downloaded from: lib.ommolkefab.ir

OTRE"_LY' Rasmus Lerdorf & Kevin Talroe

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Programming PHP

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Programming PHP

Rasmus Lerdorf and Kevin Tatroe
with Bob Kaehms and Ric McGredy

O'REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Programming PHP
by Rasmus Lerdorf and Kevin Tatroe
with Bob Kaehms and Ric McGredy

Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Nathan Torkington and Paula Ferguson
Production Editor: Rachel Wheeler

Cover Designer: Ellie Volckhausen

Interior Designer: Melanie Wang

Printing History:
March 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. The association between the image of a cuckoo and PHP
is a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-610-2
(M]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

About the Authors

Rasmus Lerdorf was born in Godhavn/Qeqertarsuaq on Disco Island, off the coast
of Greenland, in 1968. He has been dabbling with Unix-based solutions since 1985.
He is known for having gotten the PHP project off the ground in 1995, and he can be
blamed for the ANSI-92 SQL-defying LIMIT clause in mSQL 1.x, which has now, at
least conceptually, crept into both MySQL and PostgreSQL.

Rasmus tends to deny being a programmer, preferring to be seen as a techie who is
adept at solving problems. If the solution requires a bit of coding and he can’t trick
somebody else into writing the code, he will reluctantly give in and write it himself.
He currently lives near San Francisco with his wife Christine.

Kevin Tatroe has been a Macintosh and Unix programmer for 10 years. Being lazy,
he’s attracted to languages and frameworks that do much of the work for you, such
as the AppleScript, Perl, and PHP languages and the WebObjects and Cocoa
programming environments.

Kevin, his wife Jenn, his son Hadden, and their two cats live on the edge of the rural
plains of Colorado, just far away enough from the mountains to avoid the worst
snowfall, and just close enough to avoid tornadoes. The house is filled with LEGO
creations, action figures, and numerous other toys.

Bob Kaehms has spent most of his professional career working with computers.
After a prolonged youth that he stretched into his late 20s as a professional scuba
diver, ski patroller, and lifeguard, he went to work as a scientific programmer for
Lockheed Missiles and Space Co. Frustrations with the lack of information-sharing
within the defense industry led him first to groupware and then to the Web.

Bob helped found the Internet Archive, where as Director of Computing he was
responsible for the first full backup of all publicly available data on the Internet. Bob
also served as Editor in Chief of Web Techniques Magazine, the leading technical
magazine for web developers. He is presently CTO at Media Net Link, Inc. Bob has a
degree in applied mathematics, and he uses that training to study the chaos that
exists around his house.

Ric McGredy founded Media Net Link, Inc. in 1994, after long stints at Bank of
America, Apple Computer, and Sun Microsystems, to pursue excellence in customer-
focused web-service construction and deployment. While he has been known to
crank out a line or two of code, Ric prides himself first and foremost as being busi-
ness-focused and on integrating technology into the business enterprise with high
reliability at a reasonable cost.

Ric received a BA in French from Ohio Wesleyan University and has been involved
in the accounting and information-technology disciplines for over 25 years. Ric lives
near San Francisco with his wife Sally and five children.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Programming PHP is a cuckoo (Cuculus canorus).
Cuckoos epitomize minimal effort. The common cuckoo doesn’t build a nest—
instead, the female cuckoo finds another bird’s nest that already contains eggs and
lays an egg in it (a process she may repeat up to 25 times, leaving 1 egg per nest). The
nest mother rarely notices the addition, and usually incubates the egg and then feeds
the hatchling as if it were her own. Why don’t nest mothers notice that the cuckoo’s
eggs are different from their own? Recent research suggests that it’s because the eggs
look the same in the ultraviolet spectrum, which birds can see.

When they hatch, the baby cuckoos push all the other eggs out of the nest. If the
other eggs hatched first, the babies are pushed out too. The host parents often
continue to feed the cuckoo even after it grows to be much larger than they are, and
cuckoo chicks sometimes use their call to lure other birds to feed them as well. Inter-
estingly, only Old World (European) cuckoos colonize other nests—the New World
(American) cuckoos build their own (untidy) nests. Like many Americans, these
cuckoos migrate to the tropics for winter.

Cuckoos have a long and glorious history in literature and the arts. The Bible
mentions them, as do Pliny and Aristotle. Beethoven used the cuckoo’s distinctive
call in his Pastoral Symphony. And here’s a bit of etymology for you: the word
“cuckold” (a husband whose wife is cheating on him) comes from “cuckoo.”
Presumably, the practice of laying one’s eggs in another’s nest seemed an appro-
priate metaphor.

Rachel Wheeler was the production editor and copyeditor for Programming PHP.
Sue Willing and Jeffrey Holcomb provided quality control, and Sue Willing provided
production assistance. Ellen Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David
Futato. Neil Walls converted the files from Microsoft Word to FrameMaker 5.5.6
using tools created by Mike Sierra. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop
6. This colophon was written by Nathan Torkington and Rachel Wheeler.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table of Contents

Preface ix
1. IntroductiontoPHPl 1
What Does PHP Do? 1

A Brief History of PHP 2
Installing PHP 7

A Walk Through PHP 9

2. LanguageBasics 17
Lexical Structure 17
Data Types 23
Variables 30
Expressions and Operators 34
Flow-Control Statements 46
Including Code 54
Embedding PHP in Web Pages 56

3. Functions 61
Calling a Function 61
Defining a Function 62
Variable Scope 64
Function Parameters 66
Return Values 69
Variable Functions 70
Anonymous Functions 71

4, SHNGS 72
Quoting String Constants 72
Printing Strings 75

v

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Accessing Individual Characters 79
Cleaning Strings 80
Encoding and Escaping 81
Comparing Strings 86
Manipulating and Searching Strings 89
Regular Expressions 95
POSIX-Style Regular Expressions 99
Perl-Compatible Regular Expressions 103
S AITAYS 116
Indexed Versus Associative Arrays 116
Identifying Elements of an Array 117
Storing Data in Arrays 117
Multidimensional Arrays 120
Extracting Multiple Values 120
Converting Between Arrays and Variables 124
Traversing Arrays 125
Sorting 130
Acting on Entire Arrays 135
Using Arrays 136
6. Objects 140
Terminology 141
Creating an Object 141
Accessing Properties and Methods 142
Declaring a Class 143
Introspection 147
Serialization 153
7. WebTechniquesl 158
HTTP Basics 158
Variables 159
Server Information 160
Processing Forms 162
Setting Response Headers 175
Maintaining State 178
SSL 188
vi | Tableof Contents

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

8. Databases 189
Using PHP to Access a Database 189
Relational Databases and SQL 190
PEAR DB Basics 192
Advanced Database Techniques 197
Sample Application 202

9. Graphics 214
Embedding an Image in a Page 214
The GD Extension 215
Basic Graphics Concepts 216
Creating and Drawing Images 217
Images with Text 220
Dynamically Generated Buttons 223
Scaling Images 227
Color Handling 228

10. PDF 233
PDF Extensions 233
Documents and Pages 233
Text 237
Images and Graphics 246
Navigation 255
Other PDF Features 259

11, XML 262
Lightning Guide to XML 262
Generating XML 264
Parsing XML 265
Transforming XML with XSLT 277
Web Services 280

12, Sequrity ... 285
Global Variables and Form Data 285
Filenames 287
File Uploads 289
File Permissions 291

Table of Contents | vii

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Concealing PHP Libraries 293
PHP Code 294
Shell Commands 295
Security Redux 296
13. ApplicationTechniques 297
Code Libraries 297
Templating Systems 298
Handling Output 301
Error Handling 303
Performance Tuning 308
14. ExtendingPHP 317
Architectural Overview 317
What You’ll Need 318
Building Your First Extensions 319
The config.m4 File 327
Memory Management 329
The pval/zval Data Type 331
Parameter Handling 335
Returning Values 338
References 342
Global Variables 343
Creating Variables 345
Extension INI Entries 347
Resources 349
Where to Go from Here 350
15. PHPonWindows, 351
Installing and Configuring PHP on Windows 351
Writing Portable Code for Windows and Unix 355
Interfacing with COM 359
Interacting with ODBC Data Sources 367
A. FunctionReferencel 375
B. ExtensionOverview 457
Index ... 471
vii | Table of Contents

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Preface

Now, more than ever, the Web is a major vehicle for corporate and personal commu-
nications. Web sites carry photo albums, shopping carts, and product lists. Many of
those web sites are driven by PHP, an open source scripting language primarily
designed for generating HTML content.

Since its inception in 1994, PHP has swept over the Web. The millions of web sites
powered by PHP are testament to its popularity and ease of use. It lies in the sweet
spot between Perl/CGI, Active Server Pages (ASP), and HTML. Everyday people can
learn PHP and can build powerful dynamic web sites with it.

The core PHP language features powerful string- and array-handling facilities, as well
as support for object-oriented programming. With the use of standard and optional
extension modules, a PHP application can interact with a database such as MySQL
or Oracle, draw graphs, create PDF files, and parse XML files. You can write your
own PHP extension modules in C—for example, to provide a PHP interface to the
functions in an existing code library. You can even run PHP on Windows, which lets
you control other Windows applications such as Word and Excel with COM, or
interact with databases using ODBC.

This book is a guide to the PHP language. When you finish this book, you will know
how the PHP language works, how to use the many powerful extensions that come
standard with PHP, and how to design and build your own PHP web applications.

Audience for This Book

PHP is a melting pot of cultures. Web designers appreciate its accessibility and con-
venience, while programmers appreciate its flexibility and speed. Both cultures need
a clear and accurate reference to the language.

If you're a programmer, this book is for you. We show the big picture of the PHP
language, then discuss the details without wasting your time. The many examples

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

clarify the explanations, and the practical programming advice and many style tips
will help you become not just a PHP programmer, but a good PHP programmer.

If you’re a web designer, you’ll appreciate the clear and useful guides to specific tech-
nologies, such as XML, sessions, and graphics. And you’ll be able to quickly get the
information you need from the language chapters, which explain basic programming
concepts in simple terms.

This book does assume a working knowledge of HTML. If you don’t know HTML,
you should gain some experience with simple web pages before you try to tackle
PHP. For more information on HTML, we recommend HTML & XHTML: The
Definitive Guide, by Chuck Musciano and Bill Kennedy (O’Reilly).

Structure of This Book

We've arranged the material in this book so that you can read it from start to finish,
or jump around to hit just the topics that interest you. The book is divided into 15
chapters and 2 appendixes, as follows.

Chapter 1, Introduction to PHP, talks about the history of PHP and gives a lightning-
fast overview of what is possible with PHP programs.

Chapter 2, Language Basics, is a concise guide to PHP program elements such as
identifiers, data types, operators, and flow-control statements.

Chapter 3, Functions, discusses user-defined functions, including scoping, variable-
length parameter lists, and variable and anonymous functions.

Chapter 4, Strings, covers the functions you’ll use when building, dissecting, search-
ing, and modifying strings.

Chapter 5, Arrays, details the notation and functions for constructing, processing,
and sorting arrays.

Chapter 6, Objects, covers PHP’s object-oriented features. In this chapter, you’ll
learn about classes, objects, inheritance, and introspection.

Chapter 7, Web Techniques, discusses web basics such as form parameters and vali-
dation, cookies, and sessions.

Chapter 8, Databases, discusses PHP’s modules and functions for working with data-
bases, using the PEAR DB library and the MySQL database for examples.

Chapter 9, Graphics, shows how to create and modify image files in a variety of for-
mats from PHP.

Chapter 10, PDF, explains how to create PDF files from a PHP application.

Chapter 11, XML, introduces PHP’s extensions for generating and parsing XML
data, and includes a section on the web services protocol XML-RPC.

x | Preface

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 12, Security, provides valuable advice and guidance for programmers in cre-
ating secure scripts. You'll learn best-practices programming techniques here that
will help you avoid mistakes that can lead to disaster.

Chapter 13, Application Techniques, talks about the advanced techniques that most
PHP programmers eventually want to use, including error handling and perfor-
mance tuning.

Chapter 14, Extending PHP, is an advanced chapter that presents easy-to-follow
instructions for building a PHP extension in C.

Chapter 15, PHP on Windows, discusses the tricks and traps of the Windows port of
PHP. It also discusses the features unique to Windows, such as COM and ODBC.

Appendix A, Function Reference, is a handy quick reference to all the core functions
in PHP.

Appendix B, Extension Overview, describes the standard extensions that ship with
PHP.

Conventions Used in This Book

The following typographic conventions are used in this book:

Italic
Used for file and directory names, email addresses, and URLs, as well as for new
terms where they are defined.

Constant Width
Used for code listings and for keywords, variables, functions, command options,
parameters, class names, and HTML tags where they appear in the text.

Constant Width Bold
Used to mark lines of output in code listings.

Constant Width Italic
Used as a general placeholder to indicate items that should be replaced by actual
values in your own programs.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

Preface | xi

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/progphp/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments

All of the authors would like to thank the technical reviewers for their helpful com-
ments on the content of this book: Shane Caraveo, Andi Gutmans, and Stig Bakken.
We’d also like to thank Andi Gutmans, Zeev Suraski, Stig Bakken, Shane Caraveo,
and Randy Jay Yarger for their contributions to early drafts of material for this book.

Rasmus Lerdorf

I would like to acknowledge the large and wonderfully boisterous PHP community,
without which there would be no PHP today.

Kevin Tatroe

I'll err on the side of caution and thank Nat Torkington for dragging me into this
project. (“You don’t want to write a book, it’s a miserable experience... Hey, want to
write a book?”) While I was writing, the denizens of Nerdsholm and 3WA were
always quick with help and/or snarky commentary, both of which contributed to the
book’s completion. Without twice-monthly game sessions to keep me sane, I would
surely have given up well before the last chapter was delivered: thank you to my fel-
low players, Jenn, Keith, Joe, Keli, Andy, Brad, Pete, and Jim.

Finally, and most importantly, a huge debt of gratitude is owed to Jennifer and Had-
den, both of whom put up with more neglect over the course of the past year than
any good people deserve.

Bob Kaehms

Thanks to my wife Janet and the kids (Jenny, Megan, and Bobby), to Alan Brown for
helping me understand the issues in integrating COM with PHP, and to the staff at
Media Net Link for allowing me to add this project to my ever-expanding list of
extracurricular activities.

xi | Preface

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Ric McGredy

Thanks to my family for putting up with my absence, to Nat for inheriting the
project while in the midst of family expansion, and to my colleagues at Media Net

Link for all their help and support.

Preface | xiii

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CHAPTER 2
Language Basics

This chapter provides a whirlwind tour of the core PHP language, covering such
basic topics as data types, variables, operators, and flow control statements. PHP is
strongly influenced by other programming languages, such as Perl and C, so if you’ve
had experience with those languages, PHP should be easy to pick up. If PHP is one of
your first programming languages, don’t panic. We start with the basic units of a
PHP program and build up your knowledge from there.

Lexical Structure

The lexical structure of a programming language is the set of basic rules that governs
how you write programs in that language. It is the lowest-level syntax of the lan-
guage and specifies such things as what variable names look like, what characters are
used for comments, and how program statements are separated from each other.

Case Sensitivity

The names of user-defined classes and functions, as well as built-in constructs and
keywords such as echo, while, class, etc., are case-insensitive. Thus, these three lines
are equivalent:

echo("hello, world");

ECHO("hello, world");

EcHo("hello, world");
Variables, on the other hand, are case-sensitive. That is, $name, $NAME, and $NaME are
three different variables.

Statements and Semicolons

A statement is a collection of PHP code that does something. It can be as simple as
a variable assignment or as complicated as a loop with multiple exit points. Here is

17

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

a small sample of PHP statements, including function calls, assignment, and an if
test:

echo "Hello, world";

myfunc(42, "0'Reilly");

$a = 1;

$name = "Elphaba";

$b = $a / 25.0;

if ($a == $b) { echo "Rhyme? And Reason?"; }
PHP uses semicolons to separate simple statements. A compound statement that
uses curly braces to mark a block of code, such as a conditional test or loop, does not
need a semicolon after a closing brace. Unlike in other languages, in PHP the semico-
lon before the closing brace is not optional:

if ($needed) {

echo "We must have it!"; // semicolon required here
} // no semicolon required here

The semicolon is optional before a closing PHP tag;:

<?php

if ($a == $b) { echo "Rhyme? And Reason?"; }

echo "Hello, world" // no semicolon required before closing tag
>

It’s good programming practice to include optional semicolons, as they make it eas-
ier to add code later.

Whitespace and Line Breaks

In general, whitespace doesn’t matter in a PHP program. You can spread a state-
ment across any number of lines, or lump a bunch of statements together on a single
line. For example, this statement:

raise prices($inventory, $inflation, $cost of living, $greed);
could just as well be written with more whitespace:

raise prices (

$inventory ,
$inflation ,
$cost_of living ,
$greed

) s
or with less whitespace:
raise prices($inventory,$inflation,$cost of living,$greed);

You can take advantage of this flexible formatting to make your code more read-
able (by lining up assignments, indenting, etc.). Some lazy programmers take advan-
tage of this free-form formatting and create completely unreadable code—this isn’t
recommended.

18 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Comments

Comments give information to people who read your code, but they are ignored by
PHP. Even if you think you’re the only person who will ever read your code, it’s a
good idea to include comments in your code—in retrospect, code you wrote months
ago can easily look as though a stranger wrote it.

Good practice is to make your comments sparse enough not to get in the way of the
code itself and plentiful enough that you can use the comments to tell what’s hap-
pening. Don’t comment obvious things, lest you bury the comments that describe
tricky things. For example, this is worthless:

$x = 17; // store 17 into the variable $x
whereas this may well help whoever will maintain your code:

// convert &#nnn; entities into characters

$text = preg replace('/8#([0-9])+);/e", "chr('\\1")", $text);
PHP provides several ways to include comments within your code, all of which are bor-
rowed from existing languages such as C, C++, and the Unix shell. In general, use C-
style comments to comment out code, and C++-style comments to comment on code.

Shell-style comments

When PHP encounters a hash mark (#) within the code, everything from the hash mark
to the end of the line or the end of the section of PHP code (whichever comes first) is
considered a comment. This method of commenting is found in Unix shell scripting
languages and is useful for annotating single lines of code or making short notes.

Because the hash mark is visible on the page, shell-style comments are sometimes
used to mark off blocks of code:
HHHHHHHE
Cookie functions
B
Sometimes they’re used before a line of code to identify what that code does, in
which case they’re usually indented to the same level as the code:
if ($double check) {
create an HTML form requesting that the user confirm the action
echo confirmation form();

}
Short comments on a single line of code are often put on the same line as the code:
$value = $p * exp($r * $t); # calculate compounded interest

When you’re tightly mixing HTML and PHP code, it can be useful to have the clos-
ing PHP tag terminate the comment:

<?php $d = 4 # Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

Lexical Structure | 19

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

(++ comments

When PHP encounters two slash characters (//) within the code, everything from the
slashes to the end of the line or the end of the section of code, whichever comes first,
is considered a comment. This method of commenting is derived from C++. The
result is the same as the shell comment style.

Here are the shell-style comment examples, rewritten to use C++ comments:

111111111111111111111117
// Cookie functions
[11111111111111111111117

if ($double check) {
// create an HTML form requesting that the user confirm the action
echo confirmation form();

}
$value = $p * exp($r * $t); // calculate compounded interest

<?php $d = 4 // Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

C comments

While shell- and C++-style comments are useful for annotating code or making short
notes, longer comments require a different style. As such, PHP supports block com-
ments, whose syntax comes from the C programming language. When PHP encoun-
ters a slash followed by an asterisk (/*), everything after that until it encounters an
asterisk followed by a slash (*/) is considered a comment. This kind of comment,
unlike those shown earlier, can span multiple lines.

Here’s an example of a C-style multiline comment:

/* In this section, we take a bunch of variables and
assign numbers to them. There is no real reason to
do this, we're just having fun.

Because C-style comments have specific start and end markers, you can tightly inte-
grate them with code. This tends to make your code harder to read, though, so it is
frowned upon:

/* These comments can be mixed with code too,
see? */ $e = 5; /* This works just fine. */

C-style comments, unlike the other types, continue past end markers. For example:

<?php

$1 = 12;

$m = 13;

/* A comment begins here

>

<p>Some stuff you want to be HTML.</p>

20 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<?=%n = 14; >

*/
echo("1=$1 m=$m n=$n\n");
>
<p>Now this is regular HTML...</p>
1=12 m=13 n=

<p>Now this is regular HTML...</p>
You can indent, or not indent, comments as you like:

/* There are no
special indenting or spacing
rules that have to be followed, either.

*/

C-style comments can be useful for disabling sections of code. In the following exam-
ple, we’ve disabled the second and third statements by including them in a block
comment. To enable the code, all we have to do is remove the comment markers:

$f = 6;
/* $g =7; # This is a different style of comment
$h = 8;

*/

However, you have to be careful not to attempt to nest block comments:

$1i=09;

/* $j = 10; /* This is a comment */
$k = 11;

Here is some comment text.

*/

In this case, PHP tries (and fails) to execute the (non-)statement Here is some comment
text and returns an error.

Literals

A literal is a data value that appears directly in a program. The following are all liter-
als in PHP:

2001

OXxFE

1.4142

"Hello World"
Hit

true

null

Identifiers

An identifier is simply a name. In PHP, identifiers are used to name variables, func-
tions, constants, and classes. The first character of an identifier must be either an

Lexical Structure | 21

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ASCII letter (uppercase or lowercase), the underscore character (), or any of the
characters between ASCII 0x7F and ASCII OxFF. After the initial character, these
characters and the digits 0-9 are valid.

Variable names

Variable names always begin with a dollar sign ($) and are case-sensitive. Here are
some valid variable names:

$bill
$head_count
$MaximumForce
$I_HEART_PHP
$_underscore
$ int

Here are some illegal variable names:

$not valid
$|
$3wa

These variables are all different:

$hot_stuff S$Hot stuff $hot Stuff $HOT STUFF

Function names

Function names are not case-sensitive (functions are discussed in more detail in
Chapter 3). Here are some valid function names:

tally

list_all users
deleteTclFiles
LOWERCASE_IS FOR_WIMPS
_hide

These function names refer to the same function:

howdy HoWdY HOWDY HOWdy howdy

Class names

Class names follow the standard rules for PHP identifiers and are not case-sensitive.
Here are some valid class names:

Person
account

The class name stdClass is reserved.

Constants

A constant is an identifier for a simple value; only scalar values—boolean, integer,
double, and string—can be constants. Once set, the value of a constant cannot

22 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

change. Constants are referred to by their identifiers and are set using the define()
function:

define('PUBLISHER', "0'Reilly & Associates");
echo PUBLISHER;

Keywords

A keyword is a word reserved by the language for its core functionality—you cannot
give a variable, function, class, or constant the same name as a keyword. Table 2-1
lists the keywords in PHP, which are case-insensitive.

Table 2-1. PHP core language keywords

and $argc $argv as

break case cfunction class
continue declare default die

do E_ALL echo E_ERROR

else elseif empty enddeclare
endfor endforeach endif endswitch
E_PARSE eval E_WARNING exit

extends FALSE for foreach
function $HTTP_COOKTE_VARS $HTTP_ENV_VARS $HTTP_GET VARS
$HTTP_POST FILES $HTTP_POST VARS $HTTP_SERVER_VARS if

include include once global list

new not NULL old function
or parent PHP_0S $PHP_SELF
PHP_VERSION print require require once
return static stdClass switch

$this TRUE var virtual
while X0r _ FILE _ LINE
__sleep __wakeup $ COOKIE $ ENV
$_FILES $_GET $_POST $_SERVER

In addition, you cannot use an identifier that is the same as a built-in PHP function.
For a complete list of these, see Appendix A.

Data Types

PHP provides eight types of values, or data types. Four are scalar (single-value) types:
integers, floating-point numbers, strings, and booleans. Two are compound (collec-
tion) types: arrays and objects. The remaining two are special types: resource and
NULL. Numbers, booleans, resources, and NULL are discussed in full here, while
strings, arrays, and objects are big enough topics that they get their own chapters
(Chapters 4, 5, and 6).

DataTypes | 23

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Integers

Integers are whole numbers, like 1, 12, and 256. The range of acceptable values varies
according to the details of your platform but typically extends from —2,147,483,648 to
+2,147,483,647. Specifically, the range is equivalent to the range of the long data type
of your C compiler. Unfortunately, the C standard doesn’t specify what range that
long type should have, so on some systems you might see a different integer range.

Integer literals can be written in decimal, octal, or hexadecimal. Decimal values are
represented by a sequence of digits, without leading zeros. The sequence may begin
with a plus (+) or minus (-) sign. If there is no sign, positive is assumed. Examples of
decimal integers include the following:

1998

-641

+33
Octal numbers consist of a leading 0 and a sequence of digits from 0 to 7. Like deci-
mal numbers, octal numbers can be prefixed with a plus or minus. Here are some
example octal values and their equivalent decimal values:

0755 // decimal 493

+010 // decimal 8
Hexadecimal values begin with 0x, followed by a sequence of digits (0-9) or letters
(A—F). The letters can be upper- or lowercase but are usually written in capitals. Like
decimal and octal values, you can include a sign in hexadecimal numbers:

OxFF // decimal 255

0x10 // decimal 16

-0xDAD1 // decimal -56017
If you try to store a too-large integer in a variable, it will automatically be turned into
a floating-point number.

Use the is_int() function (or its is_integer(') alias) to test whether a value is an
integer:
if (is_int($x)) {

// $x is an integer

}

Floating-Point Numbers

Floating-point numbers (often referred to as real numbers) represent numeric values
with decimal digits. Like integers, their limits depend on your machine’s details.
PHP floating-point numbers are equivalent to the range of the double data type of
your C compiler. Usually, this allows numbers between 1.7E-308 and 1.7E+308
with 15 digits of accuracy. If you need more accuracy or a wider range of integer val-
ues, you can use the BC or GMP extensions. See Appendix B for an overview of the
BC and GMP extensions.

