i" exclusive, but this solution will do for strings that don't include character \uFFFF.)

Having parallel collections can lead to all sorts of problems in making sure both collections contain the same

elements. Solutions that involve parallel collections should hide all accesses and updates to the parallel

collections through a separate object to ensure that all accesses and updates are consistent. The solution

here is suitable mainly when the collections are updated infrequently, e.g., when they are built once or

periodically and read from often. Here is a class implementing this solution:

package tuning.struct;
   
import java.util.Hashtable;
import java.util.Enumeration;
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public class PartialSearcher
{
  Hashtable hash;
  String[  ] sortedArray;
   
  public static void main(String args[  ])
  {
    //Populate a Hashtable with ten strings
    Hashtable h = new Hashtable(  );
    h.put("hello", new Integer(1));
    h.put("hell", new Integer(2));
    h.put("alpha", new Integer(3));
    h.put("bye", new Integer(4));
    h.put("hello2", new Integer(5));
    h.put("solly", new Integer(6));
    h.put("sally", new Integer(7));
    h.put("silly", new Integer(8));
    h.put("zorro", new Integer(9));
    h.put("hi", new Integer(10));
   
    //Create the searching object
    PartialSearcher p = new PartialSearcher(h);
    //Match against all string keys given by
    //the first command line argument
    Object[  ] objs = p.match(args[0]);
    //And print the matches out
    for(int i = 0; i<objs.length; i++)
      System.out.println(objs[i]);
   
  }
   
  public PartialSearcher(Hashtable h)
  {
    hash = h;
    createSortedArray(  );
  }
   
  public Object[  ] match(String s)
  {
    //find the start and end positions of strings that match the key
    int startIdx = binarySearch(sortedArray, s,
                                0, sortedArray.length-1);
    int endIdx = binarySearch(sortedArray, s+ '\uFFFF',
                              0, sortedArray.length-1);
   
    //and return an array of the matched keys
    Object[  ] objs = new Object[endIdx-startIdx];
    for (int i = startIdx ; i < endIdx; i++)
      objs[i-startIdx] = sortedArray[i];
    return objs;
  }
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  public void createSortedArray(  )
  {
    //Create a sorted array of the keys of the hash table
    sortedArray = new String[hash.size(  )];
    Enumeration e = hash.keys(  );
    for (int i = 0; e.hasMoreElements(  ); i++)
      sortedArray[i] = (String) e.nextElement(  );
    quicksort(sortedArray, 0, sortedArray.length-1);
  }
   
  /**
   * Semi-standard binary search returning index of match location or
   * where the location would match if it is not present.
   */
  public static int binarySearch(String[  ] arr, String elem,
                                 int fromIndex, int toIndex)
  {
    int mid,cmp;
    while (fromIndex <= toIndex)
    {
      mid =(fromIndex + toIndex)/2;
      if ( (cmp = arr[mid].compareTo(elem)) < 0)
        fromIndex = mid + 1;
      else if (cmp > 0)
        toIndex = mid - 1;
      else
        return mid;
    }
    return fromIndex;
  }
   
  /**
   * Standard quicksort
   */
  public void quicksort(String[  ] arr, int lo, int hi)
  {
    if( lo >= hi ) 
      return;
   
    int mid = ( lo + hi ) / 2;
    String tmp;
    String middle = arr[ mid ];
   
    if( arr[ lo ].compareTo(middle) > 0 )
    {
      arr[ mid ] = arr[ lo ];
      arr[ lo ] = middle;
      middle = arr[ mid ];
    }
  
    if( middle.compareTo(arr[ hi ]) > 0)
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    {
      arr[ mid ] = arr[ hi ];
      arr[ hi ] = middle;
      middle = arr[ mid ];
   
      if( arr[ lo ].compareTo(middle) > 0)
      {
        arr[ mid ] = arr[ lo ];
        arr[ lo ] = middle;
        middle = arr[ mid ];
      }
    }
   
    int left = lo + 1;
    int right = hi - 1;
   
    if( left >= right ) 
      return;
   
    for( ;; ) 
    {
      while( arr[ right ].compareTo(middle ) > 0)
      {
        right--;
      }
   
      while( left < right && arr[ left ].compareTo(middle ) <= 0)
      {
        left++;
      }
   
      if( left < right )
      {
        tmp = arr[ left ];
        arr[ left ] = arr[ right ];
        arr[ right ] = tmp;
        right--;
      }
      else
      {
        break;
      }
    }
   
    quicksort(arr, lo, left);
    quicksort(arr, left + 1, hi);
  }
}

Note that this solution has a wider application than only string keys. Any type of object can be used as a key

as long as you can create a methodology to compare the order of the keys. This is a reasonable solution for

several types of indexing.
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11.10 Search Trees

Here's an alternate solution to the problem presented in the last section. I looked for a more obvious

solution, another tree structure that would handle the search, provide full keyed access, and give plenty of

scope for tuning. Jon Bentley and Bob Sedgewick[9] detail a potential solution that offers an interesting

structure and provides a good tuning exercise, so I will use it here.

[9] "Ternary Search Trees," Jon Bentley and Bob Sedgewick, Dr. Dobb's Journal, April 1998.

In a ternary tree, each node has three branches. The structure is a halfway point between binary trees of

strings (one string per node) and digital tries. A digital trie stores strings character by character, and has an

n-way branching where n is the number of possible characters in the string (e.g., 26 if all strings have only

lowercase alphabetic characters, 256 if strings can contain any 8-byte character, 34,000 if each node can be

any Unicode character). Digital tries are lightning-fast to search, but have exorbitant storage costs that

typically rule them out as a solution.

The ternary tree node searches by comparing the current character with the current node's character. If

equal, the next character in the string becomes the current character, and the node at the "equal" pointer

becomes the current node. Otherwise, the current character in the string remains the current character, and

the node at the "higher" or "lower" pointer becomes the current node. A TernarySearchTreeNode class

has the Java class structure given as follows (the extra "value" instance variable is to allow any object to be

stored as the value for a particular key):

class TernarySearchTreeNode
{
  char splitchar;
  TernarySearchTreeNode low;
  TernarySearchTreeNode high;
  TernarySearchTreeNode equal;
  Object value;
}

Bentley and Sedgewick provide code (in C, but easily ported) to search and insert into the tree. The

recursive versions are:

  public static Object search(TernarySearchTreeNode p, String str, int strIdx)
  {
    //Start from a node
    char c;
    //if the node is null, return null.
    //This means there was no match to the string.
    if (p =  = null)
      return null;
    //otherwise if the current character is less than
    //the splitchar value, replace the current node with
    //the low node, and carry on searching at this character
    else if ( (c=str.charAt(strIdx)) < p.splitchar)
      return search(p.low, str, strIdx);
    //or if the current character is larger than the
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    //splitchar value, replace the current node with the
    //high node, and carry on searching at this character
    else if (c > p.splitchar)
      return search(p.high, str, strIdx);
    else
    {
      //otherwise, we match the current string character with
      //the character at this node. If we have finished the
      //string, then this is the searched for node, and
      //we can return the value stored at this node.
      if (strIdx =  = (str.length(  )-1))
        return p.value;
      else
        //or this is not the end of the string, so replace
        //the current node with the equal node, and carry on
        //searching at the next string character
        return search(p.equal, str, strIdx+1);
    }
  }
   
  public static TernarySearchTreeNode insert(TernarySearchTreeNode p, String str, 
        int strIdx, Object o)
  {
    //Start from a node. If there is no node, then we create a new node
    //to insert into the tree. This could even be the root node.
    char c;
    if (p =  = null)
    {
      p = new TernarySearchTreeNode(str.charAt(strIdx));
    }
   
    //Now navigate the tree just as for the search method, inserting
    //nodes as required. For each recursive insert(  ) call, the
    //returned node is the one we assign to the current nodes low,
    //high or equal node, depending on the comparison of the
    //current string character and the current node character.
    if ( (c = str.charAt(strIdx)) < p.splitchar)
      p.low = insert(p.low, str, strIdx, o);
    else if (c =  = p.splitchar)
    {
      //When we finally get to the last node (matched or inserted,
      //doesn't matter), we insert the value, given by Object o
      if (strIdx =  = (str.length(  )-1))
        p.value = o;
      else
        p.equal = insert(p.equal, str, strIdx+1, o);
    }
    else
      p.high = insert(p.high , str, strIdx, o);
   
    return p;
  }
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  //Simple constructor, just assigns the character.
  public TernarySearchTreeNode(char c)
  {
    splitchar = c;
  }

A class to use these methods, with get( ) and put( ) methods such as Map, looks like this:

public class TernarySearchTree
{
  TernarySearchTreeNode root;
   
  public Object get(String key)
  {
    return TernarySearchTreeNode.search(root, key, 0);
  }
   
  public Object put(String key, Object value)
  {
    //Note there is no need to initialize root. The recursive insert(  )
    //call creates a root object the first time through.
    root = TernarySearchTreeNode.insert(root, key, 0, value);
    return null; //fake old value for now
  }
}

This is fairly straightforward. (Note that the Map.put( ) should return the old value, if any, at the key being

set, but we have not implemented that functionality just yet.) The accessor and updator just follow the

described algorithm, comparing the current character to the character at the current node and taking the

appropriate next branch unless you have reached the end of the string. In that case, the value is returned or

updated according to whether this is a search or insert.

If you compare update and access times against HashMap , you'll find that the TernarySearchTree is much

slower. We are expecting this slowdown, because the referred article does the same comparison and

indicates that many optimizations are necessary to achieve similar times to the HashMap. Since they do

achieve similar times after optimizing, assume that you can too, and run through a tuning phase to see what

improvements you can make.

The target is always the HashMap times, since you already have TreeMap if you need the partial-matching

functionality without HashMap access speed. If TreeMap does not exist, or you tune another structure with

no counterpart, you still need a goal for the performance. This goal should be based on the application

requirements. In the absence of application requirements, you should aim for the performance of some other

existing class that provides similar or partial functionality. For this example, it is still sensible to use

HashMap to provide the performance target because the full key-match access time for the structure will

probably be compared to HashMap access times by most developers.

The baseline is a large dictionary of words. Knowing that tree access and update are susceptible to the order

of keys added, you are testing both for randomized order of insertion and mostly-sorted order, so that you

know the near worst case and (probable) average case. Take a HashMap that is presized (i.e., large enough

to avoid rehashing after addition of all keys), using the case where the keys are mostly sorted as a baseline.

Assign the time taken to build the collection as 100%, and also assign the time taken to access every key in

it as 100% (i.e., each of the access and update values, which are different, is separately assigned 100%). If
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the HashMap is not presized, there is a cost of approximately another 30% to 60% on the HashMap inserts

(i.e., 30% to 60% longer in time). The following chart shows the times using Sun VM Version 1.2 with JIT

(the ratios vary under other VMs):

  Sorted insert Random insert Sorted access Random access

HashMap 100% 113% 100% 140%

TernarySearchTree 823% 577% 921% 410%

You can see that you need to gain an order of magnitude to catch up to the HashMap performance.

Profiling is not a huge help; it says only that you need to improve the times on these few methods you have.

So you need to target basics. First, by using a char array at the beginning, get rid of the overhead of

accessing the characters from the string key one at a time through the string accessor. Also, by passing the

length as a parameter, remove the overhead of repeatedly accessing the string size through its length( )
method. At the same time, rather than create a new char array for each string every time you insert or

search the tree, repeatedly use the same char buffer. The new classes look like this:

public class TernarySearchTree
{
  TernarySearchTreeNode root;
  char[  ] buff = new char[5000];
   
  public Object get(String key)
  {
    key.getChars(0, key.length(  ), buff, 0);
    return TernarySearchTreeNode1.search(root, buff, 0, key.length(  )-1);
  }
   
  public Object put(String key, Object value)
  {
    key.getChars(0, key.length(  ), buff, 0);
    root = TernarySearchTreeNode.insert(root, buff, 0, key.length(  )-1, value);
    return null; //fake it for now
  }
}
   
class TernarySearchTreeNode
{
  char splitchar;
  TernarySearchTreeNode low;
  TernarySearchTreeNode high;
  TernarySearchTreeNode equal;
  Object value;
   
  public static Object search(TernarySearchTreeNode p, char[  ] str,
                              int strIdx, int strMaxIdx)
  {
    char c;
    if (p =  = null)
      return null;
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    else if ( (c=str[strIdx]) < p.splitchar)
      return search(p.low, str, strIdx, strMaxIdx);
    else if (c > p.splitchar)
      return search(p.high, str, strIdx, strMaxIdx);
    else
    {
      if (strIdx =  = strMaxIdx)
        return p.value;
      else
        return search(p.equal, str, strIdx+1, strMaxIdx);
    }
  }
   
  public static TernarySearchTreeNode insert(TernarySearchTreeNode p, char[  ] str, 
                                             int strIdx, int strMaxIdx, Object o)
  {
    char c;
    if (p =  = null)
    {
      p = new TernarySearchTreeNode(str[strIdx]);
    }
    if ( (c = str[strIdx]) < p.splitchar)
      p.low = insert(p.low, str, strIdx, strMaxIdx, o);
    else if (c =  = p.splitchar)
    {
      if (strIdx =  = strMaxIdx)
        p.value = o;
      else
        p.equal = insert(p.equal, str, strIdx+1, strMaxIdx, o);
    }
    else
      p.high = insert(p.high , str, strIdx, strMaxIdx, o);
    return p;
  }
   
  public TernarySearchTreeNode(char c)
  {
    splitchar = c;
  }
}

The algorithms all stay the same; we have applied only the most basic tuning. The following table illustrates

the measured values:

  Sorted insert Random insert Sorted access Random access

HashMap 100% 113% 100% 140%

TernarySearchTree 660% 464% 841% 391%

Original implementation 823% 577% 921% 410%

Well, it's a little better, but it should be a lot better. Bentley and Sedgewick suggest one obvious
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improvement: changing the recursive algorithms to iterative ones. This is a standard tuning technique, but it

can be difficult to achieve. You can use the implementations here as a sort of template: look at how the

recursion has been converted into iteration by having a "current" node, p, which is changed on each pass.

This is the normal way of moving from recursion to iteration (see also Section 7.5 and Section 7.6 in Chapter

7). The classes now look like:

public class TernarySearchTree
{
  TernarySearchTreeNode root;
  char buff[  ] = new char[5000];
   
  public Object get(String key)
  {
    if(root =  = null)
      return null;
    else
    {
      key.getChars(0, key.length(  ), buff, 0);
      return root.search(buff, 0, key.length(  ) - 1);
    }
  }
   
  public Object put(String key, Object obj)
  {
    key.getChars(0, key.length(  ), buff, 0);
    if(root =  = null)
      root = new TernarySearchTreeNode(buff[0]);
    return root.insert(buff, 0, key.length(  ) - 1, obj);
  }
}
   
class TernarySearchTreeNode
{
  char splitchar;
  TernarySearchTreeNode low;
  TernarySearchTreeNode high;
  TernarySearchTreeNode equal;
  Object value;
   
  public Object search(char str[  ], int strIdx, int strMaxIdx)
  {
    char c;
    for(TernarySearchTreeNode p = this; p != null;)
    {
      if((c = str[strIdx]) < p.splitchar)
        p = p.low;
      else if(c =  = p.splitchar)
      {
        if(strIdx =  = strMaxIdx)
          return p.value;
        strIdx++;
        p = p.equal;
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      }
      else
        p = p.high;
    }
    return null;
  }
   
  public Object insert(char str[  ], int strIdx, int strMaxIdx, Object o)
  {
    TernarySearchTreeNode p = this;
    char c;
    while(true)
    {
      if ( (c = str[strIdx]) < p.splitchar)
      {
        if(p.low =  = null)
          p.low = new TernarySearchTreeNode(c);
        p = p.low;
      }
      else if(c =  = p.splitchar)
      {
        if(strIdx =  = strMaxIdx)
        {
          Object old = p.value;
          p.value = o;
          return old;
        }
        strIdx++;
        c = str[strIdx];
        if(p.equal =  = null)
          p.equal = new TernarySearchTreeNode(c);
        p = p.equal;
      }
      else
      {
        if(p.high =  = null)
          p.high = new TernarySearchTreeNode(c);
        p = p.high;
      }
    }
  }
   
  public TernarySearchTreeNode(char c)
  {
    splitchar = c;
  }
}

The iterative implementation of insert( ) allows you to return the old object easily, thus making the

implementation of put( ) have correct functionality for a Map. The following table illustrates the resulting

measurements (the previous measurements are in parentheses):
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  Sorted insert Random insert Sorted access Random access

HashMap 100% 113% 100% 140%

TernarySearchTree 558% (660%) 373% (464%) 714% (841%) 353% (391%)

Original implementation 823% 577% 921% 410%

The performance has improved, but it's still a long way from the HashMap performance. It is worth noting

that these simple optimizations have already cut the times by over a third. To get a big boost, you need to

target something large. Object creation can be a serious performance problem, as we saw in Chapter 4.

Bentley and Sedgewick state that their major performance optimization is to preallocate memory for the

tree. So let's change the node creation in the insert call to assign nodes from a precreated pool of nodes,

i.e., create a large pool of nodes at the initial creation of TernarySearchTree, and assign these as required

in the tree insert( ) method. The code is straightforward, replacing the new TernarySearchTreeNode(
) call with a newNode( ) call, and the pool management is simple:

  public static TernarySearchTreeNode newNode(char c,
                                        TernarySearchTreeNode pool)
  {
    TernarySearchTreeNode p = pool;
    pool = pool.equal;
    p.splitchar = c;
    p.low = p.equal = p.high = null;
    return p;
  }
   
  TernarySearchTreeNode static createPool(int size)
  {
    TernarySearchTreeNode last;
    TernarySearchTreeNode pool;
    for (int i = size; i > 0; i--)
    {
      last = pool;
      pool = new TernarySearchTreeNode(  );
      pool.equal=last;
    }
    return pool;
  }

The following chart shows the new measurements (previous measurements in parentheses):

  Sorted insert Random insert Sorted access Random access

HashMap 100% 113% 100% 140%

TernarySearchTree 368% (558%) 234% (373%) 654% (714%) 315% (353%)

Original implementation 823% 577% 921% 410%

We are getting closer for the average (random) case. But why is there such a discrepancy between the

average and worst (mostly-sorted) case now, and why is there an improvement in the access times when the

change should have altered only the insertion times? The discrepancy between the average and worst cases

may indicate that the worst times are a result of the time spent in the stack due to the depth of the

insert/search loops rather than node creation. The improvement in the access times may be due to internal
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memory management of the VM: all the nodes being created one after the other may be the reason for the

improved access. (Although since everything is in memory, I'm not quite sure why this would be so. Possibly,

the heap space is segmented according to requisition from the OS, and you may have paged slightly to disk,

which could explain the discrepancy. But I have discarded any timings that had any significant paging, so the

discrepancy is not entirely clear.) There is an extra issue now, as you have not been measuring the time

taken in creating the tree. The last optimization has increased this time, as the nodes were previously

created during the insert, but are now all created at tree creation. Consequently, you might now need to

consider this creation time, depending on how the data structure is used.

The creation time is actually rather large. It would be nice if there were a way to create all nodes required in

one VM call, but there is none provided in Java (at least up to JDK 1.4). You can finesse this shortcoming by

implementing your own memory management using arrays, and it is certainly worth doing so as an exercise

to see if the technique gives any advantages. Another possibility is to create objects at initialization in a

separate thread, but this requires previous knowledge of many things, so I will not consider that option here.

Fortunately, the node structure is simple, so you can map it into an array of ints. Each node takes five

indexes: the first to hold the character, the next three to hold index values for other nodes, and the last to

hold an index value into an Object array (which can hold the Object values).

Now you no longer have the separate node class; all management is in the TernarySearchTree class:

public class TernarySearchTree
{
  //offsets into the array for each node
  final static int INITIAL_NODE = 1;
  final static int LOW_OFFSET = 1;
  final static int HIGH_OFFSET = 2;
  final static int EQUAL_OFFSET = 3;
  final static int VALUE_OFFSET = 4;
  final static int NODE_SIZE = 5;
   
  //A buffer for the string
  char[  ] buff = new char[5000];
  //the array of node 'object's
  int[  ] nodes;
  //the array of Object values, one for each node
  Object[  ] objects;
  //The index to the next available unused node.
  //Note that it is at index 1,
  //not zero
  int nextNode = INITIAL_NODE;
  //The index to the next object
  int nextObject = 1;
   
  //default constructor
  public TernarySearchTree(  )
  {
    this(500000);
  }
   
  //Constructor to create a pre-sized Ternary tree
  public TernarySearchTree(int size)
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  {
    //create all the nodes.
    //Each node is five int indexes and one Object index
    nodes = new int[NODE_SIZE*size];
    objects = new Object[size];
  }
   
  public Object get(String key)
  {
    key.getChars(0, key.length(  ), buff, 0);
    return search(buff, 0, key.length(  )-1);
  }
   
  public Object put(String key, Object value)
  {
    key.getChars(0, key.length(  ), buff, 0);
    if (nextNode =  = INITIAL_NODE)
    {
      nodes[INITIAL_NODE] = buff[0];
      nextNode+=NODE_SIZE;
    }
    return insert(buff, 0, key.length(  )-1, value);
  }
   
  /**
   * The node search and insert methods just map from the previous
   * implementations using the mappings
   *   p.splitchar -> nodes[p]
   *   p.low -> nodes[p+LOW_OFFSET]
   *   p.high -> nodes[p+HIGH_OFFSET]
   *   p.equal -> nodes[p+EQUAL_OFFSET]
   *   p.value -> objects[nodes[p+VALUE_OFFSET]]
   */
  public Object search(char[  ] str, int strIdx, int strMaxIdx)
  {
    int p = INITIAL_NODE;
    int c;
    while (p != 0)
    {
      if ( (c = str[strIdx]) < nodes[p])
        p = nodes[p+LOW_OFFSET];
      else if (c =  = nodes[p])
      {
        if (strIdx =  = strMaxIdx)
          return objects[nodes[p+VALUE_OFFSET]];
        else
        {
          strIdx++;
          p = nodes[p+EQUAL_OFFSET];
        }
      }
      else
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        p = nodes[p+HIGH_OFFSET];
    }
    return null;
  }
   
  public Object insert(char[  ] str, int strIdx, int strMaxIdx, Object o)
  {
    int p = INITIAL_NODE;
    int c = str[strIdx];
    Object old;
    for(;;)
    {
      if ( c < nodes[p])
      {
        if (nodes[p+LOW_OFFSET] =  = 0)
        {
          nodes[p+LOW_OFFSET] = nextNode;
          nodes[nextNode] = c;
          nextNode+=NODE_SIZE;
        }
        p = nodes[p+LOW_OFFSET];
      }
      else if (c =  = nodes[p])
      {
        if (strIdx =  = strMaxIdx)
        {
          if (nodes[p+VALUE_OFFSET] =  = 0)
          {
            nodes[p+VALUE_OFFSET] = nextObject;
            nextObject++;
          }
          old = objects[nodes[p+VALUE_OFFSET]];
          objects[nodes[p+VALUE_OFFSET]] = o;
          return old;
        }
        else
        {
          strIdx++;
          c=str[strIdx];
          if (nodes[p+EQUAL_OFFSET] =  = 0)
          {
            nodes[p+EQUAL_OFFSET] = nextNode;
            nodes[nextNode] = c;
            nextNode+=NODE_SIZE;
          }
          p = nodes[p+EQUAL_OFFSET];
        }
      }
      else
      {
        if (nodes[p+HIGH_OFFSET] =  = 0)
        {
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          nodes[p+HIGH_OFFSET] = nextNode;
          nodes[nextNode] = c;
          nextNode+=NODE_SIZE;
        }
        p = nodes[p+HIGH_OFFSET];
      }
    }
  }
}

Although the class may look a little complex, it is pretty easy to see what is happening if you bear in mind

that nodes[p+HIGH_OFFSET] is equivalent to the p.high in the previous version of the tree (i.e., the tree

that had the separate node class). There are only two slightly more complex differences. First, the equivalent

of p.value is now objects[nodes[p+VALUE_OFFSET]] because the nodes array holds only ints, and

the value can be any Object (hence requiring a separate Object array). Second, a new node is allocated by

providing the index of the current high-water mark in the nodes array, held by variable nextNode. This

index is then incremented by the size of the node, NODE_SIZE (which is five fields), for the next node

allocation.

This alternative implementation does not affect the external interface to the class, so the complexity remains

hidden from any other class. This implementation is much closer to the C implementation provided by

Bentley and Sedgewick, where nodes were allocated in a similar large chunk. Now the question is, have we

improved performance? The next table shows the current measurements (previous measurements in

parentheses):

  Sorted insert Random insert Sorted access Random access

HashMap 100% 113% 100% 140%

TernarySearchTree 249% (368%) 200% (234%) 334% (654%) 200% (315%)

Original implementation 823% 577% 921% 410%

Overall, these are the best results so far, and the worst case is much closer to the average case. Also, the

object-creation time is much better: it is essentially as fast as possible in a VM since you are creating just

two new significant objects (which are very large arrays), and so the limitation is purely down to how quickly

the VM can allocate the memory space.

You might be satisfied to stop at this point, even though your structure is slower than a HashMap by a factor

of two. It does provide the extra required functionality of partial matching, as well as the full matching that

HashMaps provide, and relative performance is acceptable.

But there is one more major change to consider. You know that digital search tries are extremely fast, but

inefficient in space. If you are prepared to accept the extra space taken, you can still consider using digital

tries to achieve improved performance. If you are using strings that contain mainly the ASCII character set,

consider using a digital search trie for the first couple of characters. A two-node digital search trie has 256

nodes for a one-character string, and 256 nodes for the first character in multicharacter strings. For the

multicharacter strings, the second node has 256 nodes for each node of the first character, giving 256 x 257

= 65,792 nodes. With each node using 4 bytes, you would use 65792 x 4 = 263,168 bytes. So you have a

quarter of a megabyte before you even start to use this structure. However, if you use this structure for a

large amount of string data, you may find this memory usage small compared to the final overall size.

Assuming this is acceptable, let's look at how it is implemented and how it performs.

Basically, you implement a trie for the first two characters, but each two-character node then points to the
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root of a ternary tree. The two-digit trie needs a parallel Object structure to store the Object values that

correspond to one- or two-digit strings. This is, of course, occupying a lot of space, and there are methods

for reducing the space requirements (for example, you can optimize for just the alphanumeric characters,

mapping them into smaller arrays), but for this exercise, let's keep it simple. The class now looks like this:

public class TernarySearchTree
{
  final static int LOW_OFFSET = 1;
  final static int HIGH_OFFSET = 2;
  final static int EQUAL_OFFSET = 3;
  final static int VALUE_OFFSET = 4;
  final static int NODE_SIZE = 5;
  final static int INITIAL_TRIE_NODE = 1 + NODE_SIZE;
  final static int INITIAL_NODE = 1;
   
  char[  ] buff = new char[5000];
  int[  ] nodes;
  Object[  ] objects;
  int nextNode = INITIAL_TRIE_NODE;
  int nextObject = 0;
  int initial = -1;
  Object[  ] trie1Objects;
  int[  ][  ] trie2;
  Object[  ][  ] trie2Objects;
   
  public TernarySearchTree(  )
  {
    this(500000);
  }
   
  public TernarySearchTree(int size)
  {
    trie1Objects = new Object[256];
    trie2 = new int[256][256];
    trie2Objects = new Object[256][256];
    nodes = new int[NODE_SIZE*size+1];
    objects = new Object[size];
  }
   
  public Object get(String key)
  {
    int len = key.length(  );
    key.getChars(0, len, buff, 0);
    int first = buff[0];
    int second = buff[1];
    if (len =  = 1 && (first < 256))
    {
      return trie1Objects[first];
    }
    else if (len =  = 2 && (first < 256) && (second < 256))
    {
      return trie2Objects[first][second];
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    }
    else if ((first < 256) && (second < 256))
    {
      int nodep = trie2[first][second];
      if (nodep =  = 0)
      {
        return null;
      }
      return search(buff, 2, len-1, nodep);
    }
    else
    {
      //Use node[0] as a flag to determine if entered here
      if (nodes[0] =  = 0)
      {
        return null;
      }
      return search(buff, 0, len-1, INITIAL_NODE);
    }
  }
   
  public void release(  )
  {
    nodes = null;
    objects = null;
  }
   
  public Object search(char[  ] str, int strIdx, int strMaxIdx, int p)
  {
    int c;
    while (p != 0)
    {
      if ( (c = str[strIdx]) < nodes[p])
        p = nodes[p+LOW_OFFSET];
      else if (c =  = nodes[p])
      {
        if (strIdx =  = strMaxIdx)
          return objects[nodes[p+VALUE_OFFSET]];
        else
        {
          strIdx++;
          p = nodes[p+EQUAL_OFFSET];
        }
      }
      else
        p = nodes[p+HIGH_OFFSET];
    }
    return null;
  }
   
  public Object put(String key, Object value)
  {
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    int len = key.length(  );
    key.getChars(0, len, buff, 0);
    int first = buff[0];
    int second = buff[1];
    if (len =  = 1 && (first < 256))
    {
      Object old = trie1Objects[first];
      trie1Objects[first] = value;
      return old;
    }
    else if (len =  = 2 && (first < 256) && (second < 256))
    {
      Object old = trie2Objects[first][second];
      trie2Objects[first][second] = value;
      return old;
    }
    else if ((first < 256) && (second < 256))
    {
      int nodep = trie2[first][second];
      if (nodep =  = 0)
      {
        nodep = trie2[first][second] = nextNode;
        nodes[nextNode] = buff[2];
        nextNode+=NODE_SIZE;
      }
      return insert(buff, 2, len-1, value, nodep);
    }
    else
    {
      //Use node[0] as a flag to determine if entered here
      if (nodes[0] =  = 0)
      {
        nodes[0] = 1;
        nodes[INITIAL_NODE] = first;
      }
      return insert(buff, 0, len-1, value, INITIAL_NODE);
    }
  }
   
  public Object insert(char[  ] str, int strIdx, int strMaxIdx,
                       Object value, int p)
  {
    int c = str[strIdx];
    int cdiff;
    Object old;
    for(;;)
    {
      if ( (cdiff = c - nodes[p]) < 0)
      {
        if (nodes[p+LOW_OFFSET] =  = 0)
        {
          nodes[p+LOW_OFFSET] = nextNode;
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          nodes[nextNode] = c;
          nextNode+=NODE_SIZE;
        }
        p = nodes[p+LOW_OFFSET];
      }
      else if (cdiff =  = 0)
      {
        if (strIdx =  = strMaxIdx)
        {
          if (nodes[p+VALUE_OFFSET] =  = 0)
          {
            nodes[p+VALUE_OFFSET] = nextObject;
            nextObject++;
          }
          old = objects[nodes[p+VALUE_OFFSET]];
          objects[nodes[p+VALUE_OFFSET]] = value;
          return old;
        }
        else
        {
          strIdx++;
          c=str[strIdx];
          if (nodes[p+EQUAL_OFFSET] =  = 0)
          {
            nodes[p+EQUAL_OFFSET] = nextNode;
            nodes[nextNode] = c;
            nextNode+=NODE_SIZE;
          }
          p = nodes[p+EQUAL_OFFSET];
        }
      }
      else
      {
        if (nodes[p+HIGH_OFFSET] =  = 0)
        {
          nodes[p+HIGH_OFFSET] = nextNode;
          nodes[nextNode] = c;
          nextNode+=NODE_SIZE;
        }
        p = nodes[p+HIGH_OFFSET];
      }
    }
  }
}

This table shows the measurements (previous measurements in parentheses):
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  Sorted insert Random insert Sorted access Random access

HashMap 100% 113% 100% 140%

TernarySearchTree 103% (249%) 158% (200%) 140% (334%) 205% (200%)

Original implementation 823% 577% 921% 410%

The results are the best yet for all values except the random access, which is roughly the same as before.

Perhaps the most interesting aspect is that you now get better times on the mostly-sorted input than on the

randomized input (which is also the case for the HashMap). The result is still slower than a HashMap, but has

the extra capability to identify partial matches efficiently. For more specialized versions, such as those

needed for a particular application, you can make an implementation that is significantly faster (just as for

the hash-table structures earlier in this chapter).

All in all, we've taken a particular structure in its initial form, optimized it using various techniques, and

made it two to eight times faster accessing and updating elements.

Note that there are also costs beyond the extra space costs for this last hybrid structure. The

implementation before this last one is still a pure ternary tree. That pure implementation has some elegant

and simple recursive algorithms for iterating through the tree in order and for identifying partial matches.

However, implementing the equivalent algorithms for the last hybrid structure is quite a bit more

complicated, as you have to jump between the two structures it uses.

There is not much educational value in proceeding further with these classes here. We've covered the uses of

different structures and how to reimplement classes to use different underlying structures for the purpose of

improving performance. This book is not intended to provide finished components, so if you feel that this

structure may be useful to you in some situation, you'll need to complete it yourself.

Just a few final performance notes about the optimized class. Obviously, you want to optimize its use of

space. So note that its size is given by the high-water mark, which is easily determined. And if you want to

make the class dynamically growable at large sizes, you may be better off catching the exception thrown

when the high-water mark grows past the end of the nodes array and then copying to a larger array, rather

than making a test on each insertion.
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11.11 Performance Checklist

Most of these suggestions apply only after a bottleneck has been identified:

Test using either the target size for collections or, if this is not definite, various sizes of collections.

Test updating collections using the expected order of the data or, if this is not definite, various orders

of data, including sorted data.

Match the scaling characteristics of the structures against the volumes of data likely to be applied.

ArrayList is probably a better default list than LinkedList.

Presize collections to their final sizes when possible.

Test for the RandomAccess interface where applicable for faster list iteration

Consider switching to alternative data structures or algorithms.

Use the most appropriate collection class available.

Consider using two collections with different performance characteristics to hold the same data.

Consider using plain arrays, e.g., int[ ], Object[ ].

Consider using hybrid data structures.

Use specialized collections that avoid casts or unnecessary method calls.

Consider wrapping the elements of the collection in a specialized class that improves access

times (e.g., Hashtable key class with faster hashCode( ) and equals( ) methods).

Add caching or specialized accessors to collections where some elements are accessed more

often than others.

Access the underlying collection structure when iterating over the elements of a collection.

Copy the elements into an array rather than access many elements one at a time through the

collection element accessors.

Preallocate memory for element storage rather than allocating at update time.

Reuse element-storage objects when they are released.

Map elements into one or more arrays of data variables to allocate the whole collection in as few

calls as possible.
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Test if changing a recursive algorithm to an iterative one provides a useful speedup.

Make recursive methods tail-recursive.
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Chapter 12. Distributed Computing

On a 56K modem, this report will take about half an hour to download (for a 30-second download of

just the information contained in the report, click here).

-From a web site that shall remain unnamed

Distributed-application bottlenecks are of two general types. The first type occurs within application

subcomponents. This type of bottleneck is essentially independent of the distributed nature of the

application, and the other chapters in this book deal with how to tune this type of bottleneck. In this chapter,

we deal with the second type of bottleneck, which occurs within the distribution infrastructure. This latter

type of bottleneck is specific to the distributed nature of the application, and can be tuned using a number of

techniques:

Caching

When an application repeatedly distributes the same data, a significant gain in performance can be

obtained by caching the data, thus changing some distributed requests to local ones.

Compression

If the volume of data being transferred is large or causes multiple chunks to be transferred, then

compressing the transferred data can improve performance by reducing transfer times.

Reducing messages

Most distributed applications have their performance limited by the latency of the connections. Each

distributed message incurs the connection-latency overhead, and so the greater the number of

messages, the greater the cumulative performance delay due to latency. Reducing the number of

messages transferred by a distributed application can produce a large improvement in the application

performance.

Application partitioning

The performance of any distributed function in a distributed application normally has at least two

factors involved. These two factors are the location for the function to execute and the location where

the data for the function resides. Typically, the application developers are faced with the choice of

moving the function to the location of the data, or moving the data to the location of the function.

These decisions depend on the volume and nature of the data to be processed, the relative power and

availability of the CPUs in the different locations, and how much of the data will be transferred after

the function completes. If the function's result is to transfer a relatively small amount of data, it

should be located on the machine where the data used by the function resides.

Batching

There are several ways that batching can improve the performance of a distributed application. First,

the number of messages can be reduced by combining multiple messages into fewer batched

messages. Second, data can be split up and transferred in shorter batches if waiting for all the data is

the cause of the delay in response times. Third, data requirements can be anticipated, and extra data

can be transferred in batches together with the data that is needed at that moment, in anticipation of

the extra data that will be needed soon. Further batching variations can be used by extending these

strategies.

Stubbing
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When data needs to be transferred across a distributed application, the distribution infrastructure

often uses general mechanisms for transfers. This results in transferring more data than is actually

required. By selectively "stubbing out" data links, only the data that is needed is transferred. Instance

variables of objects can be replaced with "stub" objects that respond to messages by transferring the

required data (if the fields are defined using an interface). Java also supports the transient
modifier, which can be used to eliminate unnecessary data transfers. Fields defined as transient are

not transferred when serialization is used, but this is a rather blunt technique that leads to all-or-

nothing transfers of fields.

Asynchronous activities

Distributed systems should make maximum use of asynchronous activities wherever possible. No part

of the application should be blocked while waiting for other parts of the application to respond, unless

the application logic absolutely requires such blocked activities.

In the following sections, we look at examples of applying some of these techniques to optimize

performance.[1]

[1] This chapter deals with general distributed application optimizations. Higher-level J2EE
optimizations are covered in Chapter 15 through Chapter 18.
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12.1 Tools

A number of tools for monitoring distributed applications are listed in Section 2.6 in Chapter 2 as well as in

Chapter 14 in Section 14.4. In addition, there is one other monitoring tool I often find useful when dealing

with distributed applications: a relay server . This is a simple program that accepts incoming socket

connections and simply relays all data on to another outgoing socket. Normally, I customize the server to

identify aspects of the application being monitored, but having a generic relay server as a template is useful,

so I present a simple one here:

package tuning.distrib;
   
import java.io.*;
import java.net.*;
   
class RelayServer
  implements Runnable
{
  //Simple input and output sockets
  Socket in_s;
  Socket out_s;
   
  //A string message to printout for logging identification
  String message;
   
  //Simple constructor just assigns the three parameters
  public RelayServer(Socket in, Socket out, String msg)
  {
    in_s = in;
    out_s = out;
    message = msg;
  }
   
  //The required method for Runnable.
  //Simply repeatedly reads from socket input, logs the read data
  //to System.out, and then relays that data on to the socket output
  public void run(  )
  {
    try
    {
      InputStream in = in_s.getInputStream(  );
      OutputStream out = out_s.getOutputStream(  );
      byte[  ] buf = new byte[8192];
      int len;
      for(;;)
      {
        len = in.read(buf);
        System.out.print(message);
        System.out.println(new String(buf, 0, len));
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        out.write(buf, 0, len);
      }
    }
    catch (Exception e)
    {
      System.out.print(message);
      System.out.println(" TERMINATED");
      System.out.flush(  );
      try{in_s.close(  );}catch(Exception e2){  }
      try{out_s.close(  );}catch(Exception e2){  }
    }
  }
   
  //Basic main(  ) takes two arguments, a host and port. All incoming
  //connections will be relayed to the given host and port.
  public static void main(String[  ] args)
  {
    ServerSocket srvr = null;
    try
    {
      //Start a server socket on the localhost at the given port 
      srvr = new ServerSocket(Integer.parseInt(args[1]));
      for(;;)
      {
        //Block until a connection is made to us.
        Socket sclient = srvr.accept(  );
        System.out.println("Trying to connect to " + args[0]);
        //Connect to the 'real' server
        Socket ssrvr = new Socket(args[0], Integer.parseInt(args[1]));
        System.out.println("Connected to " + args[0]);
        //Start two threads, one to relay client to server comms,
        //and one to relay server to client communications.
        (new Thread(new RelayServer(sclient, ssrvr,
            "CLIENT->SERVER"))).start(  );
        (new Thread(new RelayServer(ssrvr, sclient,
            "SERVER->CLIENT"))).start(  );
      }
    }
    catch (Exception e)
    {
      System.out.println("SERVER TERMINATED: " + e.getMessage(  ));
      try{srvr.close(  );}catch(Exception e2){  }
    }
  }
}

As listed here, the relay server simply accepts any incoming connections on the given port and relays all

communication to the outgoing server, while at the same time printing all communication to System.out.

To test the relay server using an HTTP connection, you could start it with the command line:

% java tuning.distrib.RelayServer someserver 80
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Then you could try connecting to someserver using a web browser with the URL http://localhost/some/path/.

This instructs the browser to connect to the relay server, and the relay server acts like a web server at

someserver (i.e., as if the URL had been http://someserver/some/path/).

 

http://localhost/some/path/
http://someserver/some/path/
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12.2 Message Reduction

Let's look at a simple example of reducing message calls. For later infrastructure comparison, we will use

three different distributed-application infrastructures: CORBA, RMI, and a proprietary distribution mechanism

using plain sockets and serialization (see the sidebar "Proprietary Communications Infrastructures"). In the

example, I present a simple server object that supports only three instance variables and three methods to

set those instance variables.

Proprietary Communications Infrastructures

You can easily create your own communication mechanisms by connecting two processes using

standard sockets. Creating two-way connections with Sockets and ServerSockets is very

straightforward. For basic communication, you decide on your own communication protocol,

possibly using serialization to handle passing objects across the communication channel.

However, using proprietary communications is not a wise thing to do and can be a severe

maintenance overhead unless your communication and distribution requirements are simple. I

occasionally use proprietary communications for testing purposes and for comparison against

other communications infrastructures, as I have done in this chapter.

In this chapter, I use a simple, generic communications infrastructure that automatically handles

remotely invoking methods: basically, a stripped-down version of RMI. I generate a server

skeleton and client proxy using reflection to identify all the public methods of the distributable

class. Then I copy the RMI communication protocol (which consists of passing method identifiers

and parameters from proxies to server objects identified by their own identifiers). The only other

item required is a lookup mechanism, which again is quite simple to add as a remotely accessible

table. The whole infrastructure is in one fairly simple class,

tuning.distrib.custom.Generate, available from this book's catalog page,

http://www.oreilly.com/catalog/javapt2/.

12.2.1 CORBA Example

The CORBA IDL definition is quite simple:

module tuning {
  module distrib {
    module corba {
      interface ServerObject {
        void setBoolean(in boolean flag);
        void setNumber(in long i);
        void setString(in string obj);
}; }; }; };

The server class implementation for this IDL definition is:

package tuning.distrib.corba;

http://www.oreilly.com/catalog/javapt2/
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public class ServerObjectImpl
  extends _ServerObjectImplBase
{
  boolean bool;
  int num;
  String string;
  public void setBoolean(boolean b) {bool = b;}
  public void setNumber(int i) {num = i;}
  public void setString(String s) {string = s;}
}

All the support classes are generated using the idlj utility. For JDK 1.3, this generates interfaces

ServerObject and ServerObjectOperations; skeleton classes _ServerObjectImplBase and

_ServerObjectStub; and server object assistant classes ServerObjectHelper and

ServerObjectHolder. In addition, I define a main( ) method that installs an instantiation of the server

object in the name service and then remains alive to serve client requests. All classes are defined in the

tuning.distrib.corba package.

My client simply resolves the server object from the name service, obtaining a proxy for the server, and then

calls the three methods and sets the three instance variables. For the test, I repeat the method calls a

number of times to obtain average measurements.

The optimization to reduce the number of method calls is extremely simple. Just add one method, which sets

all three instance variables in one call in the following IDL definition:

void setAll(in boolean flag, in long i, in string obj);

The corresponding method is added to the server class:

public void setAll(boolean b, int i, String s)
{
  bool = b; num = i; string = s;
}

The result is that the single method call requires one-third of the network transfers and takes one-third of

the time, compared to the triple method calls (see the later section Section 12.3).

12.2.2 RMI Example

The RMI implementation is essentially the same. The server-object interface (with optimized method) is

defined as:

package tuning.distrib.rmi;
   
import java.rmi.Remote;
import java.rmi.RemoteException;
   
public interface ServerObject
    extends Remote
{
  public abstract void setBoolean(boolean flag)
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    throws RemoteException;
  public abstract void setNumber(int i)
    throws RemoteException;
  public abstract void setString(String obj)
    throws RemoteException;
  public abstract void setAll(boolean flag, int i, String obj)
    throws RemoteException;
}

The RMI server-object implementation is the same as the CORBA version, except that it extends

UnicastRemoteObject , implements ServerObject, and defines the methods as throwing

RemoteException. All the support classes are generated using the rmic utility. For JDK 1.3, this generates

skeleton classes ServerObjectImpl_Skel and ServerObjectImpl_Stub. In addition, I define a main( )

method that sets a security manager and installs an instantiation of the server object in the name service.

All classes are defined in the tuning.distrib.rmi package.

Once again, the result is that the single method call requires one-third of the network transfers and takes

one-third of the time, compared to the triple method calls (see Section 12.3).

12.2.3 Proprietary Communications Layer

A distributed system can be defined with sockets and serialization. I have implemented a simple generator

that provides all the basic stub and skeleton behavior for a distributed application

(tuning.distrib.custom.Generate class; see the sidebar "Proprietary Communications

Infrastructures"). The server object is defined as before, with the interface:

package tuning.distrib.custom;
   
public interface ServerObject
{
  public abstract void setBoolean(boolean flag);
  public abstract void setNumber(int i);
  public abstract void setString(String obj);
  public abstract void setAll(boolean flag, int i, String obj);
}

This server-object implementation is the same as the CORBA version, though without the need to extend any

class: it implements only ServerObject.

Yet again, the result is that the single method call requires one-third of the network transfers and takes one-

third of the time, compared to the triple method calls (see the next section).
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12.3 Comparing Communications Layers

In the previous sections, we saw how reducing the number of messages led to a proportional reduction in the

time taken by the application to process those messages. Table 12-1 compares the performance between

the different communications layers used in those sections.

Table 12-1. Comparison of different communications layers

  Executing three separate methods Executing one combined method

  Time taken Bytes written Overhead time Time taken Bytes written Overhead time

CORBA 512% 291 194% 175% 106 66%

RMI 356% 136 181% 113% 54 56%

Proprietary 293% 40 80% 100% 20 31%

Here, I detail the measurements made for the three communications layers using the tests defined in the

"Message Reduction" section. The first three columns list measurements taken while executing the three

updating methods together. The second three columns list the measurements taken when the single

updating method updates the server object. Within each set of three columns, the first column lists the

round-trip time taken for executing the methods, with all times normalized to the proprietary

communications layer time in the combined method case. (The network round-trip overhead is a 10-

millisecond ping time in these tests.) The second column lists the number of bytes written from the client to

the server to execute one set of methods, and the third column lists the time taken to run the test with no

latency (i.e., client and server on the same machine), using the same time scale as the first column.

As you can see, CORBA has more overhead than RMI, which in turn has more overhead than the proprietary

system. For simple distributed applications such as those used in the examples, using a proprietary-

distribution mechanism is a big win. If you include optimized serialization, which can be easily done only for

the proprietary layer, the advantages would be even greater. (See Section 8.4 for examples of optimizing

serialization.) However, the proprietary layer requires more work to support the distribution mechanisms,

and the more complicated the application becomes, the more onerous the support is.

There is some evidence that CORBA scales significantly better than RMI as applications grow in any

dimension (number of clients, number of servers, number of objects, sizes of objects, etc.). RMI was

designed as a relatively simple distributed-application communications layer for Java whereas CORBA has a

much more complex architecture, aimed specifically at supporting large enterprise systems. Given this

difference, it is probably not surprising that CORBA has the better scaling characteristics. RMI uses

significantly more resources to support certain features such as distributed garbage collection, which can

impose heavy overhead at large scales. CORBA directly supports asynchronous communications at the

method-definition level by allowing methods to be defined as one-way message transfers.

It appears that for simple distributed applications, a proprietary communications layer is most efficient and

can be supported fairly easily. For distributed applications of moderate complexity and scale, RMI and

CORBA are similar in cost, though it is easier to develop with RMI. For large-scale or very complex

distributed applications, CORBA appears to win out in performance.
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12.4 Caching

To illustrate caching, I extend the server object used in the previous sections. I add three accessor methods

to access the three server instance variables:

public boolean getBoolean(  );
public int getNumber(  );
public String getString (  );

Now you can add a generic server-object proxy implementation that handles caching. The implementation is

essentially the same for all three communications layers:

package tuning.distrib.custom;
   
public class ServerObjectCacher
  implements ServerObject
{
  ServerObject stub;
  boolean b;
  boolean bInit;
  int i;
  boolean iInit;
  String s;
  boolean sInit;
   
  public ServerObjectCacher(ServerObject stub)
  {
    super (  );
    this.stub = stub;
  }
   
  public boolean getBoolean(  )
  {
    if (bInit)
      return b;
    else
    {
      b = stub.getBoolean(  );
      bInit = true;
      return b;
    }
  }
   
  public int getNumber(  )
  {
    if (iInit)
      return i;
    else
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    {
      i = stub.getNumber(  );
      iInit = true;
      return i;
    }
  }
   
  public String getString (  )
  {
    if (sInit)
      return s;
    else
    {
      s = stub.getString(  );
      sInit = true;
      return s;
    }
  }
   
  public void setBoolean(boolean flag)
  {
    bInit = false;
    stub.setBoolean(flag);
  }
   
  public void setNumber (int i)
  {
    iInit = false;
    stub.setNumber(i);
  }
   
  public void setString(String obj)
  {
    sInit = false;
    stub.setString(obj);
  }
   
  public void setAll(boolean flag, int i, String obj)
  {
    bInit = iInit = sInit = false;
    stub.setAll(flag, i, obj);
  }
}

As you can see, this is a simple proxy object. Each accessor is lazily initialized, and calling any updating

method resets the accessors so that they need to be reinitialized from the server. This ensures that any logic

executed on the server is not bypassed. If the server object can be changed by other client programs, you

need to add callback support for this caching proxy so that whenever the server object is changed, the client

proxy is reset.

Running access tests using this caching proxy is simple. The client code needs to be changed in only one

place; once the server object is resolved, the resolved proxy is wrapped in this caching proxy. Then it is used
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exactly as previously:

ServerObject obj = (ServerObject) Naming.lookup("/ServerObj");
//now wrap the server object with the caching proxy
obj = new ServerObjectCacher(obj);
//All the rest of the code is the same

The timing results are dependent on how many iterations you test of the uncached versus cached access.

After the first access, the cached proxy access is a simple local-variable access, whereas the uncached

access requires remote messaging. The difference in timings between these two access mechanisms is more

than a factor of 1000, so the more iterations of the tests you make, the bigger the overall relative difference

in timings you measure. For example, with accesses repeated 500 times, the average cached access takes

about 0.5% of the average uncached access time. Doubling the number of repeated accesses to 1000 times

doubles the time taken for the uncached access, but the cached access time is essentially the same, so the

time is now 0.25% of the average uncached access time.
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12.5 Batching I

One form of batching optimization is to combine multiple messages into one message. For the examples

we've examined so far, this is easily illustrated. Simply add a method to access all attributes of the server

object in one access:[2]

[2] The various communications layers handle distributed classes differently. This book is not a tutorial
on CORBA or RMI, so I have elected to show a standard Java representation of the required classes.

class ServerObjectDataCopy
{
  public boolean bool;
  public int number;
  public String string;
}
   
public class ServerObjectImpl
{
  public ServerObjectDataCopy getAll(  );
  ...

Using this method to batch the three access methods into one access makes the combined (uncached)

access of all the attributes three times faster.
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12.6 Application Partitioning

A simple but dramatic example of the benefits of application partitioning is to run two identical queries on a

collection. One query runs on the server and returns only the result of the query; the second query runs on

the client, requiring the collection to be copied to the client.[3]

[3] This example is based on a demonstration originally created by GemStone to show the benefits of
application partitioning using their application server.

It's pretty obvious that since the only difference between the two queries is the amount of data being copied

across the network, the second query that copies much more data is slower. For the example, I use a large

array of strings and create a query that returns that subset of strings that includes the query string, e.g.,

"el" is included in "hello" but not in "hi."

The query method is straightforward:

  public static String[  ] getQuery(String obj, String[  ] array)
  {
    Vector v = new Vector(  );
    for (int i = 0; i < array.length; i++)
      if (array[i].indexOf(obj) != -1)
        v.addElement(array[i]);
    String[  ] result = new String[v.size(  )];
    for (int i = 0; i < result.length; i++)
      result[i] = (String) v.elementAt(i);
    return result;
  }

To run the query as a server method, I declare one server method in a server object (i.e., in the

ServerObject interface):

public String[  ] getServerQuery(String obj);

This is also straightforward. The client calls getServerQuery( ) on the server proxy object and receives

the results. To run the query on the client, I declare a method (again in the ServerObject interface) giving

access to the String array containing the strings to be compared:

public String[  ] getQueryArray(  );

The server implementation of getServerQuery( ) is simple (declared in the class that implements the

ServerObject interface):

public String[  ]getServerQuery(String obj)
{
  return getQuery(obj, getQueryArray(  ));
}

The client query implementation is similarly straightforward (this could be declared in any client class that

has access to the proxy object, including the stub class[4]):
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[4] The client query method is logically defined in the client stub or the client proxy object defined for
the application. But technically, it is not forced to be defined in these classes and can be defined in any
client class that has access to the server proxy object.

public String[  ] getClientQuery(ServerObject serverProxy, String obj)
{
  return getQuery(obj, serverProxy.getQueryArray(  ));
}

In fact, there isn't much difference between the two method definitions. But when a test is run to compare

the two different queries, the results are startling. For my test, I used an array of 87,880 four-letter strings.