24 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PHP recognizes floating-point numbers written in two different formats. There’s the
one we all use every day:
3.14

0.017
-7.1

but PHP also recognizes numbers in scientific notation:

0.314E1 // 0.314*101, or 3.14

17.0E-3 // 17.0%10°3, or 0.017
Floating-point values are only approximate representations of numbers. For exam-
ple, on many systems 3.5 is actually represented as 3.4999999999. This means you
must take care to avoid writing code that assumes floating-point numbers are repre-
sented completely accurately, such as directly comparing two floating-point values
using ==. The normal approach is to compare to several decimal places:

if (int($a * 1000) == int($b * 1000)) {

// numbers equal to three decimal places

Use the is_float() function (or its is_real() alias) to test whether a value is a float-
ing point number:

if (is_float($x)) {
// $x is a floating-point number
}

Strings

Because strings are so common in web applications, PHP includes core-level support
for creating and manipulating strings. A string is a sequence of characters of arbi-
trary length. String literals are delimited by either single or double quotes:

'big dog'

"fat hog"
Variables are expanded within double quotes, while within single quotes they are
not:

$name = "Guido";

echo "Hi, $name\n";

echo 'Hi, $name';

Hi, Guido

Hi, $name

Double quotes also support a variety of string escapes, as listed in Table 2-2.

Table 2-2. Escape sequences in double-quoted strings

Escape sequence Character represented
\" Double quotes
\n Newline

DataTypes | 25

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 2-2. Escape sequences in double-quoted strings (continued)

Escape sequence Character represented

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Left brace

\} Right brace

\[Left bracket

\] Right bracket

\0 through \777 ASCll character represented by octal value
\x0 through \xFF ASClI character represented by hex value

A single-quoted string only recognizes \\ to get a literal backslash and \' to get a lit-
eral single quote:

$dos_path = 'C:\\WINDOWS\\SYSTEM';
$publisher = 'Tim O\'Reilly’;
echo "$dos path $publisher\n";
C:\WINDOWS\SYSTEM Tim 0'Reilly

To test whether two strings are equal, use the == comparison operator:
if ($a == $b) { echo "a and b are equal" }
Use the is_string() function to test whether a value is a string:

if (is_string($x)) {
// $x is a string

}

PHP provides operators and functions to compare, disassemble, assemble, search,
replace, and trim strings, as well as a host of specialized string functions for working
with HTTP, HTML, and SQL encodings. Because there are so many string-manipula-
tion functions, we’ve devoted a whole chapter (Chapter 4) to covering all the details.

Booleans

A boolean value represents a “truth value”—it says whether something is true or not.
Like most programming languages, PHP defines some values as true and others as
false. Truth and falseness determine the outcome of conditional code such as:

if ($alive) { ... }
In PHP, the following values are false:
* The keyword false
* The integer 0
* The floating-point value 0.0

26 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

* The empty string ("") and the string "0"

* An array with zero elements

* An object with no values or functions

* The NULL value
Any value that is not false is true, including all resource values (which are described
later, in the “Resources” section).

PHP provides true and false keywords for clarity:

$x = 5; // $x has a true value
$x = true; // clearer way to write it
$y = ""; // $y has a false value
$y = false; // clearer way to write it

Use the is_bool() function to test whether a value is a boolean:

if (is_bool($x)) {
// $x is a boolean

}

Arrays

An array holds a group of values, which you can identify by position (a number, with
zero being the first position) or some identifying name (a string):

$person[0] = "Edison";
$person[1] = "Wankel";
$person[2] = "Crapper";

$creator['Light bulb'] = "Edison";
$creator['Rotary Engine'] = "Wankel";
$creator['Toilet'] = "Crapper";

The array() construct creates an array:

$person = array('Edison’, 'Wankel', 'Crapper');

$creator = array('Light bulb' => 'Edison’,
'Rotary Engine' => 'Wankel',
'Toilet' => 'Crapper');

There are several ways to loop across arrays, but the most common is a foreach loop:

foreach ($person as $name) {
echo "Hello, $name\n";

}

foreach ($creator as $invention => $inventor) {
echo "$inventor created the $invention\n";

}

Hello, Edison

Hello, Wankel

Hello, Crapper

Edison created the Light bulb

Wankel created the Rotary Engine

Crapper created the Toilet

DataTypes | 27

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You can sort the elements of an array with the various sort functions:

sort($person);
// $person is now array('Crapper', 'Edison', 'Wankel")

asort($creator);

// $creator is now array('Toilet' => 'Crapper’,
/! 'Light bulb’ => 'Edison’,
// 'Rotary Engine' => 'Wankel');

Use the is_array() function to test whether a value is an array:

if (is_array($x)) {
// $x is an array
}

There are functions for returning the number of items in the array, fetching every
value in the array, and much more. Arrays are described in Chapter 5.

Objects

PHP supports object-oriented programming (OOP). OOP promotes clean modular
design, simplifies debugging and maintenance, and assists with code reuse.

Classes are the unit of object-oriented design. A class is a definition of a structure
that contains properties (variables) and methods (functions). Classes are defined
with the class keyword:

class Person {

[N

var $name = '';

function name ($newname = NULL) {
if (! is_null($newname)) {
$this->name = $newname;
}
return $this->name;
}
}

Once a class is defined, any number of objects can be made from it with the new key-
word, and the properties and methods can be accessed with the -> construct:

$ed = new Person;

$ed->name('Edison');

printf("Hello, %s\n", $ed->name);

$tc = new Person;

$tc->name(' Crapper');

printf("Look out below %s\n", $tc->name);
Hello, Edison

Look out below Crapper

Use the is_object() function to test whether a value is an object:

if (is_object($x)) {
// $x is an object
}

28 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 6 describes classes and objects in much more detail, including inheritance,
encapsulation (or the lack thereof), and introspection.

Resources

Many modules provide several functions for dealing with the outside world. For
example, every database extension has at least a function to connect to the database,
a function to send a query to the database, and a function to close the connection to
the database. Because you can have multiple database connections open at once, the
connect function gives you something by which to identify that connection when you
call the query and close functions: a resource.

Resources are really integers under the surface. Their main benefit is that they’re gar-
bage collected when no longer in use. When the last reference to a resource value
goes away, the extension that created the resource is called to free any memory, close
any connection, etc. for that resource:

$res = database_connect(); // fictitious function

database_query($res);

$res = "boo"; // database connection automatically closed
The benefit of this automatic cleanup is best seen within functions, when the
resource is assigned to a local variable. When the function ends, the variable’s value
is reclaimed by PHP:

function search () {
$res = database connect();
$database query($res);

}

When there are no more references to the resource, it’s automatically shut down.

That said, most extensions provide a specific shutdown or close function, and it’s
considered good style to call that function explicitly when needed rather than to rely
on variable scoping to trigger resource cleanup.

Use the is_resource() function to test whether a value is a resource:

if (is_resource($x)) {
// $x is a resource

}

NULL

There’s only one value of the NULL data type. That value is available through the
case-insensitive keyword NULL. The NULL value represents a variable that has no value
(similar to Perl’s undef or Python’s None):

$aleph = "beta";

$aleph = null; // variable's value is gone
$aleph = Null; // same
$aleph = NULL; // same

DataTypes | 29

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Use the is null() function to test whether a value is NULL—for instance, to see
whether a variable has a value:
if (is_null($x)) {
// $x is NULL
}

Variables

Variables in PHP are identifiers prefixed with a dollar sign ($). For example:

$name

$Age

$_debugging

$MAXIMUM IMPACT
A variable may hold a value of any type. There is no compile- or runtime type check-
ing on variables. You can replace a variable’s value with another of a different type:

$what = "Fred";

$what = 35;

$what = array('Fred', '35', 'Wilma');
There is no explicit syntax for declaring variables in PHP. The first time the value of
a variable is set, the variable is created. In other words, setting a variable functions as
a declaration. For example, this is a valid complete PHP program:

$day = 60 * 60 * 24;

echo "There are $day seconds in a day.\n";

There are 86400 seconds in a day.
A variable whose value has not been set behaves like the NULL value:

if ($uninitialized variable === NULL) {
echo "Yes!";

}

Yes

Variable Variables

You can reference the value of a variable whose name is stored in another variable.
For example:

$foo = 'bar';
$$foo = 'baz’;

After the second statement executes, the variable $bar has the value "baz".

Variable References

In PHP, references are how you create variable aliases. To make $black an alias for
the variable $white, use:

$black =& $white;

30 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The old value of $black is lost. Instead, $black is now another name for the value
that is stored in $white:

$big long variable name = "PHP";

$short =& $big long variable name;

$big long variable name .= " rocks!";
print "\$short is $short\n";

print "Long is $big long variable name\n";
$short is PHP rocks!

Long is PHP rocks!

$short = "Programming $short";

print "\$short is $short\n";

print "Long is $big long variable name\n";
$short is Programming PHP rocks!

Long is Programming PHP rocks!

After the assignment, the two variables are alternate names for the same value.
Unsetting a variable that is aliased does not affect other names for that variable’s
value, though:

$white = "snow";

$black =& $white;

unset($white);

print $black;

Show
Functions can return values by reference (for example, to avoid copying large strings
or arrays, as discussed in Chapter 3):

function 8ret_ref() { // note the &

$var = "PHP";
return $var;

}
$v =& ret_ref(); // note the &
Variable Scope

The scope of a variable, which is controlled by the location of the variable’s declara-
tion, determines those parts of the program that can access it. There are four types of
variable scope in PHP: local, global, static, and function parameters.

Local scope

A variable declared in a function is local to that function. That is, it is visible only to
code in that function (including nested function definitions); it is not accessible out-
side the function. In addition, by default, variables defined outside a function (called
global variables) are not accessible inside the function. For example, here’s a func-
tion that updates a local variable instead of a global variable:

function update counter () {
$counter++;

}

Variables | 31

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$counter = 10;
update_counter();
echo $counter;

10

The $counter inside the function is local to that function, because we haven’t said
otherwise. The function increments its private $counter, whose value is thrown away
when the subroutine ends. The global $counter remains set at 10.

Only functions can provide local scope. Unlike in other languages, in PHP you can’t
create a variable whose scope is a loop, conditional branch, or other type of block.

Global scope

Variables declared outside a function are global. That is, they can be accessed from
any part of the program. However, by default, they are not available inside func-
tions. To allow a function to access a global variable, you can use the global key-
word inside the function to declare the variable within the function. Here’s how we
can rewrite the update counter() function to allow it to access the global $counter
variable:

function update counter () {
global $counter;
$counter++;

}

$counter = 10;

update_counter();

echo $counter;

11

A more cumbersome way to update the global variable is to use PHP’s $GLOBALS array
instead of accessing the variable directly:

function update counter () {
$GLOBALS[counter J++;
}

$counter = 10;
update_counter();
echo $counter;

11

Static variables

A static variable retains its value between calls to a function but is visible only within
that function. You declare a variable static with the static keyword. For example:

function update counter () {
static $counter = 0;
$counter++;
echo "Static counter is now $counter\n";

}

$counter = 10;

32 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

update_counter();

update_counter();

echo "Global counter is $counter\n";
Static counter is now 1

Static counter is now 2

Global counter is 10

Function parameters

As we’ll discuss in more detail in Chapter 3, a function definition can have named
parameters:

function greet ($name) {
echo "Hello, $name\n";

}
greet("Janet");

Hello, Janet
Function parameters are local, meaning that they are available only inside their func-
tions. In this case, $name is inaccessible from outside greet().

Garbage Collection

PHP uses reference counting and copy-on-write to manage memory. Copy-on-write
ensures that memory isn’t wasted when you copy values between variables, and ref-
erence counting ensures that memory is returned to the operating system when it is
no longer needed.

To understand memory management in PHP, you must first understand the idea of a
symbol table. There are two parts to a variable—its name (e.g., $name), and its value
(e.g., "Fred"). A symbol table is an array that maps variable names to the positions of
their values in memory.

When you copy a value from one variable to another, PHP doesn’t get more memory
for a copy of the value. Instead, it updates the symbol table to say “both of these
variables are names for the same chunk of memory.” So the following code doesn’t
actually create a new array:

$worker = array("Fred", 35, "Wilma");
$other = $worker; // array isn't copied

If you then modify either copy, PHP allocates the memory and makes the copy:
$worker[1] = 36; // array is copied, value changed

By delaying the allocation and copying, PHP saves time and memory in a lot of situa-
tions. This is copy-on-write.

Each value pointed to by a symbol table has a reference count, a number that repre-
sents the number of ways there are to get to that piece of memory. After the initial
assignment of the array to $worker and $worker to $other, the array pointed to by the

Variables | 33

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

symbol table entries for $worker and $other has a reference count of 2." In other
words, that memory can be reached two ways: through $worker or $other. But after
$worker[1] is changed, PHP creates a new array for $worker, and the reference count
of each of the arrays is only 1.

When a variable goes out of scope (as a function parameter or local variable does at
the end of a function), the reference count of its value is decreased by one. When a
variable is assigned a value in a different area of memory, the reference count of the
old value is decreased by one. When the reference count of a value reaches 0, its
memory is freed. This is reference counting.

Reference counting is the preferred way to manage memory. Keep variables local to
functions, pass in values that the functions need to work on, and let reference count-
ing take care of freeing memory when it’s no longer needed. If you do insist on try-
ing to get a little more information or control over freeing a variable’s value, use the
isset() and unset() functions.

To see if a variable has been set to something, even the empty string, use isset():

$s1 = isset($name); // $s1 is false
$name = "Fred";
$s2 = isset($name); // $s2 is true

Use unset () to remove a variable’s value:

$name = "Fred";
unset($name); // $name is NULL

Expressions and Operators

An expression is a bit of PHP that can be evaluated to produce a value. The simplest
expressions are literal values and variables. A literal value evaluates to itself, while a
variable evaluates to the value stored in the variable. More complex expressions can
be formed using simple expressions and operators.

An operator takes some values (the operands) and does something (for instance, adds
them together). Operators are written as punctuation symbols—for instance, the + and
- familiar to us from math. Some operators modify their operands, while most do not.

Table 2-3 summarizes the operators in PHP, many of which were borrowed from C
and Perl. The column labeled “P” gives the operator’s precedence; the operators are
listed in precedence order, from highest to lowest. The column labeled “A” gives the
operator’s associativity, which can be L (left-to-right), R (right-to-left), or N (non-
associative).

* It is actually 3 if you are looking at the reference count from the C API, but for the purposes of this explana-
tion and from a user-space perspective, it is easier to think of it as 2.

34 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 2-3. PHP operators

v O NN o0 WO

_ N W B

rr -T2 =E= ks n>™m ™™™ ™™= >

Operator
new

[

!

++
(int), (double), (string), (array), (object)
@

*

32

+=,-2,%=, /=, .=, %=,8=, |5, "=, V=, <<=, 00=
and
X0or

or

Operation

Create new object

Array subscript

Logical NOT

Bitwise NOT

Increment

Decrement

Cast

Inhibit errors
Multiplication

Division

Modulus

Addition

Subtraction

String concatenation
Bitwise shift left

Bitwise shift right

Less than, less than or equal
Greater than, greater than or equal
Value equality

Inequality

Type and value equality
Type and value inequality
Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR

Conditional operator
Assignment

Assignment with operation
Logical AND

Logical XOR

Logical OR

List separator

downloaded from: lib.ommolkefab.ir

Expressions and Operators

35

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Number of Operands

Most operators in PHP are binary operators; they combine two operands (or expres-
sions) into a single, more complex expression. PHP also supports a number of unary
operators, which convert a single expression into a more complex expression.
Finally, PHP supports a single ternary operator that combines three expressions into
a single expression.

Operator Precedence
The order in which operators in an expression are evaluated depends on their rela-
tive precedence. For example, you might write:

2+4%3
As you can see in Table 2-3, the addition and multiplication operators have different
precedence, with multiplication higher than addition. So the multiplication happens

before the addition, giving 2 + 12, or 14, as the answer. If the precedence of addition
and multiplication were reversed, 6 * 3, or 18, would be the answer.

To force a particular order, you can group operands with the appropriate operator in
parentheses. In our previous example, to get the value 18, you can use this expression:
(2+4) %3

It is possible to write all complex expressions (expressions containing more than a
single operator) simply by putting the operands and operators in the appropriate
order so that their relative precedence yields the answer you want. Most program-
mers, however, write the operators in the order that they feel makes the most sense
to programmers, and add parentheses to ensure it makes sense to PHP as well. Get-
ting precedence wrong leads to code like:

$X + 2/ $y >=4 2%z 1 $x << $z

This code is hard to read and is almost definitely not doing what the programmer
expected it to do.

One way many programmers deal with the complex precedence rules in program-
ming languages is to reduce precedence down to two rules:

* Multiplication and division have higher precedence than addition and subtraction.

* Use parentheses for anything else.

Operator Associativity

Associativity defines the order in which operators with the same order of precedence
are evaluated. For example, look at:

2/2%2

36 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The division and multiplication operators have the same precedence, but the result
of the expression depends on which operation we do first:

2/(2*2) // 0.5

(2/2)%2 /12
The division and multiplication operators are left-associative; this means that in
cases of ambiguity, the operators are evaluated from left to right. In this example, the
correct result is 2.

Implicit Casting

Many operators have expectations of their operands—for instance, binary math
operators typically require both operands to be of the same type. PHP’s variables can
store integers, floating-point numbers, strings, and more, and to keep as much of the
type details away from the programmer as possible, PHP converts values from one
type to another as necessary.

The conversion of a value from one type to another is called casting. This kind of
implicit casting is called type juggling in PHP. The rules for the type juggling done by
arithmetic operators are shown in Table 2-4.

Table 2-4. Implicit casting rules for binary arithmetic operations

Type of firstoperand Type of second operand Conversion performed

Integer Floating point The integer is converted to a floating-point number

Integer String The string is converted to a number; if the value after conversion is a
floating-point number, the integer is converted to a floating-point
number

Floating point String The string is converted to a floating-point number

Some other operators have different expectations of their operands, and thus have
different rules. For example, the string concatenation operator converts both oper-
ands to strings before concatenating them:

3.2.74 // gives the string 32.74

You can use a string anywhere PHP expects a number. The string is presumed to
start with an integer or floating-point number. If no number is found at the start of
the string, the numeric value of that string is 0. If the string contains a period (.) or
upper- or lowercase e, evaluating it numerically produces a floating-point number.
For example:

"9 Lives" - 1; // 8 (int)
"3.14 Pies" * 2; // 6.28 (float)
"9 Lives." - 1; // 8 (float)

"1E3 Points of Light" + 1; // 1001 (float)

Expressions and Operators | 37

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Arithmetic Operators

The arithmetic operators are operators you’ll recognize from everyday use. Most of
the arithmetic operators are binary; however, the arithmetic negation and arithmetic
assertion operators are unary. These operators require numeric values, and non-
numeric values are converted into numeric values by the rules described in the later
section “Casting Operators.” The arithmetic operators are:

Addition (+)
The result of the addition operator is the sum of the two operands.
Subtraction (-)
The result of the subtraction operator is the difference between the two oper-
ands; i.e., the value of the second operand subtracted from the first.
Multiplication (*)
The result of the multiplication operator is the product of the two operands. For
example, 3 * 4 is 12.
Division (/)
The result of the division operator is the quotient of the two operands. Dividing
two integers can give an integer (e.g., 4/2) or a floating-point result (e.g., 1/2).

Modulus (%)
The modulus operator converts both operands to integers and returns the
remainder of the division of the first operand by the second operand. For exam-
ple, 10% 6 is 4.

Arithmetic negation (-)
The arithmetic negation operator returns the operand multiplied by —1, effec-
tively changing its sign. For example, -(3 - 4) evaluates to 1. Arithmetic nega-
tion is different from the subtraction operator, even though they both are written
as a minus sign. Arithmetic negation is always unary and before the operand.
Subtraction is binary and between its operands.

Arithmetic assertion (+)
The arithmetic assertion operator returns the operand multiplied by +1, which
has no effect. It is used only as a visual cue to indicate the sign of a value. For
example, +(3 - 4) evaluates to -1, just as (3 - 4) does.

String Concatenation Operator

Manipulating strings is such a core part of PHP applications that PHP has a separate
string concatenation operator (.). The concatenation operator appends the right-
hand operand to the lefthand operand and returns the resulting string. Operands are
first converted to strings, if necessary. For example:

$n = 5;

$s = 'There were ' . $n . ' ducks.';
// $s is 'There were 5 ducks'

38 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Autoincrement and Autodecrement Operators

In programming, one of the most common operations is to increase or decrease the
value of a variable by one. The unary autoincrement (++) and autodecrement (--)
operators provide shortcuts for these common operations. These operators are
unique in that they work only on variables; the operators change their operands’ val-
ues as well as returning a value.

There are two ways to use autoincrement or autodecrement in expressions. If you
put the operator in front of the operand, it returns the new value of the operand
(incremented or decremented). If you put the operator after the operand, it returns
the original value of the operand (before the increment or decrement). Table 2-5 lists
the different operations.

Table 2-5. Autoincrement and autodecrement operations

Operator Name Value returned Effect on $var
$var++ Post-increment $var Incremented
++$var Pre-increment $var + 1 Incremented
$var-- Post-decrement $var Decremented
--$var Pre-decrement $var - 1 Decremented

These operators can be applied to strings as well as numbers. Incrementing an alpha-
betic character turns it into the next letter in the alphabet. As illustrated in Table 2-6,

incrementing "z" or "Z" wraps it back to "a" or "Z" and increments the previous
character by one, as though the characters were in a base-26 number system.

Table 2-6. Autoincrement with letters

Incrementing this Gives this
n npn

"z" "aa"
"spaz" "spba"
"K9" "Lo"
"42" "43"

Comparison Operators

As their name suggests, comparison operators compare operands. The result is
always either true, if the comparison is truthful, or false, otherwise.

Operands to the comparison operators can be both numeric, both string, or one
numeric and one string. The operators check for truthfulness in slightly different
ways based on the types and values of the operands, either using strictly numeric
comparisons or using lexicographic (textual) comparisons. Table 2-7 outlines when
each type of check is used.

Expressions and Operators | 39

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 2-7. Type of comparision performed by the comparision operators

First operand Second operand Comparison
Number Number Numeric
String that is entirely numeric String that is entirely numeric Numeric
String that is entirely numeric Number Numeric
String that is not entirely numeric Number Lexicographic
String that is entirely numeric String that is not entirely numeric Lexicographic
String that is not entirely numeric String that is not entirely numeric Lexicographic

One important thing to note is that two numeric strings are compared as if they were
numbers. If you have two strings that consist entirely of numeric characters and you
need to compare them lexicographically, use the strcmp() function.

The comparison operators are:

Equality (==
If both operands are equal, this operator returns true; otherwise, it returns false.

Identical (===
If both operands are equal and are of the same type, this operator returns true;
otherwise, it returns false. Note that this operator does not do implicit type
casting. This operator is useful when you don’t know if the values you’re com-
paring are of the same type. Simple comparison may involve value conversion.
For instance, the strings "0.0" and "0" are not equal. The == operator says they
are, but === says they are not.

Inequality (1= or <>)
If both operands are not equal, this operator returns true; otherwise, it returns
false.

Not identical (1==
If both operands are not equal, or they are not of the same type, this operator
returns true; otherwise, it returns false.

Greater than (>)
If the lefthand operator is greater than the righthand operator, this operator
returns true; otherwise, it returns false.

Greater than or equal to (>=)
If the lefthand operator is greater than or equal to the righthand operator, this
operator returns true; otherwise, it returns false.

Less than (<)
If the lefthand operator is less than the righthand operator, this operator returns
true; otherwise, it returns false.

Less than or equal to (<=)
If the lefthand operator is less than or equal to the righthand operator, this oper-
ator returns true; otherwise, it returns false.

40 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bitwise Operators

The bitwise operators act on the binary representation of their operands. Each oper-
and is first turned into a binary representation of the value, as described in the bit-
wise negation operator entry in the following list. All the bitwise operators work on
numbers as well as strings, but they vary in their treatment of string operands of dif-
ferent lengths. The bitwise operators are:

Bitwise negation (~)
The bitwise negation operator changes 1s to 0s and Os to 1s in the binary repre-
sentations of the operands. Floating-point values are converted to integers before
the operation takes place. If the operand is a string, the resulting value is a string
the same length as the original, with each character in the string negated.

Bitwise AND (&)
The bitwise AND operator compares each corresponding bit in the binary repre-
sentations of the operands. If both bits are 1, the corresponding bit in the result
is 1; otherwise, the corresponding bit is 0. For example, 0755 & 0671 is 0651. This
is a bit easier to understand if we look at the binary representation. Octal 0755 is
binary 111101101, and octal 0671 is binary 110111001. We can the easily see
which bits are on in both numbers and visually come up with the answer:

111101101
& 110111001

110101001

The binary number 110101001 is octal 0651.” You can use the PHP functions
bindec(), decbin(), octdec(), and decoct() to convert numbers back and forth
when you are trying to understand binary arithmetic.

If both operands are strings, the operator returns a string in which each charac-
ter is the result of a bitwise AND operation between the two corresponding char-
acters in the operands. The resulting string is the length of the shorter of the two
operands; trailing extra characters in the longer string are ignored. For example,
"wolf" & "cat" is "cad".
Bitwise OR (|)

The bitwise OR operator compares each corresponding bit in the binary repre-
sentations of the operands. If both bits are 0, the resulting bit is 0; otherwise, the
resulting bit is 1. For example, 0755 | 020 is 0775.

If both operands are strings, the operator returns a string in which each charac-
ter is the result of a bitwise OR operation between the two corresponding char-
acters in the operands. The resulting string is the length of the longer of the two
operands, and the shorter string is padded at the end with binary 0s. For exam-
ple, "pussy" | "cat" is "suwsy".

* Here’s a tip: split the binary number up into three groups. 6 is binary 110, 5 is binary 101, and 1 is binary
001; thus, 0651 is 110101001.

Expressions and Operators | 41

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bitwise XOR (*)

The bitwise XOR operator compares each corresponding bit in the binary rep-
resentation of the operands. If either of the bits in the pair, but not both, is 1,
the resulting bit is 1; otherwise, the resulting bit is 0. For example, 0755 » 023 is
776.

If both operands are strings, this operator returns a string in which each charac-
ter is the result of a bitwise XOR operation between the two corresponding char-
acters in the operands. If the two strings are different lengths, the resulting string
is the length of the shorter operand, and extra trailing characters in the longer
string are ignored. For example, "big drink" » "AA" is "#(".

Left shift (<<)

The left shift operator shifts the bits in the binary representation of the lefthand
operand left by the number of places given in the righthand operand. Both oper-
ands will be converted to integers if they aren’t already. Shifting a binary num-
ber to the left inserts a 0 as the rightmost bit of the number and moves all other
bits to the left one place. For example, 3 << 1 (or binary 11 shifted one place left)
results in 6 (binary 110).

Note that each place to the left that a number is shifted results in a doubling of
the number. The result of left shifting is multiplying the lefthand operand by 2 to
the power of the righthand operand.