The test result produced five strings. Using RMI, the client query took 35 times longer than the server query,

and required the transfer of over 600,000 bytes compared to under 100 bytes for the server query. In

absolute times, the server query gave a reasonable response time of well under a second. The client query

produced an unacceptable response time of over 15 seconds, which would have users wondering what could

possibly be taking so long.

Application partitioning similarly applies to moving some of the "intelligence" of the server to the client to

reduce messaging to the server. A simple example is a client form where various fields need to be filled in.

Often, some of the fields need to be validated according to data format or ranges. For example, a date field

has a particular format, and the parts of the date field must fall in certain ranges (e.g., months from 1 to

12). Any such validation logic should be executed on the client; otherwise, you are generating a lot of

unnecessary network transfers. The example of date-field validation is perhaps too obvious. Most

applications have a widget customized to handle their date-field entries. But the general area of user-

interface presentation logic is one in which the logic should reside mostly on the client.
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12.7 Batching II

To illustrate a second type of batching, we modify the test query from the last section. The only difference is

in the choice of string to pass into the query so that the result of the query is a large set. In this test, the

result set is over 25,000 strings. The client query is still significantly longer than the server query, but even

the server query now takes several seconds in absolute time.

There is no reason to make the user wait for the whole result set to be transferred before displaying some of

the results. Altering the application to send results in batches is quite easy. You need to add an intermediate

object to hold the results on the server, which can send the results in batches as required.

public class QueryResultHolderImpl
  implements QueryResultHolder
{
  String[  ] results;
  int sentSoFar;
  public QueryResultHolderImpl(String[  ] results)
  {
    this.results = results;
    sentSoFar = 0;
  }
   
  public resultSize(  ){return results.length;}
  public nextBatch(int batchSize)
  {
    String[  ] batch = new String[batchSize];
    System.arraycopy(results, sentSoFar, batch, 0, batchSize);
    sentSoFar += batchSize;
    return batch;
  }
}

You also need to add methods in the server object to support this batching object:

public QueryResultHolder getBatchedServerQuery(String obj)
{
  return new QueryResultHolderImpl(getQuery(obj, getQueryArray(  )));
}

Now the client has the flexibility to request batches of results. The initial call to the query returns as fast as

possible, with minimal network-transfer overhead: only one small proxy object is sent back in reply to the

query. Note that the assumption here is that the QueryResultHolder object is not serialized when

returned; instead, a proxy to the real object is passed to the client. The actual QueryResultHolder object

holding the result set remains on the server. By wrapping the QueryResultHolder proxy, the optimization

can be made completely transparent.
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12.8 Low-Level Communication Optimizations

There are a number of optimizations you can make to the low-level communications infrastructure. These

optimizations can be difficult to implement, and it is usually easier to buy these types of optimizations than

to build them.

12.8.1 Compression

Where the distributed application is transferring large amounts of data over a network, the communications

layer can be optimized to support compression of the data transfers. In order to minimize compression

overhead for small data transfers, the compression mechanism should have a filter size below which

compression is not used for data packets.

The JDK documentation includes an extended example of installing a compression layer in the RMI

communications layer (the main documentation index page leads to RMI documentation under the

"Enterprise Features" heading). The following code illustrates a simple example of adding compression into a

communications layer. The bold type shows the extra code required:

void writeTransfer(byte[  ] transferbuffer, int offset, int len)
{
  if (len <= 0)
    return;
  int newlen = compress(transferbuffer, offset, len);
  communicationSocket.write(len);
  communicationSocket.write(newlen);
  communicationSocket.write(transferbuffer, offset, newlen);
  communicationSocket.flush(  );
}
   
byte[  ] readTransfer(  )
  throws IOException
{
  int len = communicationSocket.read(  );
  if (len <= 0)
    throw new IOException("blah blah");
  int newlen = communicationSocket.read(  );
  if (newlen <= 0)
    throw new IOException("blah blah");
  int readlen = 0;
  byte[  ] transferbuffer = new byte[len];
  int n;
  while(readlen < newlen)
  {
    //n = communicationSocket.read(transferbuffer, readlen, len-readlen);
    n = communicationSocket.read(transferbuffer, readlen, newlen-readlen);
    if (n >= 0)
      readlen += n;
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    else
      throw new IOException("blah blah again");
  }
  int decompresslen = decompress(transferbuffer, 0, newlen);
  if (decompresslen != len)
    throw new IOException("blah blah decompression");
  return transferbuffer;
}

12.8.2 Caching

Caching at the low-level communications layer is unusual and often a fallback position where the use of the

communications layer is spread too widely within the application to retrofit low-level caching in the

application itself. But caching is generally one of the best techniques for speeding up client/server

applications and should be used whenever possible, so you could consider low-level caching when caching

cannot be added directly to the application. Caching at the low-level communications layer cannot be

achieved generically. The following code illustrates an example of adding the simplest low-level caching in

the communications layer. The bold type shows the extra code required:

void writeTransfer(byte[  ] transferbuffer, int offset, int len)
{
  if (len <= 0)
    return;
  //check if we can cache this code
  CacheObject cacheObj = isCachable(transferbuffer, offset, len);
  if (cacheObj != null)
  {
    //Assume this is simple non-interleaved writes, so we can simply
    //set this cache obj as the cache to be read. The isCachable(  )
    //method must have filled in the cache, so it may include a
    //remote transfer if this is the first time we cached this object .
    LastCache = cacheObj;
    return;
  }
  else
  {
    cacheObj = null;
    realWriteTransfer(transferbuffer, offset, len);
  }
}
   
void realWriteTransfer(byte[  ] transferbuffer, int offset, int len)
{
  communicationSocket.write(len);
  communicationSocket.write(transferbuffer, offset, len);
  communicationSocket.flush(  );
}
   
byte[  ] readTransfer(  )
  throws IOException
{
  if (LastCache != null)
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  {
    byte[  ] transferbuffer = LastCache.transferBuffer(  );
    LastCache = null;
    return transferbuffer;
  }
  int len = communicationSocket.read(  );
  if (len <= 0)
    throw new IOException("blah blah");
  int readlen = 0;
  byte[  ] transferbuffer = new byte[len];
  int n;
  while(readlen < newlen)
  {
    n = communicationSocket.read(transferbuffer, readlen, len-readlen);
    if (n >= 0)
      readlen += n;
    else
      throw new IOException("blah blah again");
  }
  return transferbuffer;
}

12.8.3 Transfer Batching

Batching can be useful when your performance analysis indicates there are too many network transfers

occurring. The standard batching technique uses two cutoff values: a timeout and a data limit. The technique

is to catch and hold all data transfers at the batching level (just above the real communication-transfer level)

and send all data transfers together in one transfer. The batched transfer is triggered either when the

timeout is reached or when the data limit (which is normally the batch buffer size) is exceeded. Most

message-queuing systems support this type of batching. The following code illustrates a simple example of

adding batching to the communications layer. The bold type shows the extra code required:

//method synchronized since there will be another thread
//which sends the batched transfer if the timeout is reached
void synchronized writeTransfer(byte[  ] transferbuffer, int offset, int len)
{
  if (len <= 0)
    return;
  if (len >= batch.length - 4 - batchSize)
  {
    //batch is too full to take this chunk, so send off the last lot
    realWriteTransfer(batchbuffer, 0, batchSize);
    batchSize = 0;
    lastSend = System.currentTimeMillis(  );
  }
  addIntToBatch(len);
  System.arraycopy(transferbuffer, offset, batchBuffer, batchSize, len);
  batchSize += len;
}
   
void realWriteTransfer(byte[  ] transferbuffer, int offset, int len)
{
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  communicationSocket.write(len);
  communicationSocket.write(transferbuffer, offset, len);
  communicationSocket.flush(  );
}
   
//batch timeout thread method
void run(  )
{
  int elapsedTime;
  for(;;)
  {
    synchronized(this)
    {
      elapsedTime = System.currentTimeMillis(  ) - lastSend;
      if ((elapsedTime >= timeout) && (batchSize > 0))
      {
        realWriteTransfer(batchbuffer, 0, batchSize);
        batchSize = 0;
        lastSend = System.currentTimeMillis(  );
      }
    }
    try{Thread.sleep(timeout - elapsedTime);}catch(InterruptedException e){  }
  }
}
   
realReadTransfer(  )
  throws IOException
{
  //Don't socket read until the buffer has been completely used
  if (readBatchBufferlen - readBatchBufferOffset > 0)
    return;
   
  //otherwise read in the next batched communication
  readBatchBufferOffset = 0;
  int readBatchBufferlen = communicationSocket.read(  );
  if (readBatchBufferlen <= 0)
    throw new IOException("blah blah");
  int readlen = 0;
  byte[  ] readBatchBuffer = new byte[readBatchBufferlen];
  int n;
  while(readlen < readBatchBufferlen)
  {
    n = communicationSocket.read(readBatchBuffer, readlen,
                                 readBatchBufferlen-readlen);
    if (n >= 0)
      readlen += n;
    else
      throw new IOException("blah blah again");
  }
}
   
byte[  ] readTransfer(  )
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  throws IOException
{
  realReadTransfer(  );
  int len = readIntFromBatch(  );
  if (len <= 0)
    throw new IOException("blah blah");
  byte[  ] transferbuffer = new byte[len];
  System.arraycopy(readBatchBuffer, readBatchBufferOffset,
                         transferBuffer, 0, len);
  readBatchBufferOffset += len;
  return transferbuffer;
}

12.8.4 Multiplexing

Multiplexing is a technique where you combine multiple pseudo-connections into one real connection,

intertwining the actual data transfers so that they use the same communications pipe. This reduces the cost

of having many communications pipes (which can incur a heavy system load) and is especially useful when

you would otherwise be opening and closing connections a lot: repeatedly opening connections can cause

long delays in responses. Multiplexing can be managed in a similar way to the transfer-batching example in

the previous section.
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12.9 Distributed Garbage Collection

Distributed systems typically require distributed garbage collection. If a client holds a proxy to an object in

the server, it is important that the server does not garbage-collect that object until the client releases the

proxy (and it can be validly garbage-collected). Most third-party distributed systems, such as RMI, handle

distributed garbage collection, but that does not necessarily mean it will be done efficiently. The overhead of

distributed garbage collection and remote reference maintenance in RMI can slow network communications

by a significant amount when many objects are involved.

Of course, if you need distributed reference maintenance, you cannot eliminate it, but you can reduce its

impact. You can do this by reducing the number of temporary objects that may have distributed references.

The issue is considerably more complex in a multiuser distributed environment, and here you typically need

to apply special optimizations related to the products you use in order to establish your multiuser

environment. However, in all environments, reducing the number and size of the objects being used is

typically the most effective optimization.

The techniques described in Chapter 4 are relevant to reducing the number of objects in a distributed

system, and should be applied where possible.
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12.10 Databases

Databases all have particular features that allow performance optimizations. Usually, the database

documentation includes a section on optimizing performance, and that is the place to start.

Here are some hints applicable to many databases (note that JDBC optimizations are covered in Chapter

16):

Object databases are usually faster than relational databases for applications with strongly object-

oriented designs, especially when navigating object networks[5] is a significant part of the application.

[5] By "navigating object networks," I mean the activity of repeatedly accessing objects from one
object's instance variables to another's. The structure formed by the graph of objects reachable
through nested instance variable access is a network.

Relational databases are generally faster than object databases when dealing with large amounts of

basic data types, e.g., for objects whose object types are easily mapped into relational tables.

Application partitioning is important for database access. Reducing the amount of data transferred over

the network is often the key to good performance with databases.

Application partitioning applies to accessing relational databases. Most relational-database products

have the ability to execute server-side code in the form of stored procedures. Stored procedures are

precompiled SQL code that can be executed by the database server. Some relational-database

products can now run Java on the server too (e.g., Oracle).

Database queries are often faster if they are statically defined, i.e., defined and precompiled. For

relational databases, these take the form of prepared statements that can usually accept parameters.

Many object databases also support statically defined queries that can navigate object networks more

quickly using internal nodal access rather than executing methods.

Many databases support batching queries to reduce the number of network round trips, and these

batching features should be used to improve performance.

Transactional access to databases is slower than nontransactional access, so use the nontransactional

form whenever possible.
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12.11 Web Services

Web Services is yet another distributed computing architecture. As such, all of the general guidelines for

efficient client/server systems from previous sections also apply to improving the performance of Web

Services.

Table 12-2 lists the equivalent standards for Web Services, CORBA, and Java RMI.

Table 12-2. Equivalent standards for Web Services, CORBA, and Java RMI

Web Services CORBA RMI

Simple Object Access Protocol (SOAP) Remote procedure calling (IIOP)
Remote method invocation

(JRMP)

Universal Description, Discovery, and

Integration (UDDI)

ORB Name Service plus an IDL

data repository
JNDI plus all remote interfaces

Web Services Description Language

(WSDL)

CORBA Interface Definition

Language (IDL)

None needed (not language-

independent)

The simplicity of the Web Services model has both advantages and disadvantages for performance (see

Table 12-3). Web Services is too simple for many distributed application requirements. The many additional

features in CORBA and RMI are not whimsical; they are there in response to recognized needs. This implies

that as these needs are transferred to Web Services, the Web Services standards will evolve to support

additional functionality. From a performance point of view, this is problematic. Typically, the more

functionality that is added to the standard, the worse performance becomes because the architecture needs

to handle more and more options. So consider the performance impact of each function added to the Web

Services standards.

Table 12-3. Performance advantages and disadvantages of Web Services
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Feature Advantage Disadvantage

No distributed

garbage

collection

Reduces communication overhead

and resource management

otherwise required to keep track of

connected objects and signal

reclaimable objects.

Objects have to time out (which means they are

around longer than necessary) or are created for

each request (which means they are created more

often than necessary).

Transactions are

not directly

supported

Transactional overhead can be one

of the highest costs of short,

distributed communications,

equivalent to the network

communication latency. No

transaction support improves

performance.

If transactions are required, they have to be built on

top of Web Services, which means they will be less

efficient than transactions supported within Web

Services.

Uses HTTP, a

stateless protocol

Stateless protocols scale much

better than stateful protocols, as

the success of the Web proves.

Stateful requests are far more common. Only very

simple services can be stateless. State must be

maintained in the server, complicating server

processes and making them less efficient, or be

transferred with every request, increasing the

communication cost.

Uses XML for the

communication

format

Communications can be

compressed.

Data bloat means that communication overhead is

increased and marshalling/unmarshalling costs are

large.

No built-in

security

No security overhead makes for

faster performance. Security can be

efficiently added by wrapping the

Web Services server interface with

an authentication layer.

None really, as long as security is easy to add when

required.

12.11.1 Measuring Web Services Performance

As I write this, there is a market opportunity for Web Services profiling and measurement tools. You can use

web measurement tools, such as load-testing tools and web-server monitoring tools, but these provide only

the most basic statistics for Web Services, and are not normally sufficient to determine where bottlenecks

lie. For developers, this means that you cannot easily obtain a Web Services profiling tool, and consequently

breaking down end-to-end performance of a Web Service and finding bottlenecks may be challenging.

Currently the best way to measure the component parts of Web Services seems to be to explicitly add

logging points (see, for example, Steve Souza's Java Application Monitor at

http://www.JavaPerformanceTuning.com/tools/jamon/index.shtml). The major Web Services component

times to measure are the time taken by the server service, the time taken by the server marshalling, the

time taken by the client marshalling, and the time taken to transport the message. Ideally you would like to

measure times:

from the client starting the Web Service call1.

to when the SOAP message creation starts2.

to when the SOAP message creation ends (from 2, this is client marshalling time)3.

to when the transport layer starts sending the message4.

5.
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3.

4.

to when the server completes reception of the raw message (from 4, this is client-to-server transport

time)

5.

to when the message starts being decoded6.

to when the message finishes being decoded (from 6, this is server unmarshalling time)7.

to when the server method starts executing8.

to when the server method finishes executing (from 8, this is the time taken to execute the service)9.

to when the return SOAP message creation starts10.

to when the return SOAP message creation ends (from 10, this is server marshalling time)11.

to when the transport layer starts sending the message12.

to when the client completes reception of the raw message (from 12, this is server-to-client transport

time)

13.

to when the message starts being decoded14.

to when the message finishes being decoded (from 14, this is client unmarshalling time)15.

to when the client finishes the Web Service call16.

It is important (but difficult to determine) the time taken in marshalling and unmarshalling and the time

taken for network transportation, so that you know where to focus your tuning effort. Of course, if you are

worried only about the Web Service itself and you have arbitrary Web Service clients connecting to your

service, as is the expected scenario, then you are interested in points 4 to 13. Note that I include these

points because the client perception of your service is affected not only by how long the server takes to

process it but also by any delays in the server receiving the message, and because the time taken to receive

the message depends on the size of the returned message. Specifically, if the TCP data has arrived at the

server (or starts to arrive at the server if it requires several TCP packets) but the server does not start

reading because it is busy, this service wait time is an overhead that adds to the time taken to service the

request. In the same way, the larger the size of the returned data, the more time it may take to be

assembled on the client side before unmarshalling can begin, which again adds overhead to the total service

time.

In practice, what tends to get measured is either the full round-trip time (client to server and back) with no

breakdown, or only the server-side method call. But there are a number of different ways to infer some of

the intermediate measurements. The following sections detail various ways to directly measure or infer some

Web Service request times.

12.11.1.1 Measuring server-side method execution time

Server-side method execution is the simplest measurement to take. Simply wrap the original method with a

timer. For example, if the server method is getBlah(params), then rename it to _getBlah(params) and

implement getBlah(params) as:

public whatever getBlah(params){
  Thread t;
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  Log.start(t = Thread.currentThread(  ),"getBlah");
  whatever returnValue = getBlah(params);
  Log.end(t, "getBlah");
  return returnValue;
}

12.11.1.2 Measuring the full round-trip time

To measure the full round-trip time, employ the wrapping technique that we just described, but this time, in

the client.

12.11.1.3 Inferring round-trip overhead

To infer round-trip overhead, simply measure the time taken to execute a call to an "echo" Web Service, i.e.,

the Web Service implemented as:

public String echo(String val) {
  return val;
}

12.11.1.4 Inferring network communication time

You can infer the combined time taken to transfer the data to and from the server by executing the Web

Service in two configurations: across the network, and with both client and server executing on the local

machine. Be sure to use the numeric IP address in both cases to specify the service (i.e., 10.20.21.22 rather

than myservice.myhost.mycomp.com) to eliminate DNS lookup costs. Note that since this is likely to be

communication over the Internet, you can measure only average times or daily profile times. You should

repeat the measurements many times and either take the average or generate a profile of transport times at

different times of the day.

12.11.1.5 Inferring DNS lookup time

To find out how long DNS lookups are taking, compare times using the numeric IP address with time found

using the name for the service (i.e., using 10.20.21.22 versus using myservice.myhost.mycomp.com). DNS

lookup time can vary depending on network congestion and DNS server availability, so averages are helpful.

12.11.1.6 Inferring marshalling time

From the previous measurements, you can subtract network communication time, DNS time, and server-side

method execution time from the total round-trip time to obtain the remaining overhead time, which includes

marshalling and other actions such as object resolution, proxy method invocation, etc. The majority of this

overhead time is expected to come from marshalling.

If your Web Service is layered behind a web server that runs a Java servlet, you can add logging to the web

server layer in the doGet( ) and doPost( ) methods. Since these servlet methods are called before any

marshalling is performed, they provide more direct measurements of marshalling and unmarshalling times.

In addition to measuring individual calls, you should also load-test the Web Service, testing it as if multiple,
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separate clients were making requests. It is not difficult to create a client to run multiple requests to the

Web Service, but there are also free load-testing utilities that you can use, such as Load (available from

http://www.pushtotest.com).

Web Services Versus CORBA

Web Services provides a simple, language-independent client/server communication model. In a

sense, this means that Web Services is an alternative to CORBA, which strives for a similar

language-independent distributed architecture. At the core, this is true, but Web Services

standards target a simpler type of architecture and are already more widely accepted and used.

Table 12-2 shows how some of the standards map between Web Services, CORBA, and RMI

(note that RMI is not language-independent, so it is not really equivalent to the other two

technologies).

A more comprehensive comparison between these technologies as well as DCOM can be found in

the article "Web Services and Distributed Component Platforms" in the Web Services Journal,

Issue 3, Volume 1 (available at http://www.sys-con.com/webservices/article.cfm?id=110).

12.11.2 High-Performance Web Services

It is worth emphasizing that the previous sections of this chapter, as well as other chapters in this book, also

apply to performance-tuning Web Services. As with all distributed computing, caching is especially important

and should be applied to data and metadata such as WSDL (Web Services Description Language) files. The

generation and parsing of XML is a Web Service overhead that you should try to minimize by using

specialized XML processors. Additionally, a few techniques are particularly effective for high-performance

Web Services:

Service granularity

Load balancing

Asynchronous processing

These techniques are discussed in the following sections.

12.11.2.1 Service granularity

If you read the "Message Reduction" section, it should come as no surprise that Web Service methods should

have a large granularity. A Web Service should provide monolithic methods that do as much work as possible

rather than many methods that perform small services. The intention is to reduce the number of

client/server requests required to satisfy the client's requirements. For example, the classic example of a

Web Service is providing the current share price of a company quoted on a stock exchange:

public interface IStockQuoteService {
  public String getQuote(String exchangeSymbol);
  public String getSymbol(String companyName);
}

Amusingly, this "classic" example is bad; it is too fine-grained for optimal efficiency. If you wanted to create
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a Web Service that provides share price quotes, you are far better off providing a service that can return

multiple quotes in one request, as it is likely that anyone requesting one share price would also want others.

Here is a more efficient interface:

public interface IStockQuoteService {
  public String[  ] getQuotes(String[  ] exchangeSymbols);
  public String[  ] getSymbols(String[  ] companyNames);
  public String[  ] getQuotesIfResolved(String[  ] companyNames);
}

Note that there are three changes to this interface. First, as already explained, I have changed the methods

to accept and return an array of Strings so that multiple prices for multiple companies can be obtained in

one request. Second, I have not retained the previous interfaces that handle only one company at a time.

This is a deliberate attempt to influence the thinking of developers using the service. I want developers of

clients using this Web Service to immediately think in terms of multiple companies per request so that they

build their client more efficiently. As the server Web Services manager, this benefits me twice over: once by

influencing clients to be more efficient, ultimately giving my service a better reputation, and again by

reducing the number of requests sent to my Web Service. Note that if a client is determined to be inefficient,

he can still send one request per company, but at least I've tried my best to influence his thinking.

The third change I've made is to add a new method. The original interface had two methods: one to get

quotes using the company symbol and the other to get the company symbol using the company name. In

case you are unfamiliar with stock market exchanges, I should explain that a company may have several

recognizable names (for example, Big Comp., Big Company, Big Company Inc., The Big Company). The stock

exchange assigns one unique symbol to identify the company (for example, BIGC). The getSymbol( )

method provides a mechanism to get the unique symbol from one of the many alternative company names.

With only the two methods, if a client has a company name without the symbol, it needs to make two

requests to the server to obtain the share price: a request for the unique symbol and a request for the price.

By adding a third method that gives a price directly from one of the various valid company names, I've

provided the option to reduce requests for those clients that need this service.

Think through the service you provide, and try to design a service that minimizes client requests. Similarly, if

you are writing a Web Services client and the service provides alternative ways to get the information you

need, use the methods that minimize the number of requests required. Think in terms of individual methods

that do a lot of work and return a lot of information rather than the recommended object-oriented

methodology of many small methods that each do a little bit and combine to do a lot. Unfortunately, you

also need to be aware that if the interface is too complex, developers may use a competing Web Service

provider with a simpler (but less efficient) interface that they can more easily understand.

12.11.2.2 Load balancing

The most efficient architecture for maximal scalability is a load-balanced server system. This architecture

allows the client to connect to a frontend load balancer, which performs the minimum of activity and whose

main job is to pass the request onto one of several backend servers (or cluster of servers) that perform the

real work. Load balancing is discussed in more detail in Chapter 10.

Since Web Services already leverages the successful HTTP protocol, you can immediately use a web-server

load balancer without altering any other aspect of the Web Service. A typical load-balancing Web Service

would have the client connect to a frontend load balancer, which is a proxy web server, and have that load

balancer pass on requests to a farm of backend Web Services. The main alternative to this architecture is to

use round-robin DNS, where the DNS server supplies a different IP address from a list of servers for each
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request to resolve a hostname. The client automatically connects to a random server in a farm of replicated

Web Services.

A different load-balancing scheme is possible by controlling the WSDL document and sending WSDL

containing different binding addresses (that is, different URLs for the Web Service location). In fact, all three

of the load-balancing schemes mentioned here can be used simultaneously if necessary to scale the load-

balancing and reduce failure points in the system.

Where even load balancing is insufficient to provide the necessary throughput to efficiently handle all Web

Service requests, priority levels should be added to Web Service requests. Higher-priority requests should be

handled first, leaving lower-priority requests queued until server processing power is available.

12.11.2.3 Asynchronous processing

There are a number of characteristics of Web Services that suggest that asynchronous messaging may be

required to use Web Services optimally. HTTP is a best-efforts delivery service. This means that requests can

be dropped, typically for network congestion or server overload. The client Web Service will get an error in

this situation, but nevertheless needs to handle it and retry.

Traffic on the Internet follows a distinct usage pattern and regularly provides better service at certain times.

Web Service usage is likely to follow this pattern, as times of peak congestion are also likely to be peak Web

Service usage (unless your service is targeted at an off-peak activity). This means that at peak times the

average Web Service gets a double hit of a congested network and a higher number of requests reaching the

service.

Many client/server projects over the years have shown that if your application can put up with increased

latency, asynchronous messaging maximizes the throughput of the system. Requiring synchronous

processing over the Internet is a heavy overhead. Consider that synchronous calls are most likely to fail from

congestion when other synchronous calls are also failing. The response for a synchronous protocol, such as

TCP, is simply to send more attempts to complete the synchronous call. The repeated attempts only increase

congestion, as they occur in addition to all the new synchronous calls that are now starting up.

Consequently, supporting asynchronous requests, especially for large, complicated services, is a good design

option. You can do this using an underlying messaging protocol, such as JMS, or independently of the

transport protocol using the design of the Web Service. The latter option means that you need to provide an

interface that accepts requests and stores the results of processing the request for later retrieval by the

client. Similarly, the client of the Web Service should strive to use an asynchronous model where possible.

Finally, some Web Services combine other Web Services in some value-added way to provide what are called

aggregation services. Aggregation services should try to retrieve the data they require from other services

during off-peak hours in large, coarse-grained requests.
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12.12 Performance Checklist

Use a relay server to examine data transfers.

Reduce the number of messages transferred.

Cache data and objects to change distributed requests to local ones.

Batch messages to reduce the number of messages transferred.

Compress large transfers.

Partition the application so that methods execute where their data is held.

Multiplex communications to reduce connection overhead.

Stub out data links to reduce the amount of data required to be transferred.

Design the various components so that they can execute asynchronously from each other.

Anticipate data requirements so that data is transferred earlier.

Split up data so that partial results can be displayed.

Avoid creating distributed garbage.

Optimize database communications. Application partitioning is especially important with databases.

Use statically defined database queries.

Avoid database transactional modes if possible.

Use JDBC optimizations such as prepared statements, specific SQL requests, etc.

Try to break down the time to execute a Web Service into client, server, and network processing times,

and extract the marshalling and unmarshalling times from client and server processing.

Don't forget about DNS resolution time for a Web Service.

Try to load-balance high-demand Web Services or provide them asynchronously.

The granularity of a Web Service is important. For more scalable and better performing Web Services,

create coarser services that require fewer network requests to complete.
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Chapter 13. When to Optimize

Faster, better, cheaper-choose two of the above.

-Old engineering proverb

When developing an application, it is important to consider performance optimizations and apply them where

appropriate in the development cycle. Forgetting these optimizations (or getting them wrong) can be

expensive to correct later in development.[1] In this chapter, we follow the various stages of the full product

life cycle and consider when and why you might need to include some performance optimizations.

[1] When I talk about expense, I mean cost in both time and money.

Performance tuning is frequently a matter of tradeoffs. Occasionally, you have the wonderful situation that a

change to the application is better in every way: it provides better performance, cleaner code, and a more

maintainable product. But more often, the performance of parts of an application are interrelated. Tuning

one part of the application affects other parts, and not necessarily for the better. The more complicated the

application, the more often this is true. You should always consider how a particular performance change will

affect other parts of the application. This means that tuning can be a lengthy process simply because it must

be iterative. The full performance-tuning sequence (identifying the bottleneck, tuning, and then

benchmarking) is necessary to make sure that tuning one part of the application is not too detrimental to

another part.

Performance tuning at the analysis and design phases differs from performance tuning at the implementation

phase. Designing-in a performance problem usually results in a lot of trouble later on, requiring a large effort

to correct. On the other hand, coding that results in poor performance simply requires a tuning phase to

eliminate bottlenecks and is much simpler (and cheaper) to correct. As a rule of thumb, a performance

problem created (or left uncorrected) in one phase requires roughly five times as much effort to correct in

the following development phase. Leaving the problem uncorrected means that the effort required to correct

it snowballs, growing fivefold through each development phase (planning, analysis, schematic design,

technical design, construction, deployment, production).[2]

[2] The fivefold increase is an average across the phases. Studies of the costs of fixing uncorrected
problems have found that some phases have a higher cost than others.

Now on to the specifics. Before discussing when to optimize, I'll start with when you should not optimize.
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13.1 When Not to Optimize

At the code-writing stage, your emphasis should not be on optimizing: it should be entirely on functionality

and producing correct bug-free code. Apart from optimizations (such as canonicalizing objects) that are good

design, you should normally ignore performance while writing code. Performance tuning should be done after

the code is functionally correct. Alan Knight wrote:

If testing and documentation are inadequate, most people won't notice or care how fast a particular list

box updates. They'll have given up on the program before they ever got to that window.[3]

[3] Smalltalk Report, March-April 1996. This is a nice article about when and why to performance-
tune.

This is definitely a view to which I subscribe. Many implementation-level optimizations can make code more

complicated and difficult to read. Delay optimizing until the program is mostly functionally correct. But make

sure you have planned for a tuning phase.

I am not saying that you should create the whole application without considering performance until just

before deployment. That would be foolhardy. Performance should be considered and planned for at all

phases of the development process (especially design and architecture). You need to rule out designs that

lead to a badly performing application. Optimizations that are good design should be applied as early as

possible. When parts of the application are complete, they should be tuned. And benchmarks should be run

as soon as possible: they give a good idea of where you are and how much effort will be needed for the

tuning phase after code writing is mostly complete.
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13.2 Tuning Class Libraries and Beans

Most code can be categorized into one of two general types:

Application-specific code, normally used for one particular application. If this code is reused, it usually

provides only a skeleton that needs reimplementing. Occasionally, application-specific code is generic

enough to reuse in another application, but even then it usually needs some rewriting to make it more

generic.

Classes written specifically with reusability in mind. This type of code is usually referred to as class

libraries, frameworks, components, and beans. I refer to all of these together as reusable code.

The first type of code, application-specific code, is considerably easier to tune. You can run the application as

it is intended to be used, determine any bottlenecks, and successively tune away those bottlenecks.

Typically, 80% of the application time is spent in less than 20% of the code, and only 5% of the application

code actually needs to be changed during the tuning process.

The second type of code, reusable code, is much more difficult to tune. This code may be used in many

situations that could never be foreseen by the developers. Without knowing how the code will be used, it is

very difficult to create tests that appropriately determine the performance of reusable code. There is no truly

valid technique that can be applied. Even exhaustively testing every method is of little use (not to mention

generally impractical), since you almost certainly cannot identify useful performance targets for every

method. Well-tuned reusable code can have 95% of the code altered in some way by the tuning process.[4]

[4] I have not seen any studies that show this cost. Instead, I base it on my own impression from
examining early versions of various class libraries and comparing these classes with later versions. I
find that most methods in a random selection of classes are altered in some way that I can identify as
giving performance improvements.

The standard way to tune reusable code is to tune in response to identified problems. Usually the

development team releases alpha and beta versions to successively larger groups of testers: other team

developers, demo application developers, the quality-assurance team, identified beta testers, general beta

testers, and customers of the first released version (some of these groups may overlap). Each of these

groups provides feedback in identifying both bugs and performance problems. In fact, as we all know, this

feedback process continues throughout the lifetime of any reusable code. But the majority of bugs and

performance problems are identified by this initial list of users. This reactive process is hardly ideal, but any

alternative makes tuning reusable code very expensive. This is unlike bug testing, in which the quality of the

test suite and quality-assessment process makes a big difference to the reliability of the released version,

and is fully cost-effective.

There are several consequences to this reactive process. First, from the viewpoint of the developer using

reusable components, you need to be aware that first versions frequently have suboptimal performance.

Note that this does not imply anything about the quality of the software: it may have wonderfully

comprehensive features and be delightfully bug-free. But even in a large beta testing program with plenty of

feedback, there is unlikely to be sufficient time to tune the software and repeat the test and release

procedures. Getting rid of identified bugs rightfully takes precedence, and developers normally focus on the

(next) released version being as bug-free as possible.
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Second, for developers creating reusable code, the variety of applications testing the reusable code is more

important than the absolute number of those applications. Ten people telling you that method X is slow is

not as useful as two telling you that method X is slow and two telling you that method Y is slow.

A further consequence when developing reusable code is that to provide greater performance flexibility for

the users of those classes, you need to design more flexible method entry points to your classes. Providing

performance flexibility unfortunately clashes with the "defensive" programming that is (reasonably) used

when creating reusable classes. For example, a defensive developer creating a collection class based on an

array (e.g., java.util.Vector) might provide a constructor that accepts an array and copies its elements:

public class ArrayBasedCollection
{
  int arraySize;
  Object[  ] array;
  public ArrayBasedCollection(Object[  ] passedArray)
  {
    arraySize = passedArray.length;
    array = new Object[arraySize];
    System.arraycopy(passedArray, 0, array, 0, arraySize);
  }
  ...

The defensive developer always ensures that elements are copied into a new array so that no external object

retains a reference to the internal array and interrupts the logic of the class. This ensures that the new class

cannot be inadvertently corrupted. However, this provides inefficient performance. There will be cases where

the application coder has created the array specifically to hold the objects and will discard that array

immediately. Developing flexibly with performance in mind directs you to add an extra method that allows

the array to be used directly:

public class ArrayBasedCollection
{
  int arraySize;
  Object[  ] array;
  public ArrayBasedCollection(Object[  ] passedArray)
  {
    this(passedArray, true);
  }
  /**
   * If <copy> is true, the elements of <passedArray> are
   * copied into the a new underlying array in the collection.
   * If <copy> is false, the <passedArray> is assigned directly
   * as the underlying array. This is potentially dangerous:
   * the collection object can be corrupted if the <passedArray>
   * is altered directly by another object afterwards.
   */
  public ArrayBasedCollection(Object[  ] passedArray, boolean copy)
  {
    arraySize = passedArray.length;
    if (copy)
    {
      array = new Object[arraySize];
      System.arraycopy(passedArray, 0, array, 0, arraySize);
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    }
    else
      array = passedArray;
  }
  ...

This opens the collection object to potential corruption, but by retaining the original one-arg constructor, you

have reduced the chance that the two-arg constructor will be used accidentally. A developer looking quickly

for a constructor is likely to use the one-arg constructor, whereas a developer desperately searching through

the documentation for ways to reduce the number of copies made from several large arrays will be delighted

to discover the two-arg constructor.

Finally, perhaps the most significant way to create reusable code that performs well is for developers to be

well-versed in performance tuning. After any significant amount of performance tuning, many of the

techniques in this book can become second nature. Developers experienced in performance tuning can

produce reusable code that is further along the performance curve right from the first cut. Writing reusable

code is one of the few situations in which it is sometimes preferable to consider performance when first

writing the code.
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13.3 Analysis

The analysis phase of development encompasses a variety of activities that determine what functionality you

are going to build into your application. These activities include:

Specifying what the application needs to do (e.g., compress files, display graphic files of type, etc.)

Identifying major functions and business areas (e.g., compression, display; targeted to the area of

graphics files)

Planning generally how the application will work (e.g., read one or more files, use 2-Ronnies

compression if possible, etc.)

Prioritizing subsections (e.g., the compression component must be completed but can use an

alternative compression algorithm, the graphics types XYZ must be supported but the graphics types

ABC may be dropped until later, etc.)

Deciding whether to build or buy (e.g., are there available beans or classes to handle compression and

display? How much are they? How much will building our own cost? Do the purchasable ones provide

all essential features?)

Documenting the requirements

The analysis phase does not usually specify either the structure of the application or the technology (e.g.,

you might specify that the application uses a database, but probably not which database or even which type

of database). The analysis phase specifies what the application will do (and might do), not how it is done,

except in the most general terms.

Here are major performance-tuning considerations during the analysis phase:

Determining general characteristics of objects, data, and users (e.g., number of objects in the

application)

Specifying expected or acceptable performance boundaries (e.g., functionality X should take less than

M seconds)

Identifying probable performance limitations from the determined specifications (e.g., function Y is an

HTTP connection, and so is dependent on the quality of the network path and the availability of the

server)

Eliminating any performance conflicts by extending, altering, or restating the specifications (e.g., the

specification states query Z must always respond within N seconds, but this cannot be guaranteed

without altering the specification to provide an alternative default result)

Performance goals should be an explicit part of the analysis and should form part of the specification. The

analysis phase should include time to analyze the performance impacts of the requirements.

The general characteristics of the application can be determined by asking the following questions about the
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application:

How many objects will there be, and what are their sizes (average and distribution)? What is the total

amount of data being manipulated, and how are the manipulations expected to be performed

(database access, file access, object storage, etc.)?

What is a transaction for the application? If there are several types of transactions, define each type.

Include details such as the number of objects created, deleted, or changed; the duration of the

transactions (average and distribution); and expected transaction amounts (transactions per second),

both per person and for the system as a whole. Define how data is accessed and queried for, and how

often.

How many simultaneous users will use the application, and what level of concurrency is expected for

those simultaneous users? (Are they accessing the same resources, and if so, how many resources and

what type of access?)

What is the expected distribution of the application? This is, of course, mainly relevant for distributed

applications. This applies back to the last point, but focuses on the distributed resources that are

necessarily used simultaneously.

You can use the answers to these questions to provide an abstract model of the application. Applying this

abstract model to a generalized computer architecture allows you to identify any performance problems. For

example, if the application is a multiplayer game to be played across a network, a simple model of a network

together with the objects (numbers and sizes) that need to be distributed, the number of users and their

expected distributions, and possible patterns of play provide the information you need to identify whether

the specified application can run over the network. If, after including safety factors, the network can easily

cope with the traffic, that section of the application is validated. If the game is unplayable when you put in

minimum bandwidths of 56K (typical modem connection) and latency (network communication response

time) of 400 milliseconds, you need to reexamine the specifications.

This type of analysis is part of software performance engineering. The general technique for performance

tuning prior to actually testing the code (i.e., testing at the analysis and design phases) is to predict the

application performance based on the best available data.[5] This technique is covered in detail in the book

High Performance Client/Server by Chris Loosley and Frank Douglas (John Wiley & Sons).

[5] This is a scientific technique referred to as "successive approximation by the application of
empirically derived data." Another name for it is "educated guessing."

One of the most significant aspects to examine at the analysis phase is the expected performance gains and

drawbacks of distributed computing. Distributing sections of applications always implies some performance

drawback. After all, network communication is always slower than interprocess communication on the same

machine, and interprocess communication is always slower than component-to-component communication

within the same process. Good design usually emphasizes decoupling components, but good performance

often requires close coupling. These are not always conflicting requirements, but you do need to bear in

mind this potential conflict.

For distributed applications, distributed components should be coupled in such a way as to minimize the

communication between those components. The goal is to limit the number of messages that need to be

sent back and forth between components, as too many network message transfers can have a detrimental

effect on performance. Components engaged in extended conversations over a network spend most of their

time sitting idle, waiting for responses. For this type of situation, the network latency tends to dominate the

performance.
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A simple example, showing the huge difference that distribution performance can make to even a standalone

applet, indicates how important this aspect is. You might have thought that a standalone applet does not

need much analysis of its distributed components. Table 13-1 shows two development paths that might be

followed and illustrates how ignoring performance at the analysis stage can lead to performance problems

later.

Table 13-1. Contrasting development processes

Applet1 development Applet2 development

Distribution analysis: Applet is

distributed using a compressed JAR file.

Distribution analysis:

Applet2 is distributed using one or more compressed JAR files.

Because the download time may be significant for the expected

number of classes, the analysis indicates that the applet should

be engineered from the ground up, with minimizing download

time as a high priority. To this end, the specification is altered to

state that a small entry point functionality of the applet, with a

small isolated set of classes, will be downloaded initially to allow

the applet to start as quickly as possible. This initial functionality

should be designed to engage the user while the remainder of the

applet is downloaded to the browser in the background. The

applet could be downloaded in several sections, if necessary, to

ensure the user's waiting time is kept to a minimum. A secondary

priority is for the user to have no further explicit download waiting

time.

Applet1 functional analysis: Similar for

both.
Applet2 functional analysis: Similar for both.

Applet1 design: Simple.
Applet2 design: Requires careful thought about which classes

require the presence of other classes.

Applet1 coding: Similar for both. Applet2 coding: Similar for both.

Applet1 performance testing: Applet

takes far too long to download. User

testing indicates that 99% of users

abandon the web page before download

is complete and the applet can start.

Unpacking the JAR file and having

classes download individually makes the

situation even worse. Project may be

terminated, or a major (and costly)

rewrite of the applet design may be

undertaken to allow the applet to start

faster at the user's desktop.

Applet2 performance testing: Applet downloads and starts in

adequate time. Performance within the browser requires some

rounds of tuning.

Table 13-1 shows how important performance prediction can be. The analysis on the right saves a huge

amount on development costs. Of course, if not identified at the analysis phase, this aspect of performance

may be picked up later in some other phase of development, but the further away from the analysis phase it

is identified, the more expensive it is to correct.

Another consideration at the analysis stage is the number of features being specified. Sometimes "nice to
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have" features are thrown into the requirements at the analysis phase. Features seem to have an inverse

relationship to performance: the more features there are, the worse the performance or the more effort is

required to improve the performance. For good performance, it is always better to minimize the features in

the requirements or, at the very least, to specify that the design should be extensible to incorporate certain

nice-to-have features rather than to simply go ahead and include the features in the requirements.

One other important aspect that you should focus on during the analysis phase is the application's use of

shared resources. Try to identify all shared resources and the performance costs associated with forcing

unique access of shared resources. When the performance cost is shown to be excessive, you need to specify

alternative mechanisms to allow the efficient use of the shared resource. For example, if several parts of the

application may be simultaneously updating a file, then to avoid corruption, the updates may need to be

synchronized. If this potentially locks parts of the application for too long, an alternative, such as journaling,

might be specified. Journaling allows the different parts of the application to update separate dedicated log

files, and these logs are reconciled by another asynchronous part of the application.
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13.4 Design and Architecture

Many design-stage decisions affect performance. These include how long a transaction will be, how often

data or objects need to be updated, where objects will be located, whether they are persistent and how

persistency is achieved, how data is manipulated, how components interact, and how tightly coupled

subsystems are, as well as determining responses to errors, retry frequencies, and alternative routes for

solving tasks.

As I mentioned in the last section, the general technique for performance tuning during the analysis and

design phases is to predict performance based on the best available data.[6] During the design phase, a

great deal of prototype testing is possible, and all such tests should feed data back to help predict the

performance of the application. Any predictions indicating a problem with performance should be addressed

at the design phase, prior to coding. If necessary, it is better to revisit the analysis and alter specifications

rather than leave any indicated performance issues unresolved.

[6] See Loosley and Douglas.

At each stage, part of the design objective should be to predict the performance of the application. (Note

that when I refer to the design phase, I include both logical and physical design; physical design is often

called architecture.) The design phase usually includes determining the target platforms, and any predictions

must be tailored to the limitations of those platforms. This is especially important for embedded Java

systems (e.g., applets and servlets), environments where a specific nonstandard target VM must be used,

and where the target VM may be highly variable (i.e., is unknown). In all these cases, the target Java

runtime system performance cannot be inferred from using the latest standard VM, and performance

prediction must be targeted at the known system or at the worst-performing Java runtime system.

(Alternatively, the design phase may rule out some runtime systems as being unsupported by the

application.)

Any decoupling, indirection, abstraction, or extra layers in the design are highly likely to be candidates for

causing performance problems. You should include all these elements in your design if they are called for.

But you need to be careful to design using interfaces in such a way that the concrete implementation allows

any possible performance optimizations to be incorporated. Design elements that block, copy, queue, or

distribute also frequently cause performance problems. These elements can be difficult to optimize, and the

design should focus attention on them and ensure that they can either be replaced or that their performance

is targeted.[7] Asynchronous and background events can affect times unpredictably, and their effects need

to be clearly identified by benchmark testing.

[7] For example, in Chapter 10, we considered a load-balancing solution that included a queue. The
queue is a potential bottleneck, and care must be taken to ensure that the queue does not
unnecessarily delay requests as they pass through.

13.4.1 Shared Resources

Resources that must be shared by several users, processes, or threads are always a potential source of

bottlenecks. When a resource is shared, the resource usually requires its various sharers to use it one at a

time to avoid a conflict of states and corruption. During the design phase, you should try to identify all

shared resources, and predict what performance limitations they impose on the application. Be careful to

consider the fully scaled version of the application, i.e., with as many users, objects, files, network

http://lib.ommolketab.ir
http://lib.ommolketab.ir


connections, etc., as are possible according to the application specifications. Considering fully scaled versions

of the application is important because shared resources are highly nonlinear in performance. They usually

impose a gently decreasing performance at their bottleneck as the number of sharers increases, up to a

point at which there is a sudden and catastrophic decrease in performance as the number of sharers

increases further.

If the performance prediction indicates that a particular shared resource is likely to impose too high a

performance cost, alternative designs that bypass or reduce the performance cost of that shared resource

need to be considered. For example, multiple processes or threads updating a shared collection have to

synchronize their updates to avoid corrupting the collection. If this synchronized update is identified as a

performance problem, an alternative is to allow each process or thread to update its own collection, and

wrap the collections in another collection object that provides global access to all the collections. This

solution was illustrated in Section 10.4.2.

Failing to identify a shared resource at the design phase can be expensive. In some cases, a simple class

substitution of a redesigned class can reduce the performance drawback of the shared resource to

acceptable performance levels. But in many cases, a complete redesign of part or all of the application may

be needed to achieve adequate performance.

13.4.1.1 Transactions

The purpose of a transaction is to ensure consistency when using shared resources. If there are no possible

conflicts across sharers of those resources, there is no need for a transaction. Removing unnecessary

transactions is the simplest and most effective performance optimization for applications that include

transactions. So, if you do not need a transaction, do not use one. Most systems that provide transactions

usually have a "transactionless" mode, i.e., a way to access any shared resources without entering a defined

transaction. This mode normally has better performance than the transaction mode.

When transactions are absolutely necessary, your design goal should be to minimize the time spent in the

transaction. If transactions extend for too long and cause performance problems, a complete redesign of a

significant part of the application is often needed.

You also need to be aware of the shared resources used by the transacting system itself. Any system

providing transaction semantics to your application uses an internal set of shared resources: this is

necessary to ensure that the transactions are mutually consistent. These transaction-system internal shared

resources invariably have some product-specific idiosyncrasies that result in their being used more or less

efficiently. These idiosyncrasies can have a large effect on performance. Many products have a performance-

tuning section within their documentation, detailing how best to take advantage of idiosyncrasies in their

product (more usually termed "features").

Even where short transactions are designed into an application, the application may enter unexpectedly long

transactions in two common situations. The first situation is when bugs occur in the transaction, and the

second, when the user has control over the transaction. Because unintended long transactions can occur,

transactions should always have a timeout imposed on them: this is usually fairly easy to incorporate in Java

using a separate high-priority timeout thread.

A standard way to convert naturally long transactions into short ones is to maintain sets of changes, rather

like undo/redo logs. In this design pattern, changes are abstracted into separate objects, and ordered lists of

these changes can be "played." With this design pattern, the changes that occur in what would be a long

transaction are leisurely collected without entering the transaction, and then a short transaction rapidly

"plays" all the changes. This pattern cannot be used exactly as described if the precise time of a particular
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change is important. However, variations of this pattern can be applied to many cases.

13.4.1.2 Locking

Locking is a technique for ensuring access to a shared resource while maintaining coherence of state within

the shared resource. There are a variety of lock types, from exclusive (only one sharer has any type of

access) to various types of shared locks (allowing any of a set of sharers simultaneous access, or all sharers

access to a restricted set of capabilities of the shared resource, or both of these combined[8]).

[8] For example, one type of write-lock allows read access by multiple sharers to the shared resource
while restricting write access to just one sharer.

Locking can be expensive. Overhead includes the locking and unlocking overhead itself; the fact that locks

must be shared resources implying extra shared-resource considerations; the explicit serialization of

activities that result from using locks; and the possibility of deadlock when two sharers are simultaneously

trying to obtain a lock held by the sharer, causing both sharers to "freeze" activity (see Chapter 10 for a

concrete example).

These drawbacks mean you should consider locking only when the design absolutely requires it. For instance,

locking must be used when there is a requirement for definite deterministic noncorrupted access to a shared

resource. To illustrate: a bank account with no overdraft facilities must serialize access to the account and

ensure that each deposit and withdrawal takes place without any other activities legally occurring at the

same time. The balance accessed for display also needs to be accurate. You do not want to display a balance

of $100 at the ATM window, then have the ATM deny withdrawal of $50 because the actual balance is lower

due to a check for $55 being processed at the same time. From the bank's point of view, both transactions

might go though, and the bank is owed $5 from someone it did not want to lend to. Or the customer is given

the wrong information and suffers frustration. To avoid these two situations, locking is required.

Occasionally, locking improves performance by reducing the conflicts otherwise generated by simultaneous

access to a shared resource. Consider the situation in which objects are concurrently added to a collection.

You can define the addition operation to provide exclusive updates either by locking the update method or

by throwing an exception if the update is not exclusive. The lockable update method can be defined easily

with a synchronized method:

public synchronized add(Object o)
{
  unsynchronized_add(o);
}

The exception-throwing method would be a little more complex:

public add(Object o)
  throws InUseException
{
  //throws an InUseException if I am currently already in use
  setInUse(  );
  unsynchronized_add(o);
  setNotInUse(  );
}

The advantage of the second definition is that the locking overhead is avoided during the update.[9] This

definition is suitable for cases where there is unlikely to be much concurrent execution of the add( )
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method: the exception is not thrown very often. But when there are frequent simultaneous updates to the

collection, you will encounter the exception more often than not. For this latter situation, your performance

will be better if you use the first synchronized implementation of the add( ) method and explicitly serialize

the updates.

[9] In fact, the setInUse( ) method probably needs to be synchronized, so this pattern is useful only

for avoiding synchronizing methods that might take a long time. The long synchronization is replaced
by a short synchronization and a possible thrown exception.

13.4.1.3 Parallelism

For performance reasons, you should try to design parallelism into the application wherever possible. The

general guideline is to assume that you parallelize every activity. One of the tasks for the design phase,

then, is to identify what cannot be parallelized. This guideline is fairly cost-effective. It is always easy to

move from a parallelized design back to the nonparallelized version, since the nonparallelized version is

essentially a degenerate case of the more general version. But retrofitting parallelism to the application is

often considerably more difficult. Starting with an application designed to work without any parallelism and

trying to restructure it to add in parallelism can be extremely difficult and expensive.

Any parallelism designed into the application should take advantage of multiple processors. This can be

evaluated in the design phase by predicting the performance of the application on single- and multiple-CPU

machines.

Once the application has been designed to run with parallelism, you can decide at the implementation stage,

or possibly even at runtime, whether to use the parallelism. A low degree of parallelism (e.g., 5 threads, not

500 threads) almost always improves the performance of an application. But parallelism has overhead that

can swamp the advantages. The overhead comes from contention in trying to use shared resources and

delays from the communication needed for synchronization. Additional overhead comes from starting extra

threads and distributing and coordinating work between the threads (there may also be overhead from

caches that deal with twice the data throughput in the same space).

When designing the application to run activities in parallel, you need to focus on shared resources, especially

the time spent using these resources. Increasing the time spent exclusively using a shared resource

adversely affects all other activities using that resource. For example, the CPU is the most basic shared

resource. The more separate threads (and processes) using the CPU, the smaller the time slices allocated to

each thread relative to the time spent waiting to acquire the CPU by each thread. Consequently, the time

actually taken for computing any particular activity becomes longer, since this is the sum of the time slices

allocated to carry out the computation together with the sum of times waiting to gain a time slice.

And the situation is not linear, but exponential. Consider a CPU where 10% is currently used. If there is a

computation that normally takes five seconds when this CPU has no work, then as the CPU can currently

allocate 90% of its power to that computation, the computation will instead take just over 10% longer: the

actual expected time is 5/0.9 = 5.55 seconds.

If instead the CPU were 40% utilized (i.e., 60% available), the expected time for that computation would

instead be 5/0.6 = 8.3 seconds. Now look what happens to a 90% utilized CPU (10% available). The

expected time for the computation is now 5/0.1 = 50 seconds. And a 99% busy CPU is going to make this

computation take 500 seconds (see Table 13-2). You can see the need to keep spare capacity in the CPU to

avoid an exponential degradation in performance.
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Table 13-2. Theoretical computation time (single-threaded) depending on CPU availability

CPU used CPU available Computation time

0% used 100% available 5 seconds

10% used 90% available 5/0.9 = 5.55 seconds

40% used 60% available 5/0.6 = 8.3 seconds

90% used 10% available 5/0.1 = 50 seconds

99% used 1% available 5/0.01 = 500 seconds

You can also predict the effect threading can have if you can parallelize any particular calculation, even on a

single-CPU machine. If one thread does the calculation using 10% of the CPU in five seconds, and you can

fully parallelize the calculation, then two threads (ideally) each take half the time to do their half of the

calculation. Assuming that the calculation does not saturate the CPU when running,[10] then if the two

halves run together, each half takes 2.5 seconds on an unutilized CPU. But since there are two threads and

each thread takes 10% of the CPU, each thread sees only 90% availability of the CPU. This means that each

half calculation takes 2.5/0.9 = 2.8 seconds. Both calculations run at the same time (that is why the CPU has

double the utilization), so this is also the total time taken. Time-slicing adds some additional overhead, but

this will leave the expected time well below the three-second mark.

[10] CPU availability is indicated in the example since the calculation loads the CPU only by 10%;
presumably, there is some disk activity required by the calculation.

So even on a single-CPU machine, parallelizing this calculation enables it to run faster. This can happen

because the calculation considered here is not a pure CPU calculation: it obviously spends time doing some

I/O (perhaps a database query), and thus it can be parallelized effectively. If the calculation were number

crunching of some sort, the CPU utilization would be 100%, and parallelizing the calculation would actually

slow it down.

For example, suppose the number-crunching calculation took five seconds and caused a 100% CPU

utilization on an otherwise unworked machine. Running the same calculation on a 50% utilized machine

would take 5/0.5 = 10 seconds. So theoretically, if you can parallelize this calculation into two equal halves

running together on an otherwise unutilized machine, each half is allocated 50% of the CPU utilization. Each

takes half the time of the unparallelized calculation running on a 50% utilized machine (which we just

calculated to take 10 seconds), i.e., each parallelized half calculation takes 10/2 = 5 seconds, both running

simultaneously. So the total time taken is still five seconds, and there is no overall speedup. If you add in

the slight factor due to CPU time-slicing overhead, the total time increases beyond the five-second mark, so

it is actually slower to parallelize this calculation. This is what we should intuitively expect for any process

that already takes up all the CPU's power.

Now what about the multiple CPU case: do we get a benefit here? Well, for a two-CPU machine, the CPU

synchronization overhead may be 5% (this is normally an overestimate). In this case, each part of the

parallelized application effectively gets a 5% utilized CPU of its own. For the example, the expected times

taken are 2.5/0.95 = 2.63 seconds. And since the two threads are running in parallel, this is also the total

expected time taken. See Table 13-3.[11]

[11] In the case of the number-crunching calculation, you have the exact same calculation resulting in
2.63 seconds. So again, as you intuitively expect, the two-CPU machine lets the CPU-swamping
parallelized calculation take just over half the time of the original unparallelized version.

Table 13-3. Theoretical computation time depending on number of CPUs and non-CPU-bound

http://lib.ommolketab.ir
http://lib.ommolketab.ir


threads

  CPU used CPU available Computation time

1 CPU, 1 thread 10% 90% 5 seconds

1 CPU, 2 threads serialized 10%/thread 90%/thread 2.5 + 2.5 = 5 seconds

1 CPU, 2 threads parallelized 10%/thread 90%/thread max(2.5/0.9,2.5/0.9) = 2.8 seconds

2 CPUs, 2 threads parallelized 5%/CPU 95%/CPU max(2.5/0.95,2.5/0.95) = 2.6 seconds

However, CPU overhead is increased for each additional CPU, as they all have to synchronize with each

other. This means that almost another 5% utilization is added to the overhead of each CPU: in fact, Dan

Graham of IBM has determined that the overhead is multiplicative, so that if two CPUs each have a 5%

utilization (0.95 x 100% free) from CPU parallelism, then three CPUs each have a 9.75% utilization (0.95 x

0.95 x 100% free), and four CPUs each have a 14.26% utilization (0.95 x 0.95 x 0.95 x 100% free), and so

on. See Table 13-4.

Table 13-4. Theoretical computation time depending on number of CPUs and threads

  CPU used CPU available Computation time

1 CPU, 1 thread 0% 100% 100 seconds

2 CPUs, 2 threads parallelized 5%/CPU 95%/CPU 100/0.95/2 = 52.6 seconds

3 CPUs, 3 threads parallelized 9.75%/CPU 90.25%/CPU 100/0.9025/3 = 36.9 seconds

9 CPUs, 9 threads parallelized 34%/CPU 66%/CPU 100/0.66/9 = 16.8 seconds

10 CPUs, 10 threads parallelized 37%/CPU 63%/CPU 100/0.63/10 = 15.9 seconds

19 CPUs, 19 threads parallelized 60.3%/CPU 39.7%/CPU 100/0.397/19 = 13.26 seconds

20 CPUs, 20 threads parallelized 62.3%/CPU 37.7%/CPU 100/0.377/20 = 13.26 seconds

21 CPUs, 21 threads parallelized 64.2%/CPU 35.8%/CPU 100/0.358/21 = 13.30 seconds

30 CPUs, 30 threads parallelized 64.2%/CPU 22.6%/CPU 100/0.226/30 = 14.75 seconds

Clearly, there are diminishing returns from adding CPUs. In fact, at some point, adding CPUs actually makes

performance worse. For example, let's suppose our number-crunching application is fully parallelizable to

any number of CPUs, and that on a single unutilized CPU it takes 100 seconds. On a two-CPU machine, it

takes 100 seconds divided by 2 (the number of CPUs, which is how many parts you can parallelize the

calculation by) and then divided by 0.95 (the factor by which the CPU is utilized by the CPU parallelization

overhead), giving 52.6 seconds.

For three CPUs, this time is 100/(0.95 x 0.95 x 3) = 36.9 seconds. So far, so good. Now, let's move on to 20

CPUs. This works out as 100/(0.9519 x 20) = 13.26 seconds. But 21 CPUs takes 100/(0.9520 x 21) = 13.30

seconds, actually more time. In fact, for this particular sequence, 20 CPUs gives the minimum time. Beyond

that, the overhead of parallelizing CPUs makes things successively worse, and each additional CPU makes

the fully parallelized calculation take longer.

In addition, well before the 20th CPU was added, you reach a point where each additional CPU is not at all

cost-effective: 6 CPUs gave a value of 21.5 seconds for the calculation, 7 CPUs reduced that by only a couple

of seconds to 19.4 seconds. A 10% reduction in time does not justify the cost of an extra CPU.

The general calculation presented here applies to other shared resources too. In a similar way, you can
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determine the performance effects of adding other additional shared resources to the application and predict

whether the advantages will outweigh the disadvantages.

Note that these are all general predictions, useful for estimating the benefits of adding shared resources. The

actual tested results can sometimes differ dramatically. For example, parallelizing some searches can

provide a tenfold speedup on a single CPU because the increased variation in starting points of the solution

space means that the probability of one of the searches starting much nearer the solution is greatly

increased (see Section 10.9 in Chapter 10). But this is an exception. The cutoff where adding a shared

resource gives a useful speedup is usually quite small, so you can mostly assume that a little parallelizing is

good, but a lot of parallelizing is too much of a good thing.

All the calculations we made in this section assumed full load-balancing. Each thread (sharer) took exactly

the same share of time to complete its task, and thus the total time was that of any one sharer since they all

operated simultaneously. In reality, this is unlikely. If the sharers are unbalanced (as they usually are), the

sharer that takes the longest to complete its activity is the one limiting the performance of the system. And

the less balanced the various sharers, the worse the performance. This is extremely important as the

application scales across different workloads. An unbalanced workload means that one resource is used far

more intensively than others. It also means that all other parallel resources are being underutilized, and that

the overused resource is highly likely to be a performance bottleneck in the system.

13.4.1.4 Data parallelism

If you have a large amount of data that needs to reside on disk, a typical strategy for improving access and

searches of the data is to split up the data among many different files (preferably on separate disks). This is

known as partitioning the data. Partitioning the data provides support for parallel access to the data, which

takes advantage of I/O and CPU parallelism.

There are many data-partitioning schemes. Some of the more popular are:

Schema partitioning

Separates the data into logically distinct datasets and allocates each dataset to a separate file/disk.

Hash partitioning

Places data in multiple files/disks with location based on a hash function.

Range partitioning

Splits data into ranges, and each range is allocated a separate file/disk; for example, a-c in disk1, d-f

in disk2, etc.

Expression partitioning

Uses a logical expression to determine the mapping of data to file/disk. Unbalanced partitioning

requires refinement of the expression and repartitioning.

Round-robin partitioning

Allocates data to disks sequentially.

Partitioning schemes work best when used with indexes. Indexes also make searches much faster.

Although your design does not need to support a specific partitioning scheme, it should support partitioning

in general if it is relevant to your application.
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13.4.2 Scaling

The performance characteristics of an application vary with the number of different factors the application

can deal with. These variable factors can include the number of users, the amount of data dealt with, the

number of objects used by the application, etc. During the design phase, whenever considering performance,

you should consider how the performance scales as the load on the application varies. It is usually not

possible to predict (or measure) the performance for all possible variations of these factors. But you should

select several representative sets of values for the factors, and predict (and measure) performance for these

sets. The sets should include factors for when the application:

Has a light load

Has a medium load

Has a heavy load

Has a varying load predicted to represent normal operating conditions

Has spiked loads (where the load is mostly "normal" but occasionally spikes to the maximum

supported)

Consistently has the maximum load the application was designed to support

You need to ensure that your scaling conditions include variations in threads, objects, and users, and

variations in network conditions if appropriate. Measure response times and throughput for the various

different scenarios and decide whether any particular situation needs optimizing for throughput of the

system as a whole or for response times for individual users.

It is clear that many extra factors need to be taken into account during scaling. The tools you have for

profiling scaling behavior are fairly basic: essentially, only graphs of response times or throughput against

scaled parameters. It is typical to have a point at which the application starts to have bad scaling behavior:

the knee or elbow in the response-time curve. At that point, the application has probably reached some

serious resource conflict that requires tuning so that "nice" scaling behavior can be extended further. Clearly,

tuning for scaling behavior is likely to be a long process, but you cannot shortcut this process if you want to

be certain your application scales.[12]

[12] By including timer-based delays in the application code, at least one multiuser application has
deliberately slowed response times for low-scaled situations. The artificial delay is reduced or cut out
at higher scaling values. The users perceive a system with a similar response time under most loads.

13.4.3 Distributed Applications

The essential design points for ensuring good performance of distributed applications are:

Supporting asynchronous communications

Decoupling process activities from each other in such a way that no process is forced to wait for others

(using queues achieves this)

Supporting parallelism in the design of the workflows
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Determining the bottleneck in a distributed application requires looking at the throughput of every

component:

Client and server processes

Network transfer rates (peak and average)

Network interface card throughput

Router speed, disk I/O

Middleware/queuing transfer rates

Database access, update, and transaction rates

Operating-system loads

Tuning any component other than the current bottleneck gives no improvement. Peak performance of each

component is rarely achieved. You need to assume average rates of performance from the underlying

resource and expect performance based on those average rates.

Distributed applications tend to exaggerate any performance characteristics. So when performance is bad,

the application tends to slow significantly more than in nondistributed applications. The distributed design

aspects should emphasize asynchronous and concurrent operations. Typical items to include in the design

are:

Queues

Asynchronous communications and activities

Parallelizable activities

Minimized serialization points

Balanced workloads across multiple servers

Redundant servers and automatic switching capabilities

Activities that can be configured at runtime to run in different locations

Short transactions

The key to good performance in a distributed application is to minimize the amount of communication

necessary. Performance problems tend to be caused by too many messages flying back and forth between

distributed components. Bell's rule of networking applies: "Money can buy bandwidth, but latency is

forever."[13]

[13] Thomas E. Bell, "Performance of distributed systems," a paper presented at the ICCM Capacity
Management Forum 7, San Francisco, October 1993.

Unfortunately, communication overhead can be incurred by many different parts of a distributed application.

There are some general high-level guidelines:
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Allow the application to be partitioned according to the data and processing power. Any particular task

should be able to run in several locations, and the location that provides the best performance should

be chosen at runtime. Usually the best location for the task is where the data required for the task is

stored, as transferring data tends to be a significant overhead.

Avoid generating distributed garbage. Distributed garbage collection can be a severe overhead on any

distributed application.

Reduce the costs of keeping data synchronized by minimizing the duplication of data.

Reduce data-transfer costs by duplicating data. This conflicts directly with the last point, so the two

techniques must be balanced to find the optimal data duplication points.

Cache distributed data wherever possible.

Use compression to reduce the time taken to transfer large amounts of data.

13.4.4 Object Design

My advice for object design is to use interfaces and interface-like patterns throughout the code. Although

there are slightly higher runtime costs from using interfaces, that cost is well outweighed by the benefits of

being able to easily replace one object implementation with another. Using interfaces means you can design

with the option to replace any class or component with a faster one. Consider also where the design requires

comparison by identity or by equality and where these choices can be made at implementation time.

The JDK classes are not all designed with interfaces. Those JDK classes and other third-party classes that do

not have interface definitions should be wrapped by your own classes so that their use can be made more

generic. (Applications that need to minimize download time, such as applets, may need to avoid the extra

overhead that wrapping causes.)

Object creation is one significant place where interfaces fall down, since interfaces do not support

constructor declarations, and constructors cannot return an object of a different class. To handle object

creation in a way similar to interfaces, you should use the factory pattern. The factory design pattern

recommends that object creation be centralized in a particular factory method. So rather than calling new
Something( ) when you want to create an instance of the Something class, you call a method such as

SomethingFactory.getNewSomething( ), which creates and returns a new instance of the Something

class. Again, this pattern has performance costs, as there is the overhead of an extra method call for every

object creation, but the pattern provides more flexibility when it comes to tuning.

Design for reusable objects: do not unnecessarily throw away objects. The factory design pattern can help,

as it supports the recycling of objects. Canonicalize objects where possible (see Section 4.2.4). Keep in mind

that stateless objects can usually be safely shared, so try to move to stateless objects where appropriate.

Using stateless objects is a good way to support changing algorithms easily by implementing different

algorithms in particular types of objects. For example, see Section 9.2, where different sorting algorithms

are implemented in various sorting classes. The resulting objects can be interchanged whenever the sorting

algorithm needs to be varied.

Consider whether to optimize objects for update or access. For example, a "statistics-calculating" object

might update its average and standard deviation each time a value is added to it, thus slowing down updates

but making access of those statistics lightning-fast. Or, the object could simply store added values and
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calculate the average and standard deviation each time those statistics are accessed, making the update as

fast as possible, but increasing the time for statistics access.

13.4.5 Techniques for Predicting Performance

Predicting performance is the mainstay of performance tuning at the analysis and design stages. Often it is

the experience of the designers that steers design one way or another. Knowing why a particular design

element has caused bad performance in another project allows the experienced designer to alter the design

in just the right way to get good performance.

Some general guidelines can guide the application designer and avoid bad performance. In the following

sections we consider some of these guidelines.

13.4.5.1 Factor in comparative performance of operations

Different types of operations have widely varying execution times. Some design abstractions decouple the

type of intercomponent-communication mechanism from any specific implementation. The design allows the

intercomponent communication to be based on a local or remote call, which allows components to be placed

very flexibly. However, the performance of different types of calls varies hugely and helps define whether

some designs can perform fast enough.

Specifically, if local procedure calls have an average time overhead of one unit, a local interprocess call

incurs an overhead of about 100 units. On the same scale, a remote procedure call (RPC) on a local area

network takes closer to 1000 time units, and an RPC routed across the Internet likely takes over 10,000 time

units.

Applying these variations to the design and factoring the number of messages that components need to send

to each other may rule out some distributed architectures. Alternatively, the overhead predictions may

indicate that a redesign is necessary to reduce the number of intercomponent messages.

Note also that process startup overhead may need to be considered. For example, Common Gateway

Interface (CGI) scripts for HTTP servers typically need to be started for every message sent to the server.

For this type of design, the time taken to start up a script is significant, and when many scripts are started

together, this can slow down the server considerably. Similarly, if your design allows many thread startups

within short intervals, you need to determine whether the architecture can handle this, or if it may be a

better option to redesign the applications to use thread pools (see Section 10.7 in Chapter 10).

13.4.5.2 Consider the relative costs of different types of accesses and updates

Accesses and updates to system memory are always going to be significantly faster than accesses and

updates to other memory media. For example, reads from a local disk can be a thousand times slower than

memory access, and disk writes are typically half as fast as disk reads. Random access of disks is

significantly slower than sequential access.

Recognizing these variations may steer your design to alternatives you might otherwise not have considered.

For example, one application server that supports a shared persistent cache redesigned the persistent cache

update mechanism to take account of these different update times (the GemStone application server,

http://www.gemstone.com). The original architecture performed transactional updates to objects by writing

the changes to the objects on the disk, which required random disk access and updates. The modified
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architecture wrote all changes to shared memory as well as to a sequential journaling log file (for crash

recovery). Another asynchronous process handled flushing the changes from shared memory to the objects

stored on disk. Because disk navigation to the various objects was significant, this change in architecture

improved performance by completely removing that bottleneck from the transaction.

13.4.5.3 Use simulations and benchmarks

Ideally, you have a detailed simulation of your application that allows you to predict the performance under

any set of conditions. More usually, you have a vague simulation that has some characteristics similar to

your intended application. It is important to keep striving for the full detailed simulation to be able to predict

the performance of the application. But since your resources are limited, you need to project measurements

as close as possible to your target application.

You should try to include loads and delays in your simulation that approximate to the expected load of the

application. Try to acquire the resources your finished application will use, even if those resources are not

used in the simulation. For example, spawn as many threads as you expect the application to use, even if

the threads do little more than sleep restlessly.[14]

[14] Sleeping restlessly is calling Thread.sleep( ) in a loop, with the sleep time set to some value

that requires many loop iterations before the loop terminates. Other activities can be run intermittently
in the loop to simulate work.

Graphing the results from increasing various application-specific parameters allows you to predict the

performance of the application under a variety of conditions. It is worth checking vendor or standard

benchmarks if you need some really basic statistics, but bear in mind that those benchmarks seldom have

much relevance to a particular application.

13.4.5.4 Consider the total work done and the design overhead

Try stripping your design to the bare essentials or going back to the specification. Consider how to create a

special-purpose implementation that handles the specification for a specific set of inputs. This can give you

an estimate of the actual work your application will do. Now consider your design and look at the overhead

added by the design for each piece of functionality. This provides a good way to focus on the overhead and

determine if it is excessive.

13.4.5.5 Focus on shared resources

Shared resources almost always cause performance problems if they have not been designed to optimize

performance. Ensure that any simulation correctly simulates the sharing of resources, and use prediction

analyses such as those in Section 13.4.1.3 earlier in this chapter to predict the behavior of multiple objects

using shared resources.

13.4.5.6 Predict the effects of parallelism

Consider what happens when your design is spread over multiple threads, processes, CPUs, machines, etc.

This analysis can be quite difficult without a simulation and test bed, but it can help to identify whether the

design limits the use of parallelism.
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13.4.5.7 Assess the costs of data conversions

Many applications convert data between different types (e.g., between strings and numbers). From your

design, you should be able to determine the frequency and types of data conversions, and it is fairly simple

to create small tests that determine the costs of the particular conversions you are using. Don't forget to

include any concurrency or use of shared resources in the tests. Remember that external transfer of objects

or data normally includes some data conversions. The cost of data conversion may be significant enough to

direct you to alter your design.

13.4.5.8 Determine whether batch processing is faster

Some repeated tasks can be processed as a batch instead of one at a time. Batch processing can take

advantage of a number of efficiencies, such as accessing and creating some objects just once, eliminating

some tests for shared resources, processing tasks in optimal order, avoiding repeated searches, etc.

If any particular set of tasks could be processed in batch mode, consider the effect this would have on your

application and how much faster the processing could be. The simplest conceptual example is that of adding

characters one by one to a StringBuffer, as opposed to using a char array to add all the characters

together. Adding the characters using a char array is much faster for any significant number of characters.
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13.5 Tuning After Deployment

Tuning does not necessarily end at the development stage. For many applications such as agent applications,

services, servlets and servers, multiuser applications, enterprise systems, etc., there needs to be constant

monitoring of the application performance after deployment to ensure that no degradation takes place. In

this section, I discuss tuning the deployed application. This is mainly relevant to enterprise systems that are

being administered. Shrinkwrapped or similar software is normally tuned the same way as before

deployment, using standard profiling tools.

Monitoring the application is the primary tuning activity after deployment. The application should be built

with hooks that enable tools to connect to it and gather statistics and response times. The application should

be constantly monitored, and all performance logs retained. Monitoring should record as many parameters

as possible throughout the system, though clearly you want to avoid monitoring so much that the

performance of the running application is compromised by a significant amount. Of course, almost any act of

measuring a system affects performance. But the advantage of having performance logs normally pays off

enormously, and a few percent decrease in performance should be acceptable.

Individual records in the performance logs should include at least the following six categories:

Time (including offset time from a reference server)

User identifier

Transaction identifier

Application name, type, class, or group

Software component or subsystem

Hardware resource

A standard set of performance logs should be used to give a background system measurement and kept as a

reference. Other logs can be compared against that standard. Periodically, the standard should be

regenerated, as most enterprise applications change their performance characteristics over time. Ideally, the

standard logs can be automatically compared against the current logs, and any significant change in

behavior is automatically identified and causes an alert to be sent to the administrators. Trends away from

the standard should also trigger a notification; sometimes performance degrades slowly but consistently

because of a gradually depleting resource.

Administrators should note every single change to the system: every patch, every upgrade, every

configuration change, etc. These changes are the source of most performance problems in production.

Patches are cheaper short-term fixes than upgrades, but they usually add to the complexity of the

application and increase maintenance costs. Upgrades and rereleases are more expensive in the short term,

but cheaper overall.

Administrators should listen to users. Users are the most sensitive barometer of application performance.

However, you should double-check users' assertions. A user may be wrong, or might have hit a known

system problem or temporary administrative shutdown. Measure the performance yourself. Repeat the
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measurements several times and take averages and variations. Ensure that caching effects do not skew

measurements of a reported problem.

When looking for reasons why performance may have changed, consider any recent changes such as an

increase in the number of users, other applications added to the system, code changes on the client or

server, hardware changes, etc. In addition to user response time measurements, look at where the

distributed code is executing, what volumes of data are being used, and where the code is spending most of

its time.

Many factors can easily give misleading or temporarily different measurements to the application.

Distributed garbage collection may have cut in, system clocks may become unsynchronized, background

processes may be triggered, and relative processor power may change, causing obscure effects. Consider if

anyone else is using the processors, and if so, what they are doing and why.

You need to differentiate between:

Occasional sudden slowness, e.g., from background processes starting up

General slowness, perhaps reflecting that the application was not tuned for the current load, or that

the systems or networks are saturated

A sudden slowdown that continues, often the result of a change to the system

Each of these characteristic changes in performance indicates a different set of problems.
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13.6 More Factors That Affect Performance

The following sections discuss some aspects of the application that may not immediately strike you as part of

the performance of the application. But they do affect the user's perception of the application performance,

and so are relevant.

13.6.1 User Interface Usability

The application's user interface has a significant effect on the user's perception of performance. The time

required to navigate through the user interface to execute some functionality is seen by the user as part of

the application's response time. If window and menu navigation is difficult, performance is seen to be bad

(and, actually, it is bad).

The user interface should support the natural flow of the user's activity; otherwise, you are forcing the user

to perform less efficiently. Improving only the navigability of the user interface, even with no other changes

to the application, improves the perceived performance of an application.

13.6.2 Training

Training users to use the application is also a performance issue. Without proper training, users may not use

the application efficiently and may compare the application unfavorably with another application they are

comfortable with. Since they are comparing similar functionality, the user immediately focuses on the

differences. The main difference, of course, is the perceived performance.

The user never thinks he is untrained. He simply feels that executing some function in your application takes

forever, as he stumbles through menu options trying to find what he wants, fills in forms incorrectly, etc. The

result is a perception of bad performance.

Note that making help desks available is an essential part of the training program. Training is seldom so

thorough that all parts of the application are covered in enough detail, and it is also common for people to

forget some of their training. A help desk keeps the users from getting lost and giving up on the most

efficient route to solve their tasks.

13.6.3 Server Downtime

If people can't start a piece of software, they can get frustrated, but they don't normally view this as bad

performance. Most people would instead get annoyed at the quality of the software. But when servers are

not running, this can be perceived differently. Sometimes a server that isn't running is perceived as bad-

quality software, but sometimes it is seen as poor performance. If the server stops responding in the middle

of processing, this is invariably seen as slow performance. Consider your own response to a stalled download

from an HTTP server.

Avoiding server downtime is a robustness issue as well as a performance issue. Servers should be designed

to avoid unnecessary downtime and minimize necessary downtime. One issue when running servers is
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altering their configuration and patching them. If you need to stop a server from running while you make

changes, this affects its perceived performance. You must signal it to stop accepting requests and either wait

for current requests to terminate or forcibly terminate all requests; either way, this causes interruptions in

service to the clients.[15]

[15] Load-balancing products often provide features that allow server maintenance with minimum
downtime.

It is possible to design servers that can be reconfigured and patched with no downtime. Designing for

reconfiguration on the fly is easier. In this case, you typically have a configuration file. One common solution

is for the server to periodically test the timestamp of the configuration file and reread it if the timestamp

changes. This solution also provides good security (as presumably, the configuration file can be changed only

by authorized persons). Another solution is for the server to recognize and accept a particular signal as a

sign to reset its configuration. In most servers using this solution, the signal is an operating-system signal

that is trapped. However, Java does not support operating-system signal handling, so if you steer down this

path, you need either to install operating-system handlers yourself (using the Java native interface) or use

another communication mechanism, such as sockets. If you do use sockets, you need to consider security

aspects; you don't want unauthorized persons triggering a server reconfiguration.

Patching a running server is more complex. You need to provide some level of indirection on how the

request-processing classes (and all the classes they depend on) are loaded. The most basic solution is to use

the configuration file to list names of all classes. Then the server must be built using Class.forName( ) to

access and create any classes and instances. This way, providing a new version requires only changing the

class names in the configuration (in an atomic way to avoid corruption).

A more sophisticated solution is to use different ClassLoaders. Note that any particular class in Java is

identified by its package and class name and by its ClassLoader. It is possible to have classes with the

same package and class names loaded multiple times in the same VM (whether the implementation is the

same or different for those classes) using multiple ClassLoader instances. This is easiest in 1.2 and later,

where there is a proliferation of ClassLoaders. A useful classloader for this type of runtime patching is the

URLClassLoader:

//This method gets a new implementation of a RequestProcessor
//every time.
public RequestProcessor getNewRequestProcessor(  )
{
  URL[  ] urls = {new URL(...)};
  Class c = RequestServerMain.class;
  ClassLoader cl = c.getClassLoader(  );
  URLClassLoader xtra_cl = new URLClassLoader(urls , cl);
  c = xtra_cl.loadClass("RequestProcessor");
  RequestProcessor proc = (RequestProcessor) c.newInstance(  );
  return proc;
}
   
public void processRequest(Request aRequest, RequestProcessor proc)
{
  //Signal to get a new implementation of a request processor
  //by passing a null value in the <proc> variable
  if (proc =  = null)
    proc = getNewRequestProcessor(  );
  proc.processRequest(aRequest);
  ...
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}

In most cases, you will find that a customized classloader is the best solution, especially because you can

include consistency checking within that classloader, as well as ensuring atomicity of changes. You can even

provide unloading and loading of classes, which is probably the most sophisticated solution available for

runtime patching.
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13.7 Performance Planning

This chapter has described how to factor in performance at various stages of development. Integrating this

advice allows you to create a performance plan, as outlined in this section.

Specify performance requirements.

During the specification stage, the performance requirements of the application need to be defined.

This is not primarily a developer task. Your customers or business experts need to establish what

response time is acceptable for most functions the user will execute. It may be more useful to start by

specifying what response times will be unacceptable.

This task can be undertaken at a later stage of development. In fact, it can be simpler, if a prototype

has already been created, to use the prototype and other business information in specifying acceptable

responses. But do not neglect to specify these response-time requirements before starting any type of

implementation-level performance tuning (code tuning). If code tuning starts without performance

requirements, then goals are inadequately defined, and tuning effort will be wasted on parts of the

application that do not require tuning.

If your development environment is layered (e.g., application layer, component layer, technical

architecture layer), try to define performance specifications that map to each layer, so that each team

has its own set of performance targets to work on. If this is not possible, the performance experts will

need to be able to tune across all layers and interact with all teams.

1.

Include a performance focus in the analysis phase.

During the analysis stage, the main performance focus is to analyze the requirements for shared and

limited resources in the application (e.g., a network connection is both a shared and a limited

resource; a database table is a shared resource; threads are a limited resource). These are the

resources that will cost the most to fix later in development if they are not identified and designed

correctly at the outset. Analysis of data volume and load-carrying capacities of the components of the

system should also be carried out to determine the limitations of the system.

This task should fit in comfortably as part of the normal analysis stage. To be on the safe side, or to

highlight the requirement for performance analysis, you may wish to allocate 10% of planned analysis

time for performance analysis in this phase. The analysis team must be aware of the performance

impact of different design choices so that they do not miss aspects of the system that need analysis

(see the earlier Section 13.3). The analysis should be made in association with the technical

architecture analysis so that you end up with an architectural blueprint that clearly identifies

performance aspects.

2.

Require performance predictions from the design team.

Progressing from the analysis stage, the performance focus in the design phase should be on how

shared resources will be used by the application and on the performance consequences of the expected

physical architecture of the deployed application.

Ensure that the designers are aware of the performance consequences of different decisions by asking

3.
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for performance-impact predictions to be included with the normal design aspects. The external design

review should either include design experts familiar with the performance aspects of design choices, or

a secondary performance expert familiar with design should review the application design. If any

significant third-party products will be used (e.g., a middleware or database product), the product

vendor should have performance experts who can validate the design and identify any potential

performance problems. A 10% budget allocation for performance planning and testing highlights the

emphasis on performance. See the earlier Section 13.4.

The design should include reference to scalability both for users and for data/object volumes, the

amount of distribution possible for the application depending on the required level of messaging

between distributed components, and the transaction mechanisms and modes (pessimistic, optimistic,

required locks, durations of transactions and locks held). The theoretical limitation to the performance

of many multiuser applications is the amount and duration of locks held on shared resources. The

designers should also include a section on handling queries against large datasets, if that will be

significant for your application.

Create a performance-testing environment.

The performance task for the beginning of the development phase is setting up the performance-

testing environment. You need to:

Specify benchmark functions and required response times based on the specification.

Ensure that a reasonably accurate test environment for the system is available.

Buy or build various performance tools for your performance experts to evaluate, including

profiling tools, monitoring tools, benchmark harnesses, web loading, GUI capture/playback, or

other client emulation tools.

Ensure that the benchmark/performance-testing harness can drive the application with simulated

user and external driver activity.

Schedule regular, exclusive performance-testing time for the test environment: if the test

environment is shared, performance testing should not take place at the same time as other

activities.

Create reusable performance tests with reproducible application activity. Note that this is not QA:

the tests should not be testing failure modes of the system, only normal, expected activity.

Prepare the testing and monitoring environment. This is normally system-specific and usually

evolves as the testing proceeds. You will ultimately need to have performance-monitoring tools

or scripts that monitor the underlying system performance as well as providing statistics on

network and application performance (discussed further in Step 8).

Plan for code versioning and release from your development environment to your performance

environment, according to your performance test plan. (Note that this often requires a round of

bug-fixing to properly run the tests, and time restrictions usually mean that it is not possible to

wait for the full QA release, so plan for some developer support.)

4.

Test a simulation or skeleton system for validation.

Create a simulation of the system that faithfully represents the main components of the application.

The simulation should be implemented so that you can test the scalability of the system and determine

5.
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how shared resources respond to increased loads and at what stage limited resources start to become

exhausted or bottlenecked. The simulation should allow finished components to be integrated as they

become available. If budget resources are unavailable, skip the initial simulation, but start testing as

soon as sufficient components become available to implement a skeleton version of the system. The

targets are to determine response times and scalability of the system for design validation feedback as

early as possible.

If you have a "Proof of Concept" stage planned, it could provide the simulation or a good basis for the

simulation. Ideally, the validation would take place as part of the "Proof of Concept."

5.

Integrate performance logging.

Integrate performance logging into the application. This logging should be deployed with the released

application (see Step 8), so performance logging should be designed to be low-impact. Performance

logging should be added to all the layer boundaries: servlet I/O and marshalling; JVM server I/O and

marshalling; database access/update; transaction boundaries; and so on. Performance logging should

not produce more than one line of output to a log file per 20 seconds. It should be designed so that it

adds less than 1% of time to all application activity. Logging should be configurable to aggregate

variable amounts of statistics so that it can be deployed to produce one summary log line per

configurable time unit (e.g., one summary line every minute). Ideally, logging should be designed so

that the output can be analyzed in a spreadsheet, allowing for effective and easy-to-read aggregation

results. J2EE monitoring products are available that automatically integrate logging into J2EE servers

(see http://www.JavaPerformanceTuning.com/resources.shtml).

6.

Performance-test and tune using results.

During code implementation, unit performance testing should be scheduled along with QA. No unit

performance tuning is required until the unit is ready for QA. Unit performance tuning proceeds by

integrating the unit into the system simulation and running scaling tests with profiling.

It is important to test the full system or a simulation of it as soon as is feasible, even if many of the

units are incomplete. Simulated units are perfectly okay at an early stage of system performance

testing. Initially, the purpose of this system performance test is to validate the design and architecture

and identify any parts of the design or implementation that will not scale. Later, the tests should

provide detailed logs and profiles that will allow developers to target bottlenecks in the system and

produce faster versions of the application.

To support the later-stage performance testing, the test bed should be configured to provide

performance profiles of any JVM processes, including system and network statistics, in addition to

performance logging. Your performance experts should be able to produce JVM profiles and obtain and

analyze statistics from your target system.

The performance tests should scale to higher loads of users and data. Scale tests to twice the expected

peak load. Test separately:

Twice the peak expected throughput, together with the peak expected data volume and the peak

expected users.

Twice the peak expected data volume, together with the peak expected throughput and the peak

expected users.

Twice the peak expected users, together with the peak expected data volume and the peak

7.
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expected throughput.

User activity should be simulated as accurately as possible, but it is most important that data is

simulated to produce the expected real data variety; otherwise, cache activity can produce completely

misleading results. The numbers of objects should be scaled to reasonable amounts: this is especially

important for query testing and batch updates. Do not underestimate the complexity of creating large

amounts of realistic data for scalability testing.

Deploy with performance-logging features.

Performance-logging features should be deployed with the released application. Such logging provides

remote analysis and constant monitoring capabilities for the deployed application. Ideally, you should

develop tools that automatically analyze the performance logs. At minimum, the performance-log

analysis tools should generate summaries of the logs, compare performance against a set of reference

logs, and highlight anomalies.

Two other useful tools identify long-term trends in the performance logs and generate alerts when

particular performance measurements exceed defined ranges. A graphical interface for these tools is

also helpful.

8.
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13.8 Performance Checklist

Consider performance at each stage of the development cycle. Create a performance plan that

anticipates all the various performance issues that regularly crop up.

Plan for tuning phases.

Leave code tuning until after the code is functional and debugged.

Consider how a particular performance change will affect other parts of the application.

Identify performance limitations.

Eliminate performance conflicts.

Consider how the performance scales as the application scales.

Consider how the performance scales as the application load varies.

Determine the general characteristics of the application in the analysis and design phases.

Minimize the features in the requirements.

Specify performance boundaries and goals.

Consider the numbers, sizes, and sources of objects, data, and other parameters of the

application.

Create an abstract model of the application to identify any performance problems.

Design applets to engage the user as soon as possible.

Identify and focus on the performance costs of shared resources.

Target decoupling, indirection, abstraction, and extra layers in the design.

Predict the performance of design elements that block, copy, queue, or distribute.

Consider alternative designs that bypass or reduce high-performance costs.

Avoid transactions where possible.

Minimize transaction time where transactions are necessary.

Lock only where the design absolutely requires it.

Design parallelism into the application wherever possible. Identify what cannot be parallelized.
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Watch out for too much parallelism. There are diminishing returns from parallelism overhead.

Balance workloads. Unbalanced parallel activities may limit the performance of the system.

Split up the data among many different files (preferably on separate disks).

Support asynchronous communications.

Decouple activities so that no activity is unnecessarily blocked by another activity.

Minimize points where parallel activities are forced to converge.

Design for redundant servers and automatic switching capabilities.

Consider using batch processing.

Design more flexible method entry points to your classes to provide greater performance

flexibility when developing reusable code.

Partition distributed applications according to the data and processing power of components.

Minimize the communication between distributed components.

Avoid generating distributed garbage.

Reduce transfer costs by duplicating data.

Cache distributed data wherever possible.

Minimize the synchronization requirements of duplicated data.

Use compression to reduce transfer time.

Design objects so that they can be easily replaced by a faster implementation.

Use interfaces and interface-like patterns (e.g., the factory pattern).

Design for reusable objects.

Use stateless objects.

Consider whether to optimize objects for update or for access.

Minimize data conversions.

Minimize the number and size of developed classes for applications that need to minimize

download time.

Constantly monitor the running application.

Retain performance logs. Choose one set as your comparison standard.
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Monitor as many parameters as possible throughout the system.

Note every single change to the system. Changes are the most likely cause of performance

variations.

Listen to the application users, but double-check any reported problems.

Ensure that caching effects do not skew the measurements of a reported problem.

Make the user interface seem fast.

Train users to use the application efficiently.

Minimize server-maintenance downtime.

Implement a performance plan as an integral part of application design and development.
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Chapter 14. Underlying Operating System and Network Improvements

If you control the operating system and hardware where the application will be deployed, there are a number

of changes you can make to improve performance. Some changes are generic and affect most applications,

while some are application-specific. This chapter applies to most server systems running Java applications,

including servlets, where you usually specify (or have specified to you) the underlying system, and where

you have some control over tuning the system. Client and standalone Java programs are likely to benefit

from this chapter only if you have some degree of control over the target system, but some tips in the

chapter apply to all Java programs.

I don't cover operating-system and hardware tuning in any great detail, though I give basic tips on

monitoring the system. More detailed information on Unix systems can be obtained from the excellent

System Performance Tuning by Mike Loukides (O'Reilly). Another more specific book on Sun's Solaris

operating system is Sun Performance and Tuning by Adrian Cockcroft and Richard Pettit (Prentice Hall). A

couple of relevant Windows systems books are Windows NT Performance Monitoring, Benchmarking, and

Tuning by Mark T. Edmead and Paul Hinsberg (New Riders) and Windows NT Applications: Measuring and

Optimizing Performance by Paul Hinsberg (MacMillan Technical Publishing). Note that Macintoshes running

OS X should include the Unix tools I mention in this chapter.

It is usually best to target the operating system and hardware as a last tuning choice. Tuning the application

itself generally provides far more significant speedups than tuning the systems on which the application is

running. Application tuning also tends to be easier (though buying more powerful hardware components is

easier still and a valid choice for tuning). However, application and system tuning are actually

complementary activities, so you can get speedups from tuning both the system and the application if you

have the skills and resources.

Here are some general tips for tuning systems:

Constantly monitor the entire system with any monitoring tools available and keep records. This allows

you to get a background usage pattern and also lets you compare the current situation with situations

previously considered stable.

You should run offline work during off-hours only. This ensures that there is no extra load on the

system when the users are executing online tasks, and enhances performance of both online and

offline activities.

If you need to run extra tasks during the day, try to slot them into times with low user activity. Office

activity usually peaks at 9:00 A.M. and 2:30 P.M. and has a low between noon and 1:00 P.M. or at shift

changeovers. You should be able to determine the user-activity cycles appropriate to your system by

examining the results of normal monitoring. The reduced conflict for system resources during periods

of low activity improves performance.

You should specify timeouts for all processes under the control of your application (and others on the

system, if possible) and terminate processes that have passed their timeout value.

Apply any partitioning available from the system to allocate determinate resources to your application.

For example, you can specify disk partitions, memory segments, and even CPUs to be allocated to

particular processes.
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14.1 Hard Disks

In most cases, applications can be tuned so that disk I/O does not cause any serious performance problems.

But if, after application tuning, you find that disk I/O is still causing a performance problem, your best bet

may be to upgrade the system disks. Identifying whether the system has a problem with disk utilization is

the first step. Each system provides its own tools to identify disk usage (Windows has a performance

monitor, and Unix has the sar, vmstat, and iostat utilities.) At minimum, you need to identify whether

paging is an issue (look at disk-scan rates) and assess the overall utilization of your disks (e.g., performance

monitor on Windows, output from iostat -D on Unix). It may be that the system has a problem

independent of your application (e.g., unbalanced disks), and correcting this problem may resolve the

performance issue.

If the disk analysis does not identify an obvious system problem that is causing the I/O overhead, you could

try making a disk upgrade or a reconfiguration. This type of tuning can consist of any of the following:

Upgrading to faster disks

Adding more swap space to handle larger buffers

Changing the disks to be striped (where files are striped across several disks, thus providing parallel

I/O, e.g., with a RAID system)

Running the data on raw partitions when this is shown to be faster

Distributing simultaneously accessed files across multiple disks to gain parallel I/O

Using memory-mapped disks or files (see Section 14.1.3 later in this chapter)

If you have applications that run on many systems and you do not know the specification of the target

system, bear in mind that you can never be sure that any particular disk is local to the user. There is a

significant possibility that the disk being used by the application is a network-mounted disk. This doubles the

variability in response times and throughput. The weakest link, whether it is the network or the disk, is the

limiting factor in this case. And this weakest link will probably not even be constant. A network disk is a

shared resource, as is the network itself, so performance is hugely and unpredictably affected by other users

and network load.

14.1.1 Disk I/O

Do not underestimate the impact of disk writes on the system as a whole. For example, all database vendors

strongly recommend that the system swap files[1] be placed on a separate disk from their databases. The

impact of not doing so can decrease database throughput (and system activity) by an order of magnitude.

This performance decrease comes from not splitting the I/O of two disk-intensive applications (in this case,

OS paging and database I/O).

[1] The disk files for the virtual memory of the operating system; see the later section Section 14.3.

Identifying that there is an I/O problem is usually fairly easy. The most basic symptom is that things take
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longer than expected, while at the same time the CPU is not at all heavily worked. The disk-monitoring

utilities will also tell you that there is a lot of work being done to the disks. At the system level, you should

determine the average and peak requirements on the disks. Your disks will have some statistics that are

supplied by the vendor, including:

The average and peak transfer rates, normally in megabytes (MB) per second, e.g., 5MB/sec. From

this, you can calculate how long an 8K page takes to be transferred from disk; for example, 5MB/sec is

about 5K/ms, so an 8K page takes just under 2 ms to transfer.

Average seek time, normally in milliseconds (ms). This is the time required for the disk head to move

radially to the correct location on the disk.

Rotational speed, normally in revolutions per minute (rpm), e.g., 7200 rpm. From this, you can

calculate the average rotational delay in moving the disk under the disk-head reader, i.e., the time

taken for half a revolution. For example, for 7200 rpm, one revolution takes 60,000 ms (60 seconds)

divided by 7200 rpm, which is about 8.3 ms. So half a revolution takes just over 4 ms, which is

consequently the average rotational delay.

This list allows you to calculate the actual time it takes to load a random 8K page from the disk, this being

seek time + rotational delay + transfer time. Using the examples given in the list, you have 10 + 4 + 2 = 16

ms to load a random 8K page (almost an order of magnitude slower than the raw disk throughput). This

calculation gives you a worst-case scenario for the disk-transfer rates for your application, allowing you to

determine if the system is up to the required performance. Note that if you are reading data stored

sequentially on disk (as when reading a large file), the seek time and rotational delay are incurred less than

once per 8K page loaded. Basically, these two times are incurred only at the beginning of opening the file

and whenever the file is fragmented. But this calculation is confounded by other processes also executing I/O

to the disk at the same time. This overhead is part of the reason why swap and other intensive I/O files

should not be put on the same disk.

One mechanism for speeding up disk I/O is to stripe disks. Disk striping allows data from a particular file to

be spread over several disks. Striping allows reads and writes to be performed in parallel across the disks

without requiring any application changes. This can speed up disk I/O quite effectively. However, be aware

that the seek and rotational overhead previously listed still applies, and if you are making many small

random reads, there may be no performance gain from striping disks.

Finally, note again that using remote disks adversely affects I/O performance. You should not be using

remote disks mounted from the network with any I/O-intensive operations if you need good performance.

14.1.2 Clustering Files

Reading many files sequentially is faster if the files are clustered together on the disk, allowing the disk-head

reader to flow from one file to the next. This clustering is best done in conjunction with defragmenting the

disks. The overhead in finding the location of a file on the disk (detailed in the previous section) is also

minimized for sequential reads if the files are clustered.

If you cannot specify clustering files at the disk level, you can still provide similar functionality by putting all

the files together into one large file (as is done with the ZIP filesystem). This is fine if all the files are read-

only files or if there is just one file that is writeable (you place that at the end). However, when there is more

than one writeable file, you need to manage the location of the internal files in your system as one or more

grow. This becomes a problem and is not usually worth the effort. (If the files have a known bounded size,

you can pad the files internally, thus regaining the single file efficiency.)
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14.1.3 Cached Filesystems (RAM Disks, tmpfs, cachefs)

Most operating systems provide the ability to map a filesystem into the system memory. This ability can

speed up reads and writes to certain files in which you control your target environment. Typically, this

technique has been used to speed up the reading and writing of temporary files. For example, some

compilers (of languages in general, not specifically Java) generate many temporary files during compilation.

If these files are created and written directly to the system memory, the speed of compilation is greatly

increased. Similarly, if you have a set of external files that are needed by your application, it is possible to

map these directly into the system memory, thus allowing their reads and writes to be speeded up greatly.

But note that these types of filesystems are not persistent. In the same way the system memory of the

machine gets cleared when it is rebooted, so these filesystems are removed on reboot. If the system

crashes, anything in a memory-mapped filesystem is lost. For this reason, these types of filesystems are

usually suitable only for temporary files or read-only versions of disk-based files (such as mapping a CD-

ROM into a memory-resident filesystem).

Remember that you do not have the same degree of fine control over these filesystems that you have over

your application. A memory-mapped filesystem does not use memory resources as efficiently as working

directly from your application. If you have direct control over the files you are reading and writing, it is

usually better to optimize this within your application rather than outside it. A memory-mapped filesystem

takes space directly from system memory. You should consider whether it would be better to let your

application grow in memory instead of letting the filesystem take up that system memory. For multiuser

applications, it is usually more efficient for the system to map shared files directly into memory, as a

particular file then takes up just one memory location rather than being duplicated in each process. Note

that from SDK 1.4, memory-mapped files are directly supported from the java.nio package, as discussed

in Chapter 8. Memory-mapped files are slightly different from memory-mapped filesystems. A memory-

mapped file uses system resources to read the file into system memory, and that data can then be accessed

from Java through the appropriate java.nio buffer. A memory-mapped filesystem does not require the

java.nio package and, as far as Java is concerned, files in that filesystem are simply files like any others.

The operating system transparently handles the memory mapping.

The creation of memory-mapped filesystems is completely system-dependent, and there is no guarantee

that it is available on any particular system (though most modern operating systems do support this

feature). On Unix systems, the administrator needs to look at the documentation of the mount command

and its subsections on cachefs and tmpfs. Under Windows, you should find details by looking at the

documentation on how to set up a RAM disk, a portion of memory mapped to a logical disk drive.

In a similar way, there are products available that precache shared libraries (DLLs) and even executables in

memory. This usually means only that an application starts quicker or loads the shared library quicker, and

so may not be much help in speeding up a running system (for example, Norton SpeedStart caches DLLs and

device drivers in memory on Windows systems).

But you can apply the technique of memory-mapping filesystems directly and quite usefully for applications

in which processes are frequently started. Copy the Java distribution and all class files (all JDK, application,

and third-party class files) onto a memory-mapped filesystem and ensure that all executions and classload s

take place from that filesystem. Since everything (executables, shared libraries, class files, resources, etc.)

is already in memory, the startup time is much faster. Because only the startup (and classloading) time is

affected, this technique gives only a small boost to applications that are not frequently starting processes,

but can be usefully applied if startup time is a problem.
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14.1.4 Disk Fragmentation

When files are stored on disk, the bytes in the files are not necessarily stored contiguously: their storage

depends on file size and contiguous space available on the disk. This noncontiguous disk storage is called

fragmentation. Any particular file may have some chunks in one place, and a pointer to the next chunk that

may be quite a distance away on the disk.

Hard disks tend to get fragmented over time. This fragmentation delays both reads from files (including

loading applications into computer memory on startup) and writes to files. This delay occurs because the

disk header must wind on to the next chunk with each fragmentation, and this takes time.

For optimum performance on any system, it is a good idea to periodically defragment the disks. This reunites

files that have been split up so that the disk heads do not spend so much time searching for data once the

file-header locations have been identified, thus speeding up data access. Defragmenting may not be effective

on all systems, however.

14.1.5 Disk Sweet Spots

Most disks have a location from which data is transferred faster than from other locations. Usually, the closer

the data is to the outside edge of the disk, the faster it can be read from the disk. Most hard disks rotate at

constant angular speed. This means that the linear speed of the disk under a point is faster the farther away

the point is from the center of the disk. Thus, data at the edge of the disk can be read from (and written to)

at the fastest possible rate commensurate with the maximum density of data storable on disk.

This location with faster transfer rates is usually termed the disk sweet spot. Some (commercial) utilities

provide mapped access to the underlying disk and allow you to reorganize files to optimize access. On most

server systems, the administrator has control over how logical partitions of the disk apply to the physical

layout, and how to position files to the disk sweet spots. Experts for high-performance database systems

sometimes try to position the index tables of the database as close as possible to the disk sweet spot. These

tables consist of relatively small amounts of data that affect the performance of the system in a

disproportionately large way, so that any speed improvement in manipulating these tables is significant.

Note that some of the latest operating systems are beginning to include "awareness" of disk sweet spots,

and attempt to move executables to sweet spots when defragmenting the disk. You may need to ensure that

the defragmentation procedure does not disrupt your own use of the disk sweet spot.
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14.2 CPU

Java provides a virtual machine runtime system that is just that: an abstraction of a CPU that runs in

software. These virtual machines run on a real CPU, and in this section I discuss the performance

characteristics of those real CPUs.

14.2.1 CPU Load

The CPU and many other parts of the system can be monitored using system-level utilities. On Windows, the

task manager and performance monitor can be used for monitoring. On Unix, a performance monitor (such

as perfmeter) is usually available, as well as utilities such as vmstat. Two aspects of the CPU are worth

watching as primary performance points. These are the CPU utilization (usually expressed in percentage

terms) and the runnable queue of processes and threads (often called the load or the task queue). The first

indicator is simply the percentage of the CPU (or CPUs) being used by all the various threads. If this is up to

100% for significant periods of time, you may have a problem. On the other hand, if it isn't, the CPU is

underutilized, but that is usually preferable. Low CPU usage can indicate that your application may be

blocked for significant periods on disk or network I/O. High CPU usage can indicate thrashing (lack of RAM)

or CPU contention (indicating that you need to tune the code and reduce the number of instructions being

processed to reduce the impact on the CPU).

A reasonable target is 75% CPU utilization. This means that the system is being worked toward its optimum,

but that you have left some slack for spikes due to other system or application requirements. However, note

that if more than 50% of the CPU is used by system processes (i.e., administrative and operating-system

processes), your CPU is probably underpowered. This can be identified by looking at the load of the system

over some period when you are not running any applications.

The second performance indicator, the runnable queue, indicates the average number of processes or

threads waiting to be scheduled for the CPU by the operating system. They are runnable processes, but the

CPU has no time to run them and is keeping them waiting for some significant amount of time. As soon as

the run queue goes above zero, the system may display contention for resources, but there is usually some

value above zero that still gives acceptable performance for any particular system. You need to determine

what that value is in order to use this statistic as a useful warning indicator. A simplistic way to do this is to

create a short program that repeatedly does some simple activity. You can then time each run of that

activity. You can run copies of this process one after the other so that more and more copies are

simultaneously running. Keep increasing the number of copies being run until the run queue starts

increasing. By watching the times recorded for the activity, you can graph that time against the run queue.

This should give you some indication of when the runnable queue becomes too large for useful responses on

your system, and you can then set system threshold monitors to watch for that level and alert the

administrator if the threshold is exceeded. (One guideline from Adrian Cockcroft is that performance starts to

degrade if the run queue grows bigger than four times the number of CPUs.)

If you can upgrade the CPU of the target environment, doubling the CPU speed is usually better than

doubling the number of CPUs. And remember that parallelism in an application doesn't necessarily need

multiple CPUs. If I/O is significant, the CPU will have plenty of time for many threads.

14.2.2 Process Priorities
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The operating system also has the ability to prioritize the processes in terms of providing CPU time by

allocating process priority levels. CPU priorities provide a way to throttle high-demand CPU processes, thus

giving other processes a greater share of the CPU. If there are other processes that need to run on the same

machine but it doesn't matter if they were run more slowly, you can give your application processes a

(much) higher priority than those other processes, thus allowing your application the lion's share of CPU time

on a congested system. This is worth keeping in mind. If your application consists of multiple processes, you

should also consider the possibility of giving your various processes different levels of priority.

Being tempted to adjust the priority levels of processes, however, is often a sign that the CPU is

underpowered for the tasks you have given it.
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14.3 RAM

Maintaining watch directly on the system memory (RAM) is not usually that helpful in identifying

performance problems. A better indication that memory might be affecting performance can be gained by

watching for paging of data from memory to the swap files. Most current operating systems have a virtual

memory that is made up of the actual (real) system memory using RAM chips, and one or more swap files on

the system disks. Processes that are currently running are operating in real memory. The operating system

can take pages from any of the processes currently in real memory and swap them out to disk. This is known

as paging. Paging leaves free space in real memory to allocate to other processes that need to bring in a

page from disk.[2]

[2] The term swapping refers to moving entire processes between main memory and the swap file.
Most modern operating systems no longer swap processes; instead, they swap pages from processes.