Right shift (>>)

The right shift operator shifts the bits in the binary representation of the left-
hand operand right by the number of places given in the righthand operand.
Both operands will be converted to integers if they aren’t already. Shifting a
binary number to the right inserts a 0 as the leftmost bit of the number and
moves all other bits to the right one place. The rightmost bit is discarded. For
example, 13 >> 1 (or binary 1101) shifted one place right results in 6 (binary
110).

Logical Operators

Logical operators provide ways for you to build complex logical expressions. Logical
operators treat their operands as Boolean values and return a Boolean value. There
are both punctuation and English versions of the operators (|| and or are the same
operator). The logical operators are:

Logical AND (88, and)

The result of the logical AND operation is true if and only if both operands are
true; otherwise, it is false. If the value of the first operand is false, the logical
AND operator knows that the resulting value must also be false, so the right-
hand operand is never evaluated. This process is called short-circuiting, and a
common PHP idiom uses it to ensure that a piece of code is evaluated only if

Y]

Chapter 2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

something is true. For example, you might connect to a database only if some
flag is not false:
$result = $flag and mysql connect();
The && and and operators differ only in their precedence.
Logical OR (||, ox)
The result of the logical OR operation is true if either operand is true; other-
wise, the result is false. Like the logical AND operator, the logical OR operator
is short-circuited. If the lefthand operator is true, the result of the operator must
be true, so the righthand operator is never evaluated. A common PHP idiom
uses this to trigger an error condition if something goes wrong. For example:
$result = fopen($filename) or exit();
The || and or operators differ only in their precedence.

Logical XOR (xor)
The result of the logical XOR operation is true if either operand, but not both, is
true; otherwise, it is false.

Logical negation (1)
The logical negation operator returns the Boolean value true if the operand eval-
uates to false, and false if the operand evaluates to true.

Casting Operators

Although PHP is a weakly typed language, there are occasions when it’s useful to
consider a value as a specific type. The casting operators, (int), (float), (string),
(bool), (array), and (object), allow you to force a value into a particular type. To
use a casting operator, put the operator to the left of the operand. Table 2-8 lists the
casting operators, synonymous operands, and the type to which the operator changes
the value.

Table 2-8. PHP casting operators

Operator Synonymous operators Changes type to
(int) (integer) Integer
(float) (real) Floating point
(string) String

(bool) (boolean) Boolean
(array) Array

(object) Object

Casting affects the way other operators interpret a value, rather than changing the
value in a variable. For example, the code:

$a = "5";
$b = (int) $a;

Expressions and Operators | 43

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

assigns $b the integer value of $a; $a remains the string "5". To cast the value of the
variable itself, you must assign the result of a cast back into the variable:

$a = "5"

$a = (int) $a; // now $a holds an integer
Not every cast is useful: casting an array to a numeric type gives 1, and casting an
array to a string gives "Array" (seeing this in your output is a sure sign that you’ve
printed a variable that contains an array).

Casting an object to an array builds an array of the properties, mapping property
names to values:
class Person {
var $name = "Fred";
var $age = 35;

}

$0 = new Person;
$a = (array) $o;
print_r($a);
Array

(

[name] => Fred
[age] => 35
)
You can cast an array to an object to build an object whose properties correspond to
the array’s keys and values. For example:
$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$0 = (object) $a;
echo $o->name;
Fred
Keys that aren’t valid identifiers, and thus are invalid property names, are inaccessi-
ble but are restored when the object is cast back to an array.

Assignment Operators

Assignment operators store or update values in variables. The autoincrement and
autodecrement operators we saw earlier are highly specialized assignment opera-
tors—here we see the more general forms. The basic assignment operator is =, but
we’ll also see combinations of assignment and binary operations, such as += and 8=.

Assignment

The basic assignment operator (=) assigns a value to a variable. The lefthand oper-
and is always a variable. The righthand operand can be any expression—any simple
literal, variable, or complex expression. The righthand operand’s value is stored in
the variable named by the lefthand operand.

44 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Because all operators are required to return a value, the assignment operator returns
the value assigned to the variable. For example, the expression $a = 5 not only assigns
5 to $a, but also behaves as the value 5 if used in a larger expression. Consider the
following expressions:

$a = 5;
$b = 10;
$c = ($a = $b);

The expression $a = $b is evaluated first, because of the parentheses. Now, both $a and
$b have the same value, 10. Finally, $c is assigned the result of the expression $a = $b,
which is the value assigned to the lefthand operand (in this case, $a). When the full
expression is done evaluating, all three variables contain the same value, 10.

Assignment with operation

In addition to the basic assignment operator, there are several assignment operators
that are convenient shorthand. These operators consist of a binary operator fol-
lowed directly by an equals sign, and their effect is the same as performing the opera-
tion with the operands, then assigning the resulting value to the lefthand operand.
These assignment operators are:

Plus-equals (+=)
Adds the righthand operand to the value of the lefthand operand, then assigns
the result to the lefthand operand. $a += 5 is the same as $a = $a + 5.

Minus-equals (—=)
Subtracts the righthand operand from the value of the lefthand operand, then
assigns the result to the lefthand operand.

Divide-equals (/=)
Divides the value of the lefthand operand by the righthand operand, then assigns
the result to the lefthand operand.

Multiply-equals (*=)
Multiplies the righthand operand with the value of the lefthand operand, then
assigns the result to the lefthand operand.

Modulus-equals (%=)
Performs the modulus operation on the value of the lefthand operand and the
righthand operand, then assigns the result to the lefthand operand.

Bitwise-XOR-equals (*=)
Performs a bitwise XOR on the lefthand and righthand operands, then assigns
the result to the lefthand operand.

Bitwise-AND-equals (&=)
Performs a bitwise AND on the value of the lefthand operand and the righthand
operand, then assigns the result to the lefthand operand.

Expressions and Operators | 45

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bitwise-OR-equals (|=)
Performs a bitwise OR on the value of the lefthand operand and the righthand
operand, then assigns the result to the lefthand operand.

Concatenate-equals (.=)
Concatenates the righthand operand to the value of the lefthand operand, then
assigns the result to the lefthand operand.

Miscellaneous Operators

The remaining PHP operators are for error suppression, executing an external com-
mand, and selecting values:

Error suppression (@)
Some operators or functions can generate error messages. The error suppression
operator, discussed in full in Chapter 13, is used to prevent these messages from
being created.

Execution "...7)
The backtick operator executes the string contained between the backticks as a
shell command and returns the output. For example:
$listing = "1s -1s /tmp”;
echo $listing;
Conditional (2:)
The conditional operator is, depending on the code you look at, either the most
overused or most underused operator. It is the only ternary (three-operand)
operator and is therefore sometimes just called the ternary operator.

The conditional operator evaluates the expression before the ?. If the expression
is true, the operator returns the value of the expression between the ? and :;
otherwise, the operator returns the value of the expression after the :. For
instance:

<a href="<?= $url ?>"><?= $linktext ? $linktext : $url ?>
If text for the link $url is present in the variable $linktext, it is used as the text
for the link; otherwise, the URL itself is displayed.

Flow-Control Statements

PHP supports a number of traditional programming constructs for controlling the
flow of execution of a program.

Conditional statements, such as if/else and switch, allow a program to execute dif-
ferent pieces of code, or none at all, depending on some condition. Loops, such as
while and for, support the repeated execution of particular code.

46 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

if
The if statement checks the truthfulness of an expression and, if the expression is
true, evaluates a statement. An if statement looks like:

if (expression)
Sstatement

To specify an alternative statement to execute when the expression is false, use the
else keyword:

if (expression)
statement
else
statement

For example:

if ($user validated)
echo "Welcome!";
else
echo "Access Forbidden!";

To include more than one statement in an if statement, use a block—a curly brace-
enclosed set of statements:

if ($user validated) {
echo 'Welcome!";
$greeted = 1;

} else {
echo "Access Forbidden!";
exit;

}

PHP provides another syntax for blocks in tests and loops. Instead of enclosing the
block of statements in curly braces, end the if line with a colon (:) and use a specific
keyword to end the block (endif, in this case). For example:

if ($user validated) :
echo "Welcome!";
$greeted = 1;
else :
echo "Access Forbidden!";
exit;
endif;
Other statements described in this chapter also have similar alternate style syntax
(and ending keywords); they can be useful if you have large blocks of HTML inside
your statements. For example:
<?if($user validated):?>
<table>
<tr>

<td>First Name:</td><td>Sophia</td>
</tr>

Flow-Control Statements | 47

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<tr>
<td>Last Name:</td><td>Lee</td>
</tr>
</table>
<?else:?>
Please log in.
<?endif?>
Because if is a statement, you can chain them:
if ($good)
print('Dandy!");
else
if ($error)
print('0Oh, no!');
else
print("I'm ambivalent...");

Such chains of if statements are common enough that PHP provides an easier syn-
tax: the elseif statement. For example, the previous code can be rewritten as:
if ($good)
print('Dandy!");
elseif ($error)
print('Oh, no!");
else
print("I'm ambivalent...");
The ternary conditional operator (?:) can be used to shorten simple true/false tests.
Take a common situation such as checking to see if a given variable is true and print-
ing something if it is. With a normal if/else statement, it looks like this:

<td><? if($active) echo 'yes'; else echo 'no'; ?></td>
With the ternary conditional operator, it looks like this:

<? echo '<td>'.($active ? 'yes':'no").'</td>" ?>
Compare the syntax of the two:

if (expression) true statement else false statement

(expression) ? true expression : false expression
The main difference here is that the conditional operator is not a statement at all.
This means that it is used on expressions, and the result of a complete ternary
expression is itself an expression. In the previous example, the echo statement is
inside the if condition, while when used with the ternary operator, it precedes the
expression.

switch

It often is the case that the value of a single variable may determine one of a num-
ber of different choices (e.g., the variable holds the username and you want to do
something different for each user). The switch statement is designed for just this
situation.

48 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A switch statement is given an expression and compares its value to all cases in the
switch; all statements in a matching case are executed, up to the first break keyword
it finds. If none match, and a default is given, all statements following the default

keyword are executed, up to the first break keyword encountered.
For example, suppose you have the following:

if ($name == 'ktatroe')
// do something

elseif ($name == 'rasmus')
// do something
elseif ($name == 'ricm')

// do something
elseif ($name == 'bobk')
// do something

You can replace that statement with the following switch statement:

switch($name) {

case 'ktatroe':
// do something
break;

case 'rasmus':
// do something
break;

case 'ricm':
// do something
break;

case 'bobk':
// do something
break;

}
The alternative syntax for this is:

switch($name):
case 'ktatroe':
// do something
break;
case 'rasmus':
// do something
break;
case 'ricm':
// do something
break;
case 'bobk':
// do something
break;
endswitch;

Because statements are executed from the matching case label to the next break key-
word, you can combine several cases in a fall-through. In the following example,

“yes” is printed when $name is equal to “sylvie” or to “bruno”:

switch ($name) {
case 'sylvie': // fall-through

Flow-Control Statements

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

case 'bruno':
print('yes');
break;
default:
print('no");
break;
}
Commenting the fact that you are using a fall-through case in a switch is a good idea,
so someone doesn’t come along at some point and add a break, thinking you had for-

gotten it.

You can specify an optional number of levels for the break keyword to break out of.
In this way, a break statement can break out of several levels of nested switch state-
ments. An example of using break in this manner is shown in the next section.

while

The simplest form of loop is the while statement:

while (expression)
statement
If the expression evaluates to true, the statement is executed and then the expression
is reevaluated (if it is true, the body of the loop is executed, and so on). The loop
exits when the expression evaluates to false.

As an example, here’s some code that adds the whole numbers from 1 to 10:

$total = 0;

$i = 1;

while ($i <= 10) {
$total += $i;

}

The alternative syntax for while has this structure:

while (expr):
statement;

endwhile;
For example:

$total = 0;

$i = 1;

while ($i <= 10):

$total += $i;

endwhile;
You can prematurely exit a loop with the break keyword. In the following code, $i
never reaches a value of 6, because the loop is stopped once it reaches 5:

$total = 0;

$1i =1

while ($1i <= 10) {

50 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

f (81 == 5)
break; // breaks out of the loop

$total += $i;
$it+;
}
Optionally, you can put a number after the break keyword, indicating how many lev-
els of loop structures to break out of. In this way, a statement buried deep in nested
loops can break out of the outermost loop. For example:
$i=0;
while ($i < 10) {
while ($j < 10) {

if ($j == 5)
break 2; // breaks out of two while loops
$j++;
}
$i++;
}
echo $i;
echo $j;
0
5

The continue statement skips ahead to the next test of the loop condition. As with
the break keyword, you can continue through an optional number of levels of loop
structure:

while ($i < 10) {
while ($j < 10) {
if ($j = 5)
continue 2; // continues through two levels
$j++;
}
$i++;
}

In this code, $j never has a value above 5, but $i goes through all values from 0
through 9.

PHP also supports a do/while loop, which takes the following form:

do
statement
while (expression)

Use a do/while loop to ensure that the loop body is executed at least once:

$total = 0;
$1 =1
do {
$total += $i++;
} while ($i <= 10);

Flow-Control Statements | 51

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You can use break and continue statements in a do/while statement just as in a nor-
mal while statement.

The do/while statement is sometimes used to break out of a block of code when an
error condition occurs. For example:
do {
// do some stuff
if ($error condition)
break;
// do some other stuff
} while (false);
Because the condition for the loop is false, the loop is executed only once, regard-
less of what happens inside the loop. However, if an error occurs, the code after the
break is not evaluated.

for

The for statement is similar to the while statement, except it adds counter initializa-
tion and counter manipulation expressions, and is often shorter and easier to read
than the equivalent while loop.

Here’s a while loop that counts from 0 to 9, printing each number:

$counter = 0;

while ($counter < 10) {
echo "Counter is $counter\n”;
$counter++;

}
Here’s the corresponding, more concise for loop:

for ($counter = 0; $counter < 10; $counter++)
echo "Counter is $counter\n";

The structure of a for statement is:

for (start; condition; increment)
statement

The expression start is evaluated once, at the beginning of the for statement. Each
time through the loop, the expression condition is tested. If it is true, the body of the
loop is executed,; if it is false, the loop ends. The expression increment is evaluated
after the loop body runs.

The alternative syntax of a for statement is:

for (expri; expr2; expr3):
statement;

cees
endfor;

52 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This program adds the numbers from 1 to 10 using a for loop:
$total = 0;
for ($i= 1; $i <= 10; $i++) {
$total += $i;
}
Here’s the same loop using the alternate syntax:
$total = 0;
for ($1 = 1; $i <= 10; $i++):
$total += $i;
endfor;
You can specify multiple expressions for any of the expressions in a for statement by
separating the expressions with commas. For example:
$total = 0;
for ($1 =0, $j = 0; $1 <= 10; $i++, $ *= 2) {
$total += $j;
}
You can also leave an expression empty, signaling that nothing should be done for
that phase. In the most degenerate form, the for statement becomes an infinite loop.
You probably don’t want to run this example, as it never stops printing:
for (55) {
echo "Can't stop mel
";

}

In for loops, as in while loops, you can use the break and continue keywords to end
the loop or the current iteration.

foreach

The foreach statement allows you to iterate over elements in an array. The two forms
of foreach statement are discussed in Chapter 5. To loop over an array, accessing
each key, use:

foreach ($array as $current) {
/...

}
The alternate syntax is:

foreach ($array as $current):
/...
endforeach;

To loop over an array, accessing both key and value, use:

foreach ($array as $key => $value) {
/] ...

}

Flow-Control Statements | 53

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The alternate syntax is:

foreach ($array as $key => $value):
/..
endforeach;

declare

The declare statement allows you to specify execution directives for a block of code.
The structure of a declare statement is:
declare (directive)
statement
Currently, there is only one declare form, the ticks directive. Using it, you can spec-
ify how frequently (measured roughly in number of code statements) a tick function
registered with register tick function() is called. For example:
register tick function("some function");
declare(ticks = 3) {
for($i = 0; $i < 10; $i++) {
// do something

}
}

In this code, some_function() is called after every third statement is executed.

exit and return

The exit statement ends execution of the script as soon as it is reached. The return
statement returns from a function or (at the top level of the program) from the script.

The exit statement takes an optional value. If this is a number, it’s the exit status of
the process. If it’s a string, the value is printed before the process terminates. The
exit() construct is an alias for die():

$handle = @mysql connect("localhost", $USERNAME, $PASSWORD);
if (!$handle) {
die("Could not connect to database");

}

This is more commonly written as:

$handle = @mysql_connect("localhost”, $USERNAME, $PASSWORD)
or die("Could not connect to database");

See Chapter 3 for more information on using the return statement in functions.

Including Code

PHP provides two constructs to load code and HTML from another module: require
and include. They both load a file as the PHP script runs, work in conditionals and

54 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

loops, and complain if the file being loaded can’t be found. The main difference is
that attempting to require a nonexistent file is a fatal error, while attempting to
include such a file produces a warning but does not stop script execution.

A common use of include is to separate page-specific content from general site
design. Common elements such as headers and footers go in separate HTML files,
and each page then looks like:

<? include 'header.html'; ?>

content

<? include 'footer.html'; ?>
We use include because it allows PHP to continue to process the page even if there’s
an error in the site design file(s). The require construct is less forgiving and is more
suited to loading code libraries, where the page can’t be displayed if the libraries
don’t load. For example:

require 'codelib.inc';

mysub(); // defined in codelib.inc
A marginally more efficient way to handle headers and footers is to load a single file
and then call functions to generate the standardized site elements:

<? require 'design.inc’;

header();

>

content

<? footer(); >
If PHP cannot parse some part of a file included by include or require, a warning is
printed and execution continues. You can silence the warning by prepending the call
with the silence operator; for example, @include.

If the allow url fopen option is enabled through PHP’s configuration file, php.ini,
you can include files from a remote site by providing a URL instead of a simple local
path:

include 'http://www.example.com/codelib.inc’;

If the filename begins with “http://” or “ftp://”, the file is retrieved from a remote site

and then loaded.

Files included with include and require can be arbitrarily named. Common exten-
sions are .php, .inc, and .html. Note that remotely fetching a file that ends in .php
from a web server that has PHP enabled fetches the output of that PHP script. For
this reason, we recommend you use .inc for library files that primarily contain code
and .html for library files that primarily contain HTML.

If a program uses include or require to include the same file twice, the file is loaded
and the code is run or the HTML is printed twice. This can result in errors about the
redefinition of functions or multiple copies of headers or HTML being sent. To pre-
vent these errors from occurring, use the include_once and require once constructs.
They behave the same as include and require the first time a file is loaded, but quietly

Induding Code | 55

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ignore subsequent attempts to load the same file. For example, many page elements,
each stored in separate files, need to know the current user’s preferences. The element
libraries should load the user preferences library with require_once. The page designer
can then include a page element without worrying about whether the user preference
code has already been loaded.

Code in an included file is imported at the scope that is in effect where the include
statement is found, so the included code can see and alter your code’s variables. This
can be useful—for instance, a user-tracking library might store the current user’s
name in the global $user variable:

// main page

include 'userprefs.inc';

echo "Hello, $user.";
The ability of libraries to see and change your variables can also be a problem. You
have to know every global variable used by a library to ensure that you don’t acci-
dentally try to use one of them for your own purposes, thereby overwriting the
library’s value and disrupting how it works.

If the include or require construct is in a function, the variables in the included file
become function-scope variables for that function.

Because include and require are keywords, not real statements, you must always
enclose them in curly braces in conditional and loop statements:

for ($i=0; $i < 10; $i++) {

include "repeated_element.html";

}
Use the get_included files() function to learn which files your script has included
or required. It returns an array containing the full system path filenames of each
included or required file. Files that did not parse are not included in this array.

Embedding PHP in Web Pages

Although it is possible to write and run standalone PHP programs, most PHP code is
embedded in HTML or XML files. This is, after all, why it was created in the first
place. Processing such documents involves replacing each chunk of PHP source code
with the output it produces when executed.

Because a single file contains PHP and non-PHP source code, we need a way to iden-
tify the regions of PHP code to be executed. PHP provides four different ways to do
this.

As you’ll see, the first, and preferred, method looks like XML. The second method
looks like SGML. The third method is based on ASP tags. The fourth method uses
the standard HTML <script> tag; this makes it easy to edit pages with enabled PHP
using a regular HTML editor.

56 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XML Style

Because of the advent of the eXtensible Markup Language (XML) and the migration
of HTML to an XML language (XHTML), the currently preferred technique for
embedding PHP uses XML-compliant tags to denote PHP instructions.

Coming up with tags to demark PHP commands in XML was easy, because XML
allows the definition of new tags. To use this style, surround your PHP code with
<?php and ?>. Everything between these markers is interpreted as PHP, and everything
outside the markers is not. Although it is not necessary to include spaces between the
markers and the enclosed text, doing so improves readability. For example, to get
PHP to print “Hello, world”, you can insert the following line in a web page:

<?php echo "Hello, world"; ?>

The trailing semicolon on the statement is optional, because the end of the block
also forces the end of the expression. Embedded in a complete HTML file, this looks
like:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<title>This is my first PHP program!</title>
</head>
<body>
<p>
Look, ma! It's my first PHP program:

<?php echo "Hello, world"; ?>

How cool is that?
</p>
</body>
</html>

Of course, this isn’t very exciting—we could have done it without PHP. The real
value of PHP comes when we put dynamic information from sources such as data-
bases and form values into the web page. That’s for a later chapter, though. Let’s get
back to our “Hello, world” example. When a user visits this page and views its
source, it looks like this:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<title>This is my first PHP program!</title>
</head>
<body>
<p>
Look, ma! It's my first PHP program:

Hello, world!

How cool is that?
</p>
</body>
</html>

Embedding PHP in Web Pages | 57

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Notice that there’s no trace of the PHP source code from the original file. The user
sees only its output.

Also notice that we switched between PHP and non-PHP, all in the space of a single
line. PHP instructions can be put anywhere in a file, even within valid HTML tags.
For example:

<input type="text" name="first_name"
value="<?php echo "Rasmus"; ?>" />

When PHP is done with this text, it will read:

<input type="text" name="first name"
value="Rasmus" />

The PHP code within the opening and closing markers does not have to be on the
same line. If the closing marker of a PHP instruction is the last thing on a line, the
line break following the closing tag is removed as well. Thus, we can replace the PHP
instructions in the “Hello, world” example with:

<?php

echo "Hello, world"; ?>

with no change in the resulting HTML.

SGML Style

The “classic” style of embedding PHP comes from SGML instruction processing
tags. To use this method, simply enclose the PHP in <? and ?>. Here’s the “Hello
world” example again:

<? echo "Hello, world"; ?>

This style, known as short tags, is the shortest and least intrusive, and it can be
turned off so as to not clash with the XML PI (Process Instruction) tag in the php.ini
initialization file. Consequently, if you want to write fully portable PHP code that
you are going to distribute to other people (who might have short tags turned off),
you should use the longer <?php ... ?> style, which cannot be turned off. If you have
no intention of distributing your code, you don’t have an issue with telling people
who want to use your code to turn on short tags, and you are not planning on mix-
ing XML in with your PHP code, then using this tag style is okay.

ASP Style

Because neither the SGML nor XML tag style is strictly legal HTML," some HTML
editors do not parse it correctly for color syntax highlighting, context-sensitive help,

* Mostly because you are not allowed to use a > inside your tags if you wish to be compliant, but who wants
to write code like if($a > 5)...?

58 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and other such niceties. Some will even go so far as to helpfully remove the “offend-
ing” code for you.

However, many of these same HTML editors recognize another mechanism (no more
legal than PHP’s) for embedding code—that of Microsoft’s Active Server Pages (ASP).
Like PHP, ASP is a method for embedding server-side scripts within documents.

If you want to use ASP-aware tools to edit files that contain embedded PHP, you can
use ASP-style tags to identify PHP regions. The ASP-style tag is the same as the
SGML-style tag, but with % instead of ?:

<% echo "Hello, world"; %>
In all other ways, the ASP-style tag works the same as the SGML-style tag.

ASP-style tags are not enabled by default. To use these tags, either build PHP with
the --enable-asp-tags option or enable asp_tags in the PHP configuration file.

Script Style

The final method of distinguishing PHP from HTML involves a tag invented to allow
client-side scripting within HTML pages, the <script> tag. You might recognize it as
the tag in which JavaScript is embedded. Since PHP is processed and removed from
the file before it reaches the browser, you can use the <script> tag to surround PHP
code. To use this method, simply specify "php" as the value of the language attribute
of the tag:

<script language="php">

echo "Hello, world";

</script>
This method is most useful with HTML editors that work only on strictly legal
HTML files and don’t yet support XML processing commands.

Echoing Content Directly

Perhaps the single most common operation within a PHP application is displaying
data to the user. In the context of a web application, this means inserting into the
HTML document information that will become HTML when viewed by the user.

To simplify this operation, PHP provides special versions of the SGML and ASP tags
that automatically take the value inside the tag and insert it into the HTML page. To
use this feature, add an equals sign (=) to the opening tag. With this technique, we
can rewrite our form example as:

<input type="text" name="first name" value="<?="Rasmus"; ?>">
If you have ASP-style tags enabled, you can do the same with your ASP tags:

<p>This number (<%= 2 + 2 %>)

and this number (<% echo (2 + 2); %>)

Are the same.</p>

Embedding PHP in Web Pages | 59

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

After processing, the resulting HTML is:

<p>This number (4)

and this number (4)

are the same.</p>

60 | Chapter2: Language Basics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CHAPTER 3
Functions

A function is a named block of code that performs a specific task, possibly acting
upon a set of values given to it, or parameters, and possibly returning a single value.
Functions save on compile time—no matter how many times you call them, func-
tions are compiled only once for the page. They also improve reliability by allowing
you to fix any bugs in one place, rather than everywhere you perform a task, and
they improve readability by isolating code that performs specific tasks.

This chapter introduces the syntax of function calls and function definitions and dis-
cusses how to manage variables in functions and pass values to functions (including
pass-by-value and pass-by-reference). It also covers variable functions and anony-
mous functions.

Calling a Function

Functions in a PHP program can be either built-in (or, by being in an extension,
effectively built-in) or user-defined. Regardless of their source, all functions are eval-
uated in the same way:

$some_value = function name([parameter, ...]);

The number of parameters a function requires differs from function to function (and,
as we’ll see later, may even vary for the same function). The parameters supplied to
the function may be any valid expression and should be in the specific order
expected by the function. A function’s documentation will tell you what parameters
the function expects and what values you can expect to be returned.