Obviously, if all the processes currently running can fit into real memory, there is no need for the system to

swap out any pages. However, if there are too many processes to fit into real memory, paging allows the

system to free up system memory to run more processes. Paging affects system performance in many ways.

One obvious way is that if a process has had some pages moved to disk and the process becomes runnable,

the operating system has to pull back the pages from the disk before that process can be run. This leads to

delays in performance. In addition, both the CPU and the disk I/O subsystem spend time doing the paging,

reducing available processing power and increasing the load on the disks. This cascading effect involving

both the CPU and I/O can degrade the performance of the whole system in such a way that it may be difficult

to even recognize that paging is the problem. The extreme version of too much paging is thrashing, in which

the system is spending so much time moving pages around that it fails to perform any other significant work.

(The next step is likely to be a system crash.)

As with runnable queues (see Section 14.2), a little paging of the system does not affect performance

enough to cause concern. In fact, some paging can be considered good. It indicates that the system's

memory resources are being fully used. But at the point where paging becomes a significant overhead, the

system is overloaded.

Monitoring paging is relatively easy. On Unix, the utilities vmstat and iostat provide details as to the level of

paging, disk activity, and memory levels. On Windows, the performance monitor has categories to show

these details, as well as being able to monitor the system swap files.

If there is more paging than is optimal, the system's RAM is insufficient or processes are too big. To improve

this situation, you need to reduce the memory being used by reducing the number of processes or the

memory utilization of some processes. Alternatively, you can add RAM. Assuming that it is your application

that is causing the paging (otherwise, either the system needs an upgrade, or someone else's processes may

also have to be tuned), you need to reduce the memory resources you are using. Chapter 4 provides useful

recommendations for improving application-memory usage.

When the problem is caused by a combination of your application and others, you can partially address the

situation by using process priorities (see Section 14.2). The equivalent to priority levels for memory usage is

an all-or-nothing option, where you can lock a process in memory. This option is not available on all systems

and is more often applied to shared memory than to processes, but nevertheless it is useful to know. If this

option is applied, the process is locked into real memory and is not paged out at all. You need to be aware

that using this option reduces the amount of RAM available to all other processes, which can make overall

system performance worse. Any deterioration in system performance is likely to occur at heavy system
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loads, so make sure you extrapolate the effect of reducing the system memory in this way.
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14.4 Network I/O

At the network level, many things can affect performance. The bandwidth (the amount of data that can be

carried by the network) tends to be the first culprit checked. Assuming you have determined that bad

performance is attributable to the network component of an application, there are more likely causes for the

poor performance than network bandwidth. The most likely cause of bad network performance is the

application itself and how it is handling distributed data and functionality. I consider distributed-application

tuning in several chapters (notably Chapter 12), but this section provides lower-level information to assist

you in tuning your application and also considers nonapplication causes of bad performance.

The overall speed of a particular network connection is limited by the slowest link in the connection chain

and the length of the chain. Identifying the slowest link is difficult and may not even be consistent: it can

vary at different times of the day or for different communication paths. A network communication path can

lead from an application through a TCP/IP stack (which adds various layers of headers, possibly encrypting

and compressing data as well), then through the hardware interface, through a modem, over a phone line,

through another modem, over to a service provider's router, through many heavily congested data lines of

various carrying capacities and multiple routers with differing maximum throughputs and configurations, to a

machine at the other end with its own hardware interface, TCP/IP stack, and application. A typical web

download route is just like this. In addition, there are dropped packets, acknowledgments, retries, bus

contention, and so on.

Because so many possible causes of bad network performance are external to an application, one option you

can consider including in an application is a network speed-testing facility that reports to the user. This

should test the speed of data transfer from the machine to various destinations: to itself, to another machine

on the local network, to the Internet service provider, to the target server across the network, and to any

other destinations appropriate. This type of diagnostic report can tell your users that they are obtaining bad

performance from something other than your application. If you feel that the performance of your application

is limited by the actual network communication speed, and not by other (application) factors, this facility will

report the maximum possible speeds to your users (and put the blame for poor network performance outside

your application, where it belongs).

14.4.1 Latency

Latency is different from the load-carrying capacity (bandwidth) of a network. Bandwidth refers to how much

data can be sent down the communication channel for a given period of time (e.g., 64 kilobits per second)

and is limited by the link in the communication chain that has the lowest bandwidth. The latency is the

amount of time a particular data packet takes to get from one end of the communication channel to the

other. Bandwidth tells you the limits within which your application can operate before the performance

becomes affected by the volume of data being transmitted. Latency often affects the user's view of the

performance even when bandwidth isn't a problem. For example, on a LAN, latency might be 10

milliseconds. In this case, you can ignore latency considerations unless your application is making a large

number of transmissions. If your application is making a large number of transmissions, you need to tune

the application to reduce the number of transmissions being made. (That 10 ms overhead added to every

transmission can add up if you just ignore it and treat the application as if it were not distributed.)

In most cases, especially Internet traffic, latency is an important concern. You can determine the basic

round-trip time for data packets from any two machines using the ping utility.[3] This utility provides a
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measure of the time it takes a packet of data to reach another machine and be returned. However, the time

measure is for a basic underlying protocol packet (ICMP packet) to travel between the machines. If the

communication channel is congested and the overlying protocol requires retransmissions (often the case for

Internet traffic), one transmission at the application level can actually be equivalent to many round trips.

[3] ping may not always give a good measure of the round-trip time because ICMP has a low priority in
some routers.

If, for instance, the round-trip time is 400 ms (not unusual for an Internet link), this is the basic overhead

time for any request sent to a server and the reply to return, without even adding any processing time for

the request. If you are using TCP/IP and retransmissions are needed because some packets are dropped

(TCP automatically handles this as needed), each retransmission adds another 400 ms to the request

response time. If the application is conversational, requiring many data transmissions to be sent back and

forth before the request is satisfied, each intermediate transmission adds a minimum of 400 ms of network

delay, again without considering TCP retransmissions. The time can easily add up if you are not careful.

It is important to be aware of these limitations. It is often possible to tune the application to minimize the

number of transfers by packaging data together, caching, and redesigning the distributed-application

protocol to aim for a less conversational mode of operation. At the network level, you need to monitor the

transmission statistics (using the ping and netstat utilities and packet sniffers) and consider tuning any

network parameters that you have access to in order to reduce retransmissions.

14.4.2 TCP/IP Stacks

The TCP/IP stack is the section of code that is responsible for translating each application-level network

request (send, receive, connect, etc.) through the transport layers down to the wire and back up to the

application at the other end of the connection. Because the stacks are usually delivered with the operating

system and performance-tested before delivery (since a slow network connection on an otherwise fast

machine and fast network is pretty obvious), it is unlikely that the TCP/IP stack itself is a performance

problem.

Some older versions of Windows TCP/IP stacks, both those delivered with the OS and

others, had performance problems, as did some versions of TCP/IP stacks on the

Macintosh OS (up to and including System 7.1). Stack performance can be difficult to

trace. Because the TCP/IP stack is causing a performance problem, it affects all

network applications running on that machine. In the past I have seen isolated

machines on a lightly loaded network with an unexpectedly low transfer speed for FTP

transfers compared to other machines on the same network. Once you suspect the

TCP/IP stack, you need to probe the speed of the stack. Testing the loopback address

(127.0.0.0) may be a good starting point, though this address may be optimized by

the stack. The easiest way to avoid the problem is to ensure you are using recent

versions of TCP/IP stacks.

In addition to the stack itself, stacks include several tuneable parameters. Most of these parameters deal

with transmission details beyond the scope of this book. One parameter worth mentioning is the maximum

packet size. When your application sends data, the underlying protocol breaks the data into packets that are

transmitted. There is an optimal size for packets transmitted over a particular communication channel, and

the packet size actually used by the stack is a compromise. Smaller packets are less likely to be dropped,

but they introduce more overhead, as data probably has to be broken up into more packets with more

header overhead.
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If your communication takes place over a particular set of endpoints, you may want to alter the packet sizes.

For a LAN segment with no router involved, the packets can be big (e.g., 8KB). For a LAN with routers, you

probably want to set the maximum packet size to the size the routers allow to pass unbroken. (Routers can

break up the packets into smaller ones; 1500 bytes is the typical maximum packet size and the standard for

Ethernet. The maximum packet size is configurable by the router's network administrator.) If your

application is likely to be sending data over the Internet and you cannot guarantee the route and quality of

routers it will pass through, 500 bytes per packet is likely to be optimal.

14.4.3 Network Bottlenecks

Other causes of slow network I/O can be attributed directly to the load or configuration of the network. For

example, a LAN may become congested when many machines are simultaneously trying to communicate

over the network. The potential throughput of the network could handle the load, but the algorithms to

provide communication channels slow the network, resulting in a lower maximum throughput. A congested

Ethernet network has an average throughput approximately one-third the potential maximum throughput.

Congested networks have other problems, such as dropped network packets. If you are using TCP, the

communication rate on a congested network is much slower as the protocol automatically resends the

dropped packets. If you are using UDP, your application must resend multiple copies for each transfer.

Dropping packets in this way is common for the Internet. For LANs, you need to coordinate closely with

network administrators to alert them to the problems. For single machines connected by a service provider,

there are several things you can do. First, there are some commercial utilities available that probe your

configuration and the connection to the service provider, suggesting improvements. The phone line to the

service provider may be noisier than expected: if so, you also need to speak to the phone line provider. It is

also worth checking with the service provider, who should have optimal configurations they can

demonstrate.

Dropped packets and retransmissions are a good indication of network congestion problems, and you should

be on constant lookout for them. Dropped packets often occur when routers are overloaded and find it

necessary to drop some of the packets being transmitted as the router's buffers overflow. This means that

the overlying protocol will request the packets to be resent. The netstat utility lists retransmission and other

statistics that can identify these sorts of problems. Retransmissions may indicate that the maximum packet

size is too large.

14.4.4 DNS Lookups

Looking up network addresses is an often-overlooked cause of bad network performance. When your

application tries to connect to a network address such as foo.bar.something.org (e.g., downloading a web

page from http://foo.bar.something.org), your application first translates foo.bar.something.org into a four-

byte network IP address such as 10.33.6.45. This is the actual address that the network understands and

uses for routing network packets. The way this translation works is that your system is configured with some

seldom-used files that can specify this translation, and a more frequently used Domain Name System (DNS)

server that can dynamically provide you with the address from the given string. DNS translation works as

follows:

The machine running the application sends the text string of the hostname (e.g.,

foo.bar.something.org) to the DNS server.

1.

The DNS server checks its cache to find an IP address corresponding to that hostname. If the server

does not find an entry in the cache, it asks its own DNS server (usually further up the Internet domain-

2.
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name hierarchy) until ultimately the name is resolved. (This may be by components of the name being

resolved, e.g., first .org, then something.org, etc., each time asking another machine as the search

request is successively resolved.) This resolved IP address is added to the DNS server's cache.

2.

The IP address is returned to the original machine running the application.3.

The application uses the IP address to connect to the desired destination.4.

The address lookup does not need to be repeated once a connection is established, but any other

connections (within the same session of the application or in other sessions at the same time and later) need

to repeat the lookup procedure to start another connection.[4]

[4] A session can cache the IP address explicitly after the first lookup, but this needs to be done at the
application level by holding on to the InetAddress object.

You can improve this situation by running a DNS server locally on the machine, or on a local server if the

application uses a LAN. A DNS server can be run as a "caching only" server that resets its cache each time

the machine is rebooted. There would be little point in doing this if the machine used only one or two

connections per hostname between successive reboots. For more frequent connections, a local DNS server

can provide a noticeable speedup to connections. nslookup is useful for investigating how a particular system

does translations.

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

14.5 Performance Checklist

Some of these suggestions apply only after a bottleneck has been identified:

Tune the application before tuning the underlying system. This is especially pertinent to network

communications.

Limit application bandwidth requirements to the network segment with the smallest bandwidth.

Consider network latencies when specifying feasible application response times.

Aim to minimize the number of network round trips necessary to satisfy an application request.

Constantly monitor the entire system with any monitoring tools available. Monitoring utilities include

perfmeter (Unix CPU), vmstat (Unix CPU, RAM, and disks), iostat (Unix disks), performance monitor

(Windows CPU, RAM, and disks), netstat (network I/O), ping (network latency), and nslookup (DNS

lookup and routing).

Keep monitoring records to get a background usage pattern.

Use normal monitoring records to get an early warning of changes in the system usage patterns.

Watch for levels of paging that decrease system performance.

Watch for low CPU activity coupled with high disk activity and delayed responses. This may

indicate an I/O problem.

Monitor for retransmissions of data packets.

Ensure the CPU runnable queue does not get too large.

Aim for average CPU utilization of not more than 75%.

Consider spreading extra computation loads to low activity times.

Run offline work in off-peak hours only.

Time all processes and terminate any that exceed timeout thresholds.

Consider upgrading or reconfiguring parts of the system.

Doubling the CPU speed is usually better than doubling the number of CPUs.

Consider striping the disks (e.g., RAID disks).

Add more swap space when there is no other way to increase the memory available to the
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application (or to reduce the application's memory usage requirements).

Test to see if running on raw partitions will be faster.

Look at mapping filesystems into memory for speedier startups and accesses. But be aware that

this reduces system memory available to applications. For multiuser applications, this is an

efficient way of sharing in-memory data.

Move components from network-mounted disks to local disks.

Ensure that system swap files are on different disks from any intensively used files.

Cluster files together at the disk level, if possible, or within one big container file.

Defragment disks regularly if applicable to your system.

Move executables or index files to disk sweet spots.

Consider altering priority levels of processes to tune the amount of CPU time they get.

Consider locking processes into memory so they do not get paged out.

Partition the system to allocate determinate resources to your application.

Consider tuning the maximum packet size specified by the TCP/IP stack.

Ensure that your TCP/IP stacks have no performance problems associated with them.

Consider running a local caching DNS server to improve the speed of hostname lookups.
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Chapter 15. J2EE Performance Tuning

J2EE performance tuning builds on lower-level performance-tuning techniques and general architectural

considerations described earlier in this book. J2EE-specific considerations are discussed in this chapter and in

Chapter 16 through Chapter 18. This chapter covers performance aspects of J2EE relevant to all J2EE

projects and includes a brief section on tuning JMS.
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15.1 Performance Planning

Section 13.7 is particularly relevant for J2EE projects. Continual load testing, valid test data, appropriate

testing environments, good monitoring tools, and well-specified performance targets are all crucial to

achieving a high-performing J2EE deployment. In addition, monitoring after deployment is strongly

recommended to maintain good performance. Don't let the brevity of this section mislead you-making a

performance plan, emphasizing the aspects I've just listed, is the single most important indicator of success

for a J2EE project's performance.
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15.2 J2EE Monitoring and Profiling Tools

J2EE applications and J2SE applications are monitored and profiled differently. J2EE applications include all

the bottlenecks that you find in J2SE applications, but they can also have more serious, system-wide

resource contention bottlenecks. Contention bottlenecks occur when multiple objects try to use the same

resource at the same time and extend across multiple VMs or to outside resources like databases. J2SE

profilers essentially monitor and log various aspects of a single VM. To identify performance problems

productively, J2EE profilers must monitor and log far more aspects of the overall J2EE system (including

potentially multiple VMs).

15.2.1 Features to Look For

Here are some characteristics to look for when evaluating J2EE performance-monitoring tools.

Monitoring and logging components and their interfaces

J2EE tools must monitor and log all the important aspects of the J2EE system. Potential performance

bottlenecks come mainly from three generic locations: processing within components, interfaces

between components, and communication between components. Intercomponent communication

overhead (for example, network transfers) is distinct from interface overhead (such as marshalling) or

conversions (such as SQL request generation).

Low overhead

J2EE monitoring should impose only a low overhead on the J2EE system. Less than a 5% overhead is

required for useful monitoring; a 1% overhead is ideal. Low-overhead performance monitoring lets

you monitor constantly without worrying about how profiling overhead affects server behavior. This

means that you can leave monitoring on at all times-in development systems, in test systems, and in

production systems-without serious performance degradation. This situation does not occur with

J2SE profilers, which have such a large overhead that running with a profiler on at all times would kill

a project. J2SE profilers tend to have high overhead because it is considered acceptable, given their

usage pattern. J2EE monitors are targeted at production systems as well as development, so they are

generally designed to have lower overhead.

Requests mapped to methods

Monitoring should correlate incoming requests with subsequently monitored methods, components,

and communications. It should be possible to easily correlate things like request-to-bean-to-db-

queries so you can identify which requests are causing which bottlenecks. Without this capability, you

can end up targeting many more bottlenecks than necessary or spending significant time trying to

determine which requests map to which bottlenecks.

Log storage and granularity

Monitoring should store all data persistently so you can decouple analysis from running the server.

Having things happen during a test run with no way to analyze the data later is annoying because one

graph or another is displayed only in real time, with no logged data.

Logging is more important than saving performance by not logging. Monitor the resources used by the

application. Identify spikes and trends that cause performance problems, and then alter the
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application to handle those problems. However, too fine a granularity of logging causes too much

overhead. Try to keep logging overhead at 1%.

Scalability

The monitoring tool should scale with the application so you can deploy the monitoring with the

application in the production environment.

15.2.2 J2EE Monitoring Tools

A separate class of monitoring tools has emerged in the last couple of years, dedicated to monitoring J2EE

applications efficiently. These tools improve J2EE performance-tuning productivity significantly, and

obtaining one for your project is worthwhile. You can obtain a list of such tools from

http://www.JavaPerformanceTuning.com/resources.shtml. Should you wish to implement your own tool, you

would need to add logging to all the main communication interfaces of the application, the transaction and

session boundaries, the life-cycle boundaries (e.g., creation and destruction of EJBs), and request initiation

and completion. A freely available logging tool designed to work with J2EE applications, such as Steve

Souza's JAMon (see http://www.JavaPerformanceTuning.com/tools/jamon/index.shtml), can assist with this

task.

Commercial J2EE monitoring products include additional analysis tools that help speed up the most complex

part of J2EE tuning: analyzing the monitoring output.
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15.3 Measurements: What, Where, and How

Measuring performance is the key to improving performance. You need reliable metrics to gauge

performance and effectively compare results before you begin tuning and after you make changes. Before

getting into the specifics of measurements, let's look at a study that shows where bottlenecks tend to be.

15.3.1 An Instructive Analysis

A Mercury Interactive Corporation analysis of thousands of load tests on company web sites[1] found that

enterprise performance problems come from four main areas: databases, web servers, application servers,

and the network. Each area typically causes about a quarter of the performance problems.

[1] Drew Robb, "Stopping Web Performance Thieves," Datamation, June 24, 2002,
http://itmanagement.earthweb.com/ecom/article/0,,11952_1370691,00.html.

The most common database problems were insufficient indexing, fragmented databases, out-of-date

statistics, and faulty application design. Solutions included tuning the index, compacting the database,

updating the database, and rewriting the application so the database server controlled the query process.

The most common web-server problems were poor design algorithms, incorrect configurations, poorly

written code, memory problems, and overloaded CPUs.

The most common application-server problems were poor cache management, nonoptimized database

queries, incorrect software configuration, and poor concurrent handling of client requests.

The most common network problems included inadequate bandwidth somewhere along the communication

route, and undersized, misconfigured, or incompatible routers, switches, firewalls, and load balancers.

15.3.2 Suggested Measurements

The results from this useful study may help you focus on the most likely problems. However, not all

bottlenecks are listed here, and even if yours are, pinpointing their precise location can be difficult. Taking

these suggested measurements may help you isolate the main bottlenecks.

Note that different tools take different measurements, and it is not always possible to match one tool's

measurements with another or with this list. For example, some tools cannot measure the time from the

(simulated) user click, but might start measuring once they send the HTTP request. A typical J2EE

monitoring tool either uses the application server's performance-monitoring API to get server-side

information or automatically adds a measurement wrapper by using techniques like code injection.

JVM heap size

Eliminate memory leaks before undertaking other tuning to avoid wasted tuning effort. Eliminating

memory leaks is absolutely necessary for J2EE applications, and bottlenecks can be changed

(eliminated or added) when eliminating these leaks. See Section 2.5.

Total response time
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Measure the time taken from presentation start to presentation completion-i.e., from when the

(simulated) user clicks the button to when the information is displayed.

Total server-side service time

Measure the total time it takes to service the request on the server. Try not to include transfer time to

and from the client. You can obtain this measurement by wrapping the doGet( ) and doPost( )
servlet methods or by using a ServletFilter that logs execution times. Here is a simple filter:

public void doFilter(ServletRequest request, ServletResponse response,

                FilterChain chain) throws IOException, ServletException {

  long before = System.currentTimeMillis(  );

  chain.doFilter(request, response);

  long after = System.currentTimeMillis(  );

  ... //log the time in your logger

Naturally, this filter should be the first in the filter chain so the time taken for any other filter is included in

the total time recorded. The time measured will include some network transfer time, since the server-to-

client socket write does not complete on the server until the last portion of data is written to the server's

network buffer.

JDBC requests

This measurement is fully covered in Section 16.1, which explains how to create and use wrappers to

measure JDBC performance.

RMI communications

Turn on RMI logging with the java.rmi.server.logCalls property:

% java -Djava.rmi.server.logCalls=true ...

Section 2.6 details this technique.

A second technique uses smart proxies to monitor the performance of RMI calls. This technique replaces

objects that make a remote call with proxy objects (from java.lang.reflect.Proxy) that can wrap the

remote call with timing logic.

File descriptors

The number of available file descriptors is limited in each process and in the overall system. Each

open file and open socket requires a file descriptor. Use ulimit (Unix only) to monitor the number of

file descriptors available to the processes, and make sure this number is high enough to service all

connections. In Windows, you can monitor open files and sockets from the performance monitor.

Bean life cycle

Essentially, all methods that handle the life cycle of the bean need to be wrapped, including the bean

constructor, setEntityContext( ), ejbHome( ), ejbCreate( ), ejbActivate( ), ejbLoad( ),

ejbStore( ), ejbPassivate( ), ejbRemove( ), ejbFind( ), and unsetEntityContext( ).

Look for too many calls to these methods, which can occur with excessive cycling of objects (too many

creates) or excessive passivation.

Transaction boundaries

Begin, commit, and abort calls need to be wrapped. Wrapping can be difficult because the container

can be responsible for such calls. Relying on the JDBC wrapper to catch transaction boundaries might

be easiest. First, you would need to verify that all transaction boundaries correspond to database

transaction boundaries.
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Cache sizes

Cache sizes-the number of objects held and the physical size used-should be monitored. There is no

generic method to do this.

CPU utilization

Use operating-system utilities to measure CPU utilization (no Java API measures CPU utilization of the

JVM). Windows has a performance monitor, and Unix has the sar, vmstat, and iostat utilities.

Stack traces

Generate stack dumps on Unix by sending a kill -QUIT signal (kill -3) to the JVM process or by

pressing Ctrl-\ in the window where the Java program was started. On Windows, press Ctrl-Break in

the window where the Java program is running or (prior to SDK 1.3) click the Close button on the

command window. The stack dump lists the state and Java stack of every currently running thread. In

the case of a deadlock, two or more threads will be in the "W" (wait) state, indicating that they are

waiting for locks to be released. The method at the top of the stack listing is the "current"

method-i.e., the method that requested a lock and caused the thread to move into a wait state as it

waits for the lock to be granted. Thus, identifying which methods are causing the deadlock is easy.

GC pauses

When garbage collection kicks in, current VMs stop other processing activity. These perceptible pauses

in activity can result in unacceptable performance. Use the latest available VMs, and try to tune the

garbage collection to minimize "stop the world" pauses. Chapter 2 and Chapter 3 discuss garbage-

collection algorithms and tuning. Concurrent garbage collection (-Xconcgc in Version 1.4.1 of the Sun

VM) allows pause times to be minimized.

Network bandwidth

Use netperf (Unix) or the performance monitor (Windows) to measure network bandwidth. See also

the Section 14.4 in Chapter 14.

15.3.3 Symptoms of Performance Problems

Any of the following symptoms can indicate a performance problem:

Slow response times

Excessive database table scans

Database deadlocks

Pages not available

Memory leaks

High CPU usage (consistently over 85%)

15.3.4 Useful Statistics to Analyze from Measurements

After taking the measurements described here, you may want to analyze several statistics, including the

number of users, the number of components, throughput (queries per minute), transaction rates, average
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and maximum response times, and CPU utilization. You should look for trends and anomalies, and try to

identify whether any resource is limited in the current system. For example, increasing the number of

concurrent users over time may show that throughput flattens out, indicating that the current maximum

throughput was reached.
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15.4 Load Testing

The discussion of load testing in Section 1.6 of Chapter 1 is relevant to J2EE application tuning. Here's a

summary of the steps involved:

Specify performance targets and benchmarks, including scaling requirements. Include all user types,

such as information-gathering requests and transaction clients, in your benchmarks. Performance

requirements should include the required response times for end users, the perceived steady state and

peak user loads, the average and peak amount of data transferred per request, and the expected

growth in user load over the first or next 12 months.

1.

Create a testing environment that mirrors the expected real-world environment as closely as possible.

Generally, there will be differences, but the most critical aspects to simulate closely are the expected

client activity, the application data, and the peak scaling requirements (amount of data and number of

users). The only reliable way to determine a system's scalability is to perform load tests in which the

volume and characteristics of the anticipated traffic are simulated as realistically as possible.

Characterize the anticipated load as objectively and systematically as possible, use existing log files

when possible, and characterize user sessions (such as the number and types of pages viewed or the

duration of sessions). Determine the range and distribution of session variation. Don't use averages;

use representative profiles.

2.

Load-test the system, find bottlenecks, and eliminate them.3.

Load testing should be repeatable. Use load-test suites and frameworks. Many products are available,

including free tools (see http://www.JavaPerformanceTuning.com/resources.shtml). Continuously retest and

measure against established benchmarks to ensure that application performance hasn't degraded as changes

are made. The server must be designed to handle peak loads, so tests including expected peak loads should

be scrutinized. Peak user loads are the number of concurrent sessions managed by the application server,

not the number of possible users.

The key elements of a load-test design are the test objective (e.g., can the server handle N sessions per

hour at peak load level?), pass/fail criteria (e.g., pass if response times stay within a certain range), script

description (e.g., user1: page1, page2, ...; user2: page1, page3, start transaction1, etc.), and scenario

description (which scripts at which frequency and how the load increases). One stress-test methodology

requires the following steps:

Determine the maximum acceptable response time for getting a page.1.

Estimate the maximum number of simultaneous users.2.

Simulate user requests, gradually adding simulated users until the application response delay becomes

greater than the acceptable response time.

3.

Optimize until you reach the desired number of users.4.

When testing performance, run tests overnight and on weekends to generate longer-term trends. Your tests

could generate inaccurate results. Consider these potential pitfalls:
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Testing without a real network connection can give false measures.

Low user simulation can be markedly different from high user simulation.

Network throughput may be larger than in the deployed environment.

Nonpersistent performance depends on processor and memory.

Disk speed is crucial for persistent messages.

Performance testing should continue even after the application is deployed. For applications expected to

perform 24/7, inconsequential issues like database logging can degrade performance. Continuous monitoring

is the key to spotting even the slightest abnormality. Set performance capacity thresholds, monitor them,

and look for trends. When application transaction volumes reach 40% of maximum expected volumes, you

should execute plans to expand the capacity of system. Note that 40% is an arbitrary choice, but it's a good

place to start; if you're at 40% and don't see the first hints of more serious problems, like significant spikes

in usage profiles, you might relax and set a new, higher threshold. The point is that you should watch for

signs that your application is outgrowing the system and make plans for an upgrade well before the upgrade

is needed.
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15.5 User Perception

The user's perception of performance is crucial. The user perception discussion from Chapter 1 applies to

J2EE architectures, but there are some additional considerations.

15.5.1 Screen Navigation

Some connections may fail due to a congested network or overloaded server. Users perceive the need to

reenter data or return to the last screen as bad performance. Ideally, when a connection is reestablished,

the user should find himself back at the same state as before the connection failure. If the session ID is still

valid, then you should hold all the session state so the display can be re-created at any point. If the session

ID is invalidated by the connection failure, then maintaining state in the client should enable display re-

creation.

15.5.2 Page Display

As discussed in Chapter 1, popular browsers try to display screens in a way that seems faster to the user.

Nevertheless, certain ways of laying out pages make the display take longer. For example, HTML tables are

often not displayed until the contents are available to enable table-cell size calculation. Use size tags to help

the browser calculate the display.

Pages constructed from multiple disparate sources (e.g., embedded images) require multiple connections, all

of which add to the overall perceived page display time. A poorly designed page could be seen as slow even

if the components of the page individually download quickly. You should be able to find multiple sites

displaying structures similar to those you wish to display. Compare their performance and choose the best

combination for your application.

On the server side, don't rely on the default server buffers to flush the pages. Different buffer sizes and

forced flushing of the output at certain points can improve perceived performance by sending displayable

parts of a page more quickly.

15.5.3 Priority Service

Different users have different requirements and, more importantly, different value to your business. You

should balance the performance provided to your users according to their value to your business. However,

doing so is not always a clear-cut matter of giving higher-priority users a faster response at the expense of

lower-value users. For example, many web sites provide premium service to paying users, with restricted

access to nonpaying users. But if nonpaying users find that the web site is too slow, they may be unlikely to

convert to paying users, and converting nonpaying users to paying users may be a business priority.

However you may decide to assign priorities, sort incoming requests into different priority queues and

service the higher-priority requests first. Priority queuing can be achieved by initially allocating the incoming

request a priority level based on your application requirements or according to the priority associated with

the session. You can then route the request by priority. To support priorities throughout the J2EE application,

requests probably need to be transferred between components at each stage through multiple queues so
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that queued requests can be accepted in order of priority level.

15.5.4 Internet Congestion

On the Internet, there are inevitably some very long response times and communication failures. This results

from the nature of Internet communications, which is liable to variable congestion, spikes, blocked routes,

and outages. Even if your server were up 100% of the time and serviced every request with a subsecond

response, there would still be some problems due to Internet communication channels. You need to

construct your application to handle communication failures gracefully, bearing in mind the issue of user

perception. This is discussed in the next section.

15.5.5 Communication Failures

A few long response times from communication failures may not necessarily make a bad impression,

especially if handled correctly. Experienced Internet users expect communication failures and don't

necessarily blame the server. In any case, if a connection or transaction needs to be reestablished, explain

to the user why the outage occurred. Identifying the connection failure can help. For example, the Internet

regularly becomes more congested at certain times. By monitoring your server, you should be able to

establish whether these congested times result in an increased number of connection retries. If so, you can

present a warning to the user explaining that current Internet congestion may result in some connection

failures (and perhaps suggest that the user try again later after a certain time if performance is

unsatisfactory). Setting the expectation of your users in this way can help reduce the inevitable

dissatisfaction that communication failures cause. Including an automated mechanism for congestion

reporting could be difficult. The Java API doesn't provide a mechanism to measure connection retries. You

could measure download times regularly from some set of reference locations, and use those measurements

to identify when congestion causes long download times.

15.5.6 Good Peak Performance

Evaluate performance targets as early as possible (preferably at project specification), and then keep your

targets in mind. One million requests per day, 24/7, is equivalent to 12 requests per second. Most servers

receive requests unevenly around periodic patterns. Peak traffic can be an order of magnitude higher than

the average request rate. For a highly scaled popular server, ideal peak performance targets would probably

consist of subsecond response times and hundreds of (e-commerce) transactions per second. You can use

these basic guidelines to calculate target response times. Naturally, your application will have its own

requirements.

15.5.7 Cumulative Delay and User Impatience

The quickest way to lose user interest is to keep the user waiting for screens to display. Some experts

suggest that perceived delays accumulate across multiple screens. It is not sufficient for individual screens to

display within the limit of the user's patience (the subject of the earlier "Page Display" section). If the user

finds himself waiting for several screens to display slowly, one after the other, the cumulative wait time can

exceed a limit (perhaps as low as eight seconds) that induces the user to abandon the transaction (and the

site). One of the better ways to keep the cumulative delay low is to avoid making the user go through too

many screens to get to his goal.
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15.5.8 User Bandwidth

Your users have a characteristic range of bandwidths, from slow modem dialup speeds to broadband.

Determine what the range of user bandwidths are and test throughout the range. Different page designs

display at different speeds for different bandwidths, and users have different expectations. Users with

broadband connections expect pages to appear instantly, and slow pages stand a good chance of never

being looked at.
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15.6 Clustering and Load Balancing

There is a limit to how fast you can make your application run. The application has work to do, and that work

takes a minimum number of processor instructions to execute. The faster the machine that runs the

application, the faster those instructions execute, but there is a limit to processor speeds. As the number of

concurrent requests received by your server increases, your application exceeds the target response times

when the workload is too much for the given machine. At this point, you have two options: use a faster

machine, or use several machines. The first option is not always available or cost-effective, and ultimately

you may use the fastest machine available and still need more power. Any efficient J2EE design should

include the possibility that the application will need to be deployed across multiple servers. This is known as

horizontal scalability.

Two technologies that enhance the ability to achieve horizontal scalability are clustering and load balancing.

Clustering can mean different things in different contexts. In this context, clustering means having a group

of machines running the application. Clustering is the mechanism that spreads the application-processing

capability across multiple machines; load balancing is the mechanism that ensures that different machines

use their various processor capacities efficiently. Currently, scalable web-application architectures consist of

many small servers accessed through a load balancer.

15.6.1 Load-Balancing Mechanisms

Generally, the load-balancing mechanism should route requests to the least-busy resource. However, such

routing can be difficult to achieve with some load-balancing mechanisms and may be inappropriate for some

applications, especially session-based applications. You should determine the load-balancing mechanism that

is most appropriate to your application. Load balancing can be achieved in a number of ways, as described in

the following sections.

15.6.1.1 DNS load balancing

The mechanism for obtaining the route to a machine from the machine's name is the Domain Name System

(DNS), discussed in Section 14.4.4. DNS can supply different IP addresses to separate lookups of the same

hostname, providing a simple application-independent load-balancing mechanism. For example,

www.oreilly.com could map to 10.12.14.16 and 10.12.14.17 on each alternate lookup. Many Internet sites

use DNS load balancing; it is a common and simple load-balancing technique.

DNS load balancing is achieved by using a round-robin mechanism to send each subsequent DNS lookup

request to the next entry for that server name. DNS round-robin has no server load measuring mechanisms,

so requests can go to overloaded servers, creating ironically unbalanced load balancing.

The result of a DNS lookup is typically cached at various locations, with caches lasting days (though this is

configurable and can be any value down to seconds). Consequently, it is slow to propagate changes when

using DNS load balancing, and any one client typically uses the same IP address over multiple connections

rather than being directed to alternate servers. These issues can be problematic, but can also be

advantageous if transactional or session-based communications are normal for your application.

Also note that DNS load balancing can be used in conjunction with other load-balancing techniques. For
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example, if you use a load-balancing dispatcher, then you can use DNS to balance multiple load-balancing

dispatchers to achieve the optimal case in which the load-balancing mechanism has no single point of failure

(DNS lookups are replicated). However, some clients could still see failures due to lookup caching.

15.6.1.2 Hardware load balancer

A hardware load balancer is a machine at a single IP address that reroutes communications to other

machines-for example, it reroutes IP packets by rewriting the IP address in the header and passing the

packet to the appropriate machine. This can also be an application-independent load-balancing mechanism.

The technique is more complex and more expensive than DNS load balancing, but much more flexible and

capable. Multiple hardware load balancers can be used in conjunction with DNS load balancing to achieve

application-independent load balancing with no single point of failure (although some clients could see

failures if a hardware load balancer fails due to lookup caching).

Hardware load balancers may come with extra features such as the ability to automatically detect

unavailable servers and eliminate them from their routing tables; to intelligently reroute packets based on

server load, IP address, port number, or other criteria; and to decrypt encrypted communications before

rerouting packets.

15.6.1.3 Load-balancing dispatcher/Proxy load balancing

A cluster can be implemented with a frontend dispatcher that accepts requests and passes them on to other

clustered servers. All requests are directed to the dispatcher, either explicitly (the client doesn't know about

any machines "behind" the dispatcher) or redirected (as is done when correctly configured browsers have

their requests automatically sent to a proxy server).

The dispatcher (or proxy server) services the request in one of three ways:

The request is satisfied by returning a result (document) cached in the dispatcher. This scenario is

common for proxy servers, but unusual for dispatchers.

The request is redirected to another server that services the request and returns the results to the

client, either directly or, more commonly, through the dispatcher.

The dispatcher redirects the client to send the request to another server. The HTTP protocol supports

this option with the Location directive. For example, if a browser connects to a server requesting a

particular URL and receives a response like this:

Location: http://somewhere.else.com/

then the browser automatically tries to request the new URL.

A dispatcher could also decrypt encrypted requests before handling or forwarding them, thus centralizing

security and offloading some processing from the server cluster.

15.6.1.4 URL-based load balancing

Decide where any particular document or service is best served and specify the appropriate host machine in

the URL. This load-balancing mechanism is straightforward. For example, you could retrieve images from the
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image server and documents from a separate document server.

URL generation can be done statically or dynamically, but generating documents dynamically can add further

overhead. In addition, the URL could be retained by the client and used later or reused when the specified

host is no longer the optimal server for the request. Where possible, convert dynamic requests into static

ones by replacing URLs served dynamically with ones served statically.

15.6.1.5 Server-pooled objects

Load balancing is possible by varying how pooled objects are handed out. This type of balancing tends to

apply at the application level, where you can create and hand out objects from a pool according to your own

algorithm.

15.6.1.6 Client-based load balancing

The connection mechanism in the client can serve as a load-balancing mechanism. The client can even check

for an available rerouting server to combine client load balancing with server load balancing. The client

connection mechanism should be centrally based, either explicitly by having client objects connect through a

connection service, or implicitly using proxy objects in place of server-communicated objects.

One such load-balancing connection mechanism simply selects from a list of available RMI connections

sequentially.

15.6.1.7 Application configuration load balancing

The application itself should be configured for deployments with different usage patterns. Each type of read-

only, read-write, and batch-update bean components should be in different application servers so that each

application server can be appropriately configured. Transactional and nontransactional sessions and

messages should be served from separate servers. Nontransactional server components can be replicated

easily for horizontal scaling.

Multiple VMs can be used even within individual server machines to help load-balance the application.

Scalable servers usually work best with multiple VMs. Using one thread per user can create a bottleneck with

large numbers of concurrent users. Stateless sessions are easily load-balanced; replicating transactional

sessions is more involved and carries higher overhead. Pseudo-sessions that encode a session identifier into

the URLs and are stored globally are probably the best compromise for load-balancing transactional sessions.

Separate web servers should be used for all static content, which can be served much faster and with much

lower overhead than dynamic content. Priority queues can provide higher-priority users with a higher quality

of service. The section Section 10.8 discusses queue-based load balancing and network queuing in more

detail. The frontend queue can use the network queue as its bottleneck and accept requests only when there

are sufficient resources to process the request. Try to balance the workload of the various components so

they all work. All components should work at any given time; there should be no idle components.

15.6.1.8 Database partitioning

Section 13.4.1.4 discusses database partitioning schemes to assist in load-balancing the application.
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15.6.2 Load-Balancing Algorithms

In addition to selecting one or more load-balancing mechanisms, you may need to consider optimal load-

balancing algorithms for your application. These algorithms include:

Random

Randomly allocate requests to servers.

Minimum load

Allocate requests to the server with the currently minimum load.

Round-robin

Successively select the next server in a list, starting again from the first server when the list is

exhausted.

Weighted round-robin

Like round-robin, but with some servers listed multiple times.

Performance-based

Allocate requests based on the performance capability of the server.

Load-based

Allocate requests based on the servers' total load capability.

Dynamic

Dynamically allocate to servers based on an application-encoded algorithm.

Nearest IP address

Allocate requests to the IP address (physically) nearest the client.

Port number

Allocate requests according to the port number.

HTTP header

Allocate requests according to a value within the HTTP header, such as the URL or a cookie.
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15.7 Tuning JMS

Messaging is an important feature for many large J2EE applications. Tuning JMS is an important and

relatively straightforward topic. I cover it here rather than dedicating an entire chapter to JMS. For the full

details on JMS, I recommend Java Messaging Service by Richard Monson-Haefel, David A. Chappell, and Mike

Loukides (O'Reilly).

Remember the following points to ensure optimal JMS performance:

Close resources (e.g., connections, session objects, producers, and consumers) when you finish with

them.

Start the consumer before the producer so the initial messages do not need to queue when waiting for

the consumer.

Nontransactional sessions are faster than transactional ones. If you have transactional sessions, try to

separate nontransactional messages and use nontransactional sessions for them.

Nonpersistent messages are faster than persistent messages.

Longer messages take longer to deliver and process. You could compress message bodies or eliminate

nonessential content to keep the size down.

The redelivery count should be specified to avoid indefinitely redelivered messages. A higher redelivery

delay and lower redelivery limit reduces overhead.

Set the Delivery TimeToLive value as low as is feasible (the default is for messages to never

expire).

A smaller Delivery capacity increases message throughput. Since fewer messages can sit in the

Delivery queue, they have to be moved along more quickly. However, if the capacity is too small,

efficiency is reduced because producers have to delay sending messages until the Delivery queue has

the spare capacity to accept them.

Some more advanced architectural considerations are also worthy of note. As with most architectures,

asynchronous processing is more scalable than synchronous processing. JMS supports the asynchronous

reception of messages with the MessageListener interface, which you should use. Similarly, processing in

parallel is more scalable, and again, JMS supports parallel-message processing with ConnectionConsumers
that manage ServerSessionPools .

When messages are sent in high volumes, delivery can become unpredictable and bursty. Messages can be

produced far faster than they can be consumed, causing congestion. When this condition occurs, message

sends need to be throttled with flow control. A load-balancing message queue may be needed for a high rate

of messages (for example, more than 500 messages per second). In this case, you probably need to use

duplicate delivery mode (Session.DUPS_OK_ACKNOWLEDGE). Duplicate delivery mode is the fastest possible

delivery mode. In duplicate delivery mode, messages are sent and, if the acknowledgment is delayed long

enough, a duplicate message is sent rather than conversing with the server to determine whether the

message was received. This mode is more efficient than auto mode (Session.AUTO_ACKNOWLEDGE), which
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guarantees that messages be sent only once. However, with duplicate delivery mode, you need to identify

whether the message has already been processed because it may be sent more than once. The third mode,

Session.CLIENT_ACKNOWLEDGE, consists of synchronous message sends with corresponding

acknowledgments; it is not recommended for high-performance message delivery.

When dealing with large numbers of active listeners, multicast publish-and-subscribe is more efficient than

broadcast or multiple individual (unicast or point-to-point) connections. (Note that JMS does not currently

support broadcast messaging, only publish-and-subscribe and point-to-point messaging). When dealing with

large numbers of listeners with only a few active, or when dealing with only a few listeners, multicasting

publish-and-subscribe is inefficient, and point-to-point communications should be used. Inactive listeners

require all missed messages to be re-sent in order when the listener becomes active, which would put too

heavy a resource load on the publish-and-subscribe model. For this latter scenario, a unicast-based model of

message queuing, organized into a hub-and-spoke model, is more efficient than multicast.
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15.8 Performance Checklist

Planning for performance is the single most important indicator of success for a J2EE project's

performance.

J2EE profiling needs more than a J2SE profiler-it needs to be J2EE "aware" so J2EE requests can be

followed and logged, and communications, sessions, transactions, and bean life cycles can be

monitored.

Enterprise performance problems tend to come about equally from four main areas: databases, web

servers, application servers, and the network.

Common database problems are insufficient indexing, fragmented databases, out-of-date statistics,

and faulty application design. Solutions include tuning the index, compacting the database, updating

the database, and rewriting the application so the database server controls the query process.

Common web-server problems are poor design algorithms, incorrect configurations, poorly written

code, memory problems, and overloaded CPUs.

Common application-server problems are poor cache management, unoptimized database queries,

incorrect software configuration, and poor concurrent handling of client requests.

Common network problems are inadequate bandwidth somewhere along the communication route, and

undersized, misconfigured, or incompatible routers, switches, firewalls, and load balancers.

Monitor JVM heap sizes, request response times, request service times, JDBC requests, RMI

communications, file descriptors, bean life cycles, transaction boundaries, cache sizes, CPU utilization,

stack traces, GC pauses, and network bandwidth.

Watch out for slow response times, excessive database table scans, database deadlocks, unavailable

pages, memory leaks, and high CPU usage (consistently over 85%).

Load testing should be repeatable. Tests should include expected peak loads. Tests should be as close

to the expected deployed system as possible and should be able to run for a long period of time.

One testing methodology is to determine the maximum acceptable response time page download,

estimate the maximum number of simultaneous users, increase simulated users until the application

response delay becomes unacceptable, and tune until you reach a good response time for the desired

number of users.

Page display should be as fast as possible. Use simple pages with static layouts where possible. Let

users get to their destination page quickly. Work with the browser's capabilities.

Use priority queues to provide different levels of service.

Be prepared to handle network congestion and communication failures.

High-performance applications probably need clustering and load balancing.

http://lib.ommolketab.ir
http://lib.ommolketab.ir


Close JMS resources when you finish with them.

Start the consumer before the producer.

Separate nontransactional and transactional sessions.

Use nonpersistent messages.

Use shorter or compressed messages.

Tune the redelivery count, the Delivery TimeToLive, and the Delivery capacity.

Use asynchronous processing (MessageListener), parallel processing (ConnectionConsumers and

ServerSessionPools), flow control, load-balancing message queues, and duplicate delivery mode

(Session.DUPS_OK_ACKNOWLEDGE). Avoid Session.CLIENT_ACKNOWLEDGE.

Use publish-and-subscribe when dealing with many active listeners and point-to-point for only a few

active listeners.
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Chapter 16. Tuning JDBC

JDBC (Java Database Connectivity) consists of a set of APIs and specifications that allow any Java application

to connect to any JDBC-enabled data repository that executes SQL statements. Usually, this data repository

is a relational database (since that is what JDBC was designed for), but the JDBC protocol does not restrict

connections to relational databases.

Connecting to a database with JDBC is essential for many applications. This chapter shows you how to

identify the bottlenecks in your communications with the database and how to improve the performance of

those communications.

The chapter is divided into two sections. The first section, Section 16.1, provides extensive details on

building a tool that allows you to determine whether your JDBC communications cause bottlenecks and, if so,

which JDBC statements are to blame. If you have already identified JDBC bottlenecks in your application,

you can skip this first section. Note that an open source tool, P6Spy

(http://www.provision6.com/index.htm), helps identify JDBC bottlenecks by using a similar methodology.

The second section, Section 16.2, provides details on how to tune the JDBC portion of your application. In

addition to JDBC-specific issues, this section addresses tuning SQL (Structured Query Language) usage,

since optimizing SQL can result in a huge gain in JDBC performance.

 

http://www.provision6.com/index.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

16.1 Measuring JDBC Performance

As with all other types of tuning, the first step to tuning JDBC usage is to identify bottlenecks. The ease or

difficulty of measuring JDBC communications can depend on how you use JDBC and how widespread JDBC calls

are in your application. In this section, we'll run through a framework that makes measuring JDBC performance

straightforward.

16.1.1 The Core java.sql Interfaces

At the outset, you must identify exactly what you should measure. Effectively profiling distributed applications,

such as those that use JDBC, can be difficult. I/O can be significant in profiling simply because of the nature of a

distributed application, which normally has threads waiting on I/O. Whether threads blocking on reads and writes

are part of a significant bottleneck or simply a side issue can be unclear.

If you look in the java.sql package, three interfaces form the core of JDBC: Connection , Statement , and

ResultSet . Normal interaction with a database consists of:

Obtaining a Connection object from the database driver

Obtaining from that Connection object some type of Statement object capable of executing a particular

SQL statement

If that SQL statement reads from the database, using the Statement object to obtain a ResultSet object

that provides access to the data in question

The following method illustrates standard database interaction by accessing all the columns from every row of a

specified database table and storing the data from each row in a String[ ] array, putting all the rows in a

vector:

  public static Vector getATable(String tablename, Connection connection)
    throws SQLException
  {
    String sqlQuery = "SELECT * FROM " + tablename; 
    Statement statement = connection.createStatement(  );
    ResultSet resultSet = statement.executeQuery(sqlQuery);
    int numColumns = resultSet.getMetaData(  ).getColumnCount(  );
    String[  ] aRow;
    Vector allRows = new Vector(  );
    while(resultSet.next(  ))
    {
      aRow = new String[numColumns];
      for (int i = 0; i < numColumns; i++)
        //ResultSet access is 1-based, arrays are 0-based
        aRow[i] = resultSet.getString(i+1);
      allRows.addElement(aRow);
    }
    return allRows;
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  }

The SDK does not include implementations of Connection , Statement , or ResultSet to connect to particular

databases in java.sql (except for the more generic JDBC-ODBC driver discussed later). Each implementation

for these and other JDBC interfaces is created by the producer of the database driver and delivered as part of the

database driver package. If you printed out the class name of the Connection object or other objects that you

are using, you would probably see something like XXX Connection , XXX Statement , XXX ConnectionImpl
, or XXX StatementImpl , where XXX is the name of the database you are using (Oracle, for example).

To measure the JDBC performance of the getATable( ) method, we could simply put calls to

System.currentTimeMillis( ) at the beginning and end of the getATable( ) method and print the time

difference to find out how long the process took. That technique works when database interaction is isolated, as

it is in this method. However, a Java application usually spreads its database interaction among many methods in

many classes, and it is often difficult to isolate the database interaction. You need a way to measure widespread

database interactions.

Ideally, the JDBC classes would have built-in measurement capabilities and you could simply turn them on to

analyze the performance of database interactions. JDBC classes do not normally provide this feature, but

sometimes they do (check the driver documentation). Can we replace the JDBC classes with our own

implementations that provide measurements? The replacement classes would have to provide all the current

functionality, be able to measure database interactions, require very little change to the application, and be

transparent to the rest of the application. That's a tall order.

Fortunately, when a framework is defined almost entirely in terms of interfaces, as JDBC is, it is very simple to

replace any class with another implementation. That is, after all, the whole point of interfaces. In particular, you

can always replace any implementation of an interface with a wrapper class that simply wraps the original class

and forwards (or delegates, in object-oriented terms) all the method calls to that original class. Here, you can

replace JDBC classes with wrappers around the original classes. You can embed your measuring capabilities in

the wrapper classes and execute those measurements throughout the application.

16.1.2 Wrapping Classes Using Proxy Objects

Wrapping objects of a particular interface by using dedicated wrapper objects is a useful and established

technique. The synchronized wrappers of the Collection classes are probably best known, but there are many

other examples. The SDK even has a special class to generate wrapper objects at runtime:

java.lang.reflect.Proxy . Wrapper objects are also known as proxy objects. I could have used generated

proxy objects here, but that would have made the explanation of wrapping JDBC objects more complicated than I

wanted, so I stuck with explicitly coded wrapper classes. Proxy classes are also slightly slower than precompiled

classes; for measuring JDBC, though, it probably wouldn't make any difference.

16.1.2.1 Wrapping the Connection class

Start by wrapping the Connection class. The following ConnectionWrapper class implements Connection .

The class has one instance variable of Connection type and a constructor that initializes that instance variable

with the constructor parameter. Most Connection methods are simply defined to delegate the call to the

instance variable:

package tuning.jdbc;
  
import java.sql.*;
import java.util.Map;
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public class ConnectionWrapper implements Connection
{
  protected Connection realConnection;
  
  public Connection realConnection (  ) {
    return realConnection;
  }
  
  public ConnectionWrapper (Connection connection) {
    realConnection = connection;
  }
  
  public void clearWarnings(  ) throws SQLException {
    realConnection.clearWarnings(  );
  }
  
  public void close(  ) throws SQLException {
    realConnection.close(  );
  }
  
  public boolean isClosed(  ) throws SQLException {
    return realConnection.isClosed(  );
  }
  
   public void commit(  ) throws SQLException {
    realConnection.commit(  );
  }
  
  ...

I have left out most methods, but they follow the template of the ones shown here. Where you would have used

a Connection object obtained from the database driver, instead simply wrap that Connection object with the

ConnectionWrapper and use the ConnectionWrapper object. Wherever you obtain your Connection object,

simply add one extra line such as the one shown here in bold:

  Connection dbConnection = getConnectionFromDriver(  );
  dbConnection = new ConnectionWrapper(dbConnection);

Obtaining connections is really the only part of the application that needs changing, so find and edit calls that

obtain a connection. Most applications use a central factory class to provide Connection objects, making it

simple to add the ConnectionWrapper . The factory class frequently fronts a pool of connections, and little

extra work is necessary to release the connection back into the pool since it first needs to be unwrapped:

public static void releaseConnection(Connection conn)
{
  if (conn instanceof ConnectionWrapper)
    conn = ( (ConnectionWrapper) conn).realConnection(  );
  //carry on with original release code
  ...
}

You haven't actually finished the ConnectionWrapper class yet. Some methods of the ConnectionWrapper
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class are not simple delegations. These methods provide various types of Statement objects:

  public Statement createStatement(  ) throws SQLException {
    return new StatementWrapper(realConnection.createStatement(  ), this);
  }
  
  public Statement createStatement(int resultSetType, 
              int resultSetConcurrency) throws SQLException {
    return new StatementWrapper(
          realConnection.createStatement(resultSetType,
             resultSetConcurrency), this);
  }
  
  public CallableStatement prepareCall(String sql) throws SQLException {
    return new CallableStatementWrapper(
          realConnection.prepareCall(sql), this, sql);
  }
  
  public CallableStatement prepareCall(String sql, int resultSetType,
             int resultSetConcurrency) throws SQLException {
    return new CallableStatementWrapper(
          realConnection.prepareCall(sql, resultSetType,
                resultSetConcurrency), this, sql);
  }
  
  public PreparedStatement prepareStatement(String sql)
        throws SQLException {
    return new PreparedStatementWrapper(
          realConnection.prepareStatement(sql), this, sql);
  }
  
  public PreparedStatement prepareStatement(String sql, int resultSetType,
        int resultSetConcurrency) throws SQLException {
    return new PreparedStatementWrapper(
          realConnection.prepareStatement(sql, resultSetType,
               resultSetConcurrency), this, sql);
  }

As you can see, you must define three types of Statement wrapper classes. In addition, you need another

wrapper class for DatabaseMetaData ; this wrapper class is required because DatabaseMetaData can return

the Connection object used to create the DatabaseMetaData . Therefore, you need to make sure that the

Connection object is wrapped, not the original unwrapped connection:

  public DatabaseMetaData getMetaData(  ) throws SQLException {
    return new DatabaseMetaDataWrapper(
          realConnection.getMetaData(  ), this);

  }

16.1.2.2 Wrapping the Statement classes
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The three statement classes, Statement , PreparedStatement , and CallableStatement , have similar

simple wrappers that forward all calls:

public class StatementWrapper implements Statement
{
  protected Statement realStatement;
  protected ConnectionWrapper connectionParent;
  
  public StatementWrapper(Statement statement, ConnectionWrapper parent)
  {
    realStatement = statement;
    connectionParent = parent;
  }
  
  public void cancel(  ) throws SQLException {
    realStatement.cancel(  );
  }
  
  ...

You can implement PreparedStatementWrapper as a subclass of StatementWrapper , but it isn't a

requirement. You could implement PreparedStatement as a subclass of Object and implement all the required

methods rather than inherit the Statement methods:

public class PreparedStatementWrapper extends StatementWrapper implements 
PreparedStatement
{
  PreparedStatement realPreparedStatement;
  String sql;
  public PreparedStatementWrapper(PreparedStatement statement, ConnectionWrapper 
parent, String sql)
  {
    super(statement, parent);
    realPreparedStatement = statement;
    this.sql = sql;
  }
  
  public void addBatch(  ) throws SQLException {
    realPreparedStatement.addBatch(  );
  }
  
  ...

Similarly, you can implement the CallableStatementWrapper as a subclass of PreparedStatementWrapper

:

public class CallableStatementWrapper extends PreparedStatementWrapper implements 
CallableStatement
{
  CallableStatement realCallableStatement;
  public CallableStatementWrapper(CallableStatement statement, ConnectionWrapper 
parent, String sql)
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  {
    super(statement, parent, sql);
    realCallableStatement = statement;
  }
  
  public Array getArray(int i) throws SQLException {
    return new SQLArrayWrapper(realCallableStatement.getArray(i), this, sql);
  }

You still haven't quite finished. Several kinds of methods in these Statement wrapper classes should not be

simple delegations. First, there is a method that returns the Connection object. You want to return the

ConnectionWrapper instead. Here is the method from StatementWrapper :

  public Connection getConnection(  ) throws SQLException {
    return connectionParent;
  }

Second, some methods return ResultSet s. These methods need to return ResultSet wrappers. To keep the

ResultSetWrapper consistent, I've added a lastSql String instance variable to StatementWrapper , which

is passed to the ResultSetWrapper constructor. This instance variable is useful when assigning measurements

to particular SQL statements. The methods that return ResultsSet s are:

//StatementWrapper method
  public ResultSet getResultSet(  ) throws SQLException {
    return new ResultSetWrapper(realStatement.getResultSet(  ), this, lastSql);
  }
  
  public ResultSet executeQuery(String sql) throws SQLException {
    return new ResultSetWrapper(realStatement.executeQuery(sql), this, sql);
  }
  
//PreparedStatementWrapper method
  public ResultSet executeQuery(  ) throws SQLException {
    return new ResultSetWrapper(realPreparedStatement.executeQuery(  ), this, sql);
  }

Third, some methods use java.sql.Array objects. Because these Array objects can return a ResultSet , you

again need to provide an Array wrapper so ResultSetWrapper objects rather than plain ResultSet s are

returned. You also need to handle the case in which an Array object is passed into the setArray( ) method: if

it is an Array wrapper, the object needs to be unwrapped before being passed to the underlying

PreparedStatement :

public void setArray(int i, Array x) throws SQLException {
    if (x instanceof SQLArrayWrapper)
      realPreparedStatement.setArray(i, ((SQLArrayWrapper) x).realArray);
    else
      realPreparedStatement.setArray(i, x);
  }
  
public Array getArray(int i) throws SQLException {
    return new SQLArrayWrapper(realCallableStatement.getArray(i), this, sql);
  }
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Finally, the reason why you create all these wrapper classes is to enable measurements to be taken. The

methods that execute the SQL statements, reasonably enough, start with execute . You need to add logging to

these methods. Note that I delegate responsibility for logging to a JDBCLogger class in the following methods.

Essentially, each method has a call to the real execute method wrapped with a logging call. I pass the SQL string

and the current thread to the logging call because both are very useful parameters for any type of logging,

especially for measuring the time taken for the procedure to run. I also redefine the executeQuery( ) methods

that return ResultSet s (which were first defined a couple of code fragments back) so they now perform

logging:

//StatementWrapper methods
  public void addBatch(String sql) throws SQLException {
    realStatement.addBatch(sql);
    lastSql = sql;
  }
  
  public boolean execute(String sql) throws SQLException {
    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlQuery(t, sql);
    boolean b = realStatement.execute(sql);
    JDBCLogger.endLogSqlQuery(t, sql);
    lastSql = sql;
    return b;
  }
  
  public int[  ] executeBatch(  ) throws SQLException {
    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlQuery(t, "batch");
    int[  ] i = realStatement.executeBatch(  );
    JDBCLogger.endLogSqlQuery(t, "batch");
    return i;
  }
  
  public ResultSet executeQuery(String sql) throws SQLException {
    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlQuery(t, sql);
    ResultSet r = realStatement.executeQuery(sql);
    JDBCLogger.endLogSqlQuery(t, sql);
    lastSql = sql;
    return new ResultSetWrapper(r, this, sql);
  }
  
  public int executeUpdate(String sql) throws SQLException {
    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlQuery(t, sql);
    int i = realStatement.executeUpdate(sql);
    JDBCLogger.endLogSqlQuery(t, sql);
    lastSql = sql;
    return i;
  }
  
//PreparedStatementWrapper methods
  public boolean execute(  ) throws SQLException {
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    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlQuery(t, sql);
    boolean b = realPreparedStatement.execute(  );
    JDBCLogger.endLogSqlQuery(t, sql);
    return b;
  }
  
  public ResultSet executeQuery(  ) throws SQLException {
    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlQuery(t, sql);
    ResultSet r = realPreparedStatement.executeQuery(  );
    JDBCLogger.endLogSqlQuery(t, sql);
    return new ResultSetWrapper(r, this, sql);
  }
  
  public int executeUpdate(  ) throws SQLException {
    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlQuery(t, sql);
    int i = realPreparedStatement.executeUpdate(  );
    JDBCLogger.endLogSqlQuery(t, sql);
    return i;
  }

16.1.2.3 Wrapping the ResultSet class

The ResultSetWrapper class once again consists mainly of delegated methods:

public class ResultSetWrapper implements ResultSet
{
  ResultSet realResultSet;
  StatementWrapper parentStatement;
  String sql;
  
  public ResultSetWrapper(ResultSet resultSet, StatementWrapper statement, String sql) {
    realResultSet = resultSet;
    parentStatement = statement;
    this.sql = sql;
  }
  
  public boolean absolute(int row) throws SQLException {
    return realResultSet.absolute(row);
  }
  
  ...

Again, some methods are not plain delegations. The getStatement( ) method returns the statement that

generated this ResultSet . You need to return the StatementWrapper :

  public Statement getStatement(  ) throws SQLException {
    return parentStatement;
  }
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The getArray( ) methods need to return a wrapped Array object:

  public Array getArray(int i) throws SQLException {
    return new SQLArrayWrapper(realResultSet.getArray(i), parentStatement, sql);
  }
  
  public Array getArray(String colName) throws SQLException {
    return new SQLArrayWrapper(realResultSet.getArray(colName), parentStatement, sql);
  }

Finally, you need to add logging. Many developers erroneously believe that the various Statement.execute

methods incur the main cost of the database interaction. This is true for database updates and for database

reads that involve only a few rows. However, if more than a few rows of a query are read, then the

ResultSet.next( ) method can spend a lot of time fetching rows from the database. If many rows are to be

read, ResultSet.next( ) calls can take much more cumulative time than the execution of the SQL statements.

Log ResultSet.next( ) calls so you can track them:

  public boolean next(  ) throws SQLException {
    Thread t = Thread.currentThread(  );
    JDBCLogger.startLogSqlNext(t, sql);
    boolean b = realResultSet.next(  );
    JDBCLogger.endLogSqlNext(t, sql);
    return b;
  }

You can log other ResultSet calls if needed, such as previous( ) , insertRow( ) , etc. But most

applications need only next( ) logged, and that is how I'll leave the class.

16.1.2.4 The JDBC wrapper framework

That pretty much covers the classes that need wrapping. I haven't explicitly shown the Array wrapper or the

DatabaseMetaData wrapper, but they are straightforward, needing only delegation and ResultSetWrapper s

and ConnectionWrapper s returned instead of ResultSet s and Connection s. All the classes and wrapper

classes for JDBC 2 can be obtained from the web site for this book, http://www.oreilly.com/catalog/javapt2 .

JDBC Versions 1, 2, and 3 are all amenable to using wrapper objects to measure database interaction, though

they differ slightly in their interface definitions and thus require different wrapper classes. However, all the

wrapper classes for the different versions can be created the same way, following the procedure covered in this

chapter.

The class I haven't yet shown you is the JDBCLogger class. A simple implementation of that class would have

null calls for the logging methods, providing no logging:

package tuning.jdbc;
  
public class JDBCLogger
{
  public static void startLogSqlQuery(Thread t, String sql) {  }
  public static void endLogSqlQuery(Thread t, String sql) {  }
  public static void startLogSqlNext(Thread t, String sql) {  }
  public static void endLogSqlNext(Thread t, String sql) {  }
  
}
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Timing the queries would be more useful. The following methods work by holding the start time of the query and

finding the elapsed time for the query when it finishes. The methods are kept simple by assuming that SQL

queries cannot recurse within the same thread, an assumption that is generally true:

  private static Hashtable QueryTime = new Hashtable(  );
  
  public static void startLogSqlQuery(Thread t, String sql)
  {
     if (QueryTime.get(t) != null)
       System.out.println("WARNING: overwriting sql query log time for "
            + sql);
     QueryTime.put(t, new Long(System.currentTimeMillis(  )));
  }
  
  public static void endLogSqlQuery(Thread t, String sql)
  {
     long time = System.currentTimeMillis(  );
     time -= ((Long) QueryTime.get(t)).longValue(  );
     System.out.println("Time: " + time + " milliseconds for SQL query " + sql);
     QueryTime.remove(t);
  }

Using these methods in the JDBCLogger class provides output lines similar to the following code for every SQL

query execution:

Time: 53 milliseconds for SQL query SELECT * FROM JACKTABL

This output gives you precise measurements for each SQL query. You can also sum the queries in the

JDBCLogger class, retain the maximum half-dozen or so measurements, and then print out a summary

statement. The summary measurements I usually like to have are minimum, maximum, average, standard

deviation, and the 90th percentile value. Summary values tend to be more useful for a production environment,

whereas printing individual lines for each query is more useful when profiling the system during development.

16.1.2.5 Using the JDBC wrapper framework

Wrappers are very useful for determining the performance of JDBC calls in both development and deployed

applications. Because they are simple and robust and require very little alteration to the application, wrappers

can be retained in a deployed application. Creating a configurable JDBCLogger class lets you turn logging on and

off at will.

During development, these classes enable you to identify individually expensive database interactions and

repeated database interactions that are expensive because of their cumulative cost. Identifying these expensive

database interactions is the first step toward improving your application's performance. In production, these

wrapper classes identify discrepancies between expected performance and reality.

After you use these classes and techniques to pinpoint where JDBC is causing a performance problem, you need

to tune the database interactions. The next section addresses performance-tuning techniques for JDBC.
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16.2 Tuning JDBC

Although JDBC tuning follows general tuning guidelines, specifying that you find the bottlenecks before

tuning, it is worth knowing what tuning techniques are available from the outset. You can structure your

JDBC usage so it's easier to tune without violating good design and coding practices. Two general principles

are:

Always close or release resources when you are finished with them: Connections, Statements, and

ResultSets.

Use the latest versions. SDK core classes, JVM versions, and JDBC versions improve performance of

JDBC with each release. JDBC has not yet matured to the point that I can look back, compare versions,

and find operations faster in a previous release. For the foreseeable future, upgrade to new versions as

soon as they prove stable.

16.2.1 JDBC Drivers

The JDBC package provides interfaces to standardize the API that allows database connections. However, the

JDBC package does not provide concrete implementations of those APIs (except an ODBC driver). Third-

party implementations are necessary to make the actual connection to a particular database, and the

database vendor usually provides these implementations. These implementations are called JDBC drivers,

and they fall into four categories or types, which differ in implementation and performance:

Type 1

A JDBC bridge to another driver (e.g., the JDBC-ODBC bridge plus the ODBC driver)

Type 2

A native API, part-Java driver

Type 3

A pure Java driver for database middleware

Type 4

A pure Java driver direct to the database

16.2.1.1 Type 1: JDBC-bridging driver

Type 1 drivers provide a link to a bridging driver, most commonly to ODBC, that can connect to any ODBC-

compatible database (i.e., most databases). Because this type of driver uses a second bridging product, it is

usually the slowest type and should be avoided if possible.

16.2.1.2 Type 2: Native API, part-Java driver
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Type 2 drivers connect to a local native binary client. This connection is equivalent to using a native

database client library, connecting to it via JNI, and wrapping that connection by using classes implementing

the JDBC APIs. This configuration should provide reasonable performance, assuming the driver itself has

been through a round of performance tuning (most have by now). If the database is on the local machine

and the driver has optimizations to take advantage of that configuration, then a Type 2 driver could provide

the fastest performance. The JNI connection adds overhead, and that overhead becomes relatively larger as

JVMs get faster. But this type of driver is certainly worth evaluating if you have a choice of available drivers.

16.2.1.3 Type 3: Pure Java driver for database middleware

Type 3 drivers provide a connection to a middleware product, which in turn connects to a database. In some

ways, they are similar to Type 1 drivers. However, Type 1 ODBC drivers are generic. For example, ODBC

drivers are limited to using ODBC interfaces to databases, and that type of database interface does not

usually provide optimal performance. On the other hand, Type 3 driver middleware can use any interface to

the database, including the fastest one. Type 3 drivers have bridging overhead similar to that of Type 1

drivers, but middleware's optimization features and position in the architecture allow it to take full advantage

of any spare processing capacity available on the network. Type 3 drivers actually outperform Type 2 drivers

in many configurations.

16.2.1.4 Type 4: Pure Java driver direct to a database

Type 4 drivers connect from Java directly to a database by using network communications (sockets) and the

database's network application protocol. As it bypasses every type of intermediate bridging, this type of

driver generally provides the fastest communication. However, if the database and the Java code run on the

same machine and the database's native client library provides optimizations for that machine's

configuration, Type 2 drivers could be faster.

My advice is to use a Type 4 driver when possible, test the performance of Type 2 and Type 3 drivers, if

available, and stay away from Type 1 drivers. Type 3 drivers are rarer and tend to be third-party drivers, but

this often means that they were built by a company dedicated to building high-performance database

drivers. Generally, Type 3 and Type 4 drivers provide the overall best performance, but every configuration

is different (i.e., database type, usage, and distribution), so try to test the available alternatives. A list of

current drivers is available at http://industry.java.sun.com/products/jdbc/drivers, but that page does not

provide much information to help select the fastest driver.

Try to use the latest version available, preferably with JDBC 3.0 or higher support. JDBC 3.0 drivers include

connection pooling, distributed transaction support, RowSets, and prepared statement pooling.

16.2.2 Connection Pooling

Opening a connection to a database is costly, potentially requiring several network round trips, resources in

both the client and database, and setup of several layers of transport and authentication. Once a connection

is created, keeping it open is not expensive, even if it is idle. If you make many calls to a database, then

repeatedly opening and closing connections can kill the application's performance.

Keeping connections to the database open is an important JDBC performance-tuning technique. However, if

you simply open more connections and keep them all open, you quickly reach the database's limit for open

connections and probably exceed the number of connections for optimal efficiency. To maintain an efficient

number of open database connections, use a connection pool: an object pool consisting of Connection
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objects.

Connection pools are directly supported starting in JDBC 2.0, although earlier drivers may have their own

connection pools. Many third-party and open source connection-pool implementations are available, and

creating one yourself is also fairly simple. Remember that Connection objects are not reentrant: only one

client of the pool can use the Connection object at a time. You can even use a Connection wrapper to

intercept close( ) requests and deposit the Connection back into the pool, if you want completely

transparent connection pooling. The reference page at

http://www.JavaPerformanceTuning.com/tips/jdbcconnpool.shtml provides helpful links for finding or

building a connection-pool implementation appropriate to your application.

The suggested order of preference for selecting a connection-pool implementation is:

ConnectionPoolDataSource and PooledConnection from JDBC 2.0.1.

The driver implementer's connection pool (the driver implementer has opportunities to optimize its

connection pool with database-specific features).

2.

A third-party connection pool.3.

The connection pool itself provides further tuning possibilities. The size of the pool is a tuning parameter.

The ideal pool size is just large enough to service requests without forcing the requests for connections to

wait a long time. If the pool size is flexible (i.e., connections are created when the pool has no more

available connections and destroyed when they are idle for too long), then the goal is to tune the

connection-pool size to minimize the creation and destruction of database connections. Timeouts and initial,

minimum, and maximum pool sizes all provide parameters to optimize your application's use of the

connection pool.

The overall strategy for using pooled connections is to obtain and release pooled connections within each

method that requires the connection, if the request is short. However, do not release the connection only to

use it again almost immediately in another method. Instead, hold the connection until it is not immediately

needed.

Once a connection is obtained from the pool, it is essentially an exclusively locked shared resource. Keeping

the connection locked exclusively for the minimum amount of time ensures maximum scalability for the

application. You are generally better off obtaining and releasing connections too frequently, and accepting

the performance overhead of that strategy, than holding onto connections for too long.

For optimal use of connection pools, you might want to consider using several pools, with each pool

supporting a particular connection feature. For example, some databases can optimize read-only operations,

which the Connection class supports through the setReadOnly(boolean) method. Since some proportion

of JDBC operations are inevitably read-only, you may want to have a read-only connection pool as well as a

general connection pool.

16.2.3 Optimizing SQL

Developers use SQL to interact with databases when using JDBC. SQL is normally used with JDBC, since it

provides a standard, well-understood mechanism for database interaction. Drivers can support other

syntaxes, such as the database's stored-procedure syntax, but ANSI SQL must be supported.

The SQL used by your application via JDBC can be tuned to create significant gains in overall performance.
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Tuning SQL is therefore critical for tuning JDBC. Three broad areas to consider when tuning SQL include:

The nature of set-based database interactions

The work the database needs to do

The data transferred via JDBC

These three categories are not completely separate. They overlap slightly, and sometimes produce

conflicting optimizations that need to be balanced. We'll look at each category in turn.

16.2.4 Set-Based Processing

When you create a Java application that uses JDBC, you don't tend to think about which procedures are

operating on the same tables. Instead, you probably think about which data each method and object needs

and which data needs to be updated in the database on a method-by-method and object-by-object basis.

The resulting JDBC code tends to use row-by-row operations, with many JDBC-SQL calls inefficiently

handling only one row of a table in the database. SQL is designed to process multiple rows in a table

simultaneously. Relational-database vendors ensure that operations applied to multiple rows in one table can

be executed as efficiently as possible. To take advantage of this, combine SQL statements. Don't query for

one row at a time from a table; try to get all the rows you will need. This may require that you restructure

objects in your application, but can result in significantly fewer application-to-database round trips.

Even more usefully, SQL consists of more than SELECT and INSERT. Instead of using the database purely as

a data store, you can construct sophisticated SQL statements that combine queries, processing, and updates

without bringing lots of temporary data back to the Java application for local processing. Combining multiple

operations is a good way to take advantage of the efficiencies available in relational databases, and we will

discuss batching operations and stored procedures in later sections.

16.2.5 Database Server-Side Processing

On the database side of the JDBC communication, the database needs to process the data and received SQL

instructions, execute the accesses and updates required to satisfy the SQL, and return any requested data.

The more work the server has to do, the longer the operation takes. The performance-tuning target is to

minimize the server's work without disproportionately burdening the Java application.

Some techniques for reducing database work are relatively simple: avoid doing work that doesn't need to be

done. This rule seems obvious, but I've seen unnecessary calls to uppercase data (using upper( )) too

many times. Examine your SQL and the table structure to decide if the SQL adds unnecessary database-side

work. Are those uppercase/count/etc. operations really required? Could you more efficiently uppercase the

data on insertion? Sort the data differently? Avoid the count operation by maintaining a separate counter in

a dedicated counter table?

Do you really need to access the same table multiple times? Can you change existing rows of data rather

than adding or deleting rows? Each time you avoid changing the table by moving, deleting, or adding rows,

you've reduced the database workload slightly. If you can construct the application to use existing dummy

rows instead of inserting rows, the SQL runs faster.

Some databases can optimize read-only operations. If your connection is read-only, set the connection to
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read-only with the Connection.setReadOnly(true) method. If the database knows a connection is read-

only, it does not need to cache new pages, maintain journal entries, or acquire write locks on the data.

Some operations are much more expensive. Multiway joins invariably degrade performance, and

performance gets worse as data volume increases. Try working with as few tables as possible within each

SQL clause.

Queries of large tables that do not use an index require far more processing than tables with indexes.

Further, two checks can help you assess the efficiency of SQL statements. First, the Connection class

includes a nativeSQL( ) method that converts the SQL you provide into the system's native SQL. This

gives the driver an opportunity to convert standard SQL into SQL optimized for the particular database. This

method rarely returns anything other than the SQL string you pass to it, but it's always worth checking.

Second, many databases support the EXPLAIN SQL command. For databases that support EXPLAIN, you

can preface a statement with the keyword EXPLAIN and the database produces an explanation of how it will

execute the SQL, including whether an index is used.

As the Red Hat database manual points out, executing:

EXPLAIN SELECT * FROM foo

in PostgreSQL on a table with no index produces the plan:

Seq Scan on foo  (cost=0.00..2.28 rows=128 width=4)

telling you that the query is executed as a sequential scan, produces 128 rows, and requires 2.28 disk pages

to execute. Querying the table again with an added index and using an equijoin condition:

EXPLAIN SELECT * FROM foo WHERE i = 4

produces the plan:

Index Scan using fi on foo  (cost=0.00..0.42 rows=1 width=4)

telling you that the query is executed with an index, produces 1 row, and requires 0.42 disk pages to

execute. Quite a dramatic difference.

16.2.6 Minimizing Transferred Data

Transferring and converting data represents a significant proportion of the cost in many JDBC operations.

Parameters that minimize transfer costs are discussed under Section 16.2.9, and techniques to minimize

data conversion costs are discussed in Section 16.2.11. However, rather than minimize the costs, try to

completely avoid transferring the data. Efficient SQL lets you minimize the data that is transferred.

The most glaring example of transferring too much data is the ubiquitous use of the SELECT * query:

SELECT * FROM foo ...

Using the * character in the SELECT clause asks the database to return all fields in the rows. I recently

sampled some applications and found that out of thousands of requests to various databases, fewer than 10

requests needed all the fields in the rows queried. I don't really find the extensive use of SELECT *
surprising, though. During development, it is much easier to use the SELECT * query, especially since the
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required fields can change. Then the fields are accessed from the ResultSet row by field index. Later,

converting queries to request only the required fields means changing both the SQL and the indexes of the

accessed fields in the ResultSet rows, a bug-prone change in all but the simplest JDBC applications.

It can be difficult to estimate the cost of selecting too many fields without actually comparing the two

queries in the context of the application-i.e., comparing:

SELECT * FROM foo ...

and:

SELECT field1,field2 FROM foo ...

Several factors come into play; there is no conversion overhead from the unused fields (in most drivers),

and the transfer overhead depends on the size of the unused fields, the number of transferred rows, and the

transfer batch size, too! There is no doubt that the latter, more precise SELECT is more efficient, but

whether the effort to change the queries to the latter SELECT is worthwhile for your application and query is

a judgment call. In highly scaled systems, with many queries going to the database, every field counts.

A second type of inappropriate transfer, requesting too many rows, is less frequently a problem. It is easier

in development to specify the required rows precisely by using the appropriate clauses. One common

technique that results in transferring too many rows is sorting rows with a SORT BY clause, and then using

only the top few rows. For example, suppose you want to see the top five URLs hit on your web site. You

might use a SELECT url,hits FROM url_hits SORT BY hits  clause, as in the following code:

String sqlQuery = "SELECT url,hits FROM url_hits SORT BY hits"; 
Statement statement = connection.createStatement(  );
ResultSet resultSet = statement.executeQuery(sqlQuery);
String[  ] urls = new String[5];
int[  ] hits = new int[5];
//Assume we always have at least 5 urls for simplicity
for(int i= 0; i< 5; i++, resultSet.next(  ))
{
  url[i] = resultSet.getString(1);
  hits[i] = resultSet.getInt(2);
}

This results in the transfer of all table rows (or actually, the batch size; see Section 16.2.9). At the expense

of some costly SQL statements, you can specify the rows you want:

select r.url, r.hits from url_hits r
  where 5 >= (select count(*) from url_hits rr
    where rr.hits >= r.hits);

This SQL returns only five rows, with the top five URLs and the number of hits for each. It scans through the

url_hits table and, for every row, it goes through the whole url_hits table again in an inner loop to see

how many URLs have hits that are higher than the current row of the outer scan. This example is probably

more useful as an example of how SQL can be made to produce precisely the result you want. It is less

useful as a practical example of performance tuning because of the additional overhead such a query would

add to the database server and because setting the batch size to 5 for the original query would effectively

eliminate the transfer of extra rows.

I saw a more realistic example of transferring too many rows in an application that had been taken over by
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different developers. Rather than create new queries in the JDBC section of the application, the new

developers simply checked data items and discarded those that didn't apply to the new set of criteria.

Effectively, they made a SELECT * query, and then executed a WHERE clause in Java by iterating through

the ResultSet and collecting the rows that satisfied the new criteria.

Finally, accessing fields by name (e.g., with resultSet.getString("field1")) is inefficient. The driver

needs to map the name to the column number, which at best requires one extra round trip for the column

mapping, and at worst can result in multiple round trips and significant amounts of extra data transferred

from the database. (For example, MySQL and mSQL retrieve all rows from the database before accessing a

value by name.) Use the column number to access fields, even though doing so may require extra

information about table structures to be maintained in the application.

16.2.7 Caching

Caching data in the client is a highly effective technique for speeding up applications using JDBC. JDBC has

the overhead of network communication, data conversion, and server-side processing. Deciding to cache

JDBC data is almost a no-brainer. The questions you need to ask are which data, and how to cache it.

Deciding which data to cache is straightforward. Cache small read-only tables and tables that are updated

infrequently. Even medium-sized tables are worth considering, though you'll need to test how much space

they take up in their final cached form. Large tables and rapidly updated or frequently changing tables are

clearly not good candidates, though select rows from large tables may be if they are rarely changed and are

used more often than other rows. In some cases, a cache replacement policy, such as least-recently-used,

could slowly replace the data being cached so that frequently required data from large tables can settle into

the cache.

How to cache the data is more complex. Bearing in mind that any processing through JDBC produces

overhead, the best place to cache JDBC-obtained data is after you have processed it (i.e., after it is

extracted from the ResultSet and converted into objects or object data). This is an especially good option

if you are in the design or early implementation stage of your project, when you can most effectively build in

object caching. If you are in a late stage of development, you may be able to modify your application so it

caches objects, but that depends on the existing design, considering how the data is used and where it ends

up.

The second option is to cache at the ResultSet layer. You cannot use a ResultSet object as the cache

object itself because it uses JDBC resources that need to be closed. However, the techniques discussed and

used in the first section of the chapter show how to implement wrappers for most kinds of JDBC objects,

including ResultSets. You can even create a mostly transparent cache with wrappers. Just add a

Hashtable to the ConnectionWrapper that maps SQL query strings to StatementWrappers and

ResultSetWrappers. The ResultSetWrapper itself should wrap the original ResultSet accessed from

the database and simply iterate through all the rows, obtaining the data to hold locally. All fields can be

accessed with the ResultSet.getString( ) method and converted as required when accessed with other

methods. For example, you might read all the data looping through the ResultSet to collect all rows as an

array of String fields:

public static Vector createCache(ResultSet rs)
{
  //We need to know how many columns there are
  ResultSetMetaData resultSetMetaData = resultSet.getMetaData(  );
  int numColumns = resultSetMetaData.getColumnCount(  );
  Vector rowsvector = new Vector(  );
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  //Could use an Object[  ] and getObject(  ) later in the loop
  //at the cost of more space taken up and more overhead during
  //this create cache routine. 
  String[  ] oneRow = null;
  //Read through the rows one at a time, getting all the fields
  //as separate strings, and add them all into the vector
  while(resultSet.next(  ))
  {
      oneRow = new String[numColumns];
      for (int i = 0; i < numColumns; i++)
        oneRow[i] = resultSet.getString(i+1);
      rowsvector.addElement(oneRow);
  }
  
  resultSet.close(  );
  return rowsvector;
}

Bear in mind that you do not need to implement a generic framework to handle every possible case. Only the

queries that lead to cached data need handling, and only those data types that will be accessed need to have

get( ) methods implemented. For example, if you access only Strings and ints, here is a straightforward

implementation of a ResultSet:

public class ReadOnlyCachedResultSet implements ResultSet
{
  Vector cacheOfRows;
  int currentIndex;
  public ReadOnlyCachedResultSet(Vector rowsCache)
  {
    cacheOfRows = rowsCache;
    currentIndex = -1;
  }
  
  public int getInt(int columnIndex) throws SQLException {
    String[  ] row = (String[  ]) cacheOfRows.elementAt(currentRow);
    return Integer.parseInt(row[columnIndex-1]);
  }
  
  public int getString(int columnIndex) throws SQLException {
    String[  ] row = (String[  ]) cacheOfRows.elementAt(currentRow);
    return row[columnIndex-1];
  }
  
  public boolean next(  ) throws SQLException {
    if (++currentIndex >= cacheOfRows.size(  ))
      return false;
    else
      return true;
  }
  
  //... All other methods can be implemented as unsupported, e.g.,
  //public Array getArray(String colName) throws SQLException {
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  //  throw new UnsupportedOperationException(  );
  //}

The Statement wrapper returns this ResultSet when the application executes the relevant SQL query for

the cached data. This framework is relatively easy to implement and understand, and it can be slipped in

over the actual JDBC driver, as shown in the first section of this chapter. It has one drawback: the data is

vastly expanded as it is held in the form of multiple Strings, one per field. With a little extra work, you can

pack all the data into byte arrays and cache it in that form, so even the data size is not an overwhelming

problem.

Unfortunately, there is a more serious drawback. This simple mechanism does not support parameterized

queries. It is possible to support parameterized queries using similar but considerably more sophisticated

wrappers, but the effort is beyond what I can present here.

Finally, an in-memory database product is another reasonable option that can provide relatively transparent

database caching, though with a higher overhead. Several commercial versions and an open source product

called hsqldb (available from http://hsqldb.sourceforge.net/) are available. The memory overhead for such

products is small, and they work just like a normal relational database, with their own JDBC driver, so you

can switch between databases by switching drivers for queries or by redirecting queries with Connection

wrappers. Use such products to replicate the tables you want to cache and keep in memory.

An in-memory relational database opens up another interesting performance-tuning option. You can use the

database to update cached rows in exactly the same way as you would the proper database. Because the

update mechanism is SQL, you can log the SQL statements locally to disk as you execute them on the in-

memory database, a process called journaling. Then the SQL statements can be applied to the actual

database separately and asynchronously, to synchronize it with the in-memory database. Since SQL is

standardized, you can use the same SQL easily for both databases.

16.2.8 Prepared Statements

" Use PreparedStatements." You'll hear this refrain again and again when dealing with JDBC performance-

tuning tips. Fair enough, but if everyone figures you should use PreparedStatements, what is Statement

for? Is it just a redundant interface?

When a database executes an SQL statement, it performs two separate tasks. First, it searches through the

data and indexes to determine which data items satisfy the SQL statement. You explicitly direct the database

to perform this task.

However, behind the scenes, the database has a second task: to work out exactly how to execute the SQL.

The database needs to:

Parse the SQL to see if it is properly constructed

Identify whether there are indexes for this search (indexes are not specified in the SQL, nor should

they be)

Identify the location of the indexes

Identify the location of the tables

Determine which fields are needed to satisfy the SQL
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Figure out the best way to do the search

These and other tasks combine to form the query plan. When the database "prepares" a statement, it

creates a query plan. Now the difference between Statement and PreparedStatement may be clearer:

Statement prepares and executes the query plan each time, while PreparedStatement prepares the

query plan once and then reuses the query plan. Preparing a statement is also referred to as precompiling a

statement.

If that were the whole story, then PreparedStatement would always be the statement of choice, and you

would avoid Statement objects completely. But it's not quite the whole story. Statement has optimizations

that the database can apply; mainly, the database knows that the Statement plan is executed immediately

and thrown away. So the database handles Statement queries differently from PreparedStatements.

Statement queries can be prepared and executed in one swoop, using the state of the database at the time,

without allocating resources to keeping the plan around. PreparedStatements, on the other hand, need to

allocate database resources to store and maintain the query plan and to ensure that the query plan is not

invalidated by changes to the database. For example, the query plan would need to be updated or re-created

in the case of some types of changes to the database, depending on how detailed the query plan is.

Creating and executing a Statement once is faster than creating and executing a PreparedStatement
once. But PreparedStatement has a one-off hit in its preparation stage, so after the preparation stage is

completed, any single PreparedStatement execution should be faster than a single Statement execution.

Now the options are clearer, though not completely clear-cut. If your application has an initialization phase

during which you can create and execute your PreparedStatements, then all subsequent executions of

those PreparedStatements provide the fastest query possible. (Note that I say to create and execute the

PreparedStatement in the initialization phase. Although logically, the PreparedStatement should be

prepared when the object is created, the API allows the driver to choose whether to prepare the statement

at object-creation time or when the first execution takes place.)

However, if you cannot prepare your statements during an initialization phase, the choice is more difficult.

You can choose a Statement or PreparedStatement object, depending on which provides the fastest

overall cumulative time for repeated queries. For example, in Java Programming with Oracle JDBC (O'Reilly),

Donald Bales looks at the cost of table inserts using Oracle drivers and finds that the statement needs to be

repeated 65 times before the cumulative time of PreparedStatements is faster than the cumulative time

for repeating Statements. Inserts have an overhead different from that of access queries, and different

drivers and databases have different overhead, so test your configuration to see where the crossover

happens if you need to be precise.

In general, for any particular SQL statement:

If you have spare time in which a PreparedStatement can be initialized with one execution, use

PreparedStatement with this separate initialization.

If you cannot separately initialize the statement in spare time and you execute the statement only

once, use Statement.

If you cannot separately initialize the statement in spare time and you execute the statement only a

few times (say, less than10), use Statement.

If you cannot separately initialize the statement in spare time and you execute the statement many

times, use PreparedStatement.
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If you cannot separately initialize the statement in spare time but it is acceptable for the first execution

of the statement to be slower, use PreparedStatement.

Bear in mind two things when using PreparedStatements. First, the SQL needs to be identical for the

query plan to be reusable. So:

SELECT f1,f2 FROM t1 WHERE f3=4

and:

SELECT f1,f2 FROM t1 WHERE f3=5

are two different statements, and making the first query into a PreparedStatement doesn't help the

second query run any faster. Fortunately, PreparedStatements support parameterized queries so you can

repeat the same query with different parameters. To get the performance benefit of PreparedStatements,

make it a habit to use parameterized statements. This code executes the previous two queries efficiently by

using parameterized statements:

String query = "SELECT f1,f2 FROM t1 WHERE f3=?";
PreparedStatement ps = conn.prepareStatement(query);
ps.setInt(1, 4);                    //First query with parameter set to 4
ResultSet rs = ps.executeQuery(  );   //Execute query
...                                 //Read and process rows
rs.close(  );
  
ps.setInt(1, 5);                    //Second query with parameter set to 5
ResultSet rs = ps.executeQuery(  );   //Re-execute query
...                                 //Read and process rows
rs.close(  ); 
  
ps.close(  );

The second thing to bear in mind is that the PreparedStatement is associated with a particular connection.

Although it may be possible for the driver and database to ensure that any PreparedStatement that uses a

particular SQL statement also uses the same query plan, you cannot count on it. Therefore, you need to use

the same PreparedStatement object for repeated executions of an SQL statement to ensure that the SQL

is executed with precompilations, which requires that you use the same Connection. This is especially

important when using pooled connections. With pooled connections, you either hold a separate pool of

prepared statements, or implement wrappers, as defined in the first section of this chapter, to hold a cache

of SQL statements and their corresponding Connection and PreparedStatement objects and return them.

Try to keep the appropriate connections available for the methods needing to reuse the

PreparedStatement. This again points to separate connection pools.

JDBC 3.0 supports pooled PreparedStatements that can be used independently of their originating

Connection objects. The pooling happens completely under the covers, controlled by the driver. Indeed, a

simplistic approach, which assumes that the JDBC/database automatically understands that the same SQL

should use the same query plan without worrying about which Connection object and which

PreparedStatement are used, can actually work with JDBC 3.0. Unfortunately, the JDBC 3.0 interface does

not specify that any particular SQL statement must be cached, and the only parameter available is the

maxStatements property of the JDBC 3.0 connection pool, which specifies only how many statements

should be kept open. Moving to JDBC 3.0 might solve your particular PreparedStatement reuse issues.

However, there isn't sufficient explicit support to determine which PreparedStatements are automatically

cached in JDBC 3.0, so if you are a defensive programmer, you may wish to retain control of your pools,
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even with JDBC 3.0.

Finally, a couple of warnings. First, the JDBC API does not specify how PreparedStatements or

Statements should be implemented. The differences in performance between Statements and

PreparedStatements are recommendations based on what I've seen, read about, and expect from

documented features of various databases. But they are not guaranteed: always check the driver and

database documentation and test for expected performance improvements.

Second, the SQL you execute is a String. If you dynamically create the SQL Strings you execute by

concatenating various items, you add all the String concatenation and conversion overhead discussed in

Chapter 5. This overhead can be costly, especially for repeated or looped executions of SQL statements. Try

to avoid extra String overhead. Parameterized SQL statements that are supported by

PreparedStatements can help you avoid creating extra strings for repeated SQL statements.

16.2.9 Batching

Relational databases are designed to be operated optimally with SQL, which is a set-processing language.

Consequently, relational-database performance is optimized when you combine access of multiple rows of a

table and combine multiple updates to a table. Furthermore, operating on one table at a time is normally

faster than interleaving operations between multiple tables. This combination of operations is called

batching.

You can take advantage of batching in JDBC in two ways: on access and on update. These two types of

operations are batched very differently, so we'll look at them separately. You may need to check how any

particular driver supports batching. Some have restrictions, such as only supporting update batching with

one type of Statement (Oracle batches updates only with PreparedStatement) or one mode of

ResultSet (DB2 doesn't batch when used with scrollable ResultSets).

16.2.9.1 Batching accesses by optimizing row fetching

JDBC includes parameters that support batching accesses from the database by specifying how many rows

are fetched in one transfer. Essentially, the amount of data (or, more specifically, the number of rows) read

by one call to the database is configurable. Transferring data efficiently is important because network

communication time affects performance more than any other factor. For example, if you intend to read 10

rows from a table and each row requires a separate round trip to the database, it takes 10 times longer to

access the data than if the 10 rows are read in one network round trip. In practice, JDBC access is already

batched, with a typical default number of rows between 10 and 100. For example, Oracle uses a default of

10 and DB2 uses a default of 32. If you access the default number of rows, access is batched automatically.

In practice, rather than being critical for performance, for most applications, adjusting access batch size is

more like fine-tuning performance.

If you retrieve only a few rows, the default fetch size may be too large. But there is not usually a large cost

in having too large a fetch size as long as the data volume of the default fetch size is not so large that the

network fragments the data packets. Typical table rows are not large enough to cause fragmenting.

Nevertheless, reducing the fetch size to be in line with the number of rows you actually read should improve

performance by reducing overhead slightly at both ends of the communication (in the JDBC layer and at the

database-access layer).

If you regularly access more than the default fetch size, then you can reduce the number of network trips by

increasing the fetch size. This can make a big difference, depending on how much data you retrieve. If you
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regularly get 33 rows and the fetch size is 32, you incur an extra network call for the 33rd row. If you get

10,000 rows, then a 10-row fetch size requires 1,000 network trips. A 32-row batch reduces that amount by

a third, but still requires 313 network trips. A fetch size of 512 requires just 20 network trips. Depending on

how the data is processed in the application, this change could alleviate a significant bottleneck. The tradeoff

to increasing the fetch size is increased memory use. All fetched data has to be held in the JDBC layer on the

client, and this memory can add up excessively if you use a large default batch size that applies to every

request.

The fetched data is held in the ResultSet object generated by executing a query. If the fetch size is 10,

then accessing the first 10 records simply iterates internally through the ResultSet data held on the client.

The 11th access causes a call to the database for another 10 records, and so on for each group of 10

records.

You can set the fetch size in several ways, depending on how widely you want the change to apply. You can

set it at the Connection, Statement, or ResultSet level. However, in all cases, you rely on the database

driver supporting the capability to change the fetch size. The database driver can ignore the change. To set

the fetch size at the Connection level, use one of the Connection creation methods that accept a

Properties object:

DriverManager.getConnection(String url, Properties props)
Driver.connect(String url, Properties props)

The actual keyword to set the fetch size in the Properties object is driver-dependent. For example, DB2

uses block size, while Oracle uses defaultRowPrefetch:

Properties p = new java.util.Properties(  );
p.put("block size", "512");         //DB2
p.put("defaultRowPrefetch", "512"); //Oracle
Connection c = DriverManager.getConnection("jdbc:dbname:path", p);

In addition, some drivers (for example, Oracle) give Connection objects dedicated methods to set the fetch

size:

public static void setOracleFetchSize(Connection c, int size) {
  ((OracleConnection) c).setDefaultRowPrefetch(size);
}

The fetch size can also be set at the Statement or ResultSet level by using their setFetchSize( )

methods:

Statement.setFetchSize(int size)
ResultSet.setFetchSize(int size)

These setFetchSize( ) methods also depend on the driver supporting the changing of fetch sizes: the API

states that the driver can ignore the request.

16.2.9.2 Batching updates

Batching updates simply means sending multiple update statements in one transaction and one call to the

database. JDBC supports this capability with the addBatch( ) and executeBatch( ) methods. The

technique is simple and is illustrated here. Remember to explicitly commit the batch transaction:
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boolean autocommit = connection.getAutoCommit(  );
connection.setAutoCommit(false);
Statement s = connection.createStatement(  );
s.addBatch("INSERT INTO SOCCER VALUES('Pele    ', '      ', 'Brazil   '));
s.addBatch("INSERT INTO SOCCER VALUES('Charlton', 'Bobby ', 'England  '));
s.addBatch("INSERT INTO SOCCER VALUES('Maradona', 'Diego ', 'Argentina'));
s.addBatch("INSERT INTO SOCCER VALUES('Cruyff  ', 'Johan ', 'Holland  '));
int[  ] results = s.executeBatch(  );
//Check the results
if ((results.length != 4) ||
( (results[0] != 1) && (results[0] != -2) ) ||
    ( (results[1] != 1) && (results[1] != -2) )||
    ( (results[2] != 1) && (results[2] != -2) )||
    ( (results[3] != 1) && (results[3] != -2) ) )   {
      throw new java.sql.BatchUpdateException("Something failed.");
}
connection.commit(  );
connection.setAutoCommit(autocommit);

And similarly using PreparedStatements:

PreparedStatement ps = connection.prepareStatement(
    "INSERT INTO SOCCER VALUES(?, ?, ?) ");
ps.setString(1, 'Pele    ');
ps.setString(2, '      ');
ps.setString(3, 'Brazil   ');
ps.addBatch(  );
ps.setString(1, 'Charlton');
ps.setString(2, 'Bobby ');
ps.setString(3, 'England  ');
ps.addBatch(  );
...
int[  ] results = ps.executeBatch(  );
//Check the results
if ((results.length != 4) ||
( (results[0] != 1) && (results[0] != -2) ) ||
    ( (results[1] != 1) && (results[1] != -2) )||
    ( (results[2] != 1) && (results[2] != -2) )||
    ( (results[3] != 1) && (results[3] != -2) ) )   {
      throw new java.sql.BatchUpdateException("Something failed.");
}
connection.commit(  );
connection.setAutoCommit(autocommit);

It is easiest to take explicit control when batching updates (i.e., to explicitly collect the data and statements,

combine them into SQL calls, and call whichever execute method is most appropriate, normally

executeBatch( )). executeBatch( ) is the only standard method for executing batches, but some

drivers have additional proprietary methods that optimize batches in different ways, such as with the Oracle

sendbatch( ) method. If this is not feasible because of the complexity of changing the existing

implementation, you can use an underlying layer to batch the updates. One approach is to use RowSets,

available with JDBC 3.0, which can be operated in a disconnected manner. Reading from the RowSet, you

can collect the update statements and execute them together.
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A more transparent mechanism would use wrappers, constructed in a similar way to the wrappers covered in

the first section of this chapter. The wrappers would collect statements and automatically execute them

together according to an application-specific triggering mechanism. (For example, Oracle provides this

mechanism in its driver as an alternative batching model.)

16.2.10 Data Structures

Databases are designed to hold certain types of data more efficiently than others. The basic data types, such

as numeric and string, normally have fixed sizes and often a fixed range of formats. These restrictions are

mainly for performance; they enable the database to be efficient in access and update. Dealing with fixed-

size data having a known format means that you don't need to search for terminators within the data, and

knowing the format reduces the number of branch points necessary to handle many formats. Databases are

optimized for these basic data types and formats.

The closer you can come to holding data in your application in the same format required by the database,

the more easily you can achieve good JDBC performance. However, this consideration usually compromises

your application. Efficiently structured relational-database data is rarely compatible with good object-

oriented design.

There are other data-structure considerations. The data you currently use is frequently updated and

accessed in the database. Other types of data, such as historic or archived data, are not accessed frequently

by the database. However, if you use the same set of tables for both types of data, then the database has no

choice but to pull both sets of data into its cache and search through both types of data. So separating

tables of frequently and infrequently used data allows the database to optimize its handling of frequently

used data. It also reduces the possibility that you will need to search through result sets for data items you

need.

16.2.11 Minimizing Data-Conversion Overhead

The data in the database is stored in a different format than the data held in your Java application.

Inevitably, this format discrepancy necessitates data conversion. A few techniques are available that

minimize conversion overhead.

Use the type-correct get( ) method rather than getObject( ). The ResultSet object has a large

number of different get( ) methods. Each method typically accesses the underlying data item and converts

the data into the required Java data type or object type. The closer the underlying data is to the resulting

Java data type, the more efficient the conversion.

A get( ) method that results in an Object typically costs more than one that converts into a primitive Java

data type (e.g., int, float, etc.). Strings, as usual, have special considerations. Strings are usually held in

relational databases as single-byte character data (ASCII) and get converted to Unicode two-byte Strings

in Java. You can reduce the conversion cost by storing String and char data as Unicode two-byte

characters in the database. But bear in mind that doing so will cause your database size to grow-in the

worst case, doubling the size of the database.

Finally, if you use data types that are not primitive data types, use the most appropriate data type available

from the database. For example, almost every database has a date type, and you should store your dates in

that date type and not in the more generic varchar data type. Avoid BLOB and CLOB types whenever

possible. But note that relying on database-specific data types, although good for performance, can

compromise portability.
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16.2.12 Metadata

Metadata is information about how data is structured in the database, such as the size of a column or its

numeric precision. There are a number of considerations for dealing with metadata.

First, metadata rarely changes. In fact, unless your application is specifically designed to deal with the

possibility that the metadata will change, you can assume that the metadata for a particular table and

metadata about database features are constant for the lifetime of a particular JVM. Metadata can be

expensive to obtain from the database compared to most other types of queries. Thus, if you use metadata,

obtain it once and cache the data. Many DatabaseMetaData methods are quite slow, and executing them

repeatedly causes a bottleneck. Methods you should avoid calling include getBestRowIdentifier( ),

getColumns( ), getCrossReference( ), getExportedKeys( ), getImportedKeys( ),

getPrimaryKeys( ), getTables( ), and getVersionColumns( ). Avoid using null arguments in

metadata queries. A null argument has one fewer criterion to restrict a search, which makes the search more

intensive.

ResultSetMetaData is more efficient than DatabaseMetaData, so try to use the former. For example, if

you want to get column information about a particular table, you are better off getting the

ResultSetMetaData object from a query, even a dummy query, on the table, rather than using the more

generic DatabaseMetaData.getColumns( ) method.

Avoiding implicit metadata queries can be difficult. For example, Don Bales points out that an Oracle SELECT

statement (not a prepared statement) makes two round trips to the database: the first for metadata and the

second for data. He suggests using the OracleStatement.defineColumnType( ) method to predefine

the SELECT statement, thus providing the JDBC driver with the column metadata it needs. The query can

then avoid the first database trip to query for metadata.

Apart from optimizing metadata queries themselves, using metadata information also allows you to optimize

standard queries. For example, the DatabaseMetaData.getIndexInfo( ) method allows you to identify

which indexes exist for a table. Using this data allows you to optimize your query to use indexes in the query

when possible. Another useful example is the DatabaseMetaData.getBestRowIdentifier( ) method,

which identifies the optimal set of columns to use in a WHERE clause for updating data. The columns returned

by this query can include pseudocolumns not available from the getColumns( ) method. Pseudocolumns

can provide the database with a pointer to an internal database location, which allows the database to

optimize the operations that include pseudocolumns.

16.2.13 Handling Exceptions

Catching and handling database warnings and exceptions is important. At the very least, record and analyze

them for handling in future versions of your application if you cannot handle the exceptions directly. JDBC

exceptions are often indicative of incorrectly configured resources, which, if ignored, can result in significant

inefficiencies. In addition, not correctly handling JDBC exceptions can leave resources in use but idle,

creating resource leakage that inevitably decreases performance over time.

Note that JDBC exceptions often enclose other underlying exceptions, so don't forget to chain through them.

16.2.14 Stored Procedures
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Stored procedures are defined in the database and can be executed from a remote call similar to SQL.

Stored procedures have some overhead associated with execution, but are precompiled and executed

entirely on the database server. This means that they are similar to PreparedStatements, but without the

preparation and per-call overhead. Stored procedures are more efficient than PreparedStatements and

Statements when the stored procedure is fairly complex, equivalent to many complex SQL statements.

Stored procedures are also relatively efficient if they circumvent intermediate round trips between the client

and the database-for example, when a procedure would consist of several separate calls to the database

while a stored procedure requires only one call.

On the other hand, the procedure-call overhead for stored procedures indicates that they are inefficient

compared with any single simple SQL call. Replacing each SQL call in your JDBC application with an

equivalent call to a stored procedure with the same functionality, a one-for-one replacement of calls, would

probably be inefficient, making performance worse.

Another consideration is the relative processing availability of the database server and the database client.

In some cases, the database server may be underutilized compared to the database client, especially when

the database client is middleware such as an application server. In this case, stored procedures can move

some of the processing to the database server, making better use of the available CPU power on both

machines.

Generally, a stored procedure can improve performance if it replaces any of the following:

A complex series of SQL statements

Multiple calls to the database with one call to the stored procedure

Java-side processing when there is spare CPU capacity on the server

Don't use a stored procedure to replace simple SQL calls. Stored procedures are best used to avoid moving

data back and forth across the network. And stored procedures are not an option if full database portability

needs to be maintained, as they are different for each database.

Stored procedures are executed from JDBC using CallableStatements. Stored procedures are not

standardized, so use the syntax specific to your database. Here's a simple example of a stored procedure

that takes a parameter:

String storedProc = "{call doBlah(?)}";
CallableStatement cstmt = connection.prepareCall(storedProc);
cstmt.setString(1, "hello");
if(false =  = cstmt.execute(  ))
  throw new Exception("No ResultSet Returned");
ResultSet rs = cstmt.getResultSet(  );
...
rs.close(  ) ;
cstmt.close(  ) ;

16.2.15 Transaction Optimization

The very best performance-tuning advice is to avoid doing what doesn't need to be done. Transactions are a

lot of work for the database. A database needs to maintain all sorts of different resources to ensure that the

ACID properties (Atomicity, Consistency, Isolation, and Durability) apply to a transaction, irrespective of any

simultaneous operations and of whether the transaction ends with a commit or rollback. If you can avoid
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forcing the database to do some of that work, performance improves.

16.2.15.1 Auto-commit mode

The first way to minimize transaction costs is to combine multiple operations into one transaction. By

default, the JDBC connection is in auto-commit mode, which means that every operation sent to the

database is automatically its own transaction-that is, as if every Statement.execute( ) method is

preceded with a BEGIN TRANSACTION command and followed by a COMMIT command. Turning off auto-

commit and making your transactions explicit requires more work, but pays off if you can combine

transactions (see "Batching" earlier in this chapter), especially when you scale the system. On heavily loaded

systems, the overhead from transactions can be significant, and the lower that overhead is, the more the

system can scale. Turning off auto-commit is done using:

Connection.setAutoCommit(false);

A Connection.getAutoCommit( ) method determines the current auto-commit mode. With auto-commit

off, you will need to use the two transaction-completion methods: Connection.commit( ) and

Connection.rollback( ).