Here are some examples of functions:

// strlen() is a built-in function that returns the length of a string
$length = strlen("PHP"); // $length is now 3

// sin() and asin() are the sine and arcsine math functions
$result = sin(asin(1)); // $result is the sine of arcsin(1), or 1.0

61

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

// unlink() deletes a file

$result = unlink("functions.txt"); // false if unsuccessful
In the first example, we give an argument, "PHP", to the function strlen(), which
gives us the number of characters in the string it’s given. In this case, it returns 3,
which is assigned to the variable $1ength. This is the simplest and most common way
to use a function.

The second example passes the result of asin(1) to the sin() function. Since the sine
and arcsine functions are reflexive, taking the sine of the arcsine of any value will
always return that same value.

In the final example, we give a filename to the unlink() function, which attempts to
delete the file. Like many functions, it returns false when it fails. This allows you to
use another built-in function, die(), and the short-circuiting property of the logic
operators. Thus, this example might be rewritten as:

$result = unlink("functions.txt") or die("Operation failed!");

The unlink() function, unlike the other two examples, affects something outside of
the parameters given to it. In this case, it deletes a file from the filesystem. All such
side effects of a function should be carefully documented.

PHP has a huge array of functions already defined for you to use in your programs.
Everything from database access, to creating graphics, to reading and writing XML
files, to grabbing files from remote systems can be found in PHP’s many extensions.
Chapter 14 goes into detail on how to add new extensions to PHP, the built-in func-
tions are described in detail in Appendix A, and an overview of PHP’s extensions can
be found in Appendix B.

Defining a Function

To define a function, use the following syntax:

function [&] function name ([parameter [, ... 1 1)

{

statement list

}
The statement list can include HTML. You can declare a PHP function that doesn’t
contain any PHP code. For instance, the column() function simply gives a convenient
short name to HTML code that may be needed many times throughout the page:

<? function column() { ?>

</td><td>

QP>
The function name can be any string that starts with a letter or underscore followed
by zero or more letters, underscores, and digits. Function names are case-insensitive;
that is, you can call the sin() function as sin(1), SIN(1), SiN(1), and so on, because
all these names refer to the same function.

62 | Chapter3: Functions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Typically, functions return some value. To return a value from a function, use the
return statement: put return expr inside your function. When a return statement is
encountered during execution, control reverts to the calling statement, and the evalu-
ated results of expr will be returned as the value of the function. Although it can
make for messy code, you can actually include multiple return statements in a func-
tion if it makes sense (for example, if you have a switch statement to determine
which of several values to return).

If you define your function with the optional ampersand before the name, the func-
tion returns a reference to the returned data rather than a copy of the data.

Let’s take a look at a simple function. Example 3-1 takes two strings, concatenates
them, and then returns the result (in this case, we’ve created a slightly slower equiva-
lent to the concatenation operator, but bear with us for the sake of example).

Example 3-1. String concatenation

function strcat($left, $right) {
$combined string = $left . $right;
return $combined_string;

}

The function takes two arguments, $left and $right. Using the concatenation opera-
tor, the function creates a combined string in the variable $combined string. Finally,
in order to cause the function to have a value when it’s evaluated with our argu-
ments, we return the value $combined_string.

Because the return statement can accept any expression, even complex ones, we can
simplify the program as shown in Example 3-2.

Example 3-2. String concatenation redux

function strcat($left, $right) {
return $left . $right;

}

If we put this function on a PHP page, we can call it from anywhere within the page.
Take a look at Example 3-3.

Example 3-3. Using our concatenation function
<?php
function strcat($left, $right) {
return $left . $right;
}

$first = "This is a ";
$second = " complete sentence!";

echo strcat($first, $second);
>

Defininga Function | 63

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When this page is displayed, the full sentence is shown.

This function takes in an integer, doubles it, and returns the result:

function doubler($value) {
return $value << 1;

}
Once the function is defined, you can use it anywhere on the page. For example:
<?= 'A pair of 13s is ' . doubler(13); ?»

You can nest function declarations, but with limited effect. Nested declarations do
not limit the visibility of the inner-defined function, which may be called from any-
where in your program. The inner function does not automatically get the outer
function’s arguments. And, finally, the inner function cannot be called until the
outer function has been called.

function outer ($a) {

function inner ($b) {
echo "there $b";

echo "$a, hello ";

}

outer("well");
inner("reader");

well, hello there reader

Variable Scope

Up to this point, if you don’t use functions, any variable you create can be used any-
where in a page. With functions, this is no longer always true. Functions keep their
own sets of variables that are distinct from those of the page and of other functions.

The variables defined in a function, including its parameters, are not accessible out-
side the function, and, by default, variables defined outside a function are not acces-
sible inside the function. The following example illustrates this:

$a = 3;

function foo() {
$a += 2;

}

foo();

echo $%a;
The variable $a inside the function foo() is a different variable than the variable $a
outside the variable; even though foo() uses the add-and-assign operator, the value
of the outer $a remains 3 throughout the life of the page. Inside the function, $a has
the value 2.

64 | Chapter3: Functions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As we discussed in Chapter 2, the extent to which a variable can be seen in a pro-
gram is called the scope of the variable. Variables created within a function are inside
the scope of the function (i.e., have function-level scope). Variables created outside of
functions and objects have global scope and exist anywhere outside of those func-
tions and objects. A few variables provided by PHP have both function-level and glo-
bal scope.

At first glance, even an experienced programmer may think that in the previous
example $a will be 5 by the time the echo statement is reached, so keep that in mind
when choosing names for your variables.

Global Variables

If you want a variable in the global scope to be accessible from within a function, you
can use the global keyword. Its syntax is:

global vari, varz, ...
Changing the previous example to include a global keyword, we get:

$a = 3;

function foo() {
global $a;
$a += 2;

}

foo();
echo $a;

Instead of creating a new variable called $a with function-level scope, PHP uses the
global $a within the function. Now, when the value of $a is displayed, it will be 5.

You must include the global keyword in a function before any uses of the global
variable or variables you want to access. Because they are declared before the body of
the function, function parameters can never be global variables.

Using global is equivalent to creating a reference to the variable in the $GLOBALS vari-
able. That is, the following declarations:

global $var;
$var = &$GLOBALS['var'];

both create a variable in the function’s scope that is a reference to the same value as
the variable $var in the global scope.

Static Variables

Like C, PHP supports declaring function variables static. A static variable is shared
between all calls to the function and is initialized during a script’s execution only the

Variable Scope | 65

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

first time the function is called. To declare a function variable static, use the static
keyword at the variable’s first use. Typically, the first use of a static variable is to
assign an initial value:

static var [= valuel[, ...];

In Example 3-4, the variable $count is incremented by one each time the function is

called.

Example 3-4. Static variable counter

function counter() {
static $count = 0;
return $count++;

}

for ($1i = 1; $i <= 5; $i++) {
print counter();

}

When the function is called for the first time, the static variable $count is assigned a
value of 0. The value is returned and $count is incremented. When the function ends,
$count is not destroyed like a non-static variable, and its value remains the same until
the next time counter() is called. The for loop displays the numbers from 0 to 4.

Function Parameters

Functions can expect, by declaring them in the function definition, an arbitrary num-
ber of arguments.

There are two different ways of passing parameters to a function. The first, and more
common, is by value. The other is by reference.

Passing Parameters by Value

In most cases, you pass parameters by value. The argument is any valid expression.
That expression is evaluated, and the resulting value is assigned to the appropriate
variable in the function. In all of the examples so far, we’ve been passing arguments
by value.

Passing Parameters by Reference

Passing by reference allows you to override the normal scoping rules and give a func-
tion direct access to a variable. To be passed by reference, the argument must be a
variable; you indicate that a particular argument of a function will be passed by refer-
ence by preceding the variable name in the parameter list with an ampersand (8).
Example 3-5 revisits our doubler() function with a slight change.

66 | Chapter3: Functions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 3-5. Doubler redux

function doubler(&$value) {
$value = $value << 1;

}

$a = 3;
doubler($a);
echo $%a;

Because the function’s $value parameter is passed by reference, the actual value of
$a, rather than a copy of that value, is modified by the function. Before, we had to
return the doubled value, but now we change the caller’s variable to be the doubled
value.

Here’s another place where a function contains side effects: since we passed the vari-
able $a into doubler() by reference, the value of $a is at the mercy of the function. In
this case, doubler() assigns a new value to it.

A parameter that is declared as being passed by reference can only be a variable.
Thus, if we included the statement <?= doubler(7); ?> in the previous example, it
would issue an error.

Even in cases where your function does affect the given value, you may want a
parameter to be passed by reference. When passing by value, PHP must copy the
value. Particularly for large strings and objects, this can be an expensive operation.
Passing by reference removes the need to copy the value.

Default Parameters

Sometimes, a function may need to accept a particular parameter in some cases. For
example, when you call a function to get the preferences for a site, the function may
take in a parameter with the name of the preference to retrieve. If you want to
retrieve all the preferences, rather than using some special keyword, you can just not
supply an argument. This behavior works by using default arguments.

To specify a default parameter, assign the parameter value in the function declara-
tion. The value assigned to a parameter as a default value cannot be a complex
expression; it can only be a constant.
function get preferences($which preference = "all") {
// if $which preference is "all", return all prefs;
// otherwise, get the specific preference requested...
}
When you call get_preferences(), you can choose to supply an argument. If you do, it
returns the preference matching the string you give it; if not, it returns all preferences.

A function may have any number of parameters with default values. However, they
must be listed after all the parameters that do not have default values.

Function Parameters | 67

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Variable Parameters

A function may require a variable number of arguments. For example, the get
preferences() example in the previous section might return the preferences for any
number of names, rather than for just one. To declare a function with a variable
number of arguments, leave out the parameter block entirely.

function get preferences() {
// some code

}

PHP provides three functions you can use in the function to retrieve the parameters
passed to it. func_get args() returns an array of all parameters provided to the func-
tion, func_num_args() returns the number of parameters provided to the function,
and func_get_arg() returns a specific argument from the parameters.

$array = func_get args();

$count = func_num args();
$value = func_get arg(argument_number);

In Example 3-6, the count_list() function takes in any number of arguments. It
loops over those arguments and returns the total of all the values. If no parameters
are given, it returns false.

Example 3-6. Argument counter

function count 1list() {
if(func_num args() == 0) {
return false;

}
else {

for($i = 0; $i < func_num_args(); $i++) {
$count += func_get arg($i);
}

return $count;

}
}

echo count_list(1, 5, 9);

The result of any of these functions cannot directly be used as a parameter to another
function. To use the result of one of these functions as a parameter, you must first set
a variable to the result of the function, then use that in the function call. The follow-
ing expression will not work:

foo(func_num args());
Instead, use:

$count = func_num_args();
foo($count);

68 | Chapter3: Functions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Missing Parameters

PHP lets you be as lazy as you want—when you call a function, you can pass any
number of arguments to the function. Any parameters the function expects that are
not passed to it remain unset, and a warning is issued for each of them:

function takes two($a, $b) {
if (isset($a)) { echo " a is set\n"; }
if (isset($b)) { echo " b is set\n"; }
}
echo "With two arguments:\n";
takes _two(1, 2);
echo "With one argument:\n";
takes_two(1);
With two arguments:
a is set
b is set
With one argument:
Warning: Missing argument 2 for takes_two()
in /path/to/script.php on line 6
a is set

Return Values

PHP functions can return only a single value with the return keyword:

function return one() {
return 42;

}
To return multiple values, return an array:

function return_two () {
return array("Fred", 35);

}
By default, values are copied out of the function. A function declared with an &
before its name returns a reference (alias) to its return value:

$names = array("Fred", "Barney", "Wilma", "Betty");

function & find one($n) {
return $names[$n];

}
$person =& find one(1); // Barney
$person = "Barnetta"; // changes $names[1]

In this code, the find_one() function returns an alias for $names[1], instead of a copy
of its value. Because we assign by reference, $person is an alias for $names[1], and the
second assignment changes the value in $names[1].

This technique is sometimes used to return large string or array values efficiently
from a function. However, PHP’s copy-on-write/shallow-copy mechanism usually

ReturnValues | 69

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

means that returning a reference from a function is not necessary. There is no point
in returning a reference to some large piece of data unless you know you are likely to
change that data. The drawback of returning the reference is that it is slower than
returning the value and relying on the shallow-copy mechanism to ensure that a copy
of that data is not made unless it is changed.

Variable Functions

As with variable variables, you can call a function based on the value of a variable.
For example, consider this situation, where a variable is used to determine which of
three functions to call:
switch($which) {
case 'first':
first();
break;

case 'second':
second();
break;

case 'third':
third();
break;
}
In this case, we could use a variable function call to call the appropriate function. To
make a variable function call, include the parameters for a function in parentheses
after the variable. To rewrite the previous example:

$which(); // if $which is "first" the function first() is called, etc...
If no function exists for the variable, a runtime error occurs when the code is evalu-
ated. To prevent this, you can use the built-in function function exists() to deter-

mine whether a function exists for the value of the variable before calling the
function:

$yes_or no = function exists(function name);
For example:

if(function_exists($which)) {
$which(); // if $which is "first" the function first() is called, etc...
}
Language constructs such as echo() and isset() cannot be called through variable
functions:

$f = 'echo';
$f("hello, world'); // does not work

70 | Chapter3: Functions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Anonymous Functions

Some PHP functions use a function you provide them with to do part of their work.
For example, the usort() function uses a function you create and pass to it as a
parameter to determine the sort order of the items in an array.

Although you can define a function for such purposes, as shown previously, these
functions tend to be localized and temporary. To reflect the transient nature of the
callback, create and use an anonymous function (or lambda function).

You can create an anonymous function using create_function(). This function takes
two parameters—the first describes the parameters the anonymous function takes in,
and the second is the actual code. A randomly generated name for the function is
returned:

$func_name = create_function(args string, code string);

Example 3-7 shows an example using usort().

Example 3-7. Anonymous functions

$lambda = create_function('$a,$b', 'return(strlen($a) - strlen($b));');

$array = array('really long string here, boy', 'this', 'middling length', 'larger');
usort($array, $lambda);

print_r($array);

The array is sorted by usort(), using the anonymous function, in order of string
length.

Anonymous Functions | 71

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CHAPTER 4
Strings

Most data you encounter as you program will be sequences of characters, or strings.
Strings hold people’s names, passwords, addresses, credit-card numbers, photo-
graphs, purchase histories, and more. For that reason, PHP has an extensive selec-
tion of functions for working with strings.

This chapter shows the many ways to write strings in your programs, including the
sometimes-tricky subject of interpolation (placing a variable’s value into a string),
then covers the many functions for changing, quoting, and searching strings. By the
end of this chapter, you’ll be a string-handling expert.

Quoting String Constants

There are three ways to write a literal string in your program: using single quotes,
double quotes, and the here document (heredoc) format derived from the Unix shell.
These methods differ in whether they recognize special escape sequences that let you
encode other characters or interpolate variables.

The general rule is to use the least powerful quoting mechanism necessary. In prac-
tice, this means that you should use single-quoted strings unless you need to include
escape sequences or interpolate variables, in which case you should use double-
quoted strings. If you want a string that spans many lines, use a heredoc.

Variable Interpolation

When you define a string literal using double quotes or a heredoc, the string is sub-
ject to variable interpolation. Interpolation is the process of replacing variable names
in the string with the values of those variables. There are two ways to interpolate
variables into strings—the simple way and the complex way.

The simple way is to just put the variable name in a double-quoted string or heredoc:

$who = 'Kilroy';
$where = 'here’';

72

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

echo "$who was $where";

Kilroy was here
The complex way is to surround the variable being interpolated with curly braces.
This method can be used either to disambiguate or to interpolate array lookups. The
classic use of curly braces is to separate the variable name from surrounding text:

$n = 12;

echo "You are the {$n}th person";
You are the 12th person

Without the curly braces, PHP would try to print the value of the $nth variable.

Unlike in some shell environments, in PHP strings are not repeatedly processed for
interpolation. Instead, any interpolations in a double-quoted string are processed,
then the result is used as the value of the string:

$bar = 'this is not printed’';

$foo = '$bar’; // single quotes

print("$foo");

$bar

Single-Quoted Strings

Single-quoted strings do not interpolate variables. Thus, the variable name in the fol-
lowing string is not expanded because the string literal in which it occurs is single-
quoted:

$name = 'Fred';

$str = 'Hello, $name’; // single-quoted

echo $str;

Hello, $name
The only escape sequences that work in single-quoted strings are *, which puts a sin-
gle quote in a single-quoted string, and \\, which puts a backslash in a single-quoted
string. Any other occurrence of a backslash is interpreted simply as a backslash:

$name = 'Tim O\'Reilly’; // escaped single quote
echo $name;

$path = "C:\\WINDOWS'; // escaped backslash
echo $path;
$nope = '\n'; // not an escape

echo $nope;
Tim 0'Reilly
C:\WINDOWS
\n

Double-Quoted Strings

Double-quoted strings interpolate variables and expand the many PHP escape
sequences. Table 4-1 lists the escape sequences recognized by PHP in double-quoted
strings.

Quoting String Constants | 73

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 4-1. Escape sequences in double-quoted strings

Escape sequence Character represented

\" Double quotes

\n Newline

\r (arriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Left brace

\} Right brace

\[Left bracket

\] Right bracket

\0 through \777 ASCII character represented by octal value
\X0 through \xFF ASCll character represented by hex value

If an unknown escape sequence (i.e., a backslash followed by a character that is not
one of those in Table 4-1) is found in a double-quoted string literal, it is ignored (if
you have the warning level E_NOTICE set, a warning is generated for such unknown
escape sequences):

$str = "What is \c this?"; // unknown escape sequence
echo $str ;
What is \c this?

Here Documents

You can easily put multiline strings into your program with a heredoc, as follows:

$clerihew = <<< End_Of_Quote
Sir Humphrey Davy

Abominated gravy.

He lived in the odium

Of having discovered sodium.
End_Of Quote;

echo $clerihew;

Sir Humphrey Davy
Abominated gravy.

He lived in the odium

Of having discovered sodium.

The <<« Identifier tells the PHP parser that you’re writing a heredoc. There must be
a space after the <<< and before the identifier. You get to pick the identifier. The next
line starts the text being quoted by the heredoc, which continues until it reaches a
line that consists of nothing but the identifier.

74 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As a special case, you can put a semicolon after the terminating identifier to end the
statement, as shown in the previous code. If you are using a heredoc in a more com-
plex expression, you need to continue the expression on the next line, as shown here:
printf(<<< Template
%s is %d years old.

Template
, "Fred", 35);

Single and double quotes in a heredoc are passed through:

$dialogue = <<< No More

"It's not going to happen!" she fumed.
He raised an eyebrow. "Want to bet?"
No_More;

echo $dialogue;

"It's not going to happen!" she fumed.
He raised an eyebrow. "Want to bet?"

Whitespace in a heredoc is also preserved:

$ws = <<< Enough
boo
hoo

Enough;

// $ws =" boo\n hoo\n";
The newline before the trailing terminator is removed, so these two assignments are
identical:

$s = 'Foo';

// same as

$s = <<< End_of_pointless_heredoc

Foo

End of pointless heredoc;
If you want a newline to end your heredoc-quoted string, you’ll need to add an extra
one yourself:

$s = <<< End
Foo

End;

Printing Strings

There are four ways to send output to the browser. The echo construct lets you print
many values at once, while print() prints only one value. The printf() function
builds a formatted string by inserting values into a template. The print_r() function
is useful for debugging—it prints the contents of arrays, objects, and other things, in
a more-or-less human-readable form.

Printing Strings | 75

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

echo

To put a string into the HTML of a PHP-generated page, use echo. While it looks—
and for the most part behaves—Ilike a function, echo is a language construct. This
means that you can omit the parentheses, so the following are equivalent:

echo "Printy";
echo("Printy"); // also valid

You can specify multiple items to print by separating them with commas:

echo "First", "second", "third";
Firstsecondthird

[t is a parse error to use parentheses when trying to echo multiple values:

// this is a parse error
echo("Hello", "world");

Because echo is not a true function, you can’t use it as part of a larger expression:

// parse error
if (echo("test")) {
echo("it worked!");

}

Such errors are easily remedied, though, by using the print() or printf() functions.

print()

The print() function sends one value (its argument) to the browser. It returns true if
the string was successfully displayed and false otherwise (e.g., if the user pressed the
Stop button on her browser before this part of the page was rendered):

if (! print("Hello, world")) {
die("you're not listening to me!");

Hello, world

printf()

The printf() function outputs a string built by substituting values into a template
(the format string). It is derived from the function of the same name in the standard
C library. The first argument to printf() is the format string. The remaining argu-
ments are the values to be substituted in. A % character in the format string indicates
a substitution.

Format modifiers

Each substitution marker in the template consists of a percent sign (%), possibly fol-
lowed by modifiers from the following list, and ends with a type specifier. (Use '%%"
to get a single percent character in the output.) The modifiers must appear in the
order in which they are listed here:

76 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A padding specifier denoting the character to use to pad the results to the appro-
priate string size. Specify 0, a space, or any character prefixed with a single
quote. Padding with spaces is the default.

A sign. This has a different effect on strings than on numbers. For strings, a
minus (-) here forces the string to be right-justified (the default is to left-justify).
For numbers, a plus (+) here forces positive numbers to be printed with a lead-
ing plus sign (e.g., 35 will be printed as +35).

The minimum number of characters that this element should contain. If the

result is less than this number of characters, the sign and padding specifier gov-
ern how to pad to this length.

For floating-point numbers, a precision specifier consisting of a period and a
number; this dictates how many decimal digits will be displayed. For types other
than double, this specifier is ignored.

Type specifiers

The type specifier tells printf() what type of data is being substituted. This deter-
mines the interpretation of the previously listed modifiers. There are eight types, as
listed in Table 4-2.

Table 4-2. printf() type specifiers

Specifier Meaning

B The argument is an integer and is displayed as a binary number.

C The argument is an integer and is displayed as the character with that value.

dorI The argument is an integer and is displayed as a decimal number.

e Eorf The argument is a double and is displayed as a floating-point number.

gorG The argument is a double with precision and is displayed as a floating-point number.

0 The argument is an integer and is displayed as an octal (base-8) number.

S The argument is a string and is displayed as such.

U The argument is an unsigned integer and is displayed as a decimal number.

X The argument is an integer and is displayed as a hexadecimal (base-16) number; lowercase letters are used.
X The argument is an integer and is displayed as a hexadecimal (base-16) number; uppercase letters are used.

The printf() function looks outrageously complex to people who aren’t C program-
mers. Once you get used to it, though, you’ll find it a powerful formatting tool. Here
are some examples:

* A floating-point number to two decimal places:

printf('%.2f", 27.452);
27.45

* Decimal and hexadecimal output:

printf('The hex value of %d is %x', 214, 214);
The hex value of 214 is dé

Printing Strings | 77

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

* Padding an integer to three decimal places:

printf('Bond. James Bond. %03d.', 7);
Bond. James Bond. 007.

* Formatting a date:
printf('%02d/%02d/%04y", $month, $day, $year);
02/15/2002
* A percentage:
printf('%.2f%% Complete', 2.1);
2.10% Complete
* Padding a floating-point number:
printf('You\'ve spent $%5.2f so far', 4.1);
You've spent $ 4.10 so far
The sprintf() function takes the same arguments as printf() but returns the built-
up string instead of printing it. This lets you save the string in a variable for later use:

$date = sprintf("%02d/%02d/%04d", $month, $day, $year);
// now we can interpolate $date wherever we need a date

print_r() and var_dump()

The print_r() construct intelligently displays what is passed to it, rather than cast-
ing everything to a string, as echo and print() do. Strings and numbers are simply
printed. Arrays appear as parenthesized lists of keys and values, prefaced by Array:

$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');

print_r($a);

Array

(

[name] => Fred
[age] => 35
[wife] => Wilma

)

Using print_r() on an array moves the internal iterator to the position of the last ele-
ment in the array. See Chapter 5 for more on iterators and arrays.

When you print_r() an object, you see the word Object, followed by the initialized
properties of the object displayed as an array:

class P {
var $name = 'nat’;
/] ...

}

$p = new P;
print_r($p);
Object

(

)

[name] => nat

78 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Boolean values and NULL are not meaningfully displayed by print r():

print r(true); print "\n";
1

print_r(false); print "\n";
print _r(null); print "\n";

For this reason, var_dump() is preferable to print_r() for debugging. The var_dump()
function displays any PHP value in a human-readable format:

var_dump(true);

bool(true)

var_dump(false);

bool(false);

var_dump(null);

bool(null);

var_dump(array('name' => Fred, 'age' => 35));

array(2) {
["name"]=>
string(4) "Fred"
["age"]=>
int(35)

}

class P {
var $name = 'Nat';
/...

}

$p = new P;

var_dump($p);

object(p)(1) {
["name"]=>
string(3) "Nat"

Beware of using print_r() or var_dump() on a recursive structure such as $GLOBALS
(which has an entry for GLOBALS that points back to itself). The print_r() function
loops infinitely, while var_dump() cuts off after visiting the same element three times.

Accessing Individual Characters

The strlen() function returns the number of characters in a string:

$string = 'Hello, world';
$length = strlen($string); // $length is 12

You can use array syntax (discussed in detail in Chapter 5) on a string, to address
individual characters:

$string = 'Hello';
for ($i=0; $i < strlen($string); $i++) {
printf("The %dth character is %s\n", $i, $string[$i]);

The oth character is H

Accessing Individual Characters | 79

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The 1th character is e
The 2th character is 1
The 3th character is 1
The 4th character is o

Cleaning Strings

Often, the strings we get from files or users need to be cleaned up before we can use
them. Two common problems with raw data are the presence of extraneous
whitespace, and incorrect capitalization (uppercase versus lowercase).

Removing Whitespace

You can remove leading or trailing whitespace with the trim(), 1trim(), and rtrim()
functions:

$trimmed = trim(string [, charlist]);

$trimmed = ltrim(string [, charlist]);

$trimmed = rtrim(string [, charlist]);
trim() returns a copy of string with whitespace removed from the beginning and
the end. 1trim() (the [is for left) does the same, but removes whitespace only from
the start of the string. rtrim() (the r is for right) removes whitespace only from the
end of the string. The optional charlist argument is a string that specifies all the
characters to strip. The default characters to strip are given in Table 4-3.