Taking manual control over transactions doesn't mean that you should extend the transactions for long

periods to catch lots of operations in one transaction. Transactions should be as short as possible. Leaving

transactions open keeps locks on rows, which affects other transactions and reduces scalability. If you have

several operations that could be executed sequentially, then combine them into one transaction, but

otherwise keep transactions as short as possible.

Combining operations into one transaction may require extra conditional logic in the SQL statements and

possibly even temporary tables. Even so, this is more efficient than not combining those operations because

the database can obtain all the required locks and release them in one step. Multiple transactions result in

more communication overhead, more lock-and-release phases, and a greater likelihood of conflict with other

sessions.

16.2.15.2 Transaction levels

Transactions are defined as all-or-nothing operations. Everything occurs in a transaction as if no other

operations are occurring in the database during the transaction; that's roughly what the ACID properties

mean. As already noted, this gives the database a large amount of work. Thus, most databases have

provided other levels of transactions-levels that are not real transactions, as they don't satisfy the ACID

properties. Nevertheless, these transaction levels are useful for many types of operations because they

provide better performance with acceptable transactional functionality. Transaction levels can be set using

the Connection.setTransactionIsolation( ) method. Not all levels defined in the JDBC Connection

interface are supported by all databases. The levels defined in JDBC are:

TRANSACTION_NONE

TRANSACTION_NONE is supposed to be a placeholder, not a valid transaction level. According to the

Connection API, you cannot use TRANSACTION_NONE as an argument to the

Connection.setTransactionIsolation( ) method, since TRANSACTION_NONE supposedly

signifies that transactions are not supported. Nevertheless, some database drivers use this level. For

example, the DB2 native (Type 2) driver uses TRANSACTION_NONE as its default level. If

TRANSACTION_NONE is available as a supported level, TRANSACTION_NONE with auto-commit mode
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off (false) causes the least overhead to the database. But, of course, no changes can be committed to

the database, so it's adequate for read access and temporary row or table creation: any changes are

rolled back automatically when the connection is closed. TRANSACTION_NONE with auto-commit mode

on (true) causes the next least overhead to the database, and, in the case of DB2, this configuration

gives access to triggers and stored procedures that can commit work to the database.

TRANSACTION_READ_UNCOMMITTED

This is the fastest properly valid transaction level. TRANSACTION_READ_UNCOMMITTED lets you read

changes made by other concurrent transactions that have not yet been committed to the database.

The API states that dirty, nonrepeatable, and phantom reads can all occur at this transaction level

(see the sidebar Some Non-ACID Transaction Problems). Supported by DB2, not by Oracle, this

transaction level represents the atomicity of ACID: your changes are treated as if they all happen at

the same time if committed, or as if none happen if rolled back.

TRANSACTION_READ_COMMITTED

This level is slower than TRANSACTION_READ_UNCOMMITTED, but is otherwise the fastest properly

valid transaction level. TRANSACTION_READ_COMMITTED lets you read changes made by other

concurrent transactions that were committed to the database. The API states that dirty reads are

prevented with this transaction level, but nonrepeatable and phantom reads can both occur. This level

is supported by DB2 and by Oracle, where it is the default level.

TRANSACTION_REPEATABLE_READ

This level is faster than TRANSACTION_SERIALIZABLE, but slower than the other transactions levels.

With TRANSACTION_REPEATABLE_READ, reading the same field twice should always result in the

same value being read, except when this transaction has changed the value. The API states that dirty

and nonrepeatable reads are prevented at this transaction level, but phantom reads can occur. It is

technically implemented by placing locks on rows that are read or written and holding the locks until

the end of the transaction.

TRANSACTION_SERIALIZABLE

This is the slowest transaction level, but is fully ACID-compliant. At this level, transactions are

serialized: your transaction is deemed to have taken place in its entirety as if all other committed

transactions have either taken place in entirety before or after this transaction. The API states that

dirty, nonrepeatable, and phantom reads are prevented with this transaction. It is supported by any

ACID-compliant database.

One transaction level is rarely ideal throughout your application. Look for read queries in the application, and

consider for each whether any of the problems outlined in the sidebar adversely affect the query for the

given data, data update pattern, and query. Reads of static tables or tables that are updated only by the

same transaction that reads them can safely use the lowest transaction level. Basically, in transactions

where there is no concurrent update possible, you can use TRANSACTION_NONE or

TRANSACTION_READ_UNCOMMITTED safely and efficiently. TRANSACTION_SERIALIZABLE is the truly safe

option and should be used unless you determine another acceptable level for any particular transaction.

Many drivers are delivered with a default transaction level other than TRANSACTION_SERIALIZABLE

because they are faster that way, which means that a simplistic evaluation shows the driver (and database)

at its best.

16.2.15.3 User-controlled transactions

Transactions controlled by the user are another significant JDBC bottleneck. Any transaction that requires a

user to execute an action (such as clicking OK or Cancel) to close the transaction (i.e., to commit or abort it)
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is a problem waiting to happen. Inevitably, one or more users forget to terminate the activity or are forced

to leave the activity unfinished. Resources are left open in the application and database, and any concurrent

activity can easily conflict with the locked resources, resulting in decreased performance throughout the

system. Only single-user applications, or applications that are effectively single-user because they don't

share any of the same resources between users, are immune to this problem.

The main alternative to leaving a user in control of a JDBC transaction is to use optimistic transactions.

Optimistic transactions collect information for update outside of a JDBC transaction and then use a

mechanism to check that the update doesn't conflict with any other update that may have been processed in

between. Mechanisms for checking for optimistic conflicts include timestamps, change counters, and

checking for differences from an expected state.

For example, when the application gathers user-input data for the update, the data can be sent to the

database as a batch set of SQL statements that includes timestamped safeguards that make sure the original

data in the database is the same as the data originally used by the client. A successful transaction updates

the rows (including the timestamps) to indicate newly changed data. If another update that invalidates the

user's changes is made by another user, the timestamps will have changed, and the current transaction

needs to be rolled back instead of committed. Usually, no intermediate conflicting transactions have

occurred, so most transactions succeed. When a transaction fails, the application displays the entered data

along with the changes that caused the conflict. The user then alters and resubmits the data.

Optimistic transactions are unsuitable for applications that consist of multiple transactions that frequently

write data concurrently. This pattern of activity would result in frequently failing optimistic transactions and

an increase in overall resource usage.

16.2.15.4 Savepoints and distributed transactions

JDBC 3.0 introduced savepoints, which let you mark a point within a transaction and roll back to that point

instead of having to roll back the entire transaction. This feature looks very nice, and I would be surprised if

designers using JDBC aren't champing at the bit to use it. Unfortunately, savepoints carry significant

overhead. I have not yet been able to test how savepoints may affect performance, but I expect that they

should be used sparingly or avoided altogether in any performance-critical sections of code. If you do use

them, be sure to release their resources by using the Connection.releaseSavepoint(Savepoint)

method.

Some products support distributed transactions across multiple connections. The javax.sql package

includes XADataSource and XAConnection interfaces to support distributed transactions. However,

distributed transactions are significantly slower than normal transactions because of all the extra

communication required to coordinate the connections. Avoid distributed transactions unless they are

absolutely required.

Some Non-ACID Transaction Problems

A connection using transaction levels other than the full ACID-compliant

TRANSACTION_SERIALIZABLE level can experience many problems. The following examples use

a table called TABLE_SIZES that has two columns, TABLENAME and TABLESIZE. They also use

two transactions, T1 and T2, where T1 uses the TRANSACTION_SERIALIZABLE level.

A dirty read occurs when a transaction can see uncommitted changes to a row. If another

transaction changes a value and your transaction reads that changed value, but then the other
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transaction rolls back its change, the value becomes invalid or "dirty." For example, suppose T2
uses the transaction level TRANSACTION_READ_UNCOMMITTED:

Row TABLENAME=USERS has TABLESIZE=11.1.

T1 and T2 start their transactions.2.

T1 updates row TABLENAME=USERS to TABLESIZE=12.3.

T2 reads T1's uncommitted change, reading row TABLENAME=USERS with TABLESIZE=12

because T2's transaction level means that uncommitted changes can sometimes be read.

4.

T1 rolls back the transaction, so row TABLENAME=USERS has TABLESIZE=11.5.

T2 still has the invalid row value for row TABLENAME=USERS with TABLESIZE=12, but can

work with the "dirty" table-size value and successfully commit changes that may be based

on the dirty value.

6.

A nonrepeatable read occurs when a row that is not updated during the transaction is read twice

within a transaction with different results. If your transaction reads a value and another

transaction commits a change to that value, your transaction can read that changed value even

though your transaction has not committed or rolled back. For example, suppose T2 uses

transaction level TRANSACTION_READ_COMMITTED:

Row TABLENAME=USERS has TABLESIZE=11.1.

T1 and T2 start their transactions.2.

T2 reads row TABLENAME=USERS and sees TABLESIZE=11.3.

T1 updates row TABLENAME=USERS to TABLESIZE=12 and commits the change.4.

T2 rereads row TABLENAME=USERS and sees TABLESIZE=12 because T2's transaction level

means that changes committed by other transactions can be seen.

5.

A phantom read occurs when a transaction reads a row inserted by another transaction that has

been committed. If another transaction inserts a row to a table, when your transaction queries

that table, it can read the new row even if a previous query in the transaction did not read that

row. For example, here's what happens when T2 uses transaction level

TRANSACTION_REPEATABLE_READ, where row tablename=users has tablesize=11:

T1 and T2 start their transactions.1.

T2 executes SELECT * FROM table_sizes WHERE tablesize>10  and reads one row,

tablename=users with tablesize=11.

2.

T1 inserts row tablename=groups with tablesize=28 and commits.3.

T2 reexecutes SELECT * FROM table_sizes WHERE tablesize>10  and reads two

rows: tablename=users with tablesize=11 and tablename=groups with

4.
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tablesize=28.

4.

T2 can successfully commit data based on having an extra phantom row among its read data set,

even though that row did not exist in the database when T2's transaction began.

16.2.16 Database Location

JDBC is a distributed communications protocol that allows the database to run on a different machine from

the process initiating the SQL call-i.e., the JDBC client. It provides you with a tuning option of where to run

the database.

Running the database on the same machine as the JDBC client means that the JDBC call has a reduced

overhead from avoiding a network call. On the other hand, it also means that all the processes run on the

same machine, increasing the load on that machine. The disk I/O impact is even more important. If the

client process needs to access the same disks or access through the same disk controller as the database,

I/O can be compromised drastically.

Applications that are not too large or complex, that have simple database access and update requirements,

and that do not use up most of the machine's processing capacity and memory, are probably better off

running the database on the same machine. But make sure that the database uses a dedicated disk

controller with dedicated disks, so that database disk I/O is not reduced.

Applications that are large or complex, such as application servers and other multi-user server systems, are

usually better off running the database on a separate machine. Beware: testing both configurations at lower

scales may show that collocating the database on the same machine as the application provides better

performance. However, you can be sure that when the system is scaled up, the system resource

requirements of the application and the database will conflict severely, causing reduced system scalability.
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16.3 Performance Checklist

I/O can show up as significant in profiling even if I/O is not itself the bottleneck.

It is worthwhile to have separate measurements available for the JDBC subsystems.

Use JDBC wrappers to measure the performance of database calls.

ResultSet.next( ) can spend a significant amount of time fetching rows from the database.

JDBC wrappers are simple, robust, and low-maintenance.

Get the JDBC driver right. Using the wrong driver can destroy JDBC performance.

Use JDBC 3.0 or the latest JDBC version if possible.

Use connection pooling.

Optimize the SQL to apply set-based (multi-row) processing rather than one row at a time. Use

temporary tables and conditional expressions for extra efficiency. Avoid expensive expressions like

upper( ). Use extra fields, like a COUNT field.

Avoid moving, deleting, and adding rows where possible: use preinserted and null value rows. Avoid

joins, use indexes.

Use the EXPLAIN statement to examine the SQL operation.

Don't use SELECT * ..., use SELECT Field1, Field1, ....

Access fields by index, not by name (i.e., resultSet.getString(1) not

resultSet.getString("field1")).

Cache row and field data rather than re-query to access the same data. Using a wrapper, you can

transparently cache rows and tables.

Consider using an in-memory (replicated) database.

Use parameterized PreparedStatements except where a statement will be executed only a few times

and there is no spare time to initialize a PreparedStatement. Reuse the connection associated with

the PreparedStatement unless the connection pool supports PreparedStatement pooling (as JDBC

3.0 does).

Create SQL query strings statically, or as efficiently as possible if created dynamically.

Tune batched row access using fetch sizing.

Batch updates with executeBatch( ), explicitly managing the transaction by turning off auto-

commit.
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Try to closely match Java data types and database data types. Converting data between badly

matching types is slow.

Avoid using slow metadata calls, particularly getBestRowIdentifier( ), getColumns( ),

getCrossReference( ), getExportedKeys( ), getImportedKeys( ), getPrimaryKeys( ),

getTables( ), and getVersionColumns( ).

Use metadata queries to reduce the amount of transfers needed in subsequent database

communications.

Consider using stored procedures to move some execution to the database server. Don't use a stored

procedure to replace any simple SQL calls. Stored procedures are best used to avoid moving data back

and forth across the network.

Take manual control of transactions with explicit begin and commit calls, turning off auto-commit

mode, and combining close transactions to minimize the overall transaction costs.

Use the lowest transaction isolation level that won't corrupt the application.

Avoid letting the user control when a transaction terminates.

Use optimistic transactions when reads predominate over writes.

Savepoints probably have high overheads.

Small, lightly used databases can be efficiently located on the same machine as the application server;

otherwise, another machine is probably better.

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

Chapter 17. Tuning Servlets and JSPs

Most J2EE applications are built around servlets and JSPs. The two types of performance considerations for

servlets and JSPs are efficient use of J2SE code (Strings, I/O, etc.) and optimizing servlet container-related

resources, including the resources provided as part of the Servlet API.

Since JSPs are compiled into servlets, there is usually little difference in performance between them.

However, explicitly coding servlets can result in faster applications than JSPs because you have much more

control over the fine details of the servlet. This is one of the standard performance tradeoffs: using JSPs

results in a better design (separating presentation and logic), but servlets can be tweaked to go faster.
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17.1 Don't Use SingleThreadModel

javax.servlet.SingleThreadModel is a marker interface available to servlet developers that pushes

responsibility for thread safety onto the servlet engine. Essentially, if your servlet implements

SingleThreadModel, the servlet engine creates a separate servlet instance for each concurrent request

using the servlet. SingleThreadModel does not even guarantee thread safety, since the resulting servlet

instances can still access classes and data at the same time. However, SingleThreadModel does guarantee

that more resources will be used than are needed, as maintaining the multiple instances has some cost to

the servlet engine.

Instead of using SingleThreadModel, concentrate on writing a thread-safe multi-threaded servlet. See

Section 10.4.2 for details on writing efficient thread-safe code. Writing your servlet with big synchronized

blocks may be highly thread-safe but won't scale. For example, the following rather extreme implementation

synchronizes the entire servlet activity:

public class MyVeryThreadSafeServlet extends HttpServlet {
  ...
  public void doGet(HttpServletRequest req, HttpServletResponse res)
        throws ... {
    synchronized(this)
    {
      //Everything happens in the synchronized block so that
      //we have a thread-safe servlet
      ...
    }
  }
  ...

With this servlet implementation, every HTTP request processed by this servlet would have to go through the

same synchronized monitor from start to finish, so only one request could be processed at a time, regardless

of how many threads you spawned for this servlet. Other concurrent requests would wait until the current

request was processed before starting execution. If your servlet received an average of one request per

second and the processing took an average of half a second, then this implementation is adequate.

However, if your servlet received an average of one request per second and the processing took an average

of two seconds, then your servlet can process an average of only one request every two seconds-i.e., half

the requests. This is independent of the CPU capability of the server. You could have plenty of spare CPU

power; indeed, if you had eight CPUs, this implementation would leave seven of them mostly idle. The result

is that the server listen queue would fill up quickly, and your servlet (actually, the TCP stack) would simply

reject half the connections. To sum up:

Don't use SingleThreadModel.

Make the servlet thread-safe.

Try to minimize the amount of time spent in synchronized code while still maintaining a thread-safe

servlet.
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Use as many servlet threads as are needed to handle the request throughput.

Where a limited number of services must be distributed among the servlet threads (for example,

database connections), use resource pools (such as database connection pools) to provide optimal

service distribution.

The larger the request service time, the greater the number of threads you need to maintain adequate

response times for a given rate of requests.
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17.2 Efficient Page Creation and Output

The following principles will help you optimize page creation and output and thus improve the performance of

your servlet.

17.2.1 Minimize Output and Logging

Output slows down the servlet. Minimize your output as much as possible. If you are logging from your

servlet, log only essential data and buffer the output. (Don't turn off logging completely; monitoring servlet

performance is essential to maintaining good performance, and eliminating logging is counterproductive.

Without logging, it is more difficult to determine if there is a performance problem and where it might be). A

dynamically configurable logging framework, such as the java.util.logging package briefly covered in

Chapter 8, or the open source Log4J, available from http://jakarta.apache.org/log4j/docs/index.html, is very

helpful, as you can put in a great deal of logging and selectively turn on those log statements you need at

runtime.

For both logging and page output, use the print( ) methods in preference to the println( ) methods,

where appropriate. System.out, println( ) can cause output to be flushed, prematurely ending the

effectiveness of buffer optimization. For HTML output, println( ) adds only nonsignificant whitespace to

the output, adding overhead with no benefit. For JSPs, you can set the output buffer size with the directive

<%@ page buffer="12kb" %> (or a similar amount).

17.2.2 Use Strings Efficiently

Time spent constructing HTML page output is significant for many servlets. Use efficient String

manipulation techniques, as described in Chapter 5.

When you need to build strings internally, use StringBuffers or other efficient String or byte array-

building mechanisms. Avoid generating intermediate Strings and other objects whenever possible. Avoid

the + and += concatenation operators.

17.2.3 Use Bytes Versus Chars

HTML uses bytes, so you don't need to use chars unless it is required for your application. Simply using

chars does not cause any overhead; the conversion between chars and bytes creates overhead (i.e.,

bytes are read and written on the socket).

17.2.4 Use Network Buffers Efficiently

You will output the results, and the output goes to a network buffer. Although the network buffer flushing is

not under your control, it will be consistent for any one platform, so try to find its operational capabilities.

Use the network buffer by using print( ) on partial strings rather than building the strings in memory and

then writing them. However, the network stack can be suboptimal in flush timing. Tests by Acme

http://jakarta.apache.org/log4j/docs/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


Laboratories identified that the amount of data sent in the first network packet was crucial to optimal

performance. Sending the response headers and the first load of data as a single packet instead of as two

separate packets improved performance significantly (see

http://www.acme.com/software/thttpd/benchmarks.html). Doing so may require building the data in

memory, and then writing it in one chunk.

17.2.5 Display Static Pages Quickly

Static pages display more quickly than dynamic pages. You can gain improved performance by taking

advantage of this fact, using static pages and page elements when possible.

Browsers take time to calculate how much space each element should take. Precalculate all formatting that

is constant for all generated HTML pages. Use cached in-memory Strings or byte arrays to hold the

portions of pages that are common to multiple pages. This should be faster than repeatedly generating the

same elements. The headers are usually mostly the same, and most web sites have a look and feel that

involves the same elements in many pages. Formatting precalculation is done automatically for JSP pages in

the compilation phase.

High-volume web applications pre-render pages that are the same for all users. Those pages can be served

directly from a separate web server optimized for serving static pages, taking away a significant load from

the servlet.

Some complete or partial pages can become temporarily static. Cache these pages or sections, and

regenerate them only when they need to change.

Even more efficient than returning a cached page is to tell the browser to use its own cached page. As part

of its request, the browser can send a header telling the server that it has a cached copy of the requested

page, including when the copy was cached. The server can reply that the cached copy is valid without

resending the page, in which case the browser simply displays the page from its cache. This capability is

supported by servlets through the getLastModified( ) method. Implement the getLastModified( )

method in your servlet to return the page's last modified timestamp and allow the browser to use its cached

page when possible.

17.2.6 Optimize Data Conversions

Optimize data conversions that you need to make when generating your HTML output. For example, use

timestamps instead of formatted Dates, or if you need to format a Date, don't do so from scratch each

time. Instead, use a partially cached formatted Date and fill in the changed values. (The date changes only

once a day, hours only change once an hour, etc.) There is seldom any requirement to display the current

time in a page, and even when it is required, it cannot be accurate to the second because of download time

and time differences between machines.

17.2.7 Use ServletOutputStream Directly (Servlets Only)

Use the ServletOutputStream directly to send binary data rather than wrapping the

ServletOutputStream in a PrintWriter. JSPs cannot do this; they always use the PrintWriter, which

is one of the reasons why a JSP may be slightly slower than the equivalent servlet. A JSP could forward to a

plain servlet when binary data needs to be sent.
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If you will use a PrintWriter, initialize its buffer in the constructor with the optimal size for the pages you

write.

17.2.8 Optimize Partial Page Display

Flushing the HTML output in sections lets the browser display partial pages more quickly. As already

mentioned, putting more than the header in the first section improves performance. But bear in mind that

the browser can display partial pages if it has enough information, so try to send the page sections that help

the browser display partial pages quickly. Explicitly flush those sections, rather than waiting for the network

buffer to fill and flush the data, to give the user the impression of a faster display.
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17.3 Body Tags

Various uses of body tags can make a difference in performance.

17.3.1 Use Include Directive, Not Action

The include directive <%@ include file="somefile.html" %> is a compile-time action, so it doesn't

affect runtime performance (it takes effect when the JSP is compiled into a servlet). The include action

<jsp:include page="somefile.jsp" flush="true"/>  is a runtime action, so it adds overhead and

decreases performance. Use the include directive whenever possible.

17.3.2 Minimize Scope of useBean Action

The useBean action has a scope associated with the bean created by the action. The scope defines the

lifetime of the bean. Minimize the scope to minimize the resources taken by the bean-e.g., <jsp:useBean
id="mybean" scope="page" />. You will need to use a wider scope (request, session, or application)

to use beans with pages that are included.

17.3.3 Minimize Custom Tags

Custom tags have a performance cost, but they are useful. Try to minimize custom tags to only those

required. BodyTags are more costly to performance than simpler custom tags. Using BodyTags to iterate on

the page section contents makes the page significantly slower. (On the other hand, Jim Elliott wanted me to

point out that custom tags are so much better than the alternative of mixing presentation and logic that

eliminating custom tags may not be worth the performance gain.)

17.3.4 Use Redirects Versus Forwards

Redirect s (using sendRedirect( )) are slower than forwards (<jsp:forward ...>) because the browser

has to make a new request for the redirect. The forward is a simple call that is internal to the servlet, and a

redirect tells the browser to make a new request to the redirected target page.
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17.4 Cache Tags

Caching can improve the responsiveness of a web site significantly. You should cache pages or page sections

for a set length of time rather than update the page or section with each request. Cache tags allow pages

and sections of pages to be cached. When the page is executed, the cache tag either retrieves the data from

its cache or creates the data and caches it. Cache tags can work on a per-user basis, so they are fairly

flexible.

An open source cache-tag library, Open Symphony's OSCache, is available from

http://www.opensymphony.com/oscache/. Serge Knystautas describes how cache tags can improve

performance in a JavaWorld article.[1] You can also use the application server's caching facility, and the

session and application objects' caching facilities with ServletContext and HttpSession's

getAttribute( )/setAttribute( ) methods. Note that "context" has a much wider scope than

"session," so use the HttpSession methods for session-related resources. Using the context can reduce

scalability by having resources open over multiple sessions unnecessarily.

[1] Serge Knystautas, "Cache in on faster, more reliable JSPs," JavaWorld, May 2001,
http://www.javaworld.com/javaworld/jw-05-2001/jw-0504-cache.html.

Caching trades CPU for memory. This tradeoff must be balanced correctly for optimal performance. Optimal

caching needs tuning of timeout settings and other parameters. Cache elements reused in many pages need

to be monitored to ensure that they do not become bottlenecks. On highly personalized web sites, page-level

caching can result in low cache-hit rates, as each page can be mostly unique to each user. In this case,

cache tags are of limited use (perhaps only for small page fragments).
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17.5 HttpSession

The HttpSession object associates particular clients with a session. Under the covers, this association is

typically done by using a cookie. HttpSession lets you maintain state associated with the session. If you

don't need to maintain session state, there is no need to use HttpSession. You can eliminate the creation

of session objects with the JSP directive <%@ page session="false"%>. If you are maintaining session

state, HttpSession seems to provide adequate performance as long as you are aware of the points covered

in the following sections.

17.5.1 Timing Out Sessions

Among the HttpSession methods is setMaxinactiveInterval(int interval), which allows you to

specify how many seconds the session can be inactive before it is terminated. Try to set this value as low as

possible. However, do bear in mind that too low a setting will really annoy your users if it means that they

have to reestablish the session state. On the other hand, leaving session objects around too long can be a

heavy drain, especially if each session uses anything significant in the way of server resources. Therefore,

this method is a classic performance-tuning parameter, requiring optimization on the basis of testing the

application to see what value is best.

You can also have pages automatically refresh themselves with embedded page commands, and these pages

can keep a session alive indefinitely, even when the page is no longer in use. Each time the page reloads,

the session timeout counter is reset. You can explicitly terminate a session yourself at any time by using the

HttpSession.invalidate( ) method.

17.5.2 HttpSession Versus Stateful Session Beans

A number of sources recommend that you use HttpSession objects to manage session state rather than

using stateful beans. However, in their book J2EE Performance Testing with BEA WebLogic Server (Expert

Press), Peter Zadrozny, Philip Aston, and Ted Osborne state that there is no real difference in performance

between these two options, as long as the beans are explicitly removed from the container when the session

expires.[2] The beans are removed automatically by binding the session to a session listener that calls

ejbRemove( ) when the session terminates. Removing the beans is critical to achieving comparable

performance. Beans not removed are passivated, which imposes a large overhead on the system and causes

enormous performance degradation.

[2] An excerpt is available at http://www.sys-con.com/weblogic/article.cfm?id=101.

The cited test situation was idealized; the sessions were always removed before the test terminated, and the

beans were removed when the session terminated. In a production system, lingering sessions can be a

problem. Consequently, for optimal performance across the board, use HttpSession rather than stateful

session beans to maintain state. If you prefer stateful session beans for design reasons, ensure timely

session termination and bean removal.

17.5.3 HttpSession Serialization

http://www.sys-con.com/weblogic/article.cfm?id=101
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HttpSession objects can be serialized by the servlet engine under certain situations: different conditions in

different servlet engines cause this to happen. Serialization has costly overheads (see Chapter 8), and you

can minimize the chances of and cost associated with serialization. Memory conditions and session longevity

are the two primary reasons for serialization of HttpSession objects. Longevity can be minimized by timing

out sessions; memory usage is best minimized by reducing the number and size of objects stored in the

HttpSession.

If your HttpSession is serialized, the smaller the graph of objects reachable from the HttpSession, the

faster the serialization will be. Try to avoid storing large object graphs in the HttpSession, use transient

variables wherever possible to avoid serializing objects unnecessarily, and bear in mind the costs of

serialization when considering what is stored in the HttpSession.

17.5.4 Distributing Sessions for Higher Scalability

Spreading your requests across multiple application servers helps make the application more scalable. If you

are maintaining state, you may need to replicate your sessions across the application servers to handle

requests that may be distributed across the servers. However, session replication is expensive. If you use a

frontend load balancer for your application distribution, then you should ensure that the load balancer can

support "sticky" sessions-i.e., that it automatically routes any particular session to the application server

handling that session. DNS and hardware load balancers both support this (DNS by virtue of the cached DNS

lookup value). A software load balancer may need to be programmed to handle sticky sessions.

If replication of sessions is a definite requirement, then building your own session mechanism is probably

better than using HttpSessions. HttpSession identifiers are not unique or consistent across multiple

servers. You can build your own session mechanism without too much difficulty to replicate the

HttpSession functionality while ensuring that the session mechanism is optimized for distribution. A file-

based distributed session mechanism, implemented by altering URLs to encode the session identifier, is

described in Budi Kurniawan's article "Pseudo Sessions for JSP, Servlets and HTTP."[3] Many web sites use

this method of session management.

[3] Budi Kurniawan, "Pseudo Sessions for JSP, Servlets and HTTP," ONJava.com, 3/01/2001,
http://www.onjava.com/pub/a/onjava/2001/03/01/pseudo_sessions.html.

17.5.5 Efficient Resource Management

Optimize your use of HttpSession objects by following these guidelines, some of which summarize earlier

tips:

Remove HttpSession objects explicitly with HttpSession.invalidate( ) when the session is

finished, such as when the user logs out.

Remove HttpSession objects implicitly by timing out the session with

HttpSession.setMaxInactiveInterval( ). Set the timeout as low as is reasonable.

Implement the HttpSessionBindingListener for resources that need to be cleaned up when

sessions terminate, and explicitly release resources in the valueUnbound( ) method.

Remove stateful session beans as soon as the session terminates; use the

HttpSessionBindingListener as described in the last point.

http://www.onjava.com/pub/a/onjava/2001/03/01/pseudo_sessions.html
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The servlet init( ) and destroy( ) methods are ideal for creating and destroying limited and

expensive resources, such as cached objects and database connections.

The servlet init( ) method is a good place to perform once-only operations.

You can use the jspInit( ) and jspDestroy( ) methods in the same way as init( )and

destroy( ).

 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]  

17.6 Compression

Most popular browsers accept GZIP-compressed pages, decompressing them before displaying them to the

user without the user knowing that the page was compressed. Google uses this technique to good effect. If

the page size is large-or more precisely, the compressed page compared to the uncompressed page is so

much smaller that the download time is consistently measurably reduced-then compressing pages is a

worthwhile option. To fully determine the potential benefit of compressing pages, you also need to factor in

the extra CPU load and time on the server to compress the file (and the extra time to decompress the file on

the client, though you can usually ignore this if the download time is significantly improved). In practice,

there is a heavier load on the server, but a significantly faster download for limited bandwidth clients.

The mechanics of the HTTP support for compressed pages follows. First, the browser tells the server that it

can handle GZIP-compressed pages by including the header Accept-Encoding: gzip in the page request.

The server can sense that the browser accepts GZIP compression quite easily by looking for the header with

code like this:

public boolean acceptsGZIP(HttpServletRequest request) {
  //Get any "Accept-Encoding" headers
  String header;
  Enumeration e = ((HttpServletRequest)request).getHeaders(
                                "Accept-Encoding");
  while (e.hasMoreElements(  ))
  {
    String header = (String)e.nextElement(  );
    //And check that GZIP is supported
    if ( (header != null) && (header.toUpperCase(  ).indexOf("GZIP") > -1) )
      return true;
  }
  return false;
}

Next, if you are going to return the page compressed, your server needs to inform the browser that the page

sent to it is compressed. Doing so requires a header to be set in the response:

public void setGZIPContent(HttpServletResponse response) {
  response.setHeader("Content-Encoding", "gzip");
}

Finally, the SDK directly supports GZIP compression in the java.util.zip package. Furthermore, since the

GZIPOutputStream is a type of FilterOutputStream, you wrap the servlet output stream and write the

data as you normally would:

  //Write output. First get the output stream
  OutputStream out;
  if (acceptsGZIP(request))
  {
    setGZIPContent(response);
    out = new GZIPOutputStream(response.getOutputStream(  ));
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  }
  else
  {
    out = response.getOutputStream(  );
  }
  //Now write the page
  ...

This process is simplified here. In practice, you shouldn't waste time compressing small pages, since there is

no gain in network transfer time, so you should test to see if the page is big enough to warrant compression.

You could also use a servlet filter instead of building compression support directly into the servlet. In this

case, the filter would wrap the HttpServletResponse object with its own wrapper before passing the

wrapped response object down the chain. When the servlet requests the output stream, the wrapped

HttpServletResponse object then provides a GZIP-compressed output stream that wraps the original

output stream. The effect is the same as the code shown earlier. Sun has contributed a servlet compression

filter to the examples supplied with the Tomcat application server, and a JavaWorld article [4] by Jason

Hunter describes the filter in more detail.

[4] Jason Hunter, "Filter code with Servlet 2.3 model," JavaWorld, June 2001,
http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-filters.html.

If you can cache the compressed version of the page the first time you write it, or statically compress the

page prior to starting the servlet, then you gain the benefits of compression with none of the overhead.

Servlet filters add overhead to servlet processing, so the nonfilter solution is slightly more efficient.

However, the filter solution is probably much easier to add to existing deployments.
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17.7 More Performance Tips

I list many performance tips for servlets and JSPs at

http://www.JavaPerformanceTuning.com/tips/j2ee_srvlt.shtml. Here's a summary of tips we haven't covered

yet.

Turn security checks off

Security checks consume CPU resources. You will get better performance if you can turn security

checking off.

Optimize the servlet-loading mechanism

Try to optimize the servlet-loading mechanism (for example, by listing the servlet first in loading

configurations).

Avoid reverse DNS lookups

Avoid reverse DNS lookups (e.g., ServletRequest.getRemoteHost( )). These lookups take

significant time and block the thread. Instead, log the raw IP addresses and use a separate process to

execute reverse DNS lookups to supplement the logs.

Precompile JSPs

Precompile your JSPs to avoid giving the first user a slow experience. Either run the page once before

making it public (which compiles it), or use the application server's features to precompile the servlet.

Make the servlet event-driven

The Servlet 2.3 specification adds application and session events. Event-driven applications can often

be scaled more easily than process-driven applications. Try to make your servlet event-driven.

Servlet filters mean overhead

Servlet filters provide a standardized technique for wrapping servlet calls. However, they have some

overhead, which translates to a reduction in performance.

Separate UI logic from business logic

Separate the UI controller logic from the servlet business logic, and let the controllers be mobile so

they can execute on the client, if possible.

Validate data at the client

Validate data as close to the data-entry point as possible, preferably on the client. This reduces the

network and server load. Business workflow rules should be on the server (or further back than the

frontend). You could use invisible applets in a browser to validate data on the client, but the extra

time required to download the applet may make this unusable.

Use Keep-Alive for static sites

HTTP 1.1's Keep-Alive feature gives a higher throughput for static sites, but may be extra overhead

for dynamic sites.

Increase server listen queues

Increase server listen queues for high-load or high-latency servers. The listen queue is a TCP/IP-level

queue for incoming socket accepts and is set with the second argument to the ServerSocket
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constructor (if you are explicitly creating a server socket). The application server must expose the

parameter as a configuration option for you to adjust this.

Disable auto-reloading

Disable the JSP auto-reloading feature. Auto-reloading is a development feature of many application

servers that repeatedly reloads servlets and JSPs. Turn this feature off for performance tests and

deployed systems.

Tune pool size

Tune pools in the application server (see Chapter 18 for details).

Access data efficiently

Transform your data to minimize the costs of searching it. If your dataset is small enough, read it all

into memory or use an in-memory database (keeping the primary copy on disk for recovery). An in-

memory database avoids overhead in several ways: it eliminates passing data in from a separate

process, reduces memory allocation by avoiding data copies as it passes between processes and

layers, eliminates the need for data conversion, and enables fine-tuned sorting and filtering.

Precalculation expedites some results by making the database data more efficient to access (by

ordering it in advance, for example), or by setting up extra data in advance, generated from the main

data, to simplify result calculations.

Optimize strings

String optimizations tend to be significant in servlets. See Chapter 5 for standard String

optimizations.
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17.8 Case Study: Ace's Hardware SPECmine Tool

At the end of December 2001, Ace's Hardware published a report[5] on how they optimized their SPECmine

tool. The procedure they followed to achieve very fast response time is instructive.

[5] The full report is available from http://www.aceshardware.com/read.jsp?id=45000251.

The SPECmine tool itself is a JSP that allows a user to query the SPEC database of benchmarks

(http://www.spec.org/). The query page (at http://www.aceshardware.com/SPECmine/index.jsp) allows the

user to specify all the parameters for the query, including how to sort the results. The query is so efficient

that most of the transaction time is taken by network communication and browser page display.

The first issue was the database data. The SPEC database is accessible in a number of different ways, but

none provides the full set of data required by the SPECmine tool. In addition, some data items needed

cleaning. Querying the SPEC database each time the SPECmine tool was used would have required multiple

connections, data transformations, and parsed and cleaned data. Holding the data locally was an obvious

solution, but more than that, holding the data locally in a format optimal for the SPECmine tool query was

the best solution. This required the SPEC database to be checked periodically for new entries. New entries

must be cleaned and transformed for the SPECmine database. To clean and transform the data, parses and

regular expression conversions were changed to table maps, which are easier to maintain, cleaner, and

faster. The advantages are enormous:

Data was now held locally, so the SPECmine query was local rather than remote (across the Internet).

Data was held in an optimal format for the SPECmine query so that only one query was required to

obtain the query result, rather than multiple queries together with data processing

New SPEC entries could be added to the SPECmine database asynchronously, at off-peak time, with no

performance degradation to the SPECmine query engine.

The only disadvantage was that the SPECmine tool would occasionally be out of synch with the SPEC

database; i.e., the SPEC database would occasionally hold data that was not available from a SPECmine

query. This is perfectly acceptable for the application, and the user was warned of this pitfall. The delay

between SPEC data entry and SPECmine update could be minimized by increasing the frequency of checking

for new data, if this option was ever desired.

Next, the database query itself was considered. The amount of data in the SPECmine database (and the

projected future amount of data) was quite small: megabytes rather than hundreds of megabytes or

gigabytes. Consequently, mapping the entire database into memory was feasible. Furthermore, rather than

simply map in the data directly, Ace's Hardware decided to convert the data into a Java object format when

mapping it in instead of converting data for each query. The result was a very fast in-memory query for the

SPECmine tool, requiring minimal extra processing when a query was executed. The main disadvantage was

that the application was now more complex than it was with a traditional JDBC query: custom querying and

sorting capabilities were required. Locking, data integrity, and scaling would have become issues had the

database been larger (or had it required concurrent updates). In that case, the in-memory custom solution

would have been less practical, and in-memory caching would be used instead (and used for other sections

of the web site).
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Further optimizations were then applied to the servlet. There were two main types of optimizations:

optimizing query requests with precalculation and reducing String manipulation costs. The precalculation

optimizations are interesting. One optimization presorts the result set into various orders. You can do this in

a small amount of memory by holding an array of sorted elements, with each element pointing to its main

entry holding the full data corresponding to that element. Filtering the presorted array for the elements

matching the search criteria gives you a sorted result set.

Another optimization used the fact that a list of strings presented to the user in a list selection box can

return indexes to the servlet instead of returning the selected strings. This means that you can use the

indexes in an array, rather than the strings, as keys to a Map. For SPECmine, the indexes were used with a

boolean array to determine which strings were "on" in the search filter.

The remaining String manipulation optimizations eliminated duplicate String objects, avoided

unnecessary String concatenations, and precalculated HTML String elements that do not need to be

dynamically generated. The final optimization applied was the GZIP-compression support outlined earlier in

this chapter. The application's speed was such that the search itself was the fastest part of the service, HTML

generation took significantly more time, and compression, network transfer, and browser display took most

of the total time.

The original report also discussed other parts of the web site, including optimizing parts of the site that need

disk-based databases. Ace's Hardware goes into the overall architecture of their JSP-based web site in more

detail at http://www.aceshardware.com/read.jsp?id=45000240. The site serves about 1 million users per

month and displays ten times as many pages, illustrating that high performance can be achieved using

servlets and JSPs, without excessive resources or tuning.
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17.9 Performance Checklist

Don't use SingleThreadModel. Make the servlet thread-safe, but try to minimize the amount of time

spent in synchronized code while still maintaining a thread-safe servlet.

Use as many servlet threads as necessary to handle the request throughput. Use resource pools to

distribute resources among the servlet threads.

The amount of data sent in the first network packet is crucial to optimal performance. Send the

response headers and the first load of data as a single packet instead of two separate packets.

Use StringBuffers or other efficient String or byte array-building mechanisms. Avoid generating

intermediate Strings and other objects whenever possible. Avoid the + and += concatenation

operators.

Use the browser's caching mechanism to have pages reread by correctly implementing the

getLastModified( ) method.

Precalculate all static formatting for generated HTML pages. High-volume web applications prerender

pages that are the same for all users.

Use the include directive rather than the include action.

Minimize the useBean action's scope to page where possible.

Remember that redirects (using sendRedirect( )) are slower than forwards (<jsp:forward ...>).

Use cache tags (see, for example, http://www.opensymphony.com/oscache/).

Avoid creating HttpSession objects if not needed, and time out HttpSessions when they are

needed.

"Context" has a much wider scope than "session." Use HttpSession methods for session resources.

Avoid having HttpSession objects serialized by the servlet container. Remove HttpSession objects

explicitly with HttpSession.invalidate( ) when the session is finished, such as when the user logs

out.

Implement the HttpSessionBindingListener for any resources that need to be cleaned up when

sessions terminate, and explicitly release resources in the valueUnbound( ) method.

The servlet init( ) and destroy( ) or jspInit( ) and jspDestroy( ) methods are ideal for

creating and destroying limited and expensive resources, such as cached objects and database

connections.

Compress output if the browser supports displaying compressed pages.

Avoid reverse DNS lookups.
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Precompile your JSPs.

Use Servlet 2.3 application and session events to make the application event-driven.

Remember that servlet filters have overhead associated with the filter mechanism.

Validate data at the client if it can be done efficiently.

Increase server TCP/IP listen queues.

Disable autoreloading features that periodically reload servlets and JSPs.

Tune the pool sizes in the server.

Transform your data to minimize the costs of searching it.
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Chapter 18. Tuning EJBs

The performance of EJB-based J2EE systems overwhelmingly depends on their design. If you get the design

right, tuning the server is similar to tuning a J2SE system: profile and tune the server, targeting object

creation as a priority (since the consequences in a multiuser system are an order of magnitude greater). If

you get the design wrong, you are unlikely to simply tweak your way to adequate performance. In contrast,

a J2SE application can often achieve adequate performance with a nonoptimal design after sufficient

performance tuning. This design sensitivity is one of the reasons why J2EE design patterns have become so

popular: design patterns assist everyone from novices to experienced designers in achieving adequate

performance.

This design sensitivity is also the reason for the many stories about badly performing EJB projects. EJBs are

a tradeoff, like most standardized APIs. In exchange for the ability to have a standard for components that

developers, managers, tool vendors, and other third-party producers all work together to use, there are

some overheads and design issues. Make no mistake: using EJBs compared to build-it-completely-your-way

almost always incurs more overhead for your runtime system. Chapter 12 compared a proprietary

communication layer to RMI (see Table 12-1), and the situation with EJBs is quite similar. Proprietary is

almost always faster. It is also usually more difficult to maintain and support. EJBs have third-party support

products for development, testing, tuning, deploying, scaling, persisting, clustering, and load balancing. If

you don't need standardized components, EJBs may not be the best option for your project. A plain J2SE +

JDBC solution has its own advantages.
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18.1 Primary Design Guidelines

In Section 18.2 later in this chapter, I describe several design patterns that help EJB systems attain

adequate performance. But first, I will discuss some primary design guidelines to consider before you can

apply patterns.

18.1.1 Coarse-Grained EJBs Are Faster

EJBs should be designed to have large granularity-one remote invocation to an EJB should perform a large

amount of work instead of requiring many remote invocations. This criterion is extremely important for a

successful EJB design. Coarse-grained EJBs tend to provide a more efficient application because they

minimize the number of remote communications needed to complete the work.

A more refined guideline is that any remotely accessed EJBs should be coarse-grained. Any EJBs that are

always accessed locally can be fine-grained, if the local access is not treated as a remote access. Bear in

mind that prior to the EJB 2.0 specification, all EJB access was (theoretically) treated remotely, even with

EJBs in the same container. This means that the parameters could always be marshaled and passed through

a socket, incurring a significant portion of remote-calling overhead. (Some application servers detect local

EJB communication automatically and optimize that communication to avoid remote-calling overhead.) Since

EJB 2.0, local entity beans can be defined, allowing optimized communications for local EJBs. But that is not

a runtime decision, so it needs to be factored into the design. Local EJBs were added to the EJB specification

to address this issue of improving performance among locally collocated EJBs.

The following are some detailed guidelines for achieving this combination design target of coarse-grained

remote EJBs and fine-grained local EJBs. In the following list, I consider EJBs either local or remote, but an

EJB can implement both interfaces, if appropriate to your application.

Design the application to access entity beans from session beans. This optimizes the likelihood that an

EJB call is local and supports several other design optimizations (listed in the subsequent section

covering design patterns).

Determine which EJBs will be collocated within the same VM. These EJBs can communicate with one

another by using optimized local communications.

Those EJBs that will (always) be collocated should be:

Defined as local EJBs (from EJB 2.0); or

Defined normally as remote EJBs and collocated within an application server that is capable of

optimizing local EJB communications; or

Built as normal JavaBeans, and then wrapped in an EJB to provide one coarse-grained EJB (see

the CompositeEntity pattern).

EJBs that communicate remotely should combine methods to reduce possible remote invocations.

Multiple calls frequently specify various parameters, and these parameters can be combined as a
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parameter object to be passed for one remote call. Section 12.2 gives a concrete example of how to

combine methods to reduce the number of remote calls required to perform an action.

Don't design EJBs with one access method per data attribute unless they are definitely local EJBs.

(More accurately, don't define data attribute accessors and updators as remote, as they have relatively

high overheads.)

Bear in mind that any EJB service could be called remotely if you define a remote interface for it, and

try to anticipate the resulting costs to the application.

18.1.2 EJBs Are Not Data Wrappers

EJBs should not be simple wrappers on database table rows. An EJB should be a fully fledged business object

that represents and can manipulate underlying database data, applying business logic to provide appropriate

refined information to callers of the EJB. If you need to access database data, but not for business-object

purposes, use JDBC directly (probably from session beans) without intermediate EJB objects. EJBs can cause

multiple per-row database access and updates. While this inefficiency can be justified when the EJB adds

information value to the data, it is pure overhead in the absence of such business logic, and plain JDBC could

be optimized much better.

18.1.3 Read-Only Data Is Different

Read-only data should be identified and separated from read-write data. When treating read-only data and

read-only attributes of objects, a whole host of optimizations are possible. Some optimizations use design

patterns, and others are available from the application server. Transactions that consist purely of read-only

data are much more efficient than read-write data. Trying to decouple read-only data from read-write data

after the application has been designed is difficult.

18.1.4 Stateless Session Beans Are Faster

By definition, a stateless session bean has no state. That means that all the services it provides do not

depend on what it just did. So a single stateless session bean can serve one client, then another, and then

come back to the first, while each client can be in a different or the same state. The stateless session bean

doesn't need to worry about which client does what. The result is that one stateless bean instance can serve

multiple clients, thereby decreasing the average number of resources required per client. The stateless bean

pool doesn't need to grow and shrink according to the number of clients; instead, it can be optimized for the

overall rate of requests.

Most application servers support pools of stateless beans. As each bean services multiple clients, the bean

pool can be kept smaller, which is more optimal. To optimize the session-bean pool for your application,

choose a (maximum) size that minimizes activations and passivations of beans. The container dynamically

adjusts the size to optimally handle the current request rate, which may conflict with trying to choose a

single size for the pool.

Stateful beans, in contrast, require one instance for each client accessing the bean. The stateful-bean pool

grows and shrinks depending on the current number of clients, increasing pool overhead. If you have stateful

beans, try to remove any that are finished so that fewer beans are serialized if the container needs to

passivate them (see Section 17.5.2, which details how explicitly removing beans can improve performance).
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If you have stateful beans in your design, the best technique to reduce their overhead is to convert them to

stateless session beans. Primarily, this involves adding parameters that hold the extra state to the bean

methods to pass the bean the current client state whenever it needs to execute. An extended example of

converting a stateful bean to a stateless bean is available in Brett McLaughlin's Building Java Enterprise

Applications, Volume I: Architecture (O'Reilly), and online at

http://www.onjava.com/pub/a/onjava/excerpt/bldgjavaent_8/index3.html. The example even shows that

you can retain the stateful-bean interface while using stateless beans by using the Proxy design pattern.

If state needs to be accessible on the server, you can hold it outside session beans, for example, in an

HttpSession object, or in a global cache that provides access to the state through a unique session

identifier. Converting stateful session beans to stateless session beans adds extra data to the client-server

transfers, but the extra data can be minimized by using identifiers and a server data store. For high-

performance J2EE systems, the advantages tend to outweigh the disadvantages.

18.1.5 Cache JNDI Lookups

JNDI lookups, like other remote calls, are expensive. The results of JNDI lookups are also easily cached.

There is even a dedicated pattern for caching EJBHome objects (the EJBHomeFactory pattern) because it is

such a frequently suggested optimization.

18.1.6 CMP or BMP?

Should you use container-managed persistence (CMP) or bean-managed persistence (BMP)? This is one of

the most frequently discussed questions about EJBs. BMP requires the developer to add code for persisting

the beans. CMP leaves the job of persisting the beans up to the application server. BMP can ultimately be

made faster than CMP in almost any situation, but to do so, you would probably need to build a complete

generic persistency layer-in effect, your own CMP. So let's get back to reality. (You could build a very fast,

simple persistence layer, mainly raw JDBC calls, but it would not be flexible enough for the kinds of

development changes constantly made in most J2EE systems. However, if speed is the top priority, this

option is viable.)

BMP can be faster for any one bean. You can build in the persistency that is required by the bean, avoiding

any generic overhead. That's fine if you have five EJB types in your application. But more realistically, with

tens or hundreds of EJB types, writing optimal BMP code for each EJB and keeping that code optimal across

versions of the application is unachievable (though again, if you can impose the required discipline in your

development changes, then it is achievable).

With multiple beans and bean types, CMP can apply many optimizations:

Optimal locking

Optimistic transactions

Efficient lazy loading

Efficient combinations of multiple queries to the same table (i.e., multiple beans of the same type that

can be handled together)

Optimized multi-row deletion to handle deletion of beans and their dependents
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I would recommend using CMP by default. However, CMP is not yet mature, which makes the judgment more

complex. It may come down to which technique your development team is more comfortable with. If you do

use CMP, profile the application to determine which beans cause bottlenecks from their persistency.

Implement BMP for those beans. Use the Data Access Object design pattern (described later) to abstract

your BMP implementations so you can take advantage of optimizations for multiple beans or database-

specific features. (You may also need to use BMP where CMP cannot support the required logic-e.g., if fields

use stored procedures, or one bean maps to multiple tables.)

18.1.7 EJB Transactions

Tuning EJB transactions is much like tuning JDBC transactions; you will find Section 16.2.15 very relevant for

EJB transactions. There are a few additional considerations. The following list summarizes optimal

transaction handling for EJBs:

Keep transactions short.

Commit the data after the transaction completes rather than after each method call. That is, if multiple

methods are executed close together, each needing to execute a transaction, then combine their

transactions into one transaction. The target is to minimize the overall transaction time rather than

simplistically targeting each currently defined transaction.

Try to perform bulk updates to reduce database calls.

For very large transactions, use the transaction attribute TX_REQUIRED to get all EJB method calls in a

call chain to use the same transaction. Use a session façade that provides a high-level entry point so

that all the methods called from that point are included in one transaction.

Optimize read-only EJBs to use read-only transactions. Use read-only in the deployment descriptor to

avoid unnecessary calls to ejbStore( ) by the application server (not all application servers support

this feature).

Choose the lowest-cost transaction isolation level that avoids corrupting the data. Transaction levels in

order of increasing cost are TRANSACTION_READ_UNCOMMITTED, TRANSACTION_READ_COMMITTED,

TRANSACTION_REPEATABLE_READ, and TRANSACTION_SERIALIZABLE.

Don't use client-initiated transactions in the EJB environment because long-running transactions

increase the likelihood of conflict, making rows inaccessible to other sessions. If the client controls the

duration of the transaction, you may have no way to force the transaction to close from the server,

thus allowing long or indefinite transactions. The longer a transaction lasts, the more likely it is to

conflict with another transaction.

If you need client-initiated transactions, set an appropriate transaction timeout in the ejb-jar.xml

deployment descriptor file. Setting a timeout ensures that the application doesn't start leaking

resources from transactions that are opened at the client but not completed. The deployment

descriptor should be something like "trans-timeout-seconds," and you should specify a timeout that is

long enough for users to reasonably complete their task.

Declare nontransactional methods of session beans with NotSupported or Never transaction

attributes (in the ejb-jar.xml deployment descriptor file).

Use a dirty flag where supported by the EJB server or in a BMP or DAO implementation to avoid writing
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unchanged EJBs to the database. Dirty flags are a standard way to avoid writing unchanged data. The

write is guarded with the dirty flag and performed only if the flag is dirty. Initially the flag is clean, and

any change to the EJB sets the flag to dirty.
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18.2 Performance-Optimizing Design Patterns

This is not a book on design patterns. However, because of their importance to EJB design, this section lists

design patterns that are particularly relevant. You can find articles that detail these performance-optimizing

design patterns at http://www.JavaPerformanceTuning.com/tips/patterns.shtml.

18.2.1 Reducing the Number of Network Trips: The Value Object Pattern

A Value Object encapsulates a set of data values. Use a Value Object to encapsulate all of a business object's

data attributes and access the Value Object remotely rather than accessing individual data attributes one at

a time. The Value Object sends all data in one network transfer. Section 12.2 shows how to use the Value

Object pattern to reduce the number of network transfers required to access multiple data attributes. The

Value Object pattern can be used bidirectionally to improve performance-i.e., to minimize the number of

network transfers to transfer data to the server as well as from the server. One variation, the Value Object

Assembler pattern, uses a Session EJB to aggregate all required data from different EJBs as various types of

Value Objects.

Using a Value Object may result in very large objects being transferred if too many data attributes are

combined into one Value Object. A large Value Object may still be more efficient than separate multiple

remote requests, but typically, only a subset of the data held by a large Value Object is needed, in which

case the large Value Object should be broken down into multiple smaller Value Objects, each holding the

data subset required to satisfy its remote request. This last approach minimizes both the number of network

transfers and the amount of transferred data.

Once transferred, the Value Object's data is no longer necessarily up to date. So if you use the Value Object

to hold the data locally for a period of time (as a locally cached object), the data could be stale and you

might need to refresh it according to your application's requirements.

18.2.2 Optimizing Database Access: The Data Access Object Pattern and the Fast Lane Reader Pattern

Use Data Access Objects to decouple business logic from data-access logic, allowing decoupling of data-

access optimizations from other types of optimizations. Data Access Objects usually perform complex JDBC

operations behind a simplified interface, providing a platform for optimizing those operations. Data Access

Objects allow optimizations in bulk access and update for multiple EJBs, and also allow specialized

optimizations by using database-specific optimized access features while keeping complexity low.

For read-only access to a set of data that does not change rapidly, use the Fast Lane Reader pattern, which

bypasses the EJBs and uses a (possibly nontransactional) Data Access Object that encapsulates access to the

data. The Data Access Object in the Fast Lane Reader pattern accesses the database to get all the required

read-only data efficiently, avoiding the overhead of multiple EJB accesses to the database. The resulting data

is transferred to the client using a Value Object. The Value Object can also be cached on the server for

repeated use, improving performance even further. This means that the Fast Lane Reader pattern efficiently

reads unchanging (or slowly changing) data from the server and displays all of the data in one transfer.

18.2.3 Efficiently Transferring Large Datasets: The Page-by-Page Iterator Pattern and the ValueListHandler
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Pattern

If long lists of data are returned by queries, use the Page-by-Page Iterator pattern. This pattern is used

when the result set is large and the client may not need all of the results. It consists of a server-side object

that holds data on the server and supplies batches of results to the client. When the client makes a request,

the results of the request are held in a stream-like object on the server, and only the first "pageful" of

results is returned. The client can control the page size, and when data from the next page needs to be

viewed, the whole page is sent. Section 12.7 shows how to use a Page-by-Page Iterator pattern to reduce

the amount of transferred data and improve client display time.

Note that the Page-by-Page Iterator pattern actually increases the number of transfers made. However, it is

an essential pattern for any server handling multiple requests that may return large amounts of data to

clients. When implementing the Page-by-Page Iterator pattern, you should try to avoid making copies of the

data on the server. If the underlying collection data is concurrently altered, care should be taken to ensure

the client gets consistent pages. There is no upper limit to the size of a result set that this pattern can

handle.

The ValueListHandler pattern combines the Page-by-Page Iterator pattern with the Fast Lane Reader

pattern. The ValueListHandler pattern avoids using multiple Entity beans to access the database.

Instead, it uses Data Access Objects that explicitly query the database and return the data to the client in

batches rather than in one big chunk, as in the Page-by-Page Iterator pattern.

18.2.4 Caching Services: The Service Locator, Verified Service Locator, and EJBHomeFactory Patterns

The Service Locator pattern improves performance by caching service objects with a high lookup cost. For

example, EJBHome objects and other JNDI lookups are often costly, but need to be performed regularly.

However, many such objects are infrequently changed and thus ideal for caching. The Service Locator

pattern simply interposes a Service Locator between the object initiating the lookup and the actual lookup.

The Service Locator caches any looked-up object and returns the cached object where possible.

The Verified Service Locator pattern anticipates that objects in the Service Locator cache occasionally

become stale and need to be refreshed. The Verified Service Locator periodically and asynchronously tests

the cache elements to identify and refresh stale objects. An asynchronous periodic test minimizes the impact

of stale objects to callers of the service, which would otherwise require a time-consuming synchronous call to

obtain a refreshed service object. The Verified Service Locator pattern is just one variety of cache-element

management among many, such as least-recently-used, element timed expiration, etc. The Verified Service

Locator pattern element management is appropriate for JNDI lookups, when cache elements need to be

refreshed only when the JNDI server is restarted, which should be infrequently.

The EJBHomeFactory pattern is simply a ServiceLocator dedicated to EJBHome objects. It is such a

frequently mentioned optimization that it was given its own name.

18.2.5 Combining EJBs: The Session Façade and CompositeEntity Patterns

Use a Session Façade to provide a simple interface to a complex subsystem of enterprise beans and to

reduce network communication requirements. The Session Façade is normally a session bean that

encapsulates the interfaces needed to work efficiently with a set of EJBs. The client communicates efficiently

with the session bean, which in turn manages all the EJB calls necessary to complete the operation

represented by the Session Façade. The Session Façade can communicate with the EJBs by using local calls

rather than remote calls, potentially making the whole operation much more efficient. Communication
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between the client and the Session Façade is often best handled using Value Objects so that EJB remote

interfaces are not transferred across the network. The façade can also handle security and logging more

efficiently than multiple EJBs, which would each separately require security checks and logging output.

The CompositeEntity pattern reduces the number of actual entity beans by wrapping multiple Java objects

(which would each otherwise be an entity bean) into one entity bean. It is used less frequently than the

Session Façade pattern.

18.2.6 Reusing Objects: The Factory and Builder Patterns

The Factory pattern allows optimizations to occur at the object-creation stage by redirecting object-creation

calls to a factory object. Section 13.4.4 discusses this pattern.

Use the Builder pattern to break the construction of complex objects into a series of simpler Builder objects.

A Director object combines the Builders to form a complex object. You can then use Recycler (a type of

Director) to replace only the broken parts of the complex object, reducing the number of objects that need

to be re-created.

18.2.7 Reducing Locking Conflicts: The Optimistic Locking Pattern

The Optimistic Locking pattern checks for data integrity only at update time and uses no locks. This feature

increases the scalability of an application compared to pessimistic locking, since lock contention is avoided.

The Optimistic Locking pattern is appropriate when concurrent access predominates over concurrent update

(i.e., most sessions spend most of their time reading data, and very little time writing data). If sessions are

transactional, transactions should be short.

Write-write conflicts with optimistic transactions can be detected using:

Timestamps

The updated row contains a timestamp field that should not be newer than when the row was

accessed or the transaction started.

Version counters

A simple version counter is maintained and checked to ensure that it matches the version at

transaction beginning.

State comparisons

At update time, all relevant database data is checked to ensure that it matches the "old" data.

Optimistic locking has high rollback costs when conflicts are detected, so it should not be used when conflicts

are frequent.

18.2.8 Load Balancing: The Reactor and Front Controller Patterns

The Reactor pattern demultiplexes events and dispatches them to registered object handlers. It is similar to

the Observer pattern (not described here), but the Observer handles only a single source of events, whereas

the Reactor pattern handles multiple event sources. The Reactor pattern enables efficient load-balancing

servers with multiplexing communications. The multiplexing of network I/O using NIO Selectors is an
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excellent example of the Reactor pattern. See Section 8.7.4.

The Front Controller pattern centralizes incoming client requests, channeling all client requests through a

single decision point that lets you balance the application at runtime (see also Section 15.6). This pattern

also allows optimizations in aggregating the resulting view.

18.2.9 Optimized Message Handling: The Proxy and Decorator Patterns

Proxy and Decorator objects let you redirect, batch, multiplex, and delay method invocations. They enable

application partitioning by intelligently caching data or forwarding method invocations. See Section 12.4 and

Section 12.6, which show how to use proxies to improve the efficiency of a distributed application. The Proxy

pattern differentiates by Proxies often instantiating their real objects, while the Decorator pattern rarely

does. A Proxy object is usually created as a wrapper on the "real" object, and other objects only ever get to

handle the Proxy. The Decorator is more typically given the "real" object to wrap, allowing access to both the

Decorator and the "real" object. Synchronized wrappers are an example of the Decorator pattern: you can

pass the original collection object to the wrapper factory and access both the original collection and the

wrapped collection.

18.2.10 Optimizing CPU Usage: The Message Façade Pattern

The Message Façade pattern encapsulates a method call into an object that can be executed asynchronously,

allowing process flow to continue without blocking. This pattern is ideal for remotely invoked methods that

don't need to return a value; remotely invoked methods that do return values can also be accommodated by

storing the result for later retrieval.
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18.3 The Application Server

Considerations other than performance frequently drive the choice of application server. That might not be

as serious as it sounds, since all the most popular application servers target good performance as an

important feature. I often read about projects in which the application server was exchanged for an

alternative, with performance cited as a reason. However, these exchanges seem to be balanced: for each

project that moved from application server A to application server B, there seems to be another that moved

in the reverse direction.

Nevertheless, I would still recommend that application servers be evaluated with performance and scalability

as primary criteria. The ECperf benchmark may help differentiate EJB server performance within your short

list of application servers. Performance-optimizing features to look for in an application server include:

Multiple caches

Application servers should offer multiple caches for session beans, EJBs, JNDI, web pages, and data

access. Caching provides the biggest improvement in performance for most enterprise applications.

Load balancing

Load balancing is absolutely necessary to support clustered systems efficiently.

Clustering

Clustering is necessary for large, high-performance systems.

Fault-tolerance (hot replacement of failed components)

If one part of the system goes down, a fault-tolerant system suffers performance degradation.

However, a system without fault tolerance has no service until the system is restarted.

Connection pooling

You can roll your own connection pool, but one should come standard with any application server.

Thread pooling, with multiple users per thread

Thread pooling should also be a standard feature. It is necessary to efficiently manage system

resources if your application uses hundreds or thousands of threads or serves hundreds or thousands

of users.

Optimized subsystems

All subsystems, including RMI, JMS, JDBC drivers, JSP tags, and cacheable page fragments, should be

optimized, and the more optimized, the better. Naturally, optimized subsystems provide better

performance.

Application distribution over multiple (pseudo) VMs

Distributing over VMs provides fault tolerance. The latest VMs with threaded garbage collection may

not benefit from this option.

Distributed caching with synchronization

Supported directly by the application server, distributed caching with synchronization lets clustered

servers handle sessions without requiring that a particular session always be handled by one particular

server, enhancing load balancing.
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Optimistic transaction support

Optimistic transactions reduce contention for most types of applications, enabling the application to

handle more users.

Distributed transaction management

If you need distributed transactions, they are usually handled more efficiently if the application server

supports them.

In-memory replication of session state information

Holding session state information in memory allows clustered servers to handle sessions without

requiring that a particular session be handled by one particular server, enhancing load balancing.

No single points of failure

Eliminating single points of failure helps fault tolerance. Of course, your application may have its own

single points of failure.

Hot-deploy and hot-undeploy applications for version management

You will need to upgrade your application multiple times. Hot-deployment lets you do so with almost

no downtime, enhancing 24/7 availability.

Performance-monitoring API

A performance-monitoring API is useful if you need to monitor internal statistics, and an application

server with a performance-monitoring API is more likely to have third-party products that can monitor

it.

Performance-monitoring and analysis tools

More is always better, I say.

18.3.1 Security Layer

A security layer affects response times adversely. Try to dedicate separate application servers to handle

secure transactions. Most types of security (SSL, password authentication, security contexts and access lists,

and encryption) degrade performance significantly. Many systems use the frontend load balancer to decrypt

communications before passing on requests. If using it is feasible, it is worth considering. In any case, try to

consider security issues as early as possible in the design.

18.3.2 Gross Configuration

The gross configuration of the system might involve several different servers: application servers, web

servers, and database servers. An optimal configuration runs these servers on different machines so each

has its own set of specifically tuned resources. This avoids access conflicts with shared resources.

When this separation is not possible, you need to be very careful about how the servers are configured. You

must try to minimize resource conflicts. Allocate separate disks, not just separate partitions, to the various

servers. Make sure that the operating-system page cache is on yet another disk. Limit memory requirements

so it is not possible for any one server to take an excessive amount of memory. Set process priority levels to

appropriately allocate CPU availability (see Chapter 14 for more details).

When request rates increase, you should be able to maintain performance by simply adding more resources
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(for instance, an extra server). This target requires both a well-designed application and correctly configured

application servers. Try load-testing the system at higher scales with an extra application server to see how

the configuration requirements change.

18.3.3 Tuning Application Servers

Application servers have multiple configuration parameters, and many affect performance: cache sizes, pool

sizes, queue sizes, and so on. Some configurations are optimal for read-write beans, and others are for read-

only beans, etc. The popular application-server vendors now show how to performance-tune their products

(see http://www.JavaPerformanceTuning.com/tips/appservers.shtml). Several application servers also come

with optional "performance packs." These may include performance-monitoring tools and optimal

configurations, and are worth getting if possible.

The single most important tuneable parameter for an application server is the VM heap size. Chapter 2 and

Chapter 3 cover this topic in detail. For long-lived server VMs, memory leaks (or, more accurately, object

retention) are particularly important to eliminate. Another strategy is to distribute the application over

several server VMs. This distribution spreads the garbage-collection impact, since the various VMs will most

likely collect garbage at different times.

Optimal cache and pool sizing are the next set of parameters to target. Caches are optimized by trying to

get a good ratio of hits to misses (i.e., when an attempt is made to access an object or data from the cache,

the object or data is probably in the cache). Too small a cache can result in useful objects/data being thrown

away to make way for new objects/data. Too large a cache uses up more memory than is required, taking

that memory away from other parts of the system. Look at the increase in cache-hit rates as memory is

increased, and when the rate of increase starts flattening out, the cache is probably at about the right size.

Each pool has its own criteria that identify when it is correctly sized. Well-sized bean pools minimize

activation and passivation costs, as well as bean creation and destruction. A well-sized connection pool

minimizes the amount of time requests have to wait for an available connection. If the connection pool can

vary in size at runtime, the maximum and minimum sizes should minimize the creation and destruction of

database connections. For thread pools, too many threads causes too much context switching; too few

threads leaves the CPU underutilized and decreases response times because requests get queued.

Other parameters depend on what the application server makes available for tuning. For example, as

connections come into the server, they are queued in the network stack "listen" queue. If many client

connections are dropped or refused, the TCP listen queue may be too short. However, not all application

servers allow you to alter the listen queue size . (See the backlog parameter, the second parameter of the

java.net.ServerSocket constructor.)
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18.4 More Suggestions for Tuning EJBs

A few additional tuning suggestions for EJBs are listed here:

Beans.instantiate( ) incurs a filesystem check to create new bean instances in some application

servers. You can use the Factory pattern with new to avoid the filesystem check.

Tune the message-driven beans' pool size to optimize the concurrent processing of messages.

Use initialization and finalization methods to cache bean-specific resources. Good initialization locations

are setSessionContext( ) , ejbCreate( ), setEntityContext( ), and

setMesssageDrivenContext( ); good finalization locations are ejbRemove( ) and

unSetEntityContext( ). Failures to allocate or deallocate resources need to be handled.
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18.5 Case Study: The Pet Store

Sun created a J2EE tutorial application called the Pet Store.[1] In the Pet Store, there was no attempt to

focus on performance. In a marketing coup in early 2001, Microsoft took the badly performing basic Pet

Store application and reimplemented and optimized it in .NET, using the results to "show" that .NET was

over 20 times faster than J2EE. (The .NET optimizations appear mostly to have been SQL optimizations

together with moving much of the application server logic to database-stored procedures.) A few weeks

later, Oracle took the original Pet Store code, keeping it in J2EE, and optimized the application.[2] The

resulting optimized J2EE application performed over 20 times faster than the .NET implementation.

[1] See http://java.sun.com/blueprints/code/index.html#java_pet_store_demo.

[2] Oracle's Pet Store benchmark report is available at
http://otn.oracle.com/tech/java/oc4j/pdf/9ias_net_bench.pdf. You may also want to check out the
discussion of the Oracle improvements in the Server Side
(http://www.theserverside.com/home/thread.jsp?thread_id=12753).

Here's how Oracle optimized the application:

Optimized lazy loading of data

The original Pet Store didn't try to optimize data handling. All information that might be needed is

automatically loaded on the client. This is unrealistic in real-world applications that should minimize

data transfers. Oracle changed the application to load only needed information. (Lazy loading is

discussed in Chapter 4, Chapter 8, and Chapter 12.)

SQL query optimization

The Pet Store made no attempt to optimize the SQL queries. This lack of optimization is appropriate

for a tutorial, where the most simple SQL is easier to understand. Oracle converted some SQL to more

optimal statements. (Chapter 16 discusses SQL optimization.)

No unnecessary updates

Oracle changed the EJBs so they use isModified( ) to avoid unnecessary database updates. It is

always good practice to avoid doing what doesn't need to be done. (This is a good example of using a

dirty flag, discussed earlier in Section 18.1.7.)

Reduced contention to improve scalability

Some methods opened multiple database connections. These methods were rewritten to use only one

connection at a time, reducing contention and increasing scalability. (SQL optimization is discussed in

Chapter 16, and contention costs in Chapter 15.)

Limited number of items retrieved by queries

The Pet Store application default settings produced too much unnecessary data. Oracle used the Page-

by-Page Iterator pattern with limited page size to improve performance and scalability.

Session data stored in session, not context

Session data was moved from the ServletContext to the HttpSession, and the JSP was modified

to use the session rather than the context. Without this change, multiuser access to the Pet Store

application was very limited, as all catalog access to the DB was forced through a single connection.

(This topic is discussed briefly in Section 17.4.)

http://java.sun.com/blueprints/code/index.html#java_pet_store_demo
http://otn.oracle.com/tech/java/oc4j/pdf/9ias_net_bench.pdf
http://www.theserverside.com/home/thread.jsp?thread_id=12753
http://lib.ommolketab.ir
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Connections shortened

Connection code was rewritten to keep the DB connections very short, as is optimal with connection

pooling. (SQL optimization is discussed in Chapter 16, and transaction optimization in Section 18.1.7.)

String handling optimized

String-handling code was rewritten to use StringBuffer instead of String, removing unnecessary

concatenations. (Chapter 5 discusses string optimizations.)

The combined effect of these optimizations from Oracle produced a greater than 400-fold improvement in

performance.
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18.6 Case Study: Elite.com

Elite.com is a successful Internet startup subsidiary of Elite Information Group, and provides an online time

and billing solution. David Essex reviewed the J2EE technology behind the Elite.com web site for Enterprise

Development magazine.[3] Elite.com's solution is similar to many J2EE implementations, leveraging the full

range of J2EE technologies as well as other non-Java technologies. The report covers only a few performance

enhancements, but they show some of the most common high-level J2EE performance issues:

[3] See http://www.devx.com/upload/free/features/entdev/2000/07jul00/de0007/de0007-1.asp.

Perform work asynchronously whenever possible

Elite.com includes a queueing subsystem that asynchronously accepts external communications, such

as email entries. Entries can be batched and run with minimal impact on the online system. (Chapter

12 and Chapter 15 discuss asynchronous queuing.)

Concurrency conflicts are the biggest limitation to scalability

Like most enterprise applications, Elite.com experienced conflicting concurrent access to some

resources. When this caused severe decreases in performance in one subsystem, Elite.com solved the

problem by using a resource pool (an EJB connection pool shared among servlets), improving the

subsystem performance. (Contention costs are discussed in Chapter 15.)

Local is much faster than remote

Moving components so they are local to each other can significantly improve performance by

eliminating marshalling and remote-transfer overhead. Collocating the EJBs and servlets and

converting the communication to local calls can speed performance dramatically. (This topic was

discussed earlier in this chapter.)
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18.7 Performance Checklist

The performance of EJB-based J2EE systems overwhelmingly depends on getting the design right. Use

performance-optimizing design patterns: Value Object, Page-by-Page Iterator, ValueListHandler,

Data Access Object, Fast Lane Reader, Service Locator, Verified Service Locator, EJBHomeFactory,

Session Façade, CompositeEntity, Factory, Builder, Director, Recycler, Optimistic Locking, Reactor,

Front Controller, Proxy, Decorator, and Message Façade.

Explicitly remove beans from the container when a session is expired. Leaving beans too long will get

them serialized by the container, which can dramatically decrease performance.

Coarse-grained EJBs are faster. Remote EJB calls should be combined to reduce the required remote

invocations.

Design the application to access entity beans from session beans.

Collocated EJBs should be defined as Local EJBs (from EJB 2.0), collocated within an application server

that can optimize local EJB communications, or built as normal JavaBeans and then wrapped in an EJB

to provide one coarse-grained EJB (CompositeEntity design pattern).

EJBs should not be simple wrappers on database data rows; they should have business logic. To simply

access data, use JDBC directly.

Stateless session beans are faster than stateful session beans. If you have stateful beans in your

design, convert them to stateless session beans by adding parameters that hold the extra state to the

bean methods.

Optimize read-only EJBs to use their own design, their own application server, read-only transactions,

and their own optimal configuration.

Cache JNDI lookups.

Use container-managed persistence (CMP) by default. Profile the application to determine which beans

cause bottlenecks from their persistency, and implement bean-managed persistence (BMP) for those

beans.

Use the Data Access Object design pattern to abstract your BMP implementations so you can take

advantage of optimizations possible when dealing with multiple beans or database-specific features.

Minimize the time spent in any transaction, but don't shorten transactions so much that you are

unnecessarily increasing the total number of transactions. Combine transactions that are close in time

to minimize overall transaction time. This may require controlling the transaction manually (i.e.,

turning off auto-commit for JDBC transactions or using TX_REQUIRED for EJBs).

J2EE transactions are defined with several isolation modes. Choose the lowest-cost transaction

isolation level that avoids corrupting the data. Transaction levels in order of increasing cost are:

TRANSACTION_READ_UNCOMMITTED, TRANSACTION_READ_COMMITTED,

TRANSACTION_REPEATABLE_READ, and TRANSACTION_SERIALIZABLE.

http://lib.ommolketab.ir
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Don't leave transactions open, relying on the user to close them. There will inevitably be times when

the user does not close the transaction, and the consequent long transaction will decrease the

performance of the system significantly.

Bulk or batch updates are usually more efficiently performed in larger transactions.

Lock only where the design absolutely requires it.

Beans.instantiate( ) incurs a filesystem check to create new bean instances in some application

servers. Use the Factory pattern with new to avoid the filesystem check.

Tune the message-driven beans' pool size to optimize the concurrent processing of messages.

Use initialization and finalization methods to cache bean-specific resources. Good initialization locations

are setSessionContext( ), ejbCreate( ), setEntityContext( ), and

setMesssageDrivenContext( ); good finalization locations are ejbRemove( ) and

unSetEntityContext( ).

Tune the application server's JVM heap, pool sizes, and cache sizes.
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Chapter 19. Further Resources

Section 19.1.  The Primary Resource

Section 19.2.  Books

Section 19.3.  Magazines

Section 19.4.  URLs

Section 19.5.  Profilers

Section 19.6.  Optimizers
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19.1 The Primary Resource

The JavaPerformanceTuning.com web site contains abundant resources relevant to Java performance,

including over 3,000 performance tips, references to hundreds of articles, a newsletter providing all the

latest Java performance news, lists of tools and descriptions, Java performance discussion group roundups,

and basically anything relevant to Java performance. Be sure to visit

http://www.javaperformancetuning.com/.
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19.2 Books

Algorithms in C++, Robert Sedgewick (Addison Wesley)

The Art of Computer Programming, Donald Knuth (Addison Wesley)

Building Java Enterprise Applications, Volume I: Architecture, Brett McLaughlin (O'Reilly)

Concurrent Programming in Java, Doug Lea (Addison Wesley)

Data Structures and Algorithm Analysis in Java, Mark Weiss (Peachpit Press)

High Performance Client/Server, Chris Loosley and Frank Douglas (John Wiley & Sons)

Inside the Java 2 Virtual Machine, Bill Venners (McGraw-Hill) (see

http://www.artima.com/insidejvm/resources/)

Introduction to Computer Performance Analysis with Mathematica, Arnold O. Allen (Academic Press)

J2EE Performance Testing, Peter Zadrozny and Philip Aston (Expert Press)

Java Distributed Computing, Jim Farley (O'Reilly)

Java Threads, Scott Oaks and Henry Wong (O'Reilly)

Learning Java, Pat Niemeyer and Jonathan Knudsen (O'Reilly)

Performance Engineering of Software Systems, Connie Smith (Addison Wesley)

Sun Performance and Tuning, Adrian Cockcroft and Richard Pettit (Prentice Hall)

System Performance Tuning, Mike Loukides (O'Reilly)

Windows NT Applications: Measuring and Optimizing Performance, Paul Hinsberg (MacMillan Technical

Publishing)

Windows NT Performance Monitoring, Benchmarking, and Tuning, Mark T. Edmead and Paul Hinsberg

(New Riders)

Writing Efficient Programs, Jon Louis Bentley (Prentice Hall)
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19.3 Magazines

OnJava (http://www.onjava.com)

Dr. Dobb's Journal (http://www.ddj.com)

Java Developer's Journal (http://www.sys-con.com/java)

JavaWorld (http://www.javaworld.com)

Java Pro (http://www.fawcette.com/javapro)

Byte (http://www.byte.com)

New Scientist (http://www.newscientist.com)

IBM Systems Journal (http://www.research.ibm.com/journal) (see Volume 39, No. 1, 2000 - Java

Performance)

Java Report (http://www.adtmag.com/java/index.asp)

 

http://www.onjava.com
http://www.ddj.com
http://www.sys-con.com/java
http://www.javaworld.com
http://www.fawcette.com/javapro
http://www.byte.com
http://www.newscientist.com
http://www.research.ibm.com/journal
http://www.adtmag.com/java/index.asp
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19.4 URLs

O'Reilly (http://www.oreilly.com)

Java (http://www.java.sun.com)

Perl (http://www.perl.com)

Pavel Kouznetsov's jad decompiler (http://kpdus.tripod.com/jad.html)

IBM alphaWorks site (http://www.alphaworks.ibm.com)

Vladimir Bulatov's HyperProf (http://www.physics.orst.edu/~bulatov/HyperProf/)

Greg White and Ulf Dittmer's ProfileViewer (http://www.capital.net/~dittmer/profileviewer/index.html)

JAVAR experimental compiler (http://www.extreme.indiana.edu/hpjava/)

Jalapeño server JVM (http://www.research.ibm.com/journal/sj/391/alpern.html)

Java supercomputing (http://www.javagrande.org)

Java supercomputing (http://www.research.ibm.com/journal/sj/391/moreira.html)

Web robot guidelines (http://www.robotstxt.org/wc/robots.html)

GemStone application server (http://www.gemstone.com)

Profiling metrics (http://www.research.ibm.com/journal/sj/391/alexander.html)

Bill Venner's discussion of optimization (http://www.artima.com/designtechniques/hotspot.html)

Doug Bell's article discussing optimization techniques (http://www.javaworld.com/jw-04-1997/jw-04-

optimize.html)

Classic but old Java optimization site (http://www.cs.cmu.edu/~jch/java/optimization.html)

Rouen University String Matching Algorithms site (http://www-igm.univ-mlv.fr/~lecroq/string)

Generic Java (http://www.cs.bell-labs.com/~wadler/gj)

The Logging API (http://www.onjava.com/pub/a/onjava/2002/06/19/log.html)

The NIO packages (http://www.javaworld.com/javaworld/jw-09-2001/jw-0907-merlin.html)

Echidna multiprocessing library (http://www.javagroup.org/echidna/)

Article covering Multiprocess JVM technology

(http://www.onjava.com/lpt/a//onjava/2001/09/25/optimization.html)

http://www.oreilly.com
http://www.java.sun.com
http://www.perl.com
http://kpdus.tripod.com/jad.html
http://www.alphaworks.ibm.com
http://www.physics.orst.edu/~bulatov/HyperProf/
http://www.capital.net/~dittmer/profileviewer/index.html
http://www.extreme.indiana.edu/hpjava/
http://www.research.ibm.com/journal/sj/391/alpern.html
http://www.javagrande.org
http://www.research.ibm.com/journal/sj/391/moreira.html
http://www.robotstxt.org/wc/robots.html
http://www.gemstone.com
http://www.research.ibm.com/journal/sj/391/alexander.html
http://www.artima.com/designtechniques/hotspot.html
http://www.javaworld.com/jw-04-1997/jw-04-
http://www.cs.cmu.edu/~jch/java/optimization.html
http://www-igm.univ-mlv.fr/~lecroq/string
http://www.cs.bell-labs.com/~wadler/gj
http://www.onjava.com/pub/a/onjava/2002/06/19/log.html
http://www.javaworld.com/javaworld/jw-09-2001/jw-0907-merlin.html
http://www.javagroup.org/echidna/
http://www.onjava.com/lpt/a//onjava/2001/09/25/optimization.html
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Garbage collection analysis articles (http://wireless.java.sun.com/midp/articles/garbage/;

http://dcb.sun.com/practices/devnotebook/gc_perspective.jsp;

http://www.javaworld.com/javaworld/jw-01-2002/jw-0111-hotspotgc.html)

Hendrik Schreiber's GCViewer tool, which visualizes the output of GC logging generated from the -
verbosegc option, available from (http://www.tagtraum.com/)

"Optimizing Hash Functions For a Perfect Map"

(http://www.onjava.com/pub/a/onjava/2001/01/25/hash_functions.html)

"Optimizing a query on a Map" (http://www.javaworld.com/javaworld/jw-11-2000/jw-1117-

optimize.html)

Example of converting a stateful bean to a stateless bean

(http://www.onjava.com/pub/a/onjava/excerpt/bldgjavaent_8/index3.html)

"Cache in on faster, more reliable JSPs," Serge Knystautas, JavaWorld, May 2001

(http://www.javaworld.com/javaworld/jw-05-2001/jw-0504-cache.html)

Open Symphony's OSCache open source cache-tag library (http://www.opensymphony.com/oscache/)

"Filter code with Servlet 2.3 model," Jason Hunter, JavaWorld, June 2001

(http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-filters.html)

 

http://wireless.java.sun.com/midp/articles/garbage/
http://dcb.sun.com/practices/devnotebook/gc_perspective.jsp
http://www.javaworld.com/javaworld/jw-01-2002/jw-0111-hotspotgc.html
http://www.tagtraum.com/
http://www.onjava.com/pub/a/onjava/2001/01/25/hash_functions.html
http://www.javaworld.com/javaworld/jw-11-2000/jw-1117-
http://www.onjava.com/pub/a/onjava/excerpt/bldgjavaent_8/index3.html
http://www.javaworld.com/javaworld/jw-05-2001/jw-0504-cache.html
http://www.opensymphony.com/oscache/
http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-filters.html
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19.5 Profilers

Many of these profilers have been reviewed in the various magazines listed previously. You can usually

search the magazine web sites to identify which issue of the magazine provides a review. Often the reviews

are available online. The profiler vendors should also be happy to provide pointers to reviews. The annual

"best of Java" awards includes a section for profilers (see the Java Developer's Journal).

Borland's OptimizeIt! (http://www.borland.com/optimizeit)

Sitraka's JProbe (http://www.klgroup.com)

PureLoad from Minq Software (http://www.minq.se/products/pureload/index.html)

SockPerf from IBM alphaWorks (http://www.alphaworks.ibm.com/tech/sockperf)

DevPartner Java Edition from Compuware Corporation (http://www.compuware.com/numega/)

 

http://www.borland.com/optimizeit
http://www.klgroup.com
http://www.minq.se/products/pureload/index.html
http://www.alphaworks.ibm.com/tech/sockperf
http://www.compuware.com/numega/
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19.6 Optimizers

PreEmptive's DashO optimizer (http://www.preemptive.com)

TowerJ environment (compiler & runtime) from Tower Technology Corporation

(http://www.towerj.com)

TowerJ review (http://www.javaworld.com/javaworld/jw-10-1999/jw-10-volano_p.html)

JOVE (http://www.instantiations.com/jove/)

Condensity from Plumb Design (http://www.condensity.com)

JAX size optimizer from IBM alphaWorks (http://www.alphaworks.ibm.com/tech/jax/)

jres resource manager and compressor from IBM alphaWorks (http://www.alphaworks.ibm.com/jres/)

Jshrink size optimizer from Eastridge Technology (http://www.e-t.com/jshrink.html)

 

http://www.preemptive.com
http://www.towerj.com
http://www.javaworld.com/javaworld/jw-10-1999/jw-10-volano_p.html
http://www.instantiations.com/jove/
http://www.condensity.com
http://www.alphaworks.ibm.com/tech/jax/
http://www.alphaworks.ibm.com/jres/
http://www.e-t.com/jshrink.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution

channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality

and life into potentially dry subjects.

Our look is the result of reader comments, our own experimentation, and feedback from distribution

channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality

and life into potentially dry subjects.

The animal on the cover of Java Performance Tuning is a serval (Leptailarus serval). This long-legged cat is

found in most parts of Africa, except for very dry areas of the continent, such as the northern regions around

the Sahara Desert. Servals range in color from light brown to a darker reddish brown (some servals are

entirely black); their coats are covered with dark spots that merge into stripes along the upper part of their

backs. The pattern of their markings varies geographically; servals from wetter areas have smaller, finer

spots, while those from drier areas have larger marks. Servals can grow up to 3 feet long and 20 inches tall

at the shoulder, making their legs very long in proportion to their bodies. They use this height to their

advantage, as they are able to see movement in the tall grass in which they hunt for the hares, rodents, and

small birds they like to eat. Their big ears and highly developed auditory systems enable them to hear the

high-pitched, ultrasonic sounds made by rodents-they are even able to hear them tunneling underground-

and they can also leap up to 10 feet into the air to catch birds.

Emily Quill was the production editor and proofreader for Java Performance Tuning, Second Edition . Ann

Schirmer was the copyeditor. Linley Dolby and Philip Dangler provided quality control. Ellen Troutman wrote

the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is

a 19th-century engraving from the Couvier Pictorial Archive. Emma Colby produced the cover layout with

QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 by Joe Wizda and

Judy Hoer with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra

that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad

Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the

book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe

Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon was written by

Leanne Soylemez.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and

Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik

Ray, Benn Salter, John Chodacki, and Jeff Liggett.
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[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

" in string literals 

$ end of line indicator in regular expressions 

& (ampersand)

    & (logical And) operator 

    && (boolean And) operator 

    &= (shorthand arithmetic) operator 

<< (left shift) operator 

*= (shorthand arithmetic) operator 

+ (plus sign)

    + and += string concatenation operators  2nd 

    ++ operator 

    += (shorthand arithmetic) operator 

    string concatenation operator, replacing with StringBuffer 

- (minus sign)

    -- (shorthand arithmetic) operator 

    -= (shorthand arithmetic) operator 

-prof option  2nd 

    internal Java syntax for output 

-verbosegc option 

    analyzing output of 

        common items for all versions 

        pattern matching, using with logs 

        tools for 

-Xaprof option 

-Xbootclasspath option 

-Xconcgc option (concurrent garbage collector) 

-Xhprof option 

-Xincgc option 

-Xloggc:<file> option for the VM 

-Xprof option 

-Xrunhprof option  2nd 

    cpu=old variation 

    format=b (binary output option) 

-XX:MaxPermSize parameter 

.NET Pet Store application implementation 

/= (shorthand arithmetic) operator 

?: (conditional) operator 

^ beginning of line indicator in regular expressions 

{ }, assigning newly created array to array variable 

| (vertical bar)

    | (boolean-OR) operator 

    |= (shorthand arithmetic) operator 

    || (shortcircuit boolean-OR) operator  2nd 
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accept( )

    ServerSocket class 

    ServerSocketChannel class 

access control 

    avoiding 

    avoiding use of accessor methods with public instance variables 

    batching access methods 

    batching database accesses 

    cached access 

        examples 

    canonicalizing objects and 

    collection queries, directly accessing elements 

    costs of 

    Data Access Objects in EJB 

    direct access to class internals 

    eleminating extra access calls 

    load balancing and 

    locking shared resources 

    optimizing objects for access 

    to parallel collections 

    queues 

    serialization and  2nd  3rd 

    sorting and 

    thread synchronization and 

    threads 

    variables and 

Ace Hardware SPECmine tool, case study on optimization 

ACID properties of transactions 

    problems with non-ACID transactions 

actions, directives vs. 

adaptive optimization (HotSpot VM) 

addBatch( ) 

aggregation services 

algorithms

    array matching 

    Boyer-Moore string search 

    collection comparisons 

    compression 

    conversion, overhead of 

    for data structures 

        identifying optimal 

        performance checklist 

        scaling behavior 

    dependency on data 

    inefficient, causing excess object creation 

    load-balancing 

    network access 

    NeubertÕ s flashsort 

    optimizing compilers and 

    quicksort  2nd 
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    read-ahead 

    recursion, converting to iteration 

    recursive 

scaling

    of algorithms 

algorithms

    scaling behavior 

    scavenging 

    sorting  2nd 

    stateless algorithm objects 

allocate( ) (ByteBuffer) 

allocateDirect( ) (ByteBuffer) 

analysis phase of development 

    focusing on performance 

    performance checklist 

    performance goals, setting 

    performance-tuning considerations 

analysis tools for performance-monitoring, EJB application server 

analyzing performance statistics 

And operators

    & (logical And) 

    && (Boolean And) 

append( ) (StringBuffer) 

Appendable interface 

appendTo( ) 

applets

    design of 

    standalone, distribution analysis for 

    user interface thread in 

application servers, EJB 

    gross configuration of 

    performance tuning 

    performance-optimizing features 

    security layer 

application-specific code 

    analysis phase of development 

        features, reducing 

        performance goals, setting 

        tuning considerations 

    tuning 

applications

    caching, effects on timings 

    configuration for load balancing 

    discarding unneeded parts of 

    distributed  [See distributed applications]2nd  [See distributed applications]

    measurements for benchmarking and tuning 

    monitoring 

        performance checklist 

    multiuser, tuning 

    network components, performance of 

    partitioning  [See partitioning]

    timing 

arithmetic operators 

arraycopy( ) (System) 

ArrayList class  2nd 
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    comparing with LinkedList 

        building a large collection 

        building a medium collection 

        queries 

    implementation 

    RandomAccess, testing effect of 

    synchronized wrapper vs. unsynchronized class 

ArrayQuickSorter class  2nd 

arrays

    byte, conversion to char 

    cloning 

    collection class based on, writing 

    converting switches to array access 

    cost of accessing elements 

    cost of element manipulation 

    initialization of 

    linked lists of 

    List class and 

    mapping objects with 

    order of magnitude for accessing elements 

    primitive types

        fast casts of 

        objects vs. 

    replacing collections with 

    sorting interfaces for 

Arrays class

    sort( )  2nd 

        timings for 

    sorting methods 

ArraySorter class 

assert keyword 

AssertionError class 

assertions  2nd 

    enabling/disabling at runtime 

    overhead of 

    performance checklist 

assignment

    eliminating unnecessary 

    variables shared between multiple threads 

asynchronous processing

    communications 

        designing distributed applications for 

    distributed applications, performance checklist 

    in distrubuted systems 

    I/O, multiplexed 

    JMS (Java Messaging Service) 

    scalability, synchronous vs. 

    in Web Services 

atomic access to variables shared between multiple threads 

auto mode for message delivery 

auto-commit mode for transactions 

awk script for analyzing verbosegc logs 

AWTEventMulticaster class 
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background processes

    executing I/O in 

    serialization 

backups, full and incremental 

bandwidth 

    limiting browser performance 

    measuring for networks 

    network latency vs. 

    perceived performance and 

    user, page display and 

batching 

    data transfers in low-level communication optimization 

    database queries 

    determining whether itÕs faster 

    in distributed applications  2nd 

        data transfers 

    in JDBC 

        accesses, batching by optimizing row fetches 

        updates 

bean-managed persistence (BMP) in EJBs 

beans  [See EJBs]

Beans class 

BellÕs rule of networking 

benchmarks

    asynchronous and background events, effects of 

    checking against JDK versions 

    harness for 

    measurements for  2nd 

    performance checklists for  2nd 

    performance problems, causing 

    predicting performance with 

    preventing garbage collection during 

    setting  2nd 

    third-party components 

Bentley, Jon 

BigDecimal class, replacing with your own version 

binary output option (-Xrunhprof) 

bind( ) (ServerSocket) 

binding, static 

bit-shifting, replacing multiplication with 

blackboard architecture for solving threading problems 

BMP (bean-managed persistence) 

body tags

    custom tags, minimizing 

    include directive, include action vs. 

    minimizing scope of useBean action 

    redirects vs. forwards 

boolean data types, converting to strings 

boolean objects, object canonicalization and 

boolean operators 
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    | (OR) operator vs. || (shortcircuit OR) operator 

boolean_expression evaluation (assertions) 

bottlenecks 

    contention for system-wide resource 

    CPU 

    disk throughput 

    in distributed applications 

        identifying 

    generic locations for in J2EE systems 

    I/O 

        disk 

        network 

        network, configuration and load 

    identifying  2nd 

        in memory 

        with profilers 

    inefficient algorithms, excess object creation from 

    JDBC, identifying 

    memory 

    memory leaks, eliminating 

    object creation 

        reducing and eliminating 

    paging 

    queues 

    requests, correlating with methods 

    scaling and 

    serialized execution  2nd 

    shared resources 

    strings 

    system (load balancing example) 

Boyer-Moore string search algorithm 

broadcast messaging 

browsers

    caching pages 

    redirecting to different page 

BufferedInputStream class 

BufferedReader class  2nd 

buffering

    I/O  2nd 

        bigger buffers 

        byte arrays and char arrays 

    network, using efficiently for servlet output 

    profiling output and 

    server-side, page flushing and 

buffers, NIO

    direct 

    nondirect 

Builder pattern in EJB design 

business logic in EJBs 

byte arrays, conversion to char 

ByteArrayOutputStream class 

ByteBuffer class  2nd 

    allocate( ) 

    allocateDirect( ) 

bytecodes
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    for heap variable manipulation 

    reordering in compiler optimizations 

    switch statements, versions of 

bytes

    changing to ints in arithmetic operations 

    converting to chars 

    converting to strings 

    HTML, using for 
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C/C++

    compile time compared to JIT VM 

    converting Java to C 

    illegal pointer manipulations and 

    object creation 

    string handling and 

cachefs 

caching 

    access, cached 

        data retrieval rates, monitoring 

        examples 

    cache tags for servlets 

    circular cache 

    code 

    in dispatchers 

    in distributed applications  2nd 

    distributed data 

    DLLs 

    DNS lookups  2nd 

    effects of 

        startup 

    in EJB

        application servers, capabilities of 

        bean-specific resources 

        services 

    filesystems 

    I/O 

    InetAddress class 

    intermediate results 

    JDBC data 

        in-memory database products 

    JNDI lookups 

    low-level communication layer optimization 

    operating system

        filesystem cache 

        page cache 

    perceived performance and 

    shared persistent caches 

    static pages 

CallableStatement class, defining wrapper class for 

canonicalizing objects  2nd  3rd 

    changeable objects 

    enumerating constants 

    Integer class instances 

    serialization and deserialization 

    weak references, using 

canonicalizing strings  2nd 

    boolean to string conversions, use in 

    comparing strings for identity 

capacity of collection classes 
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case

    case-insensitive searches 

    converting string to uppercase 

    in regular expression matching 

    in string searches 

    in string comparisons 

    in strings, converting to upper or lower case 

case statements 

    contiguous sets of cases 

    non-contiguous values for 

    reordering for switch statements with optimizing compiler 

casts

    arrays of primitive types 

    avoiding 

        with collection classes 

    avoiding in comparisons 

        for sort methods 

        implementing standard sort algorithm and comparison method for class 

    costs of 

        avoiding with collections 

        object type 

    efficiency of 

    eliminating in queries 

    instanceof vs. 

    performance checklist 

    removing unnecessary 

    throwing exceptions, cost of  2nd 

CGI (Common Gateway Interface) scripts, process startup overhead 

chaining constructors 

    multiple initializations to instance variables 

    unnecessary assignments in 

changeable objects, canonicalizing 

channels (I/O), multiplexing 

char arrays 

    converting byte arrays to 

    I/O string processing, using for 

    strings vs. 

        line filter example 

        line filtering with regular expressions 

        word-counting (example) 

characters, encoding  2nd 

CharArrayReader class 

charAt( ) (String)  2nd 

CharBuffer class 

chars

    changing to ints in arithmetic operations 

    converting to strings 

CharSequence interface 

Class class

    forName( ) 

    getName( ) 

class libraries 

ClassCastException class 

classes

    casts of objects 
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    delivering in uncompressed ZIP or JAR files 

    JDK, replacing 

    load-balancing 

    loading

        class files 

        large numbers of 

        lazy object initialization and 

        preallocating objects 

    preventing garbage collection of 

    removing unused with compiler 

    renaming in compiler optimization 

    reusing 

    testing for instances of 

ClassLoader class 

    set*AssertionStatus( ) 

classloaders 

    changes in SDK versions 

    runtime server patching with 

client mode for message delivery 

client requests, centralizing with Front Controller pattern 

client SocketChannels, obtaining 

client-based load balancing 

client-initiated transactions in EJB 

client/server communications, profiling 

    sockets, replacing 

    third-party communications packages, using 

clone( ) (Object) 

Cloneable interface 

cloning objects to avoid using constructors 

clustering 

    defined 

    EJB application server 

    files  2nd  3rd 

    load-balancing dispatcher, using with 

CMP (container-managed persistence) 

code

    moving out of loops 

    reusable 

    unreachable 

code motion  2nd 

CollationKey class  2nd  3rd 

Collator class  2nd 

    compare( ) 

    word comparison, varying precision of 

Collection interface 

Collections class, sorting methods 

Collections framework 

    arrays  [See also arrays]

        advantages/disadvantages of 

        collection class based on 

        replacing collections with 

    casts, avoiding with 

    comparing LinkedLists and ArrayLists 

        building a large collection 

        building a medium collection 
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        querying performance 

    comparisons 

    concurrently adding objects 

    Hashtables and HashMaps 

    Java 2 

        performance attributes of classes 

    parallel collections, accesses and updates 

    performance checklist 

    presizing collections 

    queries, optimizing 

        avoiding method accessor 

        avoiding synchronization 

        casts and extra access calls, eliminating 

        lighter typing of elements 

        map queries 

        method call in loop test, avoiding repetition of 

        shortcircuit boolean operators 

    reusing collection objects 

    shared collections, updating by multiple threads 

    size and capacity of collection classes 

    sorting 

        interfaces for 

    synchronized classes and wrappers 

collisions in cache array indexes 

    minimizing 

commit( ) (Connection) 

Common Gateway Interface (CGI) 

Common Object Request Broker Architecture  [See CORBA]

communications

    asynchronous  2nd 

    failures in, user perceptions of 

    monitoring tools 

communications layers

    comparison of 

    CORBA, message reduction in 

    low-level optimizations 

        batching transfers 

        caching 

        compression 

        multiplexing 

    proprietary  2nd 

    RMI, message reduction in 

Comparable interface  2nd  3rd 

    compareTo( ) 

    quicksort for array of Comparable objects 

Comparator interface  2nd 

    compareTo( ) 

    defining sorting objects for arrays 

    optimized comparison wrappers, checking for support 

compare( )

    Collator class 

    Comparator class 

    PartialSorter class (example) 

compareTo( )

    Comparable interface 
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    Comparator interface 

    Sortable class 

    String class 

compareToSortable( ) (Sortable) 

ComparisonKey class 

comparisons

    avoiding casts 

    identity

        canonical objects 

        IdentityHashMap class 

        strings 

    numeric, efficiency in 

    optimizing in sorting 

    strings 

compile( ) (Pattern) 

compile-time resolution of strings 

compilers

    array initialization and 

    assert statements, stripping 

    casts, eliminating 

    inlining 

    javac, runtime optimizations and 

    JIT (just-in-time) 

        loops and 

        VMs with 

    listing of 

    optimizing 

        access control to methods, altering 

        assignments, eliminating unnecessary 

        code motion 

        computationally cheaper alternatives, using 

        cutting dead code and unnecessary instructions 

        dynamic type checks, removing 

        generating helpful information for VM 

        increasing statically bound calls 

        inlining calls 

        managing 

        reducing necessary parts of compiled files 

        removing unused methods and classes 

        removing unused object fields 

        renaming classes, fields, and methods 

        reordering or changing bytecodes 

        replacing runtime computations with compiled results 

        subexpressions, eliminating common 

        unrolling loops 

        what they canÕt do 

    performance checklist 

    profiling, object creation 

    recursion and 

    switches 

components, analyzing statistics on 

CompositeEntity pattern in EJB design 

compression 

    communication layer optimization 

    distributed computing, use in 
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    performance checklist 

    reducing data transfer time with 

    searching directly in compressed data 

    serialized objects 

    servlet tuning, use in 

    uncompressed ZIP/JAR files 

concatenating strings 

    + and += operators  2nd 

    at runtime, extra object generation by 

concurrency conflicts in EJB, reducing 

concurrent execution 

concurrent garbage collection  2nd  3rd 

conditional operator (?:) 

configuration

    applications, for load balancing 

    EJB application servers 

    network, bottlenecks from 

    optimal, for servers 

    for service providers 

congested networks 

connect( )

    Socket class 

    SocketChannel class 

Connection interface 

    commit( ) 

    getAutoCommit( ) 

    releaseSavepoint( ) 

    rollback( ) 

    setTransactionIsolation( ) 

    wrapper classes, defining 

ConnectionConsumer interface 

connections

    database

        pooling 

        shortening in Pet Shop code 

    network, overall speed of 

    pooling with EJB application server 

ConnectionWrapper class 

constants, enumerating as string replacements 

constructors

    array-based collection class 

    avoiding use of 

    chaining 

        multiple initializations to instance variables 

        unnecessary assignments in 

    making private for SINGLETON object 

    Object class and 

    profiling calls to 

    serialization and 

    string 

consumers (JMS), load balancing 

container objects, reusing 

container-managed persistence (CMP) in EJBs 

contention for resources

    bottlenecks caused by 
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    reducing to improve scalability 

conversions

    byte to character 

    byte-to-char, with NIO package 

    bytes, shorts, chars, and booleans to strings 

    data types 

        costs of 

    doubles to strings 

    floats to strings 

    ints to strings 

    JDBC data, minimizing  2nd 

    longs to strings 

        avoiding temporary objects 

    objects to strings 

    optimizing in servlets 

    stateful bean to stateless 

convert( ) 

copies of objects, reducing generation by methods 

copy-on-write

    allowing multithreaded updates of object 

    behavior in canonicalized objects 

CORBA (Common Object Request Broker Architecture)

    comparison with other communication layers 

    reducing messges in applications 

    scaling 

    Web Services vs. 

counters, unsynchronized vs. synchronized 

cpu=old option (-Xrunhprof) 

cpu=samples option (-Xrunhprof) 

cpu=times mode (-Xrunhprof) 

CPUs 

    computation time (single-threaded) based on availibility 

    dynamic method calls and 

    limitations on performance 

    multiprocessor

        threading and 

    optimizing usage of in EJB 

    parallelism 

    parallelization 

    predicting performance on for parallelism 

    process priorities  2nd 

    time allocated to processes 

    time measurements for procedures 

    upgrading 

    utilization 

        analyzing statistics on 

        checklist 

        measuring 

currentTimeMillis( ) (System)  2nd  3rd 

custom tags, BodyTags vs. 
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data

    compressing  [See compression]

    duplication in distributed applications 

    parallelism 

Data Access Object design pattern 

data structures 

    collections 

        arrays, advantages/disadvantages of 

        Java 2 framework 

        presizing 

        specialized for primitives 

    in JDBC 

    performance checklist 

    replacing with faster 

data types

    collection elements, lighter typing of 

    conversions between, costs of 

    converting to strings 

    dynamic checks, eliminating  2nd 

    Java, closely matching with database types 

    numeric, using ints for 

    primitive  [See also primitive data types]

        arrays of, fast casts 

        reducing garbage collection with 

        replacing others with ints 

        using instead of Object types 

    references 

        types of 

DatabaseMetaData class  2nd 

databases

    JDBC  [See JDBC]

    location of 

    object 

    optimizations 

        access with Data Access Objects in EJB 

        communications, performance checklist for 

    partitioning 

    performance problems with  2nd 

    server-side processing, minimizing 

DataInputStream class  2nd 

DataOutputStream class 

Date class, replacing with your own version 

Deadlock class (example) 

deadlocks  2nd 

    identifying in stack traces 

    unsynchronized classes and 

debug statements 

debugging code, logging and 

decompilers 

Decorator objects in EJB 
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decoupling I/O from application processes 

defensive programming 

defineColumnType( ) (OracleStatement) 

defragmenting disks 

delays (cumulative), user impatience and 

delivery of messages

    load balancing and 

    modes 

deployment descriptors (EJB), setting transaction timeouts in 

deserialization  2nd  [See also serialization]

    constructors, avoiding use of 

design phase of development 

    distributed applications 

    object design 

    performance checklist 

    predicting performance 

        batch processing 

        comparative performance of operations 

        data conversions, costs of 

        focusing on shared resources 

        parallelism, effects of 

        relative costs of different access and update types 

        simulations and benchmarks, using 

        total work done and design overhead 

    requiring performance predictions from designers 

    scaling 

    shared resources 

        locking 

        parallelism 

        transactions 

design, EJBs

    performance checklist for 

    performance-optimizing 

        caching services 

        combining EJBs 

        CPU usage 

        Data Access Objects 

        efficient transfer of large datasets 

        load balancing 

        message handling 

        reducing locking conflicts 

        reusing objects 

        Value Objects 

    primary guidelines 

        business logic, representing 

        caching JNDI lookups 

        container-managed or bean-managed persistence 

        granularity 

        read-only data 

        stateless session beans for speed 

        transactions 

destroy( ) (Servlet) 

desynchronization  2nd  [See also synchronization]

development

    analysis phase 
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        performance-tuning considerations 

    design and architecture  [See design phase of development]

    performance checklist for analysis and design phases 

digital search tries 

    ternary search tree, using with 

dirty flags, using to avoid writing unchanged EJBs to database 

disks

    I/O  2nd 

    network 

    pages on 

    throughput 

distributed applications

    analysis phase of development 

    bottlenecks 

    client/server communications, monitoring 

    designing for good performance 

    measurements of 

    performance checklists 

    performance tuning  2nd  3rd 

        batching  2nd 

        caching 

        message reduction 

        partitioning applications 

    proxies, use in 

    streaming, use in 

    targeting topmost bottleneck 

distributed computing 

    caching with synchronization (EJB application server) 

    comparing communication layers 

    database

        location of 

        optimizations of 

    garbage collection 

    low-level communication optimizations 

        batching transfers 

        caching 

        compression 

        multiplexing 

    objects, preallocating 

    performance checklist 

    tools for application monitoring 

        relay servers 

    transactions 

    Web Services 

        measuring performance 

DLLs (dynamic link libraries), caching 

DNS (Domain Name System)

    load balancing 

        hardware load balancer, using with 

    looking up network addresses 

    lookup times, measuring for Web Services 

doGet( ) and doPost( ) methods, getting execution times 

Domain Name System  [See DNS]

double data type

    converting to strings 
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    Double class, profiling calls to equals( ) 

    parsing doubles from strings with floating-point numbers 

    replacing with ints for performance gains 

downloading many pages from a web server 

downtime for servers, performance and 

drivers, JDBC 

    connection pools 

    optimized, for EJB application server 

dropped packets on congested networks 

dummy objects 

duplicate delivery mode 

duplication of data in distributed applications 

dynamic class loading, lazy initialization and 

dynamic link libraries (DLLs), caching 

dynamic method calls, effect on CPUs 

dynamic type checks, eliminating 

dynamic URL generation 
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early initialization 

ejbCreate( ) 