Table 4-3. Default characters removed by trim(), ltrim(), and rtrim()

Character ASCll value Meaning

" 0x20 Space

"\t" 0x09 Tab

"\n" 0x0A Newline (line feed)
"\r" 0x0D (arriage return
"\o" 0x00 NUL-byte

"\x0B" 0x0B Vertical tab

For example:

$title = " Programming PHP \n";

$str 1 = ltrim($title); // $str 1 is "Programming PHP \n"
$str 2 = rtrim($title); // $str_2 is " Programming PHP"
$str_3 = trim($title); // $str_3 is "Programming PHP"

Given a line of tab-separated data, use the charset argument to remove leading or
trailing whitespace without deleting the tabs:
$record = " Fred\tFlintstone\t35\tWilma \n";

$record = trim($record, " \r\n\0\x0B";
// $record is "Fred\tFlintstone\t35\tWilma"

80 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Changing Case

PHP has several functions for changing the case of strings: strtolower() and
strtoupper() operate on entire strings, ucfirst() operates only on the first charac-
ter of the string, and ucwords () operates on the first character of each word in the
string. Each function takes a string to operate on as an argument and returns a copy
of that string, appropriately changed. For example:

$stringl = "FRED flintstone";

$string2 = "barney rubble";

print(strtolower($string1));

print(strtoupper($string1));

print(ucfirst($string2));

print(ucwords($string2));

fred flintstone

FRED FLINTSTONE

Barney rubble

Barney Rubble
If you’ve got a mixed-case string that you want to convert to “title case,” where the
first letter of each word is in uppercase and the rest of the letters are in lowercase, use
a combination of strtolower() and ucwords():

print(ucwords(strtolower($string1)));
Fred Flintstone

Encoding and Escaping

Because PHP programs often interact with HTML pages, web addresses (URLs), and
databases, there are functions to help you work with those types of data. HTML,
web page addresses, and database commands are all strings, but they each require
different characters to be escaped in different ways. For instance, a space in a web
address must be written as %20, while a literal less-than sign (<) in an HTML docu-
ment must be written as &1t;. PHP has a number of built-in functions to convert to
and from these encodings.

HTML

Special characters in HTML are represented by entities such as 8amp; and 81t;. There
are two PHP functions for turning special characters in a string into their entities,
one for removing HTML tags, and one for extracting only meta tags.

Entity-quoting all special characters

The htmlspecialchars() function changes all characters with HTML entity equiva-
lents into those equivalents (with the exception of the space character). This includes
the less-than sign (<), the greater-than sign (>), the ampersand (8), and accented
characters.

Encoding and Escaping | 81

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example:

$string = htmlentities("Einstiirzende Neubauten");
echo $string;
Einstürzende Neubauten

The entity-escaped version (ü) correctly displays as i in the web page. As you
can see, the space has not been turned into 8nbsp;.
The htmlentities() function actually takes up to three arguments:

$output = htmlentities(input, quote style, charset);
The charset parameter, if given, identifies the character set. The default is “ISO-
8859-1”. The quote_style parameter controls whether single and double quotes are
turned into their entity forms. ENT_COMPAT (the default) converts only double quotes,

ENT_QUOTES converts both types of quotes, and ENT_NOQUOTES converts neither. There
is no option to convert only single quotes. For example:

$input = <<< End

"Stop pulling my hair!" Jane's eyes flashed.<p>

End;

$double = htmlentities($input);

// 8quot;Stop pulling my hair!" Jane's eyes flashed.81t;p8gt;

$both = htmlentities($input, ENT QUOTES);
// 8quot;Stop pulling my hair!" Janed#039;s eyes flashed.<pdgt;

$neither = htmlentities($input, ENT NOQUOTES);
// "Stop pulling my hair!" Jane's eyes flashed.&1t;p8gt;

Entity-quoting only HTML syntax characters

The htmlspecialchars() function converts the smallest set of entities possible to gen-
erate valid HTML. The following entities are converted:

* Ampersands (&) are converted to &
* Double quotes (") are converted to "

* Single quotes (') are converted to ' (if ENT_QUOTES is on, as described for
htmlentities())

* Less-than signs (<) are converted to &1t;

* Greater-than signs (>) are converted to 8gt;
If you have an application that displays data that a user has entered in a form, you
need to run that data through htmlspecialchars() before displaying or saving it. If

you don’t, and the user enters a string like "angle < 30" or "sturm & drang”, the
browser will think the special characters are HTML, and you’ll have a garbled page.

Like htmlentities(), htmlspecialchars() can take up to three arguments:

$output = htmlspecialchars(input, [quote style, [charset]]);

82 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The quote style and charset arguments have the same meaning that they do for
htmlentities().

There are no functions specifically for converting back from the entities to the origi-
nal text, because this is rarely needed. There is a relatively simple way to do this,
though. Use the get_html_translation table() function to fetch the translation table
used by either of these functions in a given quote style. For example, to get the trans-
lation table that htmlentities() uses, do this:

$table = get html translation_table(HTML ENTITIES);
To get the table for htmlspecialchars() in ENT_NOQUOTES mode, use:
$table = get_html_translation_table(HTML_SPECIALCHARS, ENT_NOQUOTES);

A nice trick is to use this translation table, flip it using array flip(), and feed it to
strtr() to apply it to a string, thereby effectively doing the reverse of htmlentities():

$str = htmlentities("Einstiirzende Neubauten"); // now it is encoded

$table = get html translation_table(HTML ENTITIES);
$rev_trans = array flip($table);

echo strtr($str,$rev trans); // back to normal

Einstiirzende Neubauten
You can, of course, also fetch the translation table, add whatever other translations
you want to it, and then do the strtr(). For example, if you wanted htmlentities()
to also encode spaces to 8nbsp;s, you would do:

$table = get html translation table(HTML ENTITIES);

$table[" '] = " ’;
$encoded = strtr($original, $table);

Removing HTML tags
The strip_tags() function removes HTML tags from a string:

$input = '<p>Howdy, "Cowboydquot;</p>";

$output = strip tags($input);

// $output is 'Howdy, "Cowboydquot;'
The function may take a second argument that specifies a string of tags to leave in
the string. List only the opening forms of the tags. The closing forms of tags listed in
the second parameter are also preserved:

$input = 'The bold tags will <i>stay</i><p>';

$output = strip tags($input, '');

// $output is 'The bold tags will stay'
Attributes in preserved tags are not changed by strip tags(). Because attributes
such as style and onmouseover can affect the look and behavior of web pages, preserv-
ing some tags with strip tags() won’t necessarily remove the potential for abuse.

Encoding and Escaping | 83

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Extracting meta tags

If you have the HTML for a web page in a string, the get meta_tags() function
returns an array of the meta tags in that page. The name of the meta tag (keywords,
author, description, etc.) becomes the key in the array, and the content of the meta
tag becomes the corresponding value:

$meta_tags = get meta_tags('http://www.example.com/");

echo "Web page made by {$meta_tags[author]}";
Web page made by John Doe

The general form of the function is:
$array = get meta_tags(filename [, use _include path]);

Pass a true value for use_include path to let PHP attempt to open the file using the
standard include path.

URLs

PHP provides functions to convert to and from URL encoding, which allows you to
build and decode URLs. There are actually two types of URL encoding, which differ
in how they treat spaces. The first (specified by RFC 1738) treats a space as just
another illegal character in a URL and encodes it as %20. The second (implementing
the application/x-www-form-urlencoded system) encodes a space as a + and is used in
building query strings.

Note that you don’t want to use these functions on a complete URL, like http://
www . example.com/hello, as they will escape the colons and slashes to produce
http%3A%2F%2Fwww. example.com%2Fhello. Only encode partial URLs (the bit after
http://www.example.com/), and add the protocol and domain name later.

RFC 1738 encoding and decoding
To encode a string according to the URL conventions, use rawurlencode():
$output = rawurlencode(input);

This function takes a string and returns a copy with illegal URL characters encoded
in the %dd convention.

If you are dynamically generating hypertext references for links in a page, you need
to convert them with rawurlencode():

$name = "Programming PHP";

$output = rawurlencode($name);
echo "http://localhost/$output"”;
http://localhost/Programming%20PHP

The rawurldecode() function decodes URL-encoded strings:

$encoded = 'Programming%20PHP';
echo rawurldecode($encoded);
Programming PHP

84 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Query-string encoding

The urlencode() and urldecode() functions differ from their raw counterparts only
in that they encode spaces as plus signs (+) instead of as the sequence %20. This is the
format for building query strings and cookie values, but because these values are
automatically decoded when they are passed through a form or cookie, you don’t
need to use these functions to process the current page’s query string or cookies. The
functions are useful for generating query strings:

$base_url = "http://www.google.com/q=";

$query = 'PHP sessions -cookies';

$url = $base url . urlencode($query);

echo $url;
http://www.google.com/q=PHP+sessions+-cookies

SQL

Most database systems require that string literals in your SQL queries be escaped.
SQL’s encoding scheme is pretty simple—single quotes, double quotes, NUL-bytes,
and backslashes need to be preceded by a backslash. The addslashes() function
adds these slashes, and the stripslashes() function removes them:

$string = <<< The_End

"It's never going to work," she cried,

as she hit the backslash (\\) key.

The_End;

echo addslashes($string);

\"It\'s never going to work,\" she cried,

as she hit the backslash (\\) key.

echo stripslashes($string);

"It's never going to work," she cried,

as she hit the backslash (\) key.

Some databases escape single quotes with another single quote instead of a back-
slash. For those databases, enable magic_quotes_sybase in your php.ini file.

C-String Encoding

The addcslashes() function escapes arbitrary characters by placing backslashes
before them. With the exception of the characters in Table 4-4, characters with ASCII
values less than 32 or above 126 are encoded with their octal values (e.g., "\002").
The addcslashes() and stripcslashes() functions are used with nonstandard data-
base systems that have their own ideas of which characters need to be escaped.

Table 4-4. Single-character escapes recognized by addcslashes() and stripcslashes()

ASCll value Encoding
7 \a
8 \b
9 \t

Encoding and Escaping | 85

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 4-4. Single-character escapes recognized by addcslashes() and stripcslashes() (continued)

ASClI value Encoding
10 \n
N \v
12 \f
13 \1r

Call addcslashes() with two arguments—the string to encode and the characters to
escape:

$escaped = addcslashes(string, charset);
Specify a range of characters to escape with the ".." construct:

echo addcslashes("hello\tworld\n", "\x00..\x1fz..\xff");
hello\tworld\n

Beware of specifying '0', 'a', 'b', 'f', 'n', 'r', 't', or 'v' in the character set, as
they will be turned into '\0', "\a', etc. These escapes are recognized by C and PHP
and may cause confusion.

stripcslashes() takes a string and returns a copy with the escapes expanded:
$string = stripcslashes(escaped);
For example:

$string = stripcslashes('hello\tworld\n');
// $string is "hello\tworld\n"

Comparing Strings

PHP has two operators and six functions for comparing strings to each other.

Exact Comparisons

You can compare two strings for equality with the == and === operators. These oper-
ators differ in how they deal with non-string operands. The == operator casts non-
string operands to strings, so it reports that 3 and "3" are equal. The === operator
does not cast, and returns false if the types of the arguments differ.

$01 = 3;

$02 = "3";

if ($01 == $02) {
echo("== returns true
");

}
if ($o
echo

1 === $02) {
("=== returns true
");
}

= returns true

86 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The comparison operators (<, <=, >, >=) also work on strings:

$him = "Fred";
$her = "Wilma";
if ($him < $her) {
print "$him comes before $her in the alphabet.\n";

}

Fred comes before Wilma in the alphabet
However, the comparison operators give unexpected results when comparing strings
and numbers:

$string = "PHP Rocks";

$number = 5;

if ($string < $number) {

echo("$string < $number");

}

PHP Rocks < 5
When one argument to a comparison operator is a number, the other argument is
cast to a number. This means that "PHP Rocks" is cast to a number, giving 0 (since
the string does not start with a number). Because 0 is less than 5, PHP prints "PHP
Rocks < 5".

To explicitly compare two strings as strings, casting numbers to strings if necessary,
use the stremp() function:

$relationship = stremp(string 1, string 2);

The function returns a number less than 0 if string 1 sorts before string 2, greater
than O if string 2 sorts before string 1, or 0 if they are the same:

$n = strcmp("PHP Rocks", 5);

echo($n);

1
A variation on strcmp() is strcasecmp(), which converts strings to lowercase before
comparing them. Its arguments and return values are the same as those for stremp():

$n = strcasecmp("Fred", "freD"); // $n is 0

Another variation on string comparison is to compare only the first few characters of
the string. The strnemp() and strncasecmp() functions take an additional argument,
the initial number of characters to use for the comparisons:

$relationship = strncmp(string 1, string 2, len);

$relationship = strncasecmp(string 1, string 2, len);
The final variation on these functions is natural-order comparison with strnatcmp()
and strnatcasecmp(), which take the same arguments as strcmp() and return the
same kinds of values. Natural-order comparison identifies numeric portions of the
strings being compared and sorts the string parts separately from the numeric parts.

Table 4-5 shows strings in natural order and ASCII order.

Comparing Strings | 87

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 4-5. Natural order versus ASCII order

Natural order ASCll order
picl.jpg pici.jpg
pic5.jpg pic10.jpg
pig10.3pg pics.Jpg
pic50.Jpg pic50.jpg

Approximate Equality

PHP provides several functions that let you test whether two strings are approxi-
mately equal: soundex(), metaphone(), similar text(), and levenshtein().

$soundex_code = soundex($string);

$metaphone_code = metaphone($string);

$in_common = similar text($string 1, $string 2 [, $percentage]);

$similarity = levenshtein($string 1, $string 2);

$similarity = levenshtein($string 1, $string 2 [, $cost_ins, $cost rep, $cost del]);

The Soundex and Metaphone algorithms each yield a string that represents roughly
how a word is pronounced in English. To see whether two strings are approximately
equal with these algorithms, compare their pronunciations. You can compare Soun-
dex values only to Soundex values and Metaphone values only to Metaphone val-
ues. The Metaphone algorithm is generally more accurate, as the following example
demonstrates:

$known = "Fred";
$query = "Phred";
if (soundex($known) == soundex($query)) {
print "soundex: $known sounds $query
";
} else {
print "soundex: $known doesn't sound like $query
";

}
if (metaphone($known) == metaphone($query)) {
print "metaphone: $known sounds $query
";
} else {
print "metaphone: $known doesn't sound like $query
";
}
soundex: Fred doesn't sound like Phred
metaphone: Fred sounds like Phred

The similar text() function returns the number of characters that its two string
arguments have in common. The third argument, if present, is a variable in which to
store the commonality as a percentage:

$string 1 = "Rasmus Lerdorf";

$string 2 = "Razmus Lehrdorf";

$common = similar text($string 1, $string 2, $percent);

printf("They have %d chars in common (%.2f%%).", $common, $percent);
They have 13 chars in common (89.66%).

88 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Levenshtein algorithm calculates the similarity of two strings based on how
many characters you must add, substitute, or remove to make them the same. For
instance, "cat" and "cot" have a Levenshtein distance of 1, because you need to

change only one character (the "a" to an "0") to make them the same:
$similarity = levenshtein("cat", "cot"); // $similarity is 1

This measure of similarity is generally quicker to calculate than that used by the
similar_text() function. Optionally, you can pass three values to the levenshtein()
function to individually weight insertions, deletions, and replacements—for instance,
to compare a word against a contraction.

This example excessively weights insertions when comparing a string against its pos-
sible contraction, because contractions should never insert characters:

echo levenshtein('would not', 'wouldn\'t', 500, 1, 1);

Manipulating and Searching Strings

PHP has many functions to work with strings. The most commonly used functions
for searching and modifying strings are those that use regular expressions to describe
the string in question. The functions described in this section do not use regular
expressions—they are faster than regular expressions, but they work only when
you’re looking for a fixed string (for instance, if you’re looking for "12/11/01" rather
than “any numbers separated by slashes”).

Substrings

If you know where in a larger string the interesting data lies, you can copy it out with
the substr() function:

$piece = substr(string, start [, length]);

The start argument is the position in string at which to begin copying, with 0
meaning the start of the string. The length argument is the number of characters to
copy (the default is to copy until the end of the string). For example:

$name = "Fred Flintstone";
$fluff = substr($name, 6, 4); // $fluff is "lint"
$sound = substr($name, 11); // $sound is "tone"

To learn how many times a smaller string occurs in a larger one, use substr_count():
$number = substr_count(big string, small string);
For example:

$sketch = <<< End_of Sketch
Well, there's egg and bacon; egg sausage and bacon; egg and spam;
egg bacon and spam; egg bacon sausage and spam; spam bacon sausage

Manipulating and Searching Strings | 89

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and spam; spam egg spam spam bacon and spam; spam sausage spam spam
bacon spam tomato and spam;

End_of Sketch;

$count = substr_count($sketch, "spam");

print("The word spam occurs $count times.");

The word spam occurs 14 times.

The substr_replace() function permits many kinds of string modifications:
$string = substr replace(original, new, start [, length]);

The function replaces the part of original indicated by the start (0 means the start
of the string) and Iength values with the string new. If no fourth argument is given,
substr_replace() removes the text from start to the end of the string.

For instance:

$greeting = "good morning citizen";
$farewell = substr replace($greeting, "bye", 5, 7);
// $farewell is "good bye citizen"

Use a length value of 0 to insert without deleting:

$farewell = substr replace($farewell, "kind ", 9, 0);
// $farewell is "good bye kind citizen"

Use a replacement of "" to delete without inserting:

$farewell = substr replace($farewell, "", 8);
// $farewell is "good bye"

Here’s how you can insert at the beginning of the string:

$farewell = substr replace($farewell, "now it's time to say ", 0, 0);
// $farewell is "now it's time to say good bye"'

A negative value for start indicates the number of characters from the end of the
string from which to start the replacement:

$farewell = substr replace($farewell, "riddance", -3);
// $farewell is "now it's time to say good riddance"

A negative length indicates the number of characters from the end of the string at
which to stop deleting:

$farewell = substr replace($farewell, "", -8, -5);
// $farewell is "now it's time to say good dance"

Miscellaneous String Functions

The strrev() function takes a string and returns a reversed copy of it:
$string = strrev(string);
For example:

echo strrev("There is no cabal");
labac on si erehT

90 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The str_repeat() function takes a string and a count and returns a new string con-
sisting of the argument string repeated count times:

$repeated = str_repeat(string, count);
For example, to build a crude horizontal rule:
echo str repeat('-', 40);

The str_pad() function pads one string with another. Optionally, you can say what
string to pad with, and whether to pad on the left, right, or both:

$padded = str_pad(to_pad, length [, with [, pad type 1]);
The default is to pad on the right with spaces:

$string = str pad('Fred Flintstone', 30);
echo "$string:35:Wilma";
Fred Flintstone :35:Wilma

The optional third argument is the string to pad with:

$string = str_pad('Fred Flintstone', 30, '. ');
echo "{$string}3s";
Fred Flintstone. 35

The optional fourth argument can be either STR_PAD RIGHT (the default), STR_PAD_
LEFT, or STR_PAD BOTH (to center). For example:

echo '[' . str_pad('Fred Flintstone', 30, ' ', STR_PAD_LEFT) . "J\n";

echo '[' . str pad('Fred Flintstone', 30, ' ', STR_PAD BOTH) . "]\n";

[Fred Flintstone]
[Fred Flintstone]

Decomposing a String

PHP provides several functions to let you break a string into smaller components. In
increasing order of complexity, they are explode(), strtok(), and sscanf().

Exploding and imploding

Data often arrives as strings, which must be broken down into an array of values. For
instance, you might want to separate out the comma-separated fields from a string
such as "Fred, 25,Wilma". In these situations, use the explode() function:

$array = explode(separator, string [, limit]);

The first argument, separator, is a string containing the field separator. The second
argument, string, is the string to split. The optional third argument, limit, is the
maximum number of values to return in the array. If the limit is reached, the last ele-
ment of the array contains the remainder of the string:

$input = 'Fred,25,Wilma’;

$fields = explode(',"', $input);
// $fields is array('Fred', '25', 'Wilma')

Manipulating and Searching Strings | 91

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

$fields = explode(',"', $input, 2);
// $fields is array('Fred', '25,Wilma‘)

The implode() function does the exact opposite of explode()—it creates a large
string from an array of smaller strings:

$string = implode(separator, array);

The first argument, separator, is the string to put between the elements of the sec-
ond argument, array. To reconstruct the simple comma-separated value string, sim-

ply say:
$fields = array('Fred', '25', 'Wilma');
$string = implode(',', $fields); // $string is 'Fred,25,Wilma’

The join() function is an alias for implode().

Tokenizing

The strtok() function lets you iterate through a string, getting a new chunk (token)
each time. The first time you call it, you need to pass two arguments: the string to
iterate over and the token separator:

$first_chunk = strtok(string, separator);

To retrieve the rest of the tokens, repeatedly call strtok() with only the separator:
$next_chunk = strtok(separator);

For instance, consider this invocation:

$string = "Fred,Flintstone,35,Wilma";
$token = strtok($string, ",");
while ($token !== false) {
echo("$token
");
$token = strtok(",");

}
Fred

Flintstone

35
Wilma

The strtok() function returns false when there are no more tokens to be returned.

Call strtok() with two arguments to reinitialize the iterator. This restarts the token-
izer from the start of the string.

sscanf()
The sscanf() function decomposes a string according to a printf()-like template:

$array = sscanf(string, template);
$count = sscanf(string, template, vari, ...);

If used without the optional variables, sscanf() returns an array of fields:

$string = "Fred\tFlintstone (35)";
$a = sscanf($string, "%s\t%s (%d)");

92 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

print_r($a);Array

(
[0] => Fred
[1] => Flintstone
[2] => 35

)

Pass references to variables to have the fields stored in those variables. The number
of fields assigned is returned:

$string = "Fred\tFlintstone (35)";

$n = sscanf($string, "%s\ths (%d)", &$first, &$last, &$age);

echo "Matched n fields: $first $last is $age years old";
Fred Flintstone is 35 years old

String-Searching Functions

Several functions find a string or character within a larger string. They come in three
families: strpos() and strrpos(), which return a position; strstr(), strchr(), and
friends, which return the string they find; and strspn() and strcspn(), which return
how much of the start of the string matches a mask.

In all cases, if you specify a number as the “string” to search for, PHP treats that
number as the ordinal value of the character to search for. Thus, these function calls
are identical because 44 is the ASCII value of the comma:

$pos = strpos($large, ","); // find last comma
$pos = strpos($large, 44); // find last comma
All the string-searching functions return false if they can’t find the substring you
specified. If the substring occurs at the start of the string, the functions return 0.
Because false casts to the number 0, always compare the return value with === when
testing for failure:
if ($pos === false) {
// wasn't found
} else {
// was found, $pos is offset into string

}

Searches returning position

The strpos() function finds the first occurrence of a small string in a larger string:
$position = strpos(large string, small string);

If the small string isn’t found, strpos() returns false.

The strrpos() function finds the last occurrence of a character in a string. It takes
the same arguments and returns the same type of value as strpos().

For instance:

$record = "Fred,Flintstone,35,Wilma";

$pos = strrpos($record, ","); // find last comma

Manipulating and Searching Strings | 93

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

echo("The last comma in the record is at position $pos");
The last comma in the record is at position 18
If you pass a string as the second argument to strrpos(), only the first character is
searched for. To find the last occurrence of a multicharacter string, reverse the
strings and use strpos():
$long = "Today is the day we go on holiday to Florida";
$to _find = "day";
$pos = strpos(strrev—($long), strrev($to find));
if ($pos === false) {
echo("Not found");
} else {
// $pos is offset into reversed strings
// Convert to offset into regular strings
$pos = strlen($long) - $pos - strlen($to find);;
echo("Last occurrence starts at position $pos");

}

Last occurrence starts at position 30

Searches returning rest of string

The strstr() function finds the first occurrence of a small string in a larger string
and returns from that small string on. For instance:

$record = "Fred,Flintstone,35,Wilma";
$rest = strstr($record, ","); // $rest is ",Flintstone,35,Wilma"

The variations on strstr() are:
stristr()
Case-insensitive strstr()

strchr()
Alias for strstr()

strrchr()
Find last occurrence of a character in a string

As with strrpos(), strrchr () searches backward in the string, but only for a charac-
ter, not for an entire string.

Searches using masks

If you thought strrchr() was esoteric, you haven’t seen anything yet. The strspn()
and strcspn() functions tell you how many characters at the beginning of a string
are comprised of certain characters:

$length = strspn(string, charset);
For example, this function tests whether a string holds an octal number:

function is octal ($str) {
return strspn($str, '01234567') == strlen($str);
}

94 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The ¢ in strespn() stands for complement—it tells you how much of the start of the
string is not composed of the characters in the character set. Use it when the number of
interesting characters is greater than the number of uninteresting characters. For exam-
ple, this function tests whether a string has any NUL-bytes, tabs, or carriage returns:
function has_bad_chars ($str) {
return strcspn($str, "\n\t\0o");

}

Decomposing URLs

The parse_url() function returns an array of components of a URL:
$array = parse_url(url);

For example:
$bits = parse_url('http://me:secret@example.com/cgi-bin/board?user=fred);
print_r($bits);

Array

(
[scheme] => http

[host] => example.com
[user] => me
[pass] => secret
[path] => /cgi-bin/board
[query] => user=fred
)
The possible keys of the hash are scheme, host, port, user, pass, path, query, and

fragment.

Regular Expressions

If you need more complex searching functionality than the previous methods pro-
vide, you can use regular expressions. A regular expression is a string that represents
a pattern. The regular expression functions compare that pattern to another string
and see if any of the string matches the pattern. Some functions tell you whether
there was a match, while others make changes to the string.

PHP provides support for two different types of regular expressions: POSIX and Perl-
compatible. POSIX regular expressions are less powerful, and sometimes slower,
than the Perl-compatible functions, but can be easier to read. There are three uses for
regular expressions: matching, which can also be used to extract information from a
string; substituting new text for matching text; and splitting a string into an array of
smaller chunks. PHP has functions for all three behaviors for both Perl and POSIX
regular expressions. For instance, ereg() does a POSIX match, while preg match()
does a Perl match. Fortunately, there are a number of similarities between basic
POSIX and Perl regular expressions, so we’ll cover those before delving into the
details of each library.

Regular Expressions | 95

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Basics

Most characters in a regular expression are literal characters, meaning that they
match only themselves. For instance, if you search for the regular expression "cow" in
the string "Dave was a cowhand", you get a match because "cow" occurs in that string.

Some characters, though, have special meanings in regular expressions. For instance,
a caret (") at the beginning of a regular expression indicates that it must match the
beginning of the string (or, more precisely, anchors the regular expression to the
beginning of the string):

ereg('~cow', 'Dave was a cowhand'); // returns false

ereg('~cow', 'cowabunga!'); // returns true
Similarly, a dollar sign ($) at the end of a regular expression means that it must
match the end of the string (i.e., anchors the regular expression to the end of the

string):
ereg('cow$', 'Dave was a cowhand'); // returns false
ereg('cow$', "Don't have a cow"); // returns true

A period (.) in a regular expression matches any single character:

ereg('c.t', 'cat'); // returns true
ereg('c.t', 'cut'); // returns true
ereg('c.t', 'ct'); // returns true
ereg('c.t', 'bat'); // returns false
ereg('c.t', 'ct'); // returns false

If you want to match one of these special characters (called a metacharacter), you
have to escape it with a backslash:

ereg('\$5\.00", 'Your bill is $5.00 exactly'); // returns true

ereg('$5.00', 'Your bill is $5.00 exactly'); // returns false

Regular expressions are case-sensitive by default, so the regular expression "cow
doesn’t match the string "COW". If you want to perform a case-insensitive POSIX-style
match, you can use the eregi() function. With Perl-style regular expressions, you
still use preg_match(), but specify a flag to indicate a case-insensitive match (as you’ll
see when we discuss Perl-style regular expressions in detail later in this chapter).

So far, we haven’t done anything we couldn’t have done with the string functions
we've already seen, like strstr(). The real power of regular expressions comes
from their ability to specify abstract patterns that can match many different charac-
ter sequences. You can specify three basic types of abstract patterns in a regular
expression:

* A set of acceptable characters that can appear in the string (e.g., alphabetic char-
acters, numeric characters, specific punctuation characters)

* A set of alternatives for the string (e.g., "com", "edu", "net", or "org")

* A repeating sequence in the string (e.g., at least one but no more than five
numeric characters)

96 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

These three kinds of patterns can be combined in countless ways, to create regular
expressions that match such things as valid phone numbers and URLs.

Character Classes

To specify a set of acceptable characters in your pattern, you can either build a char-
acter class yourself or use a predefined one. You can build your own character class
by enclosing the acceptable characters in square brackets:

ereg('c[aeiou]t', 'I cut my hand'); // returns true
ereg('c[aeiou]t', 'This crusty cat'); // returns true
ereg('c[aeiou]t’, 'What cart?'); // returns false
ereg('c[aeiou]t', '14ct gold'); // returns false

The regular expression engine finds a "c", then checks that the next character is one
of "a", "e", "i", "o", or "u". If it isn’t a Vowel the match fails and the engine goes
back to looking for another "c". If a vowel is found, though, the engine then checks
that the next character is a "t". If it is, the engine is at the end of the match and so
returns true. If the next character isn’t a "t", the engine goes back to looking for

another "c"

You can negate a character class with a caret (*) at the start:

ereg('c[*aeiou]t', 'I cut my hand'); // returns false
ereg('c[*aeiou]t', 'Reboot chthon'); // returns true
ereg('c["aeiou]t', '14ct gold'); // returns false

In this case, the regular expression engine is looking for a "c", followed by a charac-

ter that isn’t a vowel, followed by a "t".

You can define a range of characters with a hyphen (-). This simplifies character
classes like “all letters” and “all digits”:

ereg('[0-9]%", 'we are 25% complete'); // returns true
ereg('[0123456789]%", 'we are 25% complete'); // returns true
ereg('[a-z]t ') "11th'); // returns false
ereg('[a-z]t', 'cat'); // returns true
ereg('[a-z]t", 'PIT'); // returns false
ereg('[a-zA-Z]!", '111"); // returns false
ereg('[a-zA-Z]!", 'stop!'); // returns true

When you are specifying a character class, some special characters lose their mean-
ing, while others take on new meaning. In particular, the $ anchor and the period
lose their meaning in a character class, while the © character is no longer an anchor
but negates the character class if it is the first character after the open bracket. For
instance, [*\]] matches any character that is not a closing bracket, while [$.7]
matches any dollar sign, period, or caret.

The various regular expression libraries define shortcuts for character classes, includ-
ing digits, alphabetic characters, and whitespace. The actual syntax for these short-
cuts differs between POSIX-style and Perl-style regular expressions. For instance, with
POSIX, the whitespace character class is "[[:space:]]", while with Perl it is "\s".

Regular Expressions | 97

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Alternatives
You can use the vertical pipe (|) character to specify alternatives in a regular
expression:

ereg('cat|dog', 'the cat rubbed my legs'); // returns true

ereg('cat|dog', 'the dog rubbed my legs'); // returns true

ereg('cat|dog', 'the rabbit rubbed my legs'); // returns false

The precedence of alternation can be a surprise: '“cat|dog$' selects from '~cat' and
"dog$', meaning that it matches a line that either starts with "cat" or ends with
"dog". If you want a line that contains just "cat" or "dog", you need to use the regu-
lar expression '~(cat|dog)$"'.

You can combine character classes and alternation to, for example, check for strings
that don’t start with a capital letter:

ereg('~([a-z]|[0-9])", 'The quick brown fox'); // returns false
ereg('~([a-z]|[0-9])", 'jumped over'); // returns true
ereg('*([a-z]|[0-9])"', '10 lazy dogs'); // returns true

Repeating Sequences

To specify a repeating pattern, you use something called a quantifier. The quantifier
goes after the pattern that’s repeated and says how many times to repeat that pat-
tern. Table 4-6 shows the quantifiers that are supported by both POSIX and Perl reg-
ular expressions.

Table 4-6. Regular expression quantifiers

Quantifier Meaning

? Oor1

* 0 or more

+ 1 ormore

{n} Exactly n times

{n,m} At least n, no more than m times
{n,} Atleast n times

To repeat a single character, simply put the quantifier after the character:

ereg('ca+t', 'caaaaaaat'); // returns true
ereg('ca+t', 'ct'); // returns false
ereg('ca?t’, 'caaaaaaat'); // returns false
ereg('ca*t’, 'ct'); // returns true

With quantifiers and character classes, we can actually do something useful, like
matching valid U.S. telephone numbers:

ereg('[0-9]{3}-[0-9]{3}-[0-9]{4}", '303-555-1212"); // returns true
ereg('[0-9]{3}-[0-9]{3}-[0-9]{4}", '64-9-555-1234"); // returns false

98 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Subpatterns

You can use parentheses to group bits of a regular expression together to be treated
as a single unit called a subpattern:
ereg('a (very)+big dog', 'it was a very very big dog'); // returns true
ereg('*(cat|dog)$', 'cat'); // returns true
ereg('*(cat|dog)$', 'dog'); // returns true
The parentheses also cause the substring that matches the subpattern to be cap-
tured. If you pass an array as the third argument to a match function, the array is
populated with any captured substrings:
ereg('([0-9]+)", 'You have 42 magic beans', $captured);
// returns true and populates $captured
The zeroth element of the array is set to the entire string being matched against. The
first element is the substring that matched the first subpattern (if there is one), the
second element is the substring that matched the second subpattern, and so on.

POSIX-Style Regular Expressions

Now that you understand the basics of regular expressions, we can explore the
details. POSIX-style regular expressions use the Unix locale system. The locale sys-
tem provides functions for sorting and identifying characters that let you intelli-
gently work with text from languages other than English. In particular, what
constitutes a “letter” varies from language to language (think of 4 and ¢), and there
are character classes in POSIX regular expressions that take this into account.

However, POSIX regular expressions are designed for use with only textual data. If
your data has a NUL-byte (\x00) in it, the regular expression functions will interpret
it as the end of the string, and matching will not take place beyond that point. To do
matches against arbitrary binary data, you’ll need to use Perl-compatible regular
expressions, which are discussed later in this chapter. Also, as we already men-
tioned, the Perl-style regular expression functions are often faster than the equiva-
lent POSIX-style ones.

Character Classes

As shown in Table 4-7, POSIX defines a number of named sets of characters that you
can use in character classes. The expansions given in Table 4-7 are for English. The
actual letters vary from locale to locale.

Table 4-7. POSIX character classes

Class Description Expansion
[:alnum:] Alphanumeric characters [0-9a-zA-7]
[:alpha:] Alphabetic characters (letters) [a-zA-Z]

POSIX-Style Regular Expressions | 99

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 4-7. POSIX character classes (continued)

Class Description Expansion

[:ascii:] 7-bit ASClI [\x01-\x7F]

[:blank:] Horizontal whitespace (space, tab) [\t]

[:entrl:] Control characters [\X01-\x1F]

[:digit:] Digits [0-9]

[:graph:] Characters that use ink to print (non-space, [M\x01-\x20]
non-control)

[:lower:] Lowercase letter [a-z]

[:print:] Printable character (graph class plus space and [\t\x20-\xFF]
tab)

[:punct:] Any punctuation character, such as the period (.) [-1"#$%8" ()%+, ./ 5<=>20[\\]*_“{|}~]
and the semicolon (;)

[:space:] Whitespace (newline, carriage return, tab, space, [\n\r\t \x0B]
vertical tab)

[:upper:] Uppercase letter [A-Z]

[:xdigit:] Hexadecimal digit [0-9a-fA-F]

Each [:something:] class can be used in place of a character in a character class. For
instance, to find any character that’s a digit, an uppercase letter, or an at sign (@), use
the following regular expression:

[@[:digit:][:upper:]]
However, you can’t use a character class as the endpoint of a range:
ereg('[A-[:lower:]]", 'string'); // invalid regular expression
Some locales consider certain character sequences as if they were a single character—
these are called collating sequences. To match one of these multicharacter sequences

in a character class, enclose it with [. and .]. For example, if your locale has the col-
lating sequence ch, you can match s, t, or ch with this character class:

[st[.ch.]]

The final POSIX extension to character classes is the equivalence class, specified by
enclosing the character in [= and =]. Equivalence classes match characters that have
the same collating order, as defined in the current locale. For example, a locale may
define a, 4, and & as having the same sorting precedence. To match any one of them,
the equivalence class is [=a=].

Anchors

An anchor limits a match to a particular location in the string (anchors do not match
actual characters in the target string). Table 4-8 lists the anchors supported by
POSIX regular expressions.

100 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table 4-8. POSIX anchors

Anchor Matches

N Start of string
$ End of string

[[:<:]] Start of word
[[:>:]] End of word

A word boundary is defined as the point between a whitespace character and an
identifier (alphanumeric or underscore) character:

ereg('[[:<:]lgun[[:>:]]", 'the Burgundy exploded'); // returns false
ereg('gun', "the Burgundy exploded'); // returns true

Note that the beginning and end of a string also qualify as word boundaries.

Functions

There are three categories of functions for POSIX-style regular expressions: match-
ing, replacing, and splitting.

Matching

The ereg() function takes a pattern, a string, and an optional array. It populates the
array, if given, and returns true or false depending on whether a match for the pat-
tern was found in the string:

$found = ereg(pattern, string [, captured]);
For example:

ereg('y.*e$', 'Sylvie'); // returns true

ereg('y(.*)e$', 'Sylvie', $a); // returns true, $a is array('Sylvie', 'lvi')
The zeroth element of the array is set to the entire string being matched against. The
first element is the substring that matched the first subpattern, the second element is
the substring that matched the second subpattern, and so on.

The eregi() function is a case-insensitive form of ereg(). Its arguments and return
values are the same as those for ereg().

Example 4-1 uses pattern matching to determine whether a credit-card number
passes the Luhn checksum and whether the digits are appropriate for a card of a spe-
cific type.

Example 4-1. Credit-card validator

// The Luhn checksum determines whether a credit-card number is syntactically
// correct; it cannot, however, tell if a card with the number has been issued,
// is currently active, or has enough space left to accept a charge.

POSIX-Style Regular Expressions | 101

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 4-1. Credit-card validator (continued)

function IsValidCreditCard($inCardNumber, $inCardType) {
// Assume it's okay
$isvalid = true;

// Strip all non-numbers from the string

$inCardNumber = ereg replace('[~[:digit:]]',"", $inCardNumber);

// Make sure the card number and type match
switch($inCardType) {
case 'mastercard':
$isvalid = ereg('~5[1-5].{14}$", $inCardNumber);
break;

case 'visa':
$isvalid = ereg('~4.{15}$|"4.{12}$"', $inCardNumber);
break;

case 'amex':
$isvalid = ereg('"3[47].{13}$"', $inCardNumber);
break;

case 'discover':
$isvalid = ereg('~6011.{12}$"', $inCardNumber);
break;

case 'diners':
$isvalid = ereg('~30[0-5].{11}$|*3[68].{12}$", $inCardNumber);
break;

case 'jcb':
$isvalid = ereg('~3.{15}$|*2131|1800.{11}$', $inCardNumber);
break;

}

// It passed the rudimentary test; let's check it against the Luhn this time
if($isvalid) {

// Work in reverse

$inCardNumber = strrev($inCardNumber);

// Total the digits in the number, doubling those in odd-numbered positions
$theTotal = 0;
for ($i = 0; $i < strlen($inCardNumber); $i++) {

$theAdder = (int) $inCardNumber{$i};

// Double the numbers in odd-numbered positions
if($1i % 2) {

$theAdder << 1;

if($theAdder > 9) { $theAdder -= 9; }
}

$theTotal += $theAdder;
}

102 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 4-1. Credit-card validator (continued)

// Valid cards will divide evenly by 10
$isvalid = (($theTotal % 10) == 0);
}

return $isvalid;

}

Replacing
The ereg replace() function takes a pattern, a replacement string, and a string in

which to search. It returns a copy of the search string, with text that matched the
pattern replaced with the replacement string:

$changed = ereg replace(pattern, replacement, string);

If the pattern has any grouped subpatterns, the matches are accessible by putting the
characters \1 through \9 in the replacement string. For example, we can use ereg_
replace() to replace characters wrapped with [b] and [/b] tags with equivalent
HTML tags:

$string = 'It is [b]not[/b] a matter of diplomacy.';

echo ereg replace ('\[b]J([*]]*)\[/b]", '\1", $string);

It is not a matter of diplomacy.
The eregi replace() function is a case-insensitive form of ereg replace(). Its argu-
ments and return values are the same as those for ereg_replace().

Splitting

The split() function uses a regular expression to divide a string into smaller
chunks, which are returned as an array. If an error occurs, split() returns false.
Optionally, you can say how many chunks to return:

$chunks = split(pattern, string [, limit]);

The pattern matches the text that separates the chunks. For instance, to split out the
terms from an arithmetic expression:

$expression = '3*5+i/6-12";
$terms = split('[/+*-]1", $expression);
// $terms is array('3', 's', 'i', '6', '12)

If you specify a limit, the last element of the array holds the rest of the string:

$expression = '3*5+i/6-12";
$terms = split('[/+*-]", $expression, 3);
// $terms is array('3', 's', 'i'/6-12)

Perl-Compatible Regular Expressions

Perl has long been considered the benchmark for powerful regular expressions. PHP
uses a C library called pcre to provide almost complete support for Perl’s arsenal of

Perl-Compatible Regular Expressions | 103

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

regular expression features. Perl regular expressions include the POSIX classes and
anchors described earlier. A POSIX-style character class in a Perl regular expression
works and understands non-English characters using the Unix locale system. Perl
regular expressions act on arbitrary binary data, so you can safely match with pat-
terns or strings that contain the NUL-byte (\x00).

Delimiters

Perl-style regular expressions emulate the Perl syntax for patterns, which means that
each pattern must be enclosed in a pair of delimiters. Traditionally, the slash (/)
character is used; for example, /pattern/. However, any nonalphanumeric character
other than the backslash character (\) can be used to delimit a Perl-style pattern.
This is useful when matching strings containing slashes, such as filenames. For
example, the following are equivalent:

preg_match('/\/usr\/local\//', '/usr/local/bin/perl'); // returns true

preg match('#/usr/local/#', '/usr/local/bin/perl'); // returns true
Parentheses (()), curly braces ({}), square brackets ([]), and angle brackets (<>) can
be used as pattern delimiters:

preg_match('{/usr/local/}", '/usr/local/bin/perl'); // returns true

The later section on “Trailing Options” discusses the single-character modifiers you
can put after the closing delimiter to modify the behavior of the regular expression
engine. A very useful one is x, which makes the regular expression engine strip
whitespace and #-marked comments from the regular expression before matching.
These two patterns are the same, but one is much easier to read:

"/([[:alpha:]]+)\s+\1/'

"/(# start capture
[[:alpha:]]+ # a word
\s+ # whitespace
\1 # the same word again
) # end capture
/x'

Match Behavior

While Perl’s regular expression syntax includes the POSIX constructs we talked
about earlier, some pattern components have a different meaning in Perl. In particu-
lar, Perl’s regular expressions are optimized for matching against single lines of text
(although there are options that change this behavior).

The period (.) matches any character except for a newline (\n). The dollar sign ($)
matches at the end of the string or, if the string ends with a newline, just before that
newline:

preg match('/is (.*)$/', "the key is in my pants", $captured);
// $captured[1] is 'in my pants’

104 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Character Classes

Perl-style regular expressions support the POSIX character classes but also define
some of their own, as shown in Table 4-9.

Table 4-9. Perl-style character classes

Character class Meaning Expansion

\s Whitespace [\r\n \t]

\S Non-whitespace [M\r\n \t]

\w Word (identifier) character [0-9A-Za-z_]

\W Non-word (identifier) character [*0-9A-Za-z_]

\d Digit [0-9]

\D Non-digit [*0-9]
Anchors

Perl-style regular expressions also support additional anchors, as listed in Table 4-10.

Table 4-10. Perl-style anchors

Assertion Meaning

\b Word boundary (between \w and \W or at start or end of string)
\B Non-word boundary (between \w and \w, or \W and \W)

\A Beginning of string

\Z End of string or before \n at end

\z End of string

A

Start of line (or after \n if /m flag is enabled)
$ End of line (or before \n if /m flag is enabled)

Quantifiers and Greed

The POSIX quantifiers, which Perl also supports, are always greedy. That is, when
faced with a quantifier, the engine matches as much as it can while still satisfying the
rest of the pattern. For instance:

preg_match('/(<.*>)/", 'do not press the button', $match);

// $match[1] is 'not'
The regular expression matches from the first less-than sign to the last greater-than
sign. In effect, the .* matches everything after the first less-than sign, and the engine

backtracks to make it match less and less until finally there’s a greater-than sign to be
matched.

This greediness can be a problem. Sometimes you need minimal (non-greedy) match-
ing—that is, quantifiers that match as few times as possible to satisty the rest of the

Perl-Compatible Regular Expressions | 105

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

pattern. Perl provides a parallel set of quantifiers that match minimally. They’re easy
to remember, because they’re the same as the greedy quantifiers, but with a question
mark (?) appended. Table 4-11 shows the corresponding greedy and non-greedy
quantifiers supported by Perl-style regular expressions.

Table 4-11. Greedy and non-greedy quantifiers in Perl-compatible regular expressions

Greedy quantifier Non-greedy quantifier
? ??

* *?

+ +?

{m} {m}?

{m,} {m,}?

{mx n} {m, n }7

Here’s how to match a tag using a non-greedy quantifier:

preg match('/(<.*?>)/", "do not press the button', $match);
// $match[1] is ''

Another, faster way is to use a character class to match every non-greater-than char-

acter up to the next greater-than sign:

preg match('/(<[*>]*>)/", 'do not press the button', $match);
// $match[1] is ''

Non-Capturing Groups

If you enclose a part of a pattern in parentheses, the text that matches that subpat-
tern is captured and can be accessed later. Sometimes, though, you want to create a
subpattern without capturing the matching text. In Perl-compatible regular expres-
sions, you can do this using the (?:subpattern) construct:

preg_match('/(?:ello)(.*)/"', 'jello biafra', $match);
// $match[1] is ' biafra’

Backreferences

You can refer to text captured earlier in a pattern with a backreference: \1 refers to
the contents of the first subpattern, \2 refers to the second, and so on. If you nest
subpatterns, the first begins with the first opening parenthesis, the second begins
with the second opening parenthesis, and so on.

For instance, this identifies doubled words:

preg match('/([[:alpha:]]+)\s+\1/", 'Paris in the the spring', $m);
// returns true and $m[1] is 'the'

You can’t capture more than 99 subpatterns.

106 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Trailing Options

Perl-style regular expressions let you put single-letter options (flags) after the regular
expression pattern to modify the interpretation, or behavior, of the match. For
instance, to match case-insensitively, simply use the 1 flag:

preg match('/cat/i', 'Stop, Catherine!'); // returns true

Table 4-12 shows the modifiers from Perl that are supported in Perl-compatible regu-

lar expressions.

Table 4-12. Perl flags

Modifier

/regexp/i
/regexp/s
/regexp/x
/regexp/m
/regexp/e

Meaning

Match case-insensitively.

Make period (.) match any character, including newline (\n).

Remove whitespace and comments from the pattern.

Make caret (*) match after, and dollar sign ($) match before, internal newlines (\n).

If the replacement string is PHP code, eval() it to get the actual replacement string.

PHP’s Perl-compatible regular expression functions also support other modifiers that
aren’t supported by Perl, as listed in Table 4-13.

Table 4-13. Additional PHP flags

Modifier
/regexp/U

/regexp/u
/regexp/X
/regexp/A
/regexp/D
/regexp/S

Meaning

Reverses the greediness of the subpattern; * and + now match as little as possible, instead of as much
as possible

(auses pattern strings to be treated as UTF-8

Causes a backslash followed by a character with no special meaning to emit an error

Causes the beginning of the string to be anchored as if the first character of the pattern were »
Causes the $ character to match only at the end of a line

Causes the expression parser to more carefully examine the structure of the pattern, so it may run
slightly faster the next time (such asin a loop)

It’s possible to use more than one option in a single pattern, as demonstrated in the
following example:

$message = <<< END
To: you@youcorp
From: me@mecorp
Subject: pay up

Pay me or else!

END;

preg_match('/~subject: (.*)/im", $message, $match);
// $match[1] is 'pay up'

downloaded from: lib.ommolkefab.ir

Perl-Compatible Regular Expressions | 107

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Inline Options

In addition to specifying patternwide options after the closing pattern delimiter, you
can specify options within a pattern to have them apply only to part of the pattern.
The syntax for this is:

(?flags:subpattern)
For example, only the word “PHP” is case-insensitive in this example:

preg match('/I like (?i:PHP)/', 'I like pHp'); // returns true
The i, m, s, U, x, and X options can be applied internally in this fashion. You can use
multiple options at once:

preg match('/eat (?ix:fo o d)/', 'eat FoOD'); // returns true
Prefix an option with a hyphen (-) to turn it oft:

preg match('/(?-1i:I like) PHP/i', 'I like pHp'); // returns true
An alternative form enables or disables the flags until the end of the enclosing sub-
pattern or pattern:

preg match('/I like (?i)PHP/', 'I like pHp'); // returns true

preg match('/I (like (?i)PHP) a lot/', 'I like pHp a lot', $match);

// $match[1] is 'like pHp'
Inline flags do not enable capturing. You need an additional set of capturing paren-
theses do that.

Lookahead and Lookbehind

It’s sometimes useful in patterns to be able to say “match here if this is next.” This is
particularly common when you are splitting a string. The regular expression
describes the separator, which is not returned. You can use lookahead to make sure
(without matching it, thus preventing it from being returned) that there’s more data
after the separator. Similarly, lookbehind checks the preceding text.

Lookahead and lookbehind come in two forms: positive and negative. A positive look-
ahead or lookbehind says “the next/preceding text must be like this.” A negative loo-
kahead or lookbehind says “the next/preceding text must not be like this.” Table 4-14
shows the four constructs you can use in Perl-compatible patterns. None of the con-
structs captures text.

Table 4-14. Lookahead and lookbehind assertions

Construct Meaning
(?=subpattern) Positive lookahead
(?!subpattern) Negative lookahead
(?<=subpattern) Positive lookbehind
(?<!subpattern) Negative lookbehind

108 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A simple use of positive lookahead is splitting a Unix mbox mail file into individual
messages. The word "From" starting a line by itself indicates the start of a new mes-
sage, so you can split the mailbox into messages by specifying the separator as the
point where the next text is "From" at the start of a line:

$messages = preg split('/(?="From)/m', $mailbox);

A simple use of negative lookbehind is to extract quoted strings that contain quoted
delimiters. For instance, here’s how to extract a single-quoted string (note that the
regular expression is commented using the x modifier):

$input = <<< END

name = 'Tim O\'Reilly’;
END;

$pattern = <<< END
' # opening quote

(# begin capturing

K2 # the string

(<P \\\\) # skip escaped quotes
) # end capturing

1

END;

preg match("($pattern)x", $input, $match);
echo $match[1];

Tim O\'Reilly

closing quote

The only tricky part is that, to get a pattern that looks behind to see if the last charac-
ter was a backslash, we need to escape the backslash to prevent the regular expres-
sion engine from seeing "\)", which would mean a literal close parenthesis. In other
words, we have to backslash that backslash: "\\)". But PHP’s string-quoting rules
say that \\ produces a literal single backslash, so we end up requiring four back-
slashes to get one through the regular expression! This is why regular expressions
have a reputation for being hard to read.

Perl limits lookbehind to constant-width expressions. That is, the expressions can-
not contain quantifiers, and if you use alternation, all the choices must be the same
length. The Perl-compatible regular expression engine also forbids quantifiers in
lookbehind, but does permit alternatives of different lengths.

Cut

The rarely used once-only subpattern, or cut, prevents worst-case behavior by the
regular expression engine on some kinds of patterns. Once matched, the subpattern
is never backed out of.

The common use for the once-only subpattern is when you have a repeated expres-
sion that may itself be repeated:

/(a+|b+)*\.+/

Perl-Compatible Regular Expressions | 109

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This code snippet takes several seconds to report failure:

$p = '/(at|b+)*\.+$/";
$s = 'abababababbabbbabbaaaaaabbbbabbababababababbba..!";
if (preg match($p, $s)) {
echo "Y";
} else {
echo "N";
}
This is because the regular expression engine tries all the different places to start the
match, but has to backtrack out of each one, which takes time. If you know that
once something is matched it should never be backed out of, you should mark it
with (?>subpattern):

$p = '/ (>a+|b+)*\.+$/";

The cut never changes the outcome of the match; it simply makes it fail faster.

Conditional Expressions

A conditional expression is like an if statement in a regular expression. The general
form is:

(?(condition)yespattern)

(?(condition)yespattern|nopattern)
If the assertion succeeds, the regular expression engine matches the yespattern. With
the second form, if the assertion doesn’t succeed, the regular expression engine skips
the yespattern and tries to match the nopattern.