EJBHomeFactory pattern 

ejbRemove( ) 

EJBs

    application server 

        gross configuration of 

        performance tuning 

        performance-optimizing features 

        security layer 

    bean life cycle methods, monitoring for excessive use 

    design guidelines, performance-optimizing 

        caching services 

        combining EJBs 

        CPU usage 

        Data Access Objects 

        efficient transfer of large datasets 

        load balancing 

        message handling 

        reducing locking conflicts 

        reusing objects 

        Value Objects 

    design guidelines, primary 

        business logic, representing 

        caching JNDI lookups 

        container-managed or bean-managed persistence 

        granularity 

        read-only data 

        stateless session beans for speed 

        transactions 

    tuning

        Elite.com case study 

        Pet Store case study 

        suggestions, additional 

elapsed time measurements 

Elite.com case study of EJB performance tuning 

encapsulation, voiding 

enterprise performance problems, sources of 

entity beans

    accessing from session beans 

    local 

environments, specifying in application design 

equality comparisons

    converting to identity comparisons for efficiency 

    strings 

equals( )

    Double class 

    Object class 

    String class  2nd 

equalsIgnoreCase( ) (String) 
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error checking, conditional 

error messages, customizing for assertion failures 

ethereal (communication-monitoring tool) 

Ethernet packet sizes 

event handling, EJB design patterns for 

exceptions 

    conditional error checking 

    handling in JDBC 

    performance checklist 

    reusing  2nd 

    terminating loops with 

        speedup for various VMs 

    try-catch blocks with 

    try-catch blocks without 

    using without stack trace overhead 

execute( ) (Statement) 

executeBatch( )  2nd 

executeQuery( ) 

execution

    atomic 

    concurrent  2nd  3rd  4th 

    serialized  2nd 

expressions

    eliminating common subexpressions 

    partitioning 

external data files, reading 

Externalizable interface  2nd  3rd  4th 
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factory design pattern  2nd 

Factory pattern in EJB design 

Fast Lane Reader pattern in EJB design 

fault-tolerance in EJB application servers 

    single point of failure, eliminating 

fields

    constant, inlining 

    object

        removing unused 

    renaming in compiler optimization 

    transient 

        avoiding serialization of 

File class 

file descriptors, monitoring available number of 

FileChannel class 

    map( ) 

    transferTo( ) and transferFrom( ) methods 

FileInputStream class 

    using without buffering 

    wrapping with BufferedInputStream 

FileReader class 

files

    class

        delivering in uncompressed ZIP/JAR files 

        loading 

        shrinking 

    clustering  2nd 

    copying with NIO 

    memory mapping of 

    optimizing I/O for 

    preallocating for I/O 

    striping 

filesystems

    cached 

    memory-mapped 

fillInStackTrace( ) (Throwable) 

filtering

    lines from a file 

        char arrays, using 

        regular expressions, using 

        strings, using 

    logging execution times for servlet method 

FilterOutputStream class 

final modifier 

finalization methods (EJB), caching bean-specific resources with 

finalizers, eliminating 

find( ) (Matcher) 

finishConnect( ) (SocketChannel) 

FixedDimension class (example) 

FlashSortable interface (example) 
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flattening objects 

floating-point numbers  [See also double data type]

    doubles, converting to strings 

    floats, converting to strings 

    parsing floats and doubles from strings 

FloatingDecimal class 

foreground processes, time measurements and 

forName( ) (Class) 

forwards, redirects vs. 

fragmentation, disk 

freeMemory( ) (Runtime) 

Front Controller pattern in EJB design 
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garbage collection 

    ArrayList vs. LinkedList 

    avoiding 

        flattening objects 

        general guidelines to limit object generation 

        mapping objects with arrays 

        primitive data types, using 

        temporary variables using primitive data types 

    distributed 

        overhead of 

    improvements in 

    object creation statistics and 

    object pool management and 

    object references, failure to release 

    pauses for, minimizing  2nd 

        concurrent GC  2nd 

        incremental or train algorithm 

        ÒnewÓ space, enlarging 

    preventing during benchmarking and heap tuning 

    Reference objects 

    statistics provided by profilers 

        -verbosegc option 

    weak references and 

GatheringByteChannel class 

GC analyzer tool 

gc( ) (System)  2nd 

    disabling 

GCViewer tool 

GemStone application server 

Generate class (example) 

Generics 

get( )

    ArrayList class 

    List class 

    List interface 

    Reference class 

getArray( ) (Array) 

getAutoCommit( ) (Connection) 

getBestRowIdentifier( ) (DatabaseMetaData) 

getChars( ) (String) 

getColumns( ) (DatabaseMetaData) 

getIndexInfo( ) (DatabaseMetaData) 

getInputStream( ) (Socket) 

getLastModified( ) 

getName( ) (Class) 

getOutputStream( ) (Socket) 

getStatement( ) 

getString( ) (ResultSet) 

getVectorPriorToJDK12( ) 

granularity
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    of EJBs 

        remote access and 

    log storage and 

    of Web Services methods  2nd 

graphics processing, reusing objects in 

group( ) (Matcher) 

GZIP compression, using on web pages 

GZIPOutputStream class 
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handles to vectors, memory leak caused by 

hard disks 

    cached filesystems 

    clustering files 

    disk I/O 

        striping 

    fragmentation 

    performance checklist 

    sweet spots, transferring data from 

hardware load balancing mechanisms 

hash partitioning 

hash tables 

    synchronized and unsynchronized 

hashCode( ) (Object)  2nd 

HashMap class  2nd  3rd 

    access and update times, comparing with TernarySearchTree 

    access, plain vs. cached 

    wrapped in WeakHashMap implementation 

HashSet class 

Hashtable class  2nd  3rd 

    access, plain vs. cached 

    specialized class for keys (example) 

    synchronization 

HashtableEntry class 

hasNext( ) (Iterator) 

Heap Analysis Tool (HAT) 

heap variables 

heap, tuning 

    benchmarking considerations 

    fine-tuning 

        disabling System.gc( ) calls 

        eliminating finalizers 

        expanding the heap 

        extreme heap and intimate shared memory 

        loading huge number of classes 

        minimizing pauses 

        per-thread stack size 

        RMI garbage collection 

    for EJB application server 

    gross tuning 

    measuring JVM heap size 

    monitoring size of 

    problems with larger heap 

    starting vs. maximum heap size 

hierarchical method invocation, overhead involved in 

horizontal scalability 

hostnames, DNS lookups of IP addresses 

hot replacement of failed components in EJB application server 

hot-deploy/undeploy applications for version management 

HotSpot 
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    assert statements, stripping 

    garbage collection and 

    loops

        exception-terminated 

        unrolling 

    object pooling and 

    optimizations and 

    profiler 

    timings 

    VM optimizations in 

    VM startup times and 

HTTP servers, writing contents of multiple buffers in one I/O operation 

HttpServletResponse class 

HttpSession class 

    caching 

    invalidate( ) 

    optimizing use of 

    serialization 

    session data, storing in 

    setMaxinactiveInterval( ) 

    stateful session beans vs. 

HttpSessionBindingListener class 

HyperProf program 
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I/O  [See input/output]

identity comparisons

    canonical objects 

    replacing equality comparisons with 

    strings  2nd 

IdentityHashMap class  2nd 

idlj utility 

if statements, conditional error checking 

include directive 

increment( ) (ThreadRace) 

incremental backups 

incremental or ÒtrainÓ garbage collection algorithm 

index tables 

indexes

    cache array, minimizing collisions 

    collections and 

    finding for partially matched strings 

    int data types for variables 

    partitioning and 

InetAddress class 

init( ) (Servlet) 

initialization  2nd 

    early/late 

    lazy  2nd 

    preallocating objects 

initialization methods, caching bean-specific resources with 

inlining  2nd 

    constant fields 

    limits on 

    with -O option 

input/output (I/O)

    buffering 

    caching 

    caching output 

    counting operations 

    disk  2nd 

        fragmentation 

        limitations from 

    filesystems, cached 

    logging 

    network 

        DNS lookups 

        latency 

        limitations from 

        priority of processes 

        TCP/IP stacks 

    new I/O packages  [See NIO]

    performance checklist 

    performance improvement techniques 

    replacing System.out 
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    servlet output, tuning 

    ServletOutputStream class 

    system level 

    threaded 

    tuning performance (example) 

        buffering 

InputStreamReader class 

insertion sorts 

insertRow( ) (ResultSet) 

instance variables 

    public, avoiding accessor method use with 

    static vs. 

instanceof operator 

    casts vs. 

    checking classes for RandomAccess implementation 

    RandomAccess, guarded test for 

    resolution at compile time 

instantiate( ) (Beans) 

int data types

    converting to strings 

    generating integers for any object 

    index variables, use for 

    Integer class, canonicalizing instances of 

    replacing other primitive types with 

interfaces

    in casting, cost of 

    J2EE systems, performance bottlenecks 

    java.sql 

    performance benefits of 

intern( ) (String)  2nd  3rd  4th 

internationalization

    filtering lines and 

    sorting internationalized strings 

    strings and 

        replacing strings 

        tuning strings 

Internet

    congestion, performance perception and 

    dropped packets 

    latency and 

invalidate( ) (HttpSession) 

invariants 

invoke( ) (Method) 

IP addresses

    DNS lookups for hostnames 

    DNS lookups for networks 

isConnectionPending( ) (SocketChannel) 

isEmpty( ) (WeakHashMap) 

isolation levels for transactions, choosing lowest-cost  

iteration

    converting recursive algorithms to 

    converting recursive searches to 

Iterator class

    hasNext( ) 

    next( ) 
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J2EE  [See also EJBs; JDBC; JSP; servlets]

    performance tuning 

        analyzing statistics 

        clustering and load balancing 

        JMS (Java Messaging Service) 

        load testing 

        load-balancing algorithms 

        monitoring and profiling tools 

        performance planning 

        user perception of performance 

    Pet Store tutorial application 

    server-side monitors 

JAR files (uncompressed), for class delivery 

Java

    advantages of 

    converting programs to C 

Java Application Monitor 

Java Messaging Service  [See JMS]

Java Naming and Directory Interface (JNDI), caching lookups 

Java Native Interface (JNI)

    avoiding data transfers through 

    overhead of 

java.io package 

java.sql interfaces 

java.util.zip package 

javac compiler, runtime optimizations and  [See also compilers]2nd 

javap disassembler 

JavaPerformanceTuning.com (web site) 

JAVAR compiler 

JavaServer Pages  [See JSP]

JavaSpaces, as implementation of blackboards 

javax.sql package 

JDBC (Java Database Connectivity) 

    bottlenecks, identifying 

    drivers, optimized for EJB application server 

    measuring performance 

        core java.sql interfaces 

        wrapping classes with proxy objects 

    performance checklist 

    requests, measuring 

    tuning 

        batching 

        caching data 

        connection pooling 

        data conversions, minimizing 

        data structures 

        database location 

        database server-side processing 

        handling exceptions 

        JDBC drivers 
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        metadata 

        optimizing SQL 

        prepared statements 

        set-based processing 

        stored procedures 

        transactions 

        transferred data, minimizing 

JDBCLogger class 

JDK (Java Development Kit)

    -prof option (Version 1.1.x) 

    -verbosegc option

        Version 1.2 

        Version 1.3 

    -Xprof option (Version 1.3) 

    improvements in 

        better optimizing compilers 

        compiling to native machine code 

        faster VMs 

        garbage collection 

        native method calls 

        performance checklists 

        replacing classes 

        sharing memory 

        SunÕs javac compiler 

        tuning the heap 

        uncompressed ZIP/JAR files 

    Logging framework (Version 1.4) 

JIT compilers 

    assert statements, stripping 

    NeubertÕs sorting algorithm and 

JMS (Java Messaging Service)

    optimized for EJB application server 

    performance checklist 

    persistent queue elements 

    tuning 

JNDI (Java Naming and Directory Interface), caching lookups 

JNI (Java Native Interface)

    avoiding data transfers through 

    overhead of 

journaling 

JSP (JavaServer Pages)

    optimized tags for EJB application server 

    tuning 

        case study on Ace Hardware SPECmine tool 

        compression, use in 

        efficient page creation and output 

        more performance tips 

        performance checklist 

jspDestroy( ) 

jspInit( ) 

just-in-time compilers  [See JIT compilers]

JVM  [See VMs]
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keywords

    assert 

    synchronized  2nd  3rd 

    volatile 

kill -QUIT signal 
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late initialization 

latency 

    network 

lazy initialization 

    accessor methods for proxy server 

lazy loading (code optimization example) 

least-recently-used (LRU) cache (LinkedHashMap) 

left shift (<<) operator 

length( ) (String) 

levels for transactions 

    choosing lowest-cost 

levels of logging 

line endings in regular expression pattern matching 

line filtering

    regular expressions, using 

    strings vs. char arrays 

linked lists

    of arrays 

    collections and 

    recursive search method, changing to iterative 

    sorting 

LinkedHashMap class  2nd 

LinkedHashSet class 

LinkedList class  2nd 

    comparing with ArrayList 

        building a large collection 

        building a medium collection 

        queries 

    implementation 

    RandomAccess, testing effect of 

List interface 

    get( )  2nd 

lists of Strings, avoiding casts for 

literals, string 

load balancing  2nd 

    algorithms for 

    classes for 

    CPU computation time and 

    in distributed application design 

    EJB application server 

    EJB design patterns for 

    example of 

    mechanisms for 

        application configuration 

        client-based 

        database partitioning 

        dispatching requests or redirecting to proxies 

        DNS 

        hardware 

        server-pooled objects 
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        URL-based 

    performance checklist 

    TCP/IP, using 

    Web Services 

load testing

    J2EE applications, steps in 

    performance checklist for 

    Web Services 

loading classes

    large numbers of 

    lazy initialization and 

    preallocating objects for 

    thread, starting separate for 

    uncompressed ZIP/JAR files, using 

local EJBs  2nd 

local procedure calls, time overhead of 

local variables 

locales, internationalized string sorting and 

localization, internationalized string sorting and 

locking

    methods 

    optimizations and 

    reducing conflicts with Optimistic Locking pattern 

logging 

    change logs 

    client/server communications 

    garbage collection output 

    granularity 

    I/O calls 

    integrating for performance 

    J2EE applications, tool for 

    JDBC 

    JDBCLogger class 

    JDK 1.4 framework (example of using) 

    open source implementation of JDK 1.2 and 1.3 logging APIs 

    performance monitoring tools 

    performance-logging features in applications 

    RMI, enabling 

    from servlets, minimizing 

    sockets, providing for 

    web server layer, adding to 

logical And (&) operator 

logical Or (|) operator 

LogWriter class 

long data types

    converting to strings 

    replacing with ints for performance gains 

LongVector class (example) 

loop counters (local and static), comparing costs of 

loops 

    copying arrays with System.arraycopy( ) 

    efficient comparisons in 

    I/O, avoiding execution in 

    int data types, using for index variables 

    moving code out of 
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    moving one-time calculations out of 

    moving to native routines 

    performance checklist  2nd 

    putting most common case first 

    reducing temporary objects in 

    reflection, avoiding in 

    temporary variables, use of 

    terminating with exceptions 

        speedup for various VMs using 

    termination tests, avoiding method calls in 

    threads, sleeping restlessly in 

    unrolling  2nd 

LRU (least-recently-used) cache (LinkedHashMap) 
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machine code (native), compiling to 

Macintosh, TCP/IP stacks 

main( ) (ObjectCreationMonitoring) 

Map interface 

    implementations of 

    optimizing queries 

map( ) (FileChannel) 

marshalling time, inferring for Web Services 

Matcher class

    find( ) 

    group( ) 

matches( ) (String) 

MatchReader class (example) 

Math class, replacing with StrictMath 

maxMemory( ) (Runtime) 

measurements

    analyzing statistics from 

    application response times and throughput 

    benchmarks 

    checklist for 

    communication layers 

    for distributed applications 

    of I/O operations 

        disk I/O 

    multithreading, timing 

    network speeds 

    profilers and 

    serialization and 

    skewing by rewriting previously written objects 

    timing exceptions 

    transmission statistics 

    what to measure 

    what, where, and how 

memcntl( ) 

memory  [See also heap, tuning]

    cycling through 

    freeing with garbage collection  2nd  3rd  [See also garbage collection]

    in-memory database products 

    leaks in 

        caused by vector handles 

    physical, locking heap in 

    profiling usage by runtime system 

    RAM 

    reusing objects, balancing against free memory needs 

    runtime, reducing 

    session state information, holding in 

    shared 

        I/O performance and 

    size of  2nd 

    system 
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        updates to 

    VM startup time and 

memory mapping of files 

memory-mapped filesystems  2nd 

MemoryMonitor class (example) 

MemorySampler class (example) 

Mercury Interactive Corporation analysis of enterprise performance 

message calls, reducing  2nd 

    CORBA example 

    performance checklist 

    proprietary communications layer 

    remote invocations of EJBs 

    RMI example 

Message Façade pattern in EJB design 

message-driven beans in EJB, pooling 

MessageListener interface 

messaging

    broadcast, point-to-point, and unicast 

    Java Messaging Service  [See JMS]

    multicast publish-and-subscribe 

metadata 

    performance checklist 

method calls

    eliminating for performance gains 

    inlining with compiler 

    in loop termination tests, avoiding 

    moving out of loops 

    to native code 

    profiling tools for 

        -Xhprof option 

        HotSpot and 1.3 -Xprof 

        Java 2 -Xaprof option 

        Java 2 cpu=samples output 

        JDK 1.1.x -prof and Java 2 cpu=old 

    reflection, avoiding use of 

    RMI  [See RMI]

method parameters 

methods

    access control for, altering to speed up calls 

    bean life cycle, monitoring for excessive use 

    entry points 

    granularity of 

    hierarchical invocation, overhead involved in 

    inlining by compiler 

    mapping requests to 

    remote method invocation  [See RMI]

    removing unused with compiler 

    renaming in compiler optimization 

    static 

        avoiding creation of objects 

    synchronized 

    tail-recursive  2nd  [See also recursion]

Microsoft, reimplementation and optimization of Pet Store application in .NET 

mmap( ) 

monitoring performance
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    applications  2nd 

        performance checklist for 

    J2EE tools for 

        downloading from web site 

        features to look for 

    operating systems 

monitors

    locking methods 

    locking/unlocking 

    synchronization and 

mount command (Unix) 

multicast publish-and-subscribe messaging 

multiplexing 

    I/O channels with NIO 

multiplication, replacing with bit-shifting 

multithreading  [See also threads]

    for application responsiveness 

    performance checklist 

    timing 

multiuser applications, tuning 
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native code

    calls to 

    compiler optimization of 

    compiling to 

    fallbacks for failures to load 

netstat utility 

    profiling and 

network sniffers 

networks

    analyzing capabilities of in application development 

    application components, performance of 

    bandwidth, measuring 

    caching, effects on timings 

    I/O 

        DNS lookups, performance problems with 

        latency 

        network bottlenecks  2nd 

        speed-testing facility 

        TCP/IP stacks 

    latency of 

    packet sniffiers 

    performance checklist 

    performance problems with  2nd  3rd 

    throughput 

    transfer rates and connection latency (load balancing example) 

    transfer times, measuring for benchmarks 

NeubertÕ s flashsort 

new I/O  [See NIO]

new operator, calling chained constructors during object creation 

next( )

    Iterator class 

    ResultSet interface 

NIO 

    byte-to-char conversion 

    connecting client sockets 

    direct buffers 

    multiplexing 

    nondirect buffers 

    performance checklist 

non-static methods, synchronization of 

nonblocking I/O  2nd 

nontransactional methods of session beans 

notify( ) (Object) 

nslookup utility 

null values

    avoiding unnecessary checks for 

    references 

numbers

    efficient comparisons of 

    formatting
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        floating-point conversions to strings 

        in long to string conversion 
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Object class 

    changing to record object creation 

    clone( ) 

    hashCode( ) 

    toString( ) 

    wait( ) and notify( ) methods 

object creation 

    garbage collection, avoiding 

        flattening objects 

        general guidelines to limit object generation 

        mapping objects with arrays 

        primitive data types, using 

    guidelines for efficient memory usage 

    initialization 

        early and late 

    lazy initialization 

    performance checklists 

    preallocating objects 

        ternary search tree optimization 

    profiling 

    Reference objects 

        SoftReference flushing 

        types 

    reusing objects 

        canonicalizing objects 

        pool management 

        reusable parameters 

        ThreadLocal objects 

    statistics on 

    StreamTokenizer vs. char array word counters 

ObjectCreationMonitoring class (example)  2nd 

ObjectInput interface 

ObjectInputStream class 

ObjectOutput interface 

ObjectOutputStream class 

objects

    canonicalizing  2nd 

    casts of 

    converting to strings 

    creation of  [See object creation]

    databases of, relational databases vs. 

    designing 

        optimizing for update or access 

        performance checklist 

        reusability 

    field, removing unused with optimizing compiler 

    heap space for creating new 

    passing into methods which fill in object fields 

    pooling, load balancing with 

    references to  [See references]
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    reusing in EJB 

    root 

    serialization of 

    temporary  [See temporary objects]

    unnecessary, avoiding with JNI 

Observer pattern 

ÒnewÓ space 

Open Symphony, OSCache 

open( )

    Selector class 

    ServerSocketChannel class 

operating systems

    caching, effects on timings 

    disk-cache flush, avoiding performance hit 

    memory-mapping files 

    NIO operations and 

    page cache 

    performance checklist 

    signal handling 

    timing applications and 

operators

    arithmetic, shorthand versions of 

    instanceof 

        casts vs. 

        resolution at compile time 

    logical And 

    logical Or 

    short-circuit 

    string 

Optimistic Locking pattern in EJB design 

optimistic transactions 

    EJB application server, support of 

    write-write conflicts with, detecting 

optimizations 

    analysis phase of development 

        considerations 

        features, reducing 

    assertion overhead, eliminating 

    collection queries 

    compiler 

        access control to methods, altering 

        assignments, avoiding unnecessary 

        code motion 

        computationally cheaper alternatives, using 

        cutting dead code and unnecessary instructions 

        dynamic type checks, removing 

        eliminating common subexpressions 

        generating helpful information for VM 

        increasing statically bound calls 

        inlining calls 

        javac and 

        managing compilers 

        reducing necessary parts of compiled files 

        removing unused methods and classes 

        removing unused object fields 
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        renaming classes, fields, and methods 

        reordering or changing bytecodes 

        runtime computations, replacing with compiled results 

        unrolling loops 

    container-managed persistence in EJBs 

    databases 

    design and architecture 

        distributed applications 

        object design 

        predicting performance 

        scaling 

        shared resources 

    EJBS, design patterns for 

        caching services 

        combining EJBs 

        CPU usage 

        Data Access Objects 

        efficient transfer of large datasets 

        load balancing 

        message handling 

        reducing locking conflicts 

    EJBs, design patterns for

        reusing objects 

    EJBS, design patterns for

        Value Objects 

    I/O operations, with NIO direct buffers 

    loops 

        copying arrays with System.arraycopy( ) 

        efficient comparisons 

        int data types for index variables 

        moving code out of 

        putting most common case first 

        reflection, avoiding 

        temporary variables, using 

        terminating with exception 

    more factors affecting performance 

        server downtime 

        training users 

        user interface usability 

    with -O option 

    performance checklist 

    performance planning 

        deploying with performance-logging features 

        designers, requiring performance predictions from 

        focus on performance in analysis phase 

        integrating performance logging 

        specifying performance requirements 

        test environment for performance, creating 

        test performance and use results 

        testing simulation or skeleton system 

    repeated comparisons of internationalized strings 

    runtime 

    string equality tests 

    ternary search tree, creating node pool for 

    testing and documenting 
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    tuning after deployment 

    tuning class libraries and beans 

        application-specific code 

    VM 

    when to avoid 

    when to make 

optimizers, listing of resources on 

options (runtime), performance and 

Or operator (logical Or) 

Oracle, optimization of Pet Store application 

orders of magnitude  2nd 

ÒtrainÓ garbage collection algorithm 

OutOfMemoryError class 

OutputStream class 

overhead

    distributed applications, proprietary communication layer 

    of longs and doubles 

    of array initialization 

    of assertions 

    of communications in distributed applications 

    of CPU parallelization 

    of data conversions 

        in JDBC 

    of design 

    of disk/file seeking 

    of dynamic URL generation 

    of exceptions 

    of exceptions in stack traces 

    of files 

    of hierarchical method invocation 

    of Java Native Interface (JNI) 

    of locks 

    of method polymorphism 

    of paging 

    of parallelism 

    of performance monitoring in J2EE 

    of process startup 

    of recursion 

    of remote calling of EJBs 

    of serialization 

        bypassing 

    of stack trace 

    of startup, reducing with thread pooling 

    of strings

        concatenating at runtime 

        in SQL statement execution 

    of synchronous processing over the Internet 

    of tests in loops 

    of thread synchronization 

    of transaction savepoints 

    of Web Services, round-trip 

    runtime 
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packet sizes (TCP/IP) 

packet sniffers  2nd 

packets

    dropped 

    resending on congested networks 

page cache (operating system) 

page display

    partial display, optimizing 

    perceived performance and 

    performance checklist for 

Page-by-Page Iterator pattern

    in EJB design 

    Pet Store application otpimization, use in 

pages

    browser caching of 

    caching with cache tags 

    compressing 

    JavaServer Pages  [See JSP]

    static, displaying quickly 

paging 

parallelism

    CPU load and 

    distributed applications, designing to support 

    effects on performance, predicting 

    JMS message processing 

    optimizations and 

        data parallelism 

    performance checklist 

    of search spaces 

parameters

    method 

    reusable, in object creation 

    tuneable, in TCP/IP stacks 

PartialSorter class (example) 

partitioning

    applications

        distributed  2nd  3rd 

        EJB message handling design 

        performance checklist 

    data 

    databases  2nd 

        load balancing with 

    expressions 

    raw partitions 

patching a running server 

Pattern class 

pattern matching  [See also regular expressions]

    verbosegc logs, using with 

pauses for garbage collection, minimizing 

peak performance targets 
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perceived performance 

    caching 

    checklist for user expectations 

    J2EE applications 

        communication failures 

        cumulative delay and user impatience 

        good peak performance 

        Internet congestion 

        page display 

        priority service 

        screen navigation 

        user bandwidths, range of 

    network latency, effects on 

    startup times 

    streaming to appear quicker 

    threading to appear quicker 

performance

    checklists for 

    planning  [See planning for performance]

    predicting  [See predicting performance]

    targets 

performance checklists  [See under individual topic listings]

performance goals 

performance monitor (on Windows) 

performance problems

    application and web servers 

    caused by benchmarking 

    four main areas of 

    with network I/O 

    network  2nd  3rd 

    sources of 

    symptoms of 

performance tuning  [See also tuning entries under individual topics]

    resources

        books 

        JavaPerformanceTuning.com (web site) 

        magazines 

        optimizers 

        profilers 

        URLs 

    strategy for 

        identifying bottlenecks 

performance-monitoring API for EJB application server 

Perm Space 

persistence in EJBs 

    bean-managed 

    container-managed, optimizations for 

    design guidelines for 

pessimistic locking 

Pet Store tutorial application (Sun) 

PhantomReference class 

ping utility 

planning for performance  2nd 

    deploying with performance-logging features 

    focusing on performance in analysis phase 
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    integrating performance logging 

    J2EE performance tuning 

    requiring performance predictions from designers 

    specifying performance requirements 

    test environment, creating 

    test performance and use results 

    testing simulation or skeleton 

point-to-point messaging 

poll( ) 

polling 

polymorphism of methods, overhead involved in 

pooling

    connections with EJB application server 

    database connections 

        prepared statements and 

    message-driven beans in EJB 

    objects 

        load balancing with 

        node pool for ternary search tree 

        reducing garbage collection 

        VectorPoolManager class (example) 

    server sessions 

    stateful EJBs 

    stateless EJBs 

    threads 

        EJB application server 

        reducing startup overhead with 

preallocating objects 

precompiling a statement 

preconditions 

predicting performance 

    CPU parallelism 

    techniques for 

        batch processessing 

        comparative performance of operations 

        data conversions, costs of 

        focusing on shared resources 

        parallelism, effects of 

        relative costs of different access and update types 

        simulations and benchmarks, using 

        total work done and design overhead 

preferredSize( ) 

prepared statements in JDBC 

PreparedStatement interface

    batching updates 

    Statement vs. 

    when to use 

    wrapper class, defining 

preprocessors

    eliminating code blocks with 

    inlining and 

    optimizing compilers and 

previous( ) (ResultSet) 

primitive data types

    arrays of
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        fast casts for 

        updates to 

    casts of 

    garbage collecting 

    replacing others with ints 

    using instead of Object types 

PrintWriter class 

priorities

    queues, load balancing with 

    user service, assigning to 

private objects (referents) 

processes

    forking 

    listing, utilities for 

    performance checklist 

    priorities  2nd 

        allocated by operating systems, timing and 

    runnable queue of 

producers (JMS), load balancing 

profilers

    further resources 

    methodology  2nd 

    output 

    sampling techniques 

    scaling behavior 

ProfileTest class (example) 

    -Xaprof profiler, using with 

    memory monitoring 

ProfileViewer program 

profiling

    assertions, enabling/disabling 

    J2EE 

profiling tools 

    -Xrunhprof option for JDK 

    client/server communications 

        sockets, replacing 

        third-party communications packages, using 

    commercially available profilers 

    garbage collection, statistics on 

        -verbosegc option 

    generic 

    HAT (Heap Analysis Tool) 

    J2EE 

    measurements and timings 

    memory usage, monitoring 

    method calls 

        -Xhprof option 

        HotSpot and 1.3 -Xprof output 

        Java 2 -Xaprof option 

        Java2 cpu=samples output 

        JDK 1.1.x -prof and Java 2 cpu=old 

    object-creation 

    performance checklists for 

proprietary communications infrastructures  2nd 

    comparison with other types 
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proxies

    load balancing with proxy servers 

    monitoring performance of RMI calls 

    Proxy class 

    proxy objects

        use in EJB message handling 

        wrapping JDBC objects 

ps utility 

pseudo VMs, application distrubution over 

pseudocolumns (database) 

public instance variables, avoiding accessor method use with 

publish-and-subscribe messaging 
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queries

    comparing LinkedLists and ArrayLists 

    database

        batching 

        statically defined 

    JDBC, timing 

    optimizing for collections 

        casts and extra access calls, eliminating 

        lighter typing of elements 

        map queries 

        method accessor, avoiding 

        method call in loop test, avoiding repetition of 

        shortcircuit boolean operators 

        synchronization, avoiding 

    SQL, limiting number of items retrieved 

QueryVector class (example) 

queues

    actively managing requests (example) 

    in distributed application design 

    messages, load balancing with 

    prioritizing for load balancing 

    processing for references, WeakHashMap 

    request processors accessing 

    runnable queue of processes and threads 

quicksort algorithm  2nd 
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race conditions  2nd 

    deadlocks, system load and 

RAID (redundant array of independent disks), striping files and 

RAM 

RandomAccess interface 

    forward and backward compatibility 

    performance improvements in loop tests 

    uses of 

RandomAccessFile class 

range partitioning 

raw partitions 

RawIntComparator interface 

Reactor pattern in EJB design 

read( ) 

    ScatteringByteChannel class 

    Socket class 

read-ahead algorithm for I/O buffers 

read-only data in EJBs 

    Data Access Objects, using for 

    optimizing read-only EJBs for read-only transactions 

Reader class  2nd 

readExternal (Externalizable) 

readLine( )

    BufferedReader class  2nd 

    DataInputStream class 

    DataInputStream class (deprecated method) 

readObject( ) (Serializable)  2nd 

recursion 

    caching intermediate results 

    converting recursive method to iterative  2nd 

    performance checklist 

    recursive merge sort for nonarray elements 

    stacks and 

    tail recursion 

    ternary search tree node 

    ternary search tree, converting to iteration 

redelivery of messages, limiting 

redirecting requests to proxy servers 

redirects, forwards vs. 

reduction 

redundant array of independent disks (RAID), striping files 

references 

    garbage collection 

    Reference class 

    skewing test measurements with 

    SoftReference flushing 

    types of 

    weak 

    WeakHashMap class 

referents  2nd 
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    string literals as 

reflection, avoiding in loops 

regionMatches( )  2nd 

regular expressions 

relay servers 

releaseSavepoint( ) (Connection) 

remote access to EJBs, granularity and 

remote disks, adverse effect on I/O 

remote EJBs 

remote method invocation  [See RMI]

remote procedure call (RPC), time measurement on a LAN 

removeEldestEntry( ) (LinkedHashMap) 

removing beans for performance gains 

request queue 

requesting too many rows in database data transfers 

requests

    centralizing client requests with Front Controller pattern 

    dispatchers or proxy servers for 

    JDBC, measuring 

    mapping to methods 

requirements for performance, specifying 

resources

    allocation/deallocation in EJB 

    concurrency conflicts in EJB, reducing 

    JDBC, closing or releasing 

    limitations of 

    partitioning 

    shared, optimizations and 

response times 

    measuring total response time 

    monitoring applications for 

    statistics on, analyzing 

    variation 

ResultSet interface 

    caching data with ReadOnlyCachedResultSet 

    getString( ) 

    wrapper class, defining 

ResultSetMetaData class 

reusing code 

    exceptions 

    method entry points 

    method parameters 

    objects  2nd 

        canonicalizing 

        in EJB 

        pool management 

        reusable paramaters 

        ThreadLocal objects 

RMI (remote method invocation)

    comparison with other communication layers 

    compression layer, adding 

    garbage collection and 

    garbage collection, tuning 

    message reduction example 

    monitoring performance of 
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    optimized for EJB application server 

    profiling 

    scaling 

    standards equivalent to CORBA and Web Services 

rmic utility 

Robot class 

rollback( ) (Connection) 

root objects 

round-robin partitioning 

rounding numbers in floating-point to string conversions 

routers

    dropping packets 

    packet sizes and 

RowSet interface, batching updates 

run( ) (Thread) 

runnable queue of processes and threads 

runtime as overhead 

Runtime class

    freeMemory( ) 

    maxMemory( ) 

    totalMemory( ) 

runtime optimizations 

runtime options, performance and 

runtime resolution of strings 
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sampling techniques, profilers and 

savepoints 

scalability

    asynchronous vs. synchronous processing  

    concurrency conflicts in EJB application 

    horizontal 

    monitoring tools 

    reducing resource contention to improve 

    sessions, distributing for 

    testing in simulation or skeleton system 

scaling 

    of algorithms 

    CORBA vs RMI 

    load balancing, importance of 

    optimizations and 

    performance tests 

scatter-gather operations, NIO buffer classes 

schema partitioning 

screen navigation in reestablished connections 

search trees 

    digital tries 

        using with ternary 

    ternary 

        converting recursion to iteration 

        precreated pool of nodes, using 

        recursive ternary tree node 

        TernarySearchTree class 

        tuning 

searches

    case-insensitive 

    recursive, converting to iterative  2nd 

    search spaces, breaking up into logically parallelized spaces 

    in strings 

        Boyer-Moore algorithm 

security

    dispatcher decryption of requests 

    EJB application server 

Sedgewick, Bob 

seek time 

SELECT statement (Oracle), optimizing 

select( ) 

selectedKeys( ) (Selector) 

selecting too many fields in database queries 

Selector class 

    open( ) 

    selectedKeys( ) 

Serializable interface  2nd  3rd  4th 

serialization 

    change logs, using 

    constructors, avoiding use of 
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    HttpSession objects 

    performance checklist 

ServerObject class 

servers

    application

        EJB, evaluating for performance and scalability 

        performance problems with  2nd 

        performance-monitoring API 

        persistent cache update mechanism, design of 

    application, web, and database, optimal configuration of 

    CORBA 

    DNS, running locally 

    downtime 

    J2EE monitors for 

    measuring total server-side service time 

    relay 

    RMI, enabling call tracing 

    ServerObjectCacher class (example) 

    TCP/IP 

    web servers

        performance problems caused by  2nd 

    Web Services, method execution time 

ServerSessionPool interface 

ServerSocket class 

    bind( ) 

ServerSocketChannel class

    accept( ) 

    open( ) 

Service Locator pattern in EJB design 

service providers, probing configuration and connection to 

ServletContext class

    caching 

    moving session data to HttpSession 

ServletOutputStream class 

servlets

    doGet( ) and doPost( ) methods, execution times 

    logging capabilities for web server layer 

    network improvements 

    tuning 

        body tags, use of 

        cache tags 

        case study (Ace Hardware SPECmine tool) 

        compression, using 

        efficient page creation and output 

        HttpSession 

        more performance tips 

        performance checklist 

        SingleThreadModel, avoiding use of 

session beans

    accessing entity beans from 

    nontransactional methods, declaring 

    stateless, speediness of 

Session Façade in EJB design 

sessions 

    distributing for higher scalability 
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    HttpSession vs. stateful session beans 

    optimizing use of HttpSession objects 

    screen navigation in reestablished connections 

    serialization of HttpSession objects 

    state information, in-memory replication of 

    storing data in HttpSession instead of ServletContext 

    terminating 

    timing out 

Set interface 

set*AssertionStatus( ) methods (Classloader) 

set-based processing in JDBC 

setEntityContext( ) 

setErr( ) (System) 

setLength( ) (StringBuffer) 

setMaxinactiveInterval( ) (HttpSession) 

setMesssageDrivenContext( ) 

setOut( ) (System) 

setSessionContext( ) 

setSize( ) (Vector) 

setTransactionIsolation( ) (Connection) 

shared resources 

    connection pools 

    DLLs, caching 

    focusing on in performance prediction 

    locking 

    memory 

        heap tuning and 

        I/O performance and 

    parallelism 

        data parallelism 

    persistent caches 

    testing in simulation or skeleton system 

    transactions 

short data type

    changing to ints in arithmetic operations 

    converting to strings 

short-circuit operators for loops 

signals, handling for operating systems 

simulations of applications 

    testing 

single point of failure, elimination in EJB application server 

SingleThreadModel interface 

singleton sorting objects 

size of collection classes 

size( ) (WeakHashMap) 

skeleton classes 

skeleton version of system, testing for performance 

Socket class 

    connect( ) 

    customizing for logging 

SocketChannel class  2nd 

sockets

    client, connecting with NIO package 

    client/server communications

        providing information on 
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        tracing 

    load balancing and 

    UDP 

SockInStreamLogger class (example) 

SockOutStreamLogger class (example) 

SockStreamLogger class (example) 

SoftReference objects, flushing 

Solaris, file copying tests with old and new I/O 

sort( )

    Arrays class  2nd  3rd 

        timings for 

    Collections class  2nd 

Sortable class

    compareTo( ) 

    compareToSortable( ) 

    order fields, accessing directly in quicksort 

SortableComparator class (example) 

sorting 

    casts, avoiding with standard sort algorithm and comparison method for a class 

    comparisons, optimizing in 

    database rows, resulting in excessive transfers 

    faster than O(nlogn) 

    framework for efficient 

    generic vs specific 

    internationalized strings 

    merge sort 

    performance checklist 

    quicksort 

spatial locality of access 

SPECmine tool (Ace Hardware), case study on optimization 

SpeedStart program 

SQL

    database execution of statements 

    eliminating unnecessary data transfers 

    limiting query returns 

    optimizing 

    performance checklist 

    query optimization in Pet Store application 

    Statement vs. PreparedStatement, when to use 

    statements combining multiple operations 

Stack class  2nd 

stack traces 

    exception overhead and 

    exceptions, using without 

    sampling with -Xrunhprof 

stacks

    recursion and 

    size per thread, setting 

    TCP/IP, performance of 

startup

    of applets 

    of caches 

    from disk sweet spots 

    overhead for processes 

    responsiveness of 
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    timings and 

    of VMs 

    with threaded class loading 

stateful beans

    converting to stateless 

    pooling 

    session beans

        HttpSession vs. 

        prompt removal of 

stateless beans

    converting stateful to 

    speediness of 

stateless objects, benefits of 

Statement classes, wrapping 

Statement interface 

    execute( ) 

    PreparedStatement vs. 

    when to use 

statements, assert statements vs. others 

static binding, methods 

static methods 

    avoiding creation of intermediate objects 

    synchronization of  2nd 

static pages, displaying quickly 

static URL generation 

static variables  2nd  3rd 

    class instance, storing in 

    enabling logging with 

statically defined database queries 

statistics  [See also profiling tools]

    analyzing from performance measurements 

    CPU utilization 

    object creation 

        garbage collection and 

stock quoting service (Web Services) 

stored procedures 

    performance checklist 

storing of a value into a variable 

strategy for performance tuning 

stream classes for socket logging 

streaming, for partial results 

streams

    appending objects to 

    object, I/O optimization and 

StreamTokenizer class  2nd 

    replacing for efficiency 

    word counter, char array vs. 

strength reduction 

StrictMath class 

String class

    charAt( ) 

    compareTo( ) 

    equals( ) 

    equalsIgnoreCase( ) 

    intern( )  2nd  3rd 
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    iterating directly on underlying char array 

    length( ) 

    matches( ) 

    replacing with your own version 

    substring( ) 

    toLowercase( ) 

    toUppercase( ) 

string literal referents 

StringBuffer class

    advantages of 

    appending ints 

    disadvantages of 

    using instead of concatenation (+) operator 

strings 

    C language 

    canonicalizing  2nd 

    char arrays vs. 

        line filter example 

        line filtering with regular expressions 

        word-counting example 

    comparisons and searches 

    compilation 

    compile-time vs. runtime resolution 

    concatenating  2nd  3rd  4th 

        at runtime 

    conversions to 

        bytes, shorts, chars and booleans 

        doubles 

        floats 

        ints 

        longs 

        objects 

    immutability of 

    internationalized, sorting 

    lists of, avoiding casts with 

    optimization of string-handling in Pet Shop code 

    partially matched, finding index for 

    performance checklist 

    performance effects of 

        advanatages 

        disadvantages 

    processing in I/O 

    replacing with enumerated constants 

    in servlet output, using efficiently 

    SQL statement execution 

    substring operation 

StringWriter class 

striping, disk 

stubs, replacing object instance variables with 

subexpressions, eliminating common 

substring( ) (String) 

subsystems, optimized for EJB application server 

super( ) 

swap files  2nd  3rd 

swap space, increasing 
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switches 

    array access, converting to 

    case statement reordering by optimizing compiler 

    contiguous sets of cases 

    converting to array access 

    non-contiguous values for cases 

    performance checklist 

    speedup for VMs using exception-driven loop termination 

    SwitchTest class (example) 

Symantec development environment, I/O operations 

synchronization

    ArrayList and Vector classes 

    atomic access and assignment 

        ordering 

    collection queries, avoiding in 

    desynchronization and synchronized wrappers 

    distributed caching with, EJB application server 

    increment( ) 

    lockable update method 

    multithreaded tests, timing 

    overhead of 

        serialized execution, avoiding 

    performance checklist for 

    servlet activities 

    threads 

        counter incrementation 

        monitors and 

    unnecessary, avoiding 

synchronized keyword  2nd  3rd 

System class

    arraycopy( ) 

    currentTimeMillis( )  2nd  3rd 

    gc( ) 

        disabling 

    setErr( ) 

    setOut( ) 

system level I/O 

System.out, replacing 

systems

    bottlenecks in load balancing example 

    limitations of 

    noting changes to 

    throughput, measuring in benchmarking 

http://lib.ommolketab.ir
http://lib.ommolketab.ir


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tail recursion 

task manager (Windows) 

task queue 

TCP/IP

    communication rate on congested networks 

    load balancing with 

    servers 

    stacks 

        network I/O and  2nd 

        tuneable parameters 

tcpdump (communication-monitoring tool) 

temporal locality of access 

temporary objects

    avoiding creation of

        appending objects to streams 

        char array vs. StreamTokenizer 

    avoiding in long to string conversion 

    reducing number of 

    temporary variables of primitive data types vs. 

temporary variables

    avoiding repeated casts with 

    frequently manipulated array elements, assigning to 

    local variables as 

    loops, speeding up with 

    primitive data types, using instead of object types 

terminating loops with exceptions 

    speedup for various VMs using 

termination tests for loops, avoiding method calls in 

ternary search trees 

    digital trie, using with 

    recursion, converting to iteration 

TernarySearchTree class 

    access and update times compared with HashMap 

    tuning 

TernarySearchTreeNode class 

test environment for performance, creating 

testing

    inacurrate results from 

    performance and tuning using results 

    simulation or skeleton system 

    with small differences in timings 

this( ) 

thread safety (SingleThreadModel) 

thread=y option (-Xrunhprof) 

threaded class loading 

ThreadedAccess class (example) 

ThreadLocal class 

threads 

    atomic access and assignment 

    deadlocked 
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    listing, utilities for 

    load balancing 

        classes for 

        example of 

        TCP/IP, using 

    locking 

    multithreaded tests, timing 

    object local to current thread 

    perceived performance and 

    performance checklist 

    pooling 

        EJB application server 

        startup overhead, reducing 

    problem-solving strategies 

    race conditions 

    runnable queue of 

    sleeping restlessly 

    stack size, setting 

    synchronization 

        monitors and 

        overhead of 

    user-interface and other 

throughput

    applications 

    disk 

    statistics on, analyzing 

    system, measuring in benchmarking 

tight loops 

time

    exceptions, cost of 

    measurements for benchmarks  2nd 

    measurements for distributed applications 

time-to-live values for SoftReferences 

timeouts

    setting for client-initiated transactions in EJB 

    specifying 

timestamps 

timing out sessions 

timings

    caching, effects on 

    profilers and 

tmpfs 

toLowercase( ) (String) 

top utility 

toString( )

    Boolean class 

    Integer class 

    Long class 

    Object class 

    StringBuffer class 

    Vector class 

totalMemory( ) (Runtime) 

toUpperCase( ) (String)  2nd 

trace statements 

traceMethodCalls( ) (Runtime) 
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training users 

transaction logs 

transactional access to databases 

transactions

    analyzing in application development 

    design-stage decisions about 

    distributed, management by EJB application server 

    EJB

        performance checklist 

        tuning 

    JDBC, optimizing in 

        auto-commit mode 

        non-ACID transaction problems 

        performance checklist 

        savepoints and distributed transactions 

        transaction levels 

        user-controlled transactions 

    JMS messages, transactional and nontransactional 

    optimistic, support by EJB application server 

    optimizing 

    rates of, analyzing statistics on 

transfer layers, measuring performance of 

transfer rates, disks  2nd 

transferFrom( ) (FileChannel) 

transferring data

    minimizing in JDBC operations 

    Page-by-Page Iterator pattern in EJB 

    reducing costs with data duplication 

    reducing network transfers with Value Objects in EJB 

    ValueListHandler pattern in EJB 

transferTo( ) (FileChannel) 

transient fields, avoiding serialization of 

transient modifier 

translations between programming languages 

tree structures (search trees) 

TreeMap class  2nd 

TreeSet class 

trie structures 

try-catch blocks 

    with exceptions, cost of 

    without exceptions, cost of 

tuning

    distributed applications 

    EJB application servers 

    EJBs

        additional suggestions for 

        Elite.com case study 

        Pet Store case study 

tuning performance  [See also related entries under individual topics]

    avoiding unneeded 

    benchmarks, setting 

    measurements 

    multiuser applications 

    strategy for  2nd 

        identifying bottlenecks 
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    systematically 

    user expectations for performance 

tutorial application (Pet Store) 
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UDP

    network bottlenecks and 

    resending packets on congested networks 

    sockets 

unicast messaging 

UnicastRemoteObject class 

Unicode 

Unix

    communication-monitoring tools 

    CPU monitoring 

    disk usage  2nd 

    file descriptors, monitoring availability of 

    forking processes on 

    generating stack dumps 

    measuring network bandwidth 

    memory-mapped filesystem 

    netstart utility 

    paging, monitoring 

    priority of processes 

    process and thread-listing utiilities 

    profiling object creation 

unmarshalling objects 

unrolling loops  2nd 

unSetEntityContext( ) 

updates

    arrays of primitive types vs. object arrays 

    costs of different types 

    database

        batching in JDBC 

        eliminating unnecessary (example) 

    optimizing objects for 

URLClassLoader class  2nd 

URLs

    Java performance tuning resources 

    load balancing based on 

useBean action 

User Datagram Protocol  [See UDP]

user interface usability 

user-controlled transactions 

user-interface thread and others 

users

    expectations for performance 

    multiple, benchmarking and 

    number simultaneously using application 

    performance perception of

        latency and 

    statistics on, analyzing 

    training 

utilization, CPU

    analyzing statistics on 
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    measuring 
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Value Object Assembler pattern in EJB design 

Value Objects in EJB design 

ValueListHandler pattern in EJB 

valueUnbound( ) (HttpSessionBinderListener) 

variables 

    array element access vs., cost of 

    casting repeatedly 

    class, static vs. instance 

    corrupt  2nd  3rd 

        unsynchronized classes and 

    default initialization values in Java 

    heap 

    local 

    multithreaded, atomic access and assignment 

    performance checklist 

    primitive types, replacing with ints 

    public instance variables, accessing 

    shared between threads, corruption of 

    static  2nd 

        enabling logging with 

        storing class instances in 

    volatile 

Vector class  2nd  3rd  [See also ArrayList class]

    appending to streams 

    generic capabilities of, performance and 

    implementation 

        with underlying String[ ] array 

    setSize( ) 

    synchronization 

    toString( ) 

    unsynchronized, synchronized wrapper vs. 

VectorPoolManager class (example) 

vectors

    handles to, memory reuse caused by 

    pool management and 

    for threads 

verbose option 

Verified Service Locator pattern in EJB design 

version management, hot-deploy and hot-undeploy applications for 

virtual memory 

VMs (virtual machines)  [See also -verbosegc option]

    -verbosegc option 

        Sun JDK 1.2 output with 

    -Xloggc:<file> option 

    application distribution over 

    client/server modes, calculation of free space in heap 

    EJBs located within, local communications among 

    eliminating disabled assertion statements 

    faster 

        other optimizations 
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        startup time 

        variations in speed 

    generating helpful information for 

    heap size  [See also heap, tuning]

        tuning for EJB application servers 

    HotSpot, speeding up code 

    multiple, using for load balancing 

    optimizations for number comparisons 

    RandomAccess, compatibility with 

    runtime initializations 

    speedup using exception-driven loop termination 

    synchronized methods, overhead of 

vmstat utility 

volatile keyword 
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wait( ) (Object) 

weak references, canonicalized objects and 

WeakHashMap class 

WeakReference class 

    object canonicalization and 

web browsers

    perceived performance and 

    profiling data transfers 

web pages  [See page display pages]

web servers

    downloading many pages from 

    overloading by downloading many pages at high access rate 

    performance problems with  2nd 

Web Services 

    asynchronous processing 

    CORBA vs. 

    granularity of methods 

    high-performance 

    load balancing 

    measuring performance  2nd 

        DNS lookup time 

        marshalling time 

        network communication time 

        round-trip overhead, inferring 

        round-trip time 

        server-side method execution 

    performance advantages and disadvantages 

Web Services Description Language (WSDL) 

Windows

    CPU monitoring 

    file copying tests 

    fork procedures on 

    measuring network bandwidth 

    memory-mapped filesystem 

    monitoring open files and sockets 

    netstart utility 

    ObjectCreationMonitoring class, executing 

    paging, monitoring 

    profiling object creation 

    stack dumps, generating 

    task manager and performance monitor utilities 

    TCP/IP stacks 

words, counting (example) 

wrappers

    ConnectionWrapper class 

    JDBC 

        caching with 

    Proxy and Decorator patterns, wrapping objects with 

    synchronized  2nd 

write( )

http://lib.ommolketab.ir
http://lib.ommolketab.ir


    GatheringByteChannel 

    OutputStream class 

    SocketChannel class 

writeExternal (Externalizable) 

writeObject( ) (Serializable)  2nd 

Writer class 

    appendTo( ) 

WSDL (Web Services Description Language) 
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XAConnection interface 

XADataSource interface 

Xrun option, Xrunhprof option and 
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ZIP files (uncompressed), for class delivery 
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