The assertion can be one of two types: either a backreference, or a lookahead or
lookbehind match. To reference a previously matched substring, the assertion is a
number from 1-99 (the most backreferences available). The condition uses the pat-
tern in the assertion only if the backreference was matched. If the assertion is not a
backreference, it must be a positive or negative lookahead or lookbehind assertion.

Functions

There are five classes of functions that work with Perl-compatible regular expres-
sions: matching, replacing, splitting, filtering, and a utility function for quoting text.

Matching

The preg match() function performs Perl-style pattern matching on a string. It’s the
equivalent of the m// operator in Perl. The preg match() function takes the same
arguments and gives the same return value as the ereg() function, except that it
takes a Perl-style pattern instead of a standard pattern:

$found = preg match(pattern, string [, captured]);

110 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For example:

preg match('/y.*e$/', 'Sylvie'); // returns true

preg match('/y(.*)e$/"', Sylvie', $m); // $m is array('Sylvie', 'lvi')
While there’s an eregi() function to match case-insensitively, there’s no preg
matchi() function. Instead, use the i flag on the pattern:

preg match('y.*e$/i', 'SylvIe'); // returns true

The preg match all() function repeatedly matches from where the last match
ended, until no more matches can be made:

$found = preg match all(pattern, string, matches [, order]);

The order value, either PREG_PATTERN_ORDER or PREG_SET ORDER, determines the layout
of matches. We'll look at both, using this code as a guide:

$string = <<< END

13 dogs

12 rabbits

8 cows

1 goat

END;

preg match_all('/(\d+) (\S+)/', $string, $m1, PREG_PATTERN_ORDER);

preg_match_all('/(\d+) (\S+)/', $string, $m2, PREG_SET ORDER);
With PREG_PATTERN ORDER (the default), each element of the array corresponds to a
particular capturing subpattern. So $m1[0] is an array of all the substrings that
matched the pattern, $m1[1] is an array of all the substrings that matched the first
subpattern (the numbers), and $m1[2] is an array of all the substrings that matched
the second subpattern (the words). The array $m1 has one more elements than sub-
patterns.

With PREG_SET_ORDER, each element of the array corresponds to the next attempt to
match the whole pattern. So $m2[0] is an array of the first set of matches ('13 dogs"',
13", 'dogs'), $m2[1] is an array of the second set of matches ('12 rabbits', '12',
"rabbits'), and so on. The array $m2 has as many elements as there were successful
matches of the entire pattern.

Example 4-2 fetches the HTML at a particular web address into a string and extracts
the URLs from that HTML. For each URL, it generates a link back to the program
that will display the URLSs at that address.

Example 4-2. Extracting URLs from an HTML page

<?php
if (getenv('REQUEST METHOD') == 'POST') {
$url = $ POST[url];
} else {
$url = $ GET[url];
}

7>

Perl-Compatible Regular Expressions | 111

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 4-2. Extracting URLs from an HTML page (continued)

<form action="<?php $PHP_SELF ?>" method="POST">

URL: <input type="text" name="url" value="<?php $url ?>" />

<input type="submit">

</form>

<?php
if ($url) {

$remote = fopen($url, 'r');

$html = fread($remote, 1048576); // read up to 1 MB of HTML
fclose($remote);

$urls = '(http|telnet|gopher|file|wais|ftp)';

$1trs = "\w';
$gunk = '/#~: 24=8%@!\-";
$punc = ".i\-";

$any = "$1ltrs$gunk$punc”;

preg match_all("{

\b # start at word boundary
$urls # need resource and a colon
[$any] +? # followed by one or more of any valid
characters--but be conservative
and take only what you need
(2= # the match ends at
[$punc]* # punctuation
[*$any] # followed by a non-URL character
| # or
$ # the end of the string
)

Ix", $html, $matches);
printf("I found %d URLs<P>\n", sizeof($matches[0]));
foreach ($matches[0] as $u) {
$link = $PHP_SELF . '?url=" . urlencode($u);
echo "$u
\n";
}

>

Replacing

The preg_replace() function behaves like the search and replace operation in your
text editor. It finds all occurrences of a pattern in a string and changes those occur-
rences to something else:

$new = preg replace(pattern, replacement, subject [, limit]);

The most common usage has all the argument strings, except for the integer 1imit.
The limit is the maximum number of occurrences of the pattern to replace (the
default, and the behavior when a limit of -1 is passed, is all occurrences).

$better = preg replace('/<.*?>/', 'I', 'do not press the button');
// $better is 'do !not! press the button’

112 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Pass an array of strings as subject to make the substitution on all of them. The new
strings are returned from preg_replace():
$names = array('Fred Flintstone',
'Barney Rubble',
'Wilma Flintstone',
'Betty Rubble');
$tidy = preg replace('/(\w)\w* (\w+)/', '\1 \2', $names);
// $tidy is array ('F Flintstone', 'B Rubble', 'W Flintstone', 'B Rubble')
To perform multiple substitutions on the same string or array of strings with one call
to preg_replace(), pass arrays of patterns and replacements:
$contractions = array("/don't/i", "/won't/i", "/can't/i");
$expansions = array('do not', 'will not', 'can not');
$string = "Please don't yell--I can't jump while you won't speak";
$longer = preg replace($contractions, $expansions, $string);
// $longer is 'Please do not yell--I can not jump while you will not speak’;
If you give fewer replacements than patterns, text matching the extra patterns is
deleted. This is a handy way to delete a lot of things at once:
$html_gunk = array('/<.*?>/", "/8&.*2;/");
$html = '8eacute; : very cute';
$stripped = preg replace($html gunk, array(), $html);
// $stripped is ' : very cute'
If you give an array of patterns but a single string replacement, the same replace-
ment is used for every pattern:

$stripped = preg replace($html gunk, '', $html);

The replacement can use backreferences. Unlike backreferences in patterns, though,
the preferred syntax for backreferences in replacements is $1, $2, $3, etc. For example:
echo preg replace('/(\w)\w+\s+(\w+)/", '$2, $1.', 'Fred Flintstone')
Flintstone, F.
The /e modifier makes preg_replace() treat the replacement string as PHP code that
returns the actual string to use in the replacement. For example, this converts every
Celsius temperature to Fahrenheit:
$string = 'It was 5C outside, 20C inside';

echo preg replace('/(\d+)C\b/e", '$1*9/5+32"', $string);
It was 41 outside, 68 inside

This more complex example expands variables in a string:

$name = 'Fred';

$age = 35;

$string = '$name is $age';

preg replace('/\$(\w+)/e", '$$1', $string);
Each match isolates the name of a variable ($name, $age). The $1 in the replacement
refers to those names, so the PHP code actually executed is $name and $age. That code
evaluates to the value of the variable, which is what’s used as the replacement. Whew!

Perl-Compatible Regular Expressions | 113

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Splitting

Whereas you use preg match all() to extract chunks of a string when you know
what those chunks are, use preg split() to extract chunks when you know what
separates the chunks from each other:

$chunks = preg split(pattern, string [, 1limit [, flags 11);

The pattern matches a separator between two chunks. By default, the separators are
not returned. The optional 1imit specifies the maximum number of chunks to return
(-1 is the default, which means all chunks). The flags argument is a bitwise OR
combination of the flags PREG_SPLIT_NO_EMPTY (empty chunks are not returned) and
PREG_SPLIT DELIM_CAPTURE (parts of the string captured in the pattern are returned).

For example, to extract just the operands from a simple numeric expression, use:

$ops = preg split('{[+*/-]}", '"3+5%9/2");

// $ops is array('3', 's', '9', '2")
To extract the operands and the operators, use:

$ops = preg split('{([+*/-1)}', '3+5%9/2', -1, PREG SPLIT DELIM CAPTURE);

// $ops is array('3', '+', '5', '"*', ‘9", '/', '2')
An empty pattern matches at every boundary between characters in the string. This
lets you split a string into an array of characters:

$array = preg_split('//', $string);
A variation on preg replace() is preg replace callback(). This calls a function to
get the replacement string. The function is passed an array of matches (the zeroth
element is all the text that matched the pattern, the first is the contents of the first
captured subpattern, and so on). For example:

function titlecase ($s) {
return ucfirst(strtolower($s[0]));

}

$string = 'goodbye cruel world';

$new = preg replace_callback('/\w+/', 'titlecase', $string);
echo $new;

Goodbye Cruel World

Filtering an array with a regular expression

The preg grep() function returns those elements of an array that match a given
pattern:

$matching = preg grep(pattern, array);
For instance, to get only the filenames that end in .txt, use:

$textfiles = preg grep('/\.txt$/", $filenames);

114 | Chapter4: Strings

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Quoting for regular expressions
The preg_quote() function creates a regular expression that matches only a given
string:

$re = preg_quote(string [, delimiter]);

Every character in string that has special meaning inside a regular expression (e.g., *
or $) is prefaced with a backslash:

echo preg quote('$5.00 (five bucks)');
\$5\.00 \(five bucks\)

The optional second argument is an extra character to be quoted. Usually, you pass
your regular expression delimiter here:

$to find = '/usr/local/etc/rsync.conf';

$re = preg quote($filename, '/');

if (preg match("/$re", $filename)) {
// found it!

}

Differences from Perl Regular Expressions

Although very similar, PHP’s implementation of Perl-style regular expressions has a
few minor differences from actual Perl regular expressions:

* The null character (ASCII 0) is not allowed as a literal character within a pattern
string. You can reference it in other ways, however (\000, \x00, etc.).

* The \E, \G, \L, \1,\Q, \u, and \U options are not supported.

* The (?{ some perl code }) construct is not supported.

* The /D, /G, /U, /u, /A, and /X modifiers are supported.

* The vertical tab \v counts as a whitespace character.

* Lookahead and lookbehind assertions cannot be repeated using *, +, or ?.

* Parenthesized submatches within negative assertions are not remembered.

* Alternation branches within a lookbehind assertion can be of different lengths.

Perl-Compatible Regular Expressions | 115

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CHAPTER 5
Arrays

As we discussed in Chapter 2, PHP supports both scalar and compound data types.
In this chapter, we’ll discuss one of the compound types: arrays. An array is a collec-
tion of data values, organized as an ordered collection of key-value pairs.

This chapter talks about creating an array, adding and removing elements from an
array, and looping over the contents of an array. There are many built-in functions
that work with arrays in PHP, because arrays are very common and useful. For exam-
ple, if you want to send email to more than one email address, you’ll store the email
addresses in an array and then loop through the array, sending the message to the
current email address. Also, if you have a form that permits multiple selections, the
items the user selected are returned in an array.

Indexed Versus Associative Arrays

There are two kinds of arrays in PHP: indexed and associative. The keys of an
indexed array are integers, beginning at 0. Indexed arrays are used when you identify
things by their position. Associative arrays have strings as keys and behave more like
two-column tables. The first column is the key, which is used to access the value.

PHP internally stores all arrays as associative arrays, so the only difference between
associative and indexed arrays is what the keys happen to be. Some array features are
provided mainly for use with indexed arrays, because they assume that you have or
want keys that are consecutive integers beginning at 0. In both cases, the keys are
unique—that is, you can’t have two elements with the same key, regardless of
whether the key is a string or an integer.

PHP arrays have an internal order to their elements that is independent of the keys
and values, and there are functions that you can use to traverse the arrays based on
this internal order. The order is normally that in which values were inserted into the
array, but the sorting functions described later let you change the order to one based
on keys, values, or anything else you choose.

116

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Identifying Elements of an Array

You can access specific values from an array using the array variable’s name, fol-
lowed by the element’s key (sometimes called the index) within square brackets:

$age['Fred']

$shows[2]
The key can be either a string or an integer. String values that are equivalent to inte-
ger numbers (without leading zeros) are treated as integers. Thus, $array[3] and
$array['3'] reference the same element, but $array['03"] references a different ele-
ment. Negative numbers are valid keys, and they don’t specify positions from the
end of the array as they do in Perl.

You don’t have to quote single-word strings. For instance, $age['Fred'] is the same
as $age[Fred]. However, it’s considered good PHP style to always use quotes,
because quoteless keys are indistinguishable from constants. When you use a con-
stant as an unquoted index, PHP uses the value of the constant as the index:

define('index',5);
echo $array[index]; // retrieves $array[5], not $array['index'];

You must use quotes if you’re using interpolation to build the array index:
$age["Clone$number"]
However, don’t quote the key if you’re interpolating an array lookup:

// these are wrong

print "Hello, $person['name’]";
print "Hello, $person["name"]";
// this is right

print "Hello, $person[name]";

Storing Data in Arrays

Storing a value in an array will create the array if it didn’t already exist, but trying to
retrieve a value from an array that hasn’t been defined yet won’t create the array. For

example:
// $addresses not defined before this point
echo $addresses[0]; // prints nothing
echo $addresses; // prints nothing
$addresses[0] = 'spam@cyberpromo.net’;
echo $addresses; // prints "Array"

Using simple assignment to initialize an array in your program leads to code like this:

$addresses[0] = 'spam@cyberpromo.net’;
$addresses[1] = 'abuse@example.com';
$addresses[2] = 'root@example.com';

/] ...

Storing Datain Arrays | 117

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

That’s an indexed array, with integer indexes beginning at 0. Here’s an associative

array:
$price['Gasket'] = 15.29;
$price['Wheel'] = 75.25;
$price['Tire'] = 50.00;

/...

An easier way to initialize an array is to use the array() construct, which builds an
array from its arguments:

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com',
'root@example.com');

To create an associative array with array(), use the => symbol to separate indexes
from values:

$price = array('Gasket' => 15.29,
'"Wheel" => 75.25,
'Tire' => 50.00);

Notice the use of whitespace and alignment. We could have bunched up the code,
but it wouldn’t have been as easy to read:

$price = array('Gasket'=>15.29, 'Wheel'=>75.25, 'Tire'=>50.00);
To construct an empty array, pass no arguments to array():
$addresses = array();

You can specify an initial key with => and then a list of values. The values are
inserted into the array starting with that key, with subsequent values having sequen-
tial keys:

$days = array(1 => 'Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday', 'Saturday', 'Sunday');

// 2 is Tuesday, 3 is Wednesday, etc.
If the initial index is a non-numeric string, subsequent indexes are integers begin-
ning at 0. Thus, the following code is probably a mistake:

$whoops = array('Friday' => 'Black', 'Brown', 'Green');

// same as
$whoops = array('Friday' => 'Black', 0 => 'Brown', 1 => 'Green');

Adding Values to the End of an Array

To insert more values into the end of an existing indexed array, use the [] syntax:

$family = array('Fred', 'Wilma');
$family[] = 'Pebbles’; // $family[2] is 'Pebbles’

This construct assumes the array’s indexes are numbers and assigns elements into the
next available numeric index, starting from 0. Attempting to append to an associative

118 | Chapter5: Arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

array is almost always a programmer mistake, but PHP will give the new elements
numeric indexes without issuing a warning;:

$person = array('name' => 'Fred');
$person[] = 'Wilma'; // $person[0] is now 'Wilma'
Assigning a Range of Values

The range() function creates an array of consecutive integer or character values
between the two values you pass to it as arguments. For example:

$numbers = range(2, 5); // $numbers = array(2, 3, 4, 5);
$letters = range('a', 'z'); // $numbers holds the alphabet
$reversed numbers = range(5, 2); // $numbers = array(5, 4, 3, 2);

Only the first letter of a string argument is used to build the range:

range('aaa', 'zzz') /// same as range('a','z")

Getting the Size of an Array

The count() and sizeof() functions are identical in use and effect. They return the
number of elements in the array. There is no stylistic preference about which func-
tion you use. Here’s an example:

$family = array('Fred', 'Wilma', 'Pebbles');
$size = count($family); // $size is 3

These functions do not consult any numeric indexes that might be present:

$confusion = array(10 => 'ten', 11 => 'eleven', 12 => 'twelve');
$size = count($confusion); // $size is 3

Padding an Array

To create an array initialized to the same value, use array pad(). The first argument
to array pad() is the array, the second argument is the minimum number of ele-
ments you want the array to have, and the third argument is the value to give any ele-
ments that are created. The array pad() function returns a new padded array,
leaving its argument array alone.

Here’s array pad() in action:

$scores = array(5, 10);
$padded = array pad($scores, 5, 0); // $padded is now array(5, 10, 0, 0, 0)

Notice how the new values are appended to the end of the array. If you want the new
values added to the start of the array, use a negative second argument:

$padded = array pad($scores, -5, 0);

Storing Datain Arrays | 119

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Assign the results of array pad() back to the original array to get the effect of an in
situ change:

$scores = array pad($scores, 5, 0);

If you pad an associative array, existing keys will be preserved. New elements will
have numeric keys starting at 0.

Multidimensional Arrays

The values in an array can themselves be arrays. This lets you easily create multidi-
mensional arrays:

$row 0 = array(1, 2, 3);
$row 1 = array(4, 5, 6);
$row 2 = array(7, 8, 9);
$multi = array($row 0, $row 1, $row 2);

You can refer to elements of multidimensional arrays by appending more []s:
$value = $multi[2][0]; // row 2, column 0. $value = 7

To interpolate a lookup of a multidimensional array, you must enclose the entire
array lookup in curly braces:

echo("The value at row 2, column 0 is {$multi[2][0]}\n");
Failing to use the curly braces results in output like this:

The value at row 2, column 0 is Array[o]

Extracting Multiple Values

To copy all of an array’s values into variables, use the 1ist() construct:
list($variable, ...) = $array;

The array’s values are copied into the listed variables, in the array’s internal order. By
default that’s the order in which they were inserted, but the sort functions described
later let you change that. Here’s an example:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
list($n, $a, $w) = $person; // $n is 'Fred', $a is 35, $w is 'Betty’

If you have more values in the array than in the 1ist(), the extra values are ignored:
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
list($n, $a) = $person; // $n is 'Fred', $a is 35
If you have more values in the 1list() than in the array, the extra values are set to
NULL:

$values = array('hello', 'world');
list($a, $b, $c) = $values; // $a is 'hello', $b is 'world', $c is NULL

120 | Chapter5: Arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Two or more consecutive commas in the 1ist() skip values in the array:

$values = range('a', 'e');
list($m,,$n,,%$0) = $values; // $m is 'a', $n is 'c', $o is 'e'

Slicing an Array

To extract only a subset of the array, use the array slice() function:
$subset = array slice(array, offset, length);

The array slice() function returns a new array consisting of a consecutive series of
values from the original array. The offset parameter identifies the initial element to
copy (0 represents the first element in the array), and the lIength parameter identifies
the number of values to copy. The new array has consecutive numeric keys starting
at 0. For example:

$people = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Jo');

$middle = array slice($people, 2, 2); // $middle is array('Harriet', 'Brenda')
It is generally only meaningful to use array_slice() on indexed arrays (i.e., those
with consecutive integer indexes, starting at 0):

// this use of array_slice() makes no sense

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
$subset = array slice($person, 1, 2); // $subset is array(0 => 35, 1 => 'Betty')

Combine array slice() with list() to extract only some values to variables:

$order = array('Tom', 'Dick', 'Harriet', 'Brenda’, 'Jo');
list($second, $third) = array slice($order, 1, 2);
// $second is 'Dick', $third is 'Harriet'

Splitting an Array into Chunks

To divide an array into smaller, evenly sized arrays, use the array _chunk() function:
$chunks = array chunk(array, size [, preserve keys]);

The function returns an array of the smaller arrays. The third argument, preserve
keys, is a Boolean value that determines whether the elements of the new arrays have
the same keys as in the original (useful for associative arrays) or new numeric keys
starting from 0 (useful for indexed arrays). The default is to assign new keys, as
shown here:

$nums = range(1, 7);

$rows = array chunk($nums, 3);

print _r($rows);

Array

[o] => Array

[0o] => 1

Extracting Multiple Values | 121

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

[1] => 2
[2] => 3
)
[1] => Array
(
[0] => 4
[1] => 5
[2] => 6
)
[2] => Array
(
[0] => 7
)
)
Keys and Values

The array keys() function returns an array consisting of only the keys in the array,
in internal order:

$array_of keys = array keys(array);
Here’s an example:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$keys = array keys($person); // $keys is array('name', 'age', 'wife')

PHP also provides a (less generally useful) function to retrieve an array of just the val-
ues in an array, array values():

$array of values = array values(array);
As with array keys(), the values are returned in the array’s internal order:

$values = array values($person); // $values is array('Fred', 35, 'Wilma');

Checking Whether an Element Exists

To see if an element exists in the array, use the array key exists() function:
if (array key exists(key, array)) { ... }

The function returns a Boolean value that indicates whether the second argument is
a valid key in the array given as the first argument.

It’s not sufficient to simply say:
if ($person['name']) { ... } // this can be misleading

Even if there is an element in the array with the key name, its corresponding value
might be false (i.e., 0, NULL, or the empty string). Instead, use array key exists() as
follows:

$person['age'] = 0 // unborn?
']

if ($person['age 3 {

122 | Chapter5: Arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

echo "true!\n";

if (array key exists('age', $person)) {
echo "exists!\n";

}

exists!

In PHP 4.0.6 and earlier versions, the array key exists() function was called key_
exists(). The original name is still retained as an alias for the new name.

Many people use the isset() function instead, which returns true if the element
exists and is not NULL:

$a = array(0,NULL,"'");
function tf($v) { return $v 2 "T" : "F"; }
for ($i=0; $i < 4; $i++) {
printf("%d: %s %s\n", $i, tf(isset($a[$i])), tf(array key exists($i, $a)));

:TT
ct FT
:TT
: FF

W N R O -

Removing and Inserting Elements in an Array

The array_splice() function can remove or insert elements in an array:
$removed = array splice(array, start [, length [, replacement] 1);
We'll look at array splice() using this array:
$subjects = array('physics', 'chem', 'math', 'bio', 'cs', 'drama', 'classics');
We can remove the math, bio, and cs elements by telling array splice() to start at
position 2 and remove 3 elements:

$removed = array splice($subjects, 2, 3);
// $removed is array('math', 'bio', 'cs')
// $subjects is array('physics', 'chem');

If you omit the length, array splice() removes to the end of the array:

$removed = array splice($subjects, 2);

// $removed is array('math', 'bio', 'cs', 'drama', 'classics')

// $subjects is array('physics', 'chem');
If you simply want to delete the elements and you don’t care about their values, you
don’t need to assign the results of array splice():

array splice($subjects, 2);
// $subjects is array('physics', 'chem');

To insert elements where others were removed, use the fourth argument:

$new = array('law', 'business', 'IS');
array splice($subjects, 4, 3, $new);
// $subjects is array('physics', 'chem', 'math', 'bio', 'law', 'business', 'IS')

Extracting Multiple Values | 123

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The size of the replacement array doesn’t have to be the same as the number of ele-
ments you delete. The array grows or shrinks as needed:

$new = array('law', 'business', 'IS');

array_splice($subjects, 2, 4, $new);

// $subjects is array('physics', 'chem', 'math', 'law', 'business', 'IS")
To get the effect of inserting new elements into the array, delete zero elements:

$subjects = array('physics', 'chem', 'math');

$new = array('law', 'business');

array_splice($subjects, 2, 0, $new);

// $subjects is array('physics', 'chem', 'law', 'business', 'math"')
Although the examples so far have used an indexed array, array_splice() also works
on associative arrays:

$capitals = array('USA' => 'Washington',

'Great Britain' => 'London',

'New Zealand' => 'Wellington',

'Australia’ => 'Canberra’,

'Ttaly' => 'Rome");
$down_under = array splice($capitals, 2, 2); // remove New Zealand and Australia
$france = array('France' => 'Paris');
array splice($capitals, 1, 0, $france); // insert France between USA and G.B.

Converting Between Arrays and Variables

PHP provides two functions, extract() and compact(), that convert between arrays
and variables. The names of the variables correspond to keys in the array, and the
values of the variables become the values in the array. For instance, this array:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
can be converted to, or built from, these variables:

$name = 'Fred';
$age = 35;
$wife = 'Betty';

Creating Variables from an Array

The extract() function automatically creates local variables from an array. The
indexes of the array elements are the variable names:

extract($person); // $name, $age, and $wife are now set

If a variable created by the extraction has the same name as an existing one, the
extracted variable overwrites the existing variable.

You can modify extract()’s behavior by passing a second argument. Appendix A
describes the possible values for this second argument. The most useful value is

124 | Chapter5: Arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

EXTR_PREFIX_ SAME, which says that the third argument to extract() is a prefix for the
variable names that are created. This helps ensure that you create unique variable
names when you use extract(). It is good PHP style to always use EXTR_PREFIX_ SAME,
as shown here:

$shape = "round";

$array = array("cover" => "bird", "shape" => "rectangular");

extract($array, EXTR_PREFIX_SAME, "book");

echo "Cover: $book cover, Book Shape: $book shape, Shape: $shape";
Cover: bird, Book Shape: rectangular, Shape: round

Creating an Array from Variables

The compact() function is the complement of extract(). Pass it the variable names
to compact either as separate parameters or in an array. The compact() function cre-
ates an associative array whose keys are the variable names and whose values are the
variable’s values. Any names in the array that do not correspond to actual variables
are skipped. Here’s an example of compact() in action:

$color = 'indigo';

$shape = 'curvy';

$floppy = 'none’;

$a = compact('color', 'shape', 'floppy');
// or

$names = array('color', 'shape', 'floppy');
$a = compact($names);

Traversing Arrays

The most common task with arrays is to do something with every element—for
instance, sending mail to each element of an array of addresses, updating each file in
an array of filenames, or adding up each element of an array of prices. There are sev-
eral ways to traverse arrays in PHP, and the one you choose will depend on your data
and the task you’re performing.

The foreach Construct

The most common way to loop over elements of an array is to use the foreach
construct:

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com');
foreach ($addresses as $value) {
echo "Processing $value\n";
}
Processing spam@cyberpromo.net
Processing abuse@example.com

Traversing Arrays | 125

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

PHP executes the body of the loop (the echo statement) once for each element of
$addresses in turn, with $value set to the current element. Elements are processed by
their internal order.

An alternative form of foreach gives you access to the current key:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
foreach ($person as $k => $v) {
echo "Fred's $k is $v\n";

}

Fred's name is Fred

Fred's age is 35

Fred's wife is Wilma
In this case, the key for each element is placed in $k and the corresponding value is
placed in $v.

The foreach construct does not operate on the array itself, but rather on a copy of it.
You can insert or delete elements in the body of a foreach loop, safe in the knowl-
edge that the loop won’t attempt to process the deleted or inserted elements.

The Iterator Functions

Every PHP array keeps track of the current element you’re working with; the pointer
to the current element is known as the iterator. PHP has functions to set, move, and
reset this iterator. The iterator functions are:

current()

Returns the element currently pointed at by the iterator
reset()

Moves the iterator to the first element in the array and returns it
next()

Moves the iterator to the next element in the array and returns it
prev()

Moves the iterator to the previous element in the array and returns it
end()

Moves the iterator to the last element in the array and returns it
each()

Returns the key and value of the current element as an array and moves the itera-
tor to the next element in the array

key()
Returns the key of the current element

The each(') function is used to loop over the elements of an array. It processes ele-
ments according to their internal order:

reset($addresses);
while (list($key, $value) = each($addresses)) {

126 | Chapter5: Arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

echo "$key is $value
\n";

}
0 is spam@cyberpromo.net
1 is abuse@example.com

This approach does not make a copy of the array, as foreach does. This is useful for
very large arrays when you want to conserve memory.

The iterator functions are useful when you need to consider some parts of the array
separately from others. Example 5-1 shows code that builds a table, treating the first
index and value in an associative array as table column headings.

Example 5-1. Building a table with the iterator functions

$ages = array('Person’ => 'Age’,

"Fred' => 35,
'Barney' => 30,
'Tigger' => 8,
"Pooh’ => 40);
// start table and print heading

reset($ages);

list($c1, $c2) = each($ages);

echo("<table><tr><th>$ci</th><th>$c2</th></tr>\n");

// print the rest of the values

while (1list($c1,$c2) = each($ages)) {
echo("<tr><td>$ci</td><td>$c2</td></tr>\n");

}

// end the table

echo("</table>");

<table><tr><th>Person</th><th>Age</th></tr>

<tr><td>Fred</td><td>35¢</td></tr>

<tr><td>Barney</td><td>30</td></tr>

<tr><td>Tigger</td><td>8</td></tr>

<try><td>Pooh</td><td>40</td></tr>

</table>

Using a for Loop

If you know that you are dealing with an indexed array, where the keys are consecu-
tive integers beginning at 0, you can use a for loop to count through the indexes.
The for loop operates on the array itself, not on a copy of the array, and processes
elements in key order regardless of their internal order.

Here’s how to print an array using for:

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com');
for($i = 0; $i < count($array); $i++) {
$value = $addresses[$i];
echo "$value\n";
}
spam@cyberpromo.net
abuse@example.com

Traversing Arrays | 127

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Calling a Function for Each Array Element

PHP provides a mechanism, array walk(), for calling a user-defined function once
per element in an array:

array walk(array, function name);

The function you define takes in two or, optionally, three arguments: the first is the
element’s value, the second is the element’s key, and the third is a value supplied to
array walk() when it is called. For instance, here’s another way to print table col-
umns made of the values from an array:

function print_row($value, $key) {

print("<tr><td>$value</td><td>$key</td></tr>\n");
}

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');

array walk($person, 'print row');
A variation of this example specifies a background color using the optional third
argument to array walk(). This parameter gives us the flexibility we need to print
many tables, with many background colors:

function print row($value, $key, $color) {
print("<tr><td bgcolor=$color>$value</td><td bgcolor=$color>$key</td></tr>\n");

}
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
array_walk($person, 'print_row', 'blue');

The array walk() function processes elements in their internal order.

Reducing an Array

A cousin of array walk(), array reduce(), applies a function to each element of the
array in turn, to build a single value:

$result = array reduce(array, function name [, default]);

The function takes two arguments: the running total, and the current value being
processed. It should return the new running total. For instance, to add up the
squares of the values of an array, use:

function add up ($running total, $current value) {
$running_total += $current value * $current_value;
return $running total;

}

$numbers = array(2, 3, 5, 7);
$total = array reduce($numbers, 'add up');
// $total is now 87

The array reduce() line makes these function calls:

add_up(2,3)
add_up(13,5)
add_up(38,7)

128 | Chapter5: Arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The default argument, if provided, is a seed value. For instance, if we change the call
to array_reduce() in the previous example to:

$total = array reduce($numbers, 'add_up', 11);
The resulting function calls are:

add_up(11,2)

add_up(13,3)

add_up(16,5)

add_up(21,7)
If the array is empty, array_reduce() returns the default value. If no default value is
given and the array is empty, array_reduce() returns NULL.

Searching for Values

The in_array() function returns true or false, depending on whether the first argu-
ment is an element in the array given as the second argument:

if (in_array(to_find, array [, strict])) { ... }

If the optional third argument is true, the types of to_find and the value in the array
must match. The default is to not check the types.

Here’s a simple example:

$addresses = array('spam@cyberpromo.net’, 'abuse@example.com',
'root@example.com');

$got_spam = in_array('spam@cyberpromo.net’, $addresses); // $got_spam is true

$got_milk = in_array('milk@tucows.com', $addresses); // $got milk is false

PHP automatically indexes the values in arrays, so in_array() is much faster than a
loop that checks every value to find the one you want.

Example 5-2 checks whether the user has entered information in all the required
fields in a form.

Example 5-2. Searching an array

<?php
function have required($array , $required fields) {
foreach($required fields as $field) {
if(empty($array[$field])) return false;

return true;

}

if($submitted) {
echo '<p>You ';
echo have_required($ _POST, array('name', 'email address')) ? 'did' : 'did not';
echo ' have all the required fields.</p>";

}

7>

Traversing Arrays | 129

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 5-2. Searching an array (continued)
<form action="<?= $PHP_SELF; ?>" method="POST">
<p>
Name: <input type="text" name="name" />

Email address: <input type="text" name="email address" />

Age (optional): <input type="text" name="age" />
</p>

<p align="center">
<input type="submit" value="submit" name="submitted" />
</p>
</form>

A variation on in_array() is the array search() function. While in_array() returns
true if the value is found, array_search() returns the key of the found element:
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$k = array_search($person, 'Wilma');
echo("Fred's $k is Wilma\n");
Fred's wife is Wilma
The array_search() function also takes the optional third strict argument, which
requires the types of the value being searched for and the value in the array to match.

Sorting

Sorting changes the internal order of elements in an array and optionally rewrites the
keys to reflect this new order. For example, you might use sorting to arrange a list of
scores from biggest to smallest, to alphabetize a list of names, or to order a set of
users based on how many messages they posted.

PHP provides three ways to sort arrays—sorting by keys, sorting by values without
changing the keys, or sorting by values and then changing the keys. Each kind of sort
can be done in ascending order, descending order, or an order defined by a user-
defined function.

Sorting One Array at a Time

The functions provided by PHP to sort an array are shown in Table 5-1.

Table 5-1. PHP functions for sorting an array

Effect Ascending Descending User-defined order
Sort array by values, then reassign indexes starting with 0 sort() rsort() usort()

Sort array by values asort() arsort() uasort()

Sort array by keys ksort() krsort() uksort()

The sort(), rsort(), and usort() functions are designed to work on indexed arrays,
because they assign new numeric keys to represent the ordering. They’re useful when

130 | Chapter5: Arays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

you need to answer questions like “what are the top 10 scores?” and “who’s the third
person in alphabetical order?” The other sort functions can be used on indexed
arrays, but you’ll only be able to access the sorted ordering by using traversal func-
tions such as foreach and next.

To sort names into ascending alphabetical order, you’d use this:

$names = array('cath', 'angela', 'brad', 'dave');
sort($names); // $names is now 'angela', 'brad', 'cath', 'dave'

To get them in reverse alphabetic order, simply call rsort() instead of sort().

If you have an associative array mapping usernames to minutes of login time, you
can use arsort() to display a table of the top three, as shown here:

$logins = array('njt' => 415,

'kt' => 492,
11" => 652,
"jht' => 441,
'3 => a1,
'wt' => 402);

arsort($logins);

$num_printed = 0;

echo("<table>\n");

foreach ($logins as $user => $time) {
echo("<tr><td>$user</td><td>$time</td></tr>\n");
if (++$num printed == 3) {

break; // stop after three

}

echo("</table>\n");

<table>
<tr><td>rl</td><td>652</td></tr>
<tr><tdskt</td><td>492¢</td></tr>
<tr><td>jht</td><td>441¢/td></tr>
</table>

If you want that table displayed in ascending order by username, use ksort():

ksort($logins);

echo("<table>\n");

foreach ($logins as $user => $time) {
echo("<tr><td>$user</td><td>$time</td></tr>\n");

echo("</table>\n");

<table>
<trs<tdsjht</td><td>441</td></tr>
<troctd>jj</tdr><td>441</td></tr>
<tro<tdokt</td><td>492¢</td></tr>
<trs<tdsnjt</td><td>415¢/td></tr>
<tr><td>rl</td><td>652¢</td></tr>
<try<tdowt</td><td>402</td></tr>
</table>

User-defined ordering requires that you provide a function that takes two values and
returns a value that specifies the order of the two values in the sorted array. The

Sorting | 131

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

function should return 1 if the first value is greater than the second, -1 if the first
value is less than the second, and 0 if the values are the same for the purposes of your
custom sort order.

Example 5-3 is a program that lets you try the various sorting functions on the same
data.

Example 5-3. Sorting arrays

<?php

function user sort($a, $b) {
// smarts is all-important, so sort it first
if($b == "smarts') {

return 1;
}
else if($a == 'smarts') {
return -1;
}
return ($a == $b) 2 0 : (($a < $b) ? -1 : 1);

}

$values = array('name' => 'Buzz Lightyear',
'email address' => 'buzz@starcommand.gal',
'age' => 32,
"smarts' => 'some');

if($submitted) {
if($sort_type == 'usort' || $sort_type == 'uksort' || $sort_type == 'uasort') {
$sort_type($values, 'user sort');

else {
$sort_type($values);
}
}

>

<form action="index.php">
<p>
<input type="radio" name="sort type" value="sort" checked="checked" />
Standard sort

<input type="radio" name="sort type" value="rsort" /> Reverse sort

<input type="radio" name="sort type" value="usort" /> User-defined sort

<input type="radio" name="sort_type" value="ksort" /> Key sort

<input type="radio" name="sort type" value="krsort" /> Reverse key sort

<input type="radio" name="sort type" value="uksort" /> User-defined key sort

<input type="radio" name="sort_type" value="asort" /> Value sort

<input type="radio" name="sort_type" value="arsort" /> Reverse value sort

<input type="radio" name="sort type" value="uasort" /> User-defined value sort

</p>

<p align="center">
<input type="submit" value="Sort" name="submitted" />
</p>

132 | Chapter5: Arays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Example 5-3. Sorting arrays (continued)

<p>
Values <?= $submitted ? "sorted by $sort type’
</p>

: "unsorted"; ?>:

<?php
foreach($values as $key=>$value) {
echo "$key: $value</1i>";

}
7>

</form>

Natural-Order Sorting

PHP’s built-in sort functions correctly sort strings and numbers, but they don’t cor-
rectly sort strings that contain numbers. For example, if you have the filenames
ex10.php, ex5.php, and ex1.php, the normal sort functions will rearrange them in
this order: ex1.php, ex10.php, ex5.php. To correctly sort strings that contain num-
bers, use the natsort() and natcasesort() functions:

$output = natsort(input);
$output = natcasesort(input);

Sorting Multiple Arrays at Once

The array multisort() function sorts multiple indexed arrays at once:
array multisort(array1 [, array2, ...]);

Pass it a series of arrays and sorting orders (identified by the SORT_ASC or SORT _DESC
constants), and it reorders the elements of all the arrays, assigning new indexes. It is
similar to a join operation on a relational database.

Imagine that you have a lot of people, and several pieces of data on each person:

$names = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Joe');

$ages = array(2s, 35, 29, 35, 35);

$zips = array(80522, '02140', 90210, 64141, 80522);
The first element of each array represents a single record—all the information known
about Tom. Similarly, the second element constitutes another record—all the infor-
mation known about Dick. The array multisort() function reorders the elements of
the arrays, preserving the records. That is, if Dick ends up first in the $names array
after the sort, the rest of Dick’s information will be first in the other arrays too. (Note
that we needed to quote Dick’s zip code to prevent it from being interpreted as an
octal constant.)

Here’s how to sort the records first ascending by age, then descending by zip code:

array multisort($ages, SORT_ASC, $zips, SORT DESC, $names, SORT ASC);

Sorting | 133

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

We need to include $names in the function call to ensure that Dick’s name stays with
his age and zip code. Printing out the data shows the result of the sort:
echo("<table>\n");
for ($i=0; $i < count($names); $i++) {
echo("<tr><td>$ages[$i]</td><td>$zips[$i]</td><td>$names[$i]</td>\n");

}
echo("</table>\n");

<table>
<tr><td>25¢</td><td>80522</td><td>Tom</td>
<try><td>29</td><td>90210</td><td>Harriet</td>
<try><td>35¢</td><td>80522¢</td><td>Joe</td>
<try><td>35¢</td><td>64141</td><td>Brenda</td>
<tr><td>35¢</td><td>02140</td><td>Dick</td>
</table>

Reversing Arrays

The array_reverse() function reverses the internal order of elements in an array:
$reversed = array reverse(array);

Numeric keys are renumbered starting at 0, while string indexes are unaffected. In
general, it’s better to use the reverse-order sorting functions instead of sorting and
then reversing the order of an array.

The array flip() function returns an array that reverses the order of each original
element’s key-value pair:

$flipped = array flip(array);

That is, for each element of the array whose value is a valid key, the element’s value
becomes its key and the element’s key becomes its value. For example, if you have an
array mapping usernames to home directories, you can use array_flip() to create an
array mapping home directories to usernames:
$u2h = array('gnat' => '/home/staff/nathan’,
'rasmus' => '/home/elite/rasmus’,
'ktatroe' => '/home/staff/kevin');
$h2u = array_flip($u2h);
$user = $h2u['/home/staff/kevin']; // $user is now 'ktatroe'
Elements whose original values are neither strings nor integers are left alone in the
resulting array. The new array lets you discover the key in the original array given its
value, but this technique works effectively only when the original array has unique
values.

Randomizing Order

To traverse the elements in an array in a random order, use the shuffle() function.
All existing keys, whether string or numeric, are replaced with consecutive integers
starting at 0.

134 | Chapter5: Arrays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Here’s how to randomize the order of the days of the week:

$days = array('Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday', 'Sunday');

shuffle($days);

print _r($days);

Array

(
[0] => Tuesday
[1] => Thursday
[2] => Monday
[3] => Friday
[4] => Wednesday
[5] => Saturday
[6] => Sunday

)

Obviously, the order after your shuffle() may not be the same as the sample output
here. Unless you are interested in getting multiple random elements from an array,
without repeating any specific item, using the rand() function to pick an index is
more efficient.

Acting on Entire Arrays

PHP has several useful functions for modifying or applying an operation to all ele-
ments of an array. You can merge arrays, find the difference, calculate the total, and
more, all using built-in functions.

Calculating the Sum of an Array

The array_sum() function adds up the values in an indexed or associative array:
$sum = array sum(array);
For example:

$scores = array(98, 76, 56, 80);
$total = array_sum($scores);
// $total = 310

Merging Two Arrays
The array_merge() function intelligently merges two or more arrays:
$merged = array merge(arrayl, array2 [, array ...])

If a numeric key from an earlier array is repeated, the value from the later array is
assigned a new numeric key:

$first = array('hello', 'world'); // 0 => 'hello', 1 => 'world'
$second = array('exit', ‘here'); // 0 => 'exit', 1 => 'here'
$merged = array merge($first, $second);

// $merged = array('hello', 'world', 'exit', 'here')

Acting on Entire Arrays | 135

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If a string key from an earlier array is repeated, the earlier value is replaced by the
later value:

$first = array('bill' => 'clinton', 'tony' => 'danza');

$second = array('bill' => 'gates', ‘adam' => 'west');

$merged = array merge($first, $second);

// $merged = array('bill' => 'gates', 'tony' => 'danza', 'adam' => 'west')

Calculating the Difference Between Two Arrays

The array diff() function identifies values from one array that are not present in
others:

$diff = array diff(arrayi, array? [, array ... 1);
For example:

$a1 = array('bill', 'claire', 'elle', 'simon', 'judy');
$a2 = array('jack', 'claire', 'toni');

$a3 = array('elle', 'simon', ‘'garfunkel');

// find values of $a1 not in $a2 or $%a3

$diff = array diff($ai, $a2, $a3);

// $diff is array('bill', 'judy');

Values are compared using ===, so 1 and "1" are considered different. The keys of the
first array are preserved, so in $diff the key of 'bill' is 0 and the key of 'judy"' is 4.

Filtering Elements from an Array

To identify a subset of an array based on its values, use the array filter() function:
$filtered = array filter(array, callback);

Each value of array is passed to the function named in callback. The returned array
contains only those elements of the original array for which the function returns a
true value. For example:

function is_odd ($element) {
return $element % 2;

}
$numbers = array(9, 23, 24, 27);
$odds = array_filter($numbers, 'is odd');

// $odds is array(o => 9, 1 => 23, 3 => 27)

As you see, the keys are preserved. This function is most useful with associative
arrays.

Using Arrays

Arrays crop up in almost every PHP program. In addition to their obvious use for
storing collections of values, they’re also used to implement various abstract data
types. In this section, we show how to use arrays to implement sets and stacks.

136 | Chapter5: Arays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sets

Arrays let you implement the basic operations of set theory: union, intersection, and
difference. Each set is represented by an array, and various PHP functions imple-
ment the set operations. The values in the set are the values in the array—the keys
are not used, but they are generally preserved by the operations.

The union of two sets is all the elements from both sets, with duplicates removed.
The array merge() and array unique() functions let you calculate the union. Here’s
how to find the union of two arrays:

function array union($a, $b) {
$union = array merge($a, $b); // duplicates may still exist
$union = array_unique($union);

return $union;

}

$first = array(1, "two', 3);

$second = array('two', 'three', 'four');
$union = array union($first, $second);
print_r($union);

Array
(
[0o] => 1
[1] => two
[2] => 3
[4] => three
[5] => four
)

The intersection of two sets is the set of elements they have in common. PHP’s built-
in array intersect() function takes any number of arrays as arguments and returns
an array of those values that exist in each. If multiple keys have the same value, the
first key with that value is preserved.

Another common function to perform on a set of arrays is to get the difference; that
is, the values in one array that are not present in another array. The array diff()
function calculates this, returning an array with values from the first array that are
not present in the second.

The following code takes the difference of two arrays:

$first = array(1, 'two', 3);

$second = array('two', 'three', 'four');
$difference = array diff($first, $second);
print_r($difference);

Array
(
[0] => 1
[2] => 3
)

Using Arrays | 137

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Stacks

Although not as common in PHP programs as in other programs, one fairly com-
mon data type is the last-in first-out (LIFO) stack. We can create stacks using a pair
of PHP functions, array_push() and array pop(). The array push() function is iden-
tical to an assignment to $array[]. We use array push() because it accentuates the
fact that we’re working with stacks, and the parallelism with array pop() makes our
code easier to read. There are also array shift() and array unshift() functions for
treating an array like a queue.

Stacks are particularly useful for maintaining state. Example 5-4 provides a simple
state debugger that allows you to print out a list of which functions have been called
up to this point (i.e., the stack trace).

Example 5-4. State debugger

$call trace = array();

function enter function($name) {
global $call_trace;
array_push($call _trace, $name); // same as $call trace[] = $name
echo "Entering $name (stack is now: "

}

. join("' -> ', $call trace) . ")
';

function exit function() {
echo 'Exiting
';

global $call trace;
array_pop($call trace); // we ignore array pop()'s return value

function first() {
enter_function('first');
exit function();

}

function second() {
enter function('second');
first();
exit function();

}

function third() {
enter function('third');
second();
first();
exit function();

}

first();
third();

138 | Chapter5: Arays

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Here’s the output from Example 5-4:

Entering first (stack is now: first)

Exiting

Entering third (stack is now: third)

Entering second (stack is now: third -> second)
Entering first (stack is now: third -> second -> first)
Exiting

Exiting

Entering first (stack is now: third -> first)

Exiting

Exiting

Using Arrays | 139

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CHAPTER 6
Objects

Object-oriented programming (OOP) opens the door to cleaner designs, easier main-
tenance, and greater code reuse. Such is the proven value of OOP that few today
would dare to introduce a language that wasn’t object-oriented. PHP supports many
useful features of OOP, and this chapter shows you how to use them.

OOP acknowledges the fundamental connection between data and the code that
works on that data, and it lets you design and implement programs around that con-
nection. For example, a bulletin-board system usually keeps track of many users. In a
procedural programming language, each user would be a data structure, and there
would probably be a set of functions that work with users’ data structures (create the
new users, get their information, etc.). In an object-oriented programming language,
each user would be an object—a data structure with attached code. The data and the
code are still there, but they’re treated as an inseparable unit.

In this hypothetical bulletin-board design, objects can represent not just users, but
also messages and threads. A user object has a username and password for that
user, and code to identify all the messages by that author. A message object knows
which thread it belongs to and has code to post a new message, reply to an existing
message, and display messages. A thread object is a collection of message objects,
and it has code to display a thread index. This is only one way of dividing the neces-
sary functionality into objects, though. For instance, in an alternate design, the
code to post a new message lives in the user object, not the message object. Design-
ing object-oriented systems is a complex topic, and many books have been written
on it. The good news is that however you design your system, you can implement it
in PHP.

The object as union of code and data is the modular unit for application develop-
ment and code reuse. This chapter shows you how to define, create, and use objects
in PHP. It covers basic OO concepts as well as advanced topics such as introspec-
tion and serialization.

140

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Terminology

Every object-oriented language seems to have a different set of terminology for the
same old concepts. This section describes the terms that PHP uses, but be warned
that in other languages these terms may have different meanings.

Let’s return to the example of the users of a bulletin board. You need to keep track of
the same information for each user, and the same functions can be called on each
user’s data structure. When you design the program, you decide the fields for each
user and come up with the functions. In OOP terms, you’re designing the user class.
A class is a template for building objects.

An object is an instance of a class. In this case, it’s an actual user data structure with
attached code. Objects and classes are a bit like values and data types. There’s only
one integer data type, but there are many possible integers. Similarly, your pro-
gram defines only one user class but can create many different (or identical) users
from it.

The data associated with an object are called its properties. The functions associated
with an object are called its methods. When you define a class, you define the names
of its properties and give the code for its methods.

Debugging and maintenance of programs is much easier if you use encapsulation.
This is the idea that a class provides certain methods (the interface) to the code that
uses its objects, so the outside code does not directly access the data structures of
those objects. Debugging is thus easier because you know where to look for bugs—
the only code that changes an object’s data structures is in the class—and mainte-
nance is easier because you can swap out implementations of a class without chang-
ing the code that uses the class, as long as you maintain the same interface.

Any nontrivial object-oriented design probably involves inheritance. This is a way of
defining a new class by saying that it’s like an existing class, but with certain new or
changed properties and methods. The old class is called the superclass (or base class),
and the new class is called the subclass (or derived class). Inheritance is a form of
code reuse—the base-class code is reused instead of being copied and pasted into the
new class. Any improvements or modifications to the base class are automatically
passed on to the derived class.

Creating an Object

It’s much easier to create objects and use them than it is to define object classes, so
before we discuss how to define classes, let’s look at creating objects. To create an
object of a given class, use the new keyword:

$object = new Class;

Creatingan Object | 141

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Assuming that a Person class has been defined, here’s how to create a Person object:
$rasmus = new Person;

Do not quote the class name, or you’ll get a compilation error:
$rasmus = new 'Person’; // does not work

Some classes permit you to pass arguments to the new call. The class’s documenta-
tion should say whether it accepts arguments. If it does, you’'ll create objects like
this:

$object = new Person('Fred', 35);

The class name does not have to be hardcoded into your program. You can supply
the class name through a variable:

$class = 'Person’;

$object = new $class;

// 1is equivalent to
$object = new Person;

Specifying a class that doesn’t exist causes a runtime error.

Variables containing object references are just normal variables—they can be used in
the same ways as other variables. Of particular note is that variable variables work
with objects, as shown here:

$account = new Account;

$object = 'account’
${$object}->init(50000, 1.10); // same as $account->init

Accessing Properties and Methods

Once you have an object, you can use the -> notation to access methods and proper-
ties of the object:

$object->propertyname
$object->methodname([arg, ...])

For example:

printf("Rasmus is %d years old.\n", $rasmus->age); // property access
$rasmus->birthday(); // method call
$rasmus->set_age(21); // method call with arguments

Methods are functions, so they can take arguments and return a value:
$clan = $rasmus->family('extended');

PHP does not have the concept of private and public methods or properties. That is,
there’s no way to specify that only the code in the class should be able to directly
access a particular property or method. Encapsulation is achieved by convention—
only an object’s code should directly access its properties—rather than being
enforced by the language itself.

142 | Chapter6: Objects

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You can use variable variables with property names:

$prop = 'age’;

echo $rasmus->$prop;
A static method is one that is called on a class, not on an object. Such methods can-
not access properties. The name of a static method is the class name, followed by
two colons and the function name. For instance, this calls the p() method in the
HTML class:

HTML: :p("Hello, world");
A class’s documentation tells you which methods are static.

Assignment creates a copy of an object with identical properties. Changing the copy
does not change the original:

$f = new Person('Fred', 35);

$b = $f; // make a copy

$b->set_name('Barney'); // change the copy

printf("%s and %s are best friends.\n", $b->get name(), $f->get name());
Barney and Fred are best friends.

Declaring a Class

To design your program or code library in an object-oriented fashion, you’ll need to
define your own classes, using the class keyword. A class definition includes the
class name and the properties and methods of the class. Class names are case-insensi-
tive and must conform to the rules for PHP identifiers. The class name stdClass is
reserved. Here’s the syntax for a class definition:

class classname [extends baseclass |

{
[var $property [= value]; ...]
[function functionname (args) {

// code
}

: e

}

Declaring Methods

A method is a function defined inside a class. Although PHP imposes no special
restrictions, most methods act only on data within the object in which the method
resides. Method names beginning with two underscores (__) may be used in the
future by PHP (and are currently used for the object serialization methods __sleep()
and _ wakeup(), described later in this chapter), so it’s recommended that you do
not begin your method names with this sequence.

DeclaringaClass | 143

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Within a method, the $this variable contains a reference to the object on which the
method was called. For instance, if you call $rasmus->birthday(), inside the
birthday() method, $this holds the same value as $rasmus. Methods use the $this
variable to access the properties of the current object and to call other methods on
that object.

Here’s a simple class definition of the Person class that shows the $this variable in
action:

class Person {
var $name;

function get name () {
return $this->name;
}

function set name ($new_name) {
$this->name = $new name;
}
}

As you can see, the get name() and set_name() methods use $this to access and set
the $name property of the current object.

There are no keywords or special syntax for